/* * OVERVIEW * * Powering up: * Immediately after reset, we power down the entire system. * We wake up only after the button is pressed for a sufficiently long time. * * Heater output: * The heater output is driven by Timer/Counter 1 in PWM mode. * We want to be able to measure the battery voltage both when the * output is on, and when the output is off. So we set the T/C1 clock * prescaler so that the T/C1 is slow enough, we enable the T/C1 interrupts * both on compare match and on overflow. After the interrupt, we trigger * the battery voltage measurement with ADC. * * ADC: * To avoid transients, we measure each battery state (when the heater is on * and when it is off) separately, and we drop the first few readings. * We calculate a running average of the readings to achieve higher accuracy. * * Buttons: * There are two buttons (+ and -). Any button can wake the system up from * the power-down state. * TODO: When the system is woken up by the "-" button, * it starts with the minimum output power, when it is woken up by the "+" * button, it start with the maximum output power. * When running, the "-" button is used for decreasing the output power, * the "+" button is for increasing it. * When on the lowest power state, the "-" button switches the system off. * TODO: Long "-" button press switches the system off, long "+" button * press sets the output power to maximum. * * Status LED: * When powering up by a button press, the LED goes on to provide a visual * feedback, and is switched off after the button is released. * TODO: After a button press, the # of blinks of the LED reflects the * chosen output power level for some time. Afterwards, it displays * the battery level. * TODO: When the battery is completely exhausted, the output power is switched * off, the LED keeps blinking for some time, and then the whole system is * switched off to avoid deep discharge of the battery. * * Timing: * The firmware is timed by the Watchdog Timer interrupt. Most of the * processing is done from the main loop, IRQs only set various flags * or trigger other events. */ #include #include #include #include #include #include #include "logging.h" /* waking up from the power down state by a button press */ #define WAKEUP_POLL 50 // msec #define WAKEUP_LIMIT 5 // times WAKEUP_POLL /* output power levels */ #define N_STEPS 5 static unsigned char steps[] = { 60, 85, 121, 171, 242 }; static unsigned char intensity = 0; // selected power level /* which state (output on or output off) are we measuring now */ static volatile unsigned char adc_type, adc_drop; #define ADC_RUNAVG_SHIFT 5 // running average shift on batt_on, batt_off static volatile uint16_t batt_on, batt_off; // measured voltage /* * The voltage divider has 1M5 and 300K resistors (i.e. it measures 1/6th of * the real voltage), ADC uses 1.1V internal reference. * Macro to calculate upper eight bits of the ADC running-averaged value * from the voltage in milivolts. */ #define ADC_1100MV_VALUE 1071 // measured, not exactly 1100 #define MV_TO_ADC8(mV) ((unsigned char)(((uint32_t)(1UL << ADC_RUNAVG_SHIFT) \ * (1024UL * (mV)) \ / (6UL * ADC_1100MV_VALUE)) >> 8)) #define BATT_N_LEVELS 3 static unsigned char batt_levels[BATT_N_LEVELS] = { MV_TO_ADC8(3500), MV_TO_ADC8(3700), MV_TO_ADC8(3900), }; /* timing by WDT */ static volatile unsigned char jiffies, next_clock_tick; /* ========= Analog to Digital Converter (battery voltage) ========== */ static void adc_init() { power_adc_enable(); ADCSRA = _BV(ADEN) // enable | _BV(ADPS1) | _BV(ADPS0) // clk/8 = 125 kHz | _BV(ADIE); // enable IRQ ADMUX = _BV(REFS1) | _BV(MUX1) | _BV(MUX0); // 1.1V reference, PB3 pin, single-ended DIDR0 |= _BV(ADC3D); // PB3 pin as analog input } static void adc_susp() { ADCSRA &= ~_BV(ADEN); // disable ADC DIDR0 &= ~_BV(ADC3D); // disable analog input on PB3 power_adc_disable(); } static void adc_start_measurement() { ADCSRA |= _BV(ADSC); } ISR(ADC_vect) { uint16_t adcw = ADCW; if (adc_drop) { adc_drop--; ADCSRA |= _BV(ADSC); return; } // TODO: We may want to disable ADC after here to save power, // but compared to the heater power it would be negligible, // so don't bother with it. if (adc_type == 0) { if (batt_off) { batt_off += adcw - (batt_off >> ADC_RUNAVG_SHIFT); } else { batt_off = adcw << ADC_RUNAVG_SHIFT; } } else { if (batt_on) { batt_on += adcw - (batt_on >> ADC_RUNAVG_SHIFT); } else { batt_on = adcw << ADC_RUNAVG_SHIFT; } } } /* ===================== Timer/Counter1 for PWM ===================== */ static void pwm_init() { power_timer1_enable(); DDRB |= _BV(PB4); // TCCR1 = _BV(CS10); // clk/1 = 1 MHz TCCR1 = _BV(CS11) | _BV(CS13); // clk/512 = 2 kHz GTCCR = _BV(COM1B1) | _BV(PWM1B); OCR1C = 255; // OCR1B = steps[0]; OCR1B = 0; TIMSK = _BV(OCIE1B) | _BV(TOIE1); } static void pwm_susp() { TCCR1 = 0; } ISR(TIM1_OVF_vect) { adc_drop = 2; adc_type = 1; adc_start_measurement(); } ISR(TIM1_COMPB_vect) { adc_drop = 2; adc_type = 0; adc_start_measurement(); } static void pwm_set(unsigned char pwm) { OCR1B = pwm; } /* ===================== Status LED on pin PB2 ======================= */ static void status_led_init() { DDRB |= _BV(PB2); PORTB &= ~_BV(PB2); } static void status_led_on() { PORTB |= _BV(PB2); } static void status_led_off() { PORTB &= ~_BV(PB2); } static unsigned char status_led_is_on() { return PORTB & _BV(PB2) ? 1 : 0; } /* ================== Buttons on pin PB0 and PB1 ===================== */ static void buttons_init() { DDRB &= ~(_BV(PB0) | _BV(PB1)); // set as input PORTB |= _BV(PB0) | _BV(PB1); // internal pull-up GIMSK &= ~_BV(PCIE); // disable pin-change IRQs PCMSK = 0; // disable pin-change IRQs on all pins of port B } static void buttons_susp() { buttons_init(); GIMSK |= _BV(PCIE); PCMSK |= _BV(PCINT0) | _BV(PCINT1); } static unsigned char buttons_pressed() { return ( (PINB & _BV(PB0) ? 0 : 1) | (PINB & _BV(PB1) ? 0 : 2) ); } static unsigned char buttons_wait_for_release() { uint16_t wake_count = 0; do { if (++wake_count > WAKEUP_LIMIT) status_led_on(); // inform the user _delay_ms(WAKEUP_POLL); } while (buttons_pressed()); status_led_off(); return wake_count > WAKEUP_LIMIT; } ISR(PCINT0_vect) { // empty - let it wake us from sleep, but do nothing else } /* ==== Watchdog Timer for timing blinks and other periodic tasks ==== */ static void wdt_init() { next_clock_tick = 0; jiffies = 0; WDTCR = _BV(WDIE) | _BV(WDP1); // interrupt mode, 64 ms } static void wdt_susp() { wdt_disable(); } ISR(WDT_vect) { next_clock_tick = 1; jiffies++; } /* ====== Hardware init, teardown, powering down and waking up ====== */ static void hw_setup() { power_all_disable(); pwm_init(); adc_init(); status_led_init(); wdt_init(); } static void hw_suspend() { adc_susp(); pwm_susp(); status_led_init(); // we don't have a separate _susp() here buttons_susp(); wdt_susp(); power_all_disable(); } static void power_down() { hw_suspend(); do { // G'night set_sleep_mode(SLEEP_MODE_PWR_DOWN); sleep_enable(); sleep_bod_disable(); sei(); sleep_cpu(); // G'morning cli(); sleep_disable(); // allow wakeup by long button-press only } while (!buttons_wait_for_release()); // OK, wake up now hw_setup(); } /* ======== Button press detection and handling ===================== */ static void button_one_pressed() { if (intensity > 0) { pwm_set(steps[--intensity]); } else { power_down(); } } static void button_two_pressed() { if (intensity < N_STEPS-1) { pwm_set(steps[++intensity]); } } static unsigned char button_state, button_state_time; static void timer_check_buttons() { unsigned char newstate = buttons_pressed(); if (newstate == button_state) { if (newstate && button_state_time < 4) ++button_state_time; return; } if (newstate) { button_state = newstate; button_state_time = 0; return; } // just released switch (button_state) { case 1: button_one_pressed(); break; case 2: button_two_pressed(); break; default: // ignore when both are preseed break; } button_state = newstate; } /* ============ Status LED blinking =================================== */ static unsigned char blink_on_time, blink_off_time, n_blinks; static unsigned char blink_counter; static unsigned char battery_level() { unsigned char i, adc8; // NOTE: we use 8-bit value only, so we don't need lock to protect // us against concurrently running ADC IRQ handler: adc8 = batt_off >> 8; for (i = 0; i < BATT_N_LEVELS; i++) if (batt_levels[i] > adc8) break; return i; } static void status_led_next_pattern() { // for now, display the selected intensity // n_blinks = intensity + 1; n_blinks = battery_level() + 1; blink_on_time = 0; blink_off_time = 2; blink_counter = 10; } static void timer_blink() { if (blink_counter) { blink_counter--; } else if (status_led_is_on()) { status_led_off(); blink_counter = blink_off_time; } else if (n_blinks) { --n_blinks; status_led_on(); blink_counter = blink_on_time; } else { status_led_next_pattern(); } } int main() { log_init(); #if 0 log_word(batt_levels[0]); log_word(batt_levels[1]); log_word(batt_levels[2]); log_flush(); #endif power_down(); sei(); // we try to be completely IRQ-driven, so just wait for IRQs here while(1) { cli(); set_sleep_mode(SLEEP_MODE_IDLE); sleep_enable(); // keep BOD active, no sleep_bod_disable(); sei(); sleep_cpu(); sleep_disable(); // FIXME: Maybe handle new ADC readings as well? if (next_clock_tick) { next_clock_tick = 0; timer_check_buttons(); timer_blink(); if ((jiffies & 0x0F) == 0) { unsigned char i; for (i = 0; i < BATT_N_LEVELS; i++) if (batt_levels[i] > batt_off) break; #if 0 log_byte(0xcc); log_byte(i); log_byte(batt_off >> 8); log_byte(batt_on >> 8); #endif } log_flush(); } } }