X-Git-Url: https://www.fi.muni.cz/~kas/git//home/kas/public_html/git/?p=bike-lights.git;a=blobdiff_plain;f=firmware%2Fadc.c;h=6db036af530b124e8aec9db50e668b6802d669a9;hp=d0ee1c40f3377f17e40bd1f7662d662f72f8034f;hb=1f28156058ed3af9e87afdc60d631ca5a47eb2cb;hpb=5090774fd8ca593d3b247b099b3b6a40e837475e diff --git a/firmware/adc.c b/firmware/adc.c index d0ee1c4..6db036a 100644 --- a/firmware/adc.c +++ b/firmware/adc.c @@ -6,35 +6,35 @@ #define AMBIENT_ADC N_PWMLEDS #define BATTERY_ADC (N_PWMLEDS + 1) #define ADC1_GAIN20 (N_PWMLEDS + 2) +#define BUTTON_ADC (N_PWMLEDS + 2) -#define NUM_ADCS 6 +#define NUM_ADCS 7 volatile static unsigned char current_adc; static uint16_t adc_sum; static unsigned char sum_shift; static unsigned char adc_vals; -static uint16_t adc1_gain20_offset_x16; +#define ADC1_GAIN20_OFFSET_SHIFT 6 +static uint16_t adc1_gain20_offset; static void inline setup_mux(unsigned char n) { - ADCSRA |= _BV(ADEN); // enable ADC - /* ADC numbering: PWM LEDs first, then ambient light sensor, battery sensor */ switch (n) { case 0: // pwmled 1: 1.1V, ADC0,1 (PA0,1), gain 20 ADMUX = _BV(REFS1) | _BV(MUX3) | _BV(MUX1) | _BV(MUX0); - sum_shift = 3; // 8 measurements + sum_shift = PWMLED_ADC_SHIFT; break; case 1: // pwmled 2: 1.1V, ADC2,1 (PA2,1), gain 20 ADMUX = _BV(REFS1) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1); - sum_shift = 3; // 8 measurements + sum_shift = PWMLED_ADC_SHIFT; break; case 2: // pwmled 3: 1.1V, ADC4 (PA5), single-ended ADMUX = _BV(REFS1) | _BV(MUX2); - sum_shift = 2; // 4 measurements + sum_shift = PWMLED_ADC_SHIFT; break; case 3: // ambient light: 1.1V, ADC5 (PA6), single-ended ADMUX = _BV(REFS1) | _BV(MUX2) | _BV(MUX0); - sum_shift = 0; // 1 measurement + sum_shift = 3; // 3 measurements break; case 4: // batt voltage: 1.1V, ADC6 (PA7), single-ended ADMUX = _BV(REFS1) | _BV(MUX2) | _BV(MUX1); @@ -42,7 +42,12 @@ static void inline setup_mux(unsigned char n) break; case 5: // gain stage offset: 1.1V, ADC1,1, gain 20 ADMUX = _BV(REFS1) | _BV(MUX3) | _BV(MUX2) | _BV(MUX0); - sum_shift = 3; // 8 measurements + sum_shift = 0; // 1 measurement + break; + case 6: // buttons: 1.1V, ADC3, single-ended + PORTA |= _BV(PA3); // +5V to the voltage splitter + ADMUX = _BV(REFS1) | _BV(MUX1) | _BV(MUX0); + sum_shift = 0; break; } @@ -52,15 +57,35 @@ static void inline setup_mux(unsigned char n) static void start_next_adc() { - if (current_adc > 0) { + if (current_adc > 0) current_adc--; - // set up mux, start one-shot conversion - setup_mux(current_adc); - ADCSRA |= _BV(ADSC); - } else { - current_adc = NUM_ADCS; + else // TODO: kick the watchdog here. - } + current_adc = NUM_ADCS-1; + + // set up mux, start one-shot conversion + setup_mux(current_adc); + ADCSRA |= _BV(ADSC); +} + +/* + * Single synchronous ADC conversion. + * Has to be called with IRQs disabled (or with the ADC IRQ disabled). + */ +static uint16_t read_adc_sync() +{ + uint16_t rv; + + ADCSRA |= _BV(ADSC); // start the conversion + + // wait for the conversion to finish + while((ADCSRA & _BV(ADIF)) == 0) + ; + + rv = ADCW; + ADCSRA |= _BV(ADIF); // clear the IRQ flag + + return rv; } void init_adc() @@ -75,33 +100,25 @@ void init_adc() // ADCSRB |= _BV(GSEL); // gain 8 or 32 // Disable digital input on all bits used by ADC - DIDR0 = _BV(ADC0D) | _BV(ADC1D) | _BV(ADC2D) + DIDR0 = _BV(ADC0D) | _BV(ADC1D) | _BV(ADC2D) | _BV(ADC3D) | _BV(ADC4D) | _BV(ADC5D) | _BV(ADC6D); // 1.1V, ADC1,1, gain 20 ADMUX = _BV(REFS1) | _BV(MUX3) | _BV(MUX2) | _BV(MUX0); - ADCSRA |= _BV(ADSC); /* Do first conversion and drop the result */ - while ((ADCSRA & _BV(ADIF)) == 0) - ; - ADCSRA |= _BV(ADIF); // clear the IRQ flag - - adc1_gain20_offset_x16 = 0; + read_adc_sync(); - for (i = 0; i < 16; i++) { - ADCSRA |= _BV(ADSC); - - while ((ADCSRA & _BV(ADIF)) == 0) - ; - adc1_gain20_offset_x16 += ADCW; + adc1_gain20_offset = 0; - ADCSRA |= _BV(ADIF); // clear the IRQ flag + for (i = 0; i < (1 << ADC1_GAIN20_OFFSET_SHIFT); i++) { + adc1_gain20_offset += read_adc_sync() + - (adc1_gain20_offset >> ADC1_GAIN20_OFFSET_SHIFT); } ADCSRA |= _BV(ADIE); // enable IRQ - ADCSRA &= ~_BV(ADEN); // disable until needed + start_next_adc(); } void susp_adc() @@ -116,8 +133,6 @@ ISR(ADC_vect) { // IRQ handler if (adc_vals) // start the next conversion immediately ADCSRA |= _BV(ADSC); - else - ADCSRA &= ~_BV(ADEN); // the last one, disable ADC if (adc_vals < (1 << sum_shift)) // drop the first conversion, use all others @@ -134,29 +149,26 @@ ISR(ADC_vect) { // IRQ handler if (current_adc == ADC1_GAIN20) { // running average - adc1_gain20_offset_x16 += adcval - - (adc1_gain20_offset_x16 >> 4); + adc1_gain20_offset += adcval + - (adc1_gain20_offset >> ADC1_GAIN20_OFFSET_SHIFT); } else if (current_adc == 0 || current_adc == 1) { - uint16_t offset = adc1_gain20_offset_x16 >> 4; - if (adcval >= offset) - adcval -= offset; + uint16_t offset = adc1_gain20_offset + >> (ADC1_GAIN20_OFFSET_SHIFT - sum_shift); + if (adc_sum > offset) + adc_sum -= offset; else - adcval = 0; + adc_sum = 0; } if (current_adc < N_PWMLEDS) - pwmled_adc(current_adc, adcval); + pwmled_adc(current_adc, adc_sum); if (current_adc == AMBIENT_ADC) - ambient_adc(adcval); + ambient_adc(adc_sum); if (current_adc == BATTERY_ADC) battery_adc(adcval); + if (current_adc == BUTTON_ADC) + button_adc(adcval); start_next_adc(); } -void timer_start_adcs() -{ - if (current_adc == NUM_ADCS) // Don't start if in progress - start_next_adc(); -} -