]> www.fi.muni.cz Git - bike-lights.git/blobdiff - firmware/adc.c
adc: missing break statement
[bike-lights.git] / firmware / adc.c
index dc35d6b8e8b56681c608cd128178f26323e3b5f8..6db036af530b124e8aec9db50e668b6802d669a9 100644 (file)
 
 #include "lights.h"
 
-/* ADC numbering: PWM LEDs first, then ambient light sensor, battery sensor */
-static unsigned char adc_mux[] = { // pwmleds should be first
-       // 0: pwmled 0: 1.1V, ADC3 (PA4), single-ended
-       _BV(REFS1) | _BV(MUX1) | _BV(MUX0),
-       // 1: pwmled 1: 1.1V, ADC0,1 (PA0,1), gain 1 or 8
-       _BV(REFS1) | _BV(MUX3) | _BV(MUX2),
-       // 2: pwmled 2: 1.1V, ADC2,1 (PA2,1), gain 20 or 32
-       _BV(REFS1) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1),
-       // 3: ambient light: 1.1V, ADC4 (PA5), single-ended
-       _BV(REFS1) | _BV(MUX2),
-       // 4: batt voltage: 1.1V, ADC5 (PA6), single-ended
-       _BV(REFS1) | _BV(MUX2) | _BV(MUX0),
-};
-
 #define AMBIENT_ADC N_PWMLEDS
 #define BATTERY_ADC (N_PWMLEDS + 1)
+#define ADC1_GAIN20 (N_PWMLEDS + 2)
+#define BUTTON_ADC  (N_PWMLEDS + 2)
 
-#define LAST_ADC (sizeof(adc_mux)/sizeof(adc_mux[0]))
+#define NUM_ADCS 7
 volatile static unsigned char current_adc;
-static unsigned char adc_ignore;
+static uint16_t adc_sum;
+static unsigned char sum_shift;
+static unsigned char adc_vals;
+#define ADC1_GAIN20_OFFSET_SHIFT       6
+static uint16_t adc1_gain20_offset;
 
-static void start_next_adc()
+static void inline setup_mux(unsigned char n)
 {
-       while (current_adc > 0) {
-               --current_adc;
-
-               // test if current_adc should be measured
-               if (current_adc < N_PWMLEDS && pwmled_needs_adc(current_adc))
-                       goto found;
-               if (current_adc == AMBIENT_ADC)
-                       goto found;
-               // TODO battery sense, etc.
+       /* ADC numbering: PWM LEDs first, then ambient light sensor, battery sensor */
+       switch (n) {
+       case 0: // pwmled 1: 1.1V, ADC0,1 (PA0,1), gain 20
+               ADMUX = _BV(REFS1) | _BV(MUX3) | _BV(MUX1) | _BV(MUX0);
+               sum_shift = PWMLED_ADC_SHIFT;
+               break;
+       case 1: // pwmled 2: 1.1V, ADC2,1 (PA2,1), gain 20
+               ADMUX = _BV(REFS1) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
+               sum_shift = PWMLED_ADC_SHIFT;
+               break;
+       case 2: // pwmled 3: 1.1V, ADC4 (PA5), single-ended
+               ADMUX = _BV(REFS1) | _BV(MUX2);
+               sum_shift = PWMLED_ADC_SHIFT;
+               break;
+       case 3: // ambient light: 1.1V, ADC5 (PA6), single-ended
+               ADMUX = _BV(REFS1) | _BV(MUX2) | _BV(MUX0);
+               sum_shift = 3; // 3 measurements
+               break;
+       case 4: // batt voltage: 1.1V, ADC6 (PA7), single-ended
+               ADMUX = _BV(REFS1) | _BV(MUX2) | _BV(MUX1);
+               sum_shift = 0; // 1 measurement
+               break;
+       case 5: // gain stage offset: 1.1V, ADC1,1, gain 20
+               ADMUX = _BV(REFS1) | _BV(MUX3) | _BV(MUX2) | _BV(MUX0);
+               sum_shift = 0; // 1 measurement
+               break;
+       case 6: // buttons: 1.1V, ADC3, single-ended
+               PORTA |= _BV(PA3); // +5V to the voltage splitter
+               ADMUX = _BV(REFS1) | _BV(MUX1) | _BV(MUX0);
+               sum_shift = 0;
+               break;
        }
 
-       // all ADCs have been handled
-       current_adc = LAST_ADC;
-       return;
-found:
-       // ADCSRB |= _BV(GSEL); // gain 8 or 32
-       ADMUX = adc_mux[current_adc]; // set up mux, start one-shot conversion
-       adc_ignore = 1; // ignore first reading after mux change
+       adc_sum = 0;
+       adc_vals = 1 << sum_shift;
+}
+
+static void start_next_adc()
+{
+       if (current_adc > 0)
+               current_adc--;
+       else
+               // TODO: kick the watchdog here.
+               current_adc = NUM_ADCS-1;
+
+       // set up mux, start one-shot conversion
+       setup_mux(current_adc);
        ADCSRA |= _BV(ADSC);
 }
 
+/*
+ * Single synchronous ADC conversion.
+ * Has to be called with IRQs disabled (or with the ADC IRQ disabled).
+ */
+static uint16_t read_adc_sync()
+{
+       uint16_t rv;
+
+       ADCSRA |= _BV(ADSC); // start the conversion
+
+       // wait for the conversion to finish
+       while((ADCSRA & _BV(ADIF)) == 0)
+               ;
+
+       rv = ADCW;
+       ADCSRA |= _BV(ADIF); // clear the IRQ flag
+
+       return rv;
+}
+
 void init_adc()
 {
-       current_adc = LAST_ADC;
-       adc_ignore = 1;
+       unsigned char i;
+       current_adc = NUM_ADCS;
 
        ADCSRA = _BV(ADEN)                      // enable
                | _BV(ADPS1) | _BV(ADPS0)       // CLK/8 = 125 kHz
                // | _BV(ADPS2)                 // CLK/16 = 62.5 kHz
                ;
-       ADCSRB |= _BV(GSEL); // gain 8 or 32
+       // ADCSRB |= _BV(GSEL); // gain 8 or 32
 
        // Disable digital input on all bits used by ADC
        DIDR0 = _BV(ADC0D) | _BV(ADC1D) | _BV(ADC2D) | _BV(ADC3D)
-               | _BV(ADC4D) | _BV(ADC5D);
+               | _BV(ADC4D) | _BV(ADC5D) | _BV(ADC6D);
 
-       ADCSRA |= _BV(ADSC);
+       // 1.1V, ADC1,1, gain 20
+       ADMUX = _BV(REFS1) | _BV(MUX3) | _BV(MUX2) | _BV(MUX0);
 
        /* Do first conversion and drop the result */
-       while ((ADCSRA & _BV(ADIF)) == 0)
-               ;
-       ADCSRA |= _BV(ADIF); // clear the IRQ flag
+       read_adc_sync();
+
+       adc1_gain20_offset = 0;
+
+       for (i = 0; i < (1 << ADC1_GAIN20_OFFSET_SHIFT); i++) {
+               adc1_gain20_offset += read_adc_sync()
+                       - (adc1_gain20_offset >> ADC1_GAIN20_OFFSET_SHIFT);
+       }
 
        ADCSRA |= _BV(ADIE); // enable IRQ
+
+       start_next_adc();
+}
+
+void susp_adc()
+{
+       ADCSRA = 0;
+       DIDR0 = 0;
 }
 
 ISR(ADC_vect) { // IRQ handler
        uint16_t adcval = ADCW;
 
-#if 0
-       log_byte(0xF3);
-       log_byte(current_adc);
-       log_word(adcval);
-#endif
-
-       if (adc_ignore) {
+       if (adc_vals)
+               // start the next conversion immediately
                ADCSRA |= _BV(ADSC);
-               adc_ignore = 0;
+
+       if (adc_vals < (1 << sum_shift))
+                // drop the first conversion, use all others
+                adc_sum += adcval;
+
+       if (adc_vals) {
+               adc_vals--;
                return;
        }
 
+       // Now handle the (1 << sum_shift) measurements
+
+       adcval = adc_sum >> sum_shift;
+
+       if (current_adc == ADC1_GAIN20) {
+               // running average
+               adc1_gain20_offset += adcval
+                       - (adc1_gain20_offset >> ADC1_GAIN20_OFFSET_SHIFT);
+       } else if (current_adc == 0 || current_adc == 1) {
+               uint16_t offset = adc1_gain20_offset
+                       >> (ADC1_GAIN20_OFFSET_SHIFT - sum_shift);
+               if (adc_sum > offset)
+                       adc_sum -= offset;
+               else
+                       adc_sum = 0;
+       }
+
        if (current_adc < N_PWMLEDS)
-               pwmled_adc(current_adc, adcval);
+               pwmled_adc(current_adc, adc_sum);
        if (current_adc == AMBIENT_ADC)
-               ambient_adc(adcval);
-       // TODO battery sense, etc.
+               ambient_adc(adc_sum);
+       if (current_adc == BATTERY_ADC)
+               battery_adc(adcval);
+       if (current_adc == BUTTON_ADC)
+               button_adc(adcval);
        
        start_next_adc();
 }
 
-void timer_start_adcs()
-{
-       if (current_adc == LAST_ADC) // Don't start if in progress
-               start_next_adc();
-}
-