]> www.fi.muni.cz Git - bike-lights.git/blob - firmware/adc.c
adc: missing break statement
[bike-lights.git] / firmware / adc.c
1 #include <avr/io.h>
2 #include <avr/interrupt.h>
3
4 #include "lights.h"
5
6 #define AMBIENT_ADC N_PWMLEDS
7 #define BATTERY_ADC (N_PWMLEDS + 1)
8 #define ADC1_GAIN20 (N_PWMLEDS + 2)
9 #define BUTTON_ADC  (N_PWMLEDS + 2)
10
11 #define NUM_ADCS 7
12 volatile static unsigned char current_adc;
13 static uint16_t adc_sum;
14 static unsigned char sum_shift;
15 static unsigned char adc_vals;
16 #define ADC1_GAIN20_OFFSET_SHIFT        6
17 static uint16_t adc1_gain20_offset;
18
19 static void inline setup_mux(unsigned char n)
20 {
21         /* ADC numbering: PWM LEDs first, then ambient light sensor, battery sensor */
22         switch (n) {
23         case 0: // pwmled 1: 1.1V, ADC0,1 (PA0,1), gain 20
24                 ADMUX = _BV(REFS1) | _BV(MUX3) | _BV(MUX1) | _BV(MUX0);
25                 sum_shift = PWMLED_ADC_SHIFT;
26                 break;
27         case 1: // pwmled 2: 1.1V, ADC2,1 (PA2,1), gain 20
28                 ADMUX = _BV(REFS1) | _BV(MUX3) | _BV(MUX2) | _BV(MUX1);
29                 sum_shift = PWMLED_ADC_SHIFT;
30                 break;
31         case 2: // pwmled 3: 1.1V, ADC4 (PA5), single-ended
32                 ADMUX = _BV(REFS1) | _BV(MUX2);
33                 sum_shift = PWMLED_ADC_SHIFT;
34                 break;
35         case 3: // ambient light: 1.1V, ADC5 (PA6), single-ended
36                 ADMUX = _BV(REFS1) | _BV(MUX2) | _BV(MUX0);
37                 sum_shift = 3; // 3 measurements
38                 break;
39         case 4: // batt voltage: 1.1V, ADC6 (PA7), single-ended
40                 ADMUX = _BV(REFS1) | _BV(MUX2) | _BV(MUX1);
41                 sum_shift = 0; // 1 measurement
42                 break;
43         case 5: // gain stage offset: 1.1V, ADC1,1, gain 20
44                 ADMUX = _BV(REFS1) | _BV(MUX3) | _BV(MUX2) | _BV(MUX0);
45                 sum_shift = 0; // 1 measurement
46                 break;
47         case 6: // buttons: 1.1V, ADC3, single-ended
48                 PORTA |= _BV(PA3); // +5V to the voltage splitter
49                 ADMUX = _BV(REFS1) | _BV(MUX1) | _BV(MUX0);
50                 sum_shift = 0;
51                 break;
52         }
53
54         adc_sum = 0;
55         adc_vals = 1 << sum_shift;
56 }
57
58 static void start_next_adc()
59 {
60         if (current_adc > 0)
61                 current_adc--;
62         else
63                 // TODO: kick the watchdog here.
64                 current_adc = NUM_ADCS-1;
65
66         // set up mux, start one-shot conversion
67         setup_mux(current_adc);
68         ADCSRA |= _BV(ADSC);
69 }
70
71 /*
72  * Single synchronous ADC conversion.
73  * Has to be called with IRQs disabled (or with the ADC IRQ disabled).
74  */
75 static uint16_t read_adc_sync()
76 {
77         uint16_t rv;
78
79         ADCSRA |= _BV(ADSC); // start the conversion
80
81         // wait for the conversion to finish
82         while((ADCSRA & _BV(ADIF)) == 0)
83                 ;
84
85         rv = ADCW;
86         ADCSRA |= _BV(ADIF); // clear the IRQ flag
87
88         return rv;
89 }
90
91 void init_adc()
92 {
93         unsigned char i;
94         current_adc = NUM_ADCS;
95
96         ADCSRA = _BV(ADEN)                      // enable
97                 | _BV(ADPS1) | _BV(ADPS0)       // CLK/8 = 125 kHz
98                 // | _BV(ADPS2)                 // CLK/16 = 62.5 kHz
99                 ;
100         // ADCSRB |= _BV(GSEL); // gain 8 or 32
101
102         // Disable digital input on all bits used by ADC
103         DIDR0 = _BV(ADC0D) | _BV(ADC1D) | _BV(ADC2D) | _BV(ADC3D)
104                 | _BV(ADC4D) | _BV(ADC5D) | _BV(ADC6D);
105
106         // 1.1V, ADC1,1, gain 20
107         ADMUX = _BV(REFS1) | _BV(MUX3) | _BV(MUX2) | _BV(MUX0);
108
109         /* Do first conversion and drop the result */
110         read_adc_sync();
111
112         adc1_gain20_offset = 0;
113
114         for (i = 0; i < (1 << ADC1_GAIN20_OFFSET_SHIFT); i++) {
115                 adc1_gain20_offset += read_adc_sync()
116                         - (adc1_gain20_offset >> ADC1_GAIN20_OFFSET_SHIFT);
117         }
118
119         ADCSRA |= _BV(ADIE); // enable IRQ
120
121         start_next_adc();
122 }
123
124 void susp_adc()
125 {
126         ADCSRA = 0;
127         DIDR0 = 0;
128 }
129
130 ISR(ADC_vect) { // IRQ handler
131         uint16_t adcval = ADCW;
132
133         if (adc_vals)
134                 // start the next conversion immediately
135                 ADCSRA |= _BV(ADSC);
136
137         if (adc_vals < (1 << sum_shift))
138                  // drop the first conversion, use all others
139                  adc_sum += adcval;
140
141         if (adc_vals) {
142                 adc_vals--;
143                 return;
144         }
145
146         // Now handle the (1 << sum_shift) measurements
147
148         adcval = adc_sum >> sum_shift;
149
150         if (current_adc == ADC1_GAIN20) {
151                 // running average
152                 adc1_gain20_offset += adcval
153                         - (adc1_gain20_offset >> ADC1_GAIN20_OFFSET_SHIFT);
154         } else if (current_adc == 0 || current_adc == 1) {
155                 uint16_t offset = adc1_gain20_offset
156                         >> (ADC1_GAIN20_OFFSET_SHIFT - sum_shift);
157                 if (adc_sum > offset)
158                         adc_sum -= offset;
159                 else
160                         adc_sum = 0;
161         }
162
163         if (current_adc < N_PWMLEDS)
164                 pwmled_adc(current_adc, adc_sum);
165         if (current_adc == AMBIENT_ADC)
166                 ambient_adc(adc_sum);
167         if (current_adc == BATTERY_ADC)
168                 battery_adc(adcval);
169         if (current_adc == BUTTON_ADC)
170                 button_adc(adcval);
171         
172         start_next_adc();
173 }
174