2 // The Estes A8-3 and C6-7 motors have diameter of 17.7 mm,
3 // length 69.5 mm. The Estes Alpha launch pad has rod diameter 3.4 mm.
5 motor_diam = 17.7 + 0.6; // add some tolerance
6 motor_len = 69.5 + 0.5;
10 loose_fit_diam_diff = 0.5; // cylinder with outer diameter d1
11 // will fit loosely into the hole with inner diameter
12 // d1 + loose_fit_diam_diff
13 tight_fit_diam_diff = 0.25; // cylinder with outer diameter d1
14 // will fit tightly into the hole with inner diameter
15 // d1 + tight_fit_diam_diff
17 thin_wall = 1.0; // depends on the print width
18 thick_wall = 2*thin_wall + loose_fit_diam_diff/2;
19 // motor_diam + 2*thick_wall is the outer diameter of the rocket
20 motor_wall = thick_wall; // above the motor
25 clip_inner_space = motor_diam/2 - 1.5;
28 rubber_beam_height = 3;
29 rubber_beam_width = 1.5;
41 translate([motor_diam/2 + thick_wall + thin_wall + rod_diam/2, 0, 0])
42 cylinder(r = rod_diam/2 + thin_wall, h = thick_wall);
43 translate([motor_diam/2 + thick_wall - thin_wall - rod_diam/2, 0, 0])
45 cylinder(r = rod_diam/2 + thin_wall, h = 3*thick_wall);
51 translate([motor_diam/2 + thick_wall + thin_wall + eps + rod_diam/2, 0, 0])
52 cylinder(r = rod_diam/2, h = infty);
55 //----------------- MOTOR MODULE -----------------------------
58 assign(h1 = 2*motor_len/3, // near end height
59 h2 = 20, // far end height
60 h_off = motor_len, // height offset of the far height
61 w = 30, // distance of the far height
62 fin_w = fin_thickness)
63 translate([0, -fin_w/2, -h1])
65 cube([eps, fin_w, h1]); // near end
66 translate([w, 0, h_off]) // far end
67 cube([eps, fin_w, h2]);
71 // alternative fin layout
73 assign(h1 = motor_len/2, // near end height
74 w2 = 23, // bottom/far end width
75 h_off = 60, // height offset of the far height
76 w = 30, // distance of the far height
77 fin_w = fin_thickness)
78 translate([0, -fin_w/2, -h1])
80 cube([eps, fin_w, h1]); // near end
81 translate([w-w2, 0, h_off]) // far end
82 cube([w2, fin_w, eps]);
87 rod_hole_side = 1.5*(rod_diam + thin_wall);
89 module motor_module_solid()
91 // cone from loose_fit to tight fit, 1/3 of segment overlap
92 cylinder(r1 = motor_diam/2 + thin_wall,
93 r2 = motor_diam/2 + thick_wall - thin_wall - tight_fit_diam_diff/2,
94 h = segment_overlap/3 + eps);
96 // tight fit cylinder, 2/3 of segment overlap
97 translate([0, 0, segment_overlap/3])
98 cylinder(r = motor_diam/2 + thick_wall - thin_wall - tight_fit_diam_diff/2,
99 h = 2*segment_overlap/3 + eps);
101 // conical joint between the two cylinders
102 translate([0, 0, segment_overlap - thick_wall + thin_wall])
103 cylinder(r1 = motor_diam/2 + thick_wall - thin_wall - tight_fit_diam_diff/2,
104 r2 = motor_diam/2 + thick_wall,
105 h = thick_wall - thin_wall + eps);
107 // the thick cylinder above it
108 translate([0, 0, segment_overlap])
109 cylinder(r = motor_diam/2 + thick_wall,
110 h = motor_len + motor_wall - segment_overlap);
113 for (a = [60, 180, 300]) {
115 translate([motor_diam/2 + thick_wall-thin_wall, 0, motor_wall + motor_len])
121 for (angle = [120, -120]) rotate([0, 0, angle]) intersection() {
122 translate([clip_inner_space, -infty/2,
123 motor_len + motor_wall + clip_clearance])
124 cube([clip_width, infty, clip_height]);
126 translate([-infty/2, 0, 0]) cube(infty);
128 translate([-infty/2, 0, 0]) cube(infty);
131 translate([0, 0, motor_len + motor_wall])
136 module motor_module() {
138 motor_module_solid();
140 // top ring to hold the motor inside
141 translate([0, 0, -eps])
142 cylinder(r = motor_diam/2 - motor_wall,
143 h = motor_wall + 2*eps);
146 translate([0, 0, motor_wall - eps])
147 cylinder(r = motor_diam/2, h = motor_len + 2*eps);
149 // three rails inside the motor hole
150 translate([0, 0, segment_overlap + thick_wall]) difference() {
152 cylinder(r = motor_diam/2 + thin_wall,
153 h = motor_len - segment_overlap - 2*thick_wall + eps);
154 translate([0, 0, motor_len - segment_overlap - 2*thick_wall])
155 cylinder(r1 = motor_diam/2 + thin_wall, r2 = motor_diam/2, h = thick_wall + eps);
157 for (a = [0, 120, 240]) rotate([0, 0, a])
158 translate([motor_diam/2 + 2.5, 0, -eps])
159 cylinder(r = 3, h = infty);
166 // -------------------- CENTRAL TUBE ---------------------
172 central_clip_wall = 1.5;
173 central_clip_clearance = 2.5;
175 module central_tube_solid() {
176 cylinder(r = motor_diam/2 + thick_wall, h = central_tube_h);
180 module central_tube() {
182 central_tube_solid();
183 translate([0, 0, -eps])
184 cylinder(r = motor_diam/2 + thick_wall - thin_wall,
190 //------------------------- FRONT CONE -----------------------
192 cone_resolution = 40;
195 function bez_i4(t, ctls) =
196 (pow(1-t, 3) * ctls[0])
197 + (3 * t * pow(1-t, 2) * ctls[1])
198 + (3 * pow(t, 2) * (1-t) * ctls[2])
199 + (pow(t, 3) * ctls[3]);
201 module bezier_cone(cps, res)
204 translate([0, 0, (bez_i4(t/res, cps))[0]])
205 cylinder(r1 = (bez_i4(t/res, cps))[1],
206 r2 = (bez_i4((t + 1)/res, cps))[1],
207 h = (bez_i4((t + 1)/res, cps))[0]
208 - (bez_i4(t/res, cps))[0] + eps);
211 module front_cone_body() {
212 translate([0, 0, segment_overlap])
214 [ 0, motor_diam/2 + thick_wall ], // start
215 [ cone_h/4, motor_diam/2 + thick_wall ], // cp 1
216 [ cone_h - motor_diam/2 - thick_wall, motor_diam/2 + thick_wall ], // cp 2
220 translate([0, 0, segment_overlap-thick_wall+thin_wall])
221 cylinder(r1 = motor_diam/2+thin_wall,
222 r2 = motor_diam/2 + thick_wall,
223 h = thick_wall - thin_wall + eps);
225 cylinder(r = motor_diam/2+thin_wall, h = segment_overlap + eps);
228 module front_cone() {
232 translate([0, 0, segment_overlap])
234 [ 0.7*thin_wall, motor_diam/2 + thick_wall - thin_wall ], // start
235 [ cone_h/4-0.7*thin_wall, motor_diam/2 + thick_wall - thin_wall], // cp 1
236 [ cone_h - motor_diam/2 - thick_wall + thin_wall - 1.4*thin_wall, motor_diam/2 + thick_wall - thin_wall ], // cp 2
237 [ cone_h - 1.4*thin_wall, 0 ],
239 cylinder(r = motor_diam/2 + thick_wall + eps,
240 h = cone_h + segment_overlap - cone_solid_h);
243 translate([0, 0, segment_overlap-thick_wall+1.7*thin_wall])
244 cylinder(r1 = motor_diam/2,
245 r2 = motor_diam/2 + thick_wall-thin_wall,
246 h = thick_wall-thin_wall + eps);
248 translate([0, 0, -eps])
249 cylinder(r = motor_diam/2, h = segment_overlap + 2*eps);
257 difference($fn = 16) {
262 translate([0, 0, -infty/2]) cube(infty);
270 translate([motor_diam + thick_wall, 0, 0])
274 translate([motor_diam + thick_wall, 0, 0])
278 translate([motor_diam + thick_wall, 0, 0])