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1 Definitions

Motivation: Exploring the two graphs locally, we cannot see any difference. . .

A graph H is a cover of a graph G if there exists a pair of onto mappings
(a projection) ¢:V(H) = V(G), VP:E(H) — E(G)

such that 1p maps the edges incident with each vertex v in H
bijectively onto the edges incident with @(v) in G.
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1 Definitions

Motivation: Exploring the two graphs locally, we cannot see any difference. . .

A graph H is a cover of a graph G if there exists a pair of onto mappings
(a projection) ¢@:V(H) = V(G), VP:E(H) — E(G)

such that 1p maps the edges incident with each vertex v in H
bijectively onto the edges incident with @(v) in G.

Remark. The edge 1(uv) has always ends @(u), @(v), and hence only
@ :V(H) = V(G), the vertex projection,

is enough to be specified for simple graphs.
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]—Planar covers

V2

V1

e We speak about a planar cover if H is a finite planar graph.

evi) =0@v2) =v
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]—Planar covers

e We speak about a planar cover if H is a finite planar graph.

evi) =0@v2) =v
V2

Vi
H G =K;

e Graph embedded in the projective plane has a double planar cover,

via the universal covering map from the sphere onto the proj. plane.
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]—Planar emulators

e ¢ :V(H) — V(G), an emulator vs. a cover:

... map the edges inc. with v in H surjectively

onto the edges inc. with @ (v) in G.
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e Can a planar emulator be “more than” a planar cover?
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Planar emulators

e ¢ :V(H) — V(G), an emulator vs. a cover:

... map the edges inc. with v in H surjectively

onto the edges inc. with @(v) in G.
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e Can a planar emulator be “more than” a planar cover?

e Not many remarkable results until 2008. .. Interesting at all?
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r2 Fellows’ planar emulator conjecture

Conjecture 1 (Negami, 1988)

A connected graph has a finite planar cover
= it embeds in the projective plane.
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r2 Fellows’ planar emulator conjecture

Conjecture 1 (Negami, 1988)

A connected graph has a finite planar cover
= it embeds in the projective plane.

Fact. A planar cover is also a planar emulator.

Why a planar emulator should be “more than” a planar cover?
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r2 Fellows’ planar emulator conjecture

Conjecture 1 (Negami, 1988)

A connected graph has a finite planar cover
= it embeds in the projective plane.

Fact. A planar cover is also a planar emulator.

Why a planar emulator should be “more than” a planar cover?

e We only use “more edges’ — takes us farther away from planarity!
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= it embeds in the projective plane.

Fact. A planar cover is also a planar emulator.

Why a planar emulator should be “more than” a planar cover?

e We only use “more edges’ — takes us farther away from planarity!
e Until the end of 2008, most people perhaps considered planar emu-
lators just as a curious redefinition of planar covers. ..
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r2 Fellows’ planar emulator conjecture

Conjecture 1 (Negami, 1988)

A connected graph has a finite planar cover
= it embeds in the projective plane.

Fact. A planar cover is also a planar emulator.

Why a planar emulator should be “more than” a planar cover?

e We only use “more edges’ — takes us farther away from planarity!
e Until the end of 2008, most people perhaps considered planar emu-
lators just as a curious redefinition of planar covers. ..

Conjecture 2 (Fellows, 1989)

A connected graph has a finite planar emulator
= it has a finite planar cover.
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r3 Some useful properties

e If G has a planar cover, then so does every minor of G.

e
H >@< — G
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3 Some useful properties

e If G has a planar cover, then so does every minor of G.
H >E< . >E< G

Consider e between two neighbours of a cubic vertex.
If G — e has a planar cover, then so does G.
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3 Some useful properties

e If G has a planar cover, then so does every minor of G.
H >E< . >E< G

Consider e between two neighbours of a cubic vertex.
If G — e has a planar cover, then so does G.

e Therefore, if G has a planar cover, and G’ is obtained from G by
YA-transformations, then G’ has a planar cover, too.
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]_Extending to emulators

e If G has a planar emulator, then so does every minor of G.
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Extending to emulators

e If G has a planar emulator, then so does every minor of G.

e If G has a planar emulator, and v is a cubic vertex of G, then some
planar emulator H of G has all vertices in ¢@~'(v) also cubic.
Cq Cc

Vi
aj aq — a v

b, b
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Extending to emulators

If G has a planar emulator, then so does every minor of G.

e If G has a planar emulator, and v is a cubic vertex of G, then some
planar emulator H of G has all vertices in (p ) also cubic.

C
V1

i —

b
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Therefore, if G has a planar emulator, and G’ is obtained from G
by YA-transformations, then G’ has a planar emulator, too.
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]—4 Approaching the conjectures

A connected graph has a finite planar cover / emulator if,
and only if, it embeds in the projective plane.

We recall the above basic properties. ..

e Assume a projective graph G. Then G has a double planar cover /
emulator.
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4 Approaching the conjectures

A connected graph has a finite planar cover / emulator if,
and only if, it embeds in the projective plane.

We recall the above basic properties. . .

e Assume a projective graph G. Then G has a double planar cover /
emulator.

e Conversely, assume connected G is not projective.
Then G contains some F of the forbidden minors for the projective
plane. We just have to show that this connected F has no finite
planar cover / emulator.
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4 Approaching the conjectures

A connected graph has a finite planar cover / emulator if,
and only if, it embeds in the projective plane.

We recall the above basic properties. . .

e Assume a projective graph G. Then G has a double planar cover /
emulator.

e Conversely, assume connected G is not projective.
Then G contains some F of the forbidden minors for the projective
plane. We just have to show that this connected F has no finite
planar cover / emulator.

e Furthermore, it is enough to consider only those F which are YA-
transforms of some forbidden minor in G.

[Archdeacon]
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]—Known results (and a big surprise)

Long-term development around Negami's conjecture led to. ..

Theorem 3 (A+N+F+H, since 1998)
If Ky, had no finite planar cover, then Negami's c. would be proved.
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Known results (and a big surprise)

Long-term development around Negami's conjecture led to. ..

Theorem 3 (A+N+F+H, since 1998)
If Ky, had no finite planar cover, then Negami's c. would be proved.

. and then... Suddenly, Fellows' conjecture falls down. . .
Fact. The graph K45—4K; has no finite planar cover.

Theorem 4 (Rieck and Yamashita 2008)
The graphs Ky 2., and K45—4K, do have finite planar emulators!!!
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Known results (and a big surprise)

Long-term development around Negami's conjecture led to. ..

Theorem 3 (A+N+F+H, since 1998)
If Ky, had no finite planar cover, then Negami's c. would be proved.

. and then... Suddenly, Fellows' conjecture falls down. . .

Fact. The graph K45—4K; has no finite planar cover.

Theorem 4 (Rieck and Yamashita 2008)
The graphs Ky 2., and K45—4K, do have finite planar emulators!!!

e Now we know that the class of graphs having finite planar emulators

— is different from the class of graphs having finite planar covers,

— and different from the class of projective planar graphs, too.

e So, let us study this class. .. !
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(A picture by Yamashita.)
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]— So, what next?

e Recall the “closest approach” to Negami's conjecture. ..

(based on the notion of internal 4-connectivity)
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So, what next?

e Recall the “closest approach” to Negami's conjecture. ..

(based on the notion of internal 4-connectivity)

Theorem 5 (Thomas and PH 1999, 2004)
If a connected graph G had a finite planar cover but no projective embed-
ding, then G would be a planar expansion of Ky ,,, or one of:

@@@@@@@@

" "
87 C3

@@@@@@@

"
DZ

ény, ATCAGC 2012, Eugene OR, 2012 How Not to Characterize Planar-emulable Graphs



]—Computer search of internally 4-connected exceptions

e Starting from the whole K;,,, family, or from K4 5—4K;,

carry out an “add-and-split” process based on [Johnson and Thomas,
2002] splitter theorem for internally 4-connected graphs. ..

Actually, tried both versions of the theorem.
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Actually, tried both versions of the theorem.

e Only hundreds of potential exceptions generated (how nice!),
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Computer search of internally 4-connected exceptions

e Starting from the whole K;,,, family, or from K4 5—4K;,

carry out an “add-and-split” process based on [Johnson and Thomas,
2002] splitter theorem for internally 4-connected graphs. ..

Actually, tried both versions of the theorem.

e Only hundreds of potential exceptions generated (how nice!),
but not counting those with K45—4K;- or £,-minor. [Derka 2010]
e There are technical problems with finishing the “add-and-split” pro-
cesses starting from K, 5—4K; or &,

but we believe it is still a finite set of potential exceptions.
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Computer search of internally 4-connected exceptions

e Starting from the whole K;,,, family, or from K4 5—4K;,

carry out an “add-and-split” process based on [Johnson and Thomas,
2002] splitter theorem for internally 4-connected graphs. ..

Actually, tried both versions of the theorem.

e Only hundreds of potential exceptions generated (how nice!),
but not counting those with K45—4K;- or £,-minor. [Derka 2010]
e There are technical problems with finishing the “add-and-split” pro-
cesses starting from K, 5—4K; or &,

but we believe it is still a finite set of potential exceptions.

e But wait!!! another surprise (at least to us)...
The graph K;—Cy also has a planar emulator! [Klusa&ek, 2011]

and it is not internally 4-connected.
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r5 What graphs do have planar emulators?

Compared to planar covers, the situation suddenly gets very rich.

NO emulators

e the case of “two disjoint k-graphs”,
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e a sporadic proof for K35 extends as well (nontrivial),
but none of the other proofs from covers works for emulators.
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5 What graphs do have planar emulators?
Compared to planar covers, the situation suddenly gets very rich.

NO emulators

e the case of “two disjoint k-graphs”,

e a sporadic proof for K35 extends as well (nontrivial),
but none of the other proofs from covers works for emulators.

YES emulators

e all projective-planar graphs, but those are the trivial ones,

e Kj222 and Ky5—4K; by [Rieck and Yamashita, 2008],
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5 What graphs do have planar emulators?
Compared to planar covers, the situation suddenly gets very rich.

NO emulators

e the case of “two disjoint k-graphs”,
e a sporadic proof for K35 extends as well (nontrivial),

but none of the other proofs from covers works for emulators.

YES emulators

e all projective-planar graphs, but those are the trivial ones,
e Kj222 and Ky5—4K; by [Rieck and Yamashita, 2008],
e C4 and &; by [PH and Chimani, 2009],

hence consequently the whole rich “family of K;,,,",
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5 What graphs do have planar emulators?

Compared to planar covers, the situation suddenly gets very rich.

NO emulators

e the case of “two disjoint k-graphs”,

e a sporadic proof for K35 extends as well (nontrivial),
but none of the other proofs from covers works for emulators.

YES emulators

e all projective-planar graphs, but those are the trivial ones,
e Kj222 and Ky5—4K; by [Rieck and Yamashita, 2008],
e C4 and &; by [PH and Chimani, 2009],

hence consequently the whole rich “family of K;,,,",

e and new K;—C, and its whole family! by [Klusagek, 2011].
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rﬁ Conclusion

e Give your students difficult exercises (not saying it is hard!).
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6 Conclusion

e Give your students difficult exercises (not saying it is hard!).
e Study the strange class of those grahs having finite planar emulators:

— Though this class orig. looked quite similar to the projective-
planar graphs, now (“after Klusdtek) all has changed. ..
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6 Conclusion

e Give your students difficult exercises (not saying it is hard!).
e Study the strange class of those grahs having finite planar emulators:
— Though this class orig. looked quite similar to the projective-
planar graphs, now (“after Klusdtek) all has changed. ..
— Any idea for a new hypothesis?

— Any idea for a general structural result saying that the class of
graphs having no minor in the “green picture” and possesssing
certain connectivity (internally 4-connected enough? / maybe
even (5, 3)-connectivity would work?) is finite?
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6 Conclusion

e Give your students difficult exercises (not saying it is hard!).
e Study the strange class of those grahs having finite planar emulators:
— Though this class orig. looked quite similar to the projective-
planar graphs, now (“after Klusdtek) all has changed. ..
— Any idea for a new hypothesis?

— Any idea for a general structural result saying that the class of
graphs having no minor in the “green picture” and possesssing
certain connectivity (internally 4-connected enough? / maybe
even (5, 3)-connectivity would work?) is finite?

— Can you, at least, prove that the required fold number is finite
for planar emulators?
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6 Conclusion

e Give your students difficult exercises (not saying it is hard!).
e Study the strange class of those grahs having finite planar emulators:

— Though this class orig. looked quite similar to the projective-
planar graphs, now (“after Klusdtek) all has changed. ..

— Any idea for a new hypothesis?

— Any idea for a general structural result saying that the class of
graphs having no minor in the “green picture” and possesssing
certain connectivity (internally 4-connected enough? / maybe
even (5, 3)-connectivity would work?) is finite?

— Can you, at least, prove that the required fold number is finite
for planar emulators?

e And, of course, do not forget about Negami's conjecture!
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