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1 Definition1 Definition

Motivation: Exploring the two graphs locally, we cannot see any difference. . .

A graph H is a cover of a graph G if there exists a pair of onto mappings

(a projection) ϕ : V(H)→ V(G), ψ : E(H)→ E(G)

such that ψ maps the edges incident with each vertex v in H
bijectively onto the edges incident with ϕ(v) in G.

H

sv

e1

e2

e3

→ sϕ(v)

ψ(e1)

ψ(e2)

ψ(e3)

G
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1 Definition1 Definition

Motivation: Exploring the two graphs locally, we cannot see any difference. . .

A graph H is a cover of a graph G if there exists a pair of onto mappings

(a projection) ϕ : V(H)→ V(G), ψ : E(H)→ E(G)

such that ψ maps the edges incident with each vertex v in H
bijectively onto the edges incident with ϕ(v) in G.

H

sv

e1

e2

e3

→ sϕ(v)

ψ(e1)

ψ(e2)

ψ(e3)

G

Remark. The edge ψ(uv) has always ends ϕ(u), ϕ(v), and hence only

ϕ : V(H)→ V(G), the vertex projection,

is enough to be specified for simple graphs.
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2 Useful basic properties2 Useful basic properties

A graph H is a cover of a graph G if there exists a pair of onto mappings

(a projection) ϕ : V(H)→ V(G), ψ : E(H)→ E(G)

s.t. ψ maps the edges inc. with v in H bijectively onto the edges inc. with ϕ(v) in G.

Degree preservation

• dH(v) = dG(ϕ(v)) for each vertex v ∈ V(H).

H

sv

sw

→ sϕ(v) = ϕ(w) G
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Lifting a path

If G ′ is a subgraph of G, then the subgraph H ′ with the vertex set
ϕ−1(V(G ′)) and the edge set ψ−1(E(G ′)) is called a lifting of G ′ into H.

H

s s s s s
s s s s s
s s s s s → s s s s s

G
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Lifting a path

If G ′ is a subgraph of G, then the subgraph H ′ with the vertex set
ϕ−1(V(G ′)) and the edge set ψ−1(E(G ′)) is called a lifting of G ′ into H.

H

s s s s s
s s s s s
s s s s s → s s s s s

G

• Lifting of a path from G into H consists of a collection of disjoint iso-
morphic paths.
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%Petr Hliněný, ATCAGC 2009, Finse 4 21 Years of Negami’s Conjecture

Lifting a path

If G ′ is a subgraph of G, then the subgraph H ′ with the vertex set
ϕ−1(V(G ′)) and the edge set ψ−1(E(G ′)) is called a lifting of G ′ into H.

H

s s s s s
s s s s s
s s s s s → s s s s s

G

• Lifting of a path from G into H consists of a collection of disjoint iso-
morphic paths.

• Consequently, if G is connected, then |ϕ−1(v)| = k is a constant.

We then speak about a k-fold cover.
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• Lifting of a tree into H consists of a collection of disjoint isom. trees.
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• Lifting of a tree into H consists of a collection of disjoint isom. trees.

Lifting a cycle

• Lifting of a cycle C` of G into H consists of a collection of disjoint cycles
whose lengths are divisible by `.

H s s
s

ssss
s

s

s s
s

s
s s

s
ss

→
s s

s G
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Planar cover

We speak about a planar cover if H is a finite planar graph.

H s s

ss

s s
ss

s

s

v1

v2

→ s s

ss
s
v

ϕ(v1) = ϕ(v2) = v

G = K5
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Planar cover

We speak about a planar cover if H is a finite planar graph.

H s s

ss

s s
ss

s

s

v1

v2

→ s s

ss
s
v

ϕ(v1) = ϕ(v2) = v

G = K5

• Graph embedded in the projective plane has a double planar cover,

via the universal covering map from the sphere onto the projective plane.



'

&

$

%

'

&

$
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Cover preservation

• If G has a planar cover, then so does every minor of G.

H

s s
s s → s s

G
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Cover preservation

• If G has a planar cover, then so does every minor of G.

H

s s
s s → s s

G

Consider e between two neighbours of a cubic vertex.
If G− e has a planar cover, then so does G.

H

ss s
s

ss s
s

v1

v2 →
ss s
s

e

v

G
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Cover preservation

• If G has a planar cover, then so does every minor of G.

H

s s
s s → s s

G

Consider e between two neighbours of a cubic vertex.
If G− e has a planar cover, then so does G.

H

ss s
s

ss s
s

v1

v2 →
ss s
s

e

v

G

• Therefore, if G has a planar cover, and G ′ is obtained from G by
Y∆-transformations, then G ′ has a planar cover, too.
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%Petr Hliněný, ATCAGC 2009, Finse 8 21 Years of Negami’s Conjecture

3 Interest in planar covers3 Interest in planar covers

• Raised by Negami [1986] in relation to enumeration of projective embed-
dings of 3-connected graphs.
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3 Interest in planar covers3 Interest in planar covers

• Raised by Negami [1986] in relation to enumeration of projective embed-
dings of 3-connected graphs.

• Independently, planar emulators considered by Fellows in his CS-oriented
thesis [1985] (“embedding graphs in graphs”).
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3 Interest in planar covers3 Interest in planar covers

• Raised by Negami [1986] in relation to enumeration of projective embed-
dings of 3-connected graphs.

• Independently, planar emulators considered by Fellows in his CS-oriented
thesis [1985] (“embedding graphs in graphs”).

H s s

ss

s s
ss

s

s
→ s s

ss
s

G

Theorem 1 (Negami, 1986) A connected graph has a double planar cover if
and only if it embeds in the projective plane.
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Theorem 1 (Negami, 1986) A connected graph has a double planar cover if
and only if it embeds in the projective plane.

Proof sketch. If a 3-connected planar graph H is a double cover of a graph
G, then G embeds with at most one crosscap:

H
s s

s
s
ss s

s s
s
s
ss s →

s s
s

s
ss s

G

– this is a purely combinatorial argument. . .
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Negami’s planar cover conjectureNegami’s planar cover conjecture

A cover ϕ : V(H)→ V(G) is regular

if there is a subgroup A ⊆ Aut(H) such that ϕ(u) = ϕ(v)

for u, v ∈ V(H) if, and only if τ(u) = v for some τ ∈ A.

Theorem 2 (Negami, 1988) A connected graph has a finite regular planar
cover if and only if it embeds in the projective plane.
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Negami’s planar cover conjectureNegami’s planar cover conjecture

A cover ϕ : V(H)→ V(G) is regular

if there is a subgroup A ⊆ Aut(H) such that ϕ(u) = ϕ(v)

for u, v ∈ V(H) if, and only if τ(u) = v for some τ ∈ A.

Theorem 2 (Negami, 1988) A connected graph has a finite regular planar
cover if and only if it embeds in the projective plane.

And now an immediate generalization reads. . .

Conjecture 3 (Negami, 1988)

A connected graph has a finite regular planar cover
if and only if

it embeds in the projective plane.
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4 Approaching Negami’s conjecture4 Approaching Negami’s conjecture

A connected graph has a finite planar cover if and
only if it embeds in the projective plane.

We recall the above basic properties of covers. . .

• Assume a projective graph G. Then G has a double planar cover.
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4 Approaching Negami’s conjecture4 Approaching Negami’s conjecture

A connected graph has a finite planar cover if and
only if it embeds in the projective plane.

We recall the above basic properties of covers. . .

• Assume a projective graph G. Then G has a double planar cover.

• Conversely, assume connected G is not projective.
Then G contains some F of the forbidden minors for the projective plane.
We just have to show that this F has no finite planar cover.



'

&

$

%

'

&

$
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4 Approaching Negami’s conjecture4 Approaching Negami’s conjecture

A connected graph has a finite planar cover if and
only if it embeds in the projective plane.

We recall the above basic properties of covers. . .

• Assume a projective graph G. Then G has a double planar cover.

• Conversely, assume connected G is not projective.
Then G contains some F of the forbidden minors for the projective plane.
We just have to show that this F has no finite planar cover.

• Furthermore, it is enough to consider only those F which are Y∆-
transforms of some forbidden minor in G.



'

&

$

%

'

&

$
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4 Approaching Negami’s conjecture4 Approaching Negami’s conjecture

A connected graph has a finite planar cover if and
only if it embeds in the projective plane.

We recall the above basic properties of covers. . .

• Assume a projective graph G. Then G has a double planar cover.

• Conversely, assume connected G is not projective.
Then G contains some F of the forbidden minors for the projective plane.
We just have to show that this F has no finite planar cover.

• Furthermore, it is enough to consider only those F which are Y∆-
transforms of some forbidden minor in G.

Does this sound like a piece of cake now?

Unfortunately, the difficulties are just coming. . .
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K3,3 · K3,3 K5 ·K3,3 K5 ·K5 B3 C2 C7

D1 D4 D9 D12 D17 E6 E11

E19 E20 E27 F4 F6 G1

K3,5 K4,5 −4K2 K4,4 −e K7 −C4 D3 E5 F1

K1,2,2,2 B7 C3 C4 D2 E2
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Disjoint k-graphsDisjoint k-graphs

Theorem 4 (Negami / Archdeacon, 1988)
Neither of the graphs K3,3 · K3,3, K5 · K3,3, K5 · K5, B3, C2, C7, D1, D4, D9,

D12, D17, E6, E11, E19, E20, E27, F4, F6, G1 have a finite planar cover.
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Disjoint k-graphsDisjoint k-graphs

Theorem 4 (Negami / Archdeacon, 1988)
Neither of the graphs K3,3 · K3,3, K5 · K3,3, K5 · K5, B3, C2, C7, D1, D4, D9,

D12, D17, E6, E11, E19, E20, E27, F4, F6, G1 have a finite planar cover.

Proof sketch. We choose the K5 · K5 case for an illustration. . .

→ A4

→ B4

→ A4

→ B4
s

s
s

s

x1

x2

x3

?a

f
f

→
s s

ss
s

s s
ss

x K5 · K5

A4

B4
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Discharging techniqueDischarging technique

Theorem 5 (?? 1988, 1993) The graph K3,5 has no finite planar cover.

Proof sketch. Assuming H is a finite planar cover of K3,5, we shall derive a
contradiction to Euler’s formula (or, easy discharging). . .

H

s
s

s

s

s
s

s

s

s

ss

s
a1

b1

c1

b2

c2

b3

c3

≥ 6 → s
s
s

s
s
s
s
s

a

b

c

K3,5
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Theorem 6 (PH, 1998) The graph K4,4−e has no finite planar cover.

Brief idea. Form “thick” metavertices from the 3-stars in a supposed cover H.

H

ss ssss ss

ss ss

ss ss

→ +1 ? →
K4,4−e

This metagraph is planar bipartite, and so it has a degree-3 vertex. Here we
apply discharging to get a contradiction again. . .
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“Necklace” argument“Necklace” argument

Theorem 7 (Archdeacon 1988, 2002) (indep. Thomas and PH 1999)
The graphs K7−C4 and K4,5−4K2 have no finite planar covers.

Brief idea. Find the shortest “necklace” (a reduced semi-cover), and shorten
it further. . .

C4

C3

. . .

. . .

C2

C1

D →
K4,5−4K2

At the end, we reduce the (length-2) necklace to a projective embedding!
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5 The bad guys: K1,2,2,2 and its relatives5 The bad guys: K1,2,2,2 and its relatives

K1,2,2,2

?

Fact. (since 1995/8)
If K1,2,2,2 had no finite planar cover, then Negami’s conjecture would be proved.

However;
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5 The bad guys: K1,2,2,2 and its relatives5 The bad guys: K1,2,2,2 and its relatives

K1,2,2,2

?

Fact. (since 1995/8)
If K1,2,2,2 had no finite planar cover, then Negami’s conjecture would be proved.

However;

• We are being stuck at this last step for more than 10 years now!
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5 The bad guys: K1,2,2,2 and its relatives5 The bad guys: K1,2,2,2 and its relatives

K1,2,2,2

?

Fact. (since 1995/8)
If K1,2,2,2 had no finite planar cover, then Negami’s conjecture would be proved.

However;

• We are being stuck at this last step for more than 10 years now!

• Fortunately, some finer development “under the surface” is possible and
has actually happened. . .
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Fact. Among all the forbidden minors for the projective plane, five more
Y∆-transform to K1,2,2,2:

K1,2,2,2

←
B7

←
C3

C4

ր

D2

ր

←

E2
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Theorem 8 (PH 1999, 2001)
Both the “bottom” graphs C4 and E2 have no finite planar covers.
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Theorem 8 (PH 1999, 2001)
Both the “bottom” graphs C4 and E2 have no finite planar covers.

• While the left-hand case appears “structural” — we manage to apply a
necklace argument, generalizing Theorem 7,

• the right-hand case is a “counting” one — we get a specialized discharging
contradiction.
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6 Deeper look – possible counterexamples?6 Deeper look – possible counterexamples?

While we are not able to climb the last step K1,2,2,2 directly . . .

. . . we should perhaps try some detour?!

?
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%Petr Hliněný, ATCAGC 2009, Finse 20 21 Years of Negami’s Conjecture

6 Deeper look – possible counterexamples?6 Deeper look – possible counterexamples?

While we are not able to climb the last step K1,2,2,2 directly . . .

. . . we should perhaps try some detour?!

?

Theorem 9 (Thomas and PH 1999, 2004)
If a connected graph G has a finite planar cover but no projective embedding,
then G is a planar expansion of K1,2,2,2 or some graph from:

B7 B ′
7 B ′′

7 C3 C ′
3 C ′′

3 C•3 C◦3

D2 D ′
2 D ′′

2 D ′′′
2 D•

2 D◦
2 D⋆

2
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The following scheme orders the possible counterexamples by their “difficulty”

K1,2,2,2 ← B7 ← B ′7 ← B ′′7 ← C3 ← C ′3 ← C ′′3 −

− C•3 − D•2↙ ↖ ↙
C ′′3 ← C◦3 ← D2 ← D ′2 ← D ′′2 ← D ′′′2 ← D◦2l

D?
2

and so one should try one of the two new “bottom” cases:

D◦
2 D•

2
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7 Additional remarks7 Additional remarks

Surface extensions

• Is it true that a graph has a finite cover embeddable on a given
nonorientable surface iff it embeds there?

cf. [PH 1999], [Negami 2005]
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7 Additional remarks7 Additional remarks

Surface extensions

• Is it true that a graph has a finite cover embeddable on a given
nonorientable surface iff it embeds there?

cf. [PH 1999], [Negami 2005]

ACCOTA 2004

• One surprising announcement, but no proof has appeared since. . .
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7 Additional remarks7 Additional remarks

Surface extensions

• Is it true that a graph has a finite cover embeddable on a given
nonorientable surface iff it embeds there?

cf. [PH 1999], [Negami 2005]

ACCOTA 2004

• One surprising announcement, but no proof has appeared since. . .

Related recent research

• [Negami and Watanabe, 2002] The conjecture is true for cubic graphs.
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7 Additional remarks7 Additional remarks

Surface extensions

• Is it true that a graph has a finite cover embeddable on a given
nonorientable surface iff it embeds there?

cf. [PH 1999], [Negami 2005]

ACCOTA 2004

• One surprising announcement, but no proof has appeared since. . .

Related recent research

• [Negami and Watanabe, 2002] The conjecture is true for cubic graphs.

• [Negami 2003] Composite planar coverings,
[Negami 2005] Projective planar double coverings.
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7 Additional remarks7 Additional remarks

Surface extensions

• Is it true that a graph has a finite cover embeddable on a given
nonorientable surface iff it embeds there?

cf. [PH 1999], [Negami 2005]

ACCOTA 2004

• One surprising announcement, but no proof has appeared since. . .

Related recent research

• [Negami and Watanabe, 2002] The conjecture is true for cubic graphs.

• [Negami 2003] Composite planar coverings,
[Negami 2005] Projective planar double coverings.

• [Rieck and Yamashita, preprint 2006] Extending the regular-cover thm.
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7 Additional remarks7 Additional remarks

Surface extensions

• Is it true that a graph has a finite cover embeddable on a given
nonorientable surface iff it embeds there?

cf. [PH 1999], [Negami 2005]

ACCOTA 2004

• One surprising announcement, but no proof has appeared since. . .

Related recent research

• [Negami and Watanabe, 2002] The conjecture is true for cubic graphs.

• [Negami 2003] Composite planar coverings,
[Negami 2005] Projective planar double coverings.

• [Rieck and Yamashita, preprint 2006] Extending the regular-cover thm.

and a very recent NEW: [Rieck and Yamashita, preprint 2008]. . .
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Planar emulatorsPlanar emulators

• Introduced by [Fellows 1985], independently of Negami, and
considered also by [Kitakubo 1991] as branched planar covers.

• Not many remarkable results until 2008. . . Interesting at all?
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Planar emulatorsPlanar emulators

• Introduced by [Fellows 1985], independently of Negami, and
considered also by [Kitakubo 1991] as branched planar covers.

• Not many remarkable results until 2008. . . Interesting at all?

• ϕ : V(H) → V(G), an emulator vs. a cover:

. . . map the edges inc. with v in H surjectively
onto the edges inc. with ϕ(v) in G.

H s s
s

ssss
s

s
a1

b1

c1

a2

b2c2

a3

b3

c3 →
s s

s
a b

c
G
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Why a planar emulator should be “more than” a planar cover???
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Why a planar emulator should be “more than” a planar cover???

• We only “use more edges” – this takes us farther away from planarity!
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Why a planar emulator should be “more than” a planar cover???

• We only “use more edges” – this takes us farther away from planarity!

• Until the end of 2008, most people considered planar emulators just as a
strange redefinition of covers. . . [Fellows 1985], [Kitakubo 1991]

. . . and then. . .
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Why a planar emulator should be “more than” a planar cover???

• We only “use more edges” – this takes us farther away from planarity!

• Until the end of 2008, most people considered planar emulators just as a
strange redefinition of covers. . . [Fellows 1985], [Kitakubo 1991]

. . . and then. . .

Theorem 10 (Rieck and Yamashita 2008)
The graphs K1,2,2,2 and K4,5−4K2 do have finite planar emulators.
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Why a planar emulator should be “more than” a planar cover???

• We only “use more edges” – this takes us farther away from planarity!

• Until the end of 2008, most people considered planar emulators just as a
strange redefinition of covers. . . [Fellows 1985], [Kitakubo 1991]

. . . and then. . .

Theorem 10 (Rieck and Yamashita 2008)
The graphs K1,2,2,2 and K4,5−4K2 do have finite planar emulators.

• Now we know that the class of graphs having finite planar emulators

– is different from the class of graphs having finite planar covers,

– and from the class of projective planar graphs.

• So, let us study this class. . . !
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K1,2,2,2

←
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K4,5−4K2

←
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