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/1 Definition
Motivation: Exploring the two graphs locally, we cannot see any difference. ..
A graph H is a cover of a graph G if there exists a pair of onto mappings
(a projection) @ :V(H) = V(G), V:E(H) - E(G)

such that \p maps the edges incident with each vertex v in H
bijectively onto the edges incident with @(v) in G.
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Motivation: Exploring the two graphs locally, we cannot see any difference. ..
A graph H is a cover of a graph G if there exists a pair of onto mappings
(a projection) @ :V(H) = V(G), V:E(H) - E(G)

such that \p maps the edges incident with each vertex v in H
bijectively onto the edges incident with ¢@(v) in G.

Remark. The edge {(uv) has always ends @(u), @(v), and hence only
¢ :V(H) —- V(G), the vertex projection,

is enough to be specified for simple graphs.
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2 Useful basic properties

A graph H is a cover of a graph G if there exists a pair of onto mappings
(a projection) ¢ :V(H) = V(G), VP:E(H) — E(G)
s.t. \b maps the edges inc. with v in H bijectively onto the edges inc. with @(v) in G.

Degree preservation

e dy(v) = dg(@(v)) for each vertex v € V(H).
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If G’ is a subgraph of G, then the subgraph H’ with the vertex set
@ '(V(G’)) and the edge set ' (E(G’)) is called a /ifting of G’ into H.

Lifting a path

H\/\/_)\/\/G




\

If G’ is a subgraph of G, then the subgraph H’ with the vertex set
@ '(V(G')) and the edge set ' (E(G’)) is called a lifting of G’ into H.

Lifting a path
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e Lifting of a path from G into H consists of a collection of disjoint iso-
morphic paths.
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If G’ is a subgraph of G, then the subgraph H’ with the vertex set
@ '(V(G')) and the edge set ' (E(G’)) is called a lifting of G’ into H.

Lifting a path

H\/\/_)\,/\/G

e Lifting of a path from G into H consists of a collection of disjoint iso-
morphic paths.

e Consequently, if G is connected, then [¢~'(v)| = k is a constant.

We then speak about a k-fold cover.
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e Lifting of a tree into H consists of a collection of disjoint isom. trees.
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e Lifting of a tree into H consists of a collection of disjoint isom. trees.
Lifting a cycle

e Lifting of a cycle Cy of G into H consists of a collection of disjoint cycles
whose lengths are divisible by £.
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Planar cover

We speak about a planar cover if H is a finite planar graph.
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Planar cover

We speak about a planar cover if H is a finite planar graph.
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G =Ks

e Graph embedded in the projective plane has a double planar cover,

via the universal covering map from the sphere onto the projective plane.

\_




Cover preservation

e If G has a planar cover, then so does every minor of G.

R
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Cover preservation

e If G has a planar cover, then so does every minor of G.
H >E< . >B< G

Consider e between two neighbours of a cubic vertex.
If G — e has a planar cover, then so does G.




Cover preservation

e If G has a planar cover, then so does every minor of G.
H >E< . >B< G

Consider e between two neighbours of a cubic vertex.
If G — e has a planar cover, then so does G.

e Therefore, if G has a planar cover, and G’ is obtained from G by
YA-transformations, then G’ has a planar cover, too.
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e Raised by Negami [1986] in relation to enumeration of projective embed-
dings of 3-connected graphs.
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e Raised by Negami [1986] in relation to enumeration of projective embed-
dings of 3-connected graphs.

e Independently, planar emulators considered by Fellows in his CS-oriented
thesis [1985] ( “embedding graphs in graphs”).




\_

/3 Interest in planar covers \

e Raised by Negami [1986] in relation to enumeration of projective embed-
dings of 3-connected graphs.

e Independently, planar emulators considered by Fellows in his CS-oriented
thesis [1985] ( “embedding graphs in graphs”).

H G

Theorem 1 (Negami, 1986) A connected graph has a double planar cover if
and only if it embeds in the projective plane.
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Theorem 1 (Negami, 1986) A connected graph has a double planar cover if
and only if it embeds in the projective plane.

Proof sketch. If a 3-connected planar graph H is a double cover of a graph
G, then G embeds with at most one crosscap:

— this is a purely combinatorial argument. ..
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Negami’s planar cover conjecture

A cover ¢ : V(H) — V(G) is regular

if there is a subgroup A C Aut(H) such that @(u) = @(v)
for u,v € V(H) if, and only if T(u) = v for some T € A.

Theorem 2 (Negami, 1988) A connected graph has a finite regular planar
cover if and only if it embeds in the projective plane.
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Negami’s planar cover conjecture

A cover ¢ : V(H) — V(G) is regular

if there is a subgroup A C Aut(H) such that @(u) = @(v)
for u,v € V(H) if, and only if T(u) = v for some T € A.

Theorem 2 (Negami, 1988) A connected graph has a finite regular planar

cover if and only if it embeds in the projective plane.

And now an immediate generalization reads. ..

Conjecture 3 (Negami, 1988)

A connected graph has a finite regutar planar cover
if and only if
it embeds in the projective plane.
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4 Approaching Negami’s conjecture

A connected graph has a finite planar cover if and
only if it embeds in the projective plane.

We recall the above basic properties of covers. ..

e Assume a projective graph G. Then G has a double planar cover.
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e Conversely, assume connected G is not projective.
Then G contains some F of the forbidden minors for the projective plane.
We just have to show that this F has no finite planar cover.
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transforms of some forbidden minor in G.
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4 Approaching Negami’s conjecture

A connected graph has a finite planar cover if and
only if it embeds in the projective plane.

We recall the above basic properties of covers. ..

e Assume a projective graph G. Then G has a double planar cover.

e Conversely, assume connected G is not projective.
Then G contains some F of the forbidden minors for the projective plane.
We just have to show that this F has no finite planar cover.

e Furthermore, it is enough to consider only those F which are YA-
transforms of some forbidden minor in G.

Does this sound like a piece of cake now?

Unfortunately, the difficulties are just coming. ..
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Disjoint k-graphs

Theorem 4 (Negami / Archdeacon, 1988)
Neither of the graphs K3)3 . K3‘3, Ks - K3,3, Ks - Ks, B3, C2, C7, Dy, Dy, Do,
D12, D7, €6, €11, €19, €20, E27, Fa, Fe, G1 have a finite planar cover.
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Disjoint k-graphs

Theorem 4 (Negami / Archdeacon, 1988)
Neither of the graphs K3‘3 . K3‘3, Ks - K3‘3, Ks - Ks, B3, C2, C7, Dy, Dy, Do,
D12, D7, €6, €11, €19, €20, E27, Fa, Fe, G1 have a finite planar cover.

Proof sketch. We choose the K5 - K5 case for an illustration. ..
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Discharging technique \

Theorem 5 (77 1988, 1993) The graph K35 has no finite planar cover.

Proof sketch. Assuming H is a finite planar cover of K35, we shall derive a
contradiction to Euler's formula (or, easy discharging). ..

by
C3 C1
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Theorem 6 (PH, 1998) The graph K4 4—e has no finite planar cover.

Brief idea. Form "thick” metavertices from the 3-stars in a supposed cover H.

K44—€

)

This metagraph is planar bipartite, and so it has a degree-3 vertex. Here we
apply discharging to get a contradiction again. ..
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“Necklace” argument

Theorem 7 (Archdeacon 1988, 2002) (indep. Thomas and PH 1999)
The graphs K7—C4 and K4 5—4K have no finite planar covers.

Brief idea. Find the shortest “necklace” (a reduced semi-cover), and shorten
it further. ..

At the end, we reduce the (length-2) necklace to a projective embedding!
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5 The bad guys: K;,,, and its relatives

Ky222

Fact. (since 1995/8)
If K1 222 had no finite planar cover, then Negami's conjecture would be proved.

However;
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5 The bad guys: K;,,, and its relatives

Ky222
Fact. (since 1995/8)
If K1 222 had no finite planar cover, then Negami's conjecture would be proved.
However;

e We are being stuck at this last step for more than 10 years now!
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5 The bad guys: K;,,, and its relatives

Ky222
Fact. (since 1995/8)
If K1 222 had no finite planar cover, then Negami's conjecture would be proved.
However;
e We are being stuck at this last step for more than 10 years now!

e Fortunately, some finer development “under the surface” is possible and
has actually happened. ..
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Fact. Among all the forbidden minors for the projective plane, five more
YA-transform to Ky 27 :

2D -
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Theorem 8 (PH 1999, 2001)
Both the "bottom” graphs C4 and £, have no finite planar covers.
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Theorem 8 (PH 1999, 2001)
Both the "bottom” graphs C4 and £, have no finite planar covers.

e While the left-hand case appears “structural” — we manage to apply a
necklace argument, generalizing Theorem 7,

e the right-hand case is a “counting” one — we get a specialized discharging
contradiction.
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6 Deeper look — possible counterexamples?

While we are not able to climb the last step Ky 27> directly ...

... we should perhaps try some detour?!
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6 Deeper look — possible counterexamples? \

While we are not able to climb the last step Ky 27> directly ...

.. we should perhaps try some detour?!

Theorem 9 (Thomas and PH 1999, 2004)

If a connected graph G has a finite planar cover but no projective embedding,
then G is a planar expansion of Ky 22> or some graph from:
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The following scheme orders the possible counterexamples by their “difficulty”

K],Z,Z,Z — By « 8/7 — 8/7/ — C3 Cé — Cé’*

- G - D3

v AN

Cy « C§ « Dy <« D) « Dy « DYy « D5

!

D3

and so one should try one of the two new “bottom” cases:
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e [Negami, Watanabe, 2002] The conjecture is true for cubic graphs.
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/7 Additional remarks

Related recent research

e [Negami, Watanabe, 2002] The conjecture is true for cubic graphs.

e [Negami 2003] Composite planar coverings,
[Negami 2005] Projective planar double coverings.

e [Rieck, Yamashita, preprint 2006] Extending the regular-cover theorem.
Surface extensions

e |s it true that a graph has a finite cover embeddable on a given nonori-
entable surface iff it embeds there?

cf. [PH 1999], [Negami 2005]
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Planar emulators (branched planar covers)

e Introduced by [Fellows 1985], considered also by [Kitakubo 1991].

e Can we prove a graph has a finite planar emulator
iff it has a finite planar cover?

(Not studied much so far, to our knowledge.)
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ACCOTA 2004

e One surprising announcement, but no proof has appeared since. ..
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Planar emulators (branched planar covers)

e Introduced by [Fellows 1985], considered also by [Kitakubo 1991].

e Can we prove a graph has a finite planar emulator
iff it has a finite planar cover?

(Not studied much so far, to our knowledge.)
ACCOTA 2004

e One surprising announcement, but no proof has appeared since. ..

So, who wants to be a-millienaire the conjecture solver?
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