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Abstract. In 1988, Seiya Negami published a conjecture stating that a graph G has a finite
planar cover (i.e. a homomorphism from some planar graph onto G which maps the vertex
neighbourhoods bijectively) if and only if G embeds in the projective plane. Though the ”if”
direction is easy, and over ten related research papers have been published during the past 20
years of investigation, this beautiful conjecture is still open in 2008. We give a short accessible
survey on Negami’s conjecture and all the (so far) published partial results, and outline some
further ideas to stimulate future research towards solving the conjecture.
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1. Introduction

The concept of covering maps between topological spaces is very well known and useful,
e.g. for modeling spaces which are otherwise hard to visualize. Since it is not our intention
to give an introductory course on topology here, we just very informally sketch this
concept: A covering map f from S onto T maps a small open neighbourhood of every point
x in S bijectively to some open neighbourhood of f(x) in T . In this situation, imagine we
are locally exploring the space in such a way that we leave no traces and are not allowed
to mark any point. Then, basically, the concept of covering map expresses the fact that
we are not able to distinguish the spaces S from T .

Examples of simple covering maps include a double-cover of the projective plane by
the sphere, or a double-cover of the Klein bottle by itself or by the torus. The covering-
map concept easily extends to graphs, both on topological and combinatorial sides, see
Section 2. Then, in analogy to mentioned sphere–projective plane cover map, one can get
natural Theorems 2, 3 (by Negami) about special planar covers of projective-planar graphs
which seem to lie more on the topological side of the story. On the combinatorial side,
on the other hand, one expects the closely related statement of Negami’s Conjecture 4 to
hold true, but that appears a much more involved task than the former.

The goal of this paper is to give a short survey of Negami’s planar cover conjecture
and all the related partial results published so far, and thus to stimulate future research
toward solving this beautiful 20-years open problem in topological graph theory. For more
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tute for Theoretical Computer Science, project 1M0545.



2 Petr Hliněný

details we refer interested readers also to author’s dissertation [9] (available online) which
is still quite current.

2. Planar covers

We deal only with finite undirected graphs, and assume that the reader is familiar with
basic terms of topological graph theory, e.g. with [14].

We first present a precise formal definition of a cover which we then relax to a simpler
variant dealing with only simple graphs.

Definition. A graph H is a cover of a graph G if there exists a pair of onto mappings
(ϕ, ψ), ϕ : V (H) → V (G), ψ : E(H) → E(G), called a (cover) projection, such that ψ
maps the edges incident with each vertex v in H bijectively onto the edges incident with
ϕ(v) in G.

In particular, for e = uv in H , the edge ψ(e) in G has ends ϕ(u), ϕ(v). Thus, for simple
graphs, it is enough to specify the vertex projection ϕ that maps the neighbors of each
vertex v in H bijectively onto the neighbors of ϕ(v) in G (a traditional approach). If G′

is a subgraph of G, then the graph H ′ with the vertex set ϕ−1(V (G′)) and the edge set
ψ−1(E(G′)) is called a lifting of G′ into H .

To illustrate the concept of a cover, we now give several basic properties.

Proposition 1. In the following claims, H is a cover of a graph G.

– It holds dH(v) = dG(ϕ(v)) for each vertex v ∈ V (H).
– Lifting of a tree T of G into H consists of a collection of disjoint trees isomorphic to
T . Hence, if G is connected, then |ϕ−1(v)| = k is the same number for all v ∈ V (G).
We then speak about a k-fold cover.

– Lifting of a cycle Cn of G into H consists of a collection of disjoint cycles whose lengths
are divisible by n.

– Any graph embedded in the projective plane has a double (2-fold) cover which is planar,
via the universal covering map from the sphere onto the projective plane. (See Fig. 1)

– If G has a cover which is planar, then so does every minor of G.
– Let e be an edge of G between two neighbours of some cubic vertex. If G − e has a

cover which is planar, then so does G. Therefore, if G has a planar cover and G′ is
obtained from G by Y∆-transformations (replacing a cubic vertex with a triangle on
the neighbours), then G′ has a planar cover.

Interest in graphs having a cover which is planar was raised in 1986 by Negami [15]
in relation to projective embeddings of 3-connected graphs. Interestingly, a very similar
concept of planar emulators was introduced and studied independently at the same time
by Fellows [4], see Section 5. The main result of [15] relates distinct projective embeddings
of 3-connected graphs to their double planar covers, and hence immediately:

Theorem 2. (Negami, 1986) A connected graph has a double planar cover if and only
if it embeds in the projective plane. (Fig. 1)

A natural extension of this result was brought with the concept of regular covers in [16].
A cover ϕ : V (H)→ V (G) is regular if there is a subgroup A of the automorphism group of
H such that ϕ(u) = ϕ(v) for u, v ∈ V (H) if, and only if τ(u) = v for some automorphism
τ ∈ A.
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Fig. 1. A double planar cover H of the complete graph K5.

Theorem 3. (Negami, 1988) A connected graph has a finite regular planar cover if and
only if it embeds in the projective plane.

It is worth to note that, though these two results are mainly of topological flavor,
and a topological argument (the fact that the universal covering space of the projective
plane is the sphere) is in the core of Negami’s proofs, we can provide our alternative clean
combinatorial arguments here.

Sketch of proof. An alternative combinatorial approach to Theorems 2, 3.
Assume that T is any spanning tree of G, and H is a 3-connected double (or finite

regular) planar cover of G. Then T lifts into isomorphic copies T ′ and T ′′ in H , and there
is an automorphism π of H which maps T ′ onto T ′′. Let F (T ′) denote those edges of H
having exactly one end in V (T ′). Notice that our π maps F (T ′) onto F (T ′′). See Fig. 2.
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Fig. 2. An illustration of the proof of Theorem 2—lifting a spanning tree T of G into H.

We claim that the cyclic ordering of the edges F (T ′) around T ′ in the plane embedding
of H is the same (up to mirror image) as that of F (T ′′) around T ′′. Indeed, if this was not
true, then the action of π onto this particular embedding of H would result in a distinct
plane embedding of H , which would contradict 3-connectivity of H .

Furthermore, we can resolve the technical details concerning non-3-connected cover
graphs H analogously to [15,16]. Theorem 2 thus follows easily now: If T ′′ ∪ F (T ′′) has
the same orientation as T ′ ∪ F (T ′) in the plane embedding of H , then G has a plane
embedding, too. If T ′′ ∪ F (T ′′) is a mirror image of T ′ ∪ F (T ′) (Fig. 2), then G embeds
in the projective plane such that all the edges lifting into F (T ′)∪ F (T ′′) pass though the
crosscap.
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Regarding Theorem 3, we need one more technical argument (actually similar to the
proof of Theorem 5) in addition to our above claim, which we skip in this short survey.

3. Negami’s conjecture

Theorem 3 suggests the following very natural generalization [16] which, informally saying,
takes the whole subject from topological land to pure combinatorics.

Conjecture 4. (Negami, 1988) A connected graph has a finite planar cover if and only if
it embeds in the projective plane.

Although Conjecture 4 only relaxes the regularity condition, the jump in difficulty
seems enormous. No proof ideas of Theorem 3 reasonably extend towards solving Conjec-
ture 4; the main reason being that lack of “regularity”, or symmetry, in the cover graph.
Consequently, despite a chain of promising partial results over the years, Conjecture 4 is
still open in 2008.

All the known partial results of this conjecture follow a simple scheme developed at
the beginning by Archdeacon and Negami:

– If a graph G embeds in the projective plane, then it has a double planar cover (Propo-
sition 1).

– Conversely, there is a known list [6,1] of all the 35 forbidden minors for graphs embed-
dable in the projective plane (see them in the Appendix).

– So, if a connected graph G does not embed in the projective plane, then G has F , one
of the 32 connected graphs of that list, as a minor. If we manage to prove that F has
no finite planar cover, then neither has G by Proposition 1.

– Furthermore, as observed by Archdeacon, the list to consider can be shortened using
Y∆-transformations (Proposition 1 again).

Though the problem now reduces to a case-by-case check of (at most) 32 graphs, we
remind the reader that even looking for a planar cover of a particular graph does not
seem to be a finite task at all.

Disjoint k-graphs

Actually, more than half of the 32 cases can be covered with a simple general argument
discovered by Negami [17] and Archdeacon: It is enough to know that a graph contains
“two disjoint k-graphs” to argue that it has no finite planar cover. The rather compli-
cated notion of k-graphs was introduced already in [6] and we refer the reader to e.g. [9,
Section 2.3] for a precise formulation. We also remind the reader of the graphical list of
all the 32 graphs in the Appendix.

Theorem 5. (Negami / Archdeacon, 1988)
Neither of the graphs K3,3 ·K3,3, K5 ·K3,3, K5 ·K5, B3, C2, C7, D1, D4, D9, D12, D17, E6,

E11, E19, E20, E27, F4, F6, G1 have a finite planar cover.

Sketch of proof. We briefly describe the proof [17] on a particular case of K5 ·K5, but a
full generalization is quite straightforward.

Let x be the degree-8 vertex of K5 ·K5, and A4 and B4 be the two components of
K5 ·K5 − x, as in Fig. 3. Consider a finite plane-embedded cover H of K5 ·K5, and
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Fig. 3. An illustration of the proof of Theorem 5.

assume, up to symmetry, that it is a component H4 of the lifting of A4 into H that is
“minimal”, i.e. H4 contains no part of the lifting of B4 inside. However, H4 as a cubic
graph cannot be outerplanar, and hence some internal vertex a of H4 is adjacent to some
x1 in the lifting of x into H , and this x1 must be adjacent to some vertices in the lifting
of B4, a contradiction. Hence K5 ·K5 has no finite planar cover.

Two discharging arguments

Discharging is a proof method developed mainly to study the Four colour problem. The
method simply applies Euler’s formula in a clever way.

A very easy discharging argument shows that the graphK3,5 cannot have a finite planar
cover. Though this claim is first attributed to Fellows, it does not occur in [4]. A short
published proof can be found, e.g., in [12].

Theorem 6. (1988, 1993) The graph K3,5 has no finite planar cover.
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Fig. 4. An illustration of the proof of Theorem 6.

Proof. Suppose that a (bipartite) graph H was a finite cover of K3,5 embedded in the
plane. We assign charge of 3(4− dH(v)) to every vertex v, and of 3(4− len(φ)) to every
face φ of H . By Euler’s formula, the total charge ofH is positive 12·2. Then every 3-vertex
of H sends its charge equally 1 to each neighbour. So every 5-vertex, say a1, of H now has
charge of −3 + 5 = 2. That charge is subsequently sent from a1 to any incident ≥6 -face
of H . If a1 covers a of K3,5, then the second neighbourhood of a1 in H contains vertices
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b1, c1, b2, c2, . . . alternating between the liftings of b and c of K3,5. See Fig. 4. That clearly
cannot happen with all the incident faces of a1 quadrilaterals. Therefore, all vertices of
H end up with nonpositive charge, and so do all the faces. This contradiction concludes
the proof.

Another, significantly more involved discharging argument was found several years
later by the author [7] for the case of K4,4−e.

Theorem 7. (PH, 1998) The graph K4,4−e has no finite planar cover.

A noticeable feature of the proof is that discharging is applied not to the supposed planar
cover itself, but to a special simplification of it. That seems the right way to go, as also
a successful case of E2 in Theorem 10 shows.

Structural approach

Yet another approach to prove nonexistence of a planar cover was discovered by Archdea-
con already in 1988, but the proof had not been published until much later in [2].

Theorem 8. (Archdeacon, 1988, 2002)
The graphs K7−C4 and K4,5−4K2 have no finite planar covers.

Here the proof cannot be easily sketched, and so we only mention that one looks for
a short “necklace” of interconnected 4-cycles in the supposed cover, and then finds a
way the necklace can be made even shorter, arriving at a contradiction. This idea can be
regarded as a wide generalization of the “disjoint k-graph” argument of Theorem 5.

Interestingly, the exactly same proof was rediscovered (independently) by Thomas and
the author 10 years later, see [9], and subsequently generalized by the author to cover
also the case of C4 in Theorem 10 in the next section. The particularly nice feature of this
generalization is that its proof directly constructs from the shortest necklace a projective
embedding of the covered graph, instead of deriving an artificial contradiction, cf. also
Theorems 2,3.

4. The bad: K1,2,2,2 and relatives

After all, putting together Theorems 5, 6, 7, and 8, and applying Y∆-transformations
to the graphs D3, E5,F1,B7, C3, C4,D2, E2, leaves only one following case to be resolved
(Fig. 5).

Fig. 5. The graph K1,2,2,2.
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Corollary 9. (1998) If the graph K1,2,2,2 (the octahedron with an extra vertex) had no
finite planar cover, then Conjecture 4 would hold true.

It might have appeared that Corollary 9 “almost solved” Negami’s conjecture, but the
opposite is showing true—even nowadays, more than 10 years later, Conjecture 4 is still
wide open. In fact, it seems that this last step towards resolving the conjecture captures
all difficulties of the problem!

K1,2,2,2

←

B7

←

C3

C4

ր

D2

ր

←

E2

Fig. 6. The “family” of K1,2,2,2 via Y∆-transformations.

Furthermore, notice that there are other graphs on the list of the 32 projective ob-
structions which are unsolved yet. Namely, the graph C4 reduces via B7 to K1,2,2,2, and so
does the graph E2 via D2, C3 and B7 (Fig. 6). Hence in the situation when we are not able
to attack the final case of K1,2,2,2 directly, it might perhaps help to “train our muscles” on
some of the supposedly easier cases. This strategy led us to the following new results [9,
10]:

Theorem 10. (PH, 1999 and 2001)
The graphs C4 and E2 (cf. Fig. 6) have no finite planar covers.

Despite the graphs C4 and E2 are “relatives”, the proofs for each one of them in
Theorem 10 are completely different and incomparable. While an involved discharging
argument is applied in the case of E2, the other case of C4 is covered by a generalization
of the necklace argument from Theorem 8. Unfortunately, neither of these arguments can
be directly generalized to any other of the missing cases. Hence, we suggest that the right
way to attack the last case of K1,2,2,2 is to find a suitable common generalization of the
structural and discharging approaches of Section 3.

Possible counterexamples?

Trying to understand, in view of Theorem 10, the difficulties surrounding the last case
of K1,2,2,2, one should naturally ask for which of all graphs, to our current knowledge,
Conjecture 4 might possibly fail. That direction has been taken by Thomas and the
author in [9] and [11]. A planar expansion of a graph G is a graph which results from
G by adding a planar graph sharing one vertex with G, or by replacing an edge or a
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cubic vertex with a planar graph with its attachments on the outer face. We refer to [9,
Section 6.1] for a formal description.

Theorem 11. (PH and Thomas, 1999 and 2004)
Let Π be the set of K1,2,2,2 and the 15 graphs listed in Fig. 7. If a connected graph G has
a finite planar cover but no projective embedding, then G is a planar expansion of some
graph from Π.

B7 B′
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C3 C′

3

C′′
3

C•
3

C◦
3

D2 D′

2

D′′

2
D′′′

2
D•

2
D◦

2
D⋆

2

Fig. 7. The family Π of Theorem 11.

Although it might seem that Theorem 11 brings no useful new information in the case
Conjecture 4 holds, we suggest that quite the opposite is true—the theorem shows that
there are only at most 15 discrete steps left toward solving Conjecture 4. In other words,
Theorem 11 acts as a selection filter for ideas—if a new idea should put us forward in
solving Negami’s conjecture, then it has to be applicable to at least one of the graphs in
Π .

Furthermore, we can order the graphs from Π according to their difficulty as follows:

Proposition 12. Let us write G
NC
→H to mean that “if G has no planar cover, then

neither has H”. Then:

K1,2,2,2
NC
→ B7

NC
→ B′7

NC
→ B′′7

NC
→ C3

NC
→ C′3

NC
→ C′′3 →

→ C•3 → D•

2

րNC ցNC րNC

C′′3
NC
→ C◦3

NC
→ D2

NC
→ D′

2
NC
→ D′′

2
NC
→ D′′′

2
NC
→ D◦

2

l NC

D⋆
2

The task now is: Can we, at least, prove that the “easiest” two tail cases of Proposi-
tion 12 have no finite planar covers? Unfortunately, no progress on either case has been
made till now (2008). Still, that may be just because no one (including us) has tried
seriously enough, and so we would like to encourage the interested readers to try it. The



20 Years of Negami’s Planar Cover Conjecture 9

reason we believe it is important to follow this direction, is that solving each new partic-
ular case must bring some new ideas or methods which can later be, perhaps, combined
together into a final solution to Negami’s conjecture.

5. Additional remarks

Several other research papers studying planar covers of graphs, but not in a direct relation
to solving Conjecture 4, have been published over the years. In [3], for instance, it is proved
that no nonplanar graph has an odd-fold planar cover. In [18] it is proved that Conjecture 4
holds for all cubic graphs, but that claim is indeed a trivial corollary of Theorem 11.

In [8], a natural way of extending Conjecture 4 is outlined: the conjecture is equivalent
to saying that a connected graph has a finite projective cover if and only if it is projective.
Such a formulation can be easily extended to any nonorientable surface (while it is trivially
false for all orientable surfaces), and little support for the Klein bottle extension has been
provided there [8], too. Then, the weaker projective-planar double-covering variant of this
reformulation has been proved by Negami in [20], using the idea of so called composite
coverings [19].

Planar emulators

At last, we return to related Fellows’ problem of planar emulators [4,5], cf. also “branched
coverings” by Kitakubo [13].

Definition. A graph H is an emulator of a graph G if there exists a pair of onto mappings
(ϕ, ψ), ϕ : V (H)→ V (G), ψ : E(H)→ E(G), such that ψ maps the edges incident with
each vertex v in H surjectively onto the edges incident with ϕ(v) in G.

Easily, a planar cover is a planar emulator but not the opposite. It appears very nat-
ural to extend questions and results on planar covers to planar emulators. For instance,
although emulator projections do not preserve the vertex degrees nor the fold number,
the last two important points of Proposition 1 still hold [5] (though the proof is no longer
trivial):

Proposition 13. (Fellows) The property of having a finite planar emulator is preserved
under taking minors and Y∆-transformations.

The following [5] also appeared to be a very natural extension:

Conjecture 14. (Fellows, 1988) A connected graph has a finite planar emulator if and only
if it has a finite planar cover.

The strategy for attacking this conjecture would be the same as for Conjecture 4—to
study possible planar emulators of all the 32 connected obstructions for the projective
plane. In this manner it is easy to extend [5] the proofs of Theorems 5 and 6 to emulators,
but no further extension is known.

However, a surprising new result [21] has appeared just recently:

Theorem 15. (Rieck and Yamashita, 2008) The graphs K4,5−4K2 and K1,2,2,2 do
have finite planar emulators. Hence Conjecture 14 is false.
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Inspired by this breakthrough statement, Chimani and the author [unpublished] have
subsequently constructed finite planar emulators for the graphs C4 and E2. Using Propo-
sition 13 and arguments of [11, Proposition 6.1], this gives finite planar emulators for
all the 16 graphs listed in Theorem 11. Particularly, one can construct in this way an
emulator of K1,2,2,2 which is smaller than the one in [21].

Although Theorem 15 has no direct relevance to solving Conjecture 4 (which still
remains open), it is now desirable to find (or at least conjecture) the full list of forbid-
den minors for the graphs having a finite planar emulator. Right now, we consider it a
very interesting open question whether the graphs K7−C4 and K4,4−e have finite planar
emulators.
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Appendix: The obstructions for projective plane

This is a list of all the 35 minor-minimal non-projective graphs [6,1].

K3,3+K3,3 K5+K3,3 K5+K5 K3,3 ·K3,3 K5 ·K3,3

K5 ·K5 B3 C2 C7 D1

D4 D9 D12 D17 E6

E11 E19 E20 E27 F4

F6 G1 K3,5 K4,5−4K2 K4,4−e

K7−C4 D3 E5 F1 K1,2,2,2

B7 C3 C4 D2 E2


