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1 Introduction

Many graph problems are known to be NP -hard in general; however, for practical application
we still need to solve them. One method to solve them is to restrict the input graph to have
a certain structure. Clique-width, defined by Courcelle and Olariu [4], is very useful for that
purpose. Many hard graph problems (in particular all those expressible in MSO logic of
adjacency graphs) are solvable in polynomial time as long as the input graph has bounded
clique-width and is given in the form of the decomposition for clique-width, called a k-
expression [3, 26, 6, 16, 11]. A k-expression is an algebraic expression with the following
four operations on vertex-labeled graph with k labels: create a new vertex with label i; take
the disjoint union of two labeled graphs; add all edges between vertices of label i and label j;
and relabel all vertices with label i to have label j. However, for fixed k > 3, it is not known
how to find a k-expression of an input graph having clique-width at most k. (If k ≤ 3, then
it has been shown in [2, 1].)

Rank-width is another graph structural invariant introduced by Oum and Seymour [21],
aiming at the construction of an f(k)-expression of the input graph having clique-width
k for some fixed function f in polynomial time. Rank-width is defined (Section 7) as the
branch-width (see Section 2) of the cut-rank function of graphs. Rank-width turns out to
be very useful for algorithms on graphs of bounded clique-width, since a class of graphs has
bounded rank-width if and only if it has bounded clique-width. In fact, if rank-width of a
graph is k, then its clique-width lies between k and 2k+1 − 1 [21] and an expression can be
constructed from a rank-decomposition of width k.

In this paper, we are mainly interested in the following problem:

• Find a fixed-parameter tractable algorithm that outputs a rank-decomposition of width
at most k if the rank-width of an input graph (with more than one vertex) is at most k.

The first rank-width algorithm by Oum and Seymour [21] only finds a rank-decomposition
of width at most 3k+1 for n-vertex graphs of rank-width at most k in time O(n9 log n). This
algorithm has been improved by Oum [20] to output a rank-decomposition of width at most
3k in time O(n3). Using this approximation algorithm and finiteness of excluded vertex-
minors [19], Courcelle and Oum [5] have constructed an O(n3)-time algorithm to decide
whether a graph has rank-width at most k. However, this is only a decision algorithm; if
the rank-width is at most k, then this algorithm verifies that the input graph contains none
of the excluded graphs for rank-width at most k as a vertex-minor. It does not output a
rank-decomposition showing that the graph indeed has rank-width at most k.

In another paper, Oum and Seymour [22] have constructed a polynomial-time algorithm
that can output a rank-decomposition of width at most k for graphs of rank-width at most k.
However, it is not fixed-parameter tractable; its running time is O(n8k+12 log n). Obviously, it
is very desirable to have a fixed-parameter tractable algorithm to output such an “optimal”
rank-decomposition, because most algorithms on graphs of bounded clique-width require
a k-expression on their input. So far, the only known efficient way of constructing an
expression with bounded number of labels for a given graph of bounded clique-width uses
rank-decompositions.
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In this paper, we present an affirmative answer to the above problem (Theorem 7.3). An
amusing aspect of our solution is that we deeply use submodular functions and matroids
to solve the rank-decomposition problem, which shows (somehow unexpectedly) a “truly
geometrical” nature of this graph-theoretical problem. In fact we solve the following related
problem on matroids, too (Theorem 6.7).

• Find a fixed-parameter tractable algorithm that, given a matroid represented by a
matrix over a fixed finite field, outputs a branch-decomposition of width at most k if
the branch-width of the input matroid (with more than one element) is at most k.

So to give the final solution of our first problem—Theorem 7.3, we are going to bring to-
gether two previously separate lines of research: We will combine Oum and Seymour’s above
sketched work on rank-width and on branch-width of submodular functions with Hliněný’s
recent works [14, 15] on parametrized algorithms for matroids over finite fields.

Namely, Hliněný [14] has given a parametrized algorithm which in time O(n3) either out-
puts a branch-decomposition of width ≤ 3k+1 of an input matroid M represented over a fixed
finite field, or confirms that the branch-width of M is more than k+1 (Algorithm 6.1). Using
the ideas of [15] and minor-monotonicity of the branch-width parameter, he has concluded
with an O(n3) fixed-parameter tractable algorithm [14] for the (exact value of) branch-width
k of an input matroid M represented over a fixed finite field (Theorem 5.1). Similarly as
above, this is only a decision algorithm, and it does not output a branch-decomposition of
width k.

We lastly remark that the following (indeed widely expected) hardness result has been
given only recently by Fellows, Rosamond, Rotics, and Szeider [7]: It is NP -hard to find
graph clique-width. To argue that it is NP -hard to find rank-width, we combine some known
results: Fomin, Fraignaiaud, and Thilikos [8], Hicks and McMurray Jr. [12], and Mazoit and
Thomassé [17] independently proved that the branch-width of the cycle matroid of a graph is
equal to the branch-width of the graph if it is 2-connected. Hence, we can reduce (Section 7)
the problem of finding branch-width of a graph to finding rank-width of a certain bipartite
graph, and finding graph branch-width is NP -hard as shown by Seymour and Thomas [25].
Still, the main advantage of rank-width over clique-width is the fact that we currently have
a fixed-parameter tractable algorithm for rank-width but not for clique-width.

Our paper is structured as follows: The next section briefly introduces definitions of
branch-width, partitions, matroids and the amalgam operation on matroids. In Section 3
we explain the notion of so-called titanic partitions, which we further use in Section 4 to
“model” partitioned matroids in ordinary matroids. At this point it is worth to note that
partitioned matroids present the key tool that allows us to shift from a branch-width-testing
algorithm [14] to a construction of an “optimal” branch-decomposition, see Theorem 5.7,
and of a rank-decomposition. In Section 5, we will discuss a simple but slow algorithm for
matroid branch-decompositions. In Section 6, we will present a faster algorithm. As the main
application we then use our result to give an algorithm for constructing a rank-decomposition
of optimal width of a graph in Section 7.
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2 Definitions

Branch-width. Let Z be the set of integers. For a finite set V , a function f : 2V →
Z is called symmetric if f(X) = f(V \ X) for all X ⊆ V , and is called submodular if
f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ) for all subsets X, Y of V . A tree is subcubic if all
vertices have degree 1 or 3. For a symmetric submodular function f : 2V → Z on a finite set
V , the branch-width is defined as follows (see Figure 1).

A branch-decomposition of the symmetric submodular function f is a pair (T, µ) of a
subcubic tree T and a bijective function µ : V → {t : t is a leaf of T}. (If |V | ≤ 1 then f
admits no branch-decomposition.) For an edge e of T , the connected components of T \ e
induce a partition (X, Y ) of the set of leaves of T . (In such a case, we say that µ−1(X) (or
µ−1(Y )) is displayed by e in the branch-decomposition (T, µ). We also say that V and ∅ are
displayed by the branch-decomposition.) The width of an edge e of a branch-decomposition
(T, µ) is f(µ−1(X)). The width of (T, µ) is the maximum width of all edges of T . The branch-
width of f , denoted by bw(f), is the minimum of the width of all branch-decompositions of
f . (If |V | ≤ 1, we define bw(f) = f(∅).)

eX







Y

Figure 1: An illustration of the definition of a branch-decomposition (T, µ) of f : An edge e
of the tree T displays the sets µ−1(X) and µ−1(Y ), and the width of e is f(µ−1(X)).

A natural application of this definition is the branch-width of a graph, as introduced by
Robertson and Seymour [24] along with better known tree-width, and its direct matroidal
counterpart below in this section. We also refer to further formal definition of rank-width in
Section 7.

Partitions. A partition P of V is a collection of nonempty pairwise disjoint subsets of V
whose union is equal to V . Each element of P is called a part. For a symmetric submodular
function f on 2V and a partition P of V , let fP be a function on 2P (also symmetric
and submodular) such that fP(X) = f(∪Y ∈XY ). The width of a partition P is f(P) =
max{f(Y ) : Y ∈ P}.

We will often denote a partition by a function as follows. For a function π : V → W , let
πy = {x : π(x) = π(y)} for y ∈ V , and let [π] = {πx : x ∈ V } be the partition of V induced
by π.

Matroids. We refer to Oxley [23] in our matroid terminology. A matroid is a pair M =
(E, B) where E = E(M) is the ground set of M (elements of M), and B ⊆ 2E is a nonempty
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collection of bases of M , no two of which are in an inclusion. Moreover, matroid bases
satisfy the “exchange axiom”: if B1, B2 ∈ B and x ∈ B1 \ B2, then there is y ∈ B2 \ B1

such that (B1 \ {x}) ∪ {y} ∈ B. We consider only finite matroids. A typical example of a
matroid is given by a set of vectors (forming the columns of a matrix A) with usual linear
independence. The matrix A is then called a representation of the matroid.

All matroid bases have the same cardinality called the rank r(M) of the matroid. Subsets
of bases are called independent, and sets that are not independent are dependent. A matroid
M is uniform if all subsets of E(M) of certain size are the bases, and M is free if E(M)
is a basis. The rank function rM(X) in M is the maximum cardinality of an independent
subset of a set X ⊆ E(M). The dual matroid M∗ is defined on the same ground set with
the bases as set-complements of the bases of M . For a subset X of E, the deletion M \ X
of X from M or the restriction M � (E \ X) of M to E \ X, is the matroid on E \ X in
which Y ⊆ E \X is independent in M \X if and only if Y is an independent set of M . The
contraction M/X of X in M is the matroid (M∗ \ X)∗. Matroids of the form M/X \ Y are
called minors of M .

To define the branch-width of a matroid, we consider its (symmetric and submodular)
connectivity function

λM(X) = rM(X) + rM(E \ X) − rM(E) + 1

defined for all subsets X ⊆ E = E(M). A “geometric” meaning is that the subspaces
spanned by X and E \ X intersect in a subspace of dimension λM(X) − 1. Branch-width
bw(M) and branch-decompositions of a matroid M are defined as the branch-width and
branch-decompositions of λM . Notice that λM∗ ≡ λM .

Partitioned matroids. A pair (M,P) is called a partitioned matroid if M is a matroid and
P is a partition of E(M). A partitioned matroid (M,P) is representable if M is representable.
A connectivity function of a partitioned matroid (M,P) is defined as λP

M . We note that λP
M

is symmetric and submodular ; in other words,

λP
M(X) = λP

M(P \ X),

λP
M(X) + λP

M(Y ) ≥ λP
M(X ∩ Y ) + λP

M(X ∪ Y ).

Branch-width bw(M,P) and branch-decompositions of a partitioned matroid (M,P) are
defined as branch-width, branch-decompositions of λP

M .

Amalgams of matroids. Let M1, M2 be matroids on E1, E2 respectively and T = E1∩E2.
Moreover let us assume that M1 � T = M2 � T . If M is a matroid on E1 ∪ E2 such that
M � E1 = M1 and M � E2 = M2, then M is called an amalgam of M1 and M2 (see Figure 2).

It is known that an amalgam of two matroids need not exist and need not be unique.
However, there are certain interesting cases when an amalgam is known to exist. We show one
such example here, and we use another one in Proposition 5.4 with representable matroids.
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Let r1, r2 be the rank function of M1, M2, respectively. Let r be the rank function of M1 � T .
Let

η(X) = r1(X ∩ E1) + r2(X ∩ E2) − r(X ∩ T )

and
ζ(X) = min{η(Y ) : Y ⊇ X}.

Proposition 2.1 ([23, 12.4.2]). If ζ is submodular, then ζ is the rank function of a matroid
that is an amalgam of M1 and M2.

If ζ is submodular, then the matroid on E1 ∪ E2 having ζ as its rank function is called
the proper amalgam of M1 and M2.

Lemma 2.2. If M1 � T is free, then ζ is submodular and therefore the proper amalgam of
M1 and M2 exists.

Proof. Since M1 � T is a free matroid, we have r(X ∩ T ) = |X ∩ T | and therefore η is
submodular. We will show that this implies that ζ is submodular, that is to show that
ζ(X1) + ζ(X2) ≥ ζ(X1 ∩ X2) + ζ(X1 ∪ X2). For i ∈ {1, 2}, let Yi be a set such that Yi ⊇ Xi

and ζ(Xi) = η(Yi). Then ζ(X1) + ζ(X2) = η(Y1) + η(Y2) ≥ η(Y1 ∩ Y2) + η(Y1 ∪ Y2) ≥
ζ(X1 ∩X2)+ ζ(X1 ∪X2). By Proposition 2.1, the proper amalgam of M1 and M2 exists.

⊕ →

Figure 2: A “geometrical” illustration of an amalgam of two matroids, in which hollow points
are the shared elements T .

3 Titanic Partitions

This technical section is about general symmetric submodular functions. Let V be a finite
set and f be a symmetric submodular function on 2V .

A set T ⊂ 2V of subsets of V is called an f -tangle of order k+1 if it satisfies the following
three axioms.

(T1) For all A ⊆ V , if f(A) ≤ k, then either A ∈ T or V \ A ∈ T .

(T2) If A, B, C ∈ T , then A ∪ B ∪ C �= V .
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(T3) For all v ∈ V , we have V \ {v} /∈ T .

Robertson and Seymour [24] showed that tangles are related to branch-width.

Theorem 3.1 (Robertson and Seymour [24]). There is no f -tangle of order k + 1 if and
only if the branch-width of f is at most k.

A subset X of V is called titanic with respect to f if whenever A1, A2, A3 are pairwise
disjoint subsets of X such that A1∪A2∪A3 = X, there is i ∈ {1, 2, 3} such that f(Ai) ≥ f(X).

Lemma 3.2. Let V be a finite set and f be a symmetric submodular function on 2V . Let X
be a titanic set with respect to f . If X1 ∪ X2 ∪ X3 = X, then there exists i ∈ {1, 2, 3} such
that f(Xi) ≥ f(X). (Note that X1, X2, X3 are not required to be pairwise disjoint.)

Proof. Suppose not. We pick a counterexample with minimum |X1| + |X2| + |X3|. If
X1, X2, X3 are pairwise disjoint, then by definition the lemma is true.

We may assume that X1 ∩ X2 �= ∅. Let Y1 be a set minimizing f(Y1) subject to the
condition X1\X2 ⊆ Y1 ⊆ X1. Then f(X1) ≥ f(Y1) and f(X1\X2) ≥ f(Y1). Let Y2 = X2\Y1.
By the submodular inequality,

f(Y1) + f(X2) ≥ f(X1 \ X2) + f(Y2) ≥ f(Y1) + f(Y2),

and therefore f(X2) ≥ f(Y2). Since Y1 ∪Y2 ∪X3 = X, |Y1|+ |Y2|+ |X3| < |X1|+ |X2|+ |X3|,
and f(X3) < f(X), we conclude that either f(Y1) ≥ f(X) or f(Y2) ≥ f(X). But both cases
lead to the conclusion that either f(X1) ≥ f(X) or f(X2) ≥ f(X). A contradiction.

A partition P of V is called titanic with respect to f if every part of P is titanic with
respect to f . The following lemmas are equivalent to a lemma by Geelen, Gerards, and
Whittle [10, 4.4], which generalizes a result of Robertson and Seymour [24, (8.3)].

Lemma 3.3. Let V be a finite set and f be a symmetric submodular function on 2V of
branch-width k. Let Q be a nonempty titanic set with respect to f , and y ∈ Q. Let π(x) = x
if x /∈ Q and π(x) = y if x ∈ Q. If f(Q) ≤ k, then the branch-width of f [π] is at most k.

Proof. Suppose that the branch-width of f [π] is larger than k. Then by Theorem 3.1, there
is an f [π]-tangle T [π] of order k + 1. Let T ′ = {∪Z∈Y Z : Y ∈ T [π]}.

We would like to construct an f -tangle T of order k + 1 as follows:

T =
{
X ⊆ V : f(X) ≤ k and either X ∪ Q ∈ T ′ or X \ Q ∈ T ′}.

To show that T is an f -tangle of order k + 1, it is enough to verify three axioms (T1)–(T3).
For (T1), suppose that f(X) ≤ k and X, V \X /∈ T . Since Q is titanic, either f(X∩Q) ≥

f(Q) or f(Q \ X) ≥ f(Q). We may assume that f(X ∩ Q) ≥ f(Q) by replacing X with
V \ X if necessary. By the submodular inequality,

f(X) + f(Q) ≥ f(X ∪ Q) + f(X ∩ Q) ≥ f(X ∪ Q) + f(Q),
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and therefore f(X ∪ Q) ≤ f(X) ≤ k. Since T [π] is an f [π]-tangle, we know that either
X∪Q ∈ T ′ or V \(X∪Q) ∈ T ′. If X∪Q ∈ T ′, then X ∈ T . If V \(X∪Q) = (V \X)\Q ∈ T ′,
then V \ X ∈ T . So (T1) is proved.

To show (T2), suppose that there are X1, X2, X3 ∈ T such that X1 ∪ X2 ∪ X3 = V . By
Lemma 3.2, there exists i ∈ {1, 2, 3} such that f(Xi ∩ Q) ≥ f(Q). We may assume that
i = 1. By the submodular inequality, we deduce that f(X1 ∪ Q) ≤ f(X1) ≤ k. Since T ′

has no three sets whose union is V , we have X1 ∪ Q /∈ T ′. Therefore, X1 \ Q ∈ T ′ and
V \ (X1 ∪ Q) ∈ T ′. Since f(Q) ≤ k, we have Q ∈ T ′ by (T1) and (T3) of T [π]. However,
(V \ (X1 ∪ Q)) ∪ (X1 \ Q) ∪ Q = V , contradictory to the fact that T [π] is an f [π]-tangle.

To show (T3), suppose that X = V \ {v} ∈ T for some v ∈ V . Since V, V \ Q /∈ T ′ and
V \ {v} /∈ T ′ when v /∈ Q, we deduce that v /∈ Q and V \ {v} \ Q ∈ T ′. We know that
{v}, Q ∈ T ′. Then the union of three sets {v}, Q, V \ {v} \Q is equal to V . A contradiction.

Now we conclude that T is an f -tangle of order k + 1. However, this is a contradiction
to Theorem 3.1, because we assumed that the branch-width of f is k.

Lemma 3.4. Let V be a finite set and f be a symmetric submodular function on 2V of
branch-width at most k. If P is a titanic partition of width at most k with respect to f , then
the branch-width of fP is at most k.

Proof. Suppose that there is a counterexample. We pick a counterexample with minimum
number of parts having at least two elements. If all parts have exactly one element, then it
is trivial.

Choose one member from each part of P and consider a function π : V → V that maps
each element x of V to a representative of the part containing x. Then [π] = P.

Let y be an element of V such that |πy| ≥ 2. Then let π′ : V → V be a function such
that

π′(x) =

{
π(x) if x /∈ πy,

x if x ∈ πy.

By definition, [π′] = {πx : x /∈ πy}∪ {{x} : x ∈ πy}. Since the number of parts in [π′] having
at least two elements is strictly smaller than that of [π] = P and [π′] is a titanic partition of
width at most k, we know that the branch-width of f [π′] is at most k.

Then Q = {{x} : x ∈ πy} is titanic with respect to f [π′], because P is a titanic partition
and πy ∈ P. In addition, f [π′](Q) = f(πy) ≤ k. Therefore, by Lemma 3.3, the branch-width
of f [π′] is at most k. This contradicts to the assumption that P is chosen as a counterexample
with minimum number of parts with more than one element.

4 Replacing Each Part by a Gadget

The purpose of this section is to show how a partitioned matroid may be “modeled” by an
ordinary matroid having the same branch-width.

Lemma 4.1. Let M be a matroid and T be a subset of E(M). If |T | + 1 > λM(T ), then
there is e ∈ T such that one of the following is true
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– λM/e(X) = λM(X) for all X ⊆ E(M) \ T , or

– λM\e(X) = λM(X) for all X ⊆ E(M) \ T .

Proof. Let X be a subset of E(M) \ T . If there is an element e ∈ T that is not spanned by
E(M) \ T , then rM/e(X) = rM(X). Therefore, λM/e(X) = rM/e(X) + rM/e

(
E(M) \ ({e} ∪

X)
)
− r(M/e) + 1 = rM(X) + rM

(
E(M) \X

)
− rM({e})−

(
r(M)− rM({e})

)
+ 1 = λM(X).

So, we may assume that E(M) \ T spans T . Since |T | + 1 > λM(T ) = rM(T ) + 1, T is
dependent in M , and hence in the dual matroid M∗ the set T is not spanned by E(M∗) \T .
We apply the previous argument to M∗. (Note that (M \ e)∗ = M∗/e and λM∗ ≡ λM .)

Corollary 4.2. Let M be a matroid and let T be a subset of E(M). Then there exist disjoint
subsets C, D of T such that λM/C\D(T \(C∪D)) = |T \(C∪D)|+1, and λM/C\D(X) = λM(X)
for all X ⊆ E(M) \ T .

We aim to transform a partitioned matroid (M,P) to another partitioned matroid
(M#,P#), such that they have the same branch-width and P# is a titanic partition with
respect to λM# . To do so, we use an amalgam operation on matroids, described in Section 2.

Let (M,P) be a partitioned matroid. We may assume each part T of P satisfies λM(T ) =
|T |+1 if |T | > 1, because otherwise we can contract or delete elements in T while preserving
bw(M,P) by Corollary 4.2. This means that M � T is a free matroid. For each part T of
(M,P), if |T | > 1, then we define a matroid UT (a titanic gadget of T ) as a rank-|T | uniform
matroid on the ground set ET = E(UT ) such that |ET | = 3|T | − 2, E(M) ∩ ET = T , and
ET ∩ ET ′ = ∅ if T ′ �= T is a part of P and |T ′| > 1. Since M � T = UT � T is a free matroid,
an amalgam of M and UT exists by Lemma 2.2.

Lemma 4.3. Let M be a matroid and T be a subset of E(M) such that λM(T ) = |T | + 1.
Let M ′ be an amalgam of M and UT . Then the following are true:

(1) If T ⊆ X ⊆ E(M ′), then rM(X ∩ E(M)) = rM ′(X).

(2) λM(X) = λM ′(X) for all X ⊆ E(M) \ T .

(3) The set E(UT ) is titanic in the matroid M ′.

Proof. (1) Because M ′ � E(M) = M , we have rM(X ∩ E(M)) = rM ′(X ∩ E(M)) ≤ rM ′(X).
Since T is independent in UT , we can pick a maximally independent subset I of X in

M ′ such that T ⊆ I. Since M ′ � E(UT ) = UT , the set I ∩ E(UT ) is independent in UT and
therefore I ∩ E(UT ) = T . So I ⊆ E(M). Therefore rM(X ∩ E(M)) ≥ |I| = rM ′(X).

(2) Let Y = E(M ′) \ X. We note that E(UT ) is a subset of Y . By definition,

λM(X) = rM(X) + rM(Y ∩ E(M)) − r(M) + 1,

λM ′(X) = rM ′(X) + rM ′(Y ) − r(M ′) + 1.

Since M ′ � E(M) = M , we have rM(X) = rM ′(X). By (1), rM(Y ∩ E(M)) = rM ′(Y ) and
r(M ′) = r(M). Thus λM(X) = λM ′(X).
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(3) We claim that if X is a subset of E(UT ) and |X| ≥ |T |, then λM ′(X) ≥ λM ′(E(UT )).
Since UT is a uniform matroid of rank |T |, we have

rM ′(X) = |T | = rM ′(E(UT )),

rM ′(E(M ′) \ X) ≥ rM ′(E(M ′) \ E(UT )).

Therefore, λM ′(X) ≥ λM ′(E(UT )).
Now suppose that X1, X2, X3 are pairwise disjoint subsets of E(UT ). Then there is

i ∈ {1, 2, 3} such that |Xi| ≥
⌈
|E(UT )|/3

⌉
= |T | and therefore λM ′(Xi) ≥ λM ′(E(UT )). So

E(UT ) is titanic in M ′.

So, using Corollary 4.2, we first obtain a minor M0 of M such that λM0(T ∩ E(M0)) =
|T ∩E(M0)|+1 for all parts T ∈ P, and if a subset X of E(M) satisfies that X ∩T ∈ {∅, T}
for all parts T ∈ P, then λM0(X ∩ E(M0)) = λM(X). Let P0 be the partition of E(M0)
induced by P. Then we deduce from Corollary 4.2 that the branch-width of (M,P) is equal
to the branch-width of (M0,P0). However, the branch-width of the matroid M0 may still be
different from the branch-width of the partitioned matroid (M0,P0).

In the following theorem, we will extend (M0,P0) by amalgamating uniform matroids in
the fashion of Lemma 4.3 so that the obtained partitioned matroid (M#,P#) has the same
branch-width as the matroid M# itself.

Theorem 4.4. Let (M0,P0) be a partitioned matroid and let T1, T2, . . . , Tm be the parts of
P0 having at least two elements. Assume that λM0(Ti) = |Ti|+ 1 for every i ∈ {1, 2, . . . , m}.
For all i = 1, 2, . . . , m, let Mi be an amalgam of Mi−1 and UTi

. Then the branch-width of
Mm is equal to the branch-width of the partitioned matroid (M0,P0).

We call resulting M# = Mm the normalized matroid of the partitioned matroid (M0,P0).

Proof. Let Pi = (Pi−1 \ {Ti}) ∪ {E(UTi
)}. By Lemma 4.3 (2), the branch-width of (Mi,Pi)

is equal to that of (Mi−1,Pi−1) and therefore the branch-width of (Mm,Pm) is equal to
the branch-width of (M0,P0). By Lemma 4.3 (3), Pm is a titanic partition. Let k be the
branch-width of Mm. It is easy to see that the branch-width of the uniform matroid UTi

is |Ti| + 1 = λMm(E(UTi
)). Since UTi

is a minor of Mm, the branch-width of Mm is at
least |Ti| + 1 for all i and therefore the width of Pm is at most k. We conclude that the
branch-width of (Mm,Pm) is at most k by Lemma 3.4.

To finish the proof, we need to show that the branch-width of (Mm,Pm) is at least k.
Let (T, µ) be the branch-decomposition of (Mm,Pm) of width at most w. From (T, µ), we
would like to obtain a branch-decomposition (T ′, µ′) of Mm whose width is at most w as
follows. Let vi be the leaf of T corresponding to E(UTi

). We prepare a rooted binary tree
with a bijection from its leaves to E(UTi

) and then identify the root with vi. Let T ′ be the
new tree obtained by the above process for all i. A bijection µ′ from E(Mm) to leaves of T ′

is easily obtained from the above process. Since λMm(X) = |X|+ 1 ≤ λMm(E(UTi
)) ≤ w for

all X ⊆ E(UTi
), the width of (T ′, µ′) is at most w.
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5 Branch-decompositions of Represented Partitioned

Matroids

We now specialize the above ideas to the case of representable matroids. We aim to provide
an efficient algorithm for testing small branch-width on such partitioned matroids. For the
rest of our paper, a represented matroid is the vector matroid of a (given) matrix over a fixed
finite field. We also write an �-represented matroid to explicitly refer to the field �. In
other words, an �-represented matroid is a set of points (a point configuration) in a (finite)
projective geometry over �. For start, we restate a previous result of Hliněný:

Theorem 5.1 ([14, Theorems 4.14 and 5.5]). Let k > 1 be a constant and let � be a fixed
finite field. There is a parametrized algorithm that, for a given matroid M represented by an
r × n matrix over � for some r ≤ n, tests whether the branch-width of M is at most k in
time O(n3).

We remark that the algorithm for Theorem 5.1 in [14] is purely of theoretical importance.
Firstly it uses the result of Geelen et al. [9] stating that minor-minimal matroids of branch-
width larger than k have size at most (6k−1)/5. Secondly, it tests whether the input matroid
contains such a minor-minimal matroid as a minor by encoding the question in a monadic
second-order logic formula on matroids and using a generic algorithm to solve an MSOL
formula for �-represented matroids of branch-width at most k. Since our algorithm will use
Theorem 5.1, ours will also be purely theoretical and difficult to implement.

Not all matroids are representable over �. Particularly, in the construction of the nor-
malized matroid (Theorem 4.4) we apply amalgams with uniform matroids which need not
be �-representable. To achieve their representability, we extend the field � in a standard
algebraic way:

Remark 5.2. Let � be a fixed finite field with q elements and d be a fixed positive integer.
We assume that one can perform arithmetic operations over � in time depending only on q.
Then, one can construct by brute force an extension (finite) field �′ = �(α) with qd elements
by searching for a polynomial root α of degree d over �. This can be done by searching
through all polynomials in �[x] of degree d for the irreducible ones.

Lemma 5.3. The n-element rank-r uniform matroid Ur,n is representable over a (finite)
field � if |�| ≥ n − 1.

Proof. Let |�| = q. It is trivial to represent U0,n, U1,n, Un−1,n or Un,n over every field. Fur-
thermore, standard arguments of projective geometry show that a so-called normal rational
curve in a projective geometry over � is a representation of the uniform matroid Ur, q+1, for
every 1 < r < q. See for instance [13, Section 3]. Although it is not useful in our context,
it is worth to note that the size bound q + 1 is almost optimal in most cases. Finally, if
q + 1 > n, then we delete arbitrary q + 1− n points from the representation to get Ur,n.

Recall the notion of a matroid amalgam from Section 2 from the perspective of represented
matroids. We shall use the following:

11



Proposition 5.4. Let M1, M2 be two matroids such that E(M1) ∩ E(M2) = T and M1 �
T = M2 � T . If both M1, M2 are �-represented, and the matroid M1 � T has a unique �-
representation up to linear transformations, then there exists an amalgam of M1 and M2

which is also �-represented.

Proof. We denote by [A1 |AT ] the matrix over � representing M1, where the columns of AT

represent the set T . Analogously we denote by [A2 |A′
T ] the matrix representing M2. Since

M1 � T = M2 � T has a unique �-representation, there is a linear transformation carrying
A′

T onto AT . This transformation takes whole [A2 |A′
T ] to an equivalent matrix [A′

2 |AT ]
representing the same matroid M2. It is now trivial to verify that the matroid M which is
�-represented by the composed matrix [A1 |AT |A′

2] is an amalgam of M1 and M2.

We remark that representable matroids typically do have inequivalent vector representations,
but we are using Proposition 5.4 only in the case when M1 � T is a free matroid which clearly
has a unique �-representation for every field �.

We now outline a simple fixed-parameter tractable algorithm for testing branch-width
≤ k on �-represented partitioned matroids:

Algorithm 5.5. Testing branch-width of a represented partitioned matroid.

Parameters: A finite field �, and a positive integer k.

Input: A rank-r matrix A ∈ �r×n and a partition P of the columns of A. (Assume n ≥ 2.)

Output: For the vector matroid M = M(A) on the columns of A partitioned by P, a correct
decision whether the branch-width of (M,P) is at most k.

1. First we extend � to a nearest field �′ such that |�′| ≥ 3k − 6 (Remark 5.2).

2. If the width of the partition P in given (M,P) is more than k, then we answer NO.

3. Otherwise, we directly construct the normalized matroid M# (Theorem 4.4), together
with its vector representation over �′ (Lemma 5.3 and Proposition 5.4).

4. Finally, we use Theorem 5.1 to test whether the branch-width of M# is at most k.

Hence we can conclude:

Theorem 5.6. Let k > 1 be a constant and let � be a fixed finite field. There is a
parametrized algorithm that, for a partitioned matroid (M,P) represented over �, tests in
time O(|E(M)|3) whether the branch-width of (M,P) is at most k.

Proof. We refer to Algorithm 5.5. Denote n = |E(M)|. In the first step we find the extension
field �′ which takes only constant time by Remark 5.2. Since �′ ⊇ �, we do not need to
touch the input vector representation of M . Step (2.) is trivial.

The technical part comes in step (3.): For each part X ∈ P of more than one element,
we compute the intersection of the spans of X and of E(M) \ X, called the guts of the
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Figure 3: Splitting x

separation (X, E(M) \ X), in the representation of M . The reader should understand that
we deal with represented matroids, that means we compute with actual vectors and subspaces
in a projective geometry over �′. If the dimension λM(X) − 1 of this guts was at least k,
then each branch-decomposition of (M,P) should have width at least λM(X) > k, and we
have answered NO in step (2.) in such a case. Therefore, the dimension of the guts of
(X, E(M) \X) is bounded by a constant k and a set T of its independent generator vectors
can be easily computed in time O(n2) (see e.g. [14, Algorithm 4.4]), per each part of P.

In order to get the situation anticipated in Theorem 4.4 – each part representing a free
matroid, we replace the vectors of each non-singleton part X ∈ P by the respective vectors
T computed in the previous paragraph. Let the resulting represented partitioned matroid
be denoted by (M0,P0), and note that bw(M0,P0) = bw(M,P). For each T ∈ P0 we con-
struct an �′-representation of the titanic gadget (uniform matroid) UT from Section 4 using
Lemma 5.3, and then construct an amalgam of M0 with UT according to Proposition 5.4.
Since UT is of bounded size, this last step can be computed in time proportional to the vector
length O(n), per each part of P0.

After processing all O(n) non-singleton parts in P0 by the previous procedure, we get
a vector �′-representation of the normalized matroid M# for (M0,P0). By Theorem 4.4,
bw(M#) = bw(M0,P0) = bw(M,P). So, we call the algorithm of Theorem 5.1 to determine
whether the branch-width of M# (as well as the branch-width of (M,P)) is at most k. This
takes only O(n3) time since both k, �′ are of bounded size here.

We are now able to test branch-width of partitioned matroids. We show how this result
can be extended to finding an appropriate branch-decomposition.

Theorem 5.7. Let K be a class of matroids and let k be an integer. If there is an
f(|E(M)|, k)-time algorithm to decide whether a partitioned matroid (M,P) has branch-
width at most k for every pair of a matroid M ∈ K and a partition P of E(M), then a
branch-decomposition of the partitioned matroid (M,P) of width at most k, if it exists, can
be found in time O

(
|P|3 · f(|E(M)|, k)

)
.

The idea of the proof is due to Jim Geelen, published by Oum and Seymour in [22]. Details
of the algorithm follow. Clearly, we may assume that the branch-width of the partitioned
matroid (M,P) in question is at most k, since otherwise there is nothing to compute. A
splitting of a leaf x of a subcubic tree is an operation that creates two new leaves and makes
them adjacent to x (see Figure 3).

Algorithm 5.8. Computing a branch-decomposition of a partitioned matroid.
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Oracle: A subroutine for testing the branch-width of a partitioned matroid (M,P), where
M belongs to a given class K and P is a partition of E(M).

Input: A partitioned matroid (M,P) of branch-width at most k, where M ∈ K.

Output: A branch-decomposition of (M,P) of width at most k.

1. If |P| ≤ 2, then it is trivial to output a branch-decomposition.

2. We find a pair X, Y of disjoint parts of P such that a partitioned matroid (M, (P \
{X, Y }) ∪ {X ∪ Y }) has branch-width at most k. Let P ′ = (P \ {X, Y }) ∪ {X ∪ Y }.

3. Let (T ′, µ′) be the branch-decomposition of (M,P ′) of width at most k obtained by
calling this algorithm recursively.

4. Let T be a tree obtained from T ′ by splitting the leaf µ′(X ∪ Y ) into two leaves which
we denote by µ(X) and µ(Y ). Let µ(Z) = µ′(Z) for all Z ∈ P \ {X, Y }. We output
(T, µ) as the resulting branch-decomposition of (M, P ) of width at most k.

Proof. (Theorem 5.7) We start with estimating running time of the algorithm. At each level
of recursion, we call our oracle (the decision algorithm) at most

(|P|
2

)
= O(|P|2) times. The

depth of recursion is |P| − 1, and therefore the number of calls to the decision algorithm is
at most O(|P|3). Thus, the running time of the algorithm is O

(
|P|3 · f(|E(M)|, k)

)
.

It remains to show correctness of the algorithm. It is obvious that in every subcubic tree
with at least three leaves, there are two leaves that have a common neighbor. Suppose that
(T, µ) is a branch-decomposition of (M,P) of width at most k. Then there are two leaves
µ(X) and µ(Y ) having a common neighbor z in T . It is easy to see that if we remove µ(X)
and µ(Y ) from T and map X∪Y to z by µ, then (T, µ) is a branch-decomposition of (M,P ′)
of width at most k. Therefore, the branch-width of (M,P ′) is at most k.

Conversely, suppose that (T ′, µ′) is the branch-decomposition of (M,P ′). Since (M,P)
has branch-width at most k, we know that λM(X) ≤ k and λM(Y ) ≤ k. Thus (T, µ) is a
branch-decomposition of (M,P) of width at most k.

Corollary 5.9. For a constant k and a fixed finite field �, we can find a branch-
decomposition of a given �-represented matroid M of branch-width at most k, if it exists, in
time O(|E(M)|6).

Proof. Let P = {{x} : x ∈ E(M)}. Then the branch-decomposition of M is one-to-one
correspondent to the branch-decomposition of a partitioned matroid (M,P). By Theo-
rem 5.6, the problem of deciding whether branch-width is at most k can be done in time
O(|E(M)|3) and therefore we can construct the branch-decomposition of width at most k in
time O(|P|3 · |E(M)|3) = O(|E(M)|6) by Theorem 5.7.

Remark 5.10. One can actually improve the bound in Theorem 5.7 to O
(
|P|2·f(|E(M)|, k)

)
time. The basic idea is the following: At the first level of recursion we find not only one pair
of parts, but a maximal set of disjoint pairs of parts from P that can be joined (pairwise)
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while keeping the branch-width at most k. This again requires O(|P|2) calls to the decision
algorithm. At the deeper levels of recursion we then use the same approach but process only
such pairs of parts that contain one joined at the previous level. An amortized complexity
analysis shows that only additional O(|P|2) calls to the decision algorithm are necessary at
all subsequent levels of recursion together. Detailed arguments of this approach can be found
further in Theorem 6.7, part (III) of the proof.

6 Faster Algorithm for Branch-decompositions

Even with Remark 5.10 in account, the approach of Section 5 results in an O(n5) paramet-
rized algorithm for constructing a branch-decomposition of an n-element matroid represented
over a fixed finite field. That is still far from cubic running time of the decision algorithm
in Theorem 5.1. Although not straightforwardly, we are able to improve the running time
of our constructive algorithm to asymptotically match cubic time of that and of [5].

It is the purpose of this section to present a detailed analysis of such a faster implemen-
tation of Algorithm 5.8 using Remark 5.10. For that we have to dive into fine details of the
ideas and algorithms in [14]. To be consistent, we also adopt the writing style of [14] for
this section, and recall a few necessary technical definitions here (more technical details are
given along with a formal setting of Algorithm 6.6). We first give a brief informal outline
of our faster algorithm, which seems neccessary since Algorithm 6.6 itself is quite long and
complex. We also collect formal statements of useful subroutines from [14], and then we
conclude with main Algorithm 6.6 and a proof of its correctness.

One key point in the approach of [14, 15] is that a matroid M , which is �-represented
by a matrix A, is equivalent to a projective point configuration over � (and so we can
speak about M in schematic geometric terms). Briefly speaking, a parse tree [15] of an
�-represented matroid M is a rooted tree T , with at most two children per node, such that
the leaves of T hold non-loop elements of M represented by points of a projective geometry
over � (or loops of M represented by the empty set). The internal nodes of T , on the other
hand, hold suitable “composition operators over �”.

Such a composition operator � is a configuration in the projective geometry over � such
that � has three subspaces (possibly empty) distinguished as its boundaries; two of which are
used to “glue” the matroid elements represented in the left and right subtrees, respectively,
together. The third one, upper boundary, is then used to “glue” this node further up in the
parse tree T . Our “glue” operation, called the boundary sum by Hliněný [15], is analogous
to the amalgam of matroids in Proposition 5.4. The ranks of adjacent boundaries of two
composition operators in T must be equal for “gluing”. A parse tree T is ≤ t-boundaried if
all composition operators in T have boundaries of rank at most t. Such a parse tree actually
gives a branch-decomposition of width at most t + 1 and vice versa, by [15, Theorem 3.8].
See [15] for additional details.

We will use the following algorithm shown by Hliněný [14].

Algorithm 6.1 ([14, Algorithm 4.1]). Computing a parse tree of a represented matroid.
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Parameters: A finite field �, and a positive integer k.

Input: A rank-r matrix A ∈ �r×n representing a matroid M over �. (Assume n ≥ 2.)

Output: Computed in time O(n3); either an ≤3k-boundaried parse tree T of the matroid M ,
or a proof that the branch-width of M is more than k + 1.

The basic idea of Algorithm 6.1 is as follows: We start with a basis Ir of the input matrix
A = [Ir |A′] ∈ �r×n, and assign an arbitrary parse tree T to Ir. Then we are adding, one
by one, the remaining elements of A′ arbitrarily to T . Whenever the largest boundary rank
(the width) of T exceeds certain constant threshold, say 10k, we “compress” T into a new
parse tree T ′ of width at most 3k again. However, if the compression step fails, then we have
a certificate that the branch-width of M(A) is more than k + 1. The compression routine,
[14, Algorithm 4.1, step 3.] and [14, Lemma 4.13], is crucial also in our new algorithm, and
thus we restate it explicitly here:

Algorithm 6.2 (see in [14, Algorithm 4.1]). “Compressing” a parse tree of bounded width.

Parameters: A finite field �, and a positive integer k.

Input: An ≤ck-boundaried parse tree T (of an n-element matroid M represented over �),
where c > 3 is a fixed constant, say c = 10.

Output: Computed in time O(n2); either an ≤3k-boundaried parse tree T ′ of the same
matroid M , or a proof that the branch-width of M is more than k + 1.

Outline of the faster algorithm. Before giving full details of our new Algorithm 6.6 for
computing a branch-decomposition of a represented partitioned matroid, we sketch its main
ideas with respect to the previous Algorithms 6.2 and 6.1.

Parameters: A finite field �, and a positive integer k.

Input: A rank-r matrix A ∈ �r×n and a partition P of the columns of A. (Assume n ≥ 2.)

Initial phase. Let M = M(A) be the vector matroid on the columns of A. We run Algo-
rithm 5.5 to obtain the represented normalized matroid M# for our M and P, and to
decide whether bw(M#) ≤ k. In the positive case, we also call Algorithm 6.1 to obtain
a ≤3(k − 1)-boundaried parse tree T for the matroid M#.

Construction phase. We are constructing a branch-decomposition of (M,P) as a rooted for-
est D which is initialized to the set of disconnected nodes P1 := P. A rooted forest is
a forest in which every connected component has a specified vertex called a root.

In the first iteration, we find an inclusion-wise maximal collection of pairwise disjoint
pairs {Xi, Yi}, i = 1, 2, . . . , c, of parts of P1 such that the branch-width of (M,P ′

1) is
at most k, where P ′

1 is obtained from P1 via replacing parts Xi, Yi with Xi ∪ Yi for
i = 1, 2, . . . , c. The meaning is that these pairs {Xi, Yi} simultaneously correspond
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to pairs of leaves of distance two in some branch-decomposition of width ≤ k. We
let Q1 = {Xi ∪ Yi : i = 1, 2, . . . , c}, and add the new nodes from Q1 to our forest D
connected to the appropriate Xi, Yi’s. Then we set P1 := P ′

1.

In each of the subsequent iterations, we again find an inclusion-wise maximal collection
of pairwise disjoint pairs {Xi, Yi}, i = 1, 2, . . . , c, of parts of P1 such that the branch-
width of (M,P ′

1) is at most k, but now we restrict Yi ∈ Q1 (whereas Xi ∈ P1). Then
we continue analogously to the first iteration, until D becomes a tree.

Output: Either a branch-decomposition D of (M,P) of width at most k, or the answer NO
if bw(M,P) > k.

There are two important points to notice in the above outline, which make the whole
algorithm run in time O(n3). Firstly, we only consider altogether O(n2) pairs {Xi, Yi} of
parts for possible merging, throughout all iterations of the algorithm. A formal proof of this
fact in included as part (III) of the proof of Theorem 6.7. Secondly, to be able to run a quick
test whether the branch-width of (M,P ′

1) exceeds k or not, we need to maintain a certain
“working” parse tree T1 of bounded width. Then, as noted already after Theorem 5.1, such
a test can be done by looking for the excluded minors for branch-width at most k because
each excluded minor has size at most (6k − 1)/5, shown by Geelen et al. [9].

Theorem 6.3 ([15, Theorem 6.1] and [14, Corollary 5.4]). Let t > 1 be a constant and let �
be a fixed finite field. There is a parametrized algorithm that, for every k ≤ t and for a given
≤ t-boundaried parse tree T of an n-element matroid M , decides whether the branch-width of
M is at most k in time O(n).

We have skipped, for simplicity, an explicit reference to the “working” parse tree T1 in
the above outline; however, one can roughly say that T1 is maintained as a parse tree of
the normalization of the current partitioned matroid (M,P1). This will be precise in Algo-
rithm 6.6. It is essential that we keep the width of T1 bounded throughout the computation,
for which we use to call Algorithm 6.2 after each of O(n) major updates to T1.

Therefore, to quickly test whether merging a pair of parts Xi, Yi ∈ P1 increases the
branch-width of (M,P1) above k or not, we each time temporarily modify the parse tree T1

by replacing W = Xi ∪Yi with the titanic gadget (amalgamated according to Section 4). As
this (Algorithm 6.4) does not increase the width of T1 much, we then solve the task in time
O(n) using Theorem 6.3.

To make a precise statement of this procedure, we introduce an additional technical
definition inspired by Section 4: Let M be a matroid and X ⊆ E(M). Let F = E(M)\X and
Y be disjoint from E(M). Assume M ′ is a matroid on E(M)∪Y such that M ′ � F = M � F ,
rM ′(X ∪ Y ) = rM(X) (i.e. Y is spanned by X), and λM ′\X(Y ) = |Y | + 1 = λM(X) > 1.
If a matroid N is an amalgam of M ′ \ X and the titanic gadget UY , then we say that
N is obtained from M by a (titanic) normalization of the set X. If, on the other hand,
λM(X) = 1, then a normalization of the set X in M results in M \X. The point is that, by
Lemmas 3.3 and 4.3.(3), the branch-width of N equals the branch-width of (M,PX) where
PX =

{
{X}

}
∪

{
{y} : y ∈ E(M) \ X

}
.
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Algorithm 6.4. Computing a titanic normalization of a point set on the parse tree.

Parameters: A finite field �, and an integer k ≥ 1.

(We may assume that |�| ≥ 3k − 6 as in Remark 5.2.)

Input: A ≤ (3k − 1)-boundaried parse tree T1 representing a matroid M1 with |E(M1)| = n,
and a set W ⊆ E(M1) such that λM1(W ) = � ≤ k.

Output: A ≤ (3k+ �−2)-boundaried parse tree T2 of an �-represented matroid M2 such that
M2 can be obtained from M1 by normalization of W .

Algorithm 6.4 is an immediate extension of [14, Algorithm 4.9] for computing λM1(W ).
We describe it in terms of a projective geometry and the point configuration representing a
matroid M1 via the parse tree T1. If � = 1, then we return T1 without W , immediately.

At the beginning we make T2 a copy of T1. The idea is to “enlarge” all the composition
operators in T2 to fully contain the guts Γ (a projective subspace of rank �−1 with a basis Y )
of the separation

(
W, E(M1) \ W

)
, and then to “glue” or amalgamate a decomposition of

the titanic gadget UY � U�−1,3�−5 to the root of T2 so that it matches Y in Γ. For that we
apply leaf-to-root dynamic programming on T2 with constant-time operations at each node.

At a node x ∈ V (T2), we compute the subspace Σx of Γ spanned by the elements of W
held in the leaves below x. Knowing Σx′ and Σx′′ for the children x′, x′′ of x in T2, it is a
constant-time manipulation to determine Σx using the composition operator � at x. Notice
that as our algorithm is set up, Σx is spanned by �. If the upper boundary of � does not
fully contain Σx, we enlarge it accordingly, and we also freely extend the matching boundary
at the parent node of x. Note that Σr = Γ will become the upper boundary of the root
node r.

After finishing all that, we take an arbitrary parse tree T3 of the titanic gadget (i.e.
uniform matroid) UY � U�−1,3�−5, and add to T2 a new root node r′ adjacent to the former
root r of T2 and to the root of T3. The composition operator at r′ “glues” UY directly to
Σr. Finally, we strip from T2 all leaves holding the points of W . This is trivial since our
definition of a parse tree allows nodes with only one descendant.

Since we use only constant-time operations at each node of T2, we deduce:

Lemma 6.5. Algorithm 6.4 computes correctly in time O(n). �

We are now ready to restate the above algorithmic outline in a formal setting. Our
notation of variables in Algorithm 6.6 essentially follows the outline, but we need a few more
of them. For instance, Q2 at each round holds the set of all pairs of parts among which we
are looking for the admissible ones. See also an informal hint in Figure 4.

Algorithm 6.6. Computing a branch-decomposition of a represented partitioned matroid.

Parameters: A finite field �, and a positive integer k.

Input: A rank-r matrix A ∈ �r×n and a partition P of the columns of A. (Assume n ≥ 2.)
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X1 X2

W = X1 ∪ X2

M

M1

M2

(T1)

(T2)

titanic gadgets

E(UY )

τ

P

P1M1

P1 ∪ {W} \ {X1, X2}

titanic gadget (UY )
P2

bw(M2) = bw(M2,P2) = bw(M1,P1 ∪ {W} \ {X1, X2})

Figure 4: An illustration of Algorithm 6.6.

Output: For the vector matroid M = M(A) on the columns of A, either a branch-decom-
position of the partitioned matroid (M,P) of width at most k, or the answer NO if
bw(M,P) > k.

1. Using brute force, we extend the field � to a (nearest) finite field �′ such that |�′| ≥
3k − 6 (Remark 5.2 and Lemma 5.3).

2. We check whether bw(M,P) ≤ k, using Algorithm 5.5. If bw(M,P) > k, then we an-
swer NO. Otherwise we keep the normalized matroid M# and its �′-representation A#

obtained at this step. We denote by P1 the (titanic) partition of E(M#) corresponding
to P, and by τ(X) ∈ P for X ∈ P1 the corresponding parts.

3. Calling Algorithm 6.1, we compute a ≤3(k−1)-boundaried parse tree T for the matroid
M# which is �′-represented by A# (regardless of P1).

4. We initially set T1 := T , Q1 := ∅, Q2 :=
{
{X1, X2} : X1 �= X2, X1, X2 ∈ P1

}
, and

create a new rooted forest D consisting so far of the set of disconnected nodes P1.
Let M1 (M2) denote the matroid represented by T1 (T2, respectively) at each step.
Then we repeat the following steps (a),(b), until P1 contains at most two parts:

(a) While there is {X1, X2} ∈ Q2 such that X1, X2 ∈ P1, we do:

i. Let Q2 := Q2 \
{
{X1, X2}

}
. Calling [14, Algorithm 4.9] in linear time, we

compute connectivity value � = λM1(X1∪X2) over the parse tree T1. If � > k,
then we continue this cycle again from (a).

ii. We call Algorithm 6.4 on T1 and W = X1 ∪ X2 to compute a ≤ (3k + � − 2)-
boundaried parse tree T2 of a matroid M2 which is obtained by a titanic
normalization of the part W .
By Lemmas 3.4 and 4.3 we have bw

(
M1, P1 ∪ {W} \ {X1, X2}

)
= bw(M2).

iii. We check whether branch-width bw(M2) ≤ k by applying Theorem 6.3. If
bw(M2) > k, then we continue this cycle again from (a).
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iv. If bw
(
M1, P1 ∪{W} \ {X1, X2}

)
= bw(M2) ≤ k, then we we add a new node

Z = E(UY ) (UY given by the normalization of W in Algorithm 6.4) adjacent
to X1 and X2 in the rooted forest D, and make Z the root for its component.
We update P1 := P2 = P1 ∪ {Z} \ {X1, X2}, and Q1 := Q1 ∪ {Z}.

v. Lastly, by calling Algorithm 6.2 on T2, we compute in a new ≤3(k − 1)-
boundaried parse tree T3 for the matroid M2, and set T1 := T3.

(b) When the “while” cycle (4.a) is finished, we set Q2 :=
{
{X1, X2} : X1 �= X2,

X1 ∈ P1, X2 ∈ Q1

}
and Q1 := ∅, and continue from (4.a).

5. Finally, if |P1| = 2, then we connect by an edge in D the two nodes X1, X2 ∈ P1. We
output (D, τ) as the branch-decomposition of (M,P).

Theorem 6.7. Let k be a fixed integer and � be a fixed finite field. We assume that a
vector matroid M = M(A) is given as an input together with a partition P of E(M), where
n = |E(M)| and |P| ≥ 2. Algorithm 6.6 outputs in time O(n3) (parametrized by k and �),
a branch-decomposition of the partitioned matroid (M,P) of width at most k, or confirms
that bw(M,P) > k.

Proof. We refer to the above outline. Our proof of the theorem constitutes the following
three claims holding true if bw(M,P) ≤ k.

(I) The computation of Algorithm 6.6 maintains invariants, with respect to the actual
matroid M2 of T2, the rooted forest D and current value P2 of the partition variable
P1 after each call to step (4.a.iv), that

– P2 is the set of roots of D, and a titanic partition of M2 such that bw(M2,P2) =
bw(M2) ≤ k,

– λM

(
τD(S)

)
= λP2

M2
(S) for each S ⊆ P2, where τD(S) is a shortcut for the union

of τ(X) with X running over all leaves of the connected components of D whose
root is in S (see Algorithm 6.6 step 2. for τ).

(II) Each iteration of the main cycle in Algorithm 6.6 (4.) succeeds to step (4.a.iv) at least
once.

(III) The main cycle in Algorithm 6.6 (4.) is repeated O(n) times. Moreover, the total
number of calls to the steps in (4.a) is O(n2) for steps i,ii,iii, and O(n) for steps iv,v.

Having all these facts at hand, it is now easy to finish the proof. It is immediate from
(I) that resulting (D, τ) is a branch-decomposition of width at most k of (M,P). Note
that all parse trees involved in the algorithm have constant width less than 4k (see in steps
(4.a.ii,v)). The starting steps (1.),(2.),(3.) of the algorithm are already known to run in
time O(n3) (Theorem 5.6 and Algorithm 6.1), and the particular steps in (4.a) need time
(III) O(n2) ·O(n) + O(n) ·O(n2) = O(n3) by Lemma 6.5 and Algorithm 6.2. The size of the
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matroid M1 clearly stays at most linear in n after O(n) constant-size updates. Hence, our
Algorithm 6.6 runs correctly in parametrized time O(n3), provided that (I)–(III) hold true.

The proof of (I) essentially extends arguments of Theorem 5.7. Initially, with M1 and
P1 in place of M2, P2, all the claims of (I) obviously hold true, analogously to Theorem 5.6.
Each call to step (4.a.iv) then adds a new titanic set E(UY ) to P2 (see Lemma 4.3 (3) ), and
hence the partition P2 remains titanic for M2 and, subsequently, bw(M2,P2) = bw

(
M1, P1∪

{W} \ {X1, X2}
)

= bw(M2) ≤ k follows from Lemma 3.4. The most complex claim of (I)

is the last assertion, that λM

(
τD(S)

)
= λP2

M2
(S) for each S ⊆ P2. By induction, we may

assume that λM

(
τD(S1)

)
= λP1

M1
(S1) holds for all S1 ⊆ P1 just before this call to (4.a.iv).

Now, by Algorithm 6.4, the titanic gadget E(UY ) in the representation spans exactly the
same subspace as it is the guts of the separation (X1 ∪ X2, E(M1) \ (X1 ∪ X2)) in M1.
Therefore, for all S1 ⊆ P1 such that |S1 ∩ {X1, X2}| �= 1, the corresponding S ⊆ P2 satisfies
λP2

M2
(S) = λP1

M1
(S1). This proves the assertion.

To prove (II), we use that bw(M1,P1) ≤ k at each iteration of the main cycle (4.),
which directly follows from above bw(M2,P2) ≤ k. Then, by the same arguments as in
Theorem 5.7, there is a pair {X1, X2} ⊂ P1 for which (4.a) would succeed up to step
(4.a.iv), which happens if bw

(
M1, P1 ∪ {X1 ∪ X2} \ {X1, X2}

)
≤ k. We call such a pair

X1, X2 admissible. It remains to argue that all admissible pairs {X1, X2} ⊂ P1 belong also
to Q2, which is trivial only during the first round of (4.). For a contradiction, assume that
{X1, X2} �∈ Q2 at the least round i > 1. Consider now the values of our variables P1,Q1,Q2

at the previous round i − 1: It was {X1, X2} ∩ Q1 = ∅ by the assignment to Q2 in (4.b),
and so {X1, X2} ⊂ P1 already there. That means the pair X1, X2 has been admissible all
time since round i − 1 started, but it has not been processed only due to {X1, X2} �∈ Q2 at
round i − 1. That contradicts our least choice of i.

Concerning (III), each iteration of (4.) adds at least one new node to the decomposition
D by (II), and hence no more than O(n) iterations occur. The precisely same argument also
bounds the total number of calls to the crucial steps (4.a.iv–v). The situation with steps
i,ii,iii is more versatile, and we bound the total number of calls to them from above by the
total number of iterations of the cycle in (4.a): During the initial round of the main cycle
(4.), there are clearly at most |Q2| = O(n2) iterations of (4.a). For each subsequent round
i > 1, the number of iterations is at most |Q2| ≤ qi · |P1| where qi = |Q1| at the end of the
previous run i − 1. Hence, the total number of iterations of the cycle in (4.a) is at most
O(n2) + O(n) ·

∑r
i=2 qi since always |P1| = O(n). It remains to argue that

∑r
i=2 qi = O(n),

which follows from the fact that each element ever assigned to Q1 in step (4.a.iv) appears
as an internal node of the decomposition D, and |V (D)| = O(n).

This also finishes the whole proof of Theorem 6.7.

7 Finding a Rank-Decomposition of a Graph

In this last section, we present a fixed-parameter tractable algorithm to find a rank-
decomposition of width at most k or confirm that the input graph has rank-width larger
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than k. It is a direct translation of the algorithm of Theorem 6.7. Let us first review neces-
sary definitions from [21] and [19]. We assume that all graphs in this section have no loops
and no parallel edges.

We have seen in Section 2 that every symmetric submodular function can be used to
define branch-width. We define a symmetric submodular function on a graph, called the
cut-rank function of a graph. For an X × Y matrix R and A ⊆ X, B ⊆ Y , let R[A, B]
be the A × B submatrix of R. For a graph G = (V, E), let A(G) be the adjacency matrix
of G, that is a V × V matrix over the binary field GF(2) such that an entry is 1 if and
only if vertices corresponding to the column and the row are adjacent in G. The cut-rank
function ρG(X) of a graph G = (V, E) is defined as the rank of the matrix A(G)[X, V \X] for
each subset X of V . Then ρG is symmetric and submodular, see [21]. Rank-decomposition
and rank-width and of a graph G is branch-decomposition and branch-width of the cut-rank
function ρG of the graph G, respectively. So, if the graph has at least two vertices, then the
rank-width is at most k if and only if there is a rank-decomposition of width at most k.

Now let us recall why bipartite graphs are essentially binary matroids. Oum [19] showed
that the connectivity function of a binary matroid is exactly one more than the cut-rank
function of its fundamental graph. The fundamental graph of a binary matroid M on E =
E(M) with respect to a basis B is a bipartite graph on E such that two vertices in E are
adjacent if and only if one vertex v is in B, another vertex w is not in B, and (B \{v})∪{w}
is independent in M . Given a bipartite graph G, we can easily construct a binary matroid
having G as a fundamental graph; if (C, D) is a bipartition of V (G), then take the matrix




C D

C

1 0
. . .

0 1

A(G)[C, D]
C × D submatrix of

the adjacency matrix




as the representation of a binary matroid. Thus, the column indices are elements of the
binary matroid and a set of columns is independent in the matroid if and only if its vectors
are linearly independent. After all, finding the rank-decomposition of a bipartite graph is
equivalent to finding the branch-decomposition of the associated binary matroid, that is
essentially Theorem 6.7.

To find a rank-decomposition of non-bipartite graphs, we transform the graph into a
canonical bipartite graph. For a finite set V , let V ∗ be a disjoint copy of V , that is, formally
speaking, V ∗ = {v∗ : v ∈ V } such that v∗ �= w for all w ∈ V and v∗ �= w∗ for all w ∈ V \{v}.
For a subset X of V , let X∗ = {v∗ : v ∈ X}. For a graph G = (V, E), let bip(G) be the
bipartite graph on V ∪ V ∗ such that vw∗ are adjacent in bip(G) if and only if v and w are
adjacent in G (see Figure 5). Let Pv = {v, v∗} for each v ∈ V . Then Π(G) = {Pv : v ∈ V }
is a canonical partition of V (bip(G)).

Lemma 7.1. For every subset X of V (G), 2ρG(X) = ρbip(G)(X ∪ X∗).

Proof. This is clear from the construction of bip(G). Let Y = V (G) \ X. Let N =
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V

V ∗

Figure 5: Graph G and the associated bipartite graph bip(G) with its canonical partition.

A(G)[X, Y ]. Since

ρbip(G)(X ∪ X∗) = rank

( Y Y ∗

X 0 N
X∗ N t 0

)
,

we conclude that ρbip(G)(X ∪ X∗) = 2 rankN = 2ρG(X).

Corollary 7.2. Let p : V (G) → Π(G) be the bijective function such that p(x) = Px. If (T, µ)

is a branch-decomposition of ρ
Π(G)
bip(G) of width k, then (T, µ ◦ p) is a branch-decomposition of

ρG of width k/2. Conversely, if (T, µ′) is a branch-decomposition of ρG of width k, then

(T, µ′ ◦ p−1) is a branch-decomposition of ρ
Π(G)
bip(G) of width 2k. Therefore, the branch-width of

ρG is equal to the half of the branch-width of ρ
Π(G)
bip(G).

Let M = mat(G) be the binary matroid on V ∪ V ∗ represented by the matrix:

( V V ∗

V
Identity
matrix

A(G)
)

.

Since the bipartite graph bip(G) is a fundamental graph of M , we have λM(X) = ρbip(G)(X)+
1 for all X ⊆ V ∪ V ∗ (see Oum [19]) and therefore (T, µ) is a branch-decomposition of a
partitioned matroid (M, Π(G)) of width k + 1 if and only if it is a branch-decomposition

of ρ
Π(G)
bip(G) of width k. Corollary 7.2 implies that a branch-decomposition of ρ

Π(G)
bip(G) of width

k is equivalent to that of ρG of width k/2. So, we can deduce the following theorem from
Theorem 6.7.

Theorem 7.3. Let k be a constant. Let n ≥ 2. For an n-vertex graph G, we can output the
rank-decomposition of width at most k or confirm that the rank-width of G is larger than k
in time O(n3).

Proof. We apply Theorem 6.7 to find a branch-decomposition of a partitioned matroid
(mat(G), Π(G)) of width at most 2k + 1. If such a branch-decomposition is found, then
one can canonically transform it into a rank-decomposition of G of width at most k by
Corollary 7.2. If there is no such branch-decomposition, then the rank-width of G is larger
than k.
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