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On the Computational Complexity of Matroid Minors

Department of Computer Science
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1 Motivation

The Graph Minor Project 80’s – 90’s
[Robertson and Seymour, others later. . . ]

• Proved Wagner’s conjecture – WQO property of graph minors.
(Among the partial steps: WQO of graphs of bounded tree-width, excluded grid

theorem, description of graphs excluding a complete minor.)

• Testing for an arbitrary fixed graph minor in cubic time.

Extending to Matroids late 90’s – future
[Geelen, Gerards, Robertson, Whittle, . . . ]

• WQO property of minors for matroids of bounded branch-width over a
fixed finite field.

• “Excluded grid” theorem for matroid branch-width (without long lines).

• Geelen: Conjectured structure of finite-field representable matroids ex-
cluding a projective geometry minor.

• So, what is the complexity of testing for a fixed matroid minor?
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2 Basics of Matroids

A matroid is a pair M = (E,B) where

• E = E(M) is the ground set of M (elements of M),

• B ⊆ 2E is a collection of bases of M ,

• the bases satisfy the “exchange axiom”
∀B1, B2 ∈ B and ∀x ∈ B1 − B2,

∃y ∈ B2 − B1 s.t. (B1 − {x}) ∪ {y} ∈ B.

Otherwise, a matroid is a pair M = (E, I) where

• I ⊆ 2E is the collection of independent sets (subsets of bases) of M .

The definition was inspired by an abstract view of independence in linear algebra and
in combinatorics [Whitney, Birkhoff, Tutte,. . . ].

Notice exponential amount of information carried by a matroid.

Literature: J. Oxley, Matroid Theory, Oxford University Press 1992,1997.
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Some elementary matroid terms are

• independent set = a subset of some basis,
dependent set = not independent,

• circuit = minimal dependent set of elements,
triangle = circuit on 3 elements,

• hyperplane = maximal set containing no basis,

• rank function rM (X) = maximal size of an M -independent subset
IX ⊆ X (“dimension” of X).

(Notation is taken from linear algebra and from graph theory. . . )

Axiomatic descriptions of matroids via independent sets, circuits, hyperplanes, or rank

function are possible, and often used.
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Vector matroid — a straightforward motivation:

• Elements are vectors over
�

,

• independence is usual linear independence,

• the vectors are considered as columns of a matrix A ∈
� r×n.

(A is called a representation of the matroid M(A) over
�

.)

Not all matroids are vector matroids.

An example of a rank-3 vector matroid with 8 elements over GF (3):
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Graphic matroid M(G) — the combinatorial link:

• Elements are the edges of a graph,

• independence ∼ acyclic edge subsets,

• bases ∼ spanning (maximal) forests,

• circuits ∼ graph cycles,

• the rank function rM (X) = the number of vertices minus the number
of components induced by X.

Only few matroids are graphic, but all graphic ones are vector matroids over any field.

Example:

K4
M(K4)
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Matroid operations

Rank of X ∼ matrix rank, or the number of vertices minus the number of
components induced by X in graphs.

Matroid duality M ∗ (exchanging bases with their complements)
∼ topological duality in planar graphs, or transposition of standard-form
matrices (i.e. without some basis).

Matroid element deletion ∼ usual deletion of a graph edge or a vector.

Matroid element contraction (corresponds to deletion in the dual matroid)
∼ edge contraction in a graph, or projection of the matroid from a vector
(i.e. a linear transformation having a kernel formed by this vector).

Matroid minor — obtained by a sequence of element deletions and contrac-
tions, order of which does not matter.
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3 Importance of Matroid Minors

Usual way to describe (characterize) matroid properties. . .

• [Tutte] Matroid is representable over GF (2) iff it contains no U2,4 (4-
element line) as a minor.

• [Tutte] Matroid is graphic iff it contains no U2,4, no F7 (Fano plane), no
F ∗

7 , M(K5)
∗, M(K3,3)

∗ as a minor.

• [Tutte] Matroid is representable over any field iff it contains no U2,4, F7,
F ∗

7 as a minor.

• [Bixby, Seymour] Matroid is representable over GF (3) iff it contains no
U2,5 (5-element line), no U3,5 = U∗

2,5, F7, F ∗

7 as a minor.

• [Geelen, Gerards, Kapoor] The excluded minors for matroid representabil-
ity over GF (4).

• [Geelen, Gerards, Whittle] Matroid representable over finite field has
small branch-width iff it contains no matroid of a large grid graph as a
minor. (“Excluded grid” theorem)
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4 Complexity of Matroid Minors

We consider the following matroid N -minor problem:

Input. An (
�

-represented) matroid M on n-elements.

Parameter. An arbitrary matroid N .

Question. Is N isomorphic to some minor of M?

(N arbitrary, but fixed, not part of the input!)

Remark. About matroids on an input:

To describe an n-element matroid, one has to specify properties of all
2n subsets. So giving a complete description on the input would ruin any
complexity measures.

Solutions:

Give a special matroid with a particular small representation. (Likewise a matrix
for a vector matroid.)

Give a matroid via a rank oracle – answering queries about the rank.
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Known Results

N a planar N an arbitrary
matroid matroid

M is a graphic matroid O(n) O(n3)

M an “abstract” matroid NPH (EXP ) NPH (EXP )

M of bounded branch-width
represented over finite field O(n3) O(n3)

M represented over finite field O(n3) ??

M of branch-width 3

represented over � NPC NPC

Finite field — GF (q).

� — rational numbers (holds also for other infinite fields).

Planar matroid — of a planar graph.

Small branch-width ∼ structured “almost” like a tree.
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• About minors in graphic matroids:
[Robertson and Seymour: Graph Minors],
and [Bodlaender: A linear time algorithm for tree-width].

• About minors of small branch-width matroids:
[PH: Recognizability of MSO-definable properties of representable matroids].

• About planar minors in matroids:

[Geelen, Gerards, Whittle: An “Excluded grid” theorem for matroid branch-

width].

• The new NP -hardness results:

Theorem 4.1. Given an n-element � -represented matroid M of branch-
width 3, it is NP -complete to decide whether M has a minor isomorphic to
the (planar) cycle matroid M(G6).

G6 M(G6)
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5 Recognizing the Free Spikes

Definition. Let S0 be a matroid circuit on e0, e1, . . . , en, and S1 an arbitrary
simple matroid obtained from S0 by adding n new elements fi such that e0, ei, fi

are triangles. Then the matroid S = S1 \ e0 is a rank-n spike.

e0

e1 e2

f1

f2 fn

en

. . .

A typical matrix representation of a spike (xi 6= 1):
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e1 e2 . . . en−1 en f1 f2 . . . fn−1 fn
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Sketch of proof of Theorem 4.1:

Lemma 5.1. (folklore) Let S be a rank-n spike where n ≥ 3. Then

(a). the union of any two legs forms a 4-element circuit in S,

(b). every other circuit intersects all legs of S, and

(c). branch-width of S is 3.

Definition. The free spike is a spike having no unforced dependencies.

Theorem 5.2. Let n ≥ 5, and let S be a � -represented rank-n spike. Then it
is NP -hard to recognize that S is not the free spike.

Matroid structure is determined by the subdeterminants of the reduced representation,
in this case by subdeterminants of the following kind:

{y1, y2, . . . , yk} ⊆ {x1, x2, . . . , xk} , xi 6= 1
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Lemma 5.3. Let S be a rank-n spike for n ≥ 5 that. Then S is not the free
spike iff S has an M(G6)-minor.

Use one of the leg cycles to get the triangle, and one of the extra dependencies to get
the quadrangle. . .

e1 e2

f1

f2 fn

en

. . .

G6
M(G6)

. . . . . .
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