Some Recent Additions to Matroid Tree-Width

Faculty of Informatics,
Masaryk University in Brno,
Botanická 68a, 602 00 Brno, Czech Rep.

e-mail: hlineny@fi.muni.cz
http://www.fi.muni.cz/~hlineny

Based on joint work with Geoff Whittle
Victoria University of Wellington
Contents

1 TREE-WIDTH - an Overview 3

Traditional definition(s) and history of a tree-decomposition of graphs, and its use mainly in algorithmic problems.

2 “Vertex-free” Tree-Decompositions 6

A novel promising look at a tree-decomposition, inspired by matroids. Comparing it to a traditional view.

3 From one Decomposition to Another 10

Proving equality between the two views of graph tree-width—the new hard direction which needs an involved treatment of a decomposition.

4 Conclusions 14
1 TREE-WIDTH - an Overview

- Introduced [Robertson & Seymour, 80’s] — the Graph minors project.
1 TREE-WIDTH - an Overview

• Introduced [Robertson & Seymour, 80’s] — the Graph minors project.

Definition: A tree-decomposition of a graph G is a tree with
- “bags” (subsets) of vertices at the tree nodes,
- each edge of G belongs to some bag, and
- the bags containing some vertex form a subtree (interpolation).
1 TREE-WIDTH - an Overview

- Introduced [Robertson & Seymour, 80’s] — the Graph minors project.

Definition: A *tree-decomposition* of a graph G is a tree with
- "bags" (subsets) of vertices at the tree nodes,
- each edge of G belongs to some bag, and
- the bags containing some vertex form a subtree (interpolation).

Tree-width = $\min_{\text{decompositions of } G} \max \{|B| - 1 : B \text{ bag in decomp.}\}$
Alternative traditional definition

- The tree-width of G equals the smallest possible clique number minus one of a chordal supergraph of G.
Alternative traditional definition

- The tree-width of G equals the smallest possible clique number minus one of a chordal supergraph of G.
- This can be much easier understood via k-trees, see e.g. a 2-tree:

![Diagram of k-trees](image)

[Beineke & Pippert, 68 – 69], [Rose 74], [Arnborg & Proskurowski, 86].

- A graph G has tree-width $\leq k$ iff G is a partial (subgraph of a) k-tree.
Where is tree-width useful?

- Already the fact that independent approaches to tree-width evolved in time, suggests that it likely is an interesting and useful notion...
Where is tree-width useful?

- Already the fact that independent approaches to tree-width evolved in time, suggests that it likely is an interesting and useful notion...

- The profound Graph minors project makes an essential use of tree-width.
Where is tree-width useful?

- Already the fact that independent approaches to tree-width evolved in time, suggests that it likely is an interesting and useful notion...
- The profound Graph minors project makes an essential use of tree-width.
- **Parameterized** algorithmics:
 - Initial algorithmic attempts [Arnborg & Proskurowski, 86], [Arnborg, Corneil & Proskurowski, 87], [Bodlaender 88].
Where is tree-width useful?

- Already the fact that independent approaches to tree-width evolved in time, suggests that it likely is an interesting and useful notion...

- The profound Graph minors project makes an essential use of tree-width.

- *Parameterized* algorithmics:
 - Initial algorithmic attempts [Arnborg & Proskurowski, 86], [Arnborg, Corneil & Proskurowski, 87], [Bodlaender 88].
 - All graph properties expressible in *MSO logic* are efficiently solvable on the graphs of bounded tree-width (incl. many NP-hard ones). [Courcelle 88], [Arnborg, Lagergren & Seese, 88]
Where is tree-width useful?

- Already the fact that independent approaches to tree-width evolved in time, suggests that it likely is an interesting and useful notion...

- The profound Graph minors project makes an essential use of tree-width.

- *Parameterized* algorithmics:
 - Initial algorithmic attempts [Arnborg & Proskurowski, 86], [Arnborg, Corneil & Proskurowski, 87], [Bodlaender 88].
 - All graph properties expressible in *MSO logic* are efficiently solvable on the graphs of bounded tree-width (incl. many NP-hard ones). [Courcelle 88], [Arnborg, Lagergren & Seese, 88]
 - Linear-time parameterized algorithm for a tree-decomposition by [Bodlaender 96].
Where is tree-width useful?

- Already the fact that independent approaches to tree-width evolved in time, suggests that it likely is an interesting and useful notion.

- The profound Graph minors project makes an essential use of tree-width.

- **Parameterized** algorithmics:
 - Initial algorithmic attempts [Arnborg & Proskurowski, 86], [Arnborg, Corneil & Proskurowski, 87], [Bodlaender 88].
 - All graph properties expressible in **MSO logic** are efficiently solvable on the graphs of bounded tree-width (incl. many NP-hard ones). [Courcelle 88], [Arnborg, Lagergren & Seese, 88]
 - Linear-time parameterized algorithm for a tree-decomposition by [Bodlaender 96].

- Logic side:
 - Decidability of **MSO theories** of the graphs of bounded tree-width [Courcelle 88]; a converse by [Seese 91].
2 “Vertex-free” Tree-Decompositions

Motivation: All the “traditional” definitions of tree-width make an essential use of graph vertices. Is this necessary?
2 “Vertex-free” Tree-Decompositions

Motivation: All the “traditional” definitions of tree-width make an essential use of graph vertices. Is this necessary?

- A new (matroidal) approach, proposed by [PH & Whittle, 03].

Definition: A *VF tree-decomposition* of a graph G is a tree T with
- an arbitrary $\tau : E(G) \rightarrow V(T)$, *without* further restrictions.
2 “Vertex-free” Tree-Decompositions

Motivation: All the “traditional” definitions of tree-width make an essential use of graph vertices. Is this necessary?

- A new (matroidal) approach, proposed by [PH & Whittle, 03].

Definition: A **VF tree-decomposition** of a graph G is a tree T with
- an arbitrary $\tau : E(G) \rightarrow V(T)$, *without* further restrictions.

- **Node with of** $x = |V(G)| + (d - 1) \cdot c(G) - \sum_{i=1}^{d} c(G - F_i)$, where F_i are the edges mapped to the subtrees $T - x$, and $c()$ denotes the number of components.
Motivation: All the “traditional” definitions of tree-width make an essential use of graph vertices. Is this necessary?

• A new (matroidal) approach, proposed by [PH & Whittle, 03].

Definition: A **VF tree-decomposition** of a graph G is a tree T with

- an arbitrary $\tau : E(G) \rightarrow V(T)$, without further restrictions.

\[x = |V(G)| + (d - 1) \cdot c(G) - \sum_{i=1}^{d} c(G - F_i), \]

where F_i are the edges mapped to the subtrees $T - x$, and $c()$ denotes the number of components.

VF Tree-width = min_{decompositions of G} max \{ node-width in decomp. \}.

Diagram:

- $E \rightarrow F_1 \rightarrow x \rightarrow T_1 \rightarrow T_2 \rightarrow F_2 \rightarrow T_3 \rightarrow F_3$
- Node with of $x = |V(G)| + (d - 1) \cdot c(G) - \sum_{i=1}^{d} c(G - F_i)$,
Are these two parameters really the same?
Are these two parameters really the same?

Check the following examples for an illustration…

\[
\text{node-with of } x = |V(G)| + (d - 1) \cdot c(G) - \sum_{i=1}^{d} c(G - F_i)
\]
Where this idea comes from?

• A general definition of matroid tree-width proposed by [PH & Whittle, 03], following unpublished [Geelen].
Where this idea comes from?

- A general definition of matroid tree-width proposed by [PH & Whittle, 03], following unpublished [Geelen].

Definition: A tree-decomposition of a matroid M is a tree T with

- an arbitrary $\tau : E(M) \to V(T)$, without further restrictions.

\[
\begin{align*}
E &\rightarrow \quad T_1 \quad F_2 \quad T_2 \\
F_1 \quad T_1 \quad x \quad T_3 &\rightarrow \quad F_3
\end{align*}
\]

- **Node with of** $x = \sum_{i=1}^{d} r(M \setminus F_i) - (d - 1) \cdot r(M)$,

where $r()$ denotes the matroid rank ("dimension").
Where this idea comes from?

- A general definition of matroid tree-width proposed by [PH & Whittle, 03], following unpublished [Geelen].

Definition: A tree-decomposition of a matroid M is a tree T with
- an arbitrary $\tau : E(M) \rightarrow V(T)$, without further restrictions.

- **Node with of** $x = \sum_{i=1}^{d} r(M \setminus F_i) - (d - 1) \cdot r(M)$,

where $r()$ denotes the matroid rank ("dimension").

Tree-width = $\min_{\text{decomps. of } M} \max \{ \text{node-width in decomp.} \}$.
Where this idea comes from?

- A general definition of matroid tree-width proposed by [PH & Whittle, 03], following unpublished [Geelen].

Definition: A *tree-decomposition* of a matroid M is a tree T with
- an arbitrary $\tau : E(M) \to V(T)$, without further restrictions.

$T_1 \quad T_2 \quad T_3$\
$F_1 \quad F_2 \quad F_3$

- **Node with of** $x = \sum_{i=1}^{d} r(M \setminus F_i) - (d - 1) \cdot r(M)$, where $r()$ denotes the matroid *rank* ("dimension").

(M) **Tree-width** = $\min_{\text{decomps. of } M} \max \{ \text{node-width in decomp.} \}$.

- BTW, if a matroid M has tree-width k and branch-width b (which readily extends to matroids), then $b - 1 \leq k \leq \max(2b - 1, 1)$ — that is nice...
Comparing the tree-width parameters

Theorem [PH & Whittle, 03]. Let a graph G has an edge, and M be the cycle matroid of G. Then the tree-width of G equals the tree-width of M.
Comparing the tree-width parameters

Theorem [PH & Whittle, 03]. Let a graph G has an edge, and M be the cycle matroid of G. Then the tree-width of G equals the tree-width of M.

Equivalently:

Theorem [PH & Whittle, 03]. Let a graph G has an edge. Then the VF tree-width of G equals the (ordinary) tree-width of G.
Comparing the tree-width parameters

Theorem [PH & Whittle, 03]. Let a graph G has an edge, and M be the cycle matroid of G. Then the tree-width of G equals the tree-width of M.

Equivalently:

Theorem [PH & Whittle, 03]. Let a graph G has an edge. Then the VF tree-width of G equals the (ordinary) tree-width of G.

Some thoughts on these parameters...

- An equality between the above node-width formulas for graphs and matroids is easy to show.
Comparing the tree-width parameters

Theorem [PH & Whittle, 03]. Let a graph \(G \) has an edge, and \(M \) be the cycle matroid of \(G \). Then the tree-width of \(G \) equals the tree-width of \(M \).

Equivalently:

Theorem [PH & Whittle, 03]. Let a graph \(G \) has an edge. Then the VF tree-width of \(G \) equals the (ordinary) tree-width of \(G \).

Some thoughts on these parameters. . .

- An equality between the above node-width formulas for graphs and matroids is easy to show.
- For vector matroids, a tree-decomposition has a nice “visualization” with
 - affine *subspaces* modelling the traditional “bags”,
 - with *dimension* in place of bag size, and an *interpolation* property.
Comparing the tree-width parameters

Theorem [PH & Whittle, 03]. Let a graph G has an edge, and M be the cycle matroid of G. Then the tree-width of G equals the tree-width of M.

Equivalently:

Theorem [PH & Whittle, 03]. Let a graph G has an edge. Then the VF tree-width of G equals the (ordinary) tree-width of G.

Some thoughts on these parameters. . .

- An equality between the above node-width formulas for graphs and matroids is easy to show.

- For vector matroids, a tree-decomposition has a nice “visualization” with

 - affine *subspaces* modelling the traditional “bags”,

 - with *dimension* in place of bag size, and an *interpolation* property.

- An ordinary tree-decomposition can be *readily translated* into a VF tree-decomposition; just find a bag hosting each edge of G.
3 From one Decomposition to Another

• Where we stand?
 – The VF tree-width is at most the ordinary tree-width; since an ordinary tree-decomposition naturally translates to a VF tree-decomposition of at most the same width.
3 From one Decomposition to Another

• Where we stand?
 – The VF tree-width is at most the ordinary tree-width; since an ordinary tree-decomposition naturally translates to a VF tree-decomposition of at most the same width.

• What happens in the converse direction?
 – Again, any VF tree-decomposition naturally translates into an ordinary decomposition (just apply the interpolation property to the ends of mapped edges).
3 From one Decomposition to Another

• Where we stand?
 – The VF tree-width is at most the ordinary tree-width; since an ordinary tree-decomposition naturally translates to a VF tree-decomposition of at most the same width.

• What happens in the converse direction?
 – Again, any VF tree-decomposition naturally translates into an ordinary decomposition (just apply the interpolation property to the ends of mapped edges).
 – However, the width may increase (dramatically)!

The problem is that edges mapped to a branch in the decomposition may induce a disconnected subgraph, hence further decreasing the node-width in the VF setting.

\[
\text{node-with of } x = |V(G)| + (d - 1) \cdot c(G) - \sum_{i=1}^{d} c(G - F_i)
\]
An example of a “disconnected” decomposition

\[\text{node-with formula} = |V(G)| + (d - 1) \cdot c(G) - \sum_{i=1}^{d} c(G - F_i) \]

Easy to check that all six nodes in this VF tree-decomposition have width 4.
An example of a “disconnected” decomposition

\[
\text{node-with formula} = |V(G)| + (d - 1) \cdot c(G) - \sum_{i=1}^{d} c(G - F_i)
\]

Easy to check that all six nodes in this VF tree-decomposition have width 4. However, the central two nodes induce bags of size 9 in an ordinary tree-decomposition! (tree-width up to 8)
Handling a “disconnected” decomposition

• If we want to get an ordinary tree-decomposition of the same width, we have to alter “disconnected” spots of a VF tree-decomposition...

• Actually, the proof complications appear similar to those emerging when proving equality of matroid branch-width to graph branch-width [Hicks & McMurray, 07], [Mazoit & Thomassé]. (No short proof of this statement is known so far.)
Handling a “disconnected” decomposition

- If we want to get an ordinary tree-decomposition of the same width, we have to alter “disconnected” spots of a VF tree-decomposition...

- Actually, the proof complications appear similar to those emerging when proving equality of matroid branch-width to graph branch-width [Hicks & McMurray, 07], [Mazoit & Thomassé]. (No short proof of this statement is known so far.)

- The “easy” altering method published as a proof in [PH & Whittle, EJC 06] was, unfortunately, not correct (it did not cover all the cases); as pointed out by [Adler 07].
Handling a “disconnected” decomposition

• If we want to get an ordinary tree-decomposition of the same width, we have to alter “disconnected” spots of a VF tree-decomposition...

• Actually, the proof complications appear similar to those emerging when proving equality of matroid branch-width to graph branch-width [Hicks & McMurray, 07], [Mazoit & Thomassé]. (No short proof of this statement is known so far.)

• The “easy” altering method published as a proof in [PH & Whittle, EJC 06] was, unfortunately, not correct (it did not cover all the cases); as pointed out by [Adler 07].

• In response to that, [PH & Whittle, 08] have got an updated, though longer proof.

 We sketch its idea next...
Proof (altering a “disconnected” edge of a VF tree-decomposition T of G).

- We assume an edge $e = uv$ of T such that the G-edges mapped to the u-branch of T form a disconnected subgraph of G, and that the edges mapped to the branches of u-neighbours (not v) stay connected in G.
Proof (altering a “disconnected” edge of a VF tree-decomposition T of G).

- We assume an edge $e = uv$ of T such that the G-edges mapped to the u-branch of T form a disconnected subgraph of G, and that the edges mapped to the branches of u-neighbours (not v) stay connected in G.

- If we find a disconnected partitioning (of the G-edges mapped to the v-branch) $F^2_e = F_3 \cup F_4$, then we “split” T as above.
Proof (altering a “disconnected” edge of a VF tree-decomposition T of G).

- We assume an edge $e = uv$ of T such that the G-edges mapped to the u-branch of T form a disconnected subgraph of G, and that the edges mapped to the branches of u-neighbours (not v) stay connected in G.

- If we find a disconnected partitioning (of the G-edges mapped to the v-branch) $F^2_e = F_3 \cup F_4$, then we "split" T as above.

 The hard part is to prove that width does not increase (two subcases).
Proof (altering a “disconnected” edge of a VF tree-decomposition T of G).

- We assume an edge $e = uv$ of T such that the G-edges mapped to the u-branch of T form a disconnected subgraph of G, and that the edges mapped to the branches of u-neighbours (not v) stay connected in G.

- If we find a disconnected partitioning (of the G-edges mapped to the v-branch) $F_e^2 = F_3 \cup F_4$, then we “split” T as above.
 The hard part is to prove that width does not increase (two subcases).

- If F_e^2 is connected in G, then we simply contract e in T (an easy case).
Proof (altering a “disconnected” edge of a VF tree-decomposition T of G).

- We assume an edge $e = uv$ of T such that the G-edges mapped to the u-branch of T form a disconnected subgraph of G, and that the edges mapped to the branches of u-neighbours (not v) stay connected in G.

- If we find a disconnected partitioning (of the G-edges mapped to the v-branch) $F_e^2 = F_3 \cup F_4$, then we “split” T as above. The hard part is to prove that width does not increase (two subcases).

- If F_e^2 is connected in G, then we simply contract e in T (an easy case).

- After all, there is a “strictly decreasing” sequence of alterations, leading to the connected case in which both tree-width measures are equal.
4 Conclusions

• Showing that a matroidal (geometric) view can bring new and interesting notions and properties of ordinary graphs – cf. the VF tree-width.

 – The proof is now complete...
4 Conclusions

• Showing that a matroidal (geometric) view can bring new and interesting notions and properties of ordinary graphs – cf. the **VF tree-width**.

 – The proof is now complete . . .

• A VF tree-decomposition seems to be a “**stronger**” notion:

 – We have seen that there exist VF tree-decompositions which do not easily translate to ordinary decompositions of the same width . . .
4 Conclusions

• Showing that a matroidal (geometric) view can bring new and interesting notions and properties of ordinary graphs – cf. the VF tree-width.
 – The proof is now complete…

• A VF tree-decomposition seems to be a “stronger” notion:
 – We have seen that there exist VF tree-decompositions which do not easily translate to ordinary decompositions of the same width…

• Close relations to graph vs. matroid branch-width equality…??
4 Conclusions

• Showing that a matroidal (geometric) view can bring new and interesting notions and properties of ordinary graphs – cf. the \textit{VF tree-width}.

 \begin{itemize}
 \item The proof is now complete. . .
 \end{itemize}

• A VF tree-decomposition seems to be a \textit{“stronger”} notion:

 \begin{itemize}
 \item We have seen that there exist VF tree-decompositions which do not easily translate to ordinary decompositions of the same width. . .
 \end{itemize}

• Close relations to graph vs. matroid branch-width equality. . .??

• Can VF tree-width notion be used to provide some easier proofs in structural graph theory?
4 Conclusions

• Showing that a matroidal (geometric) view can bring new and interesting notions and properties of ordinary graphs – cf. the VF tree-width.
 – The proof is now complete . . .

• A VF tree-decomposition seems to be a “stronger” notion:
 – We have seen that there exist VF tree-decompositions which do not easily translate to ordinary decompositions of the same width . . .

• Close relations to graph vs. matroid branch-width equality . . . ??

• Can VF tree-width notion be used to provide some easier proofs in structural graph theory?

• Bringing more properties of graph tree-width to matroids [Azzato 08] . . .
4 Conclusions

• Showing that a matroidal (geometric) view can bring new and interesting notions and properties of ordinary graphs – cf. the VF tree-width.
 – The proof is now complete…

• A VF tree-decomposition seems to be a “stronger” notion:
 – We have seen that there exist VF tree-decompositions which do not easily translate to ordinary decompositions of the same width…

• Close relations to graph vs. matroid branch-width equality…??

• Can VF tree-width notion be used to provide some easier proofs in structural graph theory?

• Bringing more properties of graph tree-width to matroids [Azzato 08]…

THANK YOU FOR ATTENTION