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Abstract. Spikes form an interesting class of 3-connected matroids of
branch-width 3. We show that some computational problems are hard on
spikes with given matrix representations over infinite fields. Namely, the
question whether a given spike is the free spike is co-NP -hard (though
the property itself is definable in monadic second-order logic); and the
task to compute the Tutte polynomial of a spike is #P -hard (even though
that can be solved efficiently on all matroids of bounded branch-width
which are represented over a finite field).
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1 Introduction

We postpone necessary formal definitions until later sections. Among success-
ful structural (combinatorial) parameters in the theory of parametrized com-
plexity [2], the prominent role is played by tree-width, or equivalently, branch-
width. Considering graphs, almost all usual hard problems can be efficiently
solved on graphs of bounded tree-width. Those include all problems definable in
the (monadic second-order) MSO logic of graphs, or the notoriously hard graph
counting invariant, the Tutte polynomial.

It has recently turned out that many of those efficient parametrized results
carry over also to matroids of bounded branch-width which are represented by
matrices over finite fields. (A matrix representation of a matroid is the most
common one studied.) However, one can observe a radical structural change
when getting to matroid representations over infinite fields: For example [4], F-
representable matroids of bounded branch-width are well-quasi-ordered under

⋆ The research has been supported by Czech research grant GAČR 201/05/0050, and
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the minor ordering for any finite field F. On the other hand, an interesting class
of matroids of branch-width three, called spikes, is not well-quasi-ordered over
any infinite field.

Our research extends evidence for this structural difference of matroid rep-
resentations further to algorithmic questions.

– By our results in [7, 6], all the matroid properties expressible in MSO logic
are recognizable in cubic time for matroids of bounded branch-width which
are represented over finite fields. On contrary, we show here a simple MSO
formula which is NP -complete to decide on matroid spikes which are repre-
sented over any infinite field. (Theorem 3.2)

– Analogously, for counting problems, the Tutte polynomial can be efficiently
computed [5] on matroids of bounded branch-width which are represented
over finite fields. We prove here that this invariant is #P -hard on matroid
spikes which are represented over any infinite field. (Theorem 4.3)

Our proofs use a direct reduction from the PARTITION problem – one of the 6
basic NP -complete problems in [3].

2 Basics of Matroids

We refer to Oxley [14] in our matroid terminology. A matroid is a pair M =
(E,B) where E = E(M) is the ground set ofM (elements ofM), and B ⊆ 2E is a
nonempty collection of bases ofM , no two of which are in an inclusion. Moreover,
matroid bases satisfy the “exchange axiom”: if B1, B2 ∈ B and x ∈ B1 − B2,
then there is y ∈ B2 − B1 such that (B1 − {x}) ∪ {y} ∈ B. We consider only
finite matroids. Subsets of bases are called independent sets, and the remaining
sets are dependent. Minimal dependent sets are called circuits. All bases have the
same cardinality called the rank r(M) of the matroid. The rank function rM (X)
in M is the maximal cardinality of an independent subset of a set X ⊆ E(M).
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Fig. 1. An example of a vector representation of the cycle matroid M(K4). The matroid
elements are depicted by dots, and their (linear) dependency is shown using lines.
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If G is a (multi)graph, then its cycle matroid on the ground set E(G) is
denoted by M(G). The independent sets of M(G) are acyclic subsets (forests) in
G, and the circuits of M(G) are the cycles in G. Another example of a matroid
is a finite set of vectors with usual linear dependency. If A is a matrix, then
the matroid formed by the column vectors of A is called the vector matroid
of A, and denoted by M(A). The matrix A is a representation of a matroid
M ≃M(A). We say that the matroidM(A) isF-represented if A is a matrix over
a field F. (Fig. 1.) A graphic matroid, i.e. a cycle matroid of some multigraph,
is representable over any field.

An interesting question about matroids arises in connection with computa-
tional complexity: What is the input size of an n-element matroid? In truth, it is
Θ(2n) since a matroid carries information about all subsets of its ground set, but
acceptance of that would ruin usual algorithmic complexity measures. (Though,
there is a recent work of Mayhew [12] on the complexity of problems on matroids
given as exponential set-lists.) That is why matroids are often considered with
particular representations of polynomial size, like the above mentioned graphic
or vector matroids.

Matroid Branch-Width

Since the notion of branch-width is less known than that of tree-width, we briefly
introduce it from a matroidal point of view. A sub-cubic tree is a tree in which
all vertices have degree at most three. Let ℓ(T ) denote the set of leaves of a tree
T . The connectivity function λM of a matroid M on E is defined for all A ⊆ E
by λM (A) = rM (A) + rM (E −A) − rM (E) + 1.
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Fig. 2. A width-3 branch-decomposition of a matroid (the binary cube).

A branch-decomposition of a matroid M is a pair (T, τ) where T is a sub-
cubic tree, and τ is a bijection of E onto ℓ(T ). Let e be an edge of T , and
T1, T2 be the connected components of T − e. The width of the edge e in T
is λM (Fe) = λM (E − Fe) where Fe = τ−1(ℓ(T1)). The width of the branch-
decomposition (T, τ) is maximum of the widths of all edges of T , and the branch-
width of M is the minimal width over all branch-decompositions of M . (This
definition is similar to branch-width of graphs. See in Fig. 2.)
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Introducing Spikes

We now introduce an interesting class of matroids, called “spikes”. Let n ≥ 3
and S0 be a matroid circuit on the ground set e0, e1, . . . , en. Denote by S1 an
arbitrary simple matroid obtained from S0 by adding n new elements fi for
i ∈ [1, n] such that {e0, ei, fi} is a triangle. Then the matroid S = S1 \ e0
obtained by deleting the central element e0 is called a rank-n spike. The pairs
{ei, fi}, i ∈ [1, n] are called the legs of the spike. (Fig. 3.)

e0

e1 e2

f1

f2 fn

en

. . .

Fig. 3. An illustration to the definition of a rank-n spike.

Spikes are known for giving “difficult counterexamples”, and they more or less
explicitly appear in several papers in structural matroid theory, among recent we
mention [4]. We remark that some of the findings in this section appear implicitly
already in [15]. There seems to be no “usual definition” of a spike; the above
definition was suggested by Whittle. The following basic properties of spikes are
well known in the matroid community, and so we only sketch their proofs here.

Proposition 2.1. Let S be a rank-n spike where n ≥ 3. Then

a) the union of any two legs forms a 4-element circuit in S,

b) every other circuit intersects all legs of S,

c) every set of elements that contains at most one leg and is disjoint from some
other leg is independent, and

d) the branch-width of S is 3.

Sketch of proof. We use the notation (S1, S) from the definition of a spike.

(a) The lines of any two legs are coplanar since they intersect in e0, and no
proper subset of those 4 elements is dependent.

(b) Let C be a circuit in S disjoint from the leg {e1, f1}, and containing no
two legs. Then C contains a circuit of the minor S′ = S1/e0 \ {e1, f1}. Since
there are no other circuits in S′ than parallel pairs of elements (former legs of S)
by definition, it must be that C contained some leg, say e2, f2 ∈ C. However,
now the same argument applies to the minor S′′ = S/{e2, f2}\{e1, f1} (which is
isomorphic to S′/e2\f2), and hence C contained another leg of S, a contradiction.

(c) This is immediate from (a) and (b) since each dependent set contains a
circuit.
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(d) Let us take an arbitrary cubic tree with n leaves, and attach to each leaf
two new ones labelled with ei and fi, i = 1, 2, . . . , n. It is routine to verify that
the width of this decomposition is 3.

In particular, the proposition completely describes all circuits (or dependent
sets) of size less than n for n ≥ 5. Representable spikes have particularly nice
matrix representations, as shown in Fig. 4. Moreover, one may simply read off
the matroid structure from such a representation. Let D

1(x1, . . . , xn) = [di,j ]
n
i=1

denote an n× n matrix such that di,j = 1 if i 6= j, and di,i = xi for i ∈ [1, n].

e1
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...

en−1

en









e1 e2 . . . en−1 en f1 f2 . . . fn−1 fn

1 0 · · · 0 0 x1 1 · · · 1 1
0 1 0 0 0 1 x2 1 1 1
... 0

. . . 0
...

... 1
. . . 1

...
0 0 0 1 0 1 1 1 xn−1 1
0 0 · · · 0 1 1 1 · · · 1 xn
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Fig. 4. A matrix representation of a rank-n spike (xi 6= 1).

Lemma 2.2. Let F be any field and n ≥ 3. A rank-n spike S is representable
over F if and only if S is represented by the matrix

[
In |D1(x1, . . . , xn)

]
for

some x1, . . . , xn ∈ F− {1}.

Proof. Consider a spike S. We represent the basis {e1, . . . , en} of S by the
unit vectors of In. Then the element e0 from the definition of a spike is, up to
scaling, represented by the vector 1. Hence the element fi colinear with e0, ei is
represented by a vector 1 + (xi − 1)ei for i ∈ [1, n] and some xi ∈ F− {1}. The
proof of the converse is clear.

Lemma 2.3. Let Dk = D
1(y1, . . . , yk). If yi = 1 for more than one index

i ∈ [1, k], then the determinant |Dk| = 0. If yi = 1 for exactly one index i ∈ [1, k],
then |Dk| 6= 0. Otherwise, if yi 6= 1 for all i ∈ [1, k], then

|Dk| =
∣
∣D

1(y1, . . . , yk)
∣
∣ =

(
k∏

i=1

(yi − 1)

)

·

(

1 +

k∑

i=1

1

yi − 1

)

.

Proof. We use simple matrix row operations:

|Dk| =

∣
∣
∣
∣
∣
∣
∣
∣

y1 1 · · · 1
1 y2 · · · 1
...

. . .
...

1 1 · · · yk

∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣

y1 1 · · · 1
1 − y1 y2 − 1 · · · 0

...
. . .

...
1 − y1 0 · · · yk − 1

∣
∣
∣
∣
∣
∣
∣
∣
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The answer is clear if some yi = 1. Otherwise, we expand the determinant as

|Dk| = (y1 − 1)





(
1

y1 − 1
+ 1

) k∏

i=2

(yi − 1) +

k∑

i=2

k∏

j=2, j 6=i

(yj − 1)



 .

When dealing with matroids represented by matrices in the standard form
A = [I |A′], it is crucial to notice that the matroid bases are in a one-to-one cor-
respondence with the nonzero subdeterminants in A

′ (via standard matrix piv-
oting). Hence the following claim is just a reformulation of Proposition 2.1 (b,c),
using the determinant formula of Lemma 2.3.

Corollary 2.4. Let S be a rank-n spike represented over F by the matrix
[
In |D1(x1, . . . , xn)

]
, n ≥ 5, and let E(S) = {e1, . . . , en, f1, . . . , fn} as in Fig. 4.

Consider a set X ⊆ E(S).

a) If there are indices i, i′ ∈ [1, n] such that ei, fi ∈ X, ei′ , fi′ 6∈ X, and that
|{ej, fj} ∩X | = 1 for all j 6= i, i′, then X is a basis of S.

b) If |{ej , fj} ∩X | = 1 for all indices j ∈ [1, n], then X is a basis of S if and
only if

∑

j∈[1,n], fj∈X

1

xj − 1
6= −1 .

c) Otherwise, X is not a basis of S.

3 Easy and Hard MSO Properties

Monadic second-order (MSO) logic is famous for its well-balanced expressive
power and algorithmic manageability of its theories. Namely, considering MS2-
definable properties of graphs (quantifying over vertex and edge sets), all those
can be efficiently solved on graphs of bounded tree-width [1]. An analogous
phenomenon appears for MSO logic of some matroids. From a logic point of
view, a matroid M on a finite ground set E is the collection of all subsets 2E

together with a unary predicate indep, such that indep(F ) if and only if F ⊆ E
is independent in M . We denote by MSM the language of MSO logic applied to
such matroids.

See [6] for more details, and for the important result:

Theorem 3.1. (PH [6]) Let F be a finite field, t ≥ 1, and let φ be a sentence

in the language of MSM . There exists a finite tree automaton Aφ
t such that

the following is true: If an F-represented matroid M is given together with its
branch-decomposition of width at most t, then Aφ

t decides whether M |= φ.

Combined with the cubic FPT algorithm [7] for approximating a branch-
decomposition of an F-represented matroid, Theorem 3.1 implies an efficient

6



(fixed-parameter tractable) solution of any MSM -definable property on matroids
of bounded branch-width represented over finite fields.

As we show now, the assumption of F being a finite field is really critical
in Theorem 3.1: We describe a quite simple MSM -definable property of a spike
matroid – being a “free spike”, which likely cannot be efficiently recognized on
spikes represented by rational matrices (or over other infinite fields), although
all spikes have trivial branch-decompositions of width 3 by Proposition 2.1 (d).

We say that a spike S on the ground set {e1, . . . , en, f1, . . . , fn} as above is a
free spike, if every set X ⊆ E(S) such that |{ej, fj} ∩X | = 1 for all j ∈ [1, n] is
a basis. (Simply speaking, there are no other dependencies among the elements
of a free spike than those forced by the definition. There is just one free spike
for each rank up to isomorphism.) Actually, when F is a prime finite fields, then
it follows from Corollary 2.4(b) that a sufficiently large free spike cannot be
represented over F. Hence one can actually decide in constant time whether a
matrix over prime F represents the free spike. On the other hand, we prove:

Theorem 3.2. Let n ≥ 3, and S be the matroid represented by a matrix
[ In |D1(x1, . . . , xn) ] over the rational numbers Q where x1, . . . , xn ∈ Q − {1}.
Then it is NP -complete to recognize that S is not the rank-n free spike.

Proof. If S is not the free spike, then by Corollary 2.4 we find out a circuit
intersecting each leg of S in one element.

We reduce the problem of recognizing that S represented over Q is not the
free spike from finding a solution to the NP -complete [3] PARTITION problem over
integers. (Briefly saying, the PARTITION problem asks whether a given multiset
of integers can be partitioned into two parts such that their sums equal.) Let
T = {t1, t2, . . . , tn} be a multiset of positive integers – an input to the PARTITION

problem. Let t = t1 + t2 + . . .+ tn. We denote by zi = −2ti

t
and xi = 1

zi
+ 1, for

i ∈ [1, n]. Assume I ⊂ [1, n] is such that the multiset partition
(
{ti : i ∈ I}, {ti :

i ∈ [1, n] − I}
)

is a solution to PARTITION. That is equivalent to
∑

i∈I zi = −1,
i.e.

∑

i∈I
1

xj−1 = −1. Hence by Corollary 2.4 (b), S is not the free spike. The

converse direction proceeds in the same way.

Lemma 3.3. There is a sentence ψ in the language of matroidal MSM ; such
that ψ is true for a rank-n spike S, n ≥ 5, if and only if S is the free spike.

Proof. First, using Proposition 2.1 (a), we identify the legs of the spike S by
the predicate leg(e, f) ≡ ∀x∃y 6= x

(
x = e ∨ x = f ∨ circuit({e, f, x, y})

)
, where

circuit(C) ≡ ¬indep(C)∧∀D
(
D 6⊆ C∨D=C∨indep(D)

)
. Then S is the free spike

if and only if every set intersecting each leg in at most one element is independent.
Hence we write ψ = free spike ≡ ∀F

[
indep(F ) ∨ ∃e, f

(
leg(e, f) ∧ e, f ∈ F

)]
.

Corollary 3.4. Let φ be a sentence in the language of MSM , and M be a ma-
troid represented by a matrix over the rationals. Then it is NP -hard to decide
whether M |= φ, even if M is known to have branch-width 3.
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4 On a Hard Counting Problem

The well-known class NP is the collection of all decision problems to which the
answer Y ES can be proved in polynomial time. The class #P is the enumerative
counterpart of NP ; a problem of counting certain objects belongs to #P if each
one of the objects is recognizable in polynomial time. (A generic example of a
#P -problem is counting the solutions of a given boolean formula.) We refer to
Garey, Johnson [3] and to Valiant [17] for detailed formal definitions. For our
purpose we need to know that the counting variant #PARTITION (enumerating
the number of equal-sum partitions of the given multiset of integers) is #P -
complete, which follows directly by the reduction used in [3].

Our interest is in the following, notoriously hard, counting invariant: The
Tutte polynomial T (G; x, y) of a graph G, as defined below, has many appli-
cations, not only in graph theory but also in other fields such as knot theory
and statistical physics. One important feature of the Tutte polynomial is that
by evaluating T (G; x, y) at special points in the plane one obtains several pa-
rameters of G. For example, T (G; 1, 1) is the number of spanning trees of G,
and T (G; 2, 1) is the number of forests of G. Jaeger, Vertigan and Welsh [11]
showed that evaluating the Tutte polynomial of a graph is #P-hard at every
point except those lying on the hyperbola (x − 1)(y − 1) = 1 and eight special
points, including at (1, 1).

Tutte’s original definition of this polynomial [16] is, indeed, naturally ma-
troidal. The Tutte polynomial of a matroid M on the ground set E is

T (M ; x, y) =
∑

A⊆E

(x− 1)rM(E)−rM (A)(y − 1)|A|−rM(A) .

(For graphs, T (G; x, y) = T (M(G); x, y).) In essence, knowing the Tutte poly-
nomial means knowing, for each i, j, how many subsets A ⊆ E are there with
size i and rank j.

Although the Tutte polynomial includes many hard enumeration problems,
Noble [13] has shown that its computation is fixed-parameter tractable on graphs
of bounded tree-width. Our matroidal extension of that result follows.

Theorem 4.1. (PH [5]) Let F be a finite field, and t an integer constant. If M
is a matroid of branch-width at most t represented by a matrix over F, then the
Tutte polynomial T (M ; x, y) can be computed in polynomial (FPT) time.

Next we show that there is likely no nontrivial extension of Theorem 4.1
possible in the case of an infinite field F. (Moreover, notice that we actually
show hardness of evaluating the Tutte polynomial at (1, 1), which is easy for all
graphs but not for matroids.)

Lemma 4.2. Let F be an arbitrary field, n ≥ 3, and z1, . . . , zn ∈ F− {0}. If b
is the number of bases of the spike S represented by [ In |D1(x1, . . . , xn) ] where
xi = 1

zi
+ 1, and c is the number of subsets J ⊂ [1, n] such that

∑

j∈J zj = −1,
then

b = n(n− 1)2n−2 + 2n − c .
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Proof. By Corollary 2.4 (a), any spike S has exactly n(n − 1)2n−2 bases
which contain the two elements of some leg of S – choose the leg contained in
a basis, then choose another leg avoiding it, and complete with an arbitrary
choice from the remaining legs. Additionally, the rank-n free spike has exactly
2n bases which intersect each leg in one element. There are no other bases in S
than described above. If S is not the free spike, then each solution to J ⊂ [1, n]:
∑

j∈J zj = −1 reduces the number of bases by 1 by Corollary 2.4 (b). Hence the
formula follows.

Theorem 4.3. Let n ≥ 5, and S be the rank-n matroid represented by a matrix
[In |D1(x1, . . . , xn)] over the rational numbers Q where x1, . . . , xn ∈ Q − {1}.
Then it is #P -hard to compute the Tutte polynomial T (S; x, y) for S.

Proof. As in the proof of Theorem 3.2, we see that each solution to
PARTITION on T = {t1, t2, . . . , tn} is in a one-to-one correspondence with a solu-
tion to

∑

j∈J zj = −1, where zi = −2ti

t
. Hence by Lemma 4.2, we have a direct

relation between the number of solutions to PARTITION and the number of bases
of S. Thus counting all bases of S is a #P -hard problem. The last step is in
realizing that the evaluation T (S; 1, 1) equals the number of bases of S.

5 Extension to all Infinite Fields

We would like to extend the PARTITION problem to an arbitrary infinite field F.
If F has characteristic 0, then F contains the integers, and so the extension is
trivial. So let us assume that F has characteristic p > 0. That is the place where
we hit a surprising obstacle — the PARTITION problem itself is trivial for p = 2 !
Fortunately, the reduction for PARTITION in [3] shows an easy way around this
obstacle. Another question arises about how to present the input numbers. Here
we use a trick, based on the fact that infinite fields of characteristic p > 0 may be
viewed as infinite-dimensional vector spaces over GF (p), with the addition and
scalar multiplication as in GF (p). So we consider the following problem instead.

Definition. The p-VECTORSUM problem for a prime p is defined as follows: Let
F0 ⊂ GF (p)ω be the set of all ω-dimensional vectors over GF (p) having finitely
many nonzero coordinates.

Input: A multiset T ⊆ F0 of nonzero vectors, and a nonzero vector t ∈ F0.
Question: Is there a subset T1 ⊆ T such that

∑

a∈T1
a = t ?

The size of the input multiset T is m · n where |T | = n and m is the length
of the minimal prefix covering all nonzero coordinates of vectors in T . The
#p-VECTORSUM problem is the natural counting counterpart of p-VECTORSUM.

Lemma 5.1. The p-VECTORSUM problem is NP -complete for every prime p,
and the corresponding #p-VECTORSUM problem is #P -complete.

Proof. We will use only vectors with coordinates in {−1, 0, 1}. Notice that
−1 = 1 if p = 2. Let

∑
(X) be a shortcut for

∑

x∈X x, and let ck mean k-times
repetition of the coordinate c.
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Claim 1. Let T o =
{
(03, 1, 03), (04, 1, 02), (−1, 03, 1, 02), (05, 1, 0), (−1, 04, 1, 0),

(06, 1), (−1, 05, 1)
}
, and let T =

{
(0, 1,−1, 04), (0, 1, 0,−1, 03), (02, 1, 0,−1, 02),

(02, 1, 02,−1, 0), (03, 1, 02,−1), (1, 06)
}
∪T o be sets of vectors. Let u = (0, 1, 05).

There are exactly 7 sets U1, . . . , U7 ⊆ T such that
∑

(Ui) = u, i ∈ [1, 7]. More-
over, Ui ∩ T

o = {ui} for i ∈ [1, 7] where {ui : i ∈ [1, 7]} = T o.

Having Claim 1 at hand, the rest of the proof proceeds in the same way
as the traditional reduction [3] of PARTITION to 3-SAT , except the last step.
Let ϕ = c1 ∧ . . . ∧ cn be a SAT formula in conjunctive normal form such that
each clause ci contains exactly 3 literals, and let x1, . . . , xm be the variables
involved in ϕ. We interpret satisfiability of ϕ via vectors from GF (p)m+7n+3n.
The coordinates of the vectors are divided into three sections; variable, clause,
and incidence sections of lengths m, 7n, and 3n.

The incidence section of vector coordinates is indexed by the literals of all
clauses of ϕ. For a variable xi, i ∈ [1,m], we construct two vectors ai, a

′
i, both

having 1 at the position i − 1 of the variable section. Moreover, ai has 1 at
the positions of the incidence section indexed by literals which are xi. Similarly,
a
′
i has 1 at the positions of the incidence section indexed by literals which are

¬xi. All remaining coordinates are set to 0. The meaning of this piece of our
construction is that we choose a True or False value for xi by picking ai or a

′
i,

respectively, in the selected subset.

The chosen valuation of x1, . . . , xm satisfies ϕ if each clause is valued True,
i.e. if each clause triple (of coordinates) in the incidence section has a nonzero
coordinate. There are 23 − 1 = 7 true valuations for each clause, and that is
where we apply Claim 1. For a clause cj , j ∈ [1, n], we make a “shifted” copy Tj

of the set T from Claim 1 such that the coordinates of vectors from T now start
at the position 7(j − 1) of the clause section. The seven vectors from T o

j ⊂ Tj ,
moreover, have the coordinate triples for the clause cj in the incidence section
set to (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0), respectively.
All remaining coordinates are set to 0.

Finally, we set v = (1m,

7n
︷ ︸︸ ︷

0, 1, 06, 1, . . . , 06, 1, 05, 13n), and U =
⋃

j∈[1,n] Tj∪
⋃

i∈[1,m]{ai,a
′
i}. Assume that V ⊆ U is such that

∑
(V ) = v. Then the variable

section of the coordinates guarantees that exactly one of ai,a
′
i for i ∈ [1,m]

belongs to V , which determines the value for xi. The clause section guarantees
that exactly one vector from each set T o

j is selected in V for j ∈ [1, n]. And since
the incidence section for the clause cj has each coordinate 1, which cannot be
obtained just using a vector from T o

j , the clause cj , j ∈ [1, n] must be true in
the selected valuation. The converse direction proceeds similarly. Therefore, the
solutions to “V ⊆ U such that

∑
(V ) = v” are in a one-to-one correspondence

with satisfying assignments to the formula ϕ.

The size of W is clearly polynomial in the size of ϕ, and we formally pad
all other coordinates of the vectors with 0’s. So the p-VECTORSUM problem for
the input U,v is NP -complete. Moreover, the one-to-one correspondence be-

10



tween solutions to U,v and satisfying assignments to ϕ proves also that the
#p-VECTORSUM problem is #P -complete.

Now we are prepared to extend our results to an arbitrary infinite field F.
As above, we consider p > 0, and a countable vector subspace GF (p)ω of F. As
“numbers” we mean the set F0 ⊂ GF (p)ω of all the vectors having finitely many
nonzero coordinates. Notice that the zero vector in F0 coincides with 0 ∈ F.
We create a set F1 of all finite-length symbolic expressions formed over F0 using
valid operations of the field F. Formally, F1 is the language over the alphabet
F0 ∪ {0, 1,−,−1,+, ·, (, )} defined recursively as follows:

– F0 ⊂ F1 and 0, 1 ∈ F1.

– If a, b ∈ F1, then −(a) ∈ F1, (a) + (b) ∈ F1, and (a) · (b) ∈ F1.

– If a ∈ F1 such that eval(a) 6= 0, then (a)−1 ∈ F1.

The mapping eval : F1 → F is the homomorphism defined by F-evaluations of
the symbolic expressions. Notice that each expression in F1 is a finite word.

The definition of F1 may seem unnatural at the first look, but it actually is
analogous to standard handling of rational numbers — algorithms computing
with rational numbers usually input and work with symbolic fractions x = a

b
,

and not with the decimal expansion of x. Thus instead of “arithmetic in F”,
we actually consider arithmetic of the symbolic expressions in F1, and we allow
symbolic input from F1. The understanding behind this convention is that, for
any particular infinite field F, an oracle is given for computing in F, and then
the symbolic expressions my be easily parsed in time polynomial in their size.
However, one should keep in mind that we have no means to decide the F-value
of a symbolic expression without such an oracle.

Theorem 5.2. Let n ≥ 5, and let F be an infinite field. If S is the matroid
represented by a matrix [In |D1(x1, . . . , xn)] over F where x1, . . . , xn ∈ F−{1},
then it is NP -hard to recognize that S is not the rank-n free spike.

Proof. If F has characteristic 0, then F contains the rational numbers as
a subfield, and hence the statement is proved in Theorem 3.2. Otherwise, for
characteristic p > 0, we use a reduction from the p-VECTORSUM problem.

Let F0 ⊂ GF (p)ω be the set of all ω-dimensional vectors over GF (p) having
finitely many nonzero coordinates. Suppose that T = {t1, t2, . . . , tn} ⊂ F0−{0}
is a multiset of nonzero vectors, and that t ∈ F0 − {0}. We denote by zi =
−ti ·t

−1 ∈ F1 and xi = z−1
i +1 ∈ F1 for i ∈ [1, n], as symbolic expressions. Then,

by Corollary 2.4 (b), the matrix [In |D1(x1, . . . , xn)] does not represent the rank-
n free spike if and only if there is a subset J ⊆ [1, n] such that

∑

j∈J zj = −1 inF, hence if
∑

j∈J tj = t in GF (p)ω .

Since we have only used symbolic operations in F1, the reduction to a
p-VECTORSUM instance T, t is finished in polynomial time. The reduction it-
self does not depend on F except for the characteristic p. So we are done by
Lemma 5.1.

11



In a way analogous to Theorem 5.2, we extend also Theorem 4.3 for an
arbitrary infinite field F. (We remind the reader again that the matroid S here,
a spike, has branch-width three.)

Theorem 5.3. Let n ≥ 5, and let F be an infinite field. If S is the matroid
represented by a matrix [In |D1(x1, . . . , xn)] over F where x1, . . . , xn ∈ F−{1},
then it is #P -hard to compute the Tutte polynomial T (S; x, y) for S.

6 Conclusions

The overall goal of our paper is to show a big difference of algoritmic behav-
ior of matroids represented over finite and over infinite fields with respect to
the structural parameter branch-width: While a large class of problems is ef-
ficiently solvable on matroids of bounded branch-width represented over finite
fields, bounding the branch-width does not seem to help with solving those prob-
lems on matroids represented over infinite fields. (We remark that our bound 3
on branch-width is the smallest nontrivial value.)

The methods used here are further extended in [9] to show hardness of the
problem of finding a matroid minor in a quite special setting. Moreover, inspired
by a very helpful suggestion of an anonymous referee, we are applying these
methods to show [10] that it is hard to decide whether a matroid (a spike)
represented over Q has a representation over a (fixed) non-prime finite field F.

Lastly we mention a relation of this paper to our other work [8]. In particular,
[8] shows a simple interpretation of the MS1 theory of all graphs in the MSM

theory of matroid spikes. (That is another evidence of hardness of the MSM

theory of spikes, since many classical hard graph problems like 3-colouring or
dominating set are formulated in MS1.) In general, we would like to say that
branch-width is likely not a good structural parameter for all matroids, although
it works nicely for matroids over finite fields. It would, of course, be nice to
find a finer (than branch-width) structural parameter providing nontrivial FPT
algorithms for matroids over infinite fields. See [8] for a brief outline of a possible
future research in this direction.
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