
On Decidability of MSO Theories of
Representable Matroids
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Abstract. We show that, for every finite field
�

, the class of all
�

-
representable matroids of branch-width at most a constant t has a de-
cidable MSO theory. In the other direction, we prove that every class
of

�
-representable matroids with a decidable MSO theory must have

uniformly bounded branch-width.
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1 Introduction

Monadic second order logic, which extends first order logic by allowing quan-
tification over monadic predicates, is famous for their high expressive power in
combination with a manageable model theory (see e.g. [12]). For this reason it
has found many applications in different areas, as e.g. decidability, model check-
ing, data bases, and computational complexity.

Of special importance in this area are classes of graphs (or other structures) of
bounded tree-width, branch-width, or clique-width, since for these classes MSO
logic posseses besides the good model theory also very good algorithmic proper-
ties. On the structural side, strong interest in tree-width has been motivated by
the (now famous) Graph Minor project [19] of Robertson and Seymour which,
besides many deep theoretical results, revolutionized the area of algorithm de-
sign in computer science. In particular, many problems which are NP-hard for
arbitrary structures, could be solved in polynomial and often even linear time if
they are restricted to structures of bounded tree-width or bounded clique-width
(see e.g. [1], or [8],[7]).

Interestingly, general algorithmic results on efficient computability over struc-
tures of bounded tree-width (branch-width, clique-width, etc.) come hand in
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hand with related logic results on decidability of theories. For example, for each
k > 0, the monadic second order theory of the class of all graphs of tree-width at
most k, or of clique-width at most k, respectively, is decidable (see [2, 6], or [22,
23]).

Here we shall concentrate on matroids, as a strong generalization of graphs.
Nowadays, one can witness in the matroid community a great effort to extend
the above mentioned Robertson-Seymour’s theoretical work on graph minors as
far as possible to matroids, followed by important new structural results about
representable matroids, eg. [10, 11]. Inspired by those advances, we focus on
extending the research of related complexity and logic questions from graphs to
matroids, building on recent works [13, 14] of the first author.

Since this paper is intended for general computer-science and logic audiences,
we provide some basic definitions concerning matroid structure, and decidability
and interpretability of theories from mathematical logic, in the next three sec-
tions. We bring up the MSO theory of matroids in Section 5, and present some
related recent results there; like we show that the MSO theory of the class of all
matroids of branch-width at most k is decidable, for every k > 0. We present our
main result in Section 6, which extends results by the second author from [22].
We prove that, for every finite field � , a class of � -representable matroids with
a decidable MSO theory must have uniformly bounded branch-width.

2 Basics of Matroids

We refer to Oxley [16] for matroid terminology. A matroid is a pair M = (E,B)
where E = E(M) is the ground set of M (elements of M), and B ⊆ 2E is a
nonempty collection of bases of M . Moreover, matroid bases satisfy the “ex-
change axiom”; if B1, B2 ∈ B and x ∈ B1 −B2, then there is y ∈ B2 − B1 such
that (B1−{x})∪{y} ∈ B. We consider only finite matroids. Subsets of bases are
called independent sets, and the remaining sets are dependent. Minimal depen-
dent sets are called circuits. All bases have the same cardinality called the rank
r(M) of the matroid. The rank function rM (X) in M is the maximal cardinality
of an independent subset of a set X ⊆ E(M).

If G is a (multi)graph, then its cycle matroid on the ground set E(G) is
denoted by M(G). The independent sets of M(G) are acyclic subsets (forests) in
G, and the circuits of M(G) are the cycles in G. Another example of a matroid
is a finite set of vectors with usual linear dependency. If A is a matrix, then
the matroid formed by the column vectors of A is called the vector matroid
of A, and denoted by M(A). The matrix A is a representation of a matroid
M ' M(A). We say that the matroid M(A) is � -represented if A is a matrix
over a field � . (Fig. 1.) A graphic matroid, i.e. such that it is a cycle matroid of
some multigraph, is representable over any field.

The dual matroid M∗ of M is defined on the same ground set E, and the
bases of M∗ are the set-complements of the bases of M . A set X is coindependent
in M if it is independent in M ∗. An element e of M is called a loop (a coloop), if
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Fig. 1. An example of a vector representation of the cycle matroid M(K4). The matroid
elements are depicted by dots, and their (linear) dependency is shown using lines.

{e} is dependent in M (in M ∗). The matroid M \ e obtained by deleting a non-
coloop element e is defined as (E − {e},B−) where B− = {B : B ∈ B, e 6∈ B}.
The matroid M/e obtained by contracting a non-loop element e is defined using
duality M/e = (M∗ \ e)∗. (This corresponds to contracting an edge in a graph.)
A minor of a matroid is obtained by a sequence of deletions and contractions of
elements. Since these operations naturally commute, a minor M ′ of a matroid
M can be uniquely expressed as M ′ = M \D/C where D are the coindependent
deleted elements and C are the independent contracted elements. The following
claim is folklore in matroid theory:

Lemma 2.1. Let N = M \D/C. Then a set X ⊆ E(N) is dependent in N if
and only if there is a dependent set Y ⊆ E(M) in M such that Y −X ⊆ C.

Fig. 2. An illustration to a 4-separation in a graph, and to a 3-separation in a matroid.

Another important concept is matroid connectivity, which is close, but some-
how different, to traditional graph connectivity. The connectivity function λM
of a matroid M is defined for all subsets A ⊆ E by

λM (A) = rM (A) + rM (E −A)− r(M) + 1 .

Here r(M) = rM (E). A subset A ⊆ E is k-separating if λM (A) ≤ k. A partition
(A,E−A) is called a k-separation if A is k-separating and both |A|, |E−A| ≥ k.
Geometrically, the spans of the two sides of a k-separation intersect in a subspace



of rank less than k. See in Fig. 2. In a corresponding graph view, the connectivity
function λG(F ) of an edge subset F ⊆ E(G) equals the number of vertices of G
incident both with F and with E(G) − F . (Then λG(F ) = λM(G)(F ) provided
both sides of the separation are connected in G.)

3 Tree-Width and Branch-Width

The notion of graph tree-width is well known. Let Qn denote the n × n-grid
graph, i.e. the graph on V (Qn) = {1, 2, . . . , n}2 and E(Qn) =

{
{(i, j)(i′, j′)} :

1 ≤ i, j, i′, j′ ≤ n, {|i − i′|, |j − j′|} = {0, 1}
}

. We say that a class G of graphs
has bounded tree-width if there is a constant k such that any graph G ∈ G has
tree-width at most k. A basic structural result on tree-width is given in [20]:

Theorem 3.1. (Robertson, Seymour) A graph class G has bounded tree-width
if and only if there exists a constant m such that no graph G ∈ G has a minor
isomorphic to Qm.

The same paper [20] also presents a similar, but less known, parameter called
branch-width, and proves that branch-width is within a constant factor of tree-
width on graphs.

Assume that λ is a symmetric function on the subsets of a ground set E.
(Here λ ≡ λG is the connectivity function of a graph, or λ ≡ λM of a matroid.) A
branch decomposition of λ is a pair (T, τ) where T is a sub-cubic tree (∆(T ) ≤ 3),
and τ is a bijection of E into the leaves of T . For e being an edge of T , the width
of e in (T, τ) equals λ(A) = λ(E − A), where A ⊆ E are the elements mapped
by τ to leaves of one of the two connected components of T − e. The width of
the branch decomposition (T, τ) is maximum of the widths of all edges of T , and
branch-width of λ is the minimal width over all branch decompositions of λ.

Recall the definitions of graph and matroid connectivity functions from Sec-
tion 2. Then branch-width of λ ≡ λG is called branch-width of a graph G, and
that of λ ≡ λM is called branch-width of a matroid M . (See examples in Fig. 3.)
We remark that it is possible to define matroid tree-width [15] which is within
a constant factor of branch-width, but this is not a straightforward extension of
traditional graph tree-width. Considering branch-width on matroids, the follow-
ing recent result [11] is crucial for our paper:

Theorem 3.2. (Geelen, Gerards, Whittle) For every finite field � ; a class N of
� -representable matroids has bounded branch-width if and only if there exists a
constant m such that no matroid N ∈ N has a minor isomorphic to M(Qm).

4 Decidability of Theories

We will use the following notion of a theory. Let K be a class of structures and
let L be a suitable logic for K. A sentence is a set of well-formed L-formulas
without free variables. The set of all L-sentences true in K is denoted as L-
theory of K. We use ThL(K) as a short notation for this theory. Hence, a theory
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Fig. 3. Two examples of width-3 branch decompositions of the Pappus matroid (top
left, in rank 3) and of the binary affine cube (bottom left, in rank 4). The lines in
matroid pictures show dependencies among elements.

can be viewed as the set of all properties, expressible in L, which all structures
of K possess. In case that K = {G} we write ThL(G) instead of ThL(K). Using
this definition we obtain ThL(K) =

⋂{ThL(G) : G ∈ K}. We write Th(K),
ThMSO(K) if L is first order logic, or monadic second order logic (abbreviated
as MSO logic), respectively.

For graphs there are actually two variants of MSO logic, commonly denoted
by MS1 and MS2. In MS1, set variables only denote sets of vertices. In MS2,
set variables can also denote sets of edges of the considered graph. In other
words the difference between both logics is that in MS1 the domain of the graph
consists of the vertices only and the relation is just the usual adjacency between
vertices, while in MS2 the domain is two-sorted and contains vertices as well as
edges and the relation is the incidence relation. The expressive power of both
logics was studied by Courcelle in [4].

A theory is said to be decidable if there is an algorithm deciding, for an
arbitrary sentence ϕ ∈ L, whether ϕ ∈ ThL(K) or not, i.e. whether ϕ is true
in all structures of K. Otherwise this theory is said to be undecidable. More
information concerning the terminology from logic needed in this section can be
found in classical textbooks as [9]. A good introduction into the decidability of
theories can be found in [18] (see also [12] for monadic theories).

To prove decidability of theories the method of model interpretability, intro-
duced in [17] is often the best tool of choice. To describe the idea of the method
assume that two classes of structures K and K′ are given, and that L and L′,
respectively, are corresponding languages for the structures of these classes. The
basic idea of the interpretability of theory ThL(K) into ThL′(K

′) is to transform
formulas of L into formulas of L′, by translating the nonlogical symbols of L by
formulas of L′, in such a way that truth is preserved in a certain way. Here we



assume that the logics underlying both languages are the same. Otherwise, one
has to translate also the logical symbols.

We explain this translation in a simple case of relational structures. First one
chooses an L′-formula α(x) intended to define in each L′-structure G ∈ K′ a set
of individuals G[α] := {a : a ∈ dom(G) and G |= α(a)}, where dom(G) denotes
the domain (set of individuals) of G. Then one chooses for each s-ary relational
sign R from L an L′-formula βR(x1, . . . , xs), with the intended meaning to define
a corresponding relation G[βR] := {(a1, . . . , as) : a1, . . . , as ∈ dom(G) and G |=
βR(a1, . . . , as)}. All these formulas build the formulas of the interpretation I =(
α(x), βR(x1, . . . , xs), . . .

)
.

With the help of these formulas one can define for each L′-structure G a
structure GI :=

(
G[α], G[βR], . . .

)
, which is just the structure defined by the

chosen formulas in G. Sometimes GI is also denoted as I(G) and I is called an
(L,L′)-interpretation of GI in G. In case that both L and L′ are MSO languages,
this interpretation is also denoted as MSO-interpretation. Using these formulas
there is also a natural way to translate each L-formula ϕ into an L′-formula ϕI .
This is done by induction on the structure of formulas. The atomic formulas are
simply substituted by the corresponding chosen formulas with the corresponding
substituted variables. Then one may proceed via induction as follows:

(¬χ)I := ¬(χI), (χ1 ∧ χ2)I := (χ1)I ∧ (χ2)I ,

(
∃x χ(x)

)I
:= ∃x

(
α(x) ∧ χI(x)

)
,

(x ∈ X)I := x ∈ X,
(
∃X χ(X)

)I
:= ∃X χI(X).

The resulting translation is called an interpretation with respect to L and L′.
Its concept could be briefly illustrated with a picture:

ϕ ∈ L
H ∈ K

I−−−−−→ ϕI ∈ L′
G ∈ K′

GI ' H I←−−−−− G

For theories, interpretability is now defined as follows. Let K and K′ be classes
of structures and L and L′ be corresponding languages. Theory ThL(K) is said
to be interpretable in ThL′(K

′) if there is an (L,L′)-interpretation I translating
each L-formula ϕ into an L′-formula ϕI , and each L′-structure G ∈ K′ into an
L-structure GI as above, such that the following two conditions are satisfied:

(i) For every structure H ∈ K, there is a structure G ∈ K′ such that GI ∼= H,
(ii) for every G ∈ K′, the structure GI is isomorphic to some structure of K.

It is easy to see that interpretability is transitive. The key result for interpretabil-
ity of theories is the following theorem [17]:

Theorem 4.1. (Rabin) Let K and K′ be classes of structures, and L and L′ be
suitable languages. If ThL(K) is interpretable in ThL′(K′), then undecidability
of ThL(K) implies undecidability of ThL′(K′).



5 MSO Theory of Matroids

Considering logic point of view, a matroid M on a ground set E is the collection
of all subsets 2E together with a unary predicate indep such that indep(F ) if
and only if F ⊆ E is independent in M . (One may equivalently consider a
matroid with a unary predicate for bases or for circuits, see in [13].) We shortly
write MSM to say that the language of MSO logic is applied to (independence)
matroids. If N is a class of independence matroids, then the MSM theory of N

is denoted by ThMSO(N).
To give readers a better feeling for the expressive power of MSM on a ma-

troid, we write down a few basic matroid predicates now.

– We write basis(B) ≡ indep(B) ∧ ∀D
(
B 6⊆ D ∨ B = D ∨ ¬ indep(D)

)
to

express the fact that a basis is a maximal independent set.
– Similarly, we write circuit(C) ≡ ¬ indep(C)∧∀D

(
D 6⊆ C∨D=C∨indep(D)

)
,

saying that C is dependent, but all proper subsets of C are independent.
– A cocircuit is a dual circuit in a matroid (i.e. a bond in a graph). We write

cocircuit(C) ≡ ∀B
[

basis(B) → ∃x(x ∈ B ∧ x ∈ C)
]
∧ ∀X

[
X 6⊆ C ∨ X =

C ∨∃B
(

basis(B)∧∀x(x 6∈ B ∨x 6∈ X)
)]

saying that a cocircuit C intersects
every basis, but each proper subset of C is disjoint from some basis.

It is shown that the language of MSM is at least as powerful as that of MS2

on graphs. Let G ]H denotes the graph obtained from disjoint copies of G and
H by adding all edges between them. The following statement is proved in [13]:

Theorem 5.1. (Hliněný) Let G be a loopless multigraph, and let M be the cycle
matroid of G]K3. Then any MSO sentence (in MS2) about an incidence graph
G can be expressed as a sentence about M in MSM .

In other words, the MSO theory of (loopless) incidence multigraphs is inter-
pretable in a certain subclass of 3-connected graphic matroids.

The next result we are going to mention speaks about (restricted) recogniz-
ability of MSM -definable matroid properties via tree automata. To formulate
this, we have to introduce briefly the concept of parse trees for representable
matroids of bounded branch-width, which has been first defined in [13]. For a
finite field � , an integer t ≥ 1, and an arbitrary � -represented matroid M of
branch-width at most t + 1; a t-boundaried parse tree T̄ over � is a rooted
ordered binary tree, whose leaves are labeled with elements of M , and the in-
ner nodes are labeled with symbols of a certain finite alphabet (depending on

� and t). Saying roughly, symbols of the alphabet are “small configurations”
in the projective geometry over � . The parse tree T̄ uniquely determines an

� -representation (up to projective transformations) of the matroid P (T̄ ) ' M .
See [13] for more details and the result:

Theorem 5.2. (Hliněný) Let � be a finite field, t ≥ 1, and let φ be a sentence

in the language of MSM . Then there exists a finite tree automaton Aφt such
that the following is true: A t-boundaried parse tree T̄ over � is accepted by
Aφt if and only if P (T̄ ) |= φ. Moreover, the automaton Aφt can be constructed
(algorithmically) from given � , t, and φ.



Corollary 5.3. Let � be a finite field, t ≥ 1, and let Bt be the class of all
matroids representable over � of branch-width at most t + 1. Then the theory
ThMSO(Bt) is decidable.

Proof. Assume we are given an MSM -sentence φ. We construct the automaton
Aφt from Theorem 5.2. Moreover, there is an (easily constructible [13]) automaton
Vt accepting valid t-boundaried parse trees over � . Then Bt 6|= φ if and only if

there is a parse tree accepted by Vt, but not accepted by Aφt . We thus, denoting

by −Aφt the complement of Aφt , construct the cartesian product automaton A =

(−Aφt )×Vt accepting the intersection of the languages of −Aφt and of Vt. Then
we check for emptiness of A using standard tools of automata theory. 2

6 Large Grids and Undecidability

We need the following result, which was proved first in a more general form
in [21] (see also [22]).

Theorem 6.1. (Seese) Let K be a class of adjacency graphs such that for every
integer k > 1 there is a graph G ∈ K such that G has the k × k grid Qk as an
induced subgraph. Then the MS1 theory of K is undecidable.

Using Theorems 3.1, 6.1 and interpretation, one concludes [22]:

Theorem 6.2. (Seese) a) If a family G of planar graphs has a decidable MS1

theory, then G has bounded tree-width.
b) If a graph family G has a decidable MS2 theory, then G has bounded tree-width.

Related results can be found also in [5] and [6]. The troubles, why part (a) of
this theorem has to be formulated for planar graphs, lie in the fact that MS1

logic (unlike MS2) lacks expressive power to handle minors in arbitrary graphs.
However, that is not a problem with our MSM logic, cf. Theorem 5.1 or [14],
and hence we can extend the (now stronger) part (b) to representable matroids
as follows:

Theorem 6.3. Let � be a finite field, and let N be a class of matroids that are
representable by matrices over � . If the (monadic second-order) MSM theory
ThMSO(N) is decidable, then the class N has bounded branch-width.

The key to the proof of this theorem is given in Theorem 3.2, which ba-
sically states that the obstructions to small branch-width on matroids are the
same as on graphs. Unfortunately, the seemingly straightforward way to prove
Theorem 6.3 — via direct interpretation of graphs (Theorem 6.2) in the class
of graphic minors of matroids in N, is not so simple due to technical problems
with (low) connectivity. That is why we give here a variant of this idea bypassing
Theorem 6.2, and using an indirect interpretation of (graph) grids in matroid
grid minors.



Remark. A restriction to � -representable matroids in Theorem 6.3 is not re-
ally necessary; it comes more from the context of the related matroid structure
research. According to [11], it is enough to assume that no member of N has
a U2,m- or U∗2,m-minor (i.e. an m-point line or an m-point dual line) for some
constant m.

We begin the proof of Theorem 6.3 with an interpretation of the MSM theory
of all minors of the class N. To achieve this goal, we use a little technical trick
first. Let a DC-equipped matroid be a matroid M with two distinguished unary
predicates D and C on E(M) (with intended meaning as a pair of sets D,C ⊆
E(M) defining a minor N = M \D/C).

Lemma 6.4. Let N be a class of matroids, and let NDC denote the class of
all DC-equipped matroids induced by members of N. If ThMSO(N) is decidable,
then so is ThMSO(NDC).

Proof. We may equivalently view the distinguished predicates D,C as free set
variables in MSM . Let φ(D,C) be an MSM formula, and N ∈ N. Then, by
standard logic arguments, NDC |= φ(D,C) for all DC-equipped matroids NDC

induced by N if and only if N |= ∀D,C φ(D,C). Hence NDC |= φ(D,C) if and
only if N |= ∀D,C φ(D,C). Since ∀D,C φ(D,C) is an MSO formula if φ is such,
the statement follows. 2

Lemma 6.5. Let N be a class of matroids, and Nm be the class of all minors
of members of N. Then ThMSO(Nm) is interpretable in ThMSO(NDC).

Proof. We again regard the distinguished predicates D,C of NDC as free set
variables inMSM . Let us consider a matroidN1 ∈ Nm such thatN1 = N\D1/C1

for N ∈ N. We are going to use a “natural” interpretation of N1 in the DC-
equipped matroid NDC which results from N with a particular equipment D =
D1, C = C1. (Notice that both theories use the same language of MSO logic,
and the individuals of N1 form a subset of the individuals of N .) Let ψ be an
MSM formula. The translation ψI of ψ is obtained inductively:

– For each (bound) element variable x in ψ; it is replaced with

∃x θ(x) −→ ∃x
(
x 6∈ C ∧ x 6∈ D ∧ θ(x)

)
.

– For each (bound) set variable X in ψ; it is replaced with

∃Xθ(X) −→ ∃X∀z
(
(z 6∈ X ∨ z 6∈ C) ∧ (z 6∈ X ∨ z 6∈ D) ∧ θ(X)

)
.

– Every occurence of the indep predicate in ψ is rewritten as (cf. Lemma 2.1)

indepI(X) ≡ ∀Y
(

indep(Y ) ∨ ∃z(z ∈ Y ∧ z 6∈ X ∧ z 6∈ C)
)
.

Consider now the structure N I defined by indepI in NDC ∈ NDC . By
Lemma 2.1, a set X ⊆ E(N I) = E(N1) is independent in N I if and only if X is
independent in N1, and hence N I is a matroid isomorphic to N1 = N \D/C ∈



Nm. Moreover, it is immediate from the construction of ψI that N1 |= ψ iff
NDC |= ψI . Thus, I is an interpretation of ThMSO(Nm) in ThMSO(NDC). 2

Next, we define, for a matroid M , a 4CC-graph of M as the graph G on the
vertex set E(M), and edges of G connecting those pairs of elements e, f ∈ E(M),
such that there are a 4-element circuit C and a 4-element cocircuit C ′ in M
containing both e, f ∈ C ∩ C ′. (This is not the usual way of interpretation in
which the ground set of a matroid is formed by graph edges.) The importance
of our definition is in that 4CC-graphs “preserve” large grids:

Lemma 6.6. Let m ≥ 6 be even, and M = M(Qm). Denote by G the 4CC-graph
of M . Then G has an induced subgraph isomorphic to Qm−2.

Proof. Recall that circuits in a cycle matroid of a graph correspond to graph
cycles, and cocircuits to graph bonds (minimal edge cuts). The only 4-element
cycles in a grid clearly are face-cycles in the natural planar drawing of Qm. The
only edge cuts with at most 4 edges in Qm are formed by sets of edges incident
with a single vertex in Qm, or by edges that are “close to the corners”.

Let E′ ⊆ E(Qm) denote the edge set of the subgraph induced on the ver-
tices (i, j) where 1 < i, j < m. Let G′ denotes the corresponding subgraph of G
induced on E′. Choose x ∈ E′, and assume up to symmetry x = {(i, j), (i′, j′)}
where i′ = i+ 1 and j′ = j. According to the above arguments, the only neigh-
bours of x in G′ are in the set

E′ ∩
{
{(i, j − 1), (i, j)}, {(i, j), (i, j + 1)}, {(i′, j′ − 1), (i′, j′)}, {(i′, j′), (i′, j′ + 1)}

}
.

We now define “coordinates” for the elements x ∈ E ′ as follows

x = {(i, j), (i′, j′)}, i ≤ i′, j ≤ j′ : kx = i+ j, `x = i+ j′ − 2j .

As one may easily check from the above description of neighbours, two elements
x, y ∈ E′ are adjacent in G′ if and only if {|kx − ky|, |`x − `y|} = {0, 1}. Hence
the elements x ∈ E′ such that m

2 + 1 < kx, `x <
m
2 +m− 1 induce in G′ a grid

isomorphic to Qm−2. 2

Now we are to finish a chain of interpretations from Theorem 6.1 to a proof
of our Theorem 6.3.

Lemma 6.7. Let M be a matroid family, and let F4 denote the class of all
adjacency graphs which are 4CC-graphs of the members of M. Then the MS1

theory of F4 is interpretable in the MSM theory ThMSO(M).

Proof. Let us take a graph G ∈ F4 which is a 4CC-graph of a matroid M ∈M.
Now G is regarded as an adjacency graph structure, and so the individuals (the
domain) of G are the vertices V (G). These are to be interpreted in the ground
set E(M), the domain of M . Let ψ be an MS1 formula. The translation ψI in
MSM of ψ is obtained simply by replacing every occurence of the adj predicate
in ψ with



adjI(x, y) ≡ ∃C,C ′
(
|C| = |C ′| = 4 ∧ circuit(C) ∧ cocircuit(C) ∧ x, y ∈ C ∧ x, y ∈ C ′

)
,

where the matroid MSM predicates circuit and cocircuit are defined in Section 5,
and |X| = 4 has an obvious interpretation in the FO logic.

Consider the structureGI defined by the predicate adjI on the domain E(M).
It is GI ' G by definition, for all pairs G,M as above. Moreover, adjI is defined
in the MSO logic. Hence we have got an interpretation I of ThMSO1

(F4) in
ThMSO(M). 2

Proof of Theorem 6.3. We prove the converse direction of the implication. As-
sume that a matroid class N does not have bounded branch-width, and denote
by Nm the class of all matroids which are minors of some member of N. By
Theorem 3.2, for every integer m > 1, there is a matroid N ∈ Nm isomorphic
to the cycle matroid of the grid N 'M(Qm). Now denote by F4 the class of all
graphs which are 4CC-graphs of members of Nm. Then, using Lemma 6.6, there
exist members of F4 having induced subgraphs isomorphic to the grid Qk, for
every integer k > 1.

Hence the class K = F4 satisfies the assumptions of Theorem 6.1, and so the
MS1 theory of F4 is undecidable. So is the MSM theory ThMSO(Nm) using the
interpretation in Lemma 6.7, and Theorem 4.1. We analogously apply the inter-
pretation in Lemma 6.5 to ThMSO(Nm), and conclude that also ThMSO(NDC)
is undecidable, where NDC is the class of all DC-equipped matroids induced by
N as above. Finally, Lemma 6.4 implies that the MSM theory ThMSO(N) is
undecidable, as needed. 2
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