On Digraph Width Measures

in Parameterized Algorithmics
(extended abstract)

Robert Ganian®, Petr Hlinény', Joachim Kneis?, Alexander Langer?,
Jan Obdrzalek!, and Peter Rossmanith?

! Faculty of Informatics, Masaryk University, Brno, Czech Republic
{xganianl,hlineny,obdrzalek}@fi.muni.cz
2 Theoretical Computer Science, RWTH Aachen University, Germany
{kneis,langer,rossmani}@cs.rwth-aachen.de

Abstract. In contrast to undirected width measures (such as tree-
width or clique-width), which have provided many important algo-
rithmic applications, analogous measures for digraphs such as DAG-
width or Kelly-width do not seem so successful. Several recent papers,
e.g. those of Kreutzer—Ordyniak, Dankelmann—Gutin—Kim, or Lampis—
Kaouri—Mitsou, have given some evidence for this. We support this di-
rection by showing that many quite different problems remain hard even
on graph classes that are restricted very beyond simply having small
DAG-width. To this end, we introduce new measures K-width and DAG-
depth. On the positive side, we also note that taking Kanté’s directed
generalization of rank-width as a parameter makes many problems fixed
parameter tractable.

1 Introduction

The very successful concept of graph tree-width was introduced in the context
of the Graph Minors project by Robertson and Seymour [RS86,RS91], and it
turned out to be very useful for efficiently solving graph problems. Tree-width
is a property of undirected graphs. In this paper we will be interested in directed
graphs or digraphs.

Naturally, a width measure specifically tailored to digraphs with all the nice
properties of tree-width would be tremendously useful. The properties of such a
measure should include at least the following;:

i) The width measure is small on many interesting instances.

ii) Many hard problems become easy if the width measure is bounded.
Obviously, there is a conflict between these goals, and consequently we can expect
some trade-off. On the search for such a digraph measure, several suggestions
were made, starting with directed tree-width [JRSTO01], and being complemented
recently with several new approaches including DAG-width [Obd06,BDHKO6],
Kelly-width [HKO08], entanglement [BGO04], D-width [Saf05], directed path-
width [Bar06] (defined by Reed, Seymour, and Thomas), and — although quite
different — bi-rank-width [Kan08] (see Section 2).

Some positive results were encouraging: The Hamiltonian path problem can
be solved in polynomial time (XP) if the directed tree width, the DAG-width,
or the Kelly-width are bounded by a constant [JRSTO01]. More recently, it has
been shown that parity games can be solved in polynomial time on digraphs of
bounded DAG-width [BDHKO06] and Kelly-width [HKO8§].

Are more results just waiting around the corner and do we just have to wait
until we get more familiar with these digraph measures? It is the aim of this
paper to answer this question, at least partially.

Unfortunately, as encouraging as the first positive results are, there is also
the negative side. Hamiltonian path is W[2]-hard on digraphs of bounded DAG-
width [LKMO08], and some other natural problems even remain NP-hard on di-
graphs of low widths [KO08,DGKO08,LKMO08]. One of the main goals of this paper
is to show that not only many problems are hard on DAGs, but rather that they
remain hard even if we very severely further restrict the graphs structure.

We introduce two digraph measures for this purpose: K-width and DAG-
depth. While K-width (Section 2.3) restricts the number of different simple paths
between pairs of vertices, DAG-depth (Definition 2.6) is the directed analog
of tree-depth [NdMO06]. K-width and DAG-depth are very restrictive digraph
measures; at least as high as DAG-width, and often much higher.

The problems we consider in this paper (and formally define in Section 3) are
Hamiltonian path (HAM), Disjoint paths (k-PATH), Directed Dominating Set
(D1DS), unit cost Directed Steiner Tree (DISTP), Directed Feedback Vertex Set
(DFVS), Kernel (KERNEL), Maximum Directed Cut (MaxD1CuT), Oriented
Colouring (OCN), MSO; model checking (MSO;MC), solving Parity Games
(PARITY) and LTL-model checking (LTLMC). (See Table 1 on page 6).

It turns out that most of the aforementioned problems are not only hard for
DAG-width, but even for constant K-width and DAG-depth, or on DAGs. This
can be seen as a strong indication that DAG-width or related measures are not
yet the right parameters for dealing with standard digraph problems.

On the other hand, one width measure that fares much better in Table 1
is bi-rank-width (Definition 2.4), a width measure generalizing the rank-width
of undirected graphs [Kan08]. Nearly all of our problems are fixed parameter
tractable or at least in XP with respect to this parameter. Even better, unlike
as for DAG-width or Kelly-width, finding an optimal bi-rank-decomposition is
known to be in FPT [HO08,Kan08].

2 Digraph Width Measures

The first wave of directed measures to appear shared the following features:

i) On bidirected orientations of graphs they coincided with the original tree-
width.

ii) These measures were strongly based on some variant of the directed cops-
and-robber game on a digraph: There are k£ cops and a robber. Each cop
can either occupy a vertex, or move around in a helicopter, and the robber

occupies a vertex. The robber can, however, see the helicopter landing, and
can move at a great speed along a cop-free directed path to another vertex.
The objective of the cops is to capture the robber by landing on the vertex
currently occupied by him, the objective of the robber is to avoid capture.

iii) Point (ii) implied that DAGs and other graphs where vertices could be or-
dered in such a way that edges between them point mainly in one direction,
and only a few point backwards, have a very low width. For DAGs this was
usually one or zero.

iv) The last feature (iii) also made the algorithms to be XP, instead of FPT,
because of the need to remember the partial results for all vertices with
incoming edges from the outside, of which there could be |V|.

Directed tree-width. The first directed measure which appeared was that of
directed tree-width (dtw) [JRSTO1]. In the cop-and-robber game characteriza-
tion the robber has to stay in the same cop-free strongly connected component,
however the relationship between the number of cops needed and the directed
tree-width is not strict. [JRSTO1] also contains XP algorithms for solving the
Hamiltonian cycle, k-path, and related problems on graphs of bounded directed
tree-width.

DAG-width. First defined in [Obd06] and, independently, in [BDHKO06], DAG-
width (dagw) was the next attempt to come up with a directed tree-width coun-
terpart. This time the robber does not have to stay in the SCC, but the cop
strategy has to be monotone, i.e., a cop cannot be placed on a previously va-
cated vertex. This game fully characterizes DAG-width. Note that monotone
and non-monotone strategies are not equivalent [KOO08].

Theorem 2.1 ([Obd06,BDHKO06]). For any graph G, there is a DAG-
decomposition of G of width k if, and only if, the cop player has a monotone
winning strateqy in the k-cops-and-robber game on G.

Kelly-width. Defined a year later, Kelly-width (kellyw) [HKO08] aimed to solve
an existing problem with DAG-decompositions: the number of nodes can be
polynomially larger then the number of vertices in the original graph (the size
depends on the width). The idea of Kelly-decompositions is based on the elim-
ination ordering for tree-width, and therefore the size of the decomposition is
linear in the size of the graph. The game characterizing Kelly-width is the same
as for DAG-width, but with two important differences: 1) the cops cannot see
the robber and 2) the robber can move only when a cop is about to land on his
vertex.

Cycle rank. This is perhaps the oldest definition of a digraph connectivity mea-
sure, given in 60’s by Eggan and Biichi [Egg63].

Definition 2.2 (Cycle rank). The cycle rank cr(G) of a digraph G is defined
inductively as follows: For DAGs, cr(G) = 1. If G is strongly connected and
E(G) # 0, then cr(G) = 1 + min{ cr(G — v) : v € V(G) }. Otherwise, cr(G) is
the maximum over the cycle rank of the strongly connected components of G.

Measure comparison. All the measures presented above (i.e., directed tree-width,
DAG-width, Kelly-width and cycle rank) are closely related to each other. The
following theorem in a summary shows that if a problem is hard for graphs of
bounded cycle rank, then it is hard for all the other measures (dpw here is the
directed path-width [Bar06]).

Theorem 2.3. Let G be a digraph. Then

1/3(dtw(G) — 1) <[Bpukoe) dagw(G) < dpw(G) <(aruog) cr(G)
1/6(dtw(G) + 2) <jakog) kellyw(G) < dpw(G) <gruog) cr(G)

Moreover, when DAG-width is bounded, so is Kelly-width [HO06].

2.1 Directed rank-width

The rank-width of undirected graphs was introduced by Oum and Seymour in
relation to graph clique-width. While the definition of clique-width works “as is”
also on digraphs, the following straightforward generalization of rank-width to
digraphs (related to clique-width again) has been proposed by Kanté [Kan08|.

Definition 2.4 (Bi-rank-width). Consider a digraph G, and vertex subsets
X CV(G)and Y =V(G)\ X. Let A} denote the X x Y 0, 1-matrix with the
entries a;; = 1 (i € X, j € Y) iff (i,7) € E(G), and let Ay = (A})T. The
bi-cutrank function of G is defined as the sum of the ranks of these two matrices
brkg(X) = rk(A%) + rk(Ay) over the binary field GF(2). The bi-rank-width
brwd(G) of G then equals the branch-width of this bi-cutrank function brkg.

We remind the readers that the branch-width [RS91] of an arbitrary symmet-
ric submodular function A: 2¥ — N is defined as the minimum width over all
branch-decompositions of A over E, where a branch-decomposition is a pair T, T
satisfying the following: T is a tree of degree at most three, and 7 is a bijection
from E to the leaves of T'. If f is an edge of T', then let Xy C V(T') be the vertex
set of one of the two connected components of T' — f, and let the width of f be
A771(Xy)). The width of T, 7 is the largest width over all edges of T'.

Importantly, as proved by Kanté [Kan08], the rank-decomposition algorithm
of [HO08] can also be used to find an optimal bi-rank-decomposition of a digraph.

Theorem 2.5 ([HOO08] and [Kan08]). Let t € N be constant. There exists
an algorithm that in time O(n3), for a given n-vertex graph (digraph) G, either
outputs a rank-decomposition (bi-rank-decomposition, respectively) of G of width
at most t, or certifies that the rank-width (bi-rank-width) is more than t.

A rank-decomposition is, actually, not so suitable for designing dynamic pro-
gramming algorithms. Yet, there is an efficient alternative characterization of a
rank-decomposition via algebraic terms (or parse trees) over the bilinear graph
product, which has been proposed by Courcelle and Kanté [CK07] and further
extended towards algorithmic applications by [GHO8] (see also an independent
similar approach of [BXTV08]). As shown in [Kan08], an analogous “dynamic
programming friendly” parse-tree view (of bi-rank-width) exists for digraphs.

2.2 DAG-depth

In this part we are inspired by the tree-depth notion of NeSetiil and Ossona
de Mendez. [NAMO06, Lemma 2.2] gives an inductive definition of the tree-depth
td(G) of an undirected G as follows (compare also to Definition 2.2). If G has
one vertex, then td(G) = 1. If G is connected, then td(G) = 1+ min{ td(G —v) :
v € V(G) }. Otherwise, td(G) equals the maximum over the tree-depth of the
components of G.

We propose a new “directed” generalization of this definition. For a digraph
G and any v € V(G), let G, denote the subdigraph of G induced by the vertices
reachable from v. The maximal elements of the poset { G, : v € V(G) } in the
graph-inclusion order are called reachable fragments of G. Notice that reachable
fragments in the undirected case coincide with connected components.

Definition 2.6 (DAG-depth). The DAG-depth ddp(G) of a digraph G is in-
ductively defined: If |V(G)| = 1, then ddp(G) = 1. If G has a single reachable
fragment, then ddp(G) = 1+ min{ ddp(G —v) : v € V(G) }. Otherwise, ddp(G)
equals the maximum over the DAG-depth of the reachable fragments of G.

Comparing Definitions 2.2 and 2.6, one can see that DAG-depth equals cycle
rank on bidirected orientations of graphs. Furthermore, the following useful game
characterization of this new measure can be proved along Definition 2.6.

Theorem 2.7. The DAG-depth of a digraph G is at most t if, and only if, the
cop player has a “lift-free” winning strategy in the k-cops and robber game on G,
i.e., a strategy that never moves a cop from a verter once he has landed.

Corollary 2.8 (cf. Theorem 2.1, Def. 2.2). For any digraph G, the DAG-
depth of G is greater or equal to the DAG-width and the cycle rank of G. O

Another claim tightly relates our new measure to directed paths in a digraph.

Proposition 2.9. Consider a digraph G of DAG-depth t, and denote by £ the
number of vertices of a longest directed path in G. Then [logs ¢ +1 <t <.

2.3 K-width

Moreover, applications in various “directed path” problems, see e.g. Section 3.1,
inspired the following width measure: The K-width (a shortcut of “Kenny
width”) of a digraph G is the maximum number of distinct (not necessarily
disjoint) simple s—t paths in G over all pairs of distinct vertices s,t € V(G).

Similarly to DAG-depth in Proposition 2.9, K-width can be large on DAGs,
and it is generally incomparable with cycle-rank which is unbounded on bidi-
rected paths. However, the K-width of a digraph is lower-bounded by its DAG-
width minus one, as can be shown by giving a suitable search strategy for the
cop player in G based on a DFS tree of G.

Theorem 2.10 (cf. Theorem 2.1). For any digraph G, the K-width of G is
greater or equal to the DAG-width of G minus one.

3 Summary of Complexity Results

Table 1. Old and new (in boldface) complexity results on digraph measures (*-marked
results assume a decomposition is given in advance). Refer to the respective folowing
sections for details.

Problem K-width DAG-depth DAG-width Cycle-rank DAG Bi-rank-width
HAM FPT FPT Xpa* Xpa * P XpPP
W[2]-hard® W(2]-hard?
c-PATH FPT FPT Xp2* Xpa* p2 FPT
k-PATH NPC NPC NPC NPC NPC open
DIDS NPC NPC NPC NPC NPC FPT
DISTP NPC NPC NPC NPC NPC FPT
MaxDiCur NPC®¢ NPC® NPC® NPC® NPC® XP
c-OCN NPC NPC NPC® NPC® NPC® FPT
DFVS open open NPC! NPCt P FPT
KERNEL NPC& NPC® NPCt-e Npche P FPT
MSO;MC NPH NPH NPH NPH NPH FPT"
LTLMmcC coNPH coNPH coNPH coNPH coNPC coNPH
PARITY XP! XP! XPi* XP* P XP?

3[JRSTO1] P[GHO09] °[LKMO08] 9¢[FGLS09] °[CD06] f[KOO08] &[vL76] "[CMROO0]
'IBDHKO06] /[Obd07]

3.1 Hamiltonian Path (HAM) and Disjoint Paths (k-PATH)

The classical NP-hard Hamiltonian Path (HAM) problem [GJ79] is to find a
directed path that visits each vertex of a digraph exactly once. A natural gen-
eralization of HAM is the Longest Path problem (LONGEST PATH), where one
is asked to find the longest simple path in a given digraph.

It is easy to see that HAM can be solved on DAGs in polynomial time. When
using the parameter DAG-width, the problem belongs to the complexity class
XP [JRSTO1], but was also proven to be W[2]-hard [LKMO08]. We prove our new
FPT results for the parameters K-width and DAG-depth on the more general
LONGEST PATH problem. Using a simple enumeration of all distinct paths in the
case of bounded K-width, or applying Proposition 2.9 and any FPT-algorithm for
LONGEST PATH in the standard parameterization (e.g. [CKLT09]) when DAG-
depth is bounded, we get:

Theorem 3.1. There is a fized parameter tractable algorithm solving the
LONGEST PATH problem on a digraph G

a) in time t - |V(G)| - |[E(G)| if G is of K-width at most t;
b) in time 42O \V(GQ)| - |E(G)| if G is of DAG-depth at most t.

Another well-known problem is Disjoint Paths (k-PATH); given a digraph
and k pairs of nodes (s;,¢;), 1 < i < k, the task is to find pairwise disjoint
directed paths from each s; to the respective ¢;. This problem is NP-complete
[FHW80] even when k is bounded by any constant ¢ > 2 (c-PATH). Moreover, a
“mixed” generalization of c-PATH remains NP-complete [BJK09] even on DAGs.

If the digraph of an instance of k-PATH has K-width < 2, then it can be
expressed as a 2-SAT formula, and if DAG-depth is < 2, then it is equivalent
to an SDR instance (system of distinct representatives). If, however, we slightly
relax the restrictions as follows, the problem becomes NP-complete again.

Theorem 3.2. The k-PATH problem (with k as part of input)

a) can be solved in polynomial time on graphs of K-width or DAG-depth 2;
b) is NP-complete on DAGs of K-width 3 and DAG-depth 4.

Finally, since one can express an instance of ¢-PATH for any fixed ¢ in MSO,
logic (Section 3.6), it follows from Theorem 3.12 that this problem is fixed pa-
rameter tractable on digraphs of bi-rank-width ¢ with parameters ¢ and t. The
c-PATH problem however also becomes easier for the other new measures:

Theorem 3.3. There is a fixed parameter tractable algorithm (for constant c)
solving the c-PATH problem on a digraph G

a) in time O(t° - |[E(G)|) if G is of K-width at most t;
b) in time O((2¢)™ - |E(GQ)|?) if G is of DAG-depth at most t.

3.2 Directed Dominating Set (DiDS) and Steiner Tree (D1STP)

The well-known NP-hard Dominating Set (DS) and Steiner Tree (STP) problems
both allow for natural directed variants. We consider them in their unweighted
variants for simplicity. The Directed Dominating Set problem (DIDS) asks for a
minimum cardinality vertex set X in a digraph G such that every vertex of G
not in X is an outneighbour of X. The Directed Steiner Tree problem (DISTP)
[HRW92], given a digraph G and T' C V(G), r € V(G), asks for a minimum size
tree in G spanning r U T with all arcs oriented away from r.

While it is folklore that both of these problems are NP-hard in general, we
show (with a simple reduction from VERTEX COVER) that the same holds even
on very restricted graph classes.

Theorem 3.4. DIDS and DISTP problems are NP-complete on DAGSs that are
of K-width 2 and DAG-depth 3.

On the other hand, since the DIDS problem can easily be formulated as
a LinEMSO; optimization problem (Example 3.11), DIDS is fixed parameter
tractable when parameterized by bi-rank-width. Similarly:

Proposition 3.5 (Theorem 3.12). The (unit cost) DISTP problem can be
formulated as a LinEMSO; optimization problem, and hence DISTP is fixed
parameter tractable when parameterized by bi-rank-width.

3.3 Maximum directed cut (MAXD1CuT)

Mazimum directed cut (MAXDICUT) is an extensively studied problem on di-
graphs. Given a digraph G, the goal is to partition the vertex set V(G) into Vj

and V; such that the cardinality of { (u,v) € E(G) : u € Vp,v € V4 } is max-
imized. This problem is often stated with edge weights, but we for simplicity
consider only the unweighted (cardinality MAXxD1CUT) case in our paper.

It is well known that the MAXDICUT optimization problem is NP-hard, and
it has been shown that MAXDICUT stays NP-hard even on DAGs [LKMO0S].
A closer, yet quite nontrivial look, at the reduction reveals the resulting graph
to have also bounded DAG-depth and K-width.

Theorem 3.6 ([LKMO8]). The MAXDICUT problem is NP-hard on a digraph
G even if G is restricted to be a DAG (implying directed tree-width, DAG-width,
Kelly-width and cycle rank 1) of K-width 4608 and DAG-depth 11.

The only new efficiently solvable case among our measures is the following:

Theorem 3.7. The unweighted MAXDICUT problem on a digraph G of bi-rank-
width t is polynomially solvable for every fized t (i.e. it belongs to the class XP).

3.4 Oriented Colouring (OCN)

A natural directed generalization of the ordinary graph colouring problem can
be obtained as follows: The chromatic number x(G) of a graph G equals the
minimum ¢ such that G has a homomorphism into the complete graph K.. The
Oriented Chromatic Number (OCN) x,(G) of a digraph G is defined as the
minimum ¢ such that G’ has a homomorphism into some(!) orientation of K..

In other words, x,(G) equals minimum ¢ such that the vertex set of G can
be partitioned into ¢ independent sets such that, between each pair of the sets,
all arcs have the same direction. For instance, x, = 5 for the directed 5-cycle.

Though the OCN problem is not much known in the CS community, it has
been shown [KMO04] that checking x,(G) < 3 is easy, but determining whether
Xo(G) < 4 is already NP-complete. Subsequently, [CD06] have shown that the
problem x,(G) < 4 remains NP-complete even on acyclic digraphs. Using a
simpler and more powerful reduction than [CDO06], we prove:

Theorem 3.8. The problem (4-OCN) to decide whether a digraph G satisfies
Xo(G) < 4 is NP-complete even if G is acyclic of K-width 3 and DAG-depth 5.

On the other hand, since one can express an oriented colouring by any fixed
number of colours in MSO; logic (Section 3.6), it follows from Theorem 3.12:

Proposition 3.9. The problem (c-OCN) to decide x,(G) < ¢ on an input di-
graph G of bi-rank-width t is fived parameter tractable with parameters ¢ and t.

3.5 Directed Feedback Vertex Set (DFVS) and Kernel (KERNEL)

The directed feedback vertex set (DFVS) problem is to find a minimum cardina-
lity set S of vertices of a digraph G whose removal leaves G \ S acyclic. This
problem is trivial for acyclic digraphs, and it is FPT with the parameter k = |S]|.
We hence consider only the optimization variant of DFVS with unbounded k.

Kreutzer and Ordyniak [KO08] gave a reduction showing NP-hardness of the
DFVS optimization problem on digraphs of DAG-width 4. A closer look at this
reduction reveals that all the produced graphs are moreover of cycle rank 4, but
they have unbounded K-width and DAG-depth.

The kernel of a digraph G is defined as an independent set S C V(G) such
that for every z € V(G) \ S there is an arc from x into S. Notice that a kernel
may not always exist. However, on acyclic digraphs, a kernel can be easily found.
It is known that the decision problem of the existence of a kernel in a general
digraph G is NP-complete [vL76]. Having a closer look at the reduction of van
Leeuwen [vL76], one discovers the following claim (cf. also [KOO08]).

Theorem 3.10 (van Leeuwen [VL76]). It is NP-complete to decide whether
a digraph G has a kernel, even if G is restricted to have (all at once) DAG-width
and K-width 2, cycle rank also 2, and DAG-depth 4.

Finally, by Example 3.11 and Theorem 3.12, both the KERNEL and DFVS
problems are fixed parameter tractable on digraphs of bounded bi-rank-width.

3.6 MSO; Model Checking (MSO;MC)

Monadic second order (MSO) logic is a language often used for description of
combinatorial algorithmic problems. When applied to a one-sorted relational
graph structure (i.e. to a set V with a symmetric relation edge(u,v)), this lan-
guage is abbreviated as MSO;. All the problems expressible in MSO; are FPT
on (undirected) graphs of bounded clique-width or rank-width [CMR00,CKO07].
We use the same abbreviation MSO; also for digraphs with a relation arc(u,v).

Ezxample 8.11. The following properties are expressible in MSO; on digraphs
— a directed dominating set X as Vz(z € X V 3z € X arc(z, 2)),
— the existence of a kernel S as 3SVz[z ¢ S — (Jy € S arc(z,y))], or
— a feedback vertex set Z as VX[XNZ =0 — (3z € X Vy € X —arc(z,y))].

On the other hand, MSO; cannot express Hamiltonian cycle, for instance.

Not surprisingly, the MSO; model checking problem (MSO;mc) is FPT on
digraphs of bi-rank-width ¢, as follows from more general Theorem 3.12. More
generally, the LinEMSO; optimization framework includes all problems which
can be expressed as maximization of a linear evaluational term over all tuples
of sets X1,...,X; satisfying ¥(X1,...,X;) where ¢ is an MSO; formula —see
[CMRO0] for details. Analogously to [CMRO0] (or to [GHO8]) we get:

Theorem 3.12 (cf. [CMRO00], and [Kan08,GHO08]).
FEvery LinEMSO; optimization problem is fized parameter tractable when re-
stricted to digraphs of bi-rank-width t, with a parameter t.

Theorem 3.12 particularly implies that the problems listed in Example 3.11
(and many others) are FPT on digraphs of bi-rank-width ¢. No analogous results,
however, seem possible for our other directed width measures since one can
interpret MSO{MC of arbitrary undirected graphs via subdividing each edge
and giving the two new edges opposite orientations, leading to:

Proposition 3.13. The MSO; model checking problem is NP-hard even when
restricted to DAGs that are of K-width 1 and DAG-depth 2.

3.7 LTL Model Checking (LTLMmc) and Parity Games (PARITY)

Another useful language that allows to express properties of digraphs is Linear
Temporal Logic (LTL)—see, e.g., [BK08]. LTL model checking remains hard for
all of the directed width measures we considered here, including bi-rank-width
(as opposed to MSO; model checking).

Theorem 3.14. The LTLMC problem is coNP-hard even when the input di-
graph is restricted to have K-width 1, DAG-depth 4, and bi-rank-width 2.

Theorem 3.15. The LTLMC problem is coNP-complete on DAGSs.

Parity games—see e.g. [GTWO02] for a reference, play an important role in
the field of model-checking and formal verification. There are many reasons for
this. First, solving parity games is equivalent to model-checking the modal -
calculus, an important modal logic subsuming many other logics (e.g. CTL).
Moreover, the modal p-calculus is a bisimulation invariant fragment of MSO;.

Second, the exact complexity of solving a parity game is a long-standing open
problem. It is known to be in NP N co-NP, and widely believed to be in P. Since
the problem has proved to be very hard to solve, the research turned to solving
it on graphs of bounded width. It is trivially in P for acyclic digraphs. More-
over, it was shown that solving a parity game is in XP for digraphs of bounded
tree-width [Obd03], bounded DAG-width [BDHKO06] (hence also on bounded K-
width, DAG-depth, and cycle rank) and bounded Kelly-width [HKO08], and of
bounded clique-width [Obd07] (implying the same for bi-rank-width).

4 Conclusion

Table 1, and the related results in this paper, have left several interesting open

problems and questions. Just to specifically mention a few:

1) We suggest there exist FPT algorithms solving the DFVS problem for
bounded K-width or DAG-depth (two of the open table entries).

2) For some entries in the table, we neither expect an FPT algorithm, nor have
an NP-hardness estimate. E.g., MAXDI1CUT or k-PATH for bi-rank-width, or
c-PATH for cycle rank. Can we then, at least, show a W[.]-hardness result?

3) While we have given FPT and XP, respectively, algoritms solving the unit-
cost variants of DISTP and MAxDICuUT, these problems are usually consid-
ered in their weighted variants and then we expect their complexity to be
higher. We, however, have no further results in this direction.

Finally, we try to formulate the overall impression coming from Table 1:
Robber-and-cops based width measures do not seem to be very useful for pa-
rameterized algorithms on digraphs. One reason might be that cops “give” good
graph separators in the undirected case, but that does not work any more for
digraphs. We perhaps need something new to move on. At this moment, bi-rank-
width seems like a good alternative.

10

Acknowledgements

This work has been supported by a Czech-German bilateral grant of GACR
and DFG (201/09/J021 and RO 927/9). Moreover, P. Hlinény has also been
supported by the Czech research grant GACR 201/08/0308.

References

[Bar06]

J. Barat. Directed path-width and monotonicity in digraph searching.
Graphs and Combinatorics, 22(2):161-172, 2006.

[BDHKO06] D. Berwanger, A. Dawar, P. Hunter, and S. Kreutzer. DAG-width and

[BG04]

[BJKO09]

[BKOS]
[BXTVO8S]

[CDOG]

[CKO7]

[CKL*09]

[CMR00]

[DGKOS]
[Egg63]
[FGLS09)
[FHWSO]
[GHOS]
[GHOY]

[GJ79]

parity games. In STACS’06, volume 3884 of LNCS, pages 524-536. Springer,
2006.

D. Berwanger and E. Gradel. Entanglement — a measure for the complexity
of directed graphs with applications to logic and games. In LPAR 2004,
volume 3452 of LNCS, pages 209-223. Springer, 2004.

J. Bang-Jensen and M. Kriesell. Disjoint directed and undirected paths
and cycles in digraphs. Technical Report PP-2009-03, University of South
Denmark, 2009.

C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press,
Cambridge, Massachusetts, 2008.

B.-M. Bui-Xuan, J. Telle, and M. Vatshelle. H-join and algorithms on
graphs of bounded rank-width. submitted, November 2008.

J.-F. Culus and M. Demange. Oriented coloring: Complexity and approx-
imation. In SOFSEM’06, volume 3831 of LNCS, pages 226-236. Springer,
2006.

B. Courcelle and M. Kanté. Graph operations characterizing rank-width
and balanced graph expressions. In WG’07, volume 4769 of LNCS, pages
66—75. Springer, 2007.

J. Chen, J. Kneis, S. Lu, D. Molle, S. Richter, P. Rossmanith, S. Sze, and
F. Zhang. Randomized divide-and-conquer: Improved path, matching, and
packing algorithms. SIAM Journal on Computing, 38(6):2526—-2547, 2009.
B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimiza-
tion problems on graphs of bounded clique-width. Theory Comput. Syst.,
33(2):125-150, 2000.

P. Dankelmann, G. Gutin, and E. Kim. On complexity of minimun leaf
out-branching. arXiv:0808.0980v1, August 2008.

L. Eggan. Transition graphs and the star-height of regular events. Michigan
Mathematical Journal, 10(4):385-397, 1963.

F. Fomin, P. Golovach, D. Lokshtanov, and S. Saurab. Clique-width: On
the price of generality. In SODA’09, pages 825-834. STAM, 2009.

S. Fortune, J. E. Hopcroft, and J. Wyllie. The directed subgraph homeo-
morphism problem. Theor. Comput. Sci., 10:111-121, 1980.

R. Ganian and P. Hlinény. Automata approach to graphs of bounded rank-
width. In IWOCA’08, pages 4-15, 2008.

R. Ganian and P. Hlinény. Better polynomial algorithms on graphs of
bounded rank-width. In IWOCA’09, LNCS. Springer, 2009. to appear.

M. Garey and D. Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness. Freeman, San Francisco, 1979.

11

[Gru08]
[GTWO02]
[HKOS]

[HOO06]

[HOO08]
[HRW92]
[JRSTO1]
[Kan0g]

[KMO4]

[KOOS]

[LKMOS]

[NdMO6]
[Obd03]
[Obd06]
[Obd07]
[RS86]
[RS91]
[Saf05]

[vL76]

H. Gruber. Digraph complexity measures and applications in formal lan-
guage theory. In MEMICS’08, pages 60—67, 2008.

E. Gradel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infi-
nite Games, volume 2500 of LNCS. Springer, 2002.

P. Hunter and S. Kreutzer. Digraph measures: Kelly decompositions, games,
and orderings. Theor. Comput. Sci., 399(3):206-219, 2008.

P. Hlinény and J. Obdrzélek. Escape-width: Measuring ”width” of digraphs.
Presented at Sixth Czech-Slovak International Symposium on Combina-
torics, Graph Theory, Algorithms and Applications, 2006.

P. Hlinény and S. Oum. Finding branch-decomposition and rank-
decomposition. SIAM J. Comput., 38:1012-1032, 2008.

F. Hwang, D. Richards, and P. Winter. The Steiner Tree Problem. Annals
of Discrete Mathematics. Noth-Holland, 1992.

T. Johnson, N. Robertson, P. D. Seymour, and R. Thomas. Directed tree-
width. Journal of Combinatorial Theory, Series B, 82(1):138-154, 2001.
M. Kanté. The rank-width of directed graphs. arXiv:0709.1433v3, March
2008.

W. Klostermeyer and G. MacGillivray. Homomorphisms and oriented col-
orings of equivalence classes of oriented graphs. Discrete Mathematics,
274:161-172, 2004.

S. Kreutzer and S. Ordyniak. Digraph decompositions and monotonicity
in digraph searching. In WG’08, volume 5344 of LNCS, pages 336—347.
Springer, 2008.

M. Lampis, G. Kaouri, and V. Mitsou. On the algorithmic effectiveness of
digraph decompositions and complexity measures. In ISAAC, volume 5369
of LNCS, pages 220-231. Springer, 2008.

J. Nesettil and P. Ossona de Mendez. Tree-depth, subgraph coloring and
homomorphism bounds. European J. Combin., 27(6):1024-1041, 2006.

J. Obdrzalek. Fast mu-calculus model checking when tree-width is bounded.
In CAV 2008, volume 2725 of LNCS, pages 80-92. Springer, 2003.

J. Obdrzalek. DAG-width — connectivity measure for directed graphs. In
SODA’06, pages 814-821. ACM-SIAM, 2006.

Jan Obdrzalek. Clique-width and parity games. In CSL’07, volume 4646 of
LNCS, pages 54—68. Springer, 2007.

N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of
tree-width. Journal of Algorithms, 7(3):309-322, September 1986.

N. Robertson and P. D. Seymour. Graph minors. X. Obstructions to tree-
decomposition. J. Comb. Theory B, 52(2):153-190, 1991.

M. Safari. D-width: A more natural measure for directed tree-width. In
MFCS’05, volume 3618 of LNCS, pages 745-756. Springer, 2005.

J. van Leeuwen. Having a Grundy-numbering is NP-complete. Technical
Report 207, The Pennsylvania State University, September 1976.

12

APPENDIX

Notes on Section 2.1 (bi-rank-width)

Following Section 2.1, we describe Kanté’s bi-labeling parse trees [Kan08, Section
4] (thereafter called “algebraic expressions for bin-rank-width”), which charac-
terize bi-rank-width of digraphs up to a multiplicative factor 2 (Lemma 5.3).

A t-labeled digraph is a pair G = (G, lab) of a digraph G and a vertex labeling
lab: V(G) — 2%+ into subsets of ¢ labels, or equivalently in linear algebra
terms a mapping lab: V(G) — GF(2)! into the points of a t-dimensional binary
vector space. For technical reasons, we analogously define a t-bi-labeled digraph
H = (H,lab",lab™). A t-relabeling is a linear mapping f: GF(2)! — GF(2)t, or
in other words a binary ¢t x t matrix f.

Definition 5.1 (Bi-labeling join). Considering a t-labeled digraph G =
(G, lab) and a t-bi-labeled digraph H = (H, lab*,lab™), a t-bi-labeling join G® H
is defined on a disjoint union of G and H by adding, where u € V(G),v € V(H);
all arcs (u,v) such that |[lab(u) Nlab™(v)| is odd, and all arcs (v,u) such that

|lab(u) N'lab~ (v)| is odd. The resulting digraph is unlabeled.

Definition 5.2 (Bi-labeling parse trees). Considering t-labeled digraphs
G; = (Gy,lab;), i = 1,2, and relabelings fi, fo,h",h™: GF(2)! — GF(2)t,
we define a t-bi-labeling composition operator ®[ht h™; f1,f2] as follows.
G1®[hT,h™; fi, f2] Go = G3 where G3 = G1 ® (G, ht-1labl, h~-labl) and the
labeling of v € V(G;) in G3 is lab3(v) = f; - labl, i =1,2.

A t-bi-labeling parse tree T, see also [GHO08], is a finite rooted ordered sub-
cubic tree (with the root degree at most 2) such that

— the leaves of T' contain a ® symbol creating a new graph vertex of label {1},
— each internal node of T' contains one of the ¢-bi-labeling composition symbols.

A parse tree T then generates (parses) the digraph G which is obtained by
successive leaves-to-root applications of the operators in the nodes of T'.

Lemma 5.3 (Kanté [KanO08]). Let G be a digraph of bi-rank-width t. If m is
the smallest integer such that (some labeling of) G is produced by some m-bi-
labeling parse tree, thent > m > t/2.

Having now the bi-labeling parse tree machinery at hand, it is straightforward
to translate the formal tools of [GHO8,GH09] to digraphs of bounded bi-rank-
width, see e.g. the proof of Theorem 3.7. In this way, for instance, the XP
algorithm for undirected Hamiltonian path [GH09] directly translates to an XP
algorithm for Hamiltonian path in digraphs of bounded bi-rank-width.

On the other hand, we remind the readers that one cannot use an undi-
rected rank-decomposition (or parse tree) of a digraph G to design a dynamic
programming algorithm for a problem referring to the direction of arcs of G.
That is because the parse tree produces large bipartite cliques, and one cannot
exhaustively process all possible orientations of those.

13

For sake of completeness, we lastly remark that Kanté [Kan08] considers also
another directed generalization of rank-width, the so called GF(4)-rank-width.
Since these two are within a constant factor, there is no need to consider the
latter in our paper.

Proofs for Section 2.2 (DAG-depth)

Theorem 2.7. The DAG-depth of a digraph G is at most t if, and only if, the
cop player has a “lift-free” winning strategy in the k-cops and robber game on G,
i.e., a strategy that never moves a cop from a vertexr once he has landed.

Proof. (sketch) We proceed by induction along the definition of DAG-depth.
That is trivial if [V (G)| = 1. Let Fi, ..., Fy be all the reachable fragments of G. If
d > 1, then the robber may start in any vertex of any F; C G, i € {1,...,d}, and
so the cop player needs as many moves in G as in such most expensive reachable
fragment which is max{ ddp(F;):i=1,...,d} by inductive assumption.

Now assume G has a single reachable fragment. Hence there is v € V(G)
which can reach whole G, and so whenever another cop is to land at s € V(G),
the robber may move to any vertex of G —s. It follows from inductive assumption
that the cop player needs another ddp(G —s) moves after landing at s. Therefore,
the cop player needs at least 1+ min{ ddp(G —v) : v € V(G) } moves on G, and
this is also sufficient. O

Proposition 2.9. Consider a digraph G of DAG-depth t, and denote by £ the
number of vertices of a longest directed path in G. Then |[log, ¢ +1 <t <.

Proof. Firstly, we show that the DAG-depth of an ¢-vertex path P is at least
|log, ¢| 4+ 1. This is trivial if £ = 1. Since a path has a single reachable fragment,
we have from the definition ddp(P) = 1 + ddp(Q) where @ a path of length
[(¢—1)/2]. If £ is even, then ddp(P) = 1+ |logy(¢/2)] +1 = |logy ¢| + 1. If £ is
odd, then ddp(P) =1+ [logy((¢ —1)/2)| +1 = [logy({ —1)| +1 = [log, ¢| + 1.

On the other hand, we describe a simple /-move lift-free winning strategy for
the cop player on any such digraph G. The first cop lands on the initial position
sy of the robber. In cop move ¢ > 1, the cop number i lands on a vertex s; of
G which is the outneighbour of s;_; on some directed path from s;_; to the
current robber position. Since all directed paths starting in s; have < /£ vertices,
the robber is finally caught after < ¢ cop moves. O

Notice that Proposition 2.9 gives an efficient (XP) construction of an upper-
bound DAG-decomposition: We compute the longest directed path length ¢ in
G (e.g., [CKLT09]), and then construct a DAG-decomposition of width at most
¢ for G; of course, with no matching lower bound.

Proofs for Section 2.3 (K-width)

Theorem 2.10. For any digraph G, the K-width of G is greater or equal to the
DAG-width of G minus one.

14

Proof. Let T be any depth first search tree of G. Based on T, we outline a
monotone search strategy for the cop player on G, in which the player is to use
a cop number k + 1 only if there are at least k paths between a pair of vertices.

(i) In the first move a cop is placed at the root of T
(ii) In each subsequent cop-placing move, the cop player chooses the (unique)
vertex v of G such that; v is an outneighbour of a cop-occupied vertex, and
v reaches the robber along a cop-free path in T'.
(ili) Whenever a cop-occupied vertex wu is no longer reachable from the current
robber position, the cop from wu is lifted back.

This strategy is clearly monotone. Consider the vertex v in rule (ii). If there
was a cop-occupied vertex w in GG which is not an ancestor of v, then w must
no longer be reachable by the robber since T' is a DFS tree. So (iii) for v = w
applies before (ii). Therefore, our strategy maintains an invariant that all vertices
occupied by cops belong to one directed path of T.

Consider now a situation when there is a set U of k cop-occupied vertices in G,
and rule (ii) applies again. Then there is a path P C T such that U C V(P). Let
s be the last cop-occupied vertex of P. By (iii), each vertex w € U is reachable
in G from the robber vertex r along a cop-free path @.,. So P U Q,, contains a
path from r to s, and these k£ paths are pairwise distinct for distinct w. O

Notice that the proof of Theorem 2.10 gives an efficient way to construct a
bounded DAG-decomposition for G if the K-width is bounded. Furthermore, the
following simple claim will be useful in algorithmic applications of K-width.

Lemma 5.7. If G is a digraph of K-width t, then all (at most t|V(G)|) directed
paths starting at a vertex uw € V(G) can be enumerated in time O(t - |E(G)|).

Proof. Enumerate paths in G starting at u by backtracking and prune the search
whenever finding a vertex that is already on the current path.

The resulting search tree has at most ¢|V(G)| nodes: Each node in the search
tree corresponds to a simple path in G starting at u. There can be at most ¢
such paths with the same terminal vertex.

The time spent in each node of the search tree is O(d), where d is the out-
degree of the terminal vertex of the corresponding simple path. Overall this
amounts to a running time of O(t|E(G)|). 0

Proofs for Section 3.1 (HAM, k-PATH)
Note that FPT-membership for LONGEST PATH implies membership for HAM.

Theorem 3.1(a). Given a digraph G with K-width at most t, one can solve
LONGEST PATH in time O(t|V(G)| - |E(G)]).

Proof. For all u € V(G) enumerate all simple paths starting at u according to
Lemma 5.7 while keeping track of their lengths. O

15

Theorem 3.1(b). Given a digraph G with DAG-depth at most t, one can solve
LONGEST PATH in time 42 +00) .|V(@)| - |E(G)|.

Proof. We know by Proposition 2.9 that [log, ¢] +1 < ¢ </, or in other words,
¢ < 2!, where / is the length of the longest path. We can hence use an arbitrary
FPT-algorithm for the Longest Path decision problem in the standard param-
cterization (e.g., [CKLT09] with running time 4¢+00”0|v(@)| - |E(G)|): We
begin with £ = 1 and subsequently increase ¢ until a “no”’-instance is found.
This yields an FPT-algorithm for parameter ¢ even if ¢ is unknown to the algo-
rithm. O

Theorem 3.2(a). The k-PATH problem can be solved in polynomial time on
graphs of K-width at most 2 or DAG-depth at most 2.

Proof. Given a digraph G with K-width < 2 and k pairs of nodes (s1,t1),
ooy (Sky), we first for every 1 < i < k compute by Lemma 5.7 the (wlog) two
possible paths p; 1 and p; 2 from s; to t;. Then we construct a 2-SAT formula
as follows: For each pair (s;,t;), 1 < i < k, there is a clause over the two alter-
native paths, C; = {p; 1,pi, }. Furthermore, for each pair of non-disjoint paths
p1,p2 € {pij:1<i<k,1<j<2}, such that py # pa and V(py) NV (p2) # 0,
there is a clause excluding each other, C,, ,, = {—p1, p2}. We omit the sim-
ple proof that the formula is satisfiable if and only if there is a solution to the
k-paths instance at hand.

Similarly, given a digraph G with ddp(G) < 2 and k pairs of nodes (s1,%1),
.o, (Sk,txk), we proceed as follows. In the first step, for each pair (s;,t;) such
that (s;,t;) € E(G), we simple remove both vertices s;,t; from the instance.

Hence we may assume that every s;—t; path in G is formed by a pair of arcs
(si,x), (x,t;) € E(G), cf. Proposition 2.9. We denote by X; the set of all such
x in G for the pair (s;,t;). Then, clearly, the k-PATH instance has a solution if
and only if X4,..., X} admit a system of distinct representatives, which can be
decided in P. O

Theorem 3.2(b). The k-PATH problem is NP-complete on DAGs with K-
width 3 and DAG-depth 4.

Proof. We reduce from the well-known NP-complete 3-SAT problem, where each
clause contains exactly three literals. Let ¢ be a 3-SAT-formula with m clauses
C4,...,C,, over n variables. Without loss of generality, we may assume that
every variable occurs in at most three literals (cf. the proof of Theorem 3.6),
and that no variable has all three literals positive or all three negated (otherwise
we set it true or false, respectively). Hence every literal occurs at most two times
in the whole formula ¢. We create a digraph G as follows.

For every variable x;, we add a gadget as depicted in Figure 1. The “up-
per” path in the gadget corresponds to a negative assignment of the vari-
able since it leaves the nodes T;; and T;2 available for clauses, while simi-
larly the “lower” path corresponds to a positive assignment. Then, for every
clause C; = {1, 03,03}, we add two nodes s¢, and t¢,. Then, for every literal [;,

16

L Il gda_ - _
[‘ [1
__I_,_l___l_|_¥J_¢ _____
S Ly ! M ! ;.
T2 (_ S ST __|_,_'I _____ tiCQ
| | [ll]
T;1 Ti2 [R
vV (N (N
v vl Yy
Sz, ta:i Vi ! \y
Ei,l fi,? tcl tCz tC3

Fig. 1. Left: gadget for variable x;; right: schematic of the construction

1 < j < 3, such that [; is the kth occurrence in the formula, we add the edges
(Sci,ej‘,k) and (@j,k,tci).

For example, if I3 = T5, and Ty occurred already in some C; with i’ < 7, then
we add the edges (s¢,,x52) and (x52,tc,). See Figure 1 for a schematic view.

It is easy to see that the resulting digraph is a DAG, the longest path con-
tains at most four nodes (which bounds the DAG-depth by Proposition 2.9),
and between any two nodes there are at most three paths. Furthermore, ¢ is
satisfiable if and only if G is a “yes”-instance to the k-path problem with pairs
(82;,tz,) for all 1 < < n and pairs (s¢,,tc,) for all 1 <j <m:

Let C be a satisfying assignment of the variables. For the path between a
pair (sg,,ts,), we use the path corresponding to the assignment of the variable
x;, i.e., if ; is assigned 0, we use the path through the nodes labeled with z; ;
and z; 2, and the path through 7; ; and 7; » otherwise. If a clause C is satisfied
by some literal /;, then by construction the path between s, and ¢, is not using
the node v labeled with [;, which means we can use the path sc;vto; for the
pair (sc;,tC;). Hence, all pairs can be connected by disjoint paths.

If otherwise there is a solution to the k-path problem on the constructed
instance, then first note that a path between each s, and t,, for every variable x;
either has to use the “positive” or the “negative” path through its corresponding
gadget. We choose an assignment C' of the variables, where each variable is
assigned 0 if the path between s, and ¢,, uses the path through the nodes
labeled with z; ; and z; 2, and is assigned 1 else. Then each clause C; = {l;,12,13}
is satisfied: The path between s¢; and tco, has to use one of the three nodes
corresponding to Iy, lo, and I3, say [for some variable x;. Since all paths are
disjoint, the path between s, and ¢, is not using l;, and therefore the variable
is assigned a value such that [has the value 1 and Cj is satisfied. O

Lemma 5.12. Let G be a digraph, and let ¢ pairs of vertices s;, t; € V(G), i =
1,...,c be given. There is an MSO, formula expressing (c-PATH) the existence
of ¢ pairwise disjoint directed s;—t; paths, i =1,...,¢c, in G.

17

Proof. We write

E|X1,...,XC /\ XiﬂXj:(b VAN /\ siti € X5 A
i#je{l,...,c} 1€{1,...,c}

/\ VZCXi((si€ ZNt; ¢ 2) — 3w € Z,y € X;\Z arc(z,y))
1e{1,...,c}

which means that there exist pairwise disjoint sets Xi,...,X. C V(G) such
that s;,t; € X;, and each X; induces a subdigraph of GG in which ¢; is reachable
from s;. Notice that s;,t; are not variables, but constants in this sentence. O

Theorem 3.3. There is a fized parameter tractable algorithm solving the
c-PATH problem (for fized ¢) on a digraph G

a) in time O(t° - |[E(G)|) if G is of K-width at most t;

b) in time O((2C)Ct4t |E(@)|?) if G is of DAG-depth at most t.

Proof. (sketch) a) We, for eachi = 1,... ¢, use Lemma 5.7 to list all < ¢ distinct
directed paths from s; to ¢;. Then, using brute force over all ¢ possibilities, we
check whether there is a selection of pairwise disjoint ones.

b) This algorithm uses part (a) and recursive calls in a clever way. By Propo-
sition 2.9, the longest directed path in G has length ¢ < 2! (which is the only
extra information we use about G). We are actually going to recursively solve
a more general problem to find a collection of ¢ pairwise disjoint directed s;—t;

paths @; in G such that E(Q;) C E; C E(G). Initially £y = --- = E. = E(G).
Let P; be the collection of all s;—t; paths with arcs from E;. If |P;| < (cf)’z2
for all i = 1,...,¢, then we may actually use (a) to solve the problem in time

O((cf)ce2 -|E(G)]). Otherwise, |P;| > (c0)” for some i, and by the pigeon-hole
principle, there exist vertices s’,t" in G such that ¢f suitable fragments of paths
from P; form pairwise internally disjoint s’—¢' paths Ry,..., R.. These paths
can be found in time O((CE)Z2 -|E(G)]) using an approach similar to Lemma 5.7.

Now, we make a new arc set E. from FE; by removing all arcs of Ry U---U Ry,
and adding a new arc f' = (s',t'). We call the same algorithm recursively on
Ey,...,El,... E..

The above algorithm clearly stops after O(c|E(G)|) recursive calls since each
call decreases |E1|+---+|E.|. Hence the overall run-time is O((cﬁ)cz2 |E(G)?).
It remains to prove that there is a solution with constrains to F+,..., E;, ..., E,
if, and only if, there is a solution to E4,...,E!, ..., E.. The “only if” direction
is trivial since we can simply use the arc f’ = (s',¢") when needed.

In the “if” direction, when f’ is not used in the path, we are done. If f’
is used in the s;—t; path @, then we notice the following: By the pigeon-hole

principle, some of the paths Ry,..., R,y must be disjoint from all other ¢ — 1
paths of < £ vertices in the solution, and hence we can use the path (Q; — f')UR;
with all arcs in F; instead. O

18

Proofs for Section 3.2 (DiIDS and DISTP)

Theorem 3.4. DIDS and DISTP are NP-complete on DAGSs that are of K-
width 2 and DAG-depth 3.

Proof. We use a reduction from VERTEX COVER to show hardness. Let a graph
G = (V,E) and k € N be an input instance for VERTEX COVER. Wlog, we can
assume that |V| > k + 2.

We construct G’ = (V', E’) as follows. We set V' =V UE U {vp} and define
the set of edges as follows:

E' ={(vg,v):veV}U{(v,e) eV XE:veEe}.

Now, G = (V, E) has a vertex cover of size k iff G' = (V’, E’) has a directed
dominating set of size k + 1.

Assume that there is some k vertex cover C C V in GG. Then vy U C' is a
directed dominating set in G’, because vy dominates itself as well as all v € V,
and since each e € F is incident to some v € C, C dominates E in G’.

Now let D be a directed dominating set in G’ of size k+ 1. Since |V| > k+ 2,
vg € D, because otherwise a node in V' would not be dominated. Moreover, we
can assume that D N E = (), because each e € E can only dominate itself in G’.
It is thus always safe to pick a predecessor of e instead. But then, each e € F is
dominated by some v € DNV, and thus DNV is a vertex cover in G.

Finally, G’ is a DAG with K-width two, since there are only two paths from
vg to each e € F, only one path from vy to each v € V' and only one path from
each v € V to each e € E. Likewise, the DAG-depth of G’ is at most three.

Note that the same construction also can be used to prove hardness for the
Di1STP problem. The dominating set implied by a vertex cover forms a Steiner
tree of size 1 4+ k 4+ n, by connecting all e € E via nodes in D to the root vy.

Moreover, any Steiner tree T' that connects vg to all e € E implies a vertex
cover V(T) NV, since each node in F must be connected by a node v € V' with
v € e. Moreover, any such Steiner tree 7" of cost at most k+ |E| contains at most
k nodes from V', and thus V(T) NV is a vertex cover of size k in G. O

Proposition 3.5. The (unit cost) DISTP problem can be formulated as a
LinEMSO, optimization problem, and hence DISTP is fixed parameter tractable
when parameterized by bi-rank-width.

Proof. Let G be a digraph, and T" C V(G), r € V(G) \ T. Though DiISTP
problem optimizes over the number of edges (recall unit cost!) of a Steiner tree
S C G rooted from r and spanning T, there is a simple equality; |E(S)| =
|V (S)| — 1. Hence we can, instead, minimize the cardinality of X = V(S) such
that X induces in G directed paths from r to all vertices of 7.

Similarly to Lemma 5.12, we can thus write (with constants r and T")

VteTVZC X((reZnt € Z)— 3xe Zye X\Z arc(z,y)). O

19

Proofs for Section 3.3 (MaxD1Cur)

Theorem 3.6. The MAXDICUT problem is NP-hard on a digraph G even if G
is restricted to be acyclic (implying directed tree-width, DAG-width and Kelly-
width, and cycle rank 1) of K-width 4608 and DAG-depth 11.

Proof. To verify that the digraph which is the result of the [LKMO08] reduction
from not-all-equal (NAE) 3SAT has bounded DAG-depth and K-width, we need
to slightly modify the construction.

First we may assume the the input instance ¢ of NAE-3SAT contains no
clause with both positive and negative occurrence of the same variable. If this is
not so, we can remove all such clauses, as they are always satisfied in the NAE-
SAT sense. Moreover, we can also assume that each variable occurs at most 4
times in the input formula. If not, we can replace the k different occurrences of
a variable z with k fresh variables z1,...,z; and add the following clauses to
the formula: (21 V —xo Vo) A (22 VgV -oxs) AL A(xg V -z Voxy). It is not
hard to see that the new formula is satisfied (in the NAE sense) iff the original
formula was satisfied, and every variable occurs at most four times. Moreover,
the size of this new formula is linear in the size of ¢.

Fig. 2. MaxDiCut reduction gadget

20

Fig. 2 shows a part of the resulting graph for formula ¢, a variable x; and a
clause ¢;, which contains a positive occurrence of x; on the second position. The
labels on the edges show the weight of the given edge (unlabelled edges have
weight 1). |z;| is the number of occurrences of the variable z; in the formula ¢
(at most four, as argued above).

To obtain an unweighted graph we use the construction from [LKMO08, Theo-
rem 3]. This construction first replaces each edge (u,v) of weight k by k parallel
edges, and then replaces each parallel edge by a path of length 3 (two fresh
vertices are added for each such edge).

To compute K-width we notice that the highest number of paths between
some a; and b; and can be at most 6|x;| * 6|z;| * 2(1 + 2 + 1) < 4608, since
|z;| < 4. Finally, the DAG-depth is bounded by the length of longest path,
whichis 3+3+3+1+1=11. O

Theorem 3.7. The unweighted MAXDICUT problem on a digraph G of bi-rank-
width t is polynomially solvable for every fixed t (i.e. it belongs to the class XP).

Proof. (sketch) We give an XP dynamic programming algorithm running on a
bi-rank-width parse tree (cf. the appendix of Section 2.1 for the terminology).

We use shortcut notation arcs(G; Vy, Vi) = { (u,v) € E(G) : u € Vy,v € V1 }.
Given two t-labeled digraphs G, G5 and mappings ¢;: V(G;) — {0,1} where
i = 1,2 (here ¢; gives a partition of V(G;) into Vi = ¢; *(0) and V; = ¢; (1)),
we define an equivalence relation: (G1, 1) ~ (G2, p2) if, and only if, the following
holds for all t-bi-labeled digraphs H and all mappings ¢: V(H) — {0,1}

‘arcs (él ® H: gofl(O),w_l(l))‘ + ‘CW’CS ((_;1 ® H; ¢_1(0)7<P1_1(1)>‘ =
= ‘arcs (@2 ® H: @51(0),1#_1(1))‘ + ‘CLTCS (GQ ® H; ¢_1(0)7902_1(1))‘ .

In informal words, the relation ~ captures “all necessary information from G;”
needed to find an optimal solution to MAXDICUT on any (bigger) G; ® H.

Let T be a t-bi-labeling (bi-rank-width) parse tree of the input digraph G,
constructed from Theorem 2.5 (Lemma 5.3). Our algorithm processes T in
the leaves to root direction. At every node s of T, parsing a t-labeled sub-
digraph G, and for every equivalence class C of ~, we remember a mapping
¢: V(Gs) — {0,1} achieving maximum cardinality of arcs(Gy; ¢ 1(0), 97 *(1))
among all (G,) € C. This information can be easily combined from the two
descendants in our parse tree processing. The maximum value (over all classes
of =) recorded at the root of T' is then the optimal solution.

It remains to bound the number of classes of ~. From the definition of ¢-bi-
labeling join operator ® (cf. the appendix of Section 2.1), we straightforwardly
derive the following claim: Let a signature of (G,), where G = (G,lab) is a
t-labeled digraph, be the pair of multisets ({ lab(z) : z € ¢=(0) }, {lab(z) : z €
e 1 (1) }). If (G1,¢1) and (Ga,p2) have the same signature, then (G, p;) ~
(G2, p2).

21

The total number of signatures for t-labeled n-vertex digraphs is clearly at
most n22" since every lab(z) € GF(2)" and we record the multiplicities of all
labels. Hence our above outlined algorithm runs in time n©2") which is polyno-
mial in n for every fixed ¢. O

Proofs for Section 3.4 (OCN)

Theorem 3.8. The problem (4-OCN) to decide whether a digraph G satisfies
Xo(G) < 4 is NP-complete even if G is acyclic of K-width 3 and DAG-depth 5.

Proof. We use the following easy claim from [CDO06] as the starting point of our
reduction: Let R be the digraph on the right-hand side of Fig. 3, and @) be the
acyclic digraph on the left-hand side. Then every oriented 4-colouring of () must
induce a homomorphism into R such that b is mapped to B and f1, fo are both
mapped to F.

fo e
\
/
N
>
Qfl B F g

Fig. 3. Forcing a 4-colouring homomorphism

We reduce from NP-complete not-all-equal (NAE) 3SAT problem, which has
an input CNF formula ¢ with exactly three literals in each clause, and the
question is whether ¢ has a satisfying assignment such that no clause receives
three times true. We replace each variable x of ¢ with a gadget depicted in Fig. 4
left, consisting of a copy of @), two arcs leaving the copy of vertex b into new
vertices p and n, a new path of length 5 from p to n, and the necessary number
of terminals for the x and —x literals occurring in ¢, each adjacent from p or
n, respectively. Then we replace each clause C' of ¢ with a gadget depicted in
Fig. 4 right, consisting of three directed paths of lengths 3,4,5, with a common
source. The ends of these paths are the terminals for the literals of C.

Let G, be the digraph obtained from all these variable and clause gadgets
(pairwise disjoint so far) by identifying all the pairs of corresponding (in ¢)
literal terminals. We claim that ¢ is NAE satisfiable if and only if the oriented
chromatic number of G, is 4. It follows from the following sequence of claims:

— Any oriented 4-colouring of G, is a homomorphism into the above digraph R.
— In any homomorphism of the variable gadget into R, the vertices p,n are
mapped into {A,T}. Furthermore, the colours of p and n must be distinct.

22

\ ’l<o
- l3 0+——e——e——9

lo O—e———e—9 ()

b $

o 2 O+—e—eoc—3

Fig. 4. Variable and clause gadgets for 4-OCN reduction

Hence all the z-terminals of the gadget are mapped to 1" and all the —x-
terminals are mapped to F' (meaning x is valued true), or vice versa (meaning
x is valued false).

— A simple case-analysis shows that any homomorphism of the clause gadget
into R such that ¢1, {5, {3 are mapped into {7, F'} has an additional property
that not all three colours of /1, {5, {5 are the same (meaning that this clause
is NAFE satisfied).

— On the other hand, for both possible surjective mappings p: {z, -z} —
{T, F'} there exist homomorphisms of the variable gadget into R extend-
ing p. Similarly for all surjective mappings q: {{1,¢2,03} — {T,F} there
exist homomorphisms of the clause gadget into R extending q.

Secondly, we claim that G, has K-width 3 and DAG-depth 5. Since all the
terminals in our construction of the acyclic digraph G, are sinks, it is enough
to verify the claimed properties for each gadget separately. The K-width bound
is easy; we get up to three distinct paths between two vertices in a copy of Q
(Fig. 3). We now show a winning strategy for the cops on a variable gadget in
5 moves. In the first two moves, cops land on b and p, and then the robber is
easily caught on one of the remaining directed paths of length < 6. For a clause
gadget, just 4 moves suffice when the first cop lands on C'. O

Proposition 3.9. The problem (c-OCN) to decide x,(G) < ¢ on an input di-
graph G of bi-rank-width t is fived parameter tractable with parameters ¢ and t.

Proof. We write an MSO; formula

3Xy,..., X, /\ Vr,y € Xi(ﬂarc(ac,y))

i=1,...,c

A /\ Vo,y € X;,2,t € X; (arc(ac, z) — ﬂarc(t,y))

t,j=1,...,c

which describes valid oriented colouring classes X1,... X, in a graph G. Hence
the result follows from Theorem 3.6. O

23

At last we remark that, although there is an XP algorithm computing the
chromatic number of a given graph of bounded rank-width, it is open whether
such an algorithm could exist for computing the oriented chromatic number
of a digraph of bounded bi-rank-width. It seems that the known “undirected”
algorithm does not extend in this way.

Proofs for Section 3.6 (MSO;MC)

Theorem 3.12 (cf. [CMRO00], and [Kan08,GHO08]).
FEvery LinEMSOq optimization problem is fized parameter tractable when re-
stricted to digraphs of bi-rank-width t, with a parameter t.

Proof. (sketch) Given an input digraph G of bi-rank-width ¢, we first use Theo-
rem 2.5 to compute a width-¢ bi-rank-decomposition of G, and then construct an
expression X¢ of clique-width < 2¢T1 — 1 for G using [Kan08, Proposition 5.3].
Now, although the formulations in [CMRO00] speak only about FPT solvability
of LinEMSO; problems on undirected graphs (their 7y graph structure has a
symmetric adjacency relation) of bounded clique-width, there is no apparent
mathematical reason why not to extend the whole interpretation scheme there
to digraphs. Therefore, [CMRO0] (indirectly) implies our theorem.

Alternative proof. Nevertheless, the indirect interpretability approach (based on
[CMRO0]) to Theorem 3.12 has some disadvantages. First, there is no apparent
explicit algorithm behind it, and no “nice” estimate of run-time dependency on
t for particular problems except a generic “tower of exponents”. Second, the
clique-width parameter in the above reduction may grow up to exponentially in
t which is not good in applications.

We propose another, more explicit approach to proving Theorem 3.12, based
on the bi-labeling parse trees of [Kan08] and the proof method of [GHO08, The-
orem 4.2] (which has been an alternative to [CMRO00] on undirected graphs of
bounded rank-width) Given an input digraph G of bi-rank-width ¢, we first use
Theorem 2.5 to compute a width-t bi-rank-decomposition of GG, and then we
translate this decomposition into a t¢-bi-labeling parse tree, e.g. in quadratic
time using the method of [GHO8, Theorem 2.2].

Now, with the same “automata-regularity” tools as used in [GHO08, Theo-
rem 4.2], we prove (constructively) the following: For every MSO; formula ¢
and fixed ¢, there is a finite tree automaton accepting exactly those t-bi-labeling
parse trees T giving a digraph G7 such that G |= ¢ (when ¢ has free variables,
we naturally consider G'r equipped with interpretations for these free variables).

In a dynamic processing of the input labeling parse tree, we then keep track
only of suitable “optimal” representatives of all possible interpretations of the
free variables in ¢, indexed by the states of the automaton. The overall running
time is O(f(t)-n?) for some computable f depending on the problem (on ¢). O

Proposition 3.13. The MSO; model checking problem is NP-hard even when
restricted to acyclic digraphs of K-width 1 and DAG-depth 2.

24

Us
* w’l}g,l
w’Ug,Q

wl}g,3

Fig. 5. The construction used in Theorem 3.14

Proof. We show an MSQ; interpretation of undirected graphs in suitable di-
graphs. Given a graph H without isolated vertices, we construct an acyclic di-
graph G of K-width 1 and DAG-depth 2: For every edge e = uv of H, we add a
new vertex x, and replace e with two arcs ux,, vx.. Notice that G has no directed
path on 3 vertices. A vertex v of H can be then identified in G with Jz(arc(v, x),
and a predicate edge(u,v) can be written as Jz(arc(u, z) A arc(v, x)). The claim
follows since MSO; model checking is NP-hard on undirected graphs. O

Proofs for Section 3.7 (LTLMmC)

We briefly fix the LTL-notation used in the following proofs. Atomic properties
do hold on vertices (states). The Boolean connectors are as usual, the operators
next and eventually (in the future) are denoted by capital letters X and F. We
assume that if a run reaches a sink, it repeats its symbol infinitely often to avoid
the existence of finite runs. For clarity, this will be made explicit with self-loops
in the figures.

Theorem 3.14. The LTLMC problem is coNP-hard even when the input di-
graph is restricted to have K-width 1, DAG-depth 4, and bi-rank-width 2.

Proof. We use a reduction from the DS (undirected dominating set) problem,
which is a folklore NP-complete problem even when the input is restricted to
cubic graphs. Let G = (V, E), k € N be an input instance for DS such that the
graph G has all degrees 3. We construct the following instance of LTLMC with
an underlying digraph G’ = (V', E'):

25

Y

(1)

Fig. 6. The construction used in Theorem 3.15

For each v € V, we define V] = {uy,, uy1,Up2,Uy,3}. Then V' = {s,t,c} U
Uper Vo We let properties S hold in s, and 7' in ¢. If the neighbours of each v in
G are wy,1, Wy 2, Wy 3, then let v hold in u,, and w, ; hold in wu, ; for i = 1,2, 3.
Edges are added as follows.

E' ={(s,¢),(c,t)} U{(c,up), (up3,c) ;v €V}
U (tyy Uy, 1)y (U, 15 Uy 2) 5 (U2, Uy 3), 50 €V

Then
- 4 1+5k+1
F=-(X T A /\UGV Fu)

holds on G’ iff G does not contain a dominating set of size k. See Figure 5 for
an illustration.

Assume there is any dominating set D of size k in G. Then the run (i.e. di-
rected walk in G’) R starting in s, following the cycle through each V] U {c} for
all v € D, and visiting only ¢ afterwards, does not satisfy F: After 1 + 5k + 1
steps, the sink ¢ is reached (where T' holds), and since C' is a dominating set,
each v € V holds at some point in P — namely when V) is traversed for some
w € D that dominates v.

Now assume that G contains no dominating set of size k. Then, no run R of
length at most 1+ 5k can satisfy A, ., Fv: Since at most k sets V, ...,V
are visited by R and since the corresponding nodes v1,...,v; € V cannot form
a dominating set in G, there is some w € V such that w does not hold on R.
Hence, any path that satisfies A\ .y, F'v cannot satisfy X9k+1 ¢ at the same
time. Therefore, F holds on G’.

Finally, the digraph G’ has clearly K-width 1, and it can be shown to have
DAG-depth 4. To prove that the bi-rank-width of G’ is at most 2 (recall Sec-
tion 2.1), we look at the set Y = {s,t,c}. Then both matrices Ay and Ay have
only one nonzero row each, and so brkg:(Y) = 2. Furthermore, the subdigraph
G’ —Y is a collection of paths, and so brkgs can easily be 2-branched on V/\ Y.
Hence the bi-rank-width of G’ is at most 2. O

Theorem 3.15. LTL model checking is coNP-complete on DAGs.

Proof. For containment in coNP, note that the NTM just has to guess a run on
which the formula does not hold. Since there are no loops (except self-loops),
the length of this run is polynomially bounded.

26

For the hardness part, we use a similar construction to the one used in The-
orem 3.14. See in Figure 6. Let G = (V, E), k € N be an input instance for DS
such that the graph G has all degrees 3. We construct the following instance of
LTLMC with an underlying digraph G’ = (V', E’):

Again, V] = {uy, Uy,1, Uy 2, Uy 3} for each v € V. Then V' = {50, 51,..., 5y,
t} UUyev V- We let S hold in sg and 7" hold in ¢. If the neighbours of each v in
G are wy,1, Wy 2, Wy, 3, then let v hold in u,, and w, ; hold in wu, ; for i = 1,2, 3.
Edges are added as follows, assuming V' = {vy,...,v,} (in arbitrary order).

B ={(si—1,8) : 1< i <|V[YU{(sjv,)} U{ (8i-1, U0,)5 (U, 3,80) 1 1 <0 < V[}
U {(ukuvul)v (uvi717uvi72)7 (uvi727u'01'73) 1< < V|}

Then
F =~ <X4k+|vl t A /\ Fv)
veV

holds on G’ iff G does not contain a dominating set of size k. The rest follows
in the same way as in the proof of Theorem 3.14. O

27

