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GLOSSARY OF SYMBOLS

graphs

vertex set of a graph G

edge set of a graph G

set of faces of an embedded graph G

a shortcut for an edge with ends u and v

degree of a vertex v in G

neighbors of a vertex v in G

complete graph on n vertices

complete p-partite graph with parts of sizes nq, ...

cycle on n vertices

path on n + 1 vertices

F and G are isomorphic
F is a subgraph of G

the subgraph of G induced on the vertex set V'
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G+e

GJe

G {w}
G/ w{y}
G v {uy,us}

Gaw{y}

Bg, CQ, D4, etc.

Ao

I1

! o (]
7, Cs, D5, etc.

deletion of a set of vertices X from G
deletion of a set of edges F' from G
deletion of a vertex v from G
deletion of an edge e from G
addition of an edge e to G

contraction of an edge e in G

YA-transformation of a vertex w in G
splitting of a vertex w in G
triad addition for an edge ujus in G

triangle explosion of a vertex w in G

the family of 32 connected minor-minimal nonprojective graphs
(Appendix A)

graphs from the family A (Appendix A)
the family A — {K 992, B7,C3, D2} (Appendix A)
the family of 16 graphs from Appendix B

graphs from the family IT (Appendix B)
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SUMMARY

Planar covers of graphs, with an extension to covers on other surfaces, were
studied. A simple graph H is a cover of a simple graph G if there exists a mapping
¢ from V(H) onto V(G) such that for every vertex v of G, ¢ maps the neighbors of
v in H bijectively onto the neighbors of ¢(v) in G. In 1986, S. Negami conjectured
that a connected graph has a finite planar cover if and only if it embeds in the
projective plane.

The “Kuratowski theorem for the projective plane” by D. Archdeacon implies
that Negami’s conjecture holds as long as none of the 32 connected minor-minimal
nonprojective graphs has a planar cover. Results by D. Archdeacon, M. Fellows,
and S. Negami from 1987-1988 stated that 25 of these graphs had no planar covers.
In this thesis, the conjecture was verified for three other graphs (K44—e, C4, and
D,) of the 32. Using those results, it was proved that, up to obvious constructions,
there were at most 16 possible counterexamples to Negami’s conjecture. (This was
joint work with R. Thomas.) A consequence of this work is that in order to prove
Negami’s conjecture it suffices to prove that K2, has no planar cover. However,
the conjecture is still open.

A reformulation of Negami’s conjecture, which had a straightforward gener-
alization to nonorientable surfaces, was proposed. Some support for the generalized

conjecture was given in the case of the Klein bottle.
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CHAPTER 1

INTRODUCTION

1.1 Graphs

Graphs and Subgraphs; Graph Isomorphism

There are many books on graph theory available, among them [7],[8],[11],[40].
Our definitions are based on [8].

A graph G is an ordered triple G = (V, E, ¢) consisting of a nonempty set
of vertices V, a set of edges E (disjoint from V'), and an incidence function € that
associates with each edge of G an unordered pair of (not necessarily distinct) vertices
of G. The vertex set, the edge set, and the incidence function of a graph G are also
denoted by V(G), E(G), and e¢ respectively. If e is an edge and u,v are vertices
such that e(e) = wwv, then e is said to join u and v; the vertices u,v are called the
ends of e. A graph is finite if both its vertex set and edge set are finite. All graphs
in this work are considered to be finite.

Graphs are commonly depicted such that the vertices are dots and edges are
curves joining them. (See examples in appendices.) If e is an edge, then the ends
of e are said to be incident with e, and vice versa. Two vertices which are incident
with a common edge are adjacent. An edge is called a loop if its ends are identical.

Two edges are called parallel if they have the same ends. If there is no danger of
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misunderstanding between parallel edges, e = {u, v}, or shortly e = wv, is used to
denote an edge e with ends u,v.

The number of vertices of a graph G is the cardinality of the set V(G), and
the number of edges is the cardinality of E(G). The degree dg(v) of a vertex v in
G is the number of edges of G incident with v, each loop counting as two edges. A
graph G is k-reqular if dg(v) = k for all vertices v € V(G). It is a well known fact
that ¥ ,cv(q) da(v) = 2|E(G).

A graph is called simple if it has no loops or parallel edges. Our definition
of a graph allows loops and parallel edges, because some of the graph operations
used here may create them. However, loops or parallel edges are allowed just for
convenience; our results are not more general than if they had been formulated using
simple graphs.

Two graphs G = (V, E,¢) and H = (V', E', ') are identical (written G = H)
if V=V E=EF and ¢ = ¢. The graphs G = (V,E,¢) and H = (V' E', &)
are isomorphic (written G ~ H) if there exists a pair of bijections § : V' — V' and
¢ : E — E' called an isomorphism, such that £(e) = wv if and only if &'(p(e)) =
6(u)f(v). For simple graphs, it is enough to describe an isomorphism by the vertex
bijection . An automorphism is an isomorphism of a graph onto itself.

A graph F is a subgraph of a graph G (written F C G) if V(F) C V(GQ),
E(F) C E(G), and ¢y is the restriction of ¢ to E(F'). A subgraph F C G is proper
if F # G. A subgraph F C G is a spanning subgraph if V(F) = V(G). Suppose
that G is a graph and V' is a nonempty subset of V(G). The subgraph F of G
whose vertex set is V'’ and whose edge set is the set of those edges of G that have
both ends in V' is called the subgraph of G induced by V' (written FF = G [V").

It is also said that F' is an induced subgraph of G.



Some Classes of Graphs

Some useful common graph and subgraph classes are introduced now. A com-
plete graph on n vertices, denoted by K, is a simple graph with n vertices and (g)
edges joining each pair of vertices. A path of length k, denoted by Py, is the graph
with a vertex set {vy,va,...,vpr1} and an edge set {v1vq, vavs, . . ., Vkvks1}- (Notice
that the path of length k has k+1 vertices.) A cycle of length &, denoted by Cj, is the
graph with a vertex set {vy, v, ..., v} and an edge set {v;vy, Vovs, . . ., Vg1V, Vg1 }.
A cycle of length £ is called a k-cycle, and a 3-cycle is called a triangle. (In particular,
a l-cycle is a loop, and a 2-cycle is a pair of parallel edges.)

A graph G is called bipartite if the vertex set can be partitioned into two
sets V(G) = AU B such that both G | A, G | B have no edges. The sets A, B are
called the parts of G. A complete bipartite (p-partite) graph is a simple graph with
avertex set V=V, UV, p=2(V =V, U...UV,) where the sets V;,...,V], are
pairwise disjoint, and with the edge set consisting of all edges with ends in distinct
sets V; and V. The complete p-partite graph is denoted by K, . n,, where n; = |Vj|,
1=1,...,p.

An independent set in a graph G is a subset I C V(G) of vertices that
induces a graph with no edges. A clique in a graph G is a subgraph of G that
is isomorphic to a complete graph, and that is inclusion-wise maximal with this
property. A k-clique is a clique on k vertices.

A walk in a graph G is a finite sequence vye;v1€2v5 . . . €V, such that e; is an
edge with ends v;_1,v; for ¢ = 1,2,... k. The vertices vy, vy are called the ends of
the walk, and all other vertices are internal vertices; the walk is said to connect vy
and vg. The length of the walk is the number k. If G is a simple graph, a walk
can be denoted simply by the sequence of its vertices vyv; ...v,. Clearly, if there

exists a walk connecting vertices u,v in a graph G, then there also exists a path



connecting u,v in G. A walk vpevie9v; . . . e, is said to be closed if vy = vg. A

cycle is a closed walk such that all vertices vy, vy, ..., v, are pairwise distinct.
Graph Operations

If G is a graph and X is a subset of its vertices, then G — X denotes the
subgraph of G induced on the vertex set V(G) — X. For a graph G, and a set of
edges £ C E(G), G — E denotes the graph obtained by deleting all edges of £
from G. If e is an edge of G, G — e is used as a shortcut for G — {e}.

If u, v are two vertices of a graph G, then G + uv denotes the graph obtained
by adding a new edge e with ends u, v to G. The graph obtained from G by adding
a set of edges F' is denoted by G + E’. The notation G + e is used as a shortcut for
G + {e}. If G1, G, are subgraphs of a common graph G, then the union G; U G
is the graph with vertex set V(G1) UV (G3) and edge set E(G1) U E(G»).

Let G be a graph, and let F' be a spanning subgraph of G obtained by
deleting all loops, and, for every pair of adjacent vertices, all but one of the edges
joining them. Then F' is called the underlying simple graph of G.

A graph H results from a graph G by subdividing an edge e = uv with vertices
v1, ...,V that are not in V(G) if H = (G — e) U P, where P = uvvy ... 00 is
a path disjoint from G except for the ends u,v. A graph H is a subdivision of a
graph G if H is obtained from G by subdividing some edges. A graph G results
from a graph H by suppressing a vertex w if H is obtained from G by subdividing
an edge with a vertex w ¢ V(G). Two graphs G, H are homeomorphic if they are
isomorphic to subdivisions of the same graph.

A graph F results from a graph G by contracting an edge e = uv (written
F=G/e)itV(F)=V(G)—{u,v}U{w}, E(F) = E(G) — {e}, and the incidence

function e is obtained from the incidence function € by replacing each occurrence
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of u or v in the image of e with w. If e is a loop, then G/e = G — e. Informally,
the edge e = uw is deleted from the graph, and the vertices u,v are identified.

A vertex of degree 3 with three distinct neighbors in a graph is called cubic.
If w is a cubic vertex in a graph G with neighbors vy, vy, v3, then the operation of
deleting the vertex w and adding three new edges forming a triangle on the vertices

vy, U9, v3 is called a YA-transformation (of w), written G va {w}.
Connectivity and Distance in Graphs

A graph G is connected if every pair of its vertices is connected by a path.
A component of G is an inclusion-wise maximal induced subgraph of G that is
connected. A (verter) cut in a graph G is a set X C V(G) such that G — X has
more components than G. A k-cut is a cut of size k. A graph is k-connected if it is
connected, has at least k + 1 vertices, and has no cut of size less than k.

A separation in a graph G is a pair of sets (A4, B) such that AU B = V(G)
and there is no edge in G between the sets A— B and B— A. A separation (A, B) is
nontrivial if both A — B and B — A are nonempty. The order of a separation (A, B)
equals |A N B, and a k-separation is a separation of order k. Clearly, a connected
graph has a nontrivial k-separation if and only if it has a k-cut.

Let G be a graph, and let C, D C V(G). A C-D path is a path P in G that
has one end in C' and the other end in D, and that the internal vertices of P are

disjoint from C'UD . The following important result is known as Menger’s theorem.

Theorem 1.1.1. Let G be a graph, and let C,D C V(G). Then the mazimum
number of vertez-disjoint C—D paths equals to the minimum order of a separation

(A, B) in G such that AD C and B D D.



Corollary 1.1.2. A graph G on at least k + 1 vertices is k-connected if and only
if every two distinct vertices u,v in G can be connected by k paths that are vertex-

disjoint except for their ends u,v.

An edge-cut in a graph G is a set Y C E(G) such that G — Y has more
components than G. A k-edge-cut is an edge-cut of size k. A graph is k-edge-
connected if it is connected and has no edge-cut of size less than k. The following is

an edge-variant of Menger’s theorem.

Theorem 1.1.3. Let G be a graph, and let C,D C V(G). Then the mazimum
number of edge-disjoint C—-D paths equals to the minimum number of edges separat-

ing C from D.

Corollary 1.1.4. A graph G is k-edge-connected if and only if every two distinct

vertices in G can be connected by k edge-disjoint paths.

Corollary 1.1.5. A graph G 1is 2-edge-connected if and only if every edge in G is

contained in some cycle of G.

The distance between two vertices of a graph G is defined as the length of
the shortest path connecting them in G. In particular, a vertex is at distance 0 from
itself, and two distinct adjacent vertices are at distance 1. It is easy to see that the

distance in graphs satisfies the triangle inequality.
Graph Minors

A graph F'is a minor of a graph G if F' is obtained from a subgraph of G by
a sequence of edge contractions. (The order in which contractions are applied does
not matter.) A graph G is said to have an F' minor if there exists a minor F' of G

such that F' is isomorphic to F'. Let I" be a finite family of graphs. A graph G is
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said to have a I minor if there exists a minor F' of G such that F' is isomorphic

to some member of I'. It can be easily checked that the minor relation is transitive,

i.e. if F' is a minor of G, and G is a minor of H, then F' is a minor of H, too.
The following deep result is known as the Graph Minor Theorem [34], for-

merly Wagner’s Conjecture.

Theorem 1.1.6. (N. Robertson, P.D. Seymour) If ® is an infinite family of (finite)
graphs, then there exist two distinct graphs F, G € ® such that F' is isomorphic to

a minor of G.

An important corollary of this result is that if some graph property P is preserved
under taking minors, then there exists a finite family ' of graphs such that a graph
G has the property P if and only if it has no I’ minor. (In other words, the property
P can be characterized by a finite list of “forbidden minors”.) Unfortunately, this

argument is non-constructive, and gives no clue as how to construct the family I'.

1.2 Graphs on Surfaces

This section presents basic terms for graphs embedded on surfaces. Our
definitions follow the monograph [28], another book about topological graph theory

is [15]. For basic topological definitions refer, for example, to [27] or [38].
Surfaces

A surface is a connected compact Hausdorff topological space S such that
every point of S has an open neighborhood homeomorphic to IR?. It can be shown
that every surface is homeomorphic to a triangulated surface, defined as follows.
Suppose that 71, . .., 79 is a collection of disjoint unit triangles in the plane, and that

the 6k sides of these triangles are partitioned into pairs. Let X be the topological
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space obtained from the collection of triangles 7, ..., Ty, by identifying the given
pairs of sides (in a chosen orientation). If X is connected, and the graph defined by
the vertices and sides of 71,..., 7 in X is simple, then X is called a triangulated
surface.

Let S be a surface, and let R be an open neighborhood of some point of S
homeomorphic to IR?. Suppose that D; is a closed disc contained in R. If a surface
S’ results from S by deleting the interior of D;, and by identifying the opposite
points on the boundary of Dy, then S’ is said to be obtained from S by adding a
crosscap. Suppose that Dy, Dy are two disjoint closed discs contained in R. Let us
choose an orientation of R, and let us give the boundaries of D; and D, opposite
orientations. If a surface S’ results from S by deleting the interiors of D; and D,
and by identifying the boundary of D; with the boundary of Dy with respect to the
chosen orientations, then S’ is said to be obtained from S by adding a handle.

The 2-sphere is denoted by Sy. The surface obtained from Sy by adding A > 0
handles is called the orientable surface of genus h, and is denoted by Sj. A surface
obtained from Sy by adding k£ > 0 crosscaps is called the nonorientable surface of
genus k, and is denoted by Ny. The surfaces Si, 59, S3, N1, Ny are also called the
torus, the double-torus, the triple-torus, the projective plane, and the Klein bottle,

respectively. The Classification Theorem for Surfaces states the following:

Theorem 1.2.1. Every surface is homeomorphic to precisely one of the surfaces Sy,

(h>0), or Ny, (k>1).

A covering space of S is a pair (X, p) where p: X — S is a continuous onto
mapping satisfying the following condition: For each x € X, there exists an open
neighborhood U of x such that the restriction of p onto U is a homeomorphism. For

example, the 2-sphere is a covering space of the projective plane via the “vertical



projection”. (In fact, the 2-sphere is the so called “universal covering space” of the

projective plane.)
Graph Embeddings

A curve in a topological space S is the image of a continuous function f :
[0,1] — S. The curve is simple if f is injective. The curve is said to connect its
endpoints f(0) and f(1). A simple closed curve is defined analogously except that f
is injective on [0,1) and f(1) = f(0). A graph G is embedded in S if the vertices of G
are distinct points of S, and every edge of G is a simple curve (a simple closed curve
for a loop) connecting its ends. Moreover, it is required that no two edges intersect
except at a common endvertex, and that no edge contains an isolated vertex. If G
is embedded in S, then G is used to denote the point set V(G) U (UGGE(G) e). An
embedding of a graph G in S is an isomorphism of G with a graph G’ embedded
in S. Notice that if a graph G has an embedding in S, then so does every minor
of G.

Let G be a graph embedded in a surface S. A face of G' is an arcwise
connected component of S — G. The set of faces of G is denoted by F(G). Each
face of G is bounded by a closed walk, called a facial walk. A face f of G is said to
be incident with those vertices and edges of G' contained in the boundary of f. The
graph G is said to be 2-cell embedded if each face of G is homeomorphic to IR?. A
simple 2-cell embedded graph G is called a triangulation if each face of G is incident
with exactly three edges. The Fuler characteristic x(S) of a surface S is defined
as xX(Sp) = 2 — 2h, and x(Ng) = 2 — k. The next result is well-known as Euler’s

formula.

Theorem 1.2.2. If G is a graph that is 2-cell embedded in a surface S, then
V(G)| + |F(G)| — |E(G)| = x(S5).



Planar Graphs

Planar graphs are the most natural examples of graph embeddings. Accord-
ing to the above definitions of surfaces and embeddings, a graph G is planar if it
has an embedding in the sphere S;. However, it is more common to treat planar
graphs as embeddings in the plane JR?, and that is also our approach. This clearly
does not matter for an embeddability of a graph since the plane is homeomorphic
to any open disc in the sphere.

A plane graph is a graph embedded in the plane. Since the point set of a plane
graph G is compact, exactly one face of G (i.e. an arcwise connected component of
IR? — G) is unbounded, and it is called the outer face of G. It is a useful fact that
every planar graph has a planar embedding in which each edge is a piecewise linear
curve.

The Kuratowski Theorem [26] characterizes planar graphs.

Theorem 1.2.3. (K. Kuratowski, 1930) A graph is planar if and only if it does not

contain a subgraph isomorphic to a subdivision of K5 or K3 3.

Corollary 1.2.4. A graph is planar if and only if it does not contain a minor

isomorphic to K5 or K3 3.
The following statement is a reasonably easy but important result.

Proposition 1.2.5. If G is a 2-connected plane graph, then each facial walk in G

s a cycle.

Two embeddings of a planar graph are equivalent if they have the same col-
lection of facial walks. If G is a 3-connected planar graph, then G has a unique

planar embedding, i.e. every two planar embeddings of G are equivalent. A graph
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G is called outerplanar if G has a planar embedding in which all of its vertices are
incident with the outer face. It can be proved that a graph is outerplanar if and

only if it does not contain a subgraph isomorphic to a subdivision of K4 or K33 [9].
Projective Graphs

A graph G is called projective-planar (or shortly projective) if G has an
embedding in the projective plane. Projective-planar graphs can be characterized
in a similar way as planar graphs. Glover, Huneke and Wang [14] found a family
A" of 35 graphs such that each member of A’ had no embedding in the projective
plane, and was minor-minimal with that property. (See Appendix A for a complete

list of A’.) Archdeacon [2],[3] then proved that those were the only such graphs.

Theorem 1.2.6. (D. Archdeacon, 1981) A graph G has an embedding in the pro-

jective plane if and only if G has no minor isomorphic to a member of A’.

Robertson and Seymour proved [32] that a similar characterization holds for
graphs embeddable in any fixed surface. Unfortunately, their proof gives no way
how to find the collections of “forbidden minors” for other surfaces than the plane
or the projective plane. Seymour found [36] a double-exponential upper bound
on the number of vertices of a minor-minimal nonembeddable graph for any fixed
surface. So, theoretically, the “forbidden minors” can be found by examining the
finite collection of all nonisomorphic graphs satisfying this bound. However, this is

not a practical approach.
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CHAPTER 1I

NEGAMI'S PLANAR COVER CONJECTURE

2.1 Covers of Graphs

Definition and Basic Properties

A graph H is a cover of a graph G if there exist a pair of onto mappings
(p,0), ¢ : V(H) = V(G), v : E(H) — E(G), called a (cover) projection, such
that 1) maps the edges incident with each vertex v in H bijectively onto the edges

incident with ¢(v) in G. In particular, this definition clearly implies the following:

Observation. For every edge e in H with endvertices u, v, the edge 1(e) in G has

endvertices p(u), p(v).

Therefore for simple graphs, it is enough to specify the vertex projection ¢ that
maps the neighbors of each vertex v in H bijectively onto the neighbors of ¢(v)
in G (a traditional approach).

If G’ is a subgraph of G, then the graph H' with the vertex set o= (V(G"))
and the edge set ¥ 1 (E(G')) is called a lifting of G' into H. A cover H of a
connected graph G is called an n-fold cover if |~ (v)| = n for some vertex v €
V(G). (It follows from Corollary 2.1.2 below that this a is well-defined term.) A

2-fold cover is also called a double cover.

12



Of course, every graph covers itself by the identity mapping, or by any other
automorphism. A nontrivial example is a 9-cycle covering a triangle (the projection
“winds” the 9-cycle three times around the triangle). Another nontrivial example is
presented further in Fig. 2.1. A useful way to represent a cover projection H — G
is to label the vertices or (possibly) edges of H by the names of the vertices or
edges of G' they are projected to. To illustrate, several basic properties of covers

are presented now.

Observation. Suppose that H is a cover of G via projection (¢, ). Then dy(v) =
dg(p(v)) for each vertex v € V(H).

Observation. If H is a cover of G, and H is a component of H, then H is also

a cover of G.

Lemma 2.1.1. Suppose that H is a cover of G via the projection (p,v), and P
s a path in G. Then the lifting of P into H is a collection of disjoint paths such
that the restrictions of the projection (p, 1) to each of these paths are isomorphisms

with P.

Proof. The statement is proved by induction on the length £ of the path
P = vgeqvy...epvp, € G. The case of k£ = 1 follows from the definition of a cover.
For k > 1, let P' = voeiv; ...ex_1vk_1, and let P', ..., P™ be paths (components)
isomorphic to P’ that form the lifting of P’ into H, by the induction assumption.
Then for i = 1,...,n, the vertex w* € V(P"), with ¢(w') = vg_; is incident with
exactly one edge f* = w't® such that ¥(f*) = e, and (') = v. Since the vertex
t* is disjoint from all V(P?), j = 1,...,n, the path Q° obtained by adding * and f*
to P is a component in the lifting of P into H, and @° is isomorphic to P via a

restriction of the projection (¢, ). ]
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Corollary 2.1.2. If H is a cover of a connected graph G via the projection (¢, 1),

then |p~'(v)| is the same number for all vertices v € V(G).

Lemma 2.1.3. Suppose that H s a cover of G, and C' is a cycle of length n in G.
Then the lifting of C into H s a collection of disjoint cycles, each cycle of length

divisible by n.

Proof. Let (p, ) be the projection of H onto G, and let F C H be the
lifting of C' into H. By the above observations, all vertices of F' have degree 2, so
F is a collection of disjoint cycles. Let C' be one cycle (component) in F, and let
e € E(C). Then C' itself covers C, and the lifting of the path C' — e into C' is the
graph C' — (¢=!(e) N E(C")), which is a collection of p = |[¢p=1(e) N E(C")| disjoint

paths of length n — 1 by Lemma 2.1.1. Thus C' has (n — 1)p + p = np edges. ]

Planar Covers

A cover is called planar if it is a planar graph. (Notice that every graph can
be covered by an infinite tree, but that is not our objective. Recall that all graphs
are supposed to be finite.)

Every planar graph has a planar cover by the identity projection, but there
are also nonplanar graphs having planar covers. If a graph G has an embedding in
the projective plane, then the lifting of the embedding of G into the sphere (which
is a covering surface of the projective plane) is a double planar cover of G. See an

example in Fig. 2.1. So it is concluded:
Proposition 2.1.4. FEvery projective-planar graph has a double planar cover.

The following properties of planar covers are important for further arguments.
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Figure 2.1: A double planar cover of Kj5, constructed by lifting its projective
drawing into the sphere. The cover projection is determined by labels of vertices.

Lemma 2.1.5. If a graph G has a planar cover, then so does every minor of G.

Proof. Let H be a cover of G, and (¢, ) be the projection. If G’ is a
subgraph of G, then the lifting of G’ into H is a cover of G' by definition. If G’
is obtained from G by contracting an edge e, then it is easy to see that the graph
H' obtained from H by contracting all edges of ©~'(e) is a cover of G'. So the

statement follows by an induction. |
The next statement is reasonably easy to see, and, in fact, it is a special case
of Lemma 6.1.2(b).

Proposition 2.1.6. (D. Archdeacon, 1987) Let G be a graph, and let e be an edge
of G such that some cubic verter of G is adjacent to both endvertices of e. If G —e

has a planar cover, then so does G.

Corollary 2.1.7. Let a graph G be obtained from a graph H by a sequence of

YA-transformations. If H has a planar cover, then so does G.
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Related Research

The definition of a graph cover is related to topology. Suppose that a graph
H is a cover of a graph G. If G (H) is embedded in some surface, then this
embedding is a topological subspace of the surface in the usual sense. If G' has no
vertices of degree 2, then the concept of the cover defined earlier coincides with the
notion of a covering space in general topology. However, as it was presented above,
graph covers admit a purely combinatorial definition, and our research is concerned
with combinatorial aspects of graph covers. The concept of the graph cover can be
also found in [15].

Negami [29] showed how to use double planar covers to enumerate the e-
quivalence classes of embeddings of graphs in the projective plane. In particular,
he proved that a graph has a double planar cover if and only if it embeds in the
projective plane. In [30], Negami defined regular covers for simple connected graphs
as follows: A cover ¢ : V(H) — V(G) is said to be regular if there is a subgroup
A of the automorphism group of H such that for u,v € V(H), ¢(u) = ¢(v) if and

only if 7(u) = v for some automorphism 7 € A. He proved:

Theorem 2.1.8. (S. Negami, 1986) A connected graph has a regular planar cover

if and only if it has an embedding in the projective plane.

Fellows studied planar emulators in his thesis [12]. The definition of an
emulator is a relaxation of the definition of a cover in which the edge projection is
only required to be surjective on the neighborhoods of vertices. (See Section 7.4
for a more precise definition.) Fellows was inspired by computational applications,
such as the following example. Suppose that some circuit consists of five units, and

each of the units needs to communicate with all others. In such situation, it is not
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possible to realize that circuit in the plane without crossings. But if two identical
copies of each unit can be used, then the inter-unit communication is realizable
in the plane — the network is arranged as a planar cover of the graph K3, as the
example in Fig. 2.1 shows. In [13], Fellows considered the relation between planar
emulators and planar covers. Kitakubo [22] later studied emulators under the name
of branched planar covers. Some additional results by Abello and Chen related to

Fellows’ research are contained in [1].

Another interesting question is what fold numbers planar covers admit. Of
course, a planar graph has an n-fold planar cover for every natural n. Similarly, a
projective-planar graph has an n-fold planar cover for every even n, as follows from

Proposition 2.1.4. On the other hand, Archdeacon and Richter proved [4]:

Theorem 2.1.9. (D. Archdeacon, R.B. Richter, 1990) If H is an n-fold planar

cover of a nonplanar graph G, then n is even.

Recently, Kratochvil, Proskurowski and Telle [23],[24],[25] considered the
computational complexity of graph covers. The cover problem is to decide whether
an input graph H is a cover of a fixed graph F. They studied the question of when

it is polynomialy solvable, or when it is an NP-complete problem.

2.2 Negami’s Conjecture

As it was concluded in Proposition 2.1.4 above, every projective-planar graph
has a double planar cover. The converse is false in general, because for instance the
graph consisting of two disjoint copies of K5 has a planar cover, and yet it has no
embedding in the projective plane. On the other hand, Negami made the following

interesting conjecture [30], a generalization of Theorem 2.1.8.
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Conjecture 2.2.1. (S. Negami, 1986) A connected graph has a finite planar cover

if and only if it has an embedding in the projective plane.

Curiously, in order to prove the conjecture it suffices to prove that certain
finite number of graphs have no planar covers. Let us explain that now. By Lem-
ma 2.1.5, the property of having a planar cover is closed on taking minors. Let
A denote the family of 32 connected minor-minimal nonprojective graphs. (See

Appendix A.) The next statement follows easily from Archdeacon’s Theorem 1.2.6.

Theorem 2.2.2. (D. Archdeacon) A connected graph has an embedding in the pro-

jective plane if and only if it has no minor isomorphic to a member of A.

If a graph is projective-planar, then it has a double planar cover by Proposi-
tion 2.1.4. Otherwise, it has a minor isomorphic to a member of A by Theorem 2.2.2.
Thus in order to prove Conjecture 2.2.1 it suffices to show that no member of A has
a planar cover. The number of graphs to check can be further reduced using YA-
transformations, as observed by Archdeacon (cf. Corollary 2.1.7). Known results

are listed in the next sections.

2.3 Previously Known Cases

A short counting argument shows that the graph K35 has no planar cov-
er. This was independently discovered by several people, among them Fellows and
Archdeacon. A variant of this argument was published by Huneke [20] in a note
written on Negami’s conjecture.

A large subfamily of A can be handled by the following argument. A subgraph
F of a graph G is called a k-graph if there exists a graph F' C G such that the

following holds: F' is an induced subgraph of F' isomorphic to a subdivision of K 3
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or K4, the graph F' —V (F) is connected, and contracting the vertices of F' —V (F)
into one vertex creates a subgraph isomorphic to a subdivision of K33 or K. (The
definition of k-graphs is based on [14].) The following theorem was independently

discovered by Negami [31] and Archdeacon [5].

Theorem 2.3.1. (S. Negami, 1987, independently D. Archdeacon) Let G be a graph
containing two disjoint k-graphs F1, Fy such that both G — V (F1) and G — V (F3)

are connected. Then G has no planar cover.

Corollary 2.3.2. The gmphs K3,3 . K3,3, K5 . K3,3, K5 . K5, Bg, CQ, C7, Dl, D4,

DQ) D127 D177 567 5117 8197 8207 527) f47 ]:'6: gl have no planar Covers.

K,—-C, K s—M, Ki,—e

Figure 2.2:

Still in 1987, Archdeacon proved [5] that two other graphs K;—C and

K, ;—M, of the family A (see Fig. 2.2) have no planar covers.

Theorem 2.3.3. (D. Archdeacon, 1987) The graphs K;—C4 and K,5—M 4 have

no planar COVErsS.
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Using YA-transformations and Corollary 2.1.7, this result implies:

Corollary 2.3.4. The graphs D3, €5, F1 have no planar covers.

Since five graphs By, C3,C4, D3, €5 from the remaining seven graphs of A
(Appendix A) can be YA-transformed to K22 (Fig. 2.3), the above stated results
and Corollary 2.1.7 imply that Conjecture 2.2.1 is equivalent to the statement that
two graphs K,,—e (Fig. 2.2) and K552 have no planar covers. However, no

further progress had been made during next several years.

Kisoo B; Cs
C4 D- 52

Figure 2.3:
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2.4 New Contributions

In 1995, the author proved [16] that there is no planar cover of K4 4—e. This

proof is included in Chapter III.

Theorem 2.4.1. The graph K44—e has no planar cover.

It remains to prove that K299 has no planar cover in order to finish the proof of
Negami’s conjecture. Thus it is tempting to say that Negami’s conjecture is almost
proven, but that is not quite accurate. Testing whether K 555 (or any given graph)
has a planar cover does not seem to be a finite problem, because no apriori bound
on the size of a possible planar cover is known. Moreover, the arguments outlined

above seem to imply little about possible counterexamples.

The author proved [18] in 1998 that there are no planar covers of the graphs

&, or C, (Fig. 2.3). The proofs are presented in Chapters IV and V.

Theorem 2.4.2. The graph €, has no planar cover.

Theorem 2.4.3. The graph C, has no planar cover.

Using these particular results, R. Thomas and the author have recently proved [19]
Theorem 6.1.3; stating that there are, up to obvious constructions, at most 16 pos-
sible counterexamples to Negami’s conjecture. The proof of this theorem is included
in Chapter VI. Notice that this result speaks just about possible counterexamples,
since no counterexample to the conjecture has been found so far, and it is believed

that none exists. Negami’s conjecture is still open.
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An equivalent formulation of Negami’s conjecture [17], discovered by the
author in 1998, is proposed in Section 7.2. The new formulation has a natural gen-
eralization to nonorientable surfaces other than the projective plane. Some support
for the generalized conjecture in the case of the Klein bottle is provided.

Finally, a remark on Fellows’ planar emulator conjecture [13] is added in
Section 7.4. It is shown that Fellows’ conjecture cannot be generalized to the triple-

torus.
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CHAPTER 1II

THE GRAPH K ,—e

3.1 Supposed Planar Cover of K44—e

Let the vertices of the graph K44—e be denoted by a,b,c,d,e, f,s,t as in
Fig. 3.1. Suppose that a connected plane graph H is a cover of K44 —e, determined
by the projection ¢ : V(H) — V(K 44—e). Notice that H is a simple graph. The

value ¢(v), for a vertex v € V(H), is called the label of v.

Figure 3.1: The graph K, —e.

Since H is a cover of K44—e, the following holds: If u is a vertex of H
such that ¢(u) = s (@(u) =t ), then u has exactly three neighbors labeled a, b, c
(d,e, f); and if u is a vertex of H such that p(u) € {a,b,c} (¢(u) € {d,e, f}),
then u has exactly four neighbors labeled s,d,e, f (t,a,b,c). Let Vy = ©71(s),

Vi = ¢~ 1(t). Tt follows that each vertex of H is at distance of at most 1 from some
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vertex of V; U V;. A plane graph H; on the vertex set V; UV is constructed from
H by contracting all edges incident with the vertices of V; U V;. (Recall that our
definition of a graph allows multiple edges.) Then H is a 9-regular bipartite plane
graph with bipartition Vj, V.

A sequence {eq,e,...,ex} C Hy of edges of H; is called a bunch of edges if

it is an inclusion-wise maximal subset of E(H) satisfying
— all e, €9, ..., e, have the same pair of endvertices (i.e. they are parallel edges),
— the pair e;, e;1; bounds a face of length 2 in H,, forallt=1,...,k — 1.

Notice that each edge of H; belongs to some bunch, possibly of size one, and that
there may be more than one bunch of edges between the same pair of vertices. A
spanning subgraph Hy C H, is formed by deleting all but one edge from every
bunch of edges in H;. If e = wv is an edge of Hy, and E, > e is the bunch
of edges of H; containing e, then the thickness of e is defined as the number of
edges in F,; and a subgraph F, C H is defined as follows: Let W, be the set
containing v and its three neighbors in H, and let W, be the set containing v and
its three neighbors in H. The vertex set of F, is V(F,.) = W, U W,, the edge set
is E(F.) = E(H |W,)UE(H [W,)U E,, and the incidence function €g, is the
restriction of ey to E(F,). (Informally, F, is the subgraph of H that corresponds
to the bunch E, “before the contraction”.) Notice that F', need not be an induced

subgraph of H if there is another bunch of edges between u, v.

Lemma 3.1.1. (a) The graph H, is a bipartite plane graph without loops or faces

of length 2 (but not necessarily simple).
(b) For eachv € V(H,), the sum of thicknesses of edges incident with v in Hy is 9.

(¢) The graph Hs is 2-connected.
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1404

Figure 3.2:

(d) Each graph F., e € E(H5) is isomorphic to one of the graphs from Fig. 3.2.

Proof.  Parts (a),(b) follow easily from the fact that H; is a 9-regular
bipartite plane graph, and from the way in which H5 was constructed. To show
(c) that H, is 2-connected, suppose that (A, B) is a nontrivial separation of order
1 in H,, and that H is the subgraph induced on A. Let {v} = AN B. Recall
that H, has the bipartition Vj,V;, and assume that v € V,. Let p be the sum of
thicknesses of edges between v and H, — V(HY), then 1 < p < 8. The total sum of
thicknesses of edges of H, is equal to 9|V (H?4) NV;| (counted according to the part
induced by V;), but, at the same time, it is equal to 9 |V (H5) N V| — p (counted
according to the part induced by V), a contradiction.

Finally, to show that (d) holds, let e = uv € E(H3). The above definition
of the graph F, C H implies that the vertices of H — V(F,) are all embedded in
the same face of F,. Let uq,us, us; vy, v2,v3 be the neighbors of u, v, respectively,
in H. First, if each of the vertices uq, us, u3 is adjacent to one of vy, v, v3, then the
graph F', obtained by contracting the edges vv, vvg, vv3 in F, has a K3 spanning

subgraph. Since K3 is not outerplanar, one of w1, us, uz, say ui, is adjacent to no
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vertex of H —V (F,), and hence u vy, ujve, u1v3 € E(F) by the definition of cover.
Then F. — {u, ug, ug} is isomorphic to K3, so, by the same argument, it can be
assumed that one of vy, vq, v3, say vy, is adjacent to all three vertices u, ug, u3. One
can check that F', has no planar embedding in which the vertices g, us, v9, v3 are
incident with the same face. So, by repeating the previous argument once more,
it can be assumed, without loss of generality, that v, is also adjacent to all three
vertices ui, ug, u3. However, in such a case F', has a K3 3 subgraph with the partition
{u,v1,v2}, {u1,us,us}, which is a contradiction to planarity of H.

Therefore, without loss of generality, the vertices us, v3 have degree 1 in the
graph F.. If all four edges uiv1, u1vs, usvy, ugvo are present in F'., then F', contains
a non-outerplanar K, minor on the vertices uq, us, v1,v2, and hence, similarly as
above, one of uy,ug, v, Vs, say uq, has no neighbor in H — V(F,). But then u, is
adjacent to no vertex other than u,v; or vs, so it has degree at most 3 in H, a
contradiction. It follows that the graphs in Fig. 3.2 are the only possibilities, up to

isomorphism, for F,. ]

Corollary 3.1.2. The graph Hy has no vertex of degree less than 3. If e = uv, e’ =
uw are two edges incident with vertex u, consecutive in the embedding of Hy (i.e. the

edges e, €' are incident with the same face), then v # w.

Proof. The first statement follows immediately. Suppose, for a contradic-
tion, that v = w for the two consecutive edges e = uv, e’ = uw. Since there are no
2-faces in H, in such a case the open region bounded by the edges e, e’ and not
containing other edges incident with u, must contain some vertices of Hy. Conse-
quently, these vertices are not adjacent to u. Hence v = w is a cut-vertex, which is

a contradiction to Lemma 3.1.1(c). [
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V3 w3

Ug

U1 v U2 wy w Wa

Figure 3.3: An illustration of a <-basis.

Further, a ©-basis is defined. Recall that each vertex of ¢='(s) U o7 (t) =
V' (H ) has three distinct neighbors in H. Two edges e = uv, ¢’ = uw of H4 sharing

a common vertex u are said to form a <-basis if the following conditions are satisfied.

— The vertex v is distinct from w, and e, ¢’ are two consecutive edges on a boundary

of a face f of H, such that w, u,v appear in counterclockwise orientation.

— The neighbors of u,v,w in H can be denoted in counterclockwise orientation
by w1, ug, us; v1,ve,v3; Wi, w2, ws respectively, so that p(vi) = (w1), p(v2) =

o(ws), ©(v3) = p(ws), and that usve, usw; are edges of F., Fo respectively.

(See an illustration in Fig. 3.3; other possible edges between the vertices in the

picture are not drawn.)

3.2 Discharging Rules

A discharging argument is used to show that the graph H 4 cannot exist. Gen-
erally, a discharging argument first assigns certain charge to vertices, edges, and/or

faces of a graph, then it redistributes the charge according to specified discharging
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rules, and finally it shows that the total sum of the charge has changed, which leads
to a contradiction. In this particular case, the starting charges and the discharging

rules are defined as follows.

€1 €2

Figure 3.4: An illustration of the discharging rules.

Initial charges. If v is a vertex of H, of degree d, then v starts with a charge of
3(4 —d). If f is a face of Ho of length k, then f starts with a charge of 3(4 — k).

The edges of H4 have no charge.
Discharging rules.

(D1) Each vertex u of H, sends a charge of 1 to each incident face of length greater
than 4.

(D2) If f is a 4-face bounded by a cycle wuvz, and the edges e; = uw and e; = uw
incident with f form a <-basis, then the vertex u sends a charge of 1 to the

vertex x.
(See Fig. 3.4.)
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3.3 Finding a Contradiction

Notice that since Ho has no faces of length 2 by Lemma 3.1.1(a), all faces
start with nonpositive charges. Vertices of degree 3 start with positive charges, all
other vertices have nonpositive charges at the beginning. Our goal is to show that
after applying the above discharging rules, all vertices and all faces end up with

nonpositive charges.

Lemma 3.3.1. Each face of Hy ends up with a nonpositive charge.

Proof. As it was noted above, each face starts with a nonpositive charge.
A face f of length k receives charge only through the rule (D1), provided that & > 6.
(The graph H is bipartite, and hence & is even.) In such a case, f does not receive
more than a charge of 1 from each of the incident vertices, thus it ends up with a

charge of at most 3(4 — k) + k=12 — 2k < 0. 1

Lemma 3.3.2. Suppose that uejvesrejwey is a 4-cycle in Ho bounding a face f,

such that e; = uv and ey = vw form a O-basis. (See Fig. 3.5.)

(a) Each of the three neighbors of the vertexr x in H has degree at most 3 in the

subgraph F., UF,. C H.

(b) The vertex x has degree at least 4 in the graph H .

(c) If z has degree 4 in Hy, and e3, es, eg, €4 are the four edges of H o incident with x

listed in the counterclockwise order, then es, eg form a <-basis.
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Figure 3.5:

Proof. Let uy,us,us; vi,v9,v3; Wi, ws, ws denote the neighbors of u, v, w
in H, respectively, according to the definition of the {O-basis. Let z1, 25,73 be
the neighbors of = in H in the counterclockwise orientation. Notice that since
o(v1) = o(wy) and usw; € E(F,,) by the definition of the <-basis, there is no
edge between us and vy in H. Similarly, there is no edge between u, and wy in H.
Let €] = ugve and €, = uow;. If there was an edge €' incident with uy in H such
that e,e,e, were consecutive edges in the counterclockwise order around us, then €’
would belong, by the definition of the <-basis, to one of the graphs F',, or F,, say
F. , and hence ¢’ = uyvs. But then, by planarity, the graph F., would include all
three edges incident with the vertex v; in H —v, which contradicts Lemma 3.1.1(d).
Hence the edges €] and €, are incident with the same face f’ in H. (The face f
corresponds to f.) Let €5 be the edge of F., — {v,z} incident with f' in H. Then

ey, e are two consecutive edges in the counterclockwise order around the vertex v
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in the graph H; (cf. Section 3.1). Suppose, for a contradiction, that there is an
edge " € E(F., —v) incident with the vertex vs. Then the edges e’ and e} belong
to the same bunch of edges F., in H; by the definition of F,. Since the edge €}
is incident with vy in H, it follows, by planarity, that the bunch E,, contains all
three edges incident with v; in H — v, and hence v; has degree four in F,, which
contradicts Lemma 3.1.1(d).

Therefore, there are no edges between vz and zi, 23,23 in F.,. (However,
this is not saying that there is no edge between vz and one of z;,zy, 23 in H.)
Similarly, it is shown that there are no edges between ws and z1,x2,x3 in F,,.
Since ¢(v1) = ¢(w1) and @(vy) = (ws), each of the vertices 1, x2, 23 is adjacent to
at most two of the vertices vy, vg, wy, we in Fo, U F,,, and the statement (a) follows.

In particular, the above conclusion implies that each of the vertices 1, xo, 3
is adjacent to some vertex of the graph H — {vy, vy, v3, w1, ws, w3}, and hence, by
Lemma 3.1.1(d), there are at least two edges e, eg incident with z in H, and distinct

from es, 4. Therefore, the statement (b) is proved.

So let = have degree 4 in H,, and let e3, es5, g, €4 be the edges incident with
z in H, listed in the counterclockwise orientation. Let e have ends z,y, and let
es have ends z,z. (It may happen that u,w,y, z are not all distinct, but y # z by
Corollary 3.1.2.) Let the neighbors of y, z in H be denoted by y1, y2, ys; 21, 22, 23 in
the counterclockwise orientation. The set of edges of the graph (F.,UF,)—{z,v,w}
is denoted by E,, and the set of edges of (F., U F,) — {z,y, z} is denoted by E..
Notice that E, N E! =@ and |E, U E.| = 9.

It has been shown above that no edge of E, is incident with v3 or ws. Suppose,
for a contradiction, that each of the vertices z1,x9,x3 is incident with some edge
of E,. In such a situation, contracting the path P = vyvvsusw,wws creates a non-

outerplanar minor F of H isomorphic to the graph K 3, such that {z1, 22, 23} is one
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Figure 3.6:
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of the parts of F', and that all vertices of H — V(P) — {x, z, 22, 23} are embedded
in the same face of F'. Thus one of the vertices x1, x5, 3, say x, is adjacent only
to vertices from vy, vy, w1, we, but none of them is labeled ¢(v3), a contradiction.
Hence assume, without loss of generality, that no edge of E, is incident with the
vertex xo. This implies, in particular, that x5 is incident with three edges of £, and
that |E,;| < 4, so |E.| > 5. On the other hand, |E.| < 6, so |E,| > 3. Without loss
of generality, it may be assumed that x3 is incident with two edges from E,, and
that x; is incident with one or two edges from F,. One may easily check that, by
Lemma 3.1.1(d), the graph F'., U F, is isomorphic to one of the graphs in Fig. 3.6,
up to symmetry between y, z in the latter two cases.

Assume, for simplicity, that the labels of the vertices adjacent to z1,x3 via
edges from E, are a,b (not necessarily in this order), as depicted in Fig. 3.6. Recall
that each of the vertices x1, x2, x3 should be adjacent to vertices of the three distinct

labels a,b,c in H. So the following can be deduced about the graphs in Fig. 3.6:

— For the first graph (top of the figure), it follows that ¢(23) = ¢. One of the
vertices s, 21, z3 must be labeled a, and it cannot be y, due to the vertex z;
hence ¢(z1) = a. Consequently, ©(y2) = b = ¢(22), p(y3s) = ¢ = p(z3), and

o(y1) = a = p(21)-

— For the second graph (middle of the figure), it follows that ¢(y3) = ¢(23) = c.

Then {o(y1), p(y2)} = {9(21), 9(22)} = {a,b}, and since (y2) # @(z1), it is

concluded that ¢(y1) = ¢(z1) and ¢(y2) = p(22).

— For the third graph (bottom of the figure), it again follows that ¢(y3) = p(23) =

c. However, z, is now adjacent to two vertices of the same label, a contradiction.

Consequently, the edges es, eg form a <-basis in H 5. ]
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Figure 3.7:

Lemma 3.3.3. Each vertex of Hy ends up with a nonpositive charge.

Proof. By Corollary 3.1.2, the graph H5 has minimum degree at least 3.
Suppose that u is a vertex of degree d > 3 in H,. Let e;, : = 1,...d be the edges
incident with v in H» in the counterclockwise orientation. Let f;, ¢ = 1,...d be
the faces incident with w in H,, listed in the order such that f; is incident with e;
and e;,1. (Indices are considered modulo d.) Since H, is 2-connected, the faces
fi,--., fq are pairwise distinct. The neighbors of v in H are denoted by uq, us, us
in the counterclockwise orientation.

Suppose that d = 3, and that e; = ux,e; = uy, e3 = uz. The vertices z,y, z
are pairwise distinct by Corollary 3.1.2. In such a case, the vertex u starts with
a charge of 3(4 — 3) = 3. By Lemma 3.1.1(b,d), the subgraph F. U F., U F,,
is isomorphic to the graph in Fig. 3.7. It follows from the cover properties that
¢(z1) = ¢(y2), etc. Consequently, p(z1) = ¢(ys) = ¢(22), ¥(z2) = ¢(y1) = ¢(23),
and ¢(z3) = ¢(y2) = ©(21). If the face f;, i € {1,2,3} has length greater than 4,

then the rule (D1) applies, and hence u sends a charge of 1 to f;. If the face f;,
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i € {1,2,3} has length 4, and ¢; is the vertex opposite to v on the boundary of f;,
then it follows from Lemma 3.3.2(b) that u does not receive any charge from t; by
an application of the rule (D2). On the other hand, the pair of edges e;, €;,1 incident
with f; forms a <-basis by the above arguments, and hence u sends a charge of 1 to

t; by the rule (D2). Therefore in any case, v ends up with a charge of 3 —3 = 0.

Now, consider d = 4. If the face f;, i € {1,2,3,4} is of length 4, and
the vertex u receives a charge of 1 from the vertex t; that is opposite to u on the
boundary of f;, then the edges e;,9, €;,3 incident with the opposite face f; o (indices
modulo 4) form a $-basis by Lemma 3.3.2(c). Hence, if the length of f; ;5 is 4, then
u sends a charge of 1 to the vertex ¢;,o opposite to u on the boundary of f;,o by
the rule (D2); and, if the length of f;, o is greater than 4, then u sends a charge of 1
to the face f;1o by the rule (D1). Consequently, v ends up with a charge not larger

than the charge of 3(4 — 4) = 0 it started with.

h

Figure 3.8:
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Let d = 5, and let e; = uv, e = uw, e3 = ux, e4 = uy, es = uz be the
edges incident with u in Hy. For j = 1,2,3, let L; denote the set of all indices
I € {1,...,5} such that the vertex u; has degree at least two in the graph F.,.
Notice that, by planarity, each of Ly, Lo, L3 consists of consecutive indices (where 5
and 1 are regarded as consecutive). It follows that |L;| < 3, and that |L;| > 2 by
Lemma 3.1.1(d). If each of the sets L, Lo, L3 has three elements, then u must be
incident with at least 6 edges in H, by the planarity of H, a contradiction. So it
may be assumed, without loss of generality, that L; = {1, 2}; which means that the
vertex u; has degree 4 in the subgraph F., U F.,. By symmetry, it may be assumed
that the degree of u; in F', is 3. Let the neighbors of v,w in H be denoted by
V1, Vg, U3; W1, Wa, w3 in the counterclockwise orientation, so that u;v;, uivy are edges
of F,, and that ujws is an edge of F,. Notice that v # w by Corollary 3.1.2.
(See Fig. 3.8.) If the face f; (incident with e;,es in Hy) is of length 4, and ¢ is the
vertex opposite to u on the boundary of f;, then it follows by Lemma 3.3.2(a) that
the edges tv,tw incident with f may not form a <-basis, and hence u receives no
charge from t.

Consequently, u receives at most a charge of 4. If u receives a charge of 3
or less, then it ends up with at most a charge of 3(4 — 5) + 3 = 0, as desired. So
suppose that u receives a total charge of 4. Observe that if any two edges e = pr,
¢/ = ps form a <O-basis, then the neighbors of r,s in H are labeled (by the cover
projection) in the same cyclic order. Hence if, for each ¢ = 2,3, 4,5, the face f; has
length 4, and the two edges not incident with u on the boundary of f; form a <-
basis, then then the neighbors of w, z,y, z and v in H are labeled in the same cyclic
order. Since ¢(w;3) is distinct from both ¢(vy), ¢(v2), it follows that ¢(w;3) = ¢(vs),

o(wq) = p(v2), and p(w1) = ¢(v1). Thus the edges e, e, form a O-basis; so if the
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length of f; is 4, then u sends a charge of 1 to t; otherwise, u sends a charge of 1
to f1. Again, u ends up with at most a charge of 3(4 —5)+4—1=0.

Finally, let d > 6. It is clear that the vertex u may receive at most a charge
of 1 per each incident face in the discharging process, and hence it ends up with at

most a charge of 3(4 — d) + d = 12 — 2d < 0, which is as desired. [

Proof of Theorem 2.4.3. Let lg(f) denote the length of a face f in a
plane graph G. According to the discharging rules and to the Euler’s formula, the

graph H starts with the total charge of

> 3d—dm)+ > 3(4-in(f)=

veV (Ha) JEF(Ha)

12|V (Hy)| — 6|E(Hs) + 12|F(H,)| — 6| E(H3) = 24.

Since all charges of vertices and faces in Hy are nonpositive at the end of the
discharging process by Lemmas 3.3.1 and 3.3.3, the graph H, ends up with total
charge of at most 0. However, the discharging process just redistributes existing
charges, so no charge is lost during the process. This contradiction shows that the

graph H,, and hence, also a planar cover of K, 4—e, cannot exist. ]
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CHAPTER 1V

THE GRAPH &,

4.1 Handling a Supposed Planar Cover of £,

Let the vertices of the graph £, be denoted by a1, as, az, as, b1, be, bs, by, bs, bg,
z, as in Fig. 4.1. Suppose, for a contradiction, that there exists a connected n-fold
planar cover H of £,. Since &, is simple, H is also simple, so the cover is described
by the vertex projection ¢ : V(H) — V(€2). The graph H is treated as a plane

graph here.

Figure 4.1: The graph &,.
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A plane graph H, on the vertex set V(H ;) = ¢! (a1) U (az) U (az) U
¢~ Y(a4) is constructed from H by deleting all vertices u of H for which ¢(u) = z,
and by suppressing all vertices w of H such that ¢(w) € {by, bo, b3, by, b5, bg}. The
planar embedding of H, follows in a natural way from the planar embedding of H.

Let the mappings ¢ : V(H,) — {1,2,3,4}, n: E(H4) — {1,2,...,n}, and
A:{1,2,...,n} — F(H,) be defined by the following rules: For a vertex v of H 4,
let ¥(v) = 1 if p(v) = a;. Assuming = '(z) = {z1,2s,...,2,}, define nle) = j
if e is an edge of H, that was formed by suppressing a vertex w € V(H) with
wz; € E(H). For 1 < j < n, define A\(j) = f if f is a face of H, containing z;.
(Notice that z; is a vertex of H, but not of Hy, so z; lies inside some face of Hy.) It

follows easily from the fact that H covers £, that these mappings are well-defined.

Lemma 4.1.1. The plane graph H 4, and the mappings 1V, n, A, satisfy the following

properties.

(a) Hy is a simple 2-connected 3-reqular graph on 4n vertices, and v is a cover
projection of Hy onto Ky, the complete graph on the vertex set {1,2,3,4}. In
particular, any two vertices v # w of Hy satisfying 1 (v) = ¢ (w) must be at

distance of at least 3 apart.

(b) If e is an edge of Hy4, then A(n(e)) is a face incident with e. Consequently, for
a face f and j € A\7(f), the edges of n=1(j) lie on the boundary of f.

(¢) For each j € {1,2,...,n}, n~'(j) has siz elements, and {{(u),¥(v)} : uv €

n~1(5)} is the collection of all siz two-element subsets of {1,2,3,4}.

(d) Let f be a face of Hy, and ji,jo € N"Y(f). If e1, ez, e3,e4 are four edges of
f in this cyclic order (not necessarily consecutive), and n(e;) = n(es) = ji,

n(e2) = n(es) = jo, then ji = jo.
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Proof. (a) All these properties, except the first one, follow immediately
from the definition of H,. Since H, is connected and 3-regular, it is enough to
show that it is edge 2-connected. Indeed, for each edge uv of H, there is a triangle
C in K, containing the vertices ¢(u),1(v). Hence uv belongs to a cycle that is a

component of the lifting of C' into H,. Thus H, is edge 2-connected.

(b) Let w € V(H) be the vertex that was suppressed when forming the
edge e, and let f, f’ be the two faces of H, incident with e. By definition, n(e) = j
if and only if wz; is an edge in H (¢(x;) = z). Since H is planar, the vertex z; is

embedded in one of the faces f, f' of Hy4, thus A(n(e)) € {f, f'}.

(c) For each j € {1,2,...,n}, the vertex z; has six neighbors wy, ..., ws,
where ¢(w;) = b; in H. Let e, ..., eg denote the edges of H 4 formed by suppressing
the vertices wy, ..., ws, respectively. Then n71(j) = {e1,...,es}. Moreover, each
of the six vertices by,...,bs of €, has a different pair of vertices aq, as, as,as as
neighbors. Therefore {1 (u;), ¥ (v;)} for e; = uzv;, 1 = 1,...,6 are six different pairs

of numbers from 1, 2, 3, 4.

(d) Let wy, we, ws, wy be the vertices that were suppressed when forming the
edges ey, e, €3, €4, respectively, and let C' be the cycle in H corresponding to the
boundary of f. If j; # js, then {wy,z;,, w3} and {ws,z;,,ws} are the vertex sets
of two disjoint paths embedded in the same face of C. However, this contradicts

planarity of H since wy, we, w3, w4 lie in this cyclic order on the boundary of C. I

4.2 Discharging Rules

A discharging argument is used to show that the graph H 4 and the mappings
1, n, A with the properties described by Lemma 4.1.1 cannot exist. In this particular

case, the starting charges and the discharging rules are defined as follows.
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Initial charges. Each face f of H, starts with a charge of 3k, where k is the length

of f. All edges of H, start with no charge.

Discharging rules. For any face f of H,, and for any four consecutive vertices
U1, Ug, Uz, ug on the boundary of f such that ¢(u;) = ¥ (us) (possibly u; = uy), the
following rule applies: If A\(n(uqu3)) = f, then the edge uous receives a charge of 1

from f, otherwise usus sends a charge of 1 to f. (See also Fig. 4.2.)

U1 Vg

fl

Uz _ Uusg

Uy f Uy

.Tlé

Figure 4.2: An illustration of the discharging rule, 1 (u1) = ¥(u4), A(n(ugus)) = f.

Lemma 4.2.1. FEach edge of H4 ends up with a charge of 0.

Proof. Let e be an edge of H,. By Lemma 4.1.1(b), A(n(e)) = f is a face
incident with e. Let uq,us, u3, uy denote four consecutive vertices of f such that e =
uous. Let f’ denote the other face incident with e, and let vy, uq, us, v9 be four consec-
utive vertices of f'. (See Fig. 4.2.) By Lemma 4.1.1(a), ¥ (u1), ¥ (uz), ¥ (us), 1 (v1)
form a permutation of 1,2,3,4. Similarly, ¥ (us), ¥ (us), ¥ (us),(vy) form a per-
mutation of 1,2,3,4. Thus t(u;) = v¥(us) if and only if ¢¥(v1) = ¥(ve). So if

¥(u1) # (uq), then no discharging rule applies to e. If ¢(u;) = 1 (u4), then

41



¥(v1) = ¥(vy). Therefore the edge e receives a charge of 1 from the face f and sends

a charge of 1 to f’, and hence it ends up with no charge. ]

4.3 Charge of a Face

Since H, is a simple 2-connected graph, each face is bounded by a cycle of
length of at least 3. In order to use induction in the proof of the next lemma, the
assumptions about the graph H, need to be restricted to each face of H, alone.

The following claim is an immediate corollary of Lemma 4.1.1.

Claim 1. Suppose that C' is the cycle bounding a face f of H,. Let Y C E(C)
be the set defined by Y = =1 (A7!(f)). Let ¢’ be the restriction of ¢ to V(C), and

let ' be the restriction of  to Y.

(a) If v # w are two vertices of C, and ¢'(v) = ¢'(w), then the distance between

v,w is at least 3.

(b) For j € '[Y], n'~1(j) is a set of six edges of C, and {{+'(u),"'(v)} : uv €
n'~1(7)} is the collection of all six two-element subsets of {1, 2,3, 4}.
(The symbol f[A] stands for the image of A under f.)

(c) If e1,eq,€3,e4 € Y are four edges of the cycle C in this cyclic order (not neces-

sarily consecutive), and 7'(e1) = n'(e3) = j1, 7'(e2) = 1'(e4) = J2, then j; = jo.

The discharging rules are reformulated for the cycle C (which stands for the

cycle bounding f now), the set Y, and the mapping ¢’ as follows:

42



Claim 2. The cycle C starts with a charge of 3|V(C)|. Whenever uy, us, us, u4
are four consecutive vertices of C' (possibly u; = u4) such that ¢'(u1) = ¢'(u4), the
edge ugug receives a charge of 1 from C' if usus € Y, and usus sends a charge of 1

to C else. |

Lemma 4.3.1. Suppose that a cycle C of the length at least 3, a set Y C E(C),
and mappings ' : V(C) — {1,2,3,4}, 0’ : Y — {1,...,n} satisfy the conditions
described by Claim 1. If the discharging rules from Claim 2 are applied to C, then
C ends up with a charge of at least 12 - |n'[Y]| + 12.

Proof. Let k = |V(C)|, and p = |7/[Y]|. Notice that |Y| = 6p by
Claim 1(b). So the charge of C may decrease by at most 6p in the discharging
process. If £ > 6p+4, then 3k —6p > 12p+ 12, and hence the lemma holds. Thus it
is necessary to consider only cycles with £ < 6p+3. If p =0, then |Y| = 0 and k = 3,
so C' is a triangle. In such a case, u; = u4 holds for any four consecutive vertices
Uy, Ug, uz, g of C, so C receives a charge of 1 from each of its edges. Therefore it
ends up with a charge of 9 + 3 = 12, as desired.

The rest of the statement is proved by induction on p > 1. The base case
p = 1 needs to be considered for cycles of length £ < 9. Let the vertices of C
be denoted vy,vs,..., v in order, see Fig. 4.3. By Claim 1(b), {¢'(v1),¢'(v2)},
{Y'(v2),¢' (v3)}, ..., {¢'(vg), ¥ (v1)} include all two-element subsets of {1,2,3,4}.
In other words, 9'(v1)y'(ve) . .. ¥’ (vg)9'(v1) is a closed walk in K4 visiting all edges.
Hence, in particular, each of the four v’-values 1, 2, 3,4 occurs at least twice among
the vertices of C, so the length of C is 8 or 9.

Consider first £ = 8 (Fig. 4.3 left). Assume, without loss of generality, that
the edge vovs receives a charge of 1 from C, so vyvz € Y, ¢/ (vy) = ¢'(v4) = 1, and

{¢¥'(v9),9'(v3)} = {2,3}. Since the 9'-values of two of the vertices vs,vg, v7,vs
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V2 V3

U1 (2

Ug (3

U7 Vg

Figure 4.3:

should be 4, Claim 1(a) implies that necessarily ¢'(vs) = ¢'(vs) = 4, and
{¢'(vg), ' (v7)} = {2,3}. Now, since {¢'(v2),¥'(v3)} = {¢'(vs),?'(v7)}, at most
one of the edges vv3, v6v7 may be in Y by Claim 1(b), so vgv; € Y, and hence vgvr
sends a charge of 1 to C. That means, whenever an edge e of C receives a charge
from C, then the edge opposite to e sends a charge to C. Therefore C always ends
up with at least the initial charge of 3-8 = 24 = 12p + 12, as required.

Consider k£ = 9 now (Fig. 4.3 right). In this case, one of the ¢'-values 1, 2, 3, 4
occurs three times at distance three on the boundary of C, so let it be ¢'(v3) =
' (vg) = ' (vg) = 4. Then, whatever the other values of ¢' are, the edges v1vy, v4vs,
vyvg receive a charge of 1 each from C. If no other edge receives a charge from C),
then C ends up with a charge of 3-9 — 3 = 24 = 12p + 12, as desired. Otherwise,
assume, without loss of generality, that the edge v vy receives a charge of 1 from
C, so ¢¥'(vy) = ¢'(vg) = 1. By Claim 1(a), there is only one possibility for the
remaining values ¢'(vy) = ¢'(v7) = 3, ¢¥'(v1) = ¢¥'(vs) = 2, up to symmetry. Since

{¢'(v1),9 (ve) } = {¢'(vs), ' (v6) }, the same argument as in the previous paragraph
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implies that the edge vsvg sends a charge of 1 to C. No discharging rule applies
elsewhere, so C ends up with a charge of 3-9 -4 +1 =24 =12p+ 12.

Assume it is proved that every cycle C satisfying the induction hypothesis
for some p > 1 ends up with a charge of at least 12p+12. Let C be a cycle for which
I7[Y]|=p+1>2, and let X = ¢'[Y]. First, it is shown that there exist distinct
ji,J2 € X, and two disjoint paths Py = s185...8, 2 0" (j1), Po = tita...ty 2
n'"1(j2) on the boundary of C such that, for i = 1,2, B, Ny "'(k) = 0 whenever
k € X —{j1,jo}.- Let j1 € X be chosen such that P; — the shortest path in C
containing 7'(4;), has the smallest possible length. If there is some j| € X such
that n'~'(j1) N P, # 0, then '~ (4}) is strictly contained in P; by Claim 1(c), which
is a contradiction to the choice of j;. The other path P, is found in a similar way
in C — V(P;) (which is connected).

Similarly as in the base induction case, it follows from Claim 1(b) that
P (s1)Y'(s2) ... Y (sq) and @' (t1)9'(t2) ... ¢ (ty) are walks (not necessarily closed)
in K4, both visiting all of its edges. Hence, in particular, each of the '-values
1,2,3,4 occurs at least twice among the vertices of P, and of P,, so ¢,q > 8.
And since |7"7'(j)| = 6 for each j € X — {ji,72}, the length of C is at least
k>6(p+1—-2)+q¢—1+¢ —1>6(p+1)+2. (Recall that £ <6(p+ 1)+ 3 can
be assumed.)

If Kk =6(p+ 1)+ 3, then, without loss of generality, ¢ = 8 and ¢’ < 9. In
the case when the net charge edges of P; receive from C (considering also a charge
that some edges of P; might send to C) is at most 3, the cycle C ends up with a
charge of at least 3k — 6p — 3 = 12p+ 24 = 12(p + 1) + 12, as desired. Similarly, if
k =6(p+1)+2, then ¢ = ¢’ = 8. In the case when the net charge edges of each
of Py, P, receive from C is at most 3, the cycle C ends up with a charge of at least

3k—6(p—1)—3—-3=12p+24=12(p+ 1) + 12 again. Thus, up to symmetry, it
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remains to consider the case when the path P; of length 7 receives the net charge

of at least 4 from the cycle C (regardless of k).

Figure 4.4:

Recall that each of the t'-values 1,2, 3,4 occurs twice among the vertices
of Py. If ¢/(s1) = ¢'(sg), then P; would correspond to a closed walk in K, of length
7 visiting all edges, which is impossible. So assume, without loss of generality, that
Y'(s1) = 1, ¢'(sg) = 3, see Fig. 4.4. Since 9'(s2) = 3, ¥'(s7) = 1 is not possible
due to Claim 1(a), it can also be assume that v'(s;) = 2. Now, if ¢(s¢) = 1, then
necessarily ¢'(sy) = 9/'(s5) = 4, and no edge of P, has values {1,3}, which is a
contradiction to Claim 1(b). So v¢'(sg) = 4. Further, the three possible values of
' (s9) are considered.

If ¢'(s2) = 4, then necessarily 9'(s4) = 1, hence ¢'(s3) = 2 and ¢'(s5) = 3 by
Claim 1(a). In such situation, only the edges s1s3, s7ss, and one of sys3, Sgs7 may
receive charges from C, so P; receives the net charge of at most 3 from C, which
is an already covered case. If ¢/(sq) = 2, then ¢'(s3) = 4, and P, again receives the
net charge of at most 3 from C for both choices {¢'(s4),%¢'(s5)} = {1,3}. So the

remaining possibility is ¢'(s2) = 3, hence ¢'(s3) = 4, ¥'(s5) =1, and ¢'(s4) = 2. In
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such a situation, C' may a send charge of up to 4 to the edges s19, S455, S556, S7S8
of Py, provided that 9'(s¢) = 4 and ¢'(s9) = 4, see Fig. 4.4 right.

If the latter case happens, a new cycle C' is formed by replacing the path P,
with the edge s;ss, a new set Y/ =Y — E(P)) is defined, and the mappings ', 1/
are restricted to E(C"), Y', respectively. It is easy to check that the conditions in
Claim 1(b,c) are still satisfied for C" by the choice of P;. Also, validity of Claim 1(a)
is preserved in this special case. (See the picture.) Since |7'[Y']| = [7'[Y]| -1 = p,
the new cycle C' ends up with a charge of at least 12p + 12 by the induction
assumption. Now, the cycle C is longer by 6 than C’, hence C starts with a charge
larger by 18 than C' does. The same discharging rules (cf. Claim 2) apply in C as
in C' to all edges of C' except for two, namely s;sg and sgsg. (The edge s1sg does
not exist in C, and sgsg has a neighbor of a different ¢'-value in C than in C".)
Additionally, exactly four edges of P; receive a charge of 1 from C. Therefore the
cycle C ends up with a charge of at least (12p+12)+18—-2—-4=12(p+ 1) + 12,

as desired. i

Corollary 4.3.2. Each face f of H, ends up with a charge of at least 12|X71(f)| +

12.

Proof. Lemma 4.3.1 is applied to the cycle C bounding f, and to the set
Y and the mappings ¢',7" defined as in Claim 1. Notice that A™'(f) = n'[Y] by

definition. i
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4.4 Discharging Contradiction

Finally, a contradiction is derived from the above facts about the graph H 4,
and from Euler’s formula, which shows that a planar cover of £, cannot exist.
Proof of Theorem 2.4.2. Since H, is a 3-regular graph on 4n vertices,

the total charge at the beginning is

3 Y |f|=3-12n=36n.
FEF(Ha)

The number of faces of H, is 2n + 2 by Euler’s formula. By Lemma 4.2.1 and
Corollary 4.3.2; the total sum of charges at the end of the discharging process is at

least

0+ Y (12N +12) =12- |F(Hy)+12- Y A (f)]=
fEF(Ha) fEF(Hy)
=12(2n + 2) + 12n = 36n + 24 > 36n.
However, the discharging process just redistributes existing charges, no new charge

is introduced during the process. This contradiction shows that the graph H,4, and

hence also a planar cover of £,, cannot exist. ]
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CHAPTER V

THE GRAPH C,4

5.1 Semi-Covers and the Necklace Property

Let H be a plane graph, and let f be the outer face of H. The graph
H is called a semi-cover of a graph G if there exists a pair of onto mappings
¢ :V(H) - V(G), v : E(H) - E(G), called a semi-projection, satisfying the
following: For each vertex v of H not incident with f, 1 maps the edges incident
with v bijectively onto the edges incident with ¢(v) in G; and for each vertex w
of H incident with f, 1 maps the edges incident with w bijectively onto a subset
of the edges incident with ¢(w) in G. (Informally, the vertices of the outer face
are “allowed to miss some neighbors” in a semi-cover.) Clearly, each cover is a
semi-cover, but the converse is false.

Assume that a connected plane graph H is a semi-cover of a simple connected
graph G, and ¢ : V(H) — V(G), ¥ : E(H) — E(G) is a semi-projection. If G
is a subgraph of G, then the graph H' with vertex set ¢~ !'(V(G')) and edge set
Y=Y E(G")) is called a lifting of G’ into H. Assuming C' is a cycle in G, the semi-
cover H is said to be C'-fized if the lifting of C' into H consists of finite facial cycles
of the same length as C.

The idea of a necklace was introduced by Archdeacon in [5]. For our purpose

it is formally defined as follows. Suppose that C is an induced 4-cycle in G, w is a
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Figure 5.1: An illustration of a necklace.

vertex of G —V/(C'), and F is a subgraph isomorphic to K3 such that C C F C G,
V(F) = V(C)U{w}. Furthermore, suppose that a plane graph H is a semi-cover
of G, and that ¢ is the corresponding semi-projection. A connected component
N of the lifting of F into H is called a (C,w)-necklace, if N is C-fixed, and the
restriction (¢ [ V(IN), ¢ | E(N)) is a projection onto F' (and hence N is actually
a cover of F'). Let the lifting of C into N consist of [ facial 4-cycles C*, C?,...,C;
then these cycles are called the beads of the necklace, and [ is the length of the
necklace. (See Fig. 5.1 for an illustration.) The finite face of N not bounded by
any of the beads is called the interior of IN.

Let C4,C5 be two induced 4-cycles in a graph G. The graph G is said to

have the (C1, Cy, w)-necklace property if

— the sets V(C1),V(Cs), {w} are pairwise disjoint, and V(Cy) U V(Cs) U {w} =
V(Q), i.e. G has 9 vertices;

— for 7 = 1,2, the vertices of C; can be denoted by a,b,c,d in this cyclic order

so that aw, cw are edges of G, and that each of b,d is adjacent by an edge to
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exactly one vertex of the other cycle Cs5_; in G.

Examples of two graphs having the necklace property are shown in Fig. 5.2. (At the
first look, the necklace property may seem to be similar to the property of “having
two disjoint k-graphs”, as defined in Chapter II. However, unlike the latter one, the
necklace property may hold also for some projective-planar graphs, such as for the

right-hand side graph in Fig. 5.2.)

b
w c, W 4' Cs

-

Figure 5.2: Examples of two graphs having the necklace property.

5.2 Finding a Short Necklace

The arguments given in this section generalize the proofs used by Archdea-
con [5] to show that the graphs K7 —C}, and K, 5— M, (Fig. 5.2 left) have no planar
covers. From now on, it is assumed that G is a graph having a (C;, Cy, w)-necklace
property. Let a connected plane graph H be a semi-cover of G. Suppose that V (H)
can be partitioned into the vertex set of a (Cy,w)-necklace N, and the vertex set of
a C-fixed lifting of C5 into H. Furthermore, suppose that the only vertices incident
with the outer face of H are those of N, i.e. H—V(IN) is embedded in the interior
of the necklace N. Then H is called a reduced semi-cover of G bounded by the
necklace N.

ol



Lemma 5.2.1. Suppose that a graph G has a (Cy, Cy, w)-necklace property. If G
has a planar cover, then, for some i € {1,2}, G has a reduced semi-cover bounded

by a (C;, w)-necklace.

Proof. Let a connected plane graph H be a cover of G, and let H’ denote
the lifting of the graph C; U5 into H. Clearly, H® is a collection of disjoint cycles
of H. Notice that if C' is a cycle in the lifting of C;, and C” is longer than Cj, then
the cover projection “winds” C’ several times around Cj;. So if C' is a face of H, it
can be easily broken down into facial 4-cycles covering C;. Hence it may be assumed
that all cycles of H° that are faces in H have size 4, and that they bound finite
faces.

Let C° denote some cycle of H® that bounds an inclusion-wise minimal open
disc containing at least one vertex of H. By the previous assumption, the subgraph
embedded inside C° is (- and Cs-fixed. Without loss of generality, assume that
C° belongs to the lifting of Cy. Let C; = abcd, and let G' be the subgraph of G
with vertex-set V(C1) U {w} and edge-set E(C;) U {aw,cw}. (See the definition of
the (Cy, Cy, w)-necklace property.) Now, since G — V(Cy) 2 G' is connected, and
since C° is not a face of H, some component IN of the lifting of G’ into H must be
embedded inside C°. Hence N is a (C1,w)-necklace.

Let N° be a (C}, w)-necklace inside C° with minimal interior with respect to
inclusion. Then all vertices in the interior of N° belong to the lifting of C, (which is
Cy-fixed); since otherwise there would be a (C4, w)-necklace with its interior properly
contained in the interior of N°, by repeating the previous argument. Thus N°

bounds a reduced semi-cover of G. [ |

Lemma 5.2.2. Suppose that a graph G has a (C1, Ca, w)-necklace property. If there

exists, for some i € {1,2}, a reduced semi-cover of G bounded by a (C;, w)-necklace
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of length | > 2, then there ezists a reduced semi-cover of G bounded by a (C;, w)-

necklace of length smaller than .

Proof. The proof of this lemma is the heart of our argument. Without loss
of generality, assume that H is a reduced semi-cover of G bounded by a (Ci, w)-
necklace N, and ¢ : V(H) — V(G) is the semi-projection. Let the vertices of C be
a, b, ¢, d in this cyclic order so that N is the lifting of (V (C1)U{w}, E(C:)U{aw, cw}).
Notice that if C*, C? are two beads of the necklace N, and vy, v, are the vertices of
C!, C?, respectively, encountered first when traversing the necklace in the clockwise
orientation, then ¢(v;) = p(v2) € {a, c}.

Since N is not outerplanar, and G — {a, ¢, w} D Cs is connected, there exists
some cycle C' in H with ¢(C") = Cy. From the necklace property of G it follows
that there exists exactly one vertex by € V(IN) such that ¢(b;) = b, and that b; is
adjacent to some vertex of C'. Similarly, there exists exactly one vertex dy € V(IN),
©(ds) = d adjacent to some vertex of C'. Let C' and C? be the beads of N such
that b; € V(C?) and dy € V(C?). Clearly, C! # C? since H is a plane graph. The
subgraph of H induced on V(C") U {by,d>} is denoted by B (for “bridge”).

Since the length of the necklace IN is greater than two, one of the two regions
that B separates the interior of IN into, say R, has at least one bead other than
C',C? on its boundary. The left-hand side of Fig. 5.3 illustrates the situation.
Notice, however, that the other ends of edges joining b; and do with the cycle C’
(according to the necklace property of G) need not be diagonally opposite on C’.
Let the vertices of C' be ay,dy,c;, by, the vertices of C? be ay, by, o, ds (both in
clockwise orientation), and ¢(c;) = ¢. Then it follows that ¢(as) = a.

Let ey, ey,...,e, be the edges that have exactly one endpoint in V(B) and

that belong to the interior of R, ordered by their appearance on the boundary of R
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Figure 5.3:

from by to dy. Let uq,...,ur be the ends of ey, ..., e, respectively, not in V(B).

Since the subgraph B is actually isomorphic to G —{a, ¢, w}, it follows that ¢(u;) €

{a,c,w} fori=1,...,k, and hence uy, ..., uy are incident with the outer face of H.
Now, suppose that there exist 0 < i < j < k such that p(u;) = ... = o(u;) = ¢,
o(uiy1) = ... = p(u;) = w, and (u;y1) = ... = @(ux) = a. In such a case,

the part of H embedded in R is deleted, and the section of the bounding necklace
between ¢; and as is replaced by a new path c;w’ay. Instead of the edges ey, ..., e,
corresponding new edges €/, ..., e} between vertices of B and {c;, w’, as} are drawn,
as needed. Clearly, the new graph H' is a reduced semi-cover of G' bounded by a
necklace of shorter length.

Otherwise, if the above case does not happen, then there exists 1 <1 < k
such that ¢(u;) € {w,a}, ¢(uiy1) € {c,w}, and (u;) # @(uir1). (See Fig. 5.4,
where ¢(us) = w, p(us) = ¢.) Each of the edges e;, e;;1 separates R into two

regions, and e;, e;41 are disjoint up to possible common endvertex in B. Let R, be
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Figure 5.4:

the connected component of the set R — e; — e;;1 incident with both e;, e;,1, and
let N1 be the section of N incident with the boundary of R;. In this case, by the
choice of u;, ui;1, IN, must contain at least one bead. So let C3,C* be the ending
beads of N, and let a3, cs be the vertices of C3, C* closest to u;, u; 41, respectively.
(Notice that C3, C* are not necessarily next to C',C?, and they may be equal.)
Then at most one of the vertices u;, u;11, say u;, is distinct from both a3, ¢4, and
if this happens, then p(u;) = w. A new graph H' is formed as the part of H
embedded in the region R;, bounded by the section N; and a new path cyjw’as.
Possible edges between some vertices of H' and u; if u; # as, ¢4 are rerouted to the
endvertex w'. Again, H' is clearly a reduced semi-cover of G bounded by a necklace

of shorter length than the length of IN. |
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5.3 Conclusion of the Proof

Lemma 5.3.1. Suppose that a graph G has a (Cy, Csy,w)-necklace property. If G

has a planar cover, then G has an embedding in the projective plane.

Figure 5.5:

Proof. By Lemma 5.2.1, there exists a reduced semi-cover of G bounded
by a (C;,w)-necklace for some i € {1,2}, so assume that i = 1. By repeatedly
applying Lemma 5.2.2, it can be deduced that there exists a reduced semi-cover H,
of G, ¢ : V(H3) — V(G), bounded by a (C,w)-necklace of length at most two.
As it was implicitly found in the proof of Lemma 5.2.2, the lifting of C; into H,
consists of two cycles C*, C?, and the lifting of C; is a single cycle C’ in the interior
of the necklace. Let the vertices of C',C? be C! = a1bicid; and C? = asdacybs in
the counterclockwise orientation so that by, ds, ©(b1) = b, p(d2) = d are the vertices

not incident with the outer face of Ho, and hence adjacent to the cycle C'. Let w,
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be the common neighbor of ¢;, as, and wy be the common neighbor of ¢y, a;, in the
bounding necklace. (See Fig. 5.5 for an example.)

An embedded projective-planar graph H, is formed from H by deleting the
vertices di, be, and identifying the opposite pairs w; = ws, a1 = a9, ¢; = c3. A
mapping ¢ is the restriction of ¢ onto V(C")U{ay, by, ¢, ws,ds}. It is claimed that
¢ V(Hp) — V(G) is an isomorphism. Indeed, the vertices of V(C") U {by,d>}
are not incident with the outer face of H,, and hence they are incident with all
the required edges in the isomorphism relation by the definition of ¢ and ¢'. In
particular, all the required edges between the sets V(C') U {by,dy} and {ay, 1, w;}
are present also in H,, and the edges a;w;, cow; are in H,, as well. (Recall that

there is no edge between a,c in G.) |

It is shown that Lemma 5.3.1 can be applied, in particular, to the graph C,.

Figure 5.6: The graph C,.

Proof of Theorem 2.4.3. Let the vertices of the graph C, be denoted

by a,b,c,d,a’,b',c,d, x as depicted in Fig. 5.6. It is easy to verify that C4 has the
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(Cy, Cy, x)-necklace property for Cy = abed and Cy = d't/dd'. By [14], C4 has no

projective embedding, and hence it has no planar cover by Lemma 5.3.1. ]

Remark. It is possible to generalize the definition of a necklace, allowing it to be
a lifting of a subgraph isomorphic to K4, with pairs of edge-sharing facial triangles
as the beads. (A variant that was used by Archdeacon in [5].) Then the above

arguments work as well, and they also include the graph K;—C\.

Remark. It is likely that Lemma 5.3.1 can be proved for much wider definition of a
necklace, assuming more cycles of different sizes to be potential beads of a necklace,
and allowing more additional vertices and interconnecting edges. Unfortunately, this
does not seem to be useful for any one of the 16 graphs that might be (up to obvious

constructions) possible counterexamples to Negami’s conjecture, cf. Theorem 6.1.3.
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CHAPTER VI

SEARCH FOR POSSIBLE
COUNTEREXAMPLES

6.1 Separations and Expansions

Results of Archdeacon, Fellows, and Negami, and Theorems 2.4.1, 2.4.2,

and 2.4.3 proved in the previous Chapters are summarized in the next statement.

Corollary 6.1.1. (D. Archdeacon, M. Fellows, S. Negami, P. Hlinény) No member
of the family A — {K 1222, B7,C3, D3} has a planar cover.

The aim of this chapter is to show that Negami’s conjecture cannot be “far from the
truth”, i.e. that there are only several possible internally 4-connected counterexam-
ples. However, notice that no real counterexample to the conjecture was found so

far, and the conjecture is still believed to be true.

Recall the notion of a separation in a graph from Chapter I. A separation
(A, B) in G is called flat if the graph G | B has a planar embedding with all the
vertices of A N B incident with the outer face.

Let G be a graph. Let F' be a connected planar graph on the vertex set
V(F) disjoint from V(G), and let z; € V(F'). If y; is a vertex of G, and the graph
H  is obtained from G'U F' by identifying the vertices z; and y;, then H is called

a l-ezpansion of G. Let x1,29 € V(F) be two distinct vertices that are incident
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Figure 6.1: Illustrations of 1-, 2- and 3-expansion.
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with the same face in a planar embedding of F'. If e = y,y, is an edge of G, and
the graph H is obtained from (G — e) U F' by identifying the vertex pairs (z1,y;)
and (z2,ys), then H, is called a 2-ezpansion of G. Let x1, 25,23 € V(F') be three
distinct vertices such that F' — {z1,x9, 23} is connected. Moreover, let each of the
vertices x1, T2, 3 be adjacent to some vertex of V (F — {x1,z9, 23}), and let all three
vertices 1, 9, 3 be incident with the same face in a planar embedding of F. If w
is a cubic vertex of G' with the neighbors ¥, ¥2, y3, and the graph Hj is obtained
from (G —w) U F by identifying the vertex pairs (z1,41), (z2,¥2) and (z3,ys), then
H 3 is called a 3-expansion of G.

A graph H is an ezxpansion of a graph G if there is a sequence of graphs
Gy = G,Gy,...,G; = H such that G; is a 1-,2-, or 3-expansion of G;_; for all

i=1,...,1. (See examples in Fig. 6.1.)

Lemma 6.1.2. Let H be an expansion of a graph G.

(a) G has an embedding in the projective plane if and only if so does H.
(b) G has a planar cover if and only if so does H.

(¢c) G is a minor of H.

Proof. Using induction, it is enough to prove the statements (a),(b) when
H = H, is a k-expansion of G for k£ = 1, 2, 3. Let, for simplicity, the same notation
as in the definition of the k-expansion be used now. Suppose that the graph G is
embedded in the projective plane. If £ = 1, then F' can be embedded in any face
incident with y; in G. If k£ = 2, and e = y,y, is an edge of G, then there is a face f
of G — e incident with both ¥y, y». Similarly, if £ = 3, and w is a cubic vertex of G,
then there is a face f of G —w incident with all three neighbors of w. In both cases,

the graph F' can be embedded in the face f.
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If a plane graph G’ is a cover of G, then the same construction as in the
previous paragraph is applied to every vertex of G’ that is projected to y; (k= 1),
or to every edge of G' that is projected to e = y1y2 (k = 2), or to the neighbors of
every cubic vertex that is projected to w (k = 3). The resulting graph H' is then a
planar cover of H.

Finally, G is a subgraph of H, if £ =1, and G is a minor of Hy if £k = 2,3
by the connectivity assumptions. Since the minor relation is transitive, G' is a minor
of H. This fact in particular implies that if H has a projective embedding (planar

cover), then so does G. i

A graph G would be a counterexample to Conjecture 2.2.1 if G had a pla-
nar cover but no projective embedding. Thus if K529 had a planar cover, then
Lemma 6.1.2 would enable us to generate infinitely many counterexamples to Con-

jecture 2.2.1. However, our result is:

Theorem 6.1.3. Let I1 be the family of 16 graphs listed in Appendiz B. If a con-
nected graph G has a planar cover but no embedding in the projective plane, then G

is an expansion of some graph from II.

Before proving Theorem 6.1.3 in Section 6.4, a lot of preparatory work needs
to be done. Let Ag = A — {K 922, B7,C3, D>} denote the family of all connected
minor-minimal nonprojective graphs which are known to have no planar cover. It

immediately follows from Theorem 2.2.2 and Corollary 6.1.1:

Corollary 6.1.4. If G is a connected graph that has a planar cover but no em-
bedding in the projective plane, then G has a minor isomorphic to one of K122,

B:,Cs, Dy, but G has no minor isomorphic to a member of Ag.
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A graph G is internally 4-connected if it is simple and 3-connected, has at
least five vertices, and for every separation (A, B) of order 3, either G [ A or G | B
has at most three edges. The following lemma and its corollary show that the search
for a possible counterexample to Negami’s conjecture may be restricted to internally
4-connected graphs. However, proving this lemma is quite a technical task, which

needs several additional results, and so the proof is postponed until Section 6.3.

Lemma 6.1.5. Suppose G is a connected graph that has no embedding in the pro-
jective plane, and that has no minor isomorphic to a member of Ay. If k € {1, 2,3}
is the least integer such that there is a nontrivial separation (A, B) of order k in G,

then either (A, B) or (B, A) is flat.

Corollary 6.1.6. If G is a connected graph that has no embedding in the projective
plane, and that has no minor isomorphic to a member of Ay, then there exists an

internally 4-connected graph F with the same properties such that G is an expansion

of F.

Proof. The proof proceeds by induction on the number of edges in G.
Since the graph K¢ has a projective embedding, G' has at least 7 vertices. If G
is an internally 4-connected graph, then there is nothing to prove. If G is not
simple, then it is an expansion of its underlying simple graph. So suppose, for some
k € {1,2,3}, that G is a simple k-connected graph, and that there exists a nontrivial
separation (A, B) in G of order k. If k = 3, then also suppose that both G | A and
G | B have more than three edges. By Lemma 6.1.5, it can be assumed that (A, B)
is flat, and hence the graph G [ B has a planar embedding in which all vertices of
AN B are incident with the same face.

Observe that G | B is connected. If £ = 1, then G is a l-expansion of

G =G A Ifk =2 and say AN B = {uy,us}, then G is a 2-expansion of
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G' = (G | A) + uyuy. So suppose that k£ = 3, and AN B = {uy,us,uz}. Since G
is 3-connected, every vertex v € B — A is connected by three disjoint (except for v)
paths to each of the vertices u1, uq, us. In particular, each of uq, us, u3 is adjacent to
some vertex of B— A. If the graph G [ (B — A) is not connected, let us say that v, w
belong to distinct components of G [ (B — A), then the six paths connecting each of
v, w with uy, ug, ug are pairwise disjoint except for their ends, and hence they form
a subdivision of K33. But then there is no planar embedding of G' | B in which
U1, Uy, u3 are incident with the same face, a contradiction. Thus the planar graph
F = G | B fulfills all conditions in the definition of the 3-expansion, and hence G is
a 3-expansion of the graph G’, obtained from G by contracting the set B — A into
one vertex and deleting all edges with both ends in AN B.

In all three cases outlined above, the graph G’ has no embedding in the
projective plane by Lemma 6.1.2, and it is a proper minor of G. So the statement

follows by induction. ]

6.2 A Splitter Theorem

This section presents a basic tool that is used in the search for possible
counterexamples to Negami’s conjecture. Understanding the following convention
will be important in the next definitions and theorem: Formally, a graph is a triple
consisting of a vertex set, an edge set, and an incidence relation between vertices and
edges. Contracting an edge e in a graph G means deleting the edge and identifying
its ends. Thus if H denotes the resulting graph, then E(H) = F(G) — {e}.

Suppose that a simple graph G is obtained from a simple graph G by con-
tracting an edge e € E(G;) to a vertex w € V(G). If the degrees of the endvertices

of e in G are at least 3, then G is said to be obtained from G by splitting the
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vertex w. Notice that this definition implies that the edge e belongs to no triangle
of G;. The graph Gy is formally denoted by G / w{N!} where Ni, N, are the
neighborhoods of endvertices u, v of e, respectively, excluding u,v themselves.

A graph is almost 4-connected if it is simple and 3-connected, has at least
five vertices, and for every separation (A, B) of order 3, either G [ A or G [ B has
at most four edges. A pair (w, e) is called a violating pair in G if w is a cubic vertex
of G, and e is an edge of G having both endvertices adjacent to w. (Such pair
is called violating because it violates the condition of being internally 4-connected.
However, this is the only possible violation for almost 4-connected graphs.) An edge
is wiolating if it is in some violating pair.

Given a violating edge e = {u,us} in a simple graph G, the operation of a
triad addition is defined as follows. If v is a vertex of G such that v is not equal or
adjacent to any of u; or us, and there is no violating pair (w, e) in G for which v, w
are adjacent, then the triad addition produces a graph G; from G by subdividing
the edge e with a new vertex v’, and by connecting v’ to v by an edge. The graph
G, is formally denoted by G 4 v {uy, us}.

Given a violating pair (w, e) in a simple graph G, the operation of a triangle
explosion (of w) is defined as follows. Let u be the neighbor of w which is not incident
with e, and assume that u has degree at least 5 in G. Then the triangle explosion
produces a graph G, from G by splitting the vertex u into vertices wuq, us, and by
adding the missing one of edges {w, u1 }, {w, us}, so that the degrees of both u, us in
the resulting graph are at least 4. The graph G, is formally denoted by G < w {%ﬁ}
where Ny, N, are the neighborhoods of uy, us in G, respectively, excluding w1, ug, w
themselves.

See Fig. 6.2 for an illustration of a vertex splitting, of a triad addition, and

of a triangle explosion.
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Figure 6.2: An illustration of a vertex splitting, of a triad addition, and of a
triangle explosion.
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The following theorem is a simplified version of a result proved in [21].

Theorem 6.2.1. (T. Johnson, R. Thomas, 1997) Suppose G is an internally 4-
connected minor of an internally 4-connected graph H such that G has no embedding
in the projective plane. Then there exist a sequence Jo = G,J+,...,J, ~ H of
almost 4-connected graphs such that for ¢ = 1,2,...,k, the graph J; is obtained
from J;_1 by adding an edge, or by splitting a vertex, or by a triad addition, or by
a triangle explosion. Moreover, each J; has at most one violating edge, and if an

edge e is contained in both J;_1,J;, then it is not violating in at least one of them.

A practical consequence of the theorem is that an internally 4-connected
graph can be “built” from its internally 4-connected minor by using the above
described operations. Notice that a triad addition or a triangle explosion can be
used only in graphs that have a violating edge. Each of the four operations might
create a violating edge, but only those sequences need to be considered that have
at most one violating edge at each step, and such edge must be “repaired” by the
next step.

A violating pair (w, e) can be “repaired” using one of the following methods.
Either an edge incident with w is added in the next step, or one of the endvertices of
e is split so that w is no longer adjacent to both endvertices of e, or a triad addition
is applied to e, or a triangle explosion is applied to w. Furthermore, only “repairs”
that leave no other violating pair (w’, e), and that create at most one new violating

edge, need to be considered.

6.3 Assorted Lemmas

Recall that Ag = A — {K 292, B7,C3, D5} is the family of those minor-

minimal nonprojective graphs that are known to have no planar cover. Let
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K;5, K;—Cy, D3, Kys—e,Ky5—M,4,Dy; € Ay denote the graphs depicted
in Fig. 6.3. Recall also the graphs C4,€y € Aq from Fig. 2.3. Let & be
the family of all simple graphs G such that one of the graphs K;—C,, Ds,
or Dy; can be obtained from G by a sequence of YA-transformations; and let
® =9 U{Kys—e, Ks5 Ks5—M,}. Notice that ' includes only finitely many

nonisomorphic graphs, because a YA-transformation preserves the number of edges.

Lemma 6.3.1. Suppose that G' is a simple graph obtained from a graph G by a
YA-transformation, and that a simple graph F' is a minor of G'. Then G has an
F minor, where F = F' or F can be YA-transformed to F'.

Proof. Let G' = G ya{w} be obtained by a YA-transformation carrying
a cubic vertex w of G to a triangle 7 of G'. If all three edges of 7 are in E(F"),
then they form a triangle in F' since F is simple. Then F is constructed from F’
by adding a new vertex adjacent to the vertices of 7 and deleting the edges of 7.
Clearly, F' is a minor of G.

If an edge e of 7 is not in E(F'), let v be the vertex of 7 not incident with
e. Then G' — e has an F' minor, and G’ — ¢ is obtained from G by contracting the

edge {v,w}. Thus G has an F = F' minor. [

Lemma 6.3.2. If G € ', then G has a minor isomorphic to some member of Ay.

Proof.  This statement follows from the arguments in [14], even though
it is not explicitly stated there. Let Jo = G,J1,...,J; be a sequence of graphs
such that J, € {K;—Cy, D3, D17}, and for i = 1,...,¢, J; is obtained from J; 4
by a YA-transformation. It is easy to check, using Lemma 6.3.1, that if J;, =
K;—C,or J, =D;3, then J;, i =0,1,...,t — 1 has a minor isomorphic to one of
Ds, K35, E5,F1; and if J;, = Dyy7, then J;, 7 =0,1,...,t—1 has a minor isomorphic

to one of €50, G1, F4. (See Appendix A for pictures of these graphs.) |
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Figure 6.3:
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Lemma 6.3.3. Let G be a graph, and let a simple graph G' be obtained from G by
a sequence of YA-transformations. If G' has a minor isomorphic to some member

of ®, then so does G. Consequently, G has a minor isomorphic to some member

Of A(].

Proof. Notice that each of the graphs K44—e, K35, K45— M, is triangle-
free. If G’ has a minor isomorphic to any one of them, then so does G by Lem-
ma 6.3.1. Otherwise, G’ has an F' minor for some F' € ®. By Lemma 6.3.1, the
graph G has a minor isomorphic to a member F” of ®. By Lemma 6.3.3, the graph

F" has a minor isomorphic to a member of Ay, and hence so does G. ]

Let the vertices of the graphs K229, B7,C3, Dy be numbered as in Fig. 6.4.

Lemma 6.3.4. Let {F;}}_; be a sequence of graphs defined by F1 = K199, Fy =
B;, F3=C3, Fy="D,. Fori=1,2,3,4, the following statements hold.

a) Suppose that F' = F; + e is obtained from F; by adding an edge e joining two
distinct nonadjacent vertices of F;. If e is not violating in F', then F' has a minor
isomorphic to a member of Ag, unlessi =2 (F; = B;) and e = {7, 8}.

b) Suppose that F' is obtained by splitting a vertex w in F;. Then either F' has a
minor isomorphic to a member of Ay, or i < 3 and w # 7 and F' has a subgraph

Fii1.

Proof. The proof proceeds along the sequence F'y, Fy, F'5, F'4, considering
parts (a) and (b) together. Up to symmetry, there is only one possibility to add an
edge to F1 = K1,2,2,2.

- F, = K1,2’2,2 + {1, 4} has a K7—C4 subgraph.

The four possibilities to split vertex 7, up to symmetry, are discussed as follows:
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— F'=Ki95/ 7{1:?:2} has a D;; subgraph.

— F'=Ki355/ 7{%;?:@} has a K, 4—e subgraph.
— F'=Ki395/ 7{;,;21,5’6} has a D3 subgraph.

— F'=Ki395/ 7{;;1,5’6} has a K35 subgraph.

All vertices other than 7 are symmetric in K 999, so it suffices to consider the three

possible nonsymmetric splittings of vertex 1.
- F, = K1,272,2 /1 {gigﬁ} and FI = K172,272 /1 {g:gﬁ} have Dg subgraphs.
— F'=Ki555/1 {3:2,7} has a F'y = B; subgraph.

Since the graphs K7 —C4, D17, K44—e, D3, K35 are members of Ay, the statement

is proved for F';.

If F' = B;+e where e is one of {1,4}, {2,5}, {3, 6}, then the graph F'ya {8}
equals to the graph K529 + €. So, using Lemma 6.3.3, the arguments in the
previous paragraph imply that F' has a minor isomorphic to a graph from Ay. The

remaining possible edge addition, up to symmetry, is covered next.
— F'=B; +{2,8} has a K;—C, minor via contracting {5, 8}.

Let a step splitting be the splitting operation F; / w {;1*2, }, 7 € {1,2,3,4} such
that w,uy,us € {1,2,3,4,5,6}, and {w, uy, us} does not contain any one of the pairs
{1,4},{2,5},{3,6}. Notice that all non-step splittings in F'; produce members of ®.
The vertex 8 cannot be split in By, so if F' results by a non-step splitting in By,
then the graph F' ya {8} results by a non-step splitting in K 2; hence F' has a

Ay minor by Lemma 6.3.3. All possible step splittings in B; are discussed as follows.
— F'=B;/3{7} and F' = B; / 2{¥;} have F3 = C; subgraphs.
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- F'=8B;/2 {}1:2,7} has a K 45— M, subgraph.
- F'=8B;/2 {1‘;277} has a C4 subgraph.

The discussion is continued in the same manner for F3 = Cs. If F' =C5 +e¢
and e is not violating in F', then e is incident with at most one of the vertices 8,9,
say 8, and it is not {7,8}. Thus F'ya {9} = By + e has a Ay minor by the previous
analysis, and so does F' by Lemma 6.3.3. Similarly, if F' results by a non-step
splitting in C3, then F' ya {9} results by a non-step splitting in B7, so F’ has a Ag

minor again. The possible step splittings in C3 are covered next.
— F'=C3/1{73} and F' = C3 / 6 {43} have Fy = D, subgraphs.
— F'=C3/6 {532’7} has a K, 5— M minor via contracting {3, 9}.

Finally, the same arguments as above apply for the cases of an edge addition
or a non-step splitting in 'y = D,. So there is only one step splitting remaining to

be checked.

—J' =Dy /5 {?:g} has an €, subgraph. ]

The following statement about planar embeddings of graphs appears more or

less explicitly in [33, 35, 37, 39].

Theorem 6.3.5. (N. Robertson, P.D. Seymour, Y. Shiloach, C. Thomassen) Let
G be a 3-connected graph, and let u,v,w be three distinct vertices of G. If G has
no planar embedding in which u,v and w are all incident with the outer face, then
G has an F minor such that F is isomorphic to Ko 3, and the vertices u,v,w are

contracted into three distinct vertices u',v', w' which form the part of size three in F .
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Suppose that G is a graph, and that vy, vy, v3 € V(G) are three distinct
vertices of G. Let G {{v1,vs,v3} denote the graph H defined as follows: If there
exists a cubic vertex w € V(G) with the neighbors vy, v, v3, then H results from
G by adding one new vertex ¢ adjacent to all three vertices vy, v9, v3. Otherwise, H
results from G by adding two new vertices s,t both adjacent to all three vertices

v1, Vg, U3, and by deleting all edges with both ends in {v, ve, v3}.

Lemma 6.3.6. Let G be a 3-connected graph, and let (A, B) be a non-flat sepa-
ration of order three in G. Let Fy be a simple 3-connected graph. Suppose that
F C G is a subgraph of G isomorphic to a subdivision of Fy, and that W C V(F)
is the subset of vertices that have degree more than 2 in F. If W N (B - A)| <1,
then G contains a minor isomorphic to the graph Fo¢{w1,we, ws} for some three

vertices wy, we, w3 € V(Fy).

Proof. Let AN B = {by,by,b3}. By Theorem 6.3.5, there is a minor G’
of G, and a 3-separation (A’, B') in G’, such that A = A', G' | A' = G | A, and
B' — A" = {s,t} where each of s,t is adjacent to all three vertices by, be, bs. (Hence
F | A is a subgraph of G'.)

Suppose that [W N B| = 1. Let W N B = {w}, and let w' be the vertex of
F corresponding to w. Let (). denote the path in F' that corresponds to an edge
e € E(Fy). Since F is 3-connected, there are at least three edges incident with w’
in Fy. On the other hand, the vertex w € B can be connected by at most three
disjoint paths with vertices in W — {w} C A. Hence w' is a cubic vertex in Fy, and
the edges incident with w' can be denoted by ey, e9,e3 € E(Fy) so that b; € V(Q,)
for : = 1,2,3. Let G" be the graph obtained from G’ by contracting each of the
paths Q.. [ A4, 7 =1,2,3, into one vertex. Then G" contains a subgraph isomorphic

to a subdivision of Fg{{vy, vy, v3} where vy, vy, v3 are the neighbors of w in F.
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So suppose that W N B = (). Since G is 3-connected, there exist, by Menger’s
theorem, three vertices di,ds,ds € W, and three vertex-disjoint paths P, P, Ps
such that P; has ends b; and d; for i = 1,2,3. For a path P, let P[u,v]| denote
the subpath of P connecting the vertices u,v € V(P). Let ¢; be the vertex of
V(P;) N V(F) closest to b; in P;, and let P! = P[b;,¢;], for i = 1,2,3. (It may
happen that ¢; = b;.)

First suppose the case that not all ¢, co,c3 belong to the same path @,
e € E(Fy). Then, for i = 1,2,3, there exists an edge e; € E(F,) such that
¢; € V(Q,); and one of the ends of the path @, can be denoted by z;, so that the
path Q) = Q. [z, ¢;] does not intersect the set {ci,co,c3} — {¢;}. Also, x1,x9, 23
can be chosen all distinct since Fy has no multiple edges. Let G" denote the graph
obtained from G’ by contracting each of the paths Q) U P}, Q, U Pj, and Q4 U P;
into one vertex. One can easily check that G” has a subgraph isomorphic to a
subdivision of Fg{{xz, z}, x4}, where x|, x}, 2% are the vertices of Fy corresponding
to x1,Z9, 3. (If for some e € F(Fy) there exists a path @, in G intersecting B — A,
then both ends of Q. are in {z1,x9,23}. Thus, if there is no cubic vertex adjacent
to x}, xh, x4 in Fy, the edge e is not present in Fy{{z!,z}, 24}; and otherwise, the
path @, can be replaced by a path @', that uses one of the vertices s,¢ in G'.)

Next, suppose that there is an edge e € E(F) such that ¢, ¢, c3 € V(Qe)-
Let z,y be the ends of the path Q,, and let U = V(Q.) — {z,y}. Fori=1,2,3, let
a; be the vertex of V(P;) N (V(F) — U) closest to b; in P;, and let P = P,[b;, a;].
Assume, without loss of generality, that, for some vertex v € V(P/') NV (Q.), one of
the paths Q.[v, z], Q.[v, y] is disjoint from Py UP5. Let v; € V(P/")NV(Qe) be such
a vertex which is the one closest to b; in P’; and assume that the path Qc[vq, z] is
disjoint from PyUPY. Further, let vy € V(Q.)N(V (Py)UV (P5)) be the vertex closest

to y in Q., and assume that vy, € V(Py). Then the path P? = P/'[by, v1] U Q¢[v1, 7]
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is disjoint from Pj and Pj, and the path Py = Py/[by, vo] U Qc[ve, y] is disjoint from
P? and Pj. In particular, ag ¢ {z,y}. Let ¢ € E(F,) be the edge such that
az € V(Qe); and let z be an end of Q¢ such that z ¢ {z,y}, and that z = a3 if
a3 is an end of Qu. Let PY = P U Qelas, z]. Let G” denote the graph obtained
from G' by contracting each of the paths P?, P, and P into one vertex. Then G”
has a subgraph isomorphic to a subdivision of (Fg—e) {{z', vy, 2'} = Fo{{z',y, 2'},

where z', 3/, 2’ are the vertices of F corresponding to x, v, z. |

Finally, the postponed proof of Lemma 6.1.5 about flat separations from
Section 6.1 is presented.

Proof of Lemma 6.1.5. Assume first that £ = 1, and let G4, = G [ A,
Gp = G | B. If neither (A, B) nor (B, A) are flat, then both graphs G4 and
G are nonplanar, and thus by the Kuratowski theorem they contain subgraphs
F, C G4 and Fp C Gpg isomorphic to subdivisions of K5 or K33. Since G is
connected, it is easy to contract F'4 and F'p into a minor isomorphic to one of
K; K;,K;- K33, K33+ K33 €Ay, a contradiction.

The case of k = 2 is settled similarly. Let AN B = {u,v}, and let G4 =
(G T1A) + {u,v}, Gg = (G | B) + {u,v}. If neither (A4, B) nor (B, A) are flat,
then both graphs G4 and G are nonplanar, and thus by the Kuratowski theorem
they contain subgraphs F 4 C G4 and F' g C Gpg isomorphic to subdivisions of
K or K33. Without loss of generality, let us focus on the graph G 4. Since G is
2-connected in this case, there exist two disjoint paths P,, P, between {u,v} and
V(F4). Clearly, the graph F,U P, U P, U{uv} has a minor F'; isomorphic to Kj
or K33 such that u,v are two distinct vertices of F',. The graph F'; is found in
the same way as a minor of Gg. So the graph G' = F', U F'y — uv is a minor of G.

It is easy to show that G’ is isomorphic to some member of Ay: If F', ~ K5, there
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is only one nonsymmetric choice of u,v € V(F',). If F', ~ K33, there are two
nonsymmetric choices of u,v € V/(F';) (either from the same part, or from different
ones). Therefore G' is isomorphic to B3 € A for F'y ~ F'y ~ K5, G' is isomorphic
to one of Dy, E¢,Fg € Ay for F'y ~ F'y ~ K33, and G' is isomorphic to one of
Cy, Dy € A for F'y ~ K5, F'y; ~ K33, which is a contradiction to our assumption.

(See Fig. 6.5 for these graphs.)

Next, let ¥ = 3, and suppose for a contradiction that neither (A, B) nor
(B, A) are flat. Notice that the assumptions guarantee that G is 3-connected in
this case. By Corollary 6.1.4, G has a minor isomorphic to one of the graphs
Ki359,B7,C3,D;y. It follows from Lemma 6.3.4 that G actually contains a sub-
graph M’ isomorphic to a subdivision of some M € {Ki299,B7,C3,Ds}. Let
W C V(M') be the set of the vertices that have degree more than two in M'. Since
M is internally 4-connected, one of the sets A — B, B — A, say B — A, contains
at most one vertex of W. Thus, by Lemma 6.3.6, G has a minor isomorphic to
N = M {{by, b, b3} for some three distinct vertices by, by, by € V(M).

It is shown that the graph IN (and hence also G) has a minor isomorphic
to some member of Ay for any choice of {b1, by, b3} from V(M). Let the vertices of
M be numbered as in Fig. 6.4. Suppose first that no cubic vertex in M has the

neighbors by, by, bs.

— If the vertices by, by, b3 disconnect the graph M, then N has a K35 € Ay minor

since one side of the separation induced by {b1, by, b3} in M is always non-flat.

— If {b1, by, b3} includes any one of the pairs {1,4} or {2,5} or {3,6}, say {b1, b2},
then IN contains an M + b;bs minor. Since by b, is not an edge of M, and it is
not violating in M + by by, it follows from Lemma 6.3.4(a) that M + b1b, has a

minor isomorphic to a member of Aqg.
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— If M — {by,by,b3} contains a subgraph Gy isomorphic to K4, then, by the 3-
connectivity of M, for some v € V(Gy) there exist three disjoint paths between
the sets V/(Gy)—{v} and {b1, be, b3} in M —v. Moreover, since M is internally 4-
connected, there exists a path between v and some vertex of {b1, by, b3} avoiding

V(Gy) — {v}. Thus N contains an €9 € Ay minor, see Fig. 6.6.

&

Figure 6.6:

Let N' (M') be the graph obtained from N (M) by YA-transformations of
the vertices from the set ({8,9,10} N V(M)) — {b1, b9, b3}. If M' ~ K555, and
none of the three above general cases apply, then there is just one possibility, up to

symmetry.

— For {by, by, b3} = {1,2,7}, the resulting graph N’ has a D3 minor via contracting
the edge {2, 3}.

If M' ~ By, then [{8,9,10} N {by,by,b3}| =1, and so 8 € {by, by, b3} by symmetry.
Then all three remaining nonsymmetric possibilities are as follows.
— For {bl,bg,bg} = {4,6, 8} or {bl,bg,bg} = {6, 7,8}, the graph N’ has a K3,5

minor via contracting the edges {2,6} and {4, 7}.
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— For {by, by, b3} = {5,7,8}, the graph N’ has a D3 minor via contracting the

edges {1,8} and {3, 8}.

If M' ~ Cs, then 8,9 € {by,bo,b3} by symmetry. There are two nonsymmetric

possibilities remaining to be checked.

— For {bl,bz,bg} = {6,8, 9} or {bl,bg,bg} = {7, 8,9}, the graph N’ has a K3,5

minor via contracting the edges {1,2}, {4,5}, {6, 7}.

And if M' ~ D,, then {by, by, b3} = {8,9,10}, but the graph M’ — {8,9,10} has a
K, subgraph, so this case was already covered above. Since N’ has a Ay minor, so
does N by Lemma 6.3.3, a contradiction.

Finally, consider the case that by, b, b3 are the neighbors of a cubic ver-
tex w in M. Similarly as above, let N’ be the graph obtained from N by YA-
transformations of the vertices ({8,9,10} NV (M)) — {w, b, by, b3 }. Tt is easy to see

that there are only two nonsymmetric possibilities to consider.

— The graph N’ constructed from B; by adding a new vertex ¢ adjacent to the

neighbors of s = 8 has a D3 minor via contracting the edge {2, 4}.

— The graph N’ constructed from C; by adding a new vertex ¢ adjacent to the

neighbors of s = 3 has a K35 minor via contracting the edges {1, 8}, {4,9}.

So it follows from Lemma 6.3.3 that IN (and hence also G)) has a minor isomorphic

to some member of Ay, a contradiction. |
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6.4 The Splitting Process

Our objective is to prove that if an internally 4-connected graph H has a
minor isomorphic to one of K392, B7,Cs, D,, then either H itself is isomorphic
to one of the 16 specific graphs defined later in this section (see also Appendix B),
or H has a minor isomorphic to a graph from Ay. For the readers’ convenience, the

proof is divided into four steps in Lemmas 6.4.1, 6.4.2, 6.4.3, and 6.4.4.

Figure 6.7: Numbering of vertices in the graphs K299 and By.

Lemma 6.4.1. Let H be an internally 4-connected graph having no minor isomor-
phic to a graph from Ay. If H contains a K 99 minor, then either H is isomorphic

to K12922 or it contains a By minor.

Proof. Let Jy = Ki2292,J1,...,Jr ~ H be a sequence of simple graphs
as described by Theorem 6.2.1. If £ = 0, the statement holds. Otherwise, since

Jo = K 222 has no violating edge, J; is obtained from J, by adding an edge or by
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splitting a vertex. But J; is not allowed to have a minor isomorphic to a member

of Ay, thus J¢, and hence also H, have a B; minor by Lemma 6.3.4. ]

Suppose that the vertices of B; are numbered as in Fig. 6.7. Let B, denote
the graph obtained from B; by adding an edge {7,8}, and let B] denote the graph
obtained from B’ by adding an edge {1,5}. Notice that B; va {8} = K 52,.

Lemma 6.4.2. Let H be an internally 4-connected graph having no minor isomor-
phic to a graph from Ay. If H contains a By minor, then either H is isomorphic

to one of By, BL, By, or it contains a C3 minor.

Proof. Asin the previous proof, let Jo = By, J1,...,J; =~ H be a sequence
of simple graphs as described by Theorem 6.2.1, and let £ > 0. Since Jy = B7 has
no violating edge, J; is obtained from J, by adding an edge or by splitting a vertex.
So the statement follows from Lemma 6.3.4, unless J; = Jy + e where e is one of

{1,3},{1,5},{3,5} or {7,8}. These possibilities reduce to two nonsymmetric cases.
— J1=B;+{1,5} is not internally 4-connected.
— J1 = B; + {7,8} is the graph B.

Consider J; =B, and k > 2. If Jo=J, / w {%;} is obtained by a vertex
splitting where w # 7,8, or where w = 7 and |N; — {8}| > 2 and |N, — {8}] > 2,
then the same splitting can be applied to the graph Bz, producing a subgraph of J.
In such a case the statement follows from Lemma 6.3.4(b). Otherwise, the following

possibilities, up to symmetry, are checked.
— Jo =B,/ 8{3i} and J, = B, £ 7{335 456} have C3 subgraphs.
— Jy =B,/ 7{}5,456} has a K;—C, minor via contracting {2, 7}, {5, 8}.
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If Jo = J;+e where e is not one of {1,3},{1, 5}, {3,5}, then Lemma 6.3.4(a) applies

to Jo + e C Jy. So only the following possibility needs to be checked.
— Jo =B, +{1,5} is the graph B7.

Next, let J; = B; 4+ {1,5}. Since J; has a violating edge {1, 5} in this case,
it cannot be the last graph H in the sequence, and hence k£ > 2. By Theorem 6.2.1,
the graph J, is obtained from J; by adding an edge, or by splitting a vertex, or by
a triad addition, or by a triangle explosion, so that the edge {1,5} is not violating
in J5. Since a triad addition or a triangle explosion cannot be applied to J1, either
an edge incident with the vertex 8 is added, or one of the vertices 1,5 is suitably
split in J;. Again, some of the possibilities are already covered by the analysis of

J o, and the remaining nonsymmetric cases are as follows.
— Jo=B; +{1,5} + {7, 8} is the graph B7.
—Jy=B;+{1,5} /5 {46 7} still has the same violating edge {1,5}.
—Jy=B;+{1,5} /5 {478} has a K, 5— M, subgraph.
- Jy=B;+{1,5} /5 {468} has a D3 minor via contracting {5, 8}.
- Jy=B;+{1,5} /5 {678} has a D3 minor via contracting {3, 8}.

Finally, it remains to analyze the next step for Jo = B if k > 3. There are

only two possibilities that have not yet been resolved in the proof.
— J3 = B7 + {1,3} has a K;—C, minor via contracting {3, 4}.

— J3=BY /5{y5-} has a C3 subgraph.
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Figure 6.8: Numbering of vertices in the graph Cs;.

Since all internally 4-connected graphs arising in our case analysis are either one of
B;, B, B, or have a minor isomorphic to one of Ay (which contradicts the hypoth-

esis), or have a C3 minor, the statement is proved. ]

Suppose that the vertices of C3 are numbered as in Fig. 6.8. Let Cj be the
graph obtained from C3 by adding edges {7, 8}, {3,5}, let C5 be the graph obtained
from C} by adding an edge {7,9}, and let C3, C3 be the graphs obtained from Cj

by adding edges {2,4}, {2, 3}, respectively. (See Appendix B for all pictures.)

Lemma 6.4.3. Let H be an internally 4-connected graph having no minor isomor-
phic to a graph from Ag. If H contains a C3 minor, then either H is isomorphic to

one of C3,C5,C5,C3,C3, or it contains a Dy minor.

Proof. Suppose that Jg =C3,J1,...,Jn, Jpt1,...,Jr =~ H is a sequence
of simple graphs as described by Theorem 6.2.1, such that J; = J; 1 + ¢; is con-

structed by an edge addition for i = 1,...,n, and that J, 1 (if n < k) is obtained
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from J, by an operation other than an edge addition. The case analysis gets more
complicated for this graph than it was for By, and so it is divided into the following
sequence of claims. Notice that it is enough to show that some graph J; of the
above sequence has a minor isomorphic to a member of Ay or to D,, in order to

finish this proof.

Claim 1. Fori = 1,...,n, e; is one of {1,3},{1,5},{3,5},{2,3},{2,4},{3,4},
{7,8},{7,9}.

Proof. Since J; O Jgy + e;, the claim follows from Lemma 6.3.4(a), provided
it is shown that e; # {8,9} for all i € {1,...,n}. Suppose, for a contradiction, that
e; = {8,9} for some i < n. There are two possibilities — either e; is violating, or it is
not violating in J;. For the second possibility, there must be another edge e;,j < ¢
incident with the vertex 3 in J;, and hence e; = {1,3} up to symmetry, which is a
case covered below.

For the first possibility, none of the edges {7,8},{7,9} is present in J; since it
would be another violating edge. Moreover, the operation J; — J;,1 must “repair”
the violating edge e; = {8,9}. Using Lemma 6.3.4(a), the vertices 7,8,9 have the
same neighbors in J; as in Jy + e;. Therefore the operation next to adding e;
(whichever one of the four considered operations it is) can be applied to Jg + e;,
also, so that the resulting graph J' is a subgraph of J, ;. If J' results by a triangle
explosion of the vertex 3 in Jy + e;, then J' has a subgraph obtained by splitting
vertex 7 in Cs, and hence this case is covered by Lemma 6.3.4(b). Other operations

that can possibly “repair” the violating pair (3, {8,9}) follow.
— J' =C3+{8,9} + {1, 3} has a K;—C minor via contracting {2,9}, {8, 5}.

— J' =C3+{8,9} 16 {8,9} has a K45— M, minor via contracting {1, 2}.
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— J'=C3+{8,9} / 8{52} has a D3 minor via contracting {1,8} and {4, 9}.

- J' =C3+{8,9}/8 {i’:g still has the violating edge {8,9}. O

Claim 2. At most one of the edges {1,3},{1,5},{3,5}, and at most one of the
edges {2,3},{2,4},{3,4} occurs in the sequence e, ..., e,.

Proof. Suppose that there are two e;,e; € {{1,3},{1,5},{3,5}}, 1 < i <
j < n. Since the graph J, cannot have two violating edges, there is an edge e,
1 <1 < n incident with vertex 8, and hence ¢; = {7,8} by Claim 1. The graph J,
has a subgraph J' = Jy + €; + ¢; + €;, so up to symmetry:
—J =C3+{1,3} + {1,5} + {7,8} has a K;—C, minor via contracting {3,9}
and {4,9}.

The situation is symmetric for {2, 3}, {2,4}, {3,4}. m

Claim 3. J,41 is not obtained by a triangle explosion.

Proof. From definition it follows that there must be a violating pair (w, €;)
in J,, in order to apply a triangle explosion of w. (Clearly, no edge of J is violating
in J,.) Claim 1 then implies that e; is one of {1,3},{1,5},{7, 8}, up to symmetry.
However, if e; = {1,3}, then vertex 5 has degree four by Claims 1,2, and so the
triangle explosion of vertex 8 cannot be applied. The same happens if e; = {1, 5},
since at most one of the edges {3,2},{3,4} may be in J, by Claim 2. Finally, if
e; = {7,8}, then the triangle explosion of 3 is not allowed since at most one other

edge may be incident with vertex 9 by Claim 1. m]

Claim 4. J,41 is not obtained by a triad addition.

Proof. Similarly as in Claim 3, the edge e; of J,, for which a triad addition

is applied must be one of {1,3},{1,5},{7,8}, up to symmetry. However, if a triad
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addition can be applied in J,,, it can also be applied in the subgraph Jo+¢e; C J,,.
Notice that Jo+ {7, 8} admits no triad addition, and the two other possibilities lead

to the following discussion.
— J'=C3+ {1,3} 44{1, 3} has a D3 minor via contracting {4,5},{4,9}.

— J' =C3+{1,5} 49{1,5} has a D3 minor via contracting {2,6},{3,9}. O

Claim 5. J,41 is not obtained by a vertex splitting.

Proof. Let a vertex u of J, be split into two vertices wuy,us of J,yq1. If
both of ui,us have at least two neighbors among the vertices adjacent to u in
Jo, then a corresponding splitting operation can be applied to J,, producing a
graph J' C J, ;1. So J' has a Ay minor or a Dy subgraph by Lemma 6.3.4(b).

If u; has exactly one neighbor among the vertices adjacent to u in Jg, then
some edge e;, 1 < ¢ < n is incident with u;; so a corresponding splitting operation
can be applied to Jy + e;, producing a graph J' C J,;;. Using Claim 1 and
symmetry, e; is assumed to be one of {1,3},{1,5} or {7,8}, and hence u is one
of 1,3,5,7,8. So the graph J' ya {9} is isomorphic to a graph J" obtained by the
corresponding splitting of w in B, or in B; + {1,5}. Such splittings have been
already considered in the proof of Lemma 6.4.2; if J” has a Ay minor, then so does
J' by Lemma 6.3.3, a contradiction. Thus it remains to check those splittings of u
in Jo + e; that do not correspond to splittings in B’, or B; + {1,5} producing Ay

minors. First, those cases in which e; is not violating in J' are finished.
—J' =C3+{7,8}/8 {é;} and C3+{7,8}/ 7 {%334,5,6} have D, subgraphs.

— J'=C3+{1,3} / 3{33} has a D3 minor via contracting {4, 5}, {4, 9}.
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The splittings of u such that e; is violating in J', i.e. there is a violating pair
(w,e;) in J', are considered now. If w is a cubic vertex in J,, then it is cubic in
J 41 as well, and hence (w, e;) is a violating pair in J,1, which is not allowed by
Theorem 6.2.1. So the degree of w in J,, is at least 4, and hence e; is not violating
in J,,1 D J'. In order to apply the splitting of u, also no edge not incident with u
may be violating in J,. Thus the following edges must be present in J, in order to
meet these requirements: If e; is one of {1, 3}, {1, 5}, then there is some e; = {7, 8},
1 < j < n. In particular, for e, = {1,5} and e; = {7,8}, J, must have two
more edges e;; = {3,4},e;0 = {7,9}, 1 < j,7” < n, up to symmetry. Similarly,
if e, = {7,8}, then there is either e; = {1,3}, 1 < j < n, or e; = {3,4} and

e;j ={7,9}, 1 < 4,7 <n. The complete case analysis follows.

— J'=C3+{1,3} +{7,8} £ 3{35} and J' = C3 + {1,3} + {7,8} £ 1 {3%;} have

D, subgraphs.

— J'=Cs+{1,5} + {7,8} + {3,4} + {7,9} / 1 {3%5+} has a D, subgraph.

— J' =Cy+{7,8} +{1,3} £/8{37} and J' = C3+ {7,8} + {1,3} £ T{}3 456} have
D3 minors via contracting {3, 9}, {4, 9}.

—J = Cs+{7,8} + {3,4} + {7,9} £ 8 {33} and J' = C3 + {7,8} + {3,4} +
{7,9} £ 7{?:3,4,5,6,9} have D, subgraphs.

Finally, if u; has no neighbor among the vertices adjacent to u in Jg, then
there are (at least) two edges e;,e;, 1 < i < j < n incident with u;. The graph J,
has a subgraph J' obtained by the corresponding splitting in Jy + e; + ¢;. Using

Claims 1,2 and symmetry, the following three cases are checked.

— J'=C3+{1,3} +{3,2} / 3{y3,} has a K45— M, minor via contracting the
edge {5, 8}.
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- J =C3+{1,3} +{3,4} / 3 {%;;{9} has a D3 minor via contracting {4,5} and
{2,9}.
— J' =C3+{7,8} +{7,9} £ T{¥5 5454} has a K35 minor via contracting {1,8}

and {4,9}. O

Claims 1-5 can be summarized as follows.

Claim 6. In the sequence of graphs Jy = C3,J1,...,Jry ~ H defined above,
n = k holds. The graph H is obtained from C3 by adding at most one of the edges
{1,3},{1,5},{3,5}, at most one of the edges {2,3},{2,4}, {3,4}, and an arbitrary
choice of the edges {7,8},{7,9}. O

Notice that by Claim 6, H is obtained by adding at most four edges.
Moreover, if one of {1,3},{1,5},{3,5} is added, then {7,8} must be added
to keep H internally 4-connected. Similarly, if {7,8} is added, then one of
{1,3},{5,3},{2,3}, {4, 3} must be added, too. So the possibilities are as follows,

up to symmetry.
— C3+{3,5} + {7,8} is the graph Cj.
— C3+{3,5}+ {7,8} + {7,9} is the graph Cj.
— C3+{3,5} +{3,2} + {7,8} + {7,9} is the graph C3.
— C3+ 13,5} +{2,4} + {7,8} + {7, 9} is the graph C;.

— C3+{3,5} +{3,4} + {7,8} + {7,9} is isomorphic to the graph C3. [

Suppose that the vertices of D, are numbered as in Fig. 6.9. Let D5, be the
graph obtained from D, by adding edges {7,8}, {1,3}, let Dj be obtained from
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iz

Figure 6.9: Numbering of vertices in the graph D.

D, by adding edges {7,9}, {2,3}, and let D3 be obtained from D) by adding
an edge {7,10}. Let D3, D, be the graphs obtained from D3 by adding edges
{1,2}, {1, 6}, respectively. Let D; be the graph obtained from Dy by adding edges
{1,5},{3,4},{2,6},{7,8},{7,9},{7,10}. (See Appendix B for all pictures.)

Lemma 6.4.4. Let H be an internally 4-connected graph having no minor isomor-
phic to a graph from Ay. If H contains a Dy minor, then H 1is isomorphic to one

of Dy, Dy, D!, DY, DS, DS, Ds.

Proof. Suppose that Jo =Dy, J1,...,dn, Jny1,---,Jx =~ H is a sequence
of simple graphs as described by Theorem 6.2.1, such that J; = J,;_; + ¢; is con-
structed by an edge addition for i = 1,...,n, and that J,.; (if n < k) is obtained
from J, by an operation other than an edge addition. This proof follows the same

arguments as the proof of Lemma 6.4.3.
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Claim 1. Fori = 1,...,n, e; is one of {1,3},{1,5},{3,5},{2,3},{2,4},{3,4},

{1,2},{1,6},{2,6},{7,8},{7,9}, {7, 10}.

Proof. Since J; O Jy+e;, the claim follows from Lemma 6.3.4(a), unless some
ei, i € {1,...,n} is one of {8,9},{9,10},{8,10}. (In particular, none of ey,...,e,
equals {3,10}.) So assume, by symmetry, that e; = {8,9} for some 7 € {1,...,n},
and that none of ey, ..., e;_1 is {8,10} or {9, 10}.

If e; = {8,9} is violating in J;, then it follows that the vertices 8,9 have the
same neighbors in J; as in Jy + e;. Hence if the next operation J; — J;;1 (which
“repairs” e;) is not a triangle explosion, then it can be applied to Jo + e;, also, so
that the resulting graph J' is a subgraph of J,,;. If e; is not violating in J;, then
some edge e;,j < i is incident with the vertex 3, so J' = Jy + e; + ¢; is considered.
In both situations, if 10 is a cubic vertex in J', then since the graph J' ya {10} has
been shown to have a Ay minor in Claim 6.4.3.1, J' has a Ay minor by Lemma 6.3.3.

Otherwise, the following case remains to analyze.

— J' =Dy +{8,9} 410{8,9} has a K45— M, minor via contracting {4,5} and

{4,6).

Finally, consider the case that e; = {8,9} is violating in J;, and J;;; =
J; < 3{%;} results by a triangle explosion. If none of eq,...,e;_1 is {7,10}, or if
Ny — {10} > 2 and |N, — {10}| > 2, then J,,; has a subgraph J' obtained by
splitting 7 in Dy. Thus the claim follows from Lemma 6.3.4(b). Otherwise, let
Ny = {u,10}, u € {1,2,4,5,6}. In such a case J;,; has a Dy + ¢; + {3, u} minor,
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and hence it has a Ay minor by the previous discussion. m]

Claim 2. At most one edge from each of the triples {1,3}, {1,5}, {3, 5};
{2,3},{2,4},{3,4}; and {1,2},{1,6},{2,6} occurs in the sequence e, ..., e,.

Proof. The claim easily follows from Claim 6.4.3.2 using Lemma 6.3.3. m]

Claim 3. J,41 is not obtained by a triangle explosion, nor by a triad addition.

Proof. Let e; be the violating edge in J,, for which a triangle explosion or a
triad addition is applied. (Clearly, no edge of J is violating in J,.) By Claim 1,
e; is one of {1,3},{1,5},{7,8}, up to symmetry. It follows in the same way as in
Claim 6.4.3.3 that no triangle explosion is allowed for these edges.

If J,41 is obtained by a triad addition, then the same triad addition may be
applied to Jy + e;, producing a graph J' C J,,;. If the corresponding operation
Cs+e; — J' va {10} is a valid triad addition for C3 + ¢;, then J' has a Ay minor by

Claim 6.4.3.4 and Lemma 6.3.3. Otherwise, the case analysis follows.

— J' =Dy +{1,3} 42{1,3} has a K;5— M, minor via contracting {4,5} and
{4,6}.

—J' =Dy +{1,5} 42{1,5} has a K,4—e minor via contracting {3,8},{3,9}
and {6,10}.

— J' =Dy +{7,8} 41047, 8} has a K35 minor via contracting {2, 9}, {2, 10} and
{5,8}. =

Claim 4. J,11 is not obtained by a vertex splitting, unless J,, ~ D5.

Proof. Let a vertex u of J, be split into two vertices uy,us of J 1. If

both of ui,u; have at least two neighbors among the vertices adjacent to u in
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Jo, then a corresponding splitting operation can be applied to Jy, producing a
graph J' C J, 1. So J' has a Ay minor by Lemma 6.3.4(b).

If u; has exactly one neighbor among the vertices adjacent to u in Jg, then
some edge e;, 1 < ¢ < n is incident with u;; so a corresponding splitting operation
can be applied to Jy + e;, producing a graph J' C J,;;. Using Claim 1 and
symmetry, we may assume that e; is one of {1,3}, {1,5} or {7,8}, and hence u is
one of 1,3,5,7,8. Thus the graph J' ya {10} results by splitting a vertex in C3 + e;.
If e; is not violating in J', then it is not violating in J' va {10}. Hence the analysis
in Claim 6.4.3.5 implies that J'ya {10} has a Ay minor, unless one of the next cases

happen.
— J' =D, +{7,8} £ 8{53} and Dy + {7,8} £ 7{’3 546} have E, subgraphs.

Therefore assume that J' is produced by such a splitting of u in Jy + e;
that e; is violating in J'. Similarly as in Claim 6.4.3.5, it can be deduced from
Theorem 6.2.1 that e; is not violating in J,, and also no edge not incident with
is violating in J,. This fact is used to state the following cases of our analysis.

(1) Let {1,3},{7,8} € E(J,), and let e; be one of {1,3},{7,8}. Observe that
all relevant splittings of u in Jo+ {1,3} + {7, 8} (i.e. those for which e; is violating
in J') reduce to valid splittings in Dy + {1,3}+{7,8} —{4,6} — {5, 7} ~ D,. (The
isomorphism is given by the permutation (1,6)(3,4)(5,8).) Hence the claim follows
from the previous arguments.

(2) Let {1,5},{7,8},{2,3},{7,9} € E(J,), and let e; be one of {1, 5}, {7, 8}.
Then J° = Dy +{1,5} + {7,8} + {2,3} + {7,9} C J,, and J° — {2,9} — {3, 7} —
{4,7} — {5,6} ~ D, (via the isomorphism (1,6,2)(3,8,5,4,9)). It can be checked
that all relevant splittings of u in J,, reduce to the discussion above, except for one

case when the splitting is not valid without the edge {3, 7}:
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— J'=J° / T{}5 4540} has an €, subgraph.

(3) Let {1,5},{7,8},{3,4},{7,9}{1,2},{7,10} € E(J,), and let e; be one of
{1,5},{7,8}. Then J° = Do+{1,5}+{7,8}+{3,4}+{7,9}+{1,2}+{7,10} C J,,
and J° — {1,10} — {2,7} — {3,7} — {4,5} — {4,9} — {6,7} ~ D, (via the isomor-
phism (1,4)(2,9,3,8,5,6,10) ). Again, all relevant splittings of u in J, reduce to

the discussion above, except for:
- JI - JO Z 7 {?:;4,5,6,9,10} haS an 52 Subgraph

(4) Thus, using Claims 1,2 and symmetry, the remaining possibilities are
either J, = Do+ {1,5} + {7,8} + {3,4} + {7,9} + {2,6} + {7,10} = D} (which
is postponed until the next claim), or J,, = J° = Dy + {7,8} + {2,3} + {7,9} +
{1,2} + {7,10} ~ Dy ~ Dy + {7,8} + {3,4} + {7,9} + {1,2} + {7,10}. So the

following relevant splittings in J° have to be checked.
—J'=J°/8 {;,‘;’} and J' = J°/ 7{‘;’:374,576,9710} have &, subgraphs.

Finally, if u; has no neighbor among the vertices adjacent to u in Jg, then
there are (at least) two edges e;,e;, 1 < i < j < n incident with u;. By symmetry,
it may be supposed that e;, e; are not incident with 10, and hence a corresponding
splitting in Jo+e; +¢;¥a {10} has been covered in the case analysis in Claim 6.4.3.5.

Thus the claim follows by Lemma 6.3.3. m]

Claim 5. 1f J, = D}, then J,,1 is not obtained by a vertex splitting.

Proof. Notice that the vertices 1 and 8 are symmetric in Dj. The case analy-

sis in Claim 4 clearly covers all splittings in J,,, except for the following possibilities.

- J,1=D5/8 {ég} and J 11 = D5/ 7{35 456010} have D; minor via contract-
ing {1,10},{2,10},{2,9}.
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- J,1=D5/8 {i’g} and J,41 = Dj / 1{7%,} have two violating edges.
- Ju1=D5 /5 {122,7} has the violating edge {1, 8}.
— Jp1=D5 L 7{?:214’5,6’9,10} has the violating edge {3, 8}.

Suppose now that J,.; = D5/ 5 {}1:2,7}. Since this graph is not internally
4-connected, there must be at least one more graph J,.o in the sequence, so that
the edge {1, 8} is not violating in J, 2. Let 11 denote the new vertex in J,; such
that (11, {1, 8}) is a violating pair. A triangle explosion of 11 is not allowed in J, 1.
Possible vertex splittings of 1 or 8 are J,, 41 /8 {ézl} or Jp1/8 {%:1)’1} (since 1,8 are
symmetric), but both of them reduce to the previous cases of splittings in D} via
contracting {5,11}. If J,, 10 = J o1+ {u, 11} is obtained by adding an edge incident
with 11, then the edge {5,11} for u = 2,3,9,10, or {8,11} for u = 4,6, may be
contracted to obtain a graph that has a Ay minor by the discussion in Claims 1,2,

except for:
— Jpio = Iy +{7,11} has an €, subgraph.

Similarly, both graphs obtained by possible triad additions J,; 46 {1,8}, Jp41
2{1, 8} have minors Dy + {6, 8}, D, + {2, 8} respectively, and hence also Ay minors
by Claim 1.

Suppose further that J,,; = D5 / 7{?:274,576,9,10}. Let 11 denote the new
vertex in J, 1 such that (11,{3,8}) is a violating pair. Again, possible vertex split-
tings of 3 or 8 in J,,1 reduce to the above cases of splittings in D5 via contracting
{7,11}. If Jpi0 = Jny1 + {u, 11}, then for u = 1,2,5,6, 10, contracting the edge
{3,11} produces a graph that has a Ay minor by the discussion in Claims 1,2. The

remaining cases are:

— Jpi2 = Jpi1 + {4, 11} has a D3 minor via contracting {1, 5}, {1, 8}, {2, 9}.
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— Jpio = Jpi1 +{9,11} has a D3 minor via contracting {1, 3}, {1, 8}, {1, 10}.

The graphs obtained by possible triad additions J,1 16 {3,8}, J,1 - 10{3,8}
have minors Dy + {3,6}, Do + {3,10} respectively, and hence also Ay minors by
Claim 1. If J, 5 is obtained by a triangle explosion of the vertex 7 in J 1, then it
contains a minor obtained by a splitting of 7 in Dj. Thus J,.» has a Ay minor by

the above analysis and symmetry, except for the following case.

— Jpio = I < 7{%275,6710711} has a D3 minor via contracting {1,8},{1, 10},

{2,10}, and {3,11}. O

Claims 1-5 can be summarized as follows.

Clatm 6. In the sequence of graphs Jo = Dy, J1,...,Jr ~ H defined above,
n = k holds. The graph H is obtained from D, by adding at most one of the edges
{1,3},{1,5},{3, 5}, at most one of the edges {2,3}, {2, 4}, {3,4}, at most one of the
edges {1,2},{1,6},{2,6}, and an arbitrary choice of the edges {7,8},{7,9},{7,10}.

O

Notice that by Claim 6, H is obtained from Dy by adding at most six edges.
Moreover, if one of {1,3},{1,5},{3,5} is added, then {7, 8} must be added to keep
H internally 4-connected. Similarly, if {7,8} is added, then either the single edge
{1, 3}, or two other edges — one incident with 1 and one incident with 3, must be
added to Dy, too. Therefore, using symmetry, the possibilities for the graph H are

as follows, ordered by the number of edges.
— Dy +{1,3} + {7,8} is the graph D,
— D, +{2,3} + {7,9} is the graph Dj.
— Dy +{2,4} + {7,9} is isomorphic to the graph D}.
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— Dy + {7,10} is the graph D))"
— D) +{1,2} is the graph D5.
— Dy +{1,6} is the graph D5,

— Dy +{1,5} +{3,4} +{2,6} + {7,8} + {7,9} + {7, 10} is the graph D3. i

Proof of Theorem 6.1.3. Setting II = {K142,, B7, B, B, C3,C5,Cs,
C:,C3, Dy, Dy, Dy, Dy, Dy, Dy, D5}, the statement of the theorem immediately
follows from Corollary 6.1.4, Corollary 6.1.6, and Lemmas 6.4.1, 6.4.2, 6.4.3, 6.4.4.

|

6.5 Final Remarks

Theorem 6.1.3 describes all possible counterexamples to Conjecture 2.2.1.
Furthermore, Lemma 2.1.5 and Proposition 2.1.6 allow us to deduce certain impli-
cations among members of II. Let us write G’WH to mean that “if G has no

planar cover, then neither has H”.

Proposition 6.5.1. The following relations hold among the members of 11.
Kippo——Br—2B,—B;——>C——C;——>C;

/‘ —- C; — \( /( D;
NC
NC NC
cII ) co } D2 ) DI D” DIII ) DO
NC

D;
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Proof. The relations in the first row of the diagram follow immediately

from Lemma 2.1.5, or from the next argument:

7—»Cs: Notice that By = C3 + {1,5} + {7,8} va {9}, and that the edges {1,5}
and {7,8} are added between neighbors of cubic vertices. Thus if C3 had a planar
cover, then so would have BJ by Proposition 2.1.6.

The relations in the second row of the diagram follow similarly, except for:
’D;N—CYDQ: As in the previous case, Dj can be obtained from Dy by subdividing
the edges {1,10}, {2,9}, {3, 8} with new vertices 11, 12, 13 respectively, then adding
the edges {11,7},{12,7},{13,7}, and finally YA-transforming the vertices 8,9, 10.

Thus if D, had a planar cover, then so would have D3 by Proposition 2.1.6. ]

It is possible that more relations between the graphs from II can be derived

in a similar fashion, but this possibility is not pursued in the paper.

By Lemma 2.1.5 and the Graph Minor Theorem of Robertson and Sey-
mour [34], there exists a finite set ¥ of graphs such that a connected graph has
no planar cover if and only if it has a minor isomorphic to a member of 3. Since it
is not known if Conjecture 2.2.1 holds, it is not even known whether K., € X.

However, the lemmas developed in this paper imply the following.

Theorem 6.5.2. The set ¥ is the union of Ay and some set 1y C I — {D3} such

that no graph in 1y is a subgraph of another graph in 1.

Proof.  Clearly, no graph in X is a subgraph of another member of X,
and all graphs in X are connected and have no embedding in the projective plane.
Moreover, all graphs in Ag are minor-minimal with respect to the property of having
a planar cover, since all of their proper minors are projective-planar, and hence have

double planar covers.
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Let G € X. If G happens to be one of the graphs in Ag, the proof is done,
otherwise G contains one of K 399, B7,C3, D, as a minor by Theorem 2.2.2. In such
a case it follows from Corollary 6.1.6 that G is internally 4-connected. The statement
then follows from Lemmas 6.4.1, 6.4.2, 6.4.3, 6.4.4. Moreover, by Proposition 6.5.1,
D3 is not a minor-minimal graph having no planar cover, since it has a planar cover

if and only if so does Dy C D3. |

(Notice that Theorem 6.5.2 does not seem to be a consequence of Theo-

rem 6.1.3.)
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CHAPTER VII

FUTURE RESEARCH

7.1 Towards a Proof for K322

Recall that it is enough to prove that the graph K 59 has no planar cover
in order to prove Negami’s planar cover conjecture. The aim of this section is to
review some of the ideas or methods that R. Thomas and the author considered

when they were looking for a solution of this last case.

<N
[/a%2y

K39

Figure 7.1: Numbering of vertices in the graph K 395.
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Ordinary Discharging

If a plane graph H is a cover of K 529, then H is simple. Let the vertices in
K 529 be denoted as in Fig. 7.1, and let ¢ : V(H) — V(K 222) be the projection.
Then every vertex of ¢ 1(7) has degree 6 in H, and every vertex of o (1) U... U
©71(6) has degree 5 in H. A vertex v € ¢ '(7) is adjacent to vertices labeled
1,2,3,4,5,6. A vertex v € o' (1)U... Uy !(6) is adjacent to one vertex labeled 7,
and to four vertices labeled [ € {1,2,3,4,5,6} such that 3 /(I — ¢(v)). R. Thomas

suggested to consider the following partial discharging rules.

Initial charges. Each vertex of degree d in H starts with a charge of 6 — d, and
each face of length k in H starts with a charge of 2(3 — k). The edges of H have

no charge.

Discharging rules. If f is a face of length £ bounded by a cycle v; ... v, then one

of the following rules apply.

— (k =4): If p(v;) = 7 for some i € {1,2,3,4}, then the vertices v;_1,v;11 send
each a charge of 1 to the face f. (Indices are considered modulo d.) If there is
one pair of vertices v;, v;12 such that |p(v;) — @(vi42)| = 3, then each of vy, vi4o
sends a charge of 1 to f. If there are two such pairs, then the vertices of an

arbitrary one of these pairs send a charge of 1 to f.

— (k = 5): If p(v;) = 7 for some i € {1,2,3,4,5}, then all remaining vertices
incident with the face f send a charge of 1 to f. Otherwise, a vertex v;, i €
{1,2,3,4,5} sends a charge of 1 to f if and only if there exists j € {1,2,3,4,5}

such that |p(v;) — ¢(v;)| = 3.

— (k > 6): In this case, each of the vertices vy,..., v, sends a charge of 1 to the

face f.
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It is easy to compute that the total initial charge of H is 6|V (H)|—2|E(H)|+
6|/F(H)| —4/E(H)| = 12 > 0 by Euler’s formula. Thus if it was proved that all
charges at the end of the discharging process are nonpositive, the contradiction
would show that the graph K299 had no planar cover. That clearly cannot be
achieved with the above partial discharging rules — all faces of H end up with a
nonpositive charge, but some vertices may still have charges of 1, as the example in
Fig. 7.2 shows. (Applications of the discharging rules are demonstrated by dotted

lines, and the over-charged vertices are dark-shaded.)

© 7

Figure 7.2:

The goal was to design more discharging rules based on properties of the

cover of K 549 in addition to the above presented rules, in order to get the desired
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contradiction. (Compare with Chapters IIL,IV.) Unfortunately, no reasonable way
to handle “locally dense” configurations similar to the one presented in Fig. 7.2
was found. Attempts were made to extend such configurations towards producing

a counterexample to Negami’s conjecture, but they also failed.
Star Discharging

Another discharging method was inspired by the proof in Chapter III. Let
H' be the graph obtained from H by contracting all edges incident with the vertices
of ¢~1(7), by deleting all loops, and by replacing with a single edge each bunch of
edges forming faces of size 2. Let the subgraph of H corresponding to a single edge e
of H' be called the arm corresponding to e. Let the union of all arms corresponding
to edges incident with a vertex z of H' be called the star centered at z. The degree
of the star is the degree of z in H'.

The graph H' is a plane graph without loops or faces of size 2. It can be
shown that each vertex of H' has degree at least 4. Let the initial charges be set

up similarly as above.

Initial charges. Each vertex of degree d in H' starts with a charge of 6 — d, and
each face of length k in H' starts with a charge of 2(3 — k). The edges of H' have

no charge.

Again, the goal was to design discharging rules such that the final charges of all
elements in H' are nonpositive.

One problem occurred that the number of all possible stars was enormous.
(When rotation symmetries and label permutations were factored out, there were
79 possible stars of degree 4, 7548 stars of degree 5, 388081 stars of degree 6, and
13687595 stars of degree 7.) Nevertheless, efficient computer programs for handling

local configurations of stars were developed. However, no usable discharging rule
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was found for the configuration which is presented in Fig. 7.3. (There is no obvious
destination where to send a charge from the central star of degree 4.) Notice also
similarities between some parts of of the configuration from Fig. 7.3, and the graph

in Fig. 7.2.

Remark. The discharging method used in Chapter IV is so special that it does not
seem to be usable at all in the case of K 525. However, it is possible that it has an

extension towards the graph Ds.

Necklace-Like Argument

A different attempt was based on the ideas used in Chapter V. We tried to
find a necklace-like argument showing that the graph K 522 had no planar cover,
or at least to find such an argument for the graph C3 which seems to be very similar
to C4. However, this attempt was also unsuccessful. (The major complication seems
to be in the facts that there are no two disjoint cycles longer than 3 in the graphs
K529 — {7} or C3 — {7}, and that the complement of any cycle in K499 or Cs

containing the vertex 7 is an outerplanar graph.)

It is possible that a final solution can be obtained using a clever combination
of the discharging method and a necklace-like argument, but it is not clear how to

combine the two.

7.2 Generalization of Negami’s Conjecture

If § is a surface, and the graph G has a cover H that embeds in S, then G
is said to have an S-cover. The terms projective cover or Klein cover are used in
the obvious sense. The above presented statement of Conjecture 2.2.1 probably has

no direct analogue for surfaces of higher genera. However, the aim of this section
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is to suggest another formulation of Negami’s conjecture that has a straightforward

generalization to other nonorientable surfaces.

Conjecture 7.2.1. A connected graph embeds in the projective plane if and only if

it has a projective cover.

Proof of equivalence with Conjecture 2.2.1. It is enough to prove
that a graph has a finite planar cover if and only if it has a finite projective cover.
Indeed, a planar cover is a projective cover, too. On the other hand, let H be a
projective cover of a graph G, then H has a double planar cover F'. One can check
that the property of having a cover is a transitive relation, thus F' is a planar cover

The advantage of the latter formulation is that it speaks about one surface
only, and it directly relates the properties of having a cover and of having an em-
bedding in the surface to each other. Surprisingly, it appears that nobody has
considered that formulation before. Conjecture 7.2.1 holds for no orientable surface,
since projective graphs (hence having planar covers) of arbitrarily high orientable

genera [6] exist. However, for nonorientable surfaces it is conjectured:

Conjecture 7.2.2. A connected graph embeds in the Klein bottle if and only if it

has a Klein cover.

As far as we know, it is possible that Conjecture 7.2.2 holds for all nonori-
entable surfaces, but at the moment there is no evidence in favor of that. To provide
some support for the conjecture, it is shown that three minor-minimal graphs not
embeddable in the Klein bottle do not have Klein covers: The complete graph K7,

the graph Kg — M, (a complete graph on 8 vertices minus a perfect matching),
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Figure 7.4: The graphs K;, Kg — M4, and H 4, respectively.

and the Heawood graph H1, (the only cubic graph of girth 6 on 14 vertices; also,
the geometrical dual of any toroidal embedding of K+). See Fig. 7.4 for pictures of

these graphs.

7.3 Three Supporting Examples for the Klein Bottle

Proposition 7.3.1. The graphs K; and H 4 have no Klein covers.

Proof. Suppose that G is a cover of K; embedded in the Klein bottle.
Clearly, G is a simple graph. By Euler’s formula, G is a 6-regular triangulation of
the surface. The cover projection is represented as a labeling of the vertices of G
by labels 1,2,...,7, where each label is connected with all the other six labels. In
particular, two vertices of the same label are at distance of at least 3.

A straight-ahead walk is a walk which leaves each internal vertex through an
edge opposite to the edge through which it entered. This is well-defined, because
every vertex of G has an even degree. A key observation is that two vertices of the

same label cannot be connected by a straight-ahead walk of length three. To prove
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Figure 7.5: A straight-ahead walk between two vertices of the same label.

it, see Fig 7.5—the seven vertices a, b, ¢, d, e, f, g must have mutually distinct labels,
and none of them may have the label 1, a contradiction. (The pictures presented
here should be regarded as a lifting of the graph into the universal covering surface.
It could happen, for example, that in the Klein bottle embedding of G the two

vertices labeled 1 are actually equal.)

Figure 7.6: A fragment of a Klein cover of K.
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Let us now look at the components of the graph obtained from G by deleting
all edges not contained in any closed neighborhood of a vertex of label 7. These
components are wheels with the central label 7; and it is further shown that the rim
vertices of each wheel are labeled in the same cyclic order, which contradicts the
nonorientability of the Klein bottle.

It is assumed, without loss of generality, that one of the wheels W is labeled
1,2,3,4,5,6 in order. Let another wheel labeled a, b, ¢, d, e, f be connected to W by
at least one edge, say b5 (see Fig. 7.6). The edge b5 is not the only edge between
these two wheels, for otherwise the central vertices would be connected by a straight-
ahead walk of length three. Thus the wheels are connected by a triangle, say ab5.
Since the vertex 5 has only one more edge, there must be another edge, say b4,
between the wheels. Let z,y denote the other two neighbors of the vertex 4, as in
the figure.

The label b cannot be 3,4, 5,6 since these labels already occur at distance
of at most two from it; similarly a cannot be 4,5,6; and ¢ cannot be 4,5, and 6
since c¢ is connected with 6 by a straight-ahead walk of length three. Then one of
a, b, cis 2, so the vertex y is at distance of at most two from labels 2, 3,4,5,7, and
y is connected with 1 by a straight-ahead walk of length three. Hence y = 6, and
consequently z = 1, which already implies b = 2, ¢ = 3, a = 1. By symmetry

between the two wheels, 4 =d, 5 = e, 6 = f, and the claim follows by induction.

The Heawood graph H 4 is a bipartite cubic graph of girth 6. If each vertex in
one part of the bipartition of H4 is replaced with a triangle on its three neighbors
(a Y A-transformation), then this results in the complete graph K;. The same

transformation is applicable to any cover of H4; thus a Klein cover of H 4 could
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be transformed to a Klein cover of K7, and this was already shown to be impossible.

The proof of the next statement is very similar to the previous one.
Proposition 7.3.2. The graph Kg — M4 has no Klein cover.

Proof. Let the vertices of Kg — M4 be 1,2,...,8, so that the four missing
edges are 12,34, 56, 78. Suppose that G is a Klein cover of Kg — M ,. By Euler’s
formula, G is a 6-regular triangulation of the surface. The covering projection is
represented as a labeling of the vertices of G by the labels 1,2,...,8 in the natural

way.

Figure 7.7: A straight-ahead walk between two vertices of the same label.

Again, two vertices of the same label cannot be connected by a straight-ahead
walk of length 3. If the situation depicted in Fig. 7.7 happened, then the vertices
a,b,c,d, e, f, g would get seven distinct labels other than 1, so g which is connected
with all of them, would be labeled 2. So by mirror symmetry, another vertex ¢

labeled 2 would be at distance of two from g, a contradiction.
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Figure 7.8: A fragment of a Klein cover of Kg — M.

The supposed Klein cover G of Kg — M, is partitioned into wheels centered
at labels 7, and into the remaining vertices of labels 8. It can be argued in the
same way as in the proof of Proposition 7.3.1 that the two neighboring wheels are
connected by at least three edges, see Fig. 7.8. Then the positions of labels 8 are
determined, since each vertex other than 7 must have a neighbor labeled by 8. The
labels 1,...,6 cannot be specified since they are not mutually equivalent in this
case, so we denote them by a,b, c,d, e, f in this cyclic order for the first wheel, and
by a',b',c,d', €, f' in this cyclic order for the second wheel, as in Fig. 7.8.

The label b’ can only be a or b, and the label o’ can only be a or c¢. (There is a
straight-ahead o', b-walk of length three.) If ¥ = a, then o’ = ¢, and hence the cover
would contain seven edges with labels a7, a8, ab, af, ad, ae, ac, which is impossible.
Thus o' = b, and consequently, the cover contains edges labeled b7, b8, ba, be, be, bd,
so bf is one of the missing edges of the graph Kg— M. Since 78 is a missing edge,
too, and cd, de are present in the cover, the remaining two missing edges are ce,
ad. Consequently, a’ = a since there is an edge labeled d’e, and ¢’ = ¢; and finally,

d=4d,e=¢, f = f by symmetry. However, that means by induction, that the
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rim vertices of all wheels are labeled in the same cyclic order, which contradicts the

nonorientability of the Klein bottle. |

Unfortunately, there is little hope to prove Conjecture 7.2.1 by examining all
forbidden minors for the Klein bottle or for higher nonorientable surfaces. Those
lists are not known, and even if they are eventually found, they will probably be
too numerous to be useful. However, it is worthwhile to mention that the lists are

finite by Theorem 1.1.6.

7.4 Planar Emulators

A graph H is an emulator of a graph G if there exist a pair of onto mappings
(p,0), o : V(H) = V(GQ), v : E(H) — E(G), called an (emulator) projection,
such that ¢ maps the edges incident with each vertex v in H (surjectively) onto
the edges incident with ¢(v) in G. In the case of simple graphs, it is enough to
specify the vertex projection ¢. Informally speaking, the difference between covers
and emulators is that the neighborhood of a vertex in an emulator may contain
“repeated edges”, unlike in a cover where the neighborhoods must be one-to-one.

It is clear that every cover is an emulator, but the converse is not true in
general, as an example in Fig. 7.9 shows. Thus the notion of an emulator is a

relaxation of that of a cover. However, Fellows conjectured [13]:

Conjecture 7.4.1. (M. Fellows, 1988) A graph has a planar emulator if and only

if it has a planar cover.

Despite similarity of definitions, planar emulators are far less understood

than planar covers. Fellows [13] adapted some of the solved cases of Negami’s
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(3)

Figure 7.9: An emulator of K, that is not a cover.

conjecture to planar emulators, but other cases completely failed here. In a fash-
ion similar to that of Chapter II, it is enough to prove that the four graphs
K;—Cy,,Ky5—M,, K4s—e, K255 have no planar emulators in order to prove
Fellows’ conjecture (compared to just one case K22 needed for planar covers).
However, not much effort has been spent on solving Fellows’ conjecture so far, and
there is still a good chance of finding an elementary direct proof of it.

One might speculate that Conjecture 7.4.1 could hold for other surfaces as

well. Unfortunately it does not, as it is now shown.

Proposition 7.4.2. There exists a connected graph G that has an emulator em-
beddable in the triple-torus, but G has no finite cover (and hence no embedding)

there.

Proof. Let T be any triangulation of the double-torus, and let P be any
projective graph that does not embed in the triple-torus [6]. A counterexample

graph G is constructed by connecting some vertex ¢ of T with some vertex p of P.

113



Eres

Figure 7.10: An emulator of the graph G.

This graph obviously does not embed in the triple-torus. An emulator is obtained
by drawing T" on two of the handles of the triple-torus, putting a double-cover of P
on the third handle, and connecting the vertex ¢ with both of the vertices covering
p, as shown in Fig. 7.10.

Suppose that there is a cover of the graph G that embeds in the triple-torus.
Euler’s formula applied to T' shows that it may be at most a double-cover, and
then the subcover of T' triangulates the whole triple-torus. But in such case, it
is impossible to connect both of the vertices covering p with the subcover of P, a

contradiction. ]

Fellows’ planar emulator conjecture is a nice and natural extension of Nega-

mi’s planar cover conjecture, and it is open as well.
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APPENDIX A

MINOR-MINIMAL NONPROJECTIVE
GRAPHS

This appendix presents a list of all 35 minor minimal nonprojective graphs,
as found in [14, 3]. (See Theorem 1.2.6.) The notation of these graphs mostly
follows [14], except when more convenient common notation is available. The first
three graphs in the list are disconnected, the remaining 32 of them (starting from
K35 - K33) are connected, and they form the family A referred to throughout the

thesis text.
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APPENDIX B

POSSIBLE INTERNALLY 4-CONNECTED
COUNTEREXAMPLES

This appendix lists all 16 internally 4-connected graphs that have no embed-
ding in the projective plane, but may possibly have a planar cover, cf. Theorem 6.1.3.

These graphs form the family 11 referred to throughout the thesis text.
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Planar covers of graphs, with an extension to covers on other surfaces, were
studied. A simple graph H is a cover of a simple graph G if there exists a mapping
¢ from V(H) onto V (G) such that for every vertex v of G, ¢ maps the neighbors of
v in H bijectively onto the neighbors of p(v) in G. In 1986, S. Negami conjectured
that a connected graph has a finite planar cover if and only if it embeds in the
projective plane.

The “Kuratowski theorem for the projective plane” by D. Archdeacon implies
that Negami’s conjecture holds as long as none of the 32 connected minor-minimal
nonprojective graphs has a planar cover. Results by D. Archdeacon, M. Fellows,
and S. Negami from 1987-1988 stated that 25 of these graphs had no planar covers.
In this thesis, the conjecture was verified for three other graphs (K44—e, C4, and
D,) of the 32. Using those results, it was proved that, up to obvious constructions,
there were at most 16 possible counterexamples to Negami’s conjecture. (This was
joint work with R. Thomas.) A consequence of this work is that in order to prove
Negami’s conjecture it suffices to prove that K222 has no planar cover. However,
the conjecture is still open.

A reformulation of Negami’s conjecture, which had a straightforward gener-
alization to nonorientable surfaces, was proposed. Some support for the generalized

conjecture was given in the case of the Klein bottle.



