
Equivalence-Free Exhaustive Generation of

Matroid Representations?

Petr Hliněný

Department of Computer Science,
VŠB – Technical University Ostrava,

17. listopadu 15, 70833 Ostrava, Czech Republic

petr.hlineny@vsb.cz

September 6, 2004

Abstract. In this paper we present an algorithm for the problem of ex-
haustive equivalence-free generation of 3-connected matroids which are
represented by a matrix over some finite (partial) field, and which con-
tain a given minor. The nature of this problem is exponential, and it ap-
pears to be much harder than, say, isomorph-free generation of graphs.
Still, our algorithm is very suitable for practical use, and it has been
successfully implemented in our matroid computing package Macek

[http://www.mcs.vuw.ac.nz/research/macek, 2002–2004].

Keywords: matroid representation, matroid extension, exhaustive gen-
eration, canonical construction path.

2000 Math Subjects Classification: 05-04, 05B35, 68R05.

1 Introduction

Matroids represented over a finite (partial) field play an important role in struc-
tural matroid theory, similar to the role that graphs embedded on a surface play
in structural graph theory. However, unlike for embedded graphs, it is difficult
to visualize a matroid in rank higher than 3, even when it is given as a matrix or
a vector configuration. It is even more difficult to examine basic structural prop-
erties of given matroids like minors, connectivity, branch-width, representability,
or matroid extensions.

It is often the case that proving a theorem in structural matroid theory re-
quires one to check all the small cases (on, say, 8 or 10 elements) by hand, or
to verify specific properties of such small matroids, which are often given by
matrices over finite fields. As matroid researchers know very well themselves,
checking all the “small cases” can be quite long and painful, and prone to errors.
That is why a reasonably efficient algorithm for generation of matroids would

? This paper is originally based on research that the author performed at the Victoria
University of Wellington in 2000–2002, supported by a New Zealand Marsden Fund
research grant to Geoff Whittle.

be very helpful, serving as a base for an automated “small case analysis”. More-
over, it turns out that in a typical case we are interested in matroids which are
“extensions” of a certain small matroid, and so we do not want to generate all
small matroids from scratch. Hence we focus here on an extension generating
algorithm for matroids represented over finite fields.

This paper is structured as follows: The next section gives a brief overview
of matroid terms, and it brings a more thorough consideration of matroid repre-
sentability issues since these are crucial to proper understanding of the algorithm.
(Moreover, relevant terminology is not quite settled, and so we have to clarify
our use of terms.) Our main result – Algorithm 3.2 for generation of matroid
extensions, is described and proved in Section 3. Formal description of the algo-
rithm output, and of its consequences, are stated in the next Section 4. Finally,
the appendix, Section 5, summarizes notes about practical implementation of
the algorithm in our matroid computing package Macek [4], and presents a
brief running time analysis.

2 Basics of Matroids

We mostly follow Oxley [8] in matroid terminology. A matroid is a pair M =
(E, I) where E = E(M) is the ground set of M (the elements of M), and
I ⊆ 2E is a nonempty collection of independent sets of M . For example, if A is
a matrix, then the matroid formed by the column vectors of A with usual linear
dependency is called the vector matroid of A. For a graph G, the cycle matroid
of G is formed on E(G) by subforests of G. See an illustration in Fig. 1. Let Ur,n

denote the n-element uniform matroid of rank r.

K4

a b

c

d

ef
→

a bc

d

e

f

[

1
0
0

] [

0
1
0

]

[

1
1
0

]

[

1
1
1

]

[

0
0
1

]

[

1
0
1

]

Fig. 1. An example of a vector representation of the cycle matroid of K4. The matroid
elements are depicted by dots, and their (linear) dependency is shown using lines.

We denote by M \ e and M/e the matroids obtained by deleting and con-
tracting, respectively, an element e in M . A minor of a matroid is obtained
by a sequence of deletions and contractions of elements (these operations com-
mute). Conversely, a matroid M ′ is a one-element extension (coextension) of M
if M = M ′ \ e (M = M ′/e) for some element e. An extension of M is simply a
matroid containing M as a minor.

2

For n > 1, a matroid M is n-connected if it has no k-separation for k =
1, 2, . . . , n− 1, and |E(M)| ≥ 2n− 2. (In particular, unlike [8], the matroid U2,3

is not 3-connected.) Of particular interest to us are 3-connected matroids, which
capture the core of most structural properties and problems on matroids. 3-
connected matroids can be reasonably easily handled using Seymour’s so called
Splitter Theorem [12]:

Theorem 2.1. (Seymour) Let M,N be 3-connected matroids such that N is a
minor of M . Suppose that if N is a wheel (a whirl), then M has no larger wheel
(no larger whirl) as a minor. Then there is a 3-connected matroid N1 such that
|E(N1)| = |E(N)| + 1, and that M has an N1-minor.

The k-wheel Wk, k ≥ 3, is the cycle matroid of the k-wheel graph. The k-
whirl Wk, k ≥ 2, is obtained from the k-wheel by relaxing (making independent)
the rim circuit. Specially W2 ' U2,4. We say that a 3-connected matroid M
is 3C-reducible to a matroid N if there is a sequence of 3-connected matroids
N0 = N,N1, . . . , Nt = M such that |E(Ni)| = |E(Ni−1)|+1, and Ni has an Ni−1-
minor for i = 1, . . . , t. The following is a well-known corollary of Theorem 2.1:

Corollary 2.2. (Seymour) Let M,N be 3-connected matroids such that N is a
minor of M . If N is neither a wheel nor a whirl, then M is 3C-reducible to N . If
N is a wheel (a whirl), and M has no larger wheel (no larger whirl) as a minor,
then M is also 3C-reducible to N .

Matroid Representations

We now turn our attention to matroids represented over a fixed finite field IF.
This is a crucial part of our introductory definitions. A representation of a ma-
troid M is a matrix A over IF whose columns correspond to the elements of M ,
and linearly independent subsets of columns form the independent sets of M .
Clearly, the matroid of A is unchanged when columns are scaled by non-zero ele-
ments of IF. So we may alternatively view the matrix A as a point configuration
in a projective space over IF.

A matroid M is regular if M is representable by a totally-unimodular matrix.
A regular matroid is then representable over all fields. A matroid M is binary,
or ternary, if M is representable over the fields GF (2), or GF (3), respectively.
We remark that cycle matroids of graphs are regular. Not all matroids are rep-
resentable over a field IF, some of them are even representable over no field at
all. One also has to consider the problem that representable matroids typically
do not have “unique” representations. As a simple example, we present in Fig. 2
two point configurations representing the same 9-element rank-3 matroid which
are not “equivalent” in any reasonable geometric meaning of equivalence.

Another issue, which has to be particularly considered in the context of ex-
haustive generation, is the one of labeled vs. unlabeled objects: We are interested
in generating unlabeled objects to avoid unnecessary duplicities, while the ob-
jects generated by a computer are (usually) implicitly labeled.

3

Fig. 2. Two non-equivalent representations of a 9-element rank-3 matroid.

Let the finite field IF be fixed from now on. We denote by [r, s] = {r, r + 1,
. . . , s}. An r × n matrix A for r ≤ n is called here a labeled matrix if A has
rank r and the columns of A are labeled by numbers 1, 2, . . . , n (rows are not
labeled). Then A represents a rank-r matroid M = M(A) on the ground set
E(M) = [1, n], and we speak about the columns of A as about matroid elements.
We say that A is in a standard form if some basis of M is displayed as an r × r
identity submatrix in A, i.e. A = [Ir |A

′]. Then the matrix A
′ is called a reduced

matrix of the matroid M (or of A). Naturally, the rows of A
′ are labeled by the

column labels of Ir. Moreover, we say that a matrix A is in ordered standard
form if the columns of A are ordered by their labels, so that the lexicographically
minimal basis of M is shown as the identity submatrix Ir.

Let A be the class of all labeled matrices over IF. Each matrix A ∈ A can be
turned into a standard form by elementary row operations (which do not change
the matroid). We say that two matrices A1 ,A2 ∈ A are equivalent if their
ordered standard forms are equal up to non-zero scaling of rows and columns.
These equivalence classes on A are called labeled represented matroids. A labeled
represented matroid with n elements has the ground set [1, n]. In the language
of [8, Chapter 6], two matrices A1,A2 belong to one labeled represented matroid
if and only if A1,A2 are equivalent without use of IF-automorphisms, otherwise
called strongly equivalent in matroid theory for distinction.

If M is a labeled represented matroid on n elements, and π ∈ Sn is a permu-
tation of [1, n], then π is called a relabeling, and Mπ is the labeled represented
matroid obtained from M by applying π to the column labels. Let L be the set of
all labeled represented matroids. The orbits of L under the action of the relabel-
ing symmetric group are called unlabeled represented matroids, and their set is
denoted by U. Note that unlabeled represented matroids refine the isomorphism
classes of the underlying abstract matroids. (For example, these two notions are
identical over binary matroids.) Table 1 presents, for an illustration, the num-
bers of labeled and unlabeled represented matroids isomorphic to selected small
matroids over several fields. (The numbers have been computed with Macek [4],
using its representability-testing feature. We refer to Section 5 for more details.)

Further in the paper, it is very practical to work only with the reduced matrix
A

′ instead of A = [Ir |A
′]. We say that such A

′ displays a basis B of M(A)
where B is formed by the labels of Ir. We note that A

′T is a reduced matrix
of the dual matroid M(A)∗, and that removing a column (a row) of A

′ means
deleting (contracting) the corresponding element in the matroid M(A). (When

4

Table 1. The numbers of labeled / unlabeled represented matroids over small fields.

represented \ matroids U2,4 U2,5 U2,6 U3,6 W3 U2,7 U3,7

GF (5) 3/1 6/1 6/1 6/1 3/2 0/0 0/0
GF (7) 5/2 20/1 60/1 140/3 5/3 120/1 120/1
GF (8) 6/1 30/1 120/1 390/5 6/3 360/1 1200/2
GF (9) 7/2 42/2 210/2 882/7 7/4 840/1 6120/4

going to contract a non-loop element x in M , one can always display a basis
B 3 x first.)

Lastly, we define the notion of a represented minor. Let M,N be unlabeled
represented matroids, and let A0 be a reduced matrix for (some labeling of) N .
We say that N is a represented minor of M if a reduced matrix displaying some
basis of M contains a submatrix equal to A0 up to non-zero scaling. It is an
easy linear-algebra exercise to show that this definition does not depend on a
particular choice of A0 for N . If N is a represented minor of M , then N is
isomorphic to a (usual) minor of M , but the converse may not always be true
if there is more than one unlabeled represented matroid of the same abstract
matroid N .

3 Generating Matroid Elimination Sequences

Recall that we work over a fixed finite field IF. We extend the definition of “3C-
reducible” from the previous section to represented minors in the natural way.
The set of all 3-connected unlabeled represented matroids (over IF) is denoted
by U3. Let Q ∈ U3 be a fixed unlabeled represented matroid, called the base
minor. We define U

Q
3 ⊆ U3 as the subset of all M ∈ U3 such that Q is a

represented minor of M .
Our task now is to generate unique labeled representatives for the unlabeled

represented matroids from U
Q
3 , i.e. 3-connected represented extensions of Q. Since

we are going to apply Corollary 2.2, there will be some minor exceptions specified
later. Our approach follows the general scheme of McKay [7] – generation via
a “canonical construction path”. However, significant difference of represented
matroids from graphs (and from other classical objects) makes it very compli-
cated to express our generating algorithm within the mentioned general scheme,
and so we have chosen to present the algorithm as a standalone procedure. The
presented procedure directly leads to the practical implementation in Macek [4].

Elimination sequences

Let p,m, r, n be integers, where p ≤ m, r ≤ n and m−p ≤ n−r, let q = (qi)
n
i=m+1

be a {0, 1}-sequence, and let A0 ∈ IFp×(m−p) and A ∈ IFr×(n−r) be matrices.
Suppose that

∑n

i=m+1 qi = n−r−m+p, and denote by Al, l ∈ [m,n] the upper-

left submatrix of A on j = p +
∑l

i=m+1(1 − qi) rows and k = l − j columns.

5

Then the triple S = (A0,A, q) is called an elimination sequence if the following
are true:

– Am = A0,
– each Al, l ∈ [m,n] is a reduced matrix of a 3-connected matroid, and
– the first non-zero entry is 1 for each row or column in A not intersecting A0.

The length of S is ||S|| = n − m. For further reference, denote by Ai(S) the
submatrix Ai defined above, by q(S) the sequence signature q, and by ui(S),
i ∈ [m + 1, n] the vector (row or column) which is added to Ai−1(S) to form
Ai(S). See an illustration in Fig. 3.

A =

A0 = Am

um+1 um+2

um+3

um+4

Fig. 3. An illustration of an elimination sequence (A0, A, q) where q = (1, 1, 0, 1).

For simplicity, we no longer explicitly speak about labeled matroids in this
section, but, instead, we assume that our matroids have implicit labelings as-
sociated with their elimination sequences. (In particular, we first assign some
implicit labeling to the base minor M(A0).) Keeping this in mind, we say that
S produces the labeled represented matroid M(A). We let S(A0,A) be the set
of all elimination sequences (A0,A, q) for admissible choices of q; and S(A0,M),
M ∈ U3 be the union of S(A0,AM) over all reduced matrices AM such that
M(AM) ∈ M . (Note that, by definition, S(A0,AM) = ∅ if AM is not compat-
ible with A0.) In other words, S(A0,M) is the set of all elimination sequences
with the base A0 producing some labeling of unlabeled represented matroid M .
We say that the elimination sequences in S(A0,M) are pairwise equivalent.

We now define a linear order ≺ on S(A0,M) as follows: S1 ≺ S2 for equiv-
alent S1, S2 iff q(S1) is lexicographically smaller than q(S2), or q(S1) = q(S2)
and the sequence of vectors

(

ui(S1)
)n

i=m+1
is lexicographically smaller than the

sequence
(

ui(S2)
)n

i=m+1
. We say that an elimination sequence S ′ = (A0,A

′, q′)

is a subsequence of S if A
′ = Ai(S) for some i ∈ [m,n], and q′ is the corre-

sponding prefix of q(S). An elimination sequence S is a k-step extension of an
elimination sequence S′ if S′ is a subsequence of S and ||S|| − ||S ′|| = k.

Lemma 3.1. Let S′

1, S
′

2 be equivalent elimination sequences, and let S1, S2, re-
spectively, be 1-step extensions of S ′

1, S
′

2. If S′

1 ≺ S′

2, and S1, S2 are also equiva-
lent, then S1 ≺ S2.

Proof. If q(S′

1) is lexicographically smaller than q(S ′

2), then so is q(S1)
smaller than q(S2), and hence S1 ≺ S2. On the other hand, if q(S′

1) = q(S′

2),

6

then q(S1) = q(S2) since, in particular, the matrices A(S1) and A(S2) must have
the same size. Hence the second lexicographic criterion applies also to comparing
S1 and S2, and thus S1 ≺ S2 again.

The generating algorithm

Let Q ∈ U3 (a base minor), and let AQ be a reduced matrix representing Q.

Let V
Q
3 ⊆ U

Q
3 be the set of all unlabeled represented matroids M ∈ U

Q
3 that are

3C-reducible to the represented minor Q. By Corollary 2.2, V
Q
3 = U

Q
3 unless Q

is a wheel or a whirl.
For each unlabeled represented matroid M ∈ V

Q
3 , we are going to generate

the smallest (with respect to ≺) elimination sequence SM ∈ S(AQ,M) by the
following recursive procedure:

Algorithm 3.2 Recursive generation of all non-equivalent k-step extensions,
k ≤ `, of an elimination sequence S based on AQ.

procedure mgenerate
(

S : S(AQ, ·)
)

output S;
if ||S|| ≥ ` then return;
for each 1-step extension S′ of S do

let M ∈ U3 be the matroid produced by S′ (s.t. S′ ∈ S(AQ,M));
set D = all reduced matrices A representing M such that

the top-left submatrix of A is equal to AQ;
set d = ||S′||;
for each q ∈ {0, 1}d and each D ∈ D do

if (AQ,D, q) is an elimination sequence then

if (AQ,D, q) ≺ S′ then return;
done

(Tests for other required structural properties may be inserted above. . .)

mgenerate(S′);
done

end.

Lemma 3.3. Let SQ = (AQ,AQ, ∅) for Q and AQ as above. A call to mgene-

rate(SQ) for ` ≥ 0 outputs exactly one elimination sequence SM ∈ S(AQ,M)

for each unlabeled represented matroid M ∈ V
Q
3 such that |E(M)| ≤ ` + |E(Q)|.

In other words, mgenerate(SQ) outputs the collection of all non-equivalent elim-
ination sequences (without duplicities) of length at most ` extending SQ.

Proof. We prove the statement by induction on `. If ` = 0, then mgene-

rate(SQ) outputs SQ and quits. Suppose that the statement is proved for `− 1
where ` > 0.

Let M ∈ V
Q
3 be an unlabeled represented matroid on n = ` + |E(Q)| ele-

ments. Since M is 3C-reducible to the represented minor Q, the set S(AQ,M)
is nonempty by definition. Let S0 ∈ S(AQ,M) be minimal with respect to

7

≺, and let N be the unlabeled represented matroid given by the reduced ma-
trix An−1(S0). By the inductive assumption, our procedure outputs a sequence
S1 ∈ S(AQ, N), S1 = (AQ,AN , q1), which is minimal with respect to ≺. Then
there is always a reduced matrix CM representing M such that AN is a top-left
submatrix of CM . (Actually, CM extends AN just by one row or column, de-
pending on the signature q(S0).) We let q2 be the signature obtained from q1 by
appending the last element of q(S0). Hence S2 = (AQ,CM , q2) ∈ S(AQ,M) is
an elimination sequence which is considered among the 1-step extensions of S1

in the procedure mgenerate.

We claim that, for some CM chosen as above, the sequence S2 = (AQ,CM ,
q2) is minimal in S(AQ,M) with respect to ≺, i.e. that S2 = S0. Indeed, let
S′

0 be the subsequence of S0 of length n − 1. If An−1(S
′

0) 6= AN = An−1(S2)
or q(S′

0) 6= q1, then S′

0 6= S1, and so S1 ≺ S′

0 by the minimality of S1. Now
Lemma 3.1 implies S2 ≺ S0, a contradiction to minimality of S0. Therefore,
An−1(S

′

0) = AN and q(S′

0) = q1, so also q(S0) = q2. Then the (minimal)
sequence S2 for CM = An(S0) is generated in the algorithm. The claim is
proved.

We now assume, for a contradiction, that the procedure mgenerate outputs
two S1, S2 ∈ S(AQ,M). If S1, S2 were not identical, then the larger one in ≺
would be rejected in the inner for cycle of the procedure. Hence S1 = S2, which
means that the subsequence S′

1 = S′

2 ∈ S(AQ, N) of length n − 1 was output
twice by the procedure, a contradiction.

Application notes

The procedure mgenerate of Algorithm 3.2 contains two nontrivial steps —
generating all 1-step extensions of an elimination sequence S, and generating
the set D. The first task is not difficult when working over a finite field IF. We
simply produce all row and column vectors over IF of appropriate length, and
starting with the first non-zero entry 1. (However, this task gets complicated
when considering a partial field IF, as will be discussed in Section 5.)

The set D of matrices can be huge, but we need to generate the whole of D

only if we are going to accept the extension S ′. If we want to reject S′, it is enough
to guess suitable q and D such that S0 = (AQ,D, q) ≺ S′. Our implementation
of Algorithm 3.2 in [4] uses several heuristics to guess such a smaller equivalent
sequence S0, to speed-up rejection of non-minimal S ′. Notice that generating
the set D includes the task of finding all represented minors equal to Q in M ,
which itself is an interesting and useful procedure. We refer to Section 5 for a
more detailed discussion of this topic.

In many situations we are interested only in those members of V
Q
3 that satisfy

some additional structural conditions, for example, that the matroid contains no
represented minor in a given set of forbidden minors. It is useful to implement
tests for such additional conditions directly in the procedure mgenerate, since
these tests may reject an unsuitable extension S ′ faster than the canonical min-
imality test. Moreover, it may be desired to implement structural restrictions

8

not only on the resulting unlabeled represented matroids, but also on the elimi-
nation sequences themselves. As examples we mention possible requirements of
“sequential 4-connectivity” or of absence of “long fans” along the elimination
sequence.

Finally, we present a practical small example of generating 1-step extensions
of the 3-wheel Q = W3 in the ternary field GF (3), as it is implemented in
Macek [4]. We choose a reduced matrix

AQ =

1 0 2
2 1 0
0 2 1

 .

Since W3 is self-dual, we focus only at column-extensions of AQ, i.e. at 7-element
rank-3 ternary unlabeled represented matroids containing W3 as a represented
minor. See an illustration in Fig. 4.

1
0
0

0
1
0

0
0
1

1
2
0

2
0
1

0
1
2

1
1
2

0
1
1

Fig. 4. Two non-equivalent ternary one-step extensions to the 3-wheel W3 (solid points
are the elements of W3, and hollow points are the extension points).

The procedure mgenerate in Algorithm 3.2 generates 14 column vectors from
GF (3)3, and 7 of them violate the 3-connectivity condition. Among the remain-
ing 7 extensions, the four ones (1, 0, 1)T , (1, 1, 0)T , (1, 2, 1)T , (1, 2, 2)T are quickly
rejected since smaller equivalent sequences are found using heuristics based on
rich symmetries of the matrix AQ. An extension given by the vector (1, 1, 1)T is
rejected since a smaller equivalent elimination sequence is found by an exhaustive
search. The remaining two vectors (0, 1, 1)T and (1, 1, 2)T pass the minimality
test, and they give two non-equivalent extensions of Q = W3 over GF (3), as
depicted in Fig. 4.

Typically, Algorithm 3.2 shall be used to generate larger extensions than in
this example, say on 10 or 12 elements. Then the number of extension vectors,
which have to be considered in each 1-step extension, grows exponentially, and
the complexity of the involved operations also grows rapidly. Besides that, the
computing performance heavily depends on the size of the field IF. A brief prac-

9

tical performance analysis of our matroid generator is included in Section 5.
Here we would like to mention that possible symmetries of the base matrix AQ

do not seem to influence the performance of the computation much. The likely
explanation is that, while symmetries allow for various heuristic speed-ups in the
implementation of Algorithm 3.2, symmetric matroids also generate more equiv-
alent extensions that have to be rejected by an exhaustive search. Remarkably,
the computation seems to be slower for base matroids Q with highly transitive
automorphism group.

4 About Matroid Generation

We now summarize the properties and consequences of our generating algorithm.

Theorem 4.1. Let ` ≥ 0, Q ∈ U3 be a 3-connected unlabeled represented ma-
troid, and SQ = (AQ,AQ, ∅) be an elimination sequence, where AQ is a re-

duced representation of Q. For each unlabeled represented matroid M ∈ V
Q
3 on

n ≤ `+ |E(Q)| elements, Algorithm 3.2 on SQ and ` produces exactly one labeled
represented matroid (a representative) L ∈ M .

Proof. This statement is a straightforward reformulation of Lemma 3.3. As
it was already noted there, each matroid M ∈ V

Q
3 is 3C-reducible to the unla-

beled represented matroid Q, and hence there exists an elimination sequence pro-
ducing a labeled represented matroid L ∈ M from AQ. Formally, S(AQ,M) 6= ∅.
On the other hand, we know from Lemma 3.3 that only one elimination sequence
from S(AQ,M) is generated, and hence only one representative L ∈ M is pro-
duced.

In connection with Corollary 2.2, and with the definitions of represented
matroids from page 4, we formulate the following immediate conclusion:

Corollary 4.2. Let Q be a 3-connected unlabeled represented matroid over IF,
that is neither a wheel, nor a whirl. Then Algorithm 3.2 produces the collection
of all unlabeled strongly non-equivalent IF-representations of the matroids on
n ≤ ` + |E(Q)| elements, containing Q as a represented minor.

There are several important notes explaining the consequences of this state-
ment: Say, even if one is interested in abstract matroids only, it is necessary to
generate all inequivalent representations in our algorithm, since not all represen-
tations of the same abstract matroid extend further in the same way. In partic-
ular, if one wants to exhaustively enumerate all non-isomorphic IF-representable
matroid extensions of abstract Q, (s)he has to consider all unlabeled represented
matroids forming Q as the starting points. Isomorphic pairs of matroids (in the
case of fields IF larger than GF (3)) could be removed afterward.

Moreover, it is very important for practical large-scale computations that the
implementation our matroid generator can be easily parallelized, even without
need for inter-process communication. This is formally described in the following
claim which is immediate from the description of Algorithm 3.2:

10

Proposition 4.3. Let `, `′ > 0, and let SQ = (AQ,AQ, ∅) be an elimination
sequence of length 0 with a base minor Q. Denote by T the set of all `-step
extensions of the sequence SQ generated by Algorithm 3.2 on SQ and l. For each

unlabeled represented matroid M ∈ V
Q
3 on n, ` < n − |E(Q)| ≤ ` + `′, elements,

there is exactly one S1 ∈ T such that Algorithm 3.2, run on S1 and `′, produces
a labeled represented matroid L ∈ M .

Speaking informally, at any step of a generation process, one may redistribute
the set of generated elimination sequences T among several computers, and to
continue the generation process in independent parallel threads.

Exhaustive generation of matroids

So far, our approach to matroid generating focused on matroid extensions. Here
we briefly mention how to exhaustively generate all (small) 3-connected matroids
representable over some small field using Algorithm 3.2 (Theorem 4.1). See in
Table 2.

By Tutte’s “Wheels and Whirls” Theorem [14] (a predecessor of Theo-
rem 2.1), every 3-connected matroid is 3C-reducible to some wheel or a whirl.
However, it is technically rather difficult (though possible) to compute extensions
from a starting list of many matroids of different sizes, and to avoid duplicities
in the results. That is why we have used such an approach only for generation
of regular matroids, where there are only few of them.

We exhaustively generate all 3-connected non-regular binary matroids as the
3-connected extensions of the Fano plane F7, using a result of [13]:

Theorem 4.4. (Tutte) A binary matroid is not regular if and only if it contains
an F7-minor.

By another result of Tutte [13], all non-binary matroids contain a U2,4-minor.
Unfortunately, U2,4 (isomorphic to the 2-whirl) is one of the exceptions in The-
orem 2.1. An enhancement of this theorem [1] (also in [8, Section 11.3]) states
that, briefly saying, the exceptions in Theorem 2.1 can be narrowed down to the
2- and 3-whirls in a non-binary case. We present the following formulation:

Theorem 4.5. (Coullard) Each 3-connected non-binary matroid that is not a
whirl has a 3-connected single-element extension or coextension of U2,4 or of the
3-whirl W3 as a minor.

Using Corollary 2.2 and the fact that U2,5 is not GF (3)-representable, it is now
clear that all 3-connected ternary non-binary matroids except the whirls are
3C-reducible to W3. Hence we can generate the 3-connected ternary non-binary
matroids as extensions of W3, and then add all the other whirls (which are all
GF (3)-representable).

Stepping further to larger fields, we use the result of [10]:

11

Theorem 4.6. (Semple, Whittle) A 3-connected non-binary non-ternary ma-
troid M representable over some field has a U2,5-minor, unless M is isomorphic
to Uk,k+2 for some k ≥ 3.

Since U2,5 has only one unlabeled represented matroid over GF (q) for q =
4, 5, 7, 8, this theorem allows us to exhaustively generate all non-binary non-
ternary matroids represented over GF (q), starting from some representation of
U2,5. Of course, we then have to include representations of Uk,k+2 for appropriate
values of k. (Note, however, that U2,5 has two unlabeled represented matroids
over GF (9), and so exhaustive generation over GF (9) is not as straighforward
in this setting.) Moreover, considering that matroids may have non-equivalent
representations (and typically they have) over fields larger than GF (3), we may
finally want to remove isomorphic pairs of matroids from the resulting lists.

We summarize the matroid enumeration results that we have obtained with
Macek, using the above described procedures, in Table 2.

Table 2. The numbers of small 3-connected matroids representable over small fields
(generated all as unlabeled represented matroids).

representable \ elements 4 5 6 7 8 9 10 11 12 13 14 15

regular: 0 0 1 0 1 4 7 10 33 84 260 908
GF (2), non-regular: 0 0 0 2 2 4 17 70 337 2080 16739 181834
GF (3), non-regular: 1 0 1 6 23 120 1045 14116 330470 ? ? ?

(Next we present both the numbers of non-equivalent and of non-isomorphic ones.)

representable \ elements 4 5 6 7 8 9 10 11

GF (4), non-GF (2, 3): 0 2 2 8 78 1040 26494 1241588
– non-isomorphic: 0 2 2 8 69 748 15305 ?

GF (5), non-GF (2, 3, 4): 0 0 3 16 271 8336 497558 ?
– non-isomorphic: 0 0 3 12 192 6590 ? ?

GF (7), non-GF (2, 3, 4, 5): 0 0 0 18 1922 252438 ? ?
– non-isomorphic: 0 0 0 10 277 97106 ? ?

GF (8), non-GF (2, 3, 4, 5, 7): 0 0 0 0 94 ? ? ?
– non-isomorphic: 0 0 0 0 20 ? ? ?

5 Appendix: Implementation and Practical Use

In this appendix we add few words about practical implementation of our ma-
troid generation algorithm in Macek [4]. We note that Macek has been suc-
cessfully used in the exhaustive search for the excluded minors for matroids of
branch-width three [5] and [6], and that some other researchers have also re-
ported success with Macek assisting their research, such as [15], [16].

12

The Macek Program

We have developed the computer program Macek [4] for practical structural
computations with matroids represented over finite (also partial) fields. The
Macek program is free, distributed under the terms of the GNU General Public
License as published by the Free Software Foundation. See [4] for information
about how to obtain and install the program. Macek supports easy manipula-
tion and computations with matrices representing matroids. Among matroidal
functions, one can test for matroid minors, equivalence, representability, isomor-
phism, branch-width three, connectivity, etc. A key feature of the program is an
implementation of our exhaustive generation Algorithm 3.2.

We use a bit of space in the appendix to outline the ways how we have
implemented other important structural matroid functions in Macek – finding
a represented minor, testing abstract isomorphism, and testing / generating
matroid representations over other fields. (The first task – finding represented
minor, actually is a key ingredience in computing the set D in Algorithm 3.2.
The other two tasks are not needed in that algorithm, but they are very useful
in practical applications, and particularly in testing correctness of our generator
implementation.)

We, however, remark that the following outlined routines are of little theoret-
ical interest since they present just clever implementations of basic brute-force
approaches. The usual instances of the input in these cases are so small that a
fast implementation of a brute-force algorithm is better than more sophisticated
algorithms.

– Finding a represented minor N in an unlabeled represented matroid M :
Let N be represented by a reduced matrix AN , and M by AM . By suc-
cessive pivoting in AM , we obtain all the (unlabeled) representations of M
displaying each of the bases of M . Then, in each of them, we search for
submatrices which are, up to line order and scaling, equal to AN . To speed
up the search (quite significantly, in fact), we use matching of patterns of
zero entries and of zero-valued 2×2-subdeterminants in those matrices.

– Testing abstract isomorphism between two matroids M1,M2: We pre-
compute various element-based invariants of the matroids, based mostly
on the structure of small flats (and hence polytime). If those invariants of
M1 and M2 match each other, and the matroids have the same number of
bases, then we take a reduced matrix A1 of M1 and generate the reduced
matrices A

i
2 displaying all bases of M2. For each such A

i
2, we check all

orderings of the lines of A
i
2 (with help of the above invariants), and com-

pare all the subdeterminants of A1 against those of A
i
2. If we (ever) find a

match, then M1 and M2 are isomorphic.
– Finding all representations over IF of a matroid M (or, testing representabil-

ity): Let M be represented by a reduced matrix AM (possibly over a dif-
ferent field). We are building a sequence of matrices, starting from empty
and ending with one of size equal to AM . At each step, we add one row
or column to the previous matrix – we try all unit-scaled vectors over IF
and choose those which produce a matrix representation which is (as an

13

abstract matroid) isomorphic to the corresponding submatrix of AM . At
the end, we get all labeled represented matroids over IF isomorphic to M .

Representations over partial fields

In addition to finite fields, Macek can work with matroids represented over
finite partial fields. A partial field is a generalization of a field, in which addition
is a partial operation. We refer to [11] for a formal definition and properties
of partial fields. A well-known example (though not under this name) is the
regular partial field consisting of the integers −1, 0, 1 with usual addition and
multiplication. A matrix A over a partial field IP is proper if all subdeterminants
of A are defined in IP. For example, proper regular matrices are traditionally
known as totally unimodular. A matroid N is representable over IP if there is a
proper matrix A over IP such that N ' M(A).

A partial field is called finite if the equation x − 1 = y has finitely many
solutions in IP. All finite fields are clearly finite in this sense. However, a finite
partial field may have infinitely many elements. (The reason for our terminology
is that a fixed-rank simple matroid representable over a finite partial field may
have only finite number of elements.)

We briefly describe how our generation algorithm can be used to generate
matroid extensions over finite partial fields. Basically, all parts of Algorithm 3.2
run smoothly here, except the step generating all extension vectors to a matrix
over IF = IP: There is, potentially, an infinite number of values for each new
entry. Fortunately, the first nonzero entry is always 1, and for each next entry
there is a subdeterminant in the matrix whose definability over IP reduces to
finding the finitely many solutions to x − 1 = y in IP. Hence we can efficiently
generate the finitely many potential extension vectors, and then select those
producing proper matrices over IP.

Reliability of Computation

Theoretical correctness of our matroid generator – Algorithm 3.2, is proved in
Theorem 4.1. However, a natural question arises about reliability of its imple-
mentation in Macek. There is, unfortunately, no large-scale computation data
about matroid generation available in the literature, and so we have little chance
to compare our computing results with other reliable sources. We briefly mention
two of just a few small exceptions:

– J. Dharmatilake [2] implemented an exhaustive search of binary matroids
up to 12 elements, for the purpose of finding all binary excluded minors for
the class of matroids of branch-width three. Our generation algorithm in
Macek turned out to be much more efficient than his approach, and so we
were able to easily finish the search of binary matroids up to 14 elements [5]
(which is a known upper bound on size of such an excluded minor). Besides
that, we have also compared parts of his computing data with our results.

14

– R. Pendavingh [9] has recently carried out an enumeration of small ma-
troids, to find excluded minors for matroid representability over the fields
GF (5) and GF (7). Independently from him, we have run similar search
with Macek, and the common parts of our results matched each other.

Besides those, we are left with another possibility – to compare our computa-
tion results with other results obtained with the same program (Macek). Al-
though that may sound almost like cheating, we are going to convince the reader
that, in a specific case, it indeed is a serious and reliable sort of testing.

Firstly, all important parts of the Macek program are equipped with numer-
ous low-level internal self-checks. (By the way, such a careful programming de-
sign has proved very successful in catching bugs during program development.)
Secondly, interested user may instruct Macek to produce verbose debugging
messages, and so to follow all steps of the computation. Thirdly, we have car-
ried out with Macek many involved self-testing computations, which can be
generally described by the following two schemes.

– Let us choose a field IF = GF (q), and an unlabeled represented matroid
Q ∈ U3. Generate (Algorithm 3.2), say for k = 3, the list K of all non-
equivalent k-step extensions of Q over IF.

– Select from K the representatives of isomorphism classes, and generate all
possible labeled representations of them, producing a list L1. Then make
a list L2 by selecting representatives of all distinct unlabeled represented
matroids from L1, which contain Q as a represented minor.

– Verify that K = L2.

We propose to the reader that, for the practically observed positive outcomes
of the above described procedure, the only imaginable good reason is that the
list K really contains all non-equivalent representations of the generated matroid
extensions. Moreover, the next test scheme verifies in a nontrivial way that very
likely no possible (3C-reducible) abstract extension of a matroid is omitted with
the Macek generation routine.

– Let us choose distinct fields IF = GF (q) and IF′ = GF (q′), and an unlabeled
represented matroid Q ∈ U3 which is uniquely representable over both
IF, IF′. (Such as, say, a regular matroid Q.) Generate, say for k = 3, the list
K1 of all non-equivalent k-step extensions of Q over IF, and the list K′

1 of
all k-step extensions of Q over IF′.

– Create a list K2 by selecting from K1 all matroids representable over the
other field IF′, and then by selecting the representatives of isomorphism
classes. Analogously produce K′

2 from K′

1.

– Verify that K2 = K′

2.

– Moreover, in some specific cases like, for example q = 2 and q′ = 5, verify
that the list K2 equals the list of all k-step extensions of Q over the regular
partial field.

15

Again, it is hard to imagine any good reason for the practically observed
positive outcomes of the above described procedure, other than that all abstract
matroid extensions of Q representable over the respective fields IF, IF′ are gen-
erated by Macek. Interested users are welcome to install Macek and run their
own testing computations.

Running time analysis

With such a complex generator like Algorithm 3.2, there is likely no hope to
provide a thorough theoretical analysis of its running time. (Obviously, the algo-
rithm has an exponential time complexity, at least.) In the appendix we provide
a brief sample analysis of real running time of the algorithm implementation in
Macek. As it is usual in this field, we measure average time needed to generate
one matroid extension.

Table 3. Running time analysis of matroid extension generation by Algorithm 3.2 in
Macek (in seconds per extension, normalized to 1GHz CPU).

1-step extensions

field \ elements 7 8 9 10 11 12 13

GF (2): 0.012 0.016 0.018 0.037 0.070 0.125 0.308
(# samples) 1 → 2 1 → 2 4 → 32 17 → 224 70 → 1736 155 → 7771 15 → 875

GF (3): 0.007 0.011 0.019 0.042 0.067 0.124 ?
(# samples) 6 → 60 22 → 482 120 → 7400 15 → 1716 9 → 4115 3 → 2597

GF (4): 0.007 0.009 0.017 0.029 0.056 ? ?
(# samples) 8 → 226 78 → 6950 8 → 2444 4 → 3220 4 → 6731

2-step extensions

field \ elements 6 7 8 9 10 11

GF (2): 0.030 0.031 0.041 0.060 0.112 0.240
(# samples) 1 → 2 1 → 6 2 → 29 4 → 210 4 → 595 2 → 1806

GF (3): 0.021 0.024 0.048 0.067 0.156 ?
(# samples) 1 → 28 3 → 289 4 → 2473 2 → 7379 1 → 11683

GF (4): 0.023 0.032 0.063 0.116 ? ?
(# samples) 2 → 104 2 → 1189 4 → 6687 1 → 35528

Firstly, Table 3 shows average time for generating 1-step and 2-step exten-
sions of small matroids over GF (2), GF (3), and GF (4). Surprisingly, experimen-
tal time does not seem to depend much on the size of the field IF; it is likely that
the greater complexity of computations over larger fields is compensated with
much larger numbers of generated extensions. (That has been also verified by a
few random experiments over the fields GF (8) and GF (9).) One may roughly
say that average time for generating a 1-step extension of an n-element matroid
grows as Θ(2n) regardless of the underlying field. Results of the 2-step extension

16

experiments are not that conclusive since we have sampled only few small ma-
troids, but they show a similar behavior, with a bit more influence of the field
size.

Table 4. Running time analysis of exhaustive matroid generation based on Algo-
rithm 3.2 (Section 4) in Macek (in seconds per matroid, normalized to 1GHz CPU).

field \ elements 8 9 10 11 12 13 14

GF (2): ∼ 0.0 ∼ 0.0 0.06 0.35 1.1 3.3 11
(# generated) 2 4 17 70 337 2080 16739

GF (3): ∼ 0.0 0.08 0.25 0.95 3.0 ? ?
(# generated) 1 120 1045 14116 330470

GF (4): 0.08 0.30 1.2 3.2 ? ? ?
(# generated) 78 1040 26494 1241588

GF (5): 0.10 0.33 1.5 ? ? ? ?
(# generated) 365 9172 505723

GF (8): 0.10 0.48 ? ? ? ? ?
(# generated) 11237 1220128

Secondly, Table 4 summarizes average time needed to exhaustively generate
a small matroid representation in Macek, according to the ideas presented in
Section 4 (i.e. a multistep generation in which the canonical tests take impor-
tance). The first three lines show a very regular behavior – the average time
grows about 3-4 times with each additional element, and it similarly grows also
with the size of the three smallest fields. The last two lines exhibit a somehow
different behavior, probably related to the existence of many inequivalent repre-
sentations of matroids over larger fields. Note the difference between the numbers
of generated matroids in Table 2, and here in the last two lines of Table 4 where
the GF (q)-representable matroids for q = 4, resp. q = 4, 5, 7, are not excluded.

Acknowledgments

The author, besides his current grant support, acknowledges generous support
from the Victoria University of Wellington and from the New Zealand Marsden
Fund during his stay in Wellington in 2000–2002, where development of the
Macek program has begun. The author also thanks Geoff Whittle for helpful
ideas and comments in early stages of Macek development.

The large-scale computations leading to the enumeration data summarized in
Table 2 have been run (in 2003–2004) on the minos cluster at the West Bohemia
University (The ITI center, supported by the Ministry of Education of the Czech
Republic as the project LN00A056).

17

References

1. C.R. Coullard, Minors of 3-Connected Matroids and Adjoints of Binary Matroids,
Ph.D. thesis, Northwestern University, 1985.

2. J.S. Dharmatilake, Binary Matroids of Branch-Width 3, PhD. dissertation, Ohio
State University, 1994.

3. J. Geelen, J. Oxley, D. Vertigan, G. Whittle, Weak Maps and Stabilizers of Classes
of Matroids, Advances in Appl. Math. 21 (1998), 305–341.

4. P. Hliněný, The Macek Program, http://www.mcs.vuw.ac.nz/research/macek,
http://www.cs.vsb.cz/hlineny/MACEK, 2002–2004.

5. P. Hliněný, On the Excluded Minors for Matroids of Branch-Width Three, Elec-
tronic Journal of Combinatorics 9 (2002), #R32.

6. P. Hliněný, Using a Computer in Matroid Theory Research, submitted, 2004.
7. B.D. McKay, Isomorph-free exhaustive generation, J. Algorithms 26 (1998), 306–

324.
8. J.G. Oxley, Matroid Theory, Oxford University Press 1992.
9. R. Pendavingh, personal communication, 2004.

10. C. Semple, G.P. Whittle, On Representable Matroids Having Neither U2,5- nor
U3,5-minors, In: Matroid Theory, Contemporary Math. 197 (Amer. Math. Soc.
1995), 377–386.

11. C. Semple, G.P. Whittle, Partial Fields and Matroid Representation, Advances in
Appl. Math. 17 (1996), 184–208.

12. P.D. Seymour, Decomposition of Regular Matroids, J. Combin. Theory Ser. B 28
(1980), 305–359.

13. W.T. Tutte, A Homotopy Theorem for Matroids, Trans. Amer. Math. Soc. 88
(1958), 144–174.

14. W.T. Tutte, Connectivity in Matroids, Cand. J. Math. 18 (1966), 1301–1324.
15. X. Zhou, Some Excluded Minor Theorems for Binary Matroids, PhD. Thesis, The

Ohio State University (2003).
16. X. Zhou, On Internally 4-connected Non-regular Binary Matroids, J. Combin. The-

ory Ser. B to appear (2004).

18

