
Computing the Tutte Polynomial on Graphs

of Bounded Clique-Width ⋆

Omer Giménez1⋆⋆, Petr Hliněný2⋆ ⋆ ⋆, and Marc Noy1†

1 Department of Applied Mathematics
Technical University of Catalonia

Jordi Girona 1–3, 08034 Barcelona, Spain

e-mail: [omer.gimenez, marc.noy]@upc.edu

2 Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic

e-mail: hlineny@member.ams.org

March 28, 2006

Abstract. The Tutte polynomial is a notoriously hard graph invariant,
and efficient algorithms for it are known only for a few special graph
classes, like for those of bounded tree-width. The notion of clique-width
extends the definition of cographs (graphs without induced P4), and it is
a more general notion than that of tree-width. We show a subexponen-
tial algorithm (running in time exp O(n1−ε)) for computing the Tutte
polynomial on graphs of bounded clique-width. In fact, our algorithm
computes the more general U -polynomial.

Keywords: Tutte polynomial, cographs, clique-width, subexponential
algorithm, U polynomial.
2000 Math Subjects Classification: 05C85, 68R10

1 Introduction

The Tutte polynomial T (G;x, y) of a graph G is a powerful invariant with many
applications, not only in graph theory but also in other fields such as knot
theory and statistical physics. One important feature of the Tutte polynomial is
that by evaluating T (G;x, y) at special points in the plane one obtains several
parameters of G. For example, T (G; 1, 1) is the number of spanning trees of G
and T (G; 2, 1) is the number of forests (that is, spanning acyclic subgraphs) of G.

⋆ An extended abstract published in WG 2005, Proceedings, Lecture Notes in Com-
puter Science 3787, Springer Verlag (2005).

⋆⋆ Supported by Beca Fundació Crèdit Andorrà and Project MTM2005-08618-C02-01.
⋆ ⋆ ⋆ Supported partly by Czech research grant GAČR 201/05/0050, and by the Institute

of Theoretical Computer Science, project 1M0545.
† Supported by Project MTM2005-08618-C02-01.

A question that has received much attention is whether the evaluation of
T (G;x, y) at a particular point of the (x, y) plane can be done in polynomial
time. Jaeger, Vertigan and Welsh [9] showed that evaluating the Tutte polyno-
mial of a graph is #P-hard at every point except those lying on the hyperbola
(x − 1)(y − 1) = 1 and eight special points, including at (1, 1) which gives the
number of spanning trees. In each of the exceptional cases the evaluation can be
done in polynomial time. On the other hand, the Tutte polynomial can be com-
puted in polynomial time for graphs of bounded tree-width. This was obtained
independently by Andrzejak [2] and Noble [13]. Recently Hliněný [8] has ob-
tained the same result for matroids of bounded branch-width representable over
a fixed finite field, which is a substantial generalization of the previous results.
See [6] for additional references on this subject.

In this paper we study the problem of computing the Tutte polynomial for
cographs and, more generally, for graphs of bounded clique-width. A graph has
clique-width ≤ k if it can be constructed using k labels and the following four
operations: 1) create a new vertex with label i; 2) take the disjoint union of
several labeled graphs; 3) add all edges between vertices of label i and label j;
and 4) relabel all vertices with label i to have label j. An expression defining
a graph G built from the above four operations using k labels is a k-expression
for G. When we say that a graph G has clique-width ≤ k, we always assume
that a k-expression for G is given.

A cograph is a graph of clique-width at most two; equivalently, it is a graph
containing no induced path P4 on four vertices (see Section 4).

Although a class of graphs with bounded tree-width has also bounded clique-
width, the converse is not true. For instance, complete graphs have clique-width
two. It is well-known that all problems expressible in monadic second order logic
of incidence graphs become polynomial time solvable when restricted to graphs of
bounded tree-width. For bounded clique-width less is true: all problems become
polynomial time solvable if they are expressible in monadic second-order logic
using quantifiers on vertices but not on edges (adjacency graphs) [3].

Our main results are as follows:

Theorem 1.1. The Tutte polynomial of a cograph with n vertices can be com-
puted in time exp

(

O(n2/3)
)

.

Theorem 1.2. Let G be a graph with n vertices of clique-width k along with a
k-expression for G as an input. Then the Tutte polynomial of G can be computed
in time exp

(

O(n1−1/(k+2))
)

.

Theorem 1.2 is not likely to hold for the class of all graphs, since it would
imply the existence of a subexponential algorithm for 3-coloring, hence also for
3-SAT; that is considered highly unlike in the Computer Science community.
Of course, the main open question is whether there exists a polynomial time
algorithm for computing the Tutte polynomial of graphs of bounded clique-
width. We discuss this issue in the last section.

In fact, our algorithms compute not only the Tutte polynomial, but the so-
called U polynomial (see [14]), which is a stronger polynomial invariant. More-

2

over, we may skip the requirement of having a k-expression for G as an input in
Theorem 1.2, if we do not care about an asymptotic behaviour in the exponent:
Just to prove a subexponential upper bound we may use the approximation
algorithm for clique-width by Oum and Seymour [16, 15] (see Section 4).

Since our algorithms are quite complicated, for an illustration, we first present
in Section 2 a simplified algorithm computing the number of forests in a cograph,
that is, evaluating T (G; 2, 1) for graphs of clique-width ≤ 2. In Section 3 we ex-
tend the algorithm to the computation of the full Tutte polynomial on cographs.
Section 4 then discusses more closely the notion of graph clique-width. Finally,
in Section 5 we prove our main result, Theorem 1.2.

2 Forests in Cographs

The problem of computing the number of spanning forests in an arbitrary graph
is #P -hard [9]. In this section we show the existence of a subexponential algo-
rithm for the class of cographs.

2.1 Definition and Signatures

The class of cographs is defined recursively as follows:

1. A single vertex is a cograph.
2. A disjoint union of two cographs is a cograph.
3. A complete union of two cographs is a cograph.

Here a complete union of two graphs G ⊠ H means the operation of taking a
disjoint union G ∪̇H, and adding all edges between V (G) and V (H). (We better
avoid using the notation ⊕ at all since in the context of clique-width it is used to
denote a disjoint union while in some other areas it denotes a complete union.)
A cograph G can be represented by a tree, whose internal nodes correspond to
operations (2) and (3) above, and whose leaves correspond to single vertices. We
call such a tree an expression for G.

For example, all cliques are cographs, and the complement of a cograph
is a cograph again. Cographs have a long history of theoretical and algorithmic
research. In particular, they are known to be exactly the graphs without induced
paths on four vertices (P4-free).

Let us call a signature a multiset of positive integers. The size ‖α‖ of a signa-
ture α is the sum of all elements in α, respecting repetition in the multiset. A sig-
nature α of size n is represented by the characteristic vector α = (a1, a2, . . . , an),
where there are ai ≥ 0 elements i in α, and

∑n
i=1 i ·ai = n. (On the other hand,

the cardinality of α is |α| =
∑n

i=1 ai, as usual.) An important fact we need is
the following. Recall that Θ(f) is a usual shortcut for all functions having the
same asymptotic growth rate as f .

Lemma 2.1. There are 2Θ(
√

n) distinct signatures of size n.

3

Proof. Each signature actually corresponds to a partition of n into an unordered
sum of positive integers. It is well-known [11, Chapter 15] that there are 2Θ(

√
n)

of those.

We call a double-signature a multiset of ordered pairs of non-negative integers,
excluding the pair (0, 0). The size ‖β‖ of a double-signature β is the sum of all
(x + y) for (x, y) ∈ β, respecting repetition in the multiset. We, moreover, need
to prove:

Lemma 2.2. There are exp
(

Θ(n2/3)
)

distinct double-signatures of size n.

Lemma 2.2 is a particular case of Lemma 5.1, which is proved in Section 5.

Lemma 2.3. A double-signature β of size n has at most exp
(

O(n2/3)
)

different
submultisets (i.e. of different characteristic vectors).

Proof. Just count all double-signatures of size ≤ n.

2.2 Forest Signature Table

Let us now consider a graph G and a forest U ⊂ G. The signature α of U is
the multiset of sizes of the connected components of U . (Obviously, α has size
|V (G)| if U spans all the vertices.) We call a (spanning) forest signature table of
the graph G a vector T (realized as an array T [. . .]); such that T records, for
each signature α of size |V (G)|, the number of spanning forests U ⊂ G having
signature α (as T [α]). For simplicity we usually skip the word “spanning” if it
is clear from the context. We are going to compute the forest signature table
of a cograph G recursively along the way G has been constructed. For that we
describe two algorithms.

Let us denote by ΣG the set of all signatures of size |V (G)|. It is important
to keep in mind that signatures are considered as multisets, which concerns also
set operations. For instance, a multiset union γ ⊎ δ is obtained as the sum of
the characteristic vectors of γ and δ, and a multiset difference γ \ δ is defined
by the non-negative difference of those.

Algorithm 2.4. Combining the spanning forest signature tables of graphs F
and G into the one of the disjoint union H = F ∪̇G.

Input: Graphs F,G, and their forest signature tables T F ,T G.

Output: The forest signature table T H of H = F ∪̇G.

create empty table T H of forest signatures of size |V (H)|;

for all signatures αF ∈ ΣF , αG ∈ ΣG do

set α = αF ⊎ αG (a multiset union);

add T H [α] += T F [αF] · T G[αG];

done.

4

The running time of this algorithm is proportional to the number of pairs of
signatures (αF , αG), which is exp

(

O(n2/3)
)

, where n = |V (H)|; this is due to
Lemma 2.2 and the fact that we have the O() expression in the exponent.

The second algorithm is, on the other hand, more complicated. It involves
double-signatures in the following meaning: Consider a graph H with vertices
partitioned into two parts V (H) = V1 ∪ V2, and a forest U ⊂ H. The double-
signature of U (wrt. V1, V2) is the multiset of pairs

(

|V (C) ∩ V1|, |V (C) ∩ V2|
)

over all connected components C of U . See an illustration in Fig. 1.

s

s

s

s

s

s
s

s

s
V1 V2

Fig. 1. An illustration of a spanning forest (solid edges) in a graph partitioned into V1

(white) and V2 (black); this forest has double signature {(2, 1), (1, 2), (0, 1), (1, 1)}.

The idea behind the algorithm is to obtain the double-signatures (for V1 =
V (F) and V2 = V (G)) of the spanning forests in H = F ⊠G from the signatures
of the spanning forests in F and G. For every pair of forests UF ⊂ F and UG ⊂ G,
the algorithm iteratively counts the different ways in which each component of
UG can be joined to components of UF . During the process, double signatures
are needed to distinguish between former vertices of F and of G in already
joined components. In fact, the algorithm works with pairs of signatures αF and
αG, that is, with whole classes of forests instead of particular forests. We also
remark that a submultiset is considered among all possible selections of repeated
elements, as if they were pairwise distinct.

Algorithm 2.5. Combining the spanning forest signature tables of graphs F
and G into the one of the complete union H = F ⊠ G.

Input: Graphs F,G, and their forest signature tables T F ,T G.
Output: The forest signature table T H of H = F ⊠ G.

create empty table T H of forest signatures of size |V (H)|;

for all signatures αF ∈ ΣF , αG ∈ ΣG do

set z = |V (F)|;

create empty table X of forest double-signatures of size z;

// Imagine particular forests UF ⊂ F , UG ⊂ G of signature αF , αG,

// and a selected component C ⊂ UG of size c.

5

set X
[

double-signature {(a, 0) : a ∈ αF }
]

= 1;

for each c ∈ αG (with repetition) do

create empty table X ′ of forest double-signatures of size z + c;

for all double signatures β of size z s.t. X[β] > 0 do

for(†) all submultisets γ ⊆ β (with repetition) do

set d1 =
∑

(x,y)∈γ x, d2 =
∑

(x,y)∈γ y;

set double-signature β′ = (β \ γ) ⊎ {(d1, d2 + c)};

add(*) X ′[β′] += X[β] ·
∏

(x,y)∈γ cx;

done

done

set X = X ′, z = z + c; dispose X ′;

done

for all double-signatures β of size |V (H)| do

set signature α0 = {x + y : (x, y) ∈ β};

add T H [α0] += X[β] · T F [αF] · T G[αG];

done

done.

Proof of Algorithm 2.5. We now explain the algorithm, and show its correctness.
It is more easily understood if one imagines particular forests (representatives)
UF ⊂ F and UG ⊂ G in the place of the signatures αF and αG chosen in the
first for cycle. Then one may routinely verify that all subsequent computations
depend only on the forest signatures αF , αG (not on the particular forests), and
hence it is correct to finally multiply the computed values in X by the numbers
T F [αF] · T G[αG].

In the tables X,X ′ we iteratively compute the numbers of all spanning
forests in H that result by adding some edges between the forests UF and UG.
For a particular iteration, imagine a new forest component of size c in G, that
is to be joined with another forest component in F ⊠ G which has x vertices
in V (F). There are c · x edges to consider between the components, and we
have to select exactly one connecting edge to maintain acyclicity, so there are
cx choices there. These numbers are naturally multiplied (*) when joining more
components together. See the steps in Fig. 2

So the core of the algorithm in the second cycle ‘for each c ∈ αG . . . ’ reads:
We consider an arbitrary order C1, C2, . . . , Ck on the connected components
of UG. For i = 1, 2, . . . , k, we take the component Ci, and count all possible
ways how to connect Ci by selected edges to a subset (†) of components of each
of the previously constructed forests on V (F ∪C1∪. . .∪Ci−1) which are recorded
in the table X. The other ends of those selected edges are considered only among
vertices in V (F). (Recall that the complete union H = F ⊠G has added all edges
between V (F) and V (Ci).) We then record (*) numbers of all the new forests
on V (F ∪ C1 ∪ . . . ∪ Ci) in a new table X ′ that will play the role of X in the
next iteration.

6

F ⊠ G

s

s s

s s

s

s s

s

s

s

C1

C2

9 choices

F ⊠ G

s

s s

s s

s

s s

s

s

s
C2

6 · 2 choices

F ⊠ G

s

s s

s s

s

s s

s

s

s

resulting forest

Fig. 2. An illustration of inner iterations of Algorithm 2.5: Particular spanning forests
UF , UG are chosen in F and G (other edges are not shown here), and the components
C1, C2 of UG are then joined to some of the four components of UF . Possible choices
of edges for these joins are shown in dotted lines.

More precisely, after finishing iteration i = 1, 2, . . . , k described in the pre-
vious paragraph, each entry X ′[β] equals the number of all forests U ′ of sig-
nature β spanning V (F ∪ C1 ∪ . . . ∪ Ci) such that U ′ ↾ V (F) = UF and
U ′ ↾ V (G) = UG ↾ C1 ∪ . . . ∪ Ci. That follows easily by an induction from the
previous arguments. At the end we count each spanning forest U ⊆ H such that
U ↾V (F) = UF and U ↾V (G) = UG exactly once. Finally, the double-signatures
in the table X partition the vertices into V (F) and V (G), but that is no longer
needed. So we “simplify” them – we record the resulting numbers only by the
(single) forest signatures in the resulting table T H .

2.3 Time Analysis

To get a fine time-complexity analysis of Algorithm 2.5, we have to insert a slight
modification. (A problem may occur in the original Algorithm 2.5 in the fourth
nested cycle ’for all submultisets γ ⊆ β’ if β consists, say, of n/2 copies of the
element 2. Then there are up to exp

(

Θ(n)
)

submultisets γ to consider.)

Algorithm 2.6. Same as Algorithm 2.5, except the program line (†) now reads

for all different submultisets γ ⊆ β do ,

and the line (*) reads

add X ′[β′] += X[β] ·
∏

(x,y)∈γ

cx ·
∏

(x,y)∈〈β〉

(

µβ(x, y)

µγ(x, y)

)

,

where 〈α〉 denotes the ordinary set formed by elements of a multiset α, and µαz
is the repetition of an element z in α.

Proof of Algorithm 2.6. We prove that this algorithm computes the same results
as Algorithm 2.5. Notice that the outcome of the computation between the lines

7

(†) and (*) depends only on the characteristic vector of γ. Hence instead of all
γ ⊆ β, it is enough to consider (much less of) pairwise different submultisets γ ⊆
β, and then multiply the resulting number by all possible choices (combinations)
of repeated elements of γ from β, as we do here in Algorithm 2.6.

Now, since we use O() in the exponent, it is enough to argue that each of the
for cycles in Algorithm 2.6 (2.5) is iterated at most exp

(

O(n2/3)
)

times. That
follows easily from Lemmas 2.1, 2.2, and 2.3. We conclude:

Lemma 2.7. Algorithm 2.6 runs in time exp
(

O(n2/3)
)

where n = |V (H)|.

We remark that the improvement presented in Algorithm 2.6 has been fully
incorporated in the subsequent algorithms, without further notices.

Theorem 2.8. The number of spanning forests in an n-vertex cograph can be
computed in time exp

(

O(n2/3)
)

.

Proof. Consider a cograph G and a tree expression defining it. The forest signa-
ture table of a single vertex is trivial, and by Algorithms 2.4 and 2.6, the forest
signature tables of a union or a complete union of two cographs can be computed
in time claimed. Finally, knowing the forest signature table T of G, the number
of all spanning forests of G is computed by adding up the entries of T .

Here we should note that the expression defining a cograph can be found in
linear time [5], and hence we do not require it on the input.

3 The Tutte Polynomial of a Cograph

The Tutte polynomial can be defined in a number of equivalent ways. For our
purposes, given a graph G = (V,E) we define the Tutte polynomial as

T (G;x, y) =
∑

F⊆E

(x − 1)r(E)−r(F)(y − 1)|F |−r(F),

where r(F) = |V | − k(F) and k(F) is the number of connected components
of the spanning subgraph induced by the edge-subset F . It is clear that know-
ing T (G;x, y) is the same as knowing, for every i and j, how many spanning
subgraphs with the edge set F in G are there with |F | = i and k(F) = j.

Consider a spanning subgraph W ⊂ G determined on V (W) = V (G) by an
arbitrary subset F ⊂ E(G), F = E(W). The sizes of the connected components
of W define a signature of size |V (G)|. In the (spanning) subgraph signature
table S of G, for each signature α of size |V (G)| and each number of edges
f ∈ {0, 1, 2, . . . , |E(G)|}, we record the number S[α, f] of all spanning subgraphs
of G having f edges and having component sizes according to the signature α.
We abbreviate by γ ↾i the multiset formed by all the i-th coordinates (repetitions
accounted for) of the elements of a double-signature γ.

8

In order to prove Theorem 1.1 we need analogues of Algorithms 2.4 and 2.5
for computing subgraph signature tables. The algorithm for disjoint unions is
again straightforward and we omit it; the one for complete unions comes next.

Besides adding edge number as the second index to the signature tables, the
only other major difference of this algorithm from Algorithm 2.5 is that the
single line (*) is replaced with another for cycle calling a procedure CellSel of
further Algorithm 3.2.

Algorithm 3.1. A modification of Algorithm 2.6 (2.5) for computing the (span-
ning) subgraph signature table of the complete union H = F ⊠ G.

Input: Graphs F,G, and their subgraph signature tables SF ,SG.
Output: The subgraph signature table SH of H = F ⊠ G.

create empty table SH of subgraph signatures of size |V (H)|;

for all αF ∈ ΣF , and eF = 0, 1, . . . , |E(F)| s.t. SF [αF , eF] > 0 do

for all αG ∈ ΣG, and eG = 0, . . . , |E(G)| s.t. SG[αG, eG] > 0 do

set z = |V (F)|;

create empty table Y of subgraph double-signatures of size z;

set Y
[

double-signature {(a, 0) : a ∈ αF }, eF

]

= 1;

for each c ∈ αG (with repetition) do

create empty table Y ′ of subgraph double-sign. of size z + c;

for all β of size z, and e s.t. Y [β, e] > 0 do

for all different submultisets γ ⊆ β do

set r =
∏

(x,y)∈〈β〉

(

µβ(x, y)

µγ(x, y)

)

;

set d1 = ‖γ ↾1‖ =
∑

(x,y)∈γ x, d2 = ‖γ ↾2‖ =
∑

(x,y)∈γ y;

set double-signature β′ = (β \ γ) ⊎ {(d1, d2 + c)};

for f = |γ|, |γ| + 1, . . . , c · d1 do

set multiset D = c · (γ ↾1) = {cx : (x, y) ∈ γ};

call Algorithm 3.2: p = CellSel(D, f);

add Y ′[β′, e + f] += Y [β, e] · r · p;

done

done

done

set Y = Y ′, z = z + c; dispose Y ′;

done

for all double-sign. β of size |V (H)|, and f , s.t. Y [β, f] > 0 do

set signature α0 = {x + y : (x, y) ∈ β};

add SH [α0, f + eG] += Y [β, f] · SF [αF , eF] · SG[αG, eG];

done

done

done.

9

Proof of Algorithm 3.1. This algorithm is similar to the improved version of
Algorithm 2.6, and so we only sketch the proof here. The main new difficulty
lies in counting the different ways in which a connected component of c vertices
in αG can be connected with f edges to the selected components of signatures
(x, y) ∈ γ. Recall that when counting forests we had no such difficulty, since
we joined the component of αG to each component of γ with exactly one edge;
thus we used exactly f = |γ| edges chosen in

∏

(x,y)∈γ cx different ways. The

procedure ’CellSel(D, f)’ counts this for spanning subgraphs, and we defer the
explanation to Algorithm 3.2. See also Fig. 3.

Finally, notice that the edge numbers in tables Y , Y ′ do not account for the
edges from E(G), since we do not know how many edges has each one of the
components of αG. Those edges are summed up at the end, when obtaining the
signatures for H from the double-signatures stored in Y .

F ⊠ G

s

s s

s
s

s

s

s s

s

s

s

F ⊠ G

s

s s

s
s

s

s

s s

s

s

s

Fig. 3. How cellular selections arise in Algorithm 3.1 when adding edges to a spanning
subgraph; here we are selecting f = 7 edges out of cell sizes {6, 4, 2, 2} (possible edge
choices shown in dotted lines).

Algorithm 3.2. Computing the number of cellular selections: We are selecting
ℓ elements from the union C1 ∪ C2 ∪ . . . ∪ Ck, where Ci for i = 1, 2, . . . , k are
pairwise disjoint cells of sizes di = |Ci|, and we require that some element is
selected from every cell.

Input: A multiset D = {d1, d2, . . . , dk} of cell sizes, and a number ℓ.

Output: The number CellSel(D, ℓ) of all such possible selections.

create table u[1..k][1..ℓ], filled with 0;

for j = 1, 2, . . . , d1 do set u[1][j] =
(

d1

j

)

;

set z = d1;

10

for i = 2, 3, . . . , k do

add z += di;

for j = i, i + 1, . . . ,min(ℓ, z) do

for s = 1, 2, . . . ,min
(

j − (i − 1), di

)

do

add u[i][j] += u[i − 1][j − s]·
(

di

s

)

;

done

done

done

return u[k][ℓ].

Proof of Algorithm 3.2. Let ui,j = u[i][j] be the number of cellular selections of
j elements chosen among the first i cells. These numbers satisfy the recurrence
relation

ui,j =
r

∑

s=1

ui−1,j−s ·

(

di

s

)

where r is the maximum number of elements than can be selected from the i-th
cell to obtain a total of j elements. Since the i-th cell has di elements available,
and the i−1 previous cells contributed at least one element each to the resulting
j elements, it follows that r = min{j − (i − 1), di}.

Algorithm 3.2 just applies the previous recurrence in a correct order, and
avoids useless computations like with values of j too small or too large. It runs
in O(kℓ2) steps.

Proof of Theorem 1.1. As in Theorem 2.8, the subgraph signature table S of
a cograph can be computed in time proportional to the number of all possible
double-signatures of size n, i.e. in exp

(

O(n2/3)
)

. Then, summing the entries of
S, we compute the numbers of spanning subgraphs with a given number of edges
and a number of components. As we have remarked previously, these numbers
give (efficiently) the Tutte polynomial.

The U polynomial of an n-vertex graph G is defined in [14] as

U(G;x, y) =
∑

F⊆E

xn1
· · · xnk

(y − 1)|F |−r(F),

where n1, . . . , nk are the vertex sizes of the components of the spanning subgraph
(V, F). If we let x1 = · · · = xn = x − 1 in the expression above, we recover the
Tutte polynomial T (G;x, y) up to a power of x− 1. It is clear that the subgraph
signature table of a graph is precisely equivalent to the U polynomial, hence
in the statement of Theorem 1.1 we can replace “U polynomial” for “Tutte
polynomial”.

4 Graph Clique-Width

In this section we give a more precise definition of clique-width and some of its
properties.

11

Graphs from now on are labelled on the vertices; Vi(G) denotes the set of ver-
tices in G that have label i. A graph has clique-width ≤ k if it can be constructed
using k labels and the following four operations:

1. v(i): creates a new vertex with label i.
2. ∪̇ : produces the union of several disjoint graphs, without modifying the

labels.
3. ηi,j , i 6= j: joins all the vertices labelled i to all the vertices labelled j. This

operation does not create multiple edges.
4. ρi,j : all vertices labelled i are relabelled to have label j. It allows one to

merge two label classes into one, thus freeing a label for later use.

An expression defining a graph G built from the above four operations using k
labels is a k-expression for G.

Now we explain why cographs have clique-width at most two. Operations
1 and 2 are analogous to rules 1 and 2 for cographs introduced in Section 2.1.
In order to perform the complete union G ⊠ H of two cographs (rule 3), one
relabels all vertices of G to have label 1 and all vertices of H to have label 2
(using operations ρi,j), and then applies the operation η1,2. The interested reader
may check why the path P4 has clique-width greater than two. Furthermore, we
show in Fig. 4 examples of the graphs C5 and C7 having clique-width 3 and 4,
respectively. (Actually, all cycles have clique-width at most 4.)

s s

s s

1

1

2

3

∪̇ , η2,3
−→

s s

s s

1

1

2

3

ρ3,2, v(3)
−→

s s

s s

1

1

2

s

2

3

η1,3
−→

s s

s s

1

1

2

s

2

3

s

s

s

s

1

2

3

4
ρ3,2, ρ4,3
−→

s

s

s

s

1

2

s

2

3 4
η3,4,...
−→

s

s

s

s

1

2

s

2

3 4 . . .

s

s

s

s

1

2

s

s

s

2

2 2

3

4

η1,4
−→

s

s

s

s

1

2

s

s

s

2

2 2

3

4

Fig. 4. An example – optimal expressions defining the cycles C5 and C7 (starting from
trivially constructed subgraphs on the left).

A k-expression for G is irredundant if, whenever operation ηi,j is applied,
no vertex with label i has been previously joined to any vertex of label j. It
can be shown [4] that for every k-expression, one can construct an irredundant
k-expression defining the same graph. Hence in the next section we assume that
graphs with bounded clique-width are defined by means of irredundant expres-
sions.

Another important question concerns computing the clique-width of a graph,
and more importantly, finding a defining k-expression. Until recently [16], algo-

12

rithms running on graphs of bounded clique-width needed a corresponding k-
expression on the input. The first (and currently the only known) efficient way
of approximating [16, 15] the expression for a graph of bounded clique-width,
uses a new notion of rank-width [16]. It is remarkable how close is computa-
tion of rank-width on graphs [15] to computation of branch-width on binary
matroids [7]: It is that rank-width of a bipartite graph equals branch-width of
the matroid formed by the associated binary adjacency matrix minus one, and
a simple translation can be used for general graphs. However, this interesting
topic is far beyond the scope of our paper, and so we refer interested readers to
the cited papers.

5 The Tutte Polynomial for Bounded Clique-Width

In this section we prove Theorem 1.2. Analogously to Section 2, the most involved
part is Algorithm 5.4, which corresponds to adding edges in the operation ηi,j .

Instead of double-signatures, we need k-signatures to mark the different labels
of the vertices belonging to the components of a subgraph. A k-signature is a
multiset of k-tuples of non-negative integers, excluding the k-tuple (0, . . . , 0). The
size ‖β‖ of a k-signature β is the sum of all (x1 + · · ·+ xk) for (x1, . . . , xk) ∈ β,
respecting repetition in the multiset. As in the case of double-signatures we have:

Lemma 5.1. There are exp
(

Θ(nk/(k+1))
)

distinct k-signatures of size n, for
each fixed k.

Since the subsequent proof is quite involved, it is worth mentioning that an
easy encoding argument gives an upper bound of exp

(

O(nk/(k+1) log n)
)

, which
is almost as good: We limit the number of nonzero entries of the characteris-
tic vector of a k-signature. In the worst case, at most all those Θ(tk) entries
corresponding to (c1, . . . , ck) are nonzero where 0 ≤ ci ≤ t, and t is such that
Θ(tk+1) = n (the size of the signature). Hence the characteristic vector of a
k-signature has at most Θ

(

nk/(k+1)
)

nonzero entries, and we may encode all
k-signatures of size n by choosing those nonzero entries in all possible ways, and
then trying all values between 1 and n for each;

(

nk

Θ(nk/(k+1))

)

· nΘ(nk/(k+1)) = nΘ(k·nk/(k+1)) = exp
(

O(nk/(k+1) log n)
)

.

Proof of Lemma 5.1. The proof is based on generating functions and complex
analysis. Let pn be the number of distinct k-signatures of size n. The associated
generating function is equal to

P (z) =
∑

n≥0

pnzn =
∏

n≥1

1

(1 − zn)(
n+k−1

k−1)
.

The reason is that the number of non-negative (ordered) solutions of x1 + · · · +
xk = n is equal to

(

n+k−1
n

)

=
(

n+k−1
k−1

)

. The infinite product encodes the fact
that we are taking multisets of those k-tuples.

13

According to a result of Meinardus (see Theorem 6.2 in [1]), the asymptotic
behaviour of pn is determined by the associated Dirichlet series

D(s) =
∑

n≥1

(

n+k−1
k−1

)

ns
.

Provided some analytical conditions on D(s) hold, that in our case are easy to
check, we have

pn ∼ Cnγ exp
(

Knρ/(ρ+1)
)

,

where C, γ,K are constants and ρ is the unique (simple) pole of D(s) in a suitable
region Re(s) > −C0, where 0 < C0 < 1.

Now it is clear that D(s) can be expressed as a linear combination of ζ(s−k+
1), ζ(s − k + 2), . . . , ζ(s), where ζ(s) =

∑

n≥1 n−s is the Riemann zeta function.
Since ζ(s) has a unique simple pole at s = 1 for Re(s) > 0, the pole of D(s) we
are looking for is at ρ = k, and this proves the result.

The next two algorithms, which correspond to the operations ∪̇ and ρi,j ,
need no special analysis.

Algorithm 5.2. Combining the spanning subgraph k-signature tables of k-
labeled graphs F and G into the one of the disjoint union H = F ∪̇G.

Input: Graphs F,G, and their subgraph k-signature tables SF ,SG.
Output: The subgraph k-signature table SH of H = F ∪̇G.

create empty table SH of subgraph k-signatures of size |V (H)|;

for all k-signatures αF ∈ Σk
F , and eF = 0, 1, . . . , |E(F)| do

for all k-signatures αG ∈ Σk
G, and eG = 0, 1, . . . , |E(G)| do

set α = αF ⊎ αG (a multiset union);

add SH [α, eF + eG] += SF [αF , eF] · SG[αG, eG];

done.

Algorithm 5.3. Modifying the spanning subgraph k-signature table of a k-
labeled graph G into the one of ρi,j, the relabeling 1 → 2 of G.

Input: A k-labeled graph G, and its subgraph k-signature table SG.
Output: The subgraph k-signature table SH of H = ρ1,2(G).

create empty table SH of subgraph k-signatures of size |V (G)|;

for all k-signatures αG ∈ Σk
G, and eG = 0, 1, . . . , |E(G)| do

set k-signature α′
G = {(0, a1 + a2, . . . , ak) : (a1, a2, . . . , ak) ∈ αG};

add SH [α′
G, eG] += SG[αG, eG];

done.

The next algorithm computes the k-signature table of the graph H = η1,2(G)
from that of G, assuming that there were no edges in G between vertices with
labels 1 and 2 (like in an irredundant expression). To understand the main idea,

14

let us consider the following method for obtaining all the spanning subgraphs
in H such that their restriction to G gives a certain subgraph Gα. Start by
relabeling every vertex with label 1 in G to 0, meaning that these vertices have
not been processed yet. Then choose a vertex v with label 0, relabel to 1, and
consider all the different subgraphs of H we can generate from the original one by
adding new edges from v to some (selected) vertices with label 2. Obviously, the
restriction of any of these subgraphs to G still gives Gα. Iterate the process for
every generated subgraph and for every vertex with label 0 until none remains.

s

s

s

s

s

s

s

s

s

s s

s

0

1

2

43

f s

s

s

s

s

s

s

s

s

s s

s

0

1

2

43

f1

Fig. 5. Two steps illustrating the method of counting all spanning subgraphs of H =
η1,2(G); the hollow vertices are not processed yet (label 0), and the dotted edges show
possible choices of new edges from the marked vertex (v).

See an illustration of the method in Fig. 5. Algorithm 5.4 essentially follows
this process, but it improves the running time by working with the signatures
instead of subgraphs, and with connected components instead of single vertices,
as it has been done in Algorithms 2.5 and 3.1.

The algorithm counts all spanning subgraphs of H such that their restriction
to G is of a signature α, for every possible α. A (k + 1)-signature table Y is
used to store all intermediate results of the computation (together). Instead of
processing a vertex v by one at a time, we choose a component B with some
labels 0 from a signature β in Y , and then we choose a submultiset γ ⊆ β signing
the components that B will be joined to, using exactly f of the new edges of H.
Procedure CellSel (Algorithm 3.2) computes efficiently the number of ways
this can be done. We add the resulting signatures and numbers to the table Y ,
and we repeat until no signature with vertices labeled 0 remains in Y . We then
update the table SH with the signatures computed in the table Y , and we start
again from a new signature α of G.

Algorithm 5.4. Updating the subgraph k-signature table of a k-labeled graph
G, such that there is no edge between the labels 1 and 2 in G, into the one of the
graph H obtained from G by adding all edges between the labels 1 and 2.

Input: A k-labeled graph G, and its subgraph k-signature table SG.

15

Output: The subgraph k-signature table SH of H = η1,2(G).

create empty table SH of subgraph k-signatures of size |V (H)|;

for all α ∈ Σk
G, and e = 0, 1, . . . , |E(G)| s.t. SG[α, e] > 0 do

// Imagine a part. span. subgraph in G of a k-signature α with e edges.

create empty table Y of subgraph (k + 1)-signatures of size |V (H)|;

set (k + 1)-signature α0 =
{

(a1, 0, a2, . . . , ak) : (a1, a2, . . . , ak) ∈ α
}

;

set Y [α0, e] = 1;

while exists β ∈ Σk+1
H , b = (b0, b1, . . . , bk) ∈ β, and e′,

such that Y [β, e′] > 0 and b0 > 0 do

select such β, e′, and b, with maximal ‖β ↾0‖;

// Imagine a part. spanning subgraph in H with e′ edges and

// a (k + 1)-signature β, and its component B corresp. to b:

// b0 of the vert. of B are going to be “joined to” labels 2 in H .

set y = Y [β, e′], Y [β, e′] = 0, β′ = β \ {b};

for all different submultisets γ ⊆ β′ such
that c2 > 0 for each (c0, c1, c2, . . . , ck) ∈ γ do

// We connect B to all components in γ.

set r =
∏

d∈〈β′〉

(

#β′ d

#γ d

)

;

for i = 0, 1, . . . , k do di = ‖γ ↾i‖ =
∑

(c0,...,ck)∈γ ci;

set d = (d0, d1 + b0 + b1, d2 + b2, . . . , dk + bk);

set (k + 1)-signature δ =
(

β′ \ γ
)

⊎ {d};

set multiset D = b0 · (γ ↾2) = {b0c2 : (c0, c1, c2, . . . , ck) ∈ γ};

for f = |γ|, |γ| + 1, . . . , b0 · (d2 + b2) do

// We count all the cellular selections from D ⊎ {b2} here,

// but we allow to select nothing from {b2} as well.

call Algorithm 3.2:

p =(‡) CellSel(D ⊎ {b2}, f) + CellSel(D, f);

add Y [δ, e′ + f] += y · r · p;

done

done

done

for all β ∈ Σk+1
H , and f , such that Y [β, f] > 0 do

set signature α0 = {(b1, . . . , bk) : (b0, b1, . . . , bk) ∈ β};

add SH [α0, f] += Y [β, f] · SG[α, e];

done

done.

Proof of Algorithm 5.4. The idea is analogous to the proofs of Algorithms 2.5
and 3.1. The only noticeable differences are the following two:

16

– Since we are now adding edges inside the same graph (instead of composing
two previously disjoint graphs), we need an artificial new label 0 for marking
those vertices that still have to be processed, among those having original
label 1. One little advantage of the extra label is that now we can store all
intermediate results of our computation in the same (k + 1)-signature table
Y , and to control the computation we just need one large while cycle.

– Unlike for cographs, we now have to consider the possibility that our selected
component B has vertices of both labels 0 and 2, and hence we may want to
add some edges induced on V (B) as well. This is taken care of on the line
(‡) of the algorithm.

Again, it is easier to imagine a particular spanning subgraph Gα with e edges
in the place of the signature α, since subsequent computations do not depend on
a particular choice of Gα. Under this assumption table Y counts (k+1)-labelled
subgraphs of H whose restriction to G is Gα. It is convenient to see table Y as
a set of subgraphs, stored according to signature for the sake of efficiency.

This set Y contains at the beginning the subgraph Gα, where vertices of
label 1 receive label 0 to mark that they are unprocessed. At every iteration
of the while cycle we choose some subgraphs of Y and we process some of its
vertices of label 0, marking them with label 1 and considering all possible ways
of joining them to vertices of label 2. The resulting subgraphs are stored in the
table Y in place of the former ones. The while loop ends when no subgraph in
Y has vertices of label 0.

To be more precise, at every iteration of the while loop we choose subgraphs
of (k + 1)-signature β and e′ edges. (Imagine again a particular subgraph Gβ.)
We select a component B with b0 > 0 vertices of label 0. We process component
B by joining its vertices of label 0 to some of the ‖β ↾2‖ vertices of label 2 in Gβ .
Hence the components containing the vertices of label 2 may be joined to B. The
for loop iterates over all suitable subsets γ of such components to account for
all possible resulting signatures. Components not in γ receive no edge from B,
while components in γ receive at least one edge, so we call procedure CellSel

to count efficiently the number of ways γ may be joined to B. In fact, CellSel
is called twice, since the vertices of label 0 and 2 in B itself may be joined by
either none or some edges.

Observe that a pair of descendants of, say, Gβ differ in at least one edge
joining vertices of labels 1 and 2, and further descendants of them will still
differ at the same edge, since new edges are only added between vertices of
labels 0 and 2. This implies that Y is free of duplicates, because all subgraphs
have a common ancestor Gα. So, at the end, we count each spanning subgraph
W ⊆ H such that W ↾G = Gα exactly once in the table Y . After multiplying by
SG[α, e], we record in SH the number of all spanning subgraphs of H having
their restriction to G of signature α, for each α.

Proof of Theorem 1.2. The idea is the same as in the proof of Theorem 1.1 at
the end of Section 3. In the while cycle we always choose signature β among
those with the maximal number of unprocessed vertices (‖β ↾ 0‖), and then

17

we strictly decrease the number of those. Hence we never process the same
pair (β, e) twice. So time complexity is again dominated by the lengths of the
tables involved. Since we need a table of (k + 1)-signatures, the complexity

exp
(

O(n(k+1)/(k+1+1))
)

= exp
(

O(n1− 1
k+2)

)

follows from Lemma 5.1.

Finally we remark that, exactly as in the case of cographs, the algorithm
computes the full U polynomial on graphs of bounded clique-width.

6 Concluding remarks

We have shown that the Tutte and U polynomials can be computed in subexpo-
nential time for cographs, and more generally for graphs with bounded clique-
width. Such a result is very unlikely to hold for all graphs. Of course, the impor-
tant question of whether the Tutte polynomial can be computed in polynomial
time, or the problem is #P–hard even for graphs of bounded clique-width, re-
mains open. (The U polynomial is obviously not computable in polynomial time
due to its size.)

On the other hand, the chromatic polynomial for graphs of bounded clique-
width can be computed in polynomial time (although not FPT). This follows
by adapting the algorithm in [10] for computing the chromatic number, keeping
track also of the number of r-colorings for r = 1, . . . , n, where n is the number
of vertices; see in [12]. To our knowledge, that is possibly the only currently
known natural example of graph classes other than chordal graphs, where the
chromatic polynomial can be computed in polynomial time, but the complexity
of computing the Tutte polynomial is undecided.

References

1. G.E. Andrews, The theory of partitions, Cambridge U. Press, Cambridge, 1984.
2. A. Andrzejak, An Algorithm for the Tutte Polynomials of Graphs of Bounded

Treewidth, Discrete Math. 190 (1998), 39–54.
3. B. Courcelle, J.A. Makowsky, U. Rotics, Linear Time Solvable Optimization Prob-

lems on Graphs of Bounded Clique-Width, Theory Comput. Systems 33 (2000),
125–150.

4. B. Courcelle, S. Olariu, Upper bounds to the clique width of graphs, Discrete Appl.
Math. 101 (2000), 77–114.

5. D.G. Corneil, Y. Perl, and L.K. Stewart, A linear recognition algorithm for

cographs, SIAM J. Comput. 14 (1985), 926–934.
6. O. Giménez, M. Noy, On the complexity of computing the Tutte polynomial of

bicircular matroids, Combin. Probab. Computing, to appear.
7. P. Hliněný, A Parametrized Algorithm for Matroid Branch-Width, SIAM J. Com-

puting 35 (2005), 259–277 (electronic).
8. P. Hliněný, The Tutte Polynomial for Matroids of Bounded Branch-Width, Combin.

Probab. Computing, to appear (2006).
9. F. Jaeger, D.L. Vertigan, D.J.A. Welsh, On the Computational Complexity of the

Jones and Tutte Polynomials, Math. Proc. Camb. Phil. Soc. 108 (1990), 35–53.

18

10. D. Kobler, U. Rotics, Edge dominating set and colorings on graphs with fixed clique-

width, Discrete Applied Math. 126 (2003), 197–221.
11. J.H. van Lint, R.M. Wilson, A Course in Combinatorics, Cambridge University

Press, Cambridge, 1992.
12. J.A. Makowsky, U. Rotics Computing the chromatic polynomial on graphs of

bounded clique-width, preprint, September 2005.
13. S.D. Noble, Evaluating the Tutte Polynomial for Graphs of Bounded Tree-Width,

Combin. Probab. Computing 7 (1998), 307–321.
14. S.D. Noble, D.J.A. Welsh, A weighted graph polynomial from chromatic invariants

of knots, Ann. Inst. Fourier (Grenoble) 49 (1999), 1057–1087.
15. Sang-Il Oum, Approximating Rank-width and Clique-width Quickly, In: WG 2005,

Proccedings, Lecture Notes in Computer Science 3787 (2005), 49–58.
16. Sang-Il Oum, P.D. Seymour, Approximating Clique-width and Rank-width, J. Com-

bin. Theory Ser. B, to appear (2006).

19

