THE TUTTE POLYNOMIAL ON GRAPHS OF BOUNDED CLIQUE-WIDTH

Presenting a subexponential algorithm for a special case of a notoriously hard (#P-complete) graph invariant...

Petr Hliněný
Dept. of Computer Science
FEI, VŠB – TU Ostrava

e-mail: petr.hlineny@vsb.cz
http://www.cs.vsb.cz/hlineny

Joint work with Omer Gimenez and Marc Noy
Dept. of Applied Mathematics
UPC Barcelona
1 FORESTS IN COGRAPHS

. – the first (simplified) step towards our algorithm...

Definition. Cograph is a graph constructed from vertices using

- a *disjoint union* (no added edges), or
- a "*complete" union" (adding all edges across).

Cographs have quite long history of research...

Fact. (folklore)

- All cliques are cographs.
- Precisely those graphs *without induced* P_4.
- Cographs are closed on complements, contractions, induced subgraphs.
- Not closed on normal subgraphs / edge deletion.
- Recognizable in P.
1.1 Enumerating Forests

- Enumeration of spanning trees in P - a determinant evaluation.
- Enumeration of spanning forests \#P-hard \cite{Jaeger, Vertigan, Welsh, 90}.
- Enumeration of spanning forests in P on graphs of bounded tree-width (cf. Tutte polynomial).

Theorem 1.1. *Spanning forests can be enumerated on cographs in time*

\[
\exp \left(O\left(n^{2/3}\right) \right).
\]

Note: Subexponential algorithms \(- \exp(2^{o(n)})\)

For NP-complete problems, no better solutions than an exhaustive search are expected to exist.

Hence, for naturally defined problems like the SAT with \(n\) variables, no \(2^{o(n)}\) algorithm (called often *subexponential*) is expected to exist.
1.2 Algorithm on Cographs

A forest signature α – a multiset of component sizes (positive integers);

- represented by a characteristic vector $\alpha = (a_1, a_2, \ldots, a_n)$,
- $size \ s_\alpha = \sum_{i=1}^{n} i \cdot a_i$ (and cardinality as usual $|\alpha| = \sum_{i=1}^{n} a_i$).

Lemma 1.2. (folklore) There are $2^{\Theta(\sqrt{n})}$ signatures of size n (\sim integer parts.).

A forest double-signature β – a multiset of ordered pairs of integers, counting dual-labeled (nonempty) component sizes;

- a refinement of a forest signature,
- having a characteristic vector $\beta = (b_{(0,1)}, b_{(0,2)}, \ldots, b_{(1,0)}, b_{(1,1)}, \ldots)$,
- $size \ s_\beta = \sum_{(x,y)} (x + y) \cdot b_{(x,y)}$.

Lemma 1.3. There are $\exp(\Theta(n^{2/3}))$ distinct double-signatures of size n.

- Quite difficult to prove, but easy a slightly worse bound $\exp(\Theta(n^{2/3} \log n))$.
We apply the following two \(\exp(O(n^{2/3})) \) algorithms along the decomposition scheme of the given cograph:

Algorithm 1.4. Combining the spanning forest signature tables of graphs \(F \) and \(G \) into the one of the disjoint union \(H = F \cup G \). (Simple.)

Input: Graphs \(F, G \), and their forest signature tables \(T_F, T_G \).

Output: The forest signature table \(T_H \) of \(H = F \cup G \).

create empty table \(T_H \) of forest signatures of size \(|V(H)| \);

for all signatures \(\alpha_F \in \Sigma_F, \alpha_G \in \Sigma_G \) do

\[\text{set } \alpha = \alpha_F \uplus \alpha_G \text{ (a multiset union)}; \]

\[\text{add } T_H[\alpha] += T_F[\alpha_F] \cdot T_G[\alpha_G]; \]

done.

Algorithm 1.5. Combining the spanning forest signature tables of graphs \(F \) and \(G \) into the one of the complete union \(H = F \oplus G \). (Difficult.)

Input: Graphs \(F, G \), and their forest signature tables \(T_F, T_G \).

Output: The forest signature table \(T_H \) of \(H = F \oplus G \).

create empty table \(T_H \) of forest signatures of size \(|V(H)| \);
for all signatures $\alpha_F \in \Sigma_F$, $\alpha_G \in \Sigma_G$ do
\[
\exp \left(O\left(n^{2/3} \right) \right) \times
\]
set $z = |V(F)|$;
create empty table X of forest double-signatures of size z;
set $X[\text{double-signature } \{(a, 0) : a \in \alpha_F\}] = 1$;
for each $c \in \alpha_G$ (with repetition) do
\[
O(n) \times
\]
create empty table X' of forest double-signatures of size $z + c$;
for all double signatures β of size z s.t. $X[\beta] > 0$ do
\[
\exp \left(O\left(n^{2/3} \right) \right) \times
\]
(*)
for all submultisets $\gamma \subseteq \beta$ (with repetition) do
\[
\exp \left(O\left(n^{2/3} \right) \right) \times
\]
set $d_1 = \sum_{(x, y) \in \gamma} x$, $d_2 = \sum_{(x, y) \in \gamma} y$;
set double-signature $\beta' = (\beta - \gamma) \uplus \{(d_1, d_2 + c)\}$;
add $X'[\beta'] += X[\beta] \cdot \prod_{(x, y) \in \gamma} cx$; \(O(n) \)
done
done

(*)

copy $X = X'$, $z = z + c$; dispose X';
done
for all double-signatures β of size $|V(H)|$ do
\[
\exp \left(O\left(n^{2/3} \right) \right) \times
\]
set signature $\alpha_0 = \{x + y : (x, y) \in \beta\}$;
add $T_H[\alpha_0] += X[\beta] \cdot T_F[\alpha_F] \cdot T_G[\alpha_G]$;
done
done.
Definition. For a graph $G = (V, E)$,

$$T(G; x, y) = \sum_{F \subseteq E} (x - 1)^{r(E)} - r(F) (y - 1)^{|F| - r(F)},$$

where $r(F) = |V| - k(F)$ and $k(F)$ is the number of components induced by (V, F).

Fact. (folklore)

- $T(G; 1, 1) = \#$ spanning trees,
- $T(G; 2, 1) = \#$ spanning forests,
- $T(G; 1 - x, 0) \ast = $ the chromatic polynomial,
- $T(G; 0, 1 - y) \ast = $ the flow polynomial.

Fact. Knowing $T(G; x, y) \sim$ knowing the number of spanning subgraphs on edges F with $|F| = i$ and $k(F) = j$.
2.1 Computing the Tutte Polynomial

Theorem 2.1. (Jaeger, Vertigan, and Welsh, 1990)

Evaluating the Tutte polynomial \(T(G; x, y) \) at \((x, y) = (a, b)\) is \(\#P \)-hard unless
\[
(a - 1)(b - 1) = 1 \text{ or } (a, b) \in \{(1, 1), (-1, -1), (0, -1), (-1, 0), (i, -i), (-i, i),
(j, j^2), (j^2, j)\}, \text{ where } i^2 = -1 \text{ and } j = e^{2\pi i/3}.
\]

Theorem 2.2. (Andrzejak / Noble, 1998)

The Tutte polynomial \(T(G; x, y) \) can be computed in polynomial time on a graph \(G \) of bounded tree-width.

(The version of Noble gives an FPT algorithm...)

Fact. A subexp. \(2^{o(n)} \) algorithm for the Tutte polynomial on an \(n \)-vertex graph

\(\rightarrow \) a \(2^{o(n)} \) algorithm for 3-colouring,

\(\rightarrow \) a \(2^{o(n)} \) algorithm for 3-SAT – unexpected!

So it is very unlikely to have a subexponential algorithm for the Tutte polynomial on general graphs...

Theorem 2.3. The Tutte polynomial of a cograph can be computed in time

\[\exp \left(O(n^{2/3}) \right). \]
2.2 Extending the Algorithm

Extending Algorithms 1.4, 1.5 for the Tutte polynomial is not difficult...

Extensions:

- Enumerate edge-subsets (spanning subgraphs) instead of forests.
- **Subgraph signatures** analogously record the component sizes. Moreover, we record the total number of edges.
- When joining components, we may add many \((\geq 1)\) edges between two components, \(\rightarrow\) computing “cellular selections”.

Definition. *Cellular selection* from \(C_1, \ldots, C_k\): Selecting an \(\ell\)-element subset \(L \subseteq C_1 \cup \ldots C_k\), st. \(L \cap C_i \neq \emptyset\) for all \(i\).

A nice exercise:

Let \(d_i = |C_i|\), and \(u_{i,j}\) be the number of partial selections of \(j\) elements from the first \(i\) cells. Then

\[
 u_{i,j} = \sum_{s=1}^{r} u_{i-1, j-s} \cdot \binom{d_i}{s}.
\]
3 CLIQUE-WIDTH

- Formal definition [Courcelle, Olariu, 00] (implicit [Courcelle et al, 93]).

Definition. Constructing a vertex-labeled graph G using the operations
- a new labeled vertex,
- a disjoint union of two graphs
- $\rho_{i \to j}$ relabeling of all i's to j's,
- η_{i-j} adding all edges between labels i and j.

(Called a k-expression.)

Clique-width = \min number of labels needed to construct (unlabeled) G.

- Cographs have clique-width = 2, paths ≤ 3, cycles ≤ 4.
- **Bounding** the clique-width of a graph allows to efficiently solve all problems expressed in the MSO logic of adjacency graphs (MS_1) – quantifying over vertices and their sets. [Courcelle, Makowsky, Rotics, 00]

 (Bounding the tree-width allows to efficiently solve all problems in MS_2.)

- The chromatic number (and the chromatic polynomial) is polynomial time (not FPT) for graphs of bounded clique-width. [Kobler, Rotics, 03]
3.1 Algorithm on Bounded Clique-Width

A subgraph k-signature β – a multiset of ordered k-tuples of integers, counting k-labeled (nonempty) component sizes.

(Analogous to double-signatures . . .)

Lemma 3.1. There are $\exp\left(\Theta\left(n^{k/(k+1)}\right)\right)$ distinct k-signatures of size n.

Extending the algorithm – processing the η_{i-j} operation:

- Using only one signature table for the whole graph.
- Thus need an artificial new label 0 for iterative processing of components intersecting label j (corresp. to the sign. table of the second graph).
- A new (easy) point of adding edges inside a component.

Our main result:

Theorem 3.2. Let G be a graph with n vertices of clique-width $\leq k$ along with a k-expression for G as an input. Then the Tutte polynomial of G can be computed in time

$$\exp\left(O\left(n^{1-\frac{1}{k+2}}\right)\right).$$
3.2 Final Remarks

- Our signature table actually gives more – the so called U polynomial of G.

- Do we need a k-expression for G?

 Clique-width is difficult to compute.
 However, it is approximable by rank-width. [Oum, Seymour, 03]

- Computing rank-width (with an approx. decomposition) is FPT. [Oum]

 Best asympt. $O(n^3)$ for fixed k. [Oum, 05] via matroid branch-width [PH,02]

Questions

- Is the Tutte polynomial on graphs of bounded clique-width in P, or #P-hard, or between?

 (#P-hardness is not yet excluded by a subexp. algorithm!)

- Is the chromatic number FPT wrt. clique-width?
 (i.e. polynomial with a fixed exponent?)