Approximating the Crossing Num. of Toroidal Graphs

Petr Hliněný
Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Rep.

http://www.fi.muni.cz/~hlineny

joint work with Gelasio Salazar
Universidad Autónoma de San Luis Potosí, Mexico

Supported by grants (PH) GACR 201/05/0050 and AV 1ET101940420, (GS) CONACYT 45903.
Overview

1. **Drawings and the Crossing Number**
 Basic definitions, and an overview of related computational complexity results and questions.

2. **Drawing Toroidal Graphs with few Crossings**
 Natural approaches to planar drawing of toroidal graphs, constructions of Böröczky, Pach and Tóth; Djidjev and Vrt’o. Our refinement and analysis.

3. **Lower-bounding the Crossing Number**
 How to obtain a precise lower bound on the crossing number of a toroidal graph. Proving the approximation ratio.

4. **Conclusion and Future Steps**
1 Drawings and the Crossing Number

Definition. *Drawing of a graph* G:

- The vertices of G are distinct points, and every edge $e = uv \in E(G)$ is a simple curve joining u to v.
- No edge passes through another vertex, and no three edges intersect in a common point.
1 Drawings and the Crossing Number

Definition. *Drawing of a graph* G:

- The vertices of G are distinct points, and every edge $e = uv \in E(G)$ is a simple curve joining u to v.
- No edge passes through another vertex, and no three edges intersect in a common point.

![Graphs with different drawings](image)

Definition. *Crossing number* $\text{cr}(G)$ of a graph G is the smallest number of edge crossings in a drawing of G.

Importance – in VLSI design [Leighton et al], graph visualization, etc.
1 Drawings and the Crossing Number

Definition. *Drawing of a graph* G:

- The vertices of G are distinct points, and every edge $e = uv \in E(G)$ is a simple curve joining u to v.
- No edge passes through another vertex, and no three edges intersect in a common point.

![Graph drawings](image)

Definition. *Crossing number* $\text{cr}(G)$ of a graph G is the smallest number of edge crossings in a drawing of G.

Importance – in VLSI design [Leighton et al], graph visualization, etc.

Warning. There are slight variations of the definition of crossing number, some giving different numbers! (Like counting odd-crossing pairs of edges.)
Computational complexity

Remark. It is practically very hard to determine the crossing number.

Observation. The problem $\text{CrossingNumber}(\leq k)$ is in NP: Guess a suitable drawing of G, then replace crossings with new vertices, and test planarity.

......
Computational complexity

Remark. It is practically very hard to determine the crossing number.

Observation. The problem $\text{CrossingNumber}(\leq k)$ is in NP: Guess a suitable drawing of G, then replace crossings with new vertices, and test planarity.

Theorem 1. [Garey and Johnson, 1983] CrossingNumber is NP-hard.
Computational complexity

Remark. It is practically very hard to determine the crossing number.

Observation. The problem $\text{CrossingNumber}(\leq k)$ is in NP.

Guess a suitable drawing of G, then replace crossings with new vertices, and test planarity.

\ldots\ldots

Theorem 1. [Garey and Johnson, 1983] CrossingNumber is NP-hard.

Theorem 2. [Grohe, 2001], [Kawarabayashi and Reed, 2007] $\text{CrossingNumber}(\leq k)$ is in FPT.
Computational complexity

Remark. It is practically very hard to determine the crossing number.

Observation. The problem \textsc{CrossingNumber}(\leq k) is in \textit{NP}: Guess a suitable drawing of \(G \), then replace crossings with new vertices, and test planarity. . .

.

Theorem 1. [Garey and Johnson, 1983] \textsc{CrossingNumber} is \textit{NP}-hard.

Theorem 2. [Grohe, 2001], [Kawarabayashi and Reed, 2007] \textsc{CrossingNumber}(\leq k) is in \textit{FPT}.

Theorem 3. [PH, 2004] \textsc{CrossingNumber} is \textit{NP}-hard even on simple 3-connected cubic graphs.

Corollary 4. The minor-monotone version of c.n. is also \textit{NP}-hard.
Looking for “natural parametrizations”

Question 5. [Seese, 199?]
How hard is \textsc{CrossingNumber} on graphs of bounded tree-width?
Looking for “natural parametrizations”

Question 5. [Seese, 199?]
How hard is \textsc{CrossingNumber} on graphs of bounded tree-width?

Question 6. Is \textsc{CrossingNumber} polynomial on almost planar (i.e. being one edge from planarity) graphs?
Looking for “natural parametrizations”

Question 5. [Seese, 199?] How hard is CrossingNumber on graphs of bounded tree-width?

Question 6. Is CrossingNumber polynomial on almost planar (i.e. being one edge from planarity) graphs?

.....

Theorem 7. [PH and GS, 2006] CrossingNumber can be approximated within factor of $\Delta(G)$ for an almost planar graph G in $O(n)$ time.

Theorem 8. [Gitler, Leaños, PH and GS, 2007] CrossingNumber can be approx. w. factor of $4.5\Delta(G)^2$ for a projective graph G in $O(n\log n)$ time.
Looking for “natural parametrizations”

Question 5. [Seese, 199?] How hard is \textsc{CrossingNumber} on graphs of bounded tree-width?

Question 6. Is \textsc{CrossingNumber} polynomial on almost planar (i.e. being one edge from planarity) graphs?

......

Theorem 7. [PH and GS, 2006] \textsc{CrossingNumber} can be approximated within factor of $\Delta(G)$ for an almost planar graph G in $O(n)$ time.

Theorem 8. [Gitler, Leanos, PH and GS, 2007] \textsc{CrossingNumber} can be approx. w. factor of $4.5\Delta(G)^2$ for a projective graph G in $O(n \log n)$ time.

Question 9. Can we get any reasonable FPT algorithm for (approximating, at least?) \textsc{CrossingNumber} based on “how far” the graph is from planarity?

The next step — Toroidal graphs...
2 Drawing Toroidal Graphs with few Crossings

All current approaches are based on similar natural ideas:

- Cut the (surface) embedded graph along a “short” nonseparating loop.
- Reconnect the cut edges “across” the rest of the drawing.
2 Drawing Toroidal Graphs with few Crossings

All current approaches are based on similar natural ideas:

- Cut the (surface) embedded graph along a “short” nonseparating loop.
- Reconnect the cut edges “across” the rest of the drawing.

Idea appears in [Böröczky, Pach and Tóth, 2006], or [Djidjev and Vrt’o, 2006]. These results extend to other surfaces quite straightforwardly.
2 Drawing Toroidal Graphs with few Crossings

All current approaches are based on similar natural ideas:

- Cut the (surface) embedded graph along a “short” nonseparating loop.
- Reconnect the cut edges “across” the rest of the drawing.

Idea appears in [Böröczky, Pach and Tóth, 2006], or [Djidjev and Vrt'o, 2006]. These results extend to other surfaces quite straightforwardly.

Moreover, [Telle and Wood, 2006] extend to drawings of all proper minor closed graph classes with linear crossing number (using “planar decompositions”).
2 Drawing Toroidal Graphs with few Crossings

All current approaches are based on similar natural ideas:

- Cut the (surface) embedded graph along a “short” nonseparating loop.
- Reconnect the cut edges “across” the rest of the drawing.

Idea appears in [Böröczky, Pach and Tóth, 2006], or [Djidjev and Vrt’o, 2006]. These results extend to other surfaces quite straightforwardly.

Moreover, [Telle and Wood, 2006] extend to drawings of all proper minor closed graph classes with linear crossing number (using “planar decompositions”).

Approximation?

Unfortunately, the above constructions in no way provide approximation algorithms.

The reason — lack of a corresponding lower bound on the crossing number...
Cut-and-redraw a toroidal graph

- We embed G on the torus (linear time by [Mohar 1999]).

- We find a “shortest nonseparating” loop of length k on the torus, using an $O(n \log n)$ algorithm of [Kutz 2006]. ($k = \text{dual edge-width}$ of G.)

- Cutting the torus into a cylinder, we “reconnect” the cut edges along a shortest length-ℓ dual path, producing $\leq k\ell + k^2/4$ crossings.
3 Lower-bounding the Crossing Number of Toroidal Graphs

For the rest we have k the dual edge-width of G on the torus, and ℓ the “dual length” of the cylindrical embedding of G we cut out from our torus.

Lemma 10.

$$\text{cr}(G) \geq \left(\frac{1}{3\Delta^2} - o_k(1) \right) \cdot k\ell$$
3 Lower-bounding the Crossing Number of Toroidal Graphs

For the rest we have k the dual edge-width of G on the torus, and ℓ the “dual length” of the cylindrical embedding of G we cut out from our torus.

Lemma 10.

$$cr(G) \geq \left(\frac{1}{3\Delta^2} - o_k(1) \right) \cdot k\ell$$

Proof outline:

- We will find a large toroidal grid minor in G, relative to $k, \ell, \text{ and } \Delta$.
3 Lower-bounding the Crossing Number of Toroidal Graphs

For the rest we have k the dual edge-width of G on the torus, and ℓ the “dual length” of the cylindrical embedding of G we cut out from our torus.

Lemma 10.

$$\text{cr}(G) \geq \left(\frac{1}{3\Delta^2} - o_k(1) \right) \cdot k\ell$$

Proof outline:

- We will find a large toroidal grid minor in G, relative to k, ℓ, Δ.
- If H is a minor of G, and H has maximum degree at most 4, then $\text{cr}(G) \geq \frac{1}{4} \text{cr}(H)$.
- The crossing number of the toroidal grid of size $p \times q$, where $p \geq q \geq 3$, is at least $\frac{1}{2}(q - 2)p$.

Petr Hliněný, ISAAC 07, Sendai
3 Lower-bounding the Crossing Number of Toroidal Graphs

For the rest we have k the dual edge-width of G on the torus, and ℓ the “dual length” of the cylindrical embedding of G we cut out from our torus.

Lemma 10.

$$\text{cr}(G) \geq \left(\frac{1}{3\Delta^2} - o_k(1) \right) \cdot k\ell$$

Proof outline:

- We will find a large toroidal grid minor in G, relative to $k, \ell,$ and Δ.
- If H is a minor of G, and H has maximum degree at most 4, then $\text{cr}(G) \geq \frac{1}{4} \text{cr}(H)$.
- The crossing number of the toroidal grid of size $p \times q$, where $p \geq q \geq 3$, is at least $\frac{1}{2} (q - 2)p$.

Actually, without asymptotic terms our lower bound reads $\text{cr}(G) \geq \frac{1}{4\Delta^2} \cdot k\ell$, provided that $k \geq 16 \lfloor \Delta/2 \rfloor$.
For the rest we have k the dual edge-width of G on the torus, and ℓ the “dual length” of the cylindrical embedding of G we cut out from our torus.

Hence we need to prove:

Theorem 11. G contains a minor isomorphic to the toroidal grid of size

$$\max \left(\left\lfloor \frac{2k}{3 \left\lceil \Delta/2 \right\rceil} \right\rfloor, \left\lceil \frac{\ell}{\left\lfloor \Delta/2 \right\rfloor} \right\rceil \right) \times \left\lfloor \frac{2k}{3 \left\lfloor \Delta/2 \right\rfloor} \right\rfloor.$$
For the rest we have k the dual edge-width of G on the torus, and ℓ the “dual length” of the cylindrical embedding of G we cut out from our torus.

Hence we need to prove:

Theorem 11. G contains a minor isomorphic to the toroidal grid of size

$$\max \left(\left\lfloor \frac{2}{3} \frac{k}{\Delta/2} \right\rfloor, \left\lfloor \frac{\ell}{\Delta/2} \right\rfloor \right) \times \left\lfloor \frac{2}{3} \frac{k}{\Delta/2} \right\rfloor.$$

Proof outline:

- Using [de Graaf and Schrijver, 1994] we get a toroidal grid minor of size

 $$\left\lfloor \frac{2}{3} \frac{k}{\Delta/2} \right\rfloor \times \left\lfloor \frac{2}{3} \frac{k}{\Delta/2} \right\rfloor$$

 in G.
For the rest we have \(k \) the dual edge-width of \(G \) on the torus, and \(\ell \) the “dual length” of the cylindrical embedding of \(G \) we cut out from our torus.

Hence we need to prove:

Theorem 11. \(G \) contains a minor isomorphic to the toroidal grid of size

\[
\max \left(\left\lfloor \frac{2}{3} \left\lfloor \frac{k}{\Delta/2} \right\rfloor \right\rceil, \left\lfloor \frac{\ell}{\left\lfloor \Delta/2 \right\rfloor} \right\rceil \right) \times \left\lfloor \frac{2}{3} \left\lfloor \frac{k}{\Delta/2} \right\rfloor \right\rceil.
\]

Proof outline:

- Using [de Graaf and Schrijver, 1994] we get a toroidal grid minor of size \(\left\lfloor \frac{2}{3} \left\lfloor \frac{k}{\Delta/2} \right\rfloor \right\rceil \times \left\lfloor \frac{2}{3} \left\lfloor \frac{k}{\Delta/2} \right\rfloor \right\rceil \) in \(G \).

- We obtain another collection of \(\left\lfloor \frac{\ell}{\left\lfloor \Delta/2 \right\rfloor} \right\rceil \) pairwise disjoint cycles of \(G \) on our cylinder, using a network-flow duality argument.
For the rest we have k the dual edge-width of G on the torus, and ℓ the “dual length” of the cylindrical embedding of G we cut out from our torus.

Hence we need to prove:

Theorem 11. G contains a minor isomorphic to the toroidal grid of size

$$\max \left(\left\lfloor \frac{2}{3} \left\lfloor \frac{k}{\Delta/2} \right\rfloor \right\rfloor, \left\lfloor \frac{\ell}{\Delta/2} \right\rfloor \right) \times \left\lfloor \frac{2}{3} \left\lfloor \Delta/2 \right\rfloor \right\rfloor.$$

Proof outline:

- Using [de Graaf and Schrijver, 1994] we get a toroidal grid minor of size $\left\lfloor \frac{2}{3} \left\lfloor \Delta/2 \right\rfloor \right\rfloor \times \left\lfloor \frac{2}{3} \left\lfloor \Delta/2 \right\rfloor \right\rfloor$ in G.

- We obtain another collection of $\left\lfloor \frac{\ell}{\Delta/2} \right\rfloor$ pairwise disjoint cycles of G on our cylinder, using a network-flow duality argument.

- We will then combine one collection of $\left\lfloor \frac{2}{3} \left\lfloor \Delta/2 \right\rfloor \right\rfloor$ cycles in G with the latter collection to form a new toroidal grid minor of the required size.
Our main theoretical contribution actually is the following:

Theorem 12. Suppose a toroidal graph H contains a collection C of p pairwise disjoint pairwise freely homotopic cycles, and an analogous collection D of q cycles, such that D is not homotopic to an iteration of C.

Then H contains a $p \times q$ toroidal grid minor.
Our main theoretical contribution actually is the following:

Theorem 12. Suppose a toroidal graph H contains a collection C of p pairwise disjoint pairwise freely homotopic cycles, and an analogous collection D of q cycles, such that D is not homotopic to an iteration of C.

Then H contains a $p \times q$ toroidal grid minor.

Unfortunately, the two cycle collections can interact in really nasty ways on the torus, and the proof requires a detailed technical analysis (proceedings).
4 Conclusion and Future Steps

Main result. We have got an $O(n \log n)$ time algorithm that approximates \textsc{CrossingNumber} on toroidal graphs up to a factor of $6\Delta(G)^2$,

provided that the graph embeds with dual edge-width at least $8\Delta(G)$.
4 Conclusion and Future Steps

Main result. We have got an $O(n \log n)$ time algorithm that approximates \textsc{CrossingNumber} on toroidal graphs up to a factor of $6\Delta(G)^2$,

provided that the graph embeds with dual edge-width at least $8\Delta(G)$.

Possible extensions. For graphs embedded on a higher orientable surface Σ_g. (Assume bounded g and Δ.)

- Repeat the algorithm of Section 2 for g steps until Σ_g is cut down to a plane. Denote by k_i and ℓ_i the “dual lengths” obtained at step i.
- After that, reconnect all the cut edges greedily along shortest dual paths.
4 Conclusion and Future Steps

Main result. We have got an $O(n \log n)$ time algorithm that approximates \textsc{CrossingNumber} on toroidal graphs up to a factor of $6\Delta(G)^2$, provided that the graph embeds with dual edge-width at least $8\Delta(G)$.

Possible extensions. For graphs embedded on a higher orientable surface Σ_g. (Assume bounded g and Δ.)

- Repeat the algorithm of Section 2 for g steps until Σ_g is cut down to a plane. Denote by k_i and ℓ_i the “dual lengths” obtained at step i.
- After that, reconnect all the cut edges greedily along shortest dual paths.
- It is straightforward to show that one gets $O(\max_{i=1,\ldots,g} k_i \cdot \ell_i)$ crossings.
- The same lower-bound proof now shows $\text{cr}(G) \geq \Omega(k_g \times \ell_g)$;
4 Conclusion and Future Steps

Main result. We have got an $O(n \log n)$ time algorithm that approximates CrossingNumber on toroidal graphs up to a factor of $6\Delta(G)^2$, provided that the graph embeds with dual edge-width at least $8\Delta(G)$.

Possible extensions. For graphs embedded on a higher orientable surface Σ_g. (Assume bounded g and Δ.)

- Repeat the algorithm of Section 2 for g steps until Σ_g is cut down to a plane. Denote by k_i and ℓ_i the “dual lengths” obtained at step i.
- After that, reconnect all the cut edges greedily along shortest dual paths.
- It is straightforward to show that one gets $O(\max_{i=1,\ldots,g} k_i \cdot \ell_i)$ crossings.
- The same lower-bound proof now shows $\text{cr}(G) \geq \Omega(k_g \times \ell_g)$; but we need to prove $\text{cr}(G) \geq \Omega(\max_{i=1,\ldots,g} k_i \cdot \ell_i)$, which is still open (work in progress), and it does not seem easy to finish...