A Tighter Insertion-based Approximation of the Graph Crossing Number

Petr Hliněný

Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Rep.

joint work with Markus Chimani

Friedrich-Schiller-University Jena, Germany
1 Graph Crossing Number

Definition. Drawing of a graph G:

- The vertices of G are distinct points, and every edge $e = uv \in E(G)$ is a simple curve joining u to v.
- No edge passes through another vertex, and no three edges intersect in a common point.
1 Graph Crossing Number

Definition. Drawing of a graph G:

- The vertices of G are distinct points, and every edge $e = uv \in E(G)$ is a simple curve joining u to v.
- No edge passes through another vertex, and no three edges intersect in a common point.

Definition. Crossing number $cr(G)$
is the smallest number of edge crossings in a drawing of G.
1 Graph Crossing Number

Definition. Drawing of a graph G:

- The vertices of G are distinct points, and every edge $e = uv \in E(G)$ is a simple curve joining u to v.
- No edge passes through another vertex, and no three edges intersect in a common point.

Definition. Crossing number $cr(G)$ is the smallest number of edge crossings in a drawing of G.

Warning. There are slight variations of the definition of crossing number, some giving different numbers! Such as counting odd-crossing pairs of edges. [Pelsmajer, Schaeffer, Štefankovič, 2005]...
Computing the Crossing Number

Importance, e.g.
Computing the Crossing Number

Importance, e.g.

- VLSI design, cf. Leighton
- Graph visualization

What is hard? i.e., NP-hard
Computing the Crossing Number

Importance, e.g.

- VLSI design, cf. Leighton
- Graph visualization

What is hard? i.e., NP-hard

- The general case (of course...); [Garey and Johnson, 1983]
Computing the Crossing Number

Importance, e.g.

- VLSI design, cf. Leighton
- Graph visualization

What is hard? i.e., NP-hard

- The general case (of course...); [Garey and Johnson, 1983]
- The degree-3 and minor-monotone cases; [PH, 2004]
Computing the Crossing Number

Importance, e.g.

- VLSI design, cf. Leighton
- Graph visualization

What is hard? i.e., NP-hard

- The general case (of course...); [Garey and Johnson, 1983]
- The degree-3 and minor-monotone cases; [PH, 2004]
- Even fixed rotation scheme; [Pelsmajer, Schaeffer, Štefankovič, 2007]
Computing the Crossing Number

Importance, e.g.

- VLSI design, cf. Leighton
- Graph visualization

What is hard? i.e., NP-hard

- The general case (of course...); [Garey and Johnson, 1983]
- The degree-3 and minor-monotone cases; [PH, 2004]
- Even fixed rotation scheme; [Pelsmajer, Schaeffer, Štefankovič, 2007]
- Much worse – hard already for planar graphs plus one edge! [Cabello and Mohar, 2010]

Can anything be computed efficiently?
So, what is efficiently computable?

- The case of \textit{cubic} planar graphs plus one edge; [Riskin, 1996]
So, what is efficiently computable?

- The case of *cubic* planar graphs plus one edge; [Riskin, 1996]
- \textit{FPT} when parameterized by itself;
 [Grohe, 2001], [Kawarabayashi and Reed, 2007]
So, what is efficiently computable?

- The case of *cubic* planar graphs plus one edge; [Riskin, 1996]

- FPT when parameterized by itself;

 [Grohe, 2001], [Kawarabayashi and Reed, 2007]

- An exact *branch & bound* approach for “real-world” graphs on up to \(\sim 100 \) vertices;

 [Chimani, Mutzel, and Bomze, 2008]
So, what is efficiently computable?

- The case of \textit{cubic} planar graphs plus one edge; [Riskin, 1996]

- \textit{FPT} when parameterized by itself; [Grohe, 2001], [Kawarabayashi and Reed, 2007]

- An exact \textit{branch \\& bound} approach for “real-world” graphs on up to ~ 100 vertices; [Chimani, Mutzel, and Bomze, 2008]

- NO rich \textit{natural graph class} with nontrivial and yet efficiently computable crossing number problem is known...
So, what is efficiently computable?

- The case of *cubic* planar graphs plus one edge; [Riskin, 1996]
- *FPT* when parameterized by itself; [Grohe, 2001], [Kawarabayashi and Reed, 2007]
- An exact *branch & bound* approach for “real-world” graphs on up to ~ 100 vertices; [Chimani, Mutzel, and Bomze, 2008]
- NO rich *natural graph class* with nontrivial and yet efficiently computable crossing number problem is known...

Approximations, at least?

- Up to factor $\log^3 |V(G)| (\log^2 \cdot)$ for $\text{cr}(G) + |V(G)|$ with bounded degrees; [Even, Guha and Schieber, 2002]
So, what is efficiently computable?

- The case of *cubic* planar graphs plus one edge; [Riskin, 1996]
- *FPT* when parameterized by itself; [Grohe, 2001], [Kawarabayashi and Reed, 2007]
- An exact *branch & bound* approach for “real-world” graphs on up to \(\sim 100 \) vertices; [Chimani, Mutzel, and Bomze, 2008]
- NO rich *natural graph class* with nontrivial and yet efficiently computable crossing number problem is known...

Approximations, at least?

- Up to factor \(\log^3 |V(G)| (\log^2 \cdot) \) for \(cr(G) + |V(G)| \) with bounded degrees; [Even, Guha and Schieber, 2002]
- Constant factors for surface-embedded bounded-degree graphs;
 [Gitler et al, 2007], [PH and Salazar, 2007], [PH and Chimani, 2010]
2 Planar Insertion Problems

Definition. Given a planar graph G and a set F of additional edges (vert.?). Find a *drawing of $G + F$* minimizing the edge crossings $\text{ins}(G, E)$ such that the subdrawing of G is *plane.*
2 Planar Insertion Problems

Definition. Given a planar graph G and a set F of additional edges (vert.?). Find a drawing of $G + F$ minimizing the edge crossings $ins(G, E)$ such that the subdrawing of G is plane.

Particular variants

- **Single edge insertion**: solvable in linear time using SPQR trees (easily implementable!); [Gutwenger, Mutzel, and Weiskircher, 2005]
2 Planar Insertion Problems

Definition. Given a planar graph G and a set F of additional edges (vert.?). Find a *drawing of $G + F$* minimizing the edge crossings $\text{ins}(G, E)$ such that the subdrawing of G is *plane*.

Particular variants

- *Single edge insertion*: solvable in linear time using SPQR trees (easily implementable!);
 [Gutwenger, Mutzel, and Weiskircher, 2005]

- *Single vertex insertion*: solvable in polynomial time;
 [Chimani, Gutwenger, Mutzel, and Wolf, 2009]
2 Planar Insertion Problems

Definition. Given a planar graph \(G \) and a set \(F \) of additional edges (vert.?). Find a \textit{drawing of} \(G + F \) minimizing the edge crossings \(\text{ins}(G, E) \) such that the subdrawing of \(G \) is plane.

Particular variants

- \textit{Single edge insertion}: solvable in linear time using SPQR trees (easily implementable!); [Gutwenger, Mutzel, and Weiskircher, 2005]
- \textit{Single vertex insertion}: solvable in polynomial time; [Chimani, Gutwenger, Mutzel, and Wolf, 2009]
- \textit{Multiple edge insertion (MEI)}: for general edge set \(F \) is NP-complete; [Ziegler, 2001]
2 Planar Insertion Problems

Definition. Given a planar graph G and a set F of additional edges (vert.?). Find a drawing of $G + F$ minimizing the edge crossings $\text{ins}(G, E)$ such that the subdrawing of G is plane.

Particular variants

- **Single edge insertion**: solvable in linear time using SPQR trees (easily implementable!); [Gutwenger, Mutzel, and Weiskircher, 2005]
- **Single vertex insertion**: solvable in polynomial time; [Chimani, Gutwenger, Mutzel, and Wolf, 2009]
- **Multiple edge insertion (MEI)**: for general edge set F is NP-complete; [Ziegler, 2001]

Remark. Difficulty of insertion problems comes from possible inequivalent embeddings of G.
Connections between Insertion and Crossing number

- Single edge insertion \leftrightarrow *almost-planar* graph (near-planar) $G + e$
Connections between Insertion and Crossing number

- Single edge insertion \leftrightarrow almost-planar graph (near-planar) $G + e$
 - $cr(G + e)$ approximated by $ins(G, e)$ up to factor $\Delta(G)$;
 \[\text{[PH and Salazar, 2006]} \]
 - factor $\lfloor \Delta(G)/2 \rfloor$, tight;
 \[\text{[Cabello and Mohar, 2008]} \]
Connections between Insertion and Crossing number

• Single edge insertion \(\leftrightarrow \) almost-planar graph (near-planar) \(G + e \)

 \(-\) \(cr(G + e) \) approximated by \(ins(G, e) \) up to factor \(\Delta(G) \);

 \([PH and Salazar, 2006]\)

 \(-\) factor \(\lfloor \Delta(G)/2 \rfloor \), tight;

 \([Cabello and Mohar, 2008]\)

• Single vertex insertion \(\leftrightarrow \) apex graph \(G + x \) (specif. neighbourhood)
Connections between Insertion and Crossing number

- Single edge insertion \leftrightarrow *almost-planar* graph (near-planar) $G + e$
 - $cr(G + e)$ approximated by $ins(G, e)$ up to factor $\Delta(G)$;
 [PH and Salazar, 2006]
 - factor $\left\lfloor \Delta(G)/2 \right\rfloor$, tight; [Cabello and Mohar, 2008]

- Single vertex insertion \leftrightarrow *apex* graph $G + x$ (specif. neighbourhood)
 - $cr(G + x)$ approximated by $ins(G, x)$ up to factor $d(x) \cdot \left\lfloor \Delta(G)/2 \right\rfloor$;
 [Chimani, PH, and Mutzel, 2008]
 - tight factor – half of that? waiting for Cabello–Mohar’s turn...
Connections between Insertion and Crossing number

- Single edge insertion \leftrightarrow *almost-planar* graph (near-planar) $G + e$

 - $cr(G + e)$ approximated by $ins(G, e)$ up to factor $\Delta(G)$;

 [PH and Salazar, 2006]

 - factor $\lfloor \Delta(G)/2 \rfloor$, tight;

 [Cabello and Mohar, 2008]

- Single vertex insertion \leftrightarrow *apex* graph $G + x$ (specif. neighbourhood)

 - $cr(G + x)$ approximated by $ins(G, x)$ up to factor $d(x) \cdot \lfloor \Delta(G)/2 \rfloor$;

 [Chimani, PH, and Mutzel, 2008]

 - tight factor – half of that? waiting for Cabello–Mohar’s turn...

- Multiple edge insertion \leftrightarrow graph $G + F$ (a very general case)
Connections between Insertion and Crossing number

- Single edge insertion \leftrightarrow *almost-planar* graph (near-planar) $G + e$
 - $cr(G + e)$ approximated by $ins(G, e)$ up to factor $\Delta(G)$;
 [PH and Salazar, 2006]
 - factor $\lceil \Delta(G)/2 \rceil$, tight; [Cabello and Mohar, 2008]

- Single vertex insertion \leftrightarrow *apex* graph $G + x$ (specif. neighbourhood)
 - $cr(G + x)$ approximated by $ins(G, x)$ up to factor $d(x) \cdot \lfloor \Delta(G)/2 \rfloor$;
 [Chimani, PH, and Mutzel, 2008]
 - tight factor – half of that? waiting for Cabello–Mohar’s turn.

- Multiple edge insertion \leftrightarrow graph $G + F$ (a very general case)
 - $cr(G + F)$ approximated by $ins(G, F)$;
 [Chimani, PH, and Mutzel, 2008]
 - however, $ins(G, F)$ is NP-complete! (as well as finding F)
3 Approximating MEI up to Additive Factor

- [Chuzhoy, Makarychev, and Sidiropoulos, 2011 SODA]
 Using MEI, a solution to $cr(G + F)$ for given planar G and F, with
 $$\leq O(\Delta(G)^3 \cdot |F| \cdot cr(G + F) + \Delta(G)^3 \cdot |F|^2)$$ crossings.
3 Approximating MEI up to Additive Factor

- [Chuzhoy, Makarychev, and Sidiropoulos, 2011 SODA]
 Using MEI, a solution to $cr(G + F)$ for given planar G and F, with
 \[\leq O(\Delta(G)^3 \cdot |F| \cdot cr(G + F) + \Delta(G)^3 \cdot |F|^2) \]
 crossings.

- Our alternative approach directly focuses on approximating MEI:
3 Approximating MEI up to Additive Factor

- [Chuzhoy, Makarychev, and Sidiropoulos, 2011 SODA]
 Using MEI, a solution to $cr(G + F)$ for given planar G and F, with
 $$\leq O(\Delta(G)^3 \cdot |F| \cdot cr(G + F) + \Delta(G)^3 \cdot |F|^2)$$ crossings.

- Our alternative approach directly focuses on approximating MEI:
 - only additive approximation factor for MEI $ins(G, F)$,
 - consequently improved multiplicative factor for $cr(G + F)$,
 - and practically implementable using SPQR trees.
3 Approximating MEI up to Additive Factor

- [Chuzhoy, Makarychev, and Sidiropoulos, 2011 SODA] Using MEI, a solution to \(cr(G + F) \) for given planar \(G \) and \(F \), with
\[
\leq O(\Delta(G)^3 \cdot |F| \cdot cr(G + F) + \Delta(G)^3 \cdot |F|^2) \text{ crossings.}
\]

- Our alternative approach directly focuses on approximating MEI:
 - only additive approximation factor for MEI \(\text{ins}(G, F) \),
 - consequently improved multiplicative factor for \(cr(G + F) \),
 - and practically implementable using SPQR trees.

Theorem 1. Given a conn. planar graph \(G \) and an edge set \(F \), \(F \cap E(G) = \emptyset \), Algorithm 2 described below finds, in
\[
O(|F| \cdot |V(G)| + |F|^2) \text{ time,}
\]
an approximate solution to the MEI problem for \(G \) and \(F \) with
\[
\leq \text{ins}(G, F) + (\lfloor \frac{1}{2} \Delta(G) \rfloor + \frac{1}{2}) \cdot (|F|^2 - |F|) \text{ crossings.}
\]
Gentle introduction to SPQR trees

- Graph broken into the \textit{blocks} first.

- Then, for pairwise gluing on \textit{virtual skeleton edges}, we have got
 - \textit{S-nodes} for serial skeletons,
 - \textit{P-nodes} for parallel skeletons,
 - \textit{R-nodes} for 3-connected components.
The algorithm for MEI

- **Con-tree** = a combination of a block-cut tree with SPQR trees.
The algorithm for MEI

- **Con-tree** = a combination of a block-cut tree with SPQR trees.
 - **Con-chain** = a path traversing the con-tree nodes relevant for inserting a specific edge; only the \textit{C-, P-, and R-nodes} on it do matter.
The algorithm for MEI

- **Con-tree** = a combination of a block-cut tree with SPQR trees.

 Con-chain = a path traversing the con-tree nodes relevant for inserting a specific edge; only the *C-, P-, and R-nodes* on it do matter.

Algorithm 2. Computing an approximate solution to the *multiple edge insertion problem* for a connected planar graph G and new edges F.

1. Build the con-tree C of G.

The algorithm for MEI

- **Con-tree** = a combination of a block-cut tree with SPQR trees.

 Con-chain = a path traversing the con-tree nodes relevant for inserting a specific edge; only the \(C-, P-, and R-nodes \) on it do matter.

Algorithm 2. Computing an approximate solution to the multiple edge insertion problem for a connected planar graph \(G \) and new edges \(F \).

1. Build the con-tree \(C \) of \(G \).

2. Using \(C \), compute *single-edge insertions* (the con-chains) for each edge \(e \in F \) independently, and centrally store their *embedding preferences*.
The algorithm for MEI

- **Con-tree** = a combination of a block-cut tree with SPQR trees.

 Con-chain = a path traversing the con-tree nodes relevant for inserting a specific edge; only the \(C-, P-, \text{and} \ R\)-nodes on it do matter.

Algorithm 2. Computing an approximate solution to the multiple edge insertion problem for a connected planar graph \(G\) and new edges \(F\).

1. Build the con-tree \(C\) of \(G\).
2. Using \(C\), compute single-edge insertions (the con-chains) for each edge \(e \in F\) independently, and centrally store their embedding preferences.
3. Fix an embedding \(\Gamma\) of \(G\) by suitably combining the embedding preferences from step 2 (at least “one happy con-chain per node”).
The algorithm for MEI

- **Con-tree** = a combination of a block-cut tree with SPQR trees.

 Con-chain = a path traversing the con-tree nodes relevant for inserting a specific edge; only the *C-, P-, and R-nodes* on it do matter.

Algorithm 2. Computing an approximate solution to the *multiple edge insertion problem* for a connected planar graph \(G \) and new edges \(F \).

1. Build the con-tree \(C \) of \(G \).

2. Using \(C \), compute *single-edge insertions* (the con-chains) for each edge \(e \in F \) independently, and centrally store their *embedding preferences*.

3. Fix an *embedding* \(\Gamma \) of \(G \) by suitably combining the embedding preferences from step 2 (at least “one happy con-chain per node”).

4. Independently compute the *insertion paths* for each edge \(e \in F \) into the fixed embedding \(\Gamma \), as shortest dual paths.
Proof sketch

A very informal one, neglecting all technical obstacles...

• Identify *dirty passes* of con-chains – where the con-chain embedding preferences are not happy with the fixed embedding Γ.
Proof sketch

A very informal one, neglecting all technical obstacles...

- Identify *dirty passes* of con-chains – where the con-chain embedding preferences are not happy with the fixed embedding Γ.
- Observe that con-chains rooted through the same neighbourhood are either both happy or both unhappy there.
Proof sketch

A very informal one, neglecting all technical obstacles...

- Identify *dirty passes* of con-chains – where the con-chain embedding preferences are not happy with the fixed embedding Γ.
- Observe that con-chains rooted through the same neighbourhood are either both happy or both unhappy there.
- As every node has some happy con-chain, each dirty pass can be linked to a pair of con-chains that *split/merge* at that pass.
Proof sketch

A very informal one, neglecting all technical obstacles...

- Identify *dirty passes* of con-chains – where the con-chain embedding preferences are not happy with the fixed embedding Γ.
- Observe that con-chains rooted through the same neighbourhood are either both happy or both unhappy there.
- As every node has some happy con-chain, each dirty pass can be linked to a pair of con-chains that *split/merge* at that pass.
- Two con-chains can split/merge twice, hence $\leq 2(|F|/2)$ dirty passes.
Proof sketch

A very informal one, neglecting all technical obstacles...

- Identify *dirty passes* of con-chains – where the con-chain embedding preferences are not happy with the fixed embedding Γ.
- Observe that con-chains rooted through the same neighbourhood are either both happy or both unhappy there.
- As every node has some happy con-chain, each dirty pass can be linked to a pair of con-chains that *split/merge* at that pass.
- Two con-chains can split/merge twice, hence $\leq 2\left(\frac{|F|}{2}\right)$ dirty passes.
- Every dirty pass is associated with a 1- or 2-cut, and the inserted edge needs $\leq \left\lfloor \frac{\Delta(G)}{2} \right\rfloor$ crossings to “pass by” it. Altogether

$$\leq \text{ins}(G, F) + \left(2 \left\lfloor \frac{\Delta(G)}{2} \right\rfloor + 1 \right) \cdot \left(\frac{|F|}{2}\right).$$

\square
4 Consequences

Theorem 3. Given a planar graph G and an edge set F, $F \cap E(G) = \emptyset$, Algorithm 2 finds an approximate solution to $\text{cr}(G + F)$ with

$$\leq \left\lfloor \frac{1}{2} \Delta(G) \right\rfloor \cdot 2|F| \cdot \text{cr}(G + F) + (\left\lfloor \frac{1}{2} \Delta(G) \right\rfloor + \frac{1}{2})(|F|^2 - |F|) \text{ crossings}.$$
4 Consequences

Theorem 3. Given a planar graph G and an edge set F, $F \cap E(G) = \emptyset$, Algorithm 2 finds an approximate solution to $cr(G + F)$ with

$$\leq \left\lfloor \frac{1}{2}\Delta(G) \right\rfloor \cdot 2|F| \cdot cr(G + F) + \left(\left\lfloor \frac{1}{2}\Delta(G) \right\rfloor + \frac{1}{2}\right)(|F|^2 - |F|)$$

crossings.

- This improves over previous $O(\Delta(G)^3 \cdot |F| \cdot cr(G + F) + \Delta(G)^3 \cdot |F|^2)$
4 Consequences

Theorem 3. Given a planar graph G and an edge set F, $F \cap E(G) = \emptyset$, Algorithm 2 finds an approximate solution to $cr(G + F)$ with

$$
\leq \left\lfloor \frac{1}{2} \Delta(G) \right\rfloor \cdot 2 |F| \cdot cr(G + F) + \left(\left\lfloor \frac{1}{2} \Delta(G) \right\rfloor + \frac{1}{2} \right) (|F|^2 - |F|) \text{ crossings.}
$$

- This improves over previous $O(\Delta(G)^3 \cdot |F| \cdot cr(G + F) + \Delta(G)^3 \cdot |F|^2)$
- ... with a simpler algorithm and a simpler proof.
4 Consequences

Theorem 3. Given a planar graph \(G \) and an edge set \(F \), \(F \cap E(G) = \emptyset \), Algorithm 2 finds an approximate solution to \(cr(G + F) \) with

\[
\leq \left\lfloor \frac{1}{2} \Delta(G) \right\rfloor \cdot 2|F| \cdot cr(G + F) + \left(\left\lfloor \frac{1}{2} \Delta(G) \right\rfloor + \frac{1}{2} \right)(|F|^2 - |F|) \text{ crossings.}
\]

- This improves over previous \(O(\Delta(G)^3 \cdot |F| \cdot cr(G + F) + \Delta(G)^3 \cdot |F|^2) \)
- ... with a simpler algorithm and a simpler proof.

5 Final Remark and Question

- In the MEI problem, the \(O(\Delta(G) \cdot |F|^2) \) additive factor should be replaced with as. tight
 \[
 O(\Delta(G) \cdot |F| \log |F| + |F|^2).
 \]
4 Consequences

Theorem 3. Given a planar graph G and an edge set F, $F \cap E(G) = \emptyset$, Algorithm 2 finds an approximate solution to $\text{cr}(G + F)$ with

$$\leq \lfloor \frac{1}{2} \Delta(G) \rfloor \cdot 2|F| \cdot \text{cr}(G + F) + (\lfloor \frac{1}{2} \Delta(G) \rfloor + \frac{1}{2})(|F|^2 - |F|) \text{ crossings.}$$

- This improves over previous $O(\Delta(G)^3 \cdot |F| \cdot \text{cr}(G + F) + \Delta(G)^3 \cdot |F|^2)$
- ...with a simpler algorithm and a simpler proof.

5 Final Remark and Question

- In the MEI problem, the $O(\Delta(G) \cdot |F|^2)$ additive factor should be replaced with as. tight

 $$O(\Delta(G) \cdot |F| \log |F| + |F|^2).$$

- Can the MEI (G, F) problem have, say, an FPT algorithm wrt. $|F|$?