
Crossing Number is Hard for Cubic Graphs

Petr Hliněný
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Abstract. It was proved by [Garey and Johnson, 1983] that computing
the crossing number of a graph is an NP -hard problem. Their reduction,
however, used parallel edges and vertices of very high degrees. We prove
here that it is NP -hard to determine the crossing number of a simple
cubic graph. In particular, this implies that the minor-monotone version
of crossing number is also NP -hard, which has been open till now.

Keywords: crossing number, cubic graph, NP-completeness.
2000 Math Subjects Classification: 05C10, 05C62, 68R10

1 Background on Crossing Number

We assume that the reader is familiar with basic terms of graph theory. In
this paper we consider finite simple graphs, unless we specifically speak about
multigraphs. A graph is cubic if it has all vertices of degree 3.

In a (proper) drawing of a graph G in the plane the vertices of G are points
and the edges are simple curves joining their endvertices. Moreover, it is required
that no edge passes through a vertex (except at its ends), and that no three
edges intersect in a common point which is not a vertex. An edge crossing is an
intersection point of two edges-curves in the drawing which is not a vertex. The
crossing number cr(G) of a graph G is the minimum number of edge crossings
in a proper drawing of G in the plane (thus, a graph is planar if and only if
its crossing number is 0). We remark that there are other possible definitions of
crossing number which are supposed, but not(!) known [9], to be equivalent to
each other.

Crossing number problems were introduced by Turán, whose work in a brick
factory during the Second World War led him to inquire about the crossing
number of the complete bipartite graphs Km,n. Turán devised a natural drawing
of Km,n with bm
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that such a drawing is the best possible, is still wide open. (Look at an interesting
story of a false “proof” of the conjecture [6].) Not surprisingly, exact crossing
numbers are in general very difficult to compute. As an example of another
graph family whose crossing number has been deeply studied, we mention the
Cartesian products of cycles Cm × Cn — their crossing number m(n − 2) for
m ≥ n was conjectured in [7]. There has been a number of particular results on
this difficult problem (such as [8] as one example), and, remarkably, the problem
is almost solved now [4]. That is one of only a few nontrivial exact crossing
numbers known today.

The algorithmic problem CrossingNumber is given as follows:

Input: A multigraph G and an integer k.
Question: Is it true that cr(G) ≤ k ?

Computing the crossing number has important applications in, for example,
VLSI design, or in graph visualization. The problem is in NP since one could
guess the optimal drawing, replace the crossings in it with new (simultaneously
subdividing) vertices, and verify planarity of the resulting graph. It has been
proved by Garey and Johnson [3] that CrossingNumber is an NP -complete
problem for k on the input.

Since then, a new significant complexity result about graph crossing number
has appeared only recently — a paper by Grohe [5] presenting a quadratic-time
(FPT) algorithm for CrossingNumber(k) with constant k. There is also a
long-standing open question, originally asked by Seese: What is the complexity
of CrossingNumber for graphs of fixed tree-width? (Here we leave aside other
results dealing with various restricted versions of the crossing number problem
appearing in connection with VLSI design or with graph drawing, such as the
“layered” or “rectilinear” crossing numbers etc.)

Before the above mentioned FPT algorithm of Grohe for crossing number
appeared; Fellows [1] had observed that there are finitely many excluded mi-
nors for the cubic graphs of crossing number at most k, which implied a (non-
constructive) algorithm for CrossingNumber(k) with constant k over cubic
graphs. That observation might still suggest that CrossingNumber was easier
to solve over cubic graphs than in general. However, that is not so, as we show
in this paper.

2 Crossing Number and OLA

We first define another classical NP -complete combinatorial problem [2] called
OptimalLinearArrangement, which is given as follows:

Input: An n-vertex graph G, and an integer a.
Question: Is there a bijection α : V (G) → {1, . . . , n} (a linear arrangement of

vertices) such that the following holds
∑

uv∈E(G)
|α(u) − α(v)| ≤ a ?(1)



The sum on the left of (1) is called the weight of α.

The above mentioned paper [3] actually reduces CrossingNumber from
OptimalLinearArrangement. We, however, consider that reduction “unre-
alistic” in the following sense: The reduction in [3] creates many large classes
of parallel edges, and it uses vertices of very high degrees. (There seems to be
no easy modification avoiding those.) So we consider it natural to ask what can
be said about the crossing number problem on simple graphs with small vertex
degrees.

It might be tempting to construct a “nicer” polynomial reduction for Cros-
singNumber from another NP -complete problem called Planar-SAT (a version
of the satisfiability problem with a planar incidence graph). There have been,
to our knowledge, a few attempts in this directions, so far unsuccessful. We
consider this phenomenon remarkable since Planar-SAT seems to be much closer
to crossing-number problems than the Linear Arrangement is.

Still, we have found another construction reducing CrossingNumber from
OptimalLinearArrangement, which produces cubic graphs. The basic idea
of our construction is similar to [3], but the restriction to degree-3 vertices brings
many more difficulties to the proofs. The construction establishes our main result
which reads:

Theorem 2.1. The problem CrossingNumber is NP -complete for 3-con-
nected (simple) cubic graphs.

Let us, moreover, define the minor-monotone crossing number mcr(G): A
minor F of a graph G is a graph obtained from a subgraph of G by contractions
of edges. Then mcr(G) as the smallest crossing number cr(H) over all graphs
H having G as a minor. The traditional versions of crossing number do not
behave well with respect to taking minors; one may find graphs G such that
cr(G) = 1 but cr(G′) is arbitrarily large for a minor G′ of G. On the other hand,
mcr(G′) ≤ mcr(G) for a minor G′ of G by definition. The algorithmic problem
MM-CrossingNumber (from “Minor-Monotone”) is defined as follows:

Input: A multigraph G and an integer k.

Question: Is it true that mcr(G) ≤ k ?

Our main result immediately extends to a proof that also mcr(G) is NP -hard
to compute, which has been an open question till now.

Corollary 2.2. The problem MM-CrossingNumber is NP -complete.

Observation. Let a cubic graph G be a minor of a multigraph H. Then some
subdivision of G is contained as a subgraph in H. Hence cr(G) ≤ cr(H).

Thus cr(G) = mcr(G) for cubic graphs, and the corollary follows directly
from Theorem 2.1.



3 The Cubic Reduction

Let us call a cubic grid the graph illustrated in Figure 1 (looking like a “brick
wall”). We say that the cubic-grid height equals the number of the “horizontal”
paths, and the length equals the number of edges on the “top-most” horizontal
path. (The positions are referred to as in Figure 1.) Formally, the cubic grid of
even height h and length `, denoted by C ′

h,`, is defined

V (C′
h,`) = {vi,j : i = 1, 2, . . . , h; j = 0, 1, . . . , `}∪

∪{wi,j : i = 2, 3, . . . , h − 1; j = 1, 2, . . . , `} ,

E(C′
h,`) = {v2i−1,jv2i,j : i = 1, 2, . . . , h/2; j = 0, 1, . . . , `}∪

∪{w2i,jw2i+1,j : i = 1, 2, . . . , h/2 − 1; j = 1, 2, . . . , `}∪

∪{vi,j−1wi,j , wi,jvi,j : i = 2, 3, . . . , h − 1; j = 1, 2, . . . , `}∪

∪{vi,j−1vi,j : i = 1, h; j = 1, 2, . . . , `} .

Suppose we now identify the “left-most” vertices in the grid C ′
h,` with the “right-

most” ones, formally vi,0 = vi,` for i = 1, 2, . . . , h, and simplify the resulting
graph. Then we obtain the cyclic cubic grid Ch,` (which is, indeed, a cubic graph).

Fig. 1. An illustration of a cubic grid (a fragment of length 11 and height 8)

Let us have a cubic grid C′
h,` or Ch,` as above. We say that an edge f is

attached to the grid at low position j if the edge v1,j−1v1,j is subdivided with a
vertex xf , where xf is an endvertex of f as well. We say that f is attached at high
position j if an analogous construction is done for the edge vh,j−1vh,j . Notice
that the new vertex xf introduced when attaching an edge f has degree 3, and
that the degrees of other vertices are unchanged. Similarly, a vertex x is attached
to the grid at position j if two new edges f, f ′ with a common endvertex x are
attached via their other endvertices at low and high positions j, respectively, to
our cubic grid. This is illustrated on a detailed picture in Figure 2.

In a cyclic cubic grid Ch,`, the cycles M i on vertices vi,0wi,1vi,1wi,2-
. . . vi,`−1wi,` for i = 2, 3, . . . , h − 1, and on vertices vi,0vi,1 . . . vi,`−1 for i = 1, h,
are called the main cycles of the grid Ch,`. M1 and Mh are also referred to as



v1,j−1

v1,j

v1,j+1

v2,j−1

v2,j

v2,j+1

v3,j−1

v3,j

v3,j+1

v4,j−1

v4,j

v4,j+1

w2,j

w2,j+1

w3,j

w3,j+1

xf

f

M1 M2 M3 M4

Fig. 2. A detail of the cyclic cubic grid C4,`, with an edge f attached at high position j

the outer main cycles. We use the same names, main cycles, for the subdivisions
of the cycles M i in graphs created from the grid Ch,` by attaching edges.

Assume now that we are given a graph G on n vertices. In order to prove
Theorem 2.1, we are going to construct a cubic graph HG depending on G.
(Although our graph HG is huge, it has polynomial size in G.) We show then
how one can compute the weight of an optimal linear arrangement for G from
the crossing number cr(HG), and vice versa. Our construction uses several size
parameters defined next:

n = |V (G)|, m = |E(G)|,

t = 2mn,(2)

r = t2 = 4m2n2,

s = m3r = 4m5n2,

q = (m3 + n + 1)r = 4m5n2 + 4m2n3 + 4m2n2,

z = 2((s + rn)nt + r) = 16m6n4 + 16m3n5 + 8m2n2.

Without loss of generality we may assume that the graph G is sufficiently large,
say

m > n > 100 .(3)

We start with two copies B1, B2 of the cyclic cubic grid Cz,q, called here the
boulders (for their huge size that keeps the rest of our graph “in place”). Then
we make n disjoint copies R1, . . . , Rn of the cyclic cubic grid Ct,q, called here the
rings. An intermediate step in the construction – our graph Hm,n, is obtained
by the following operations:

– Start with the disjoint union B1 ∪ B2 ∪ R1 ∪ . . . ∪ Rn of the two boulders
and the n rings.

– For every pair of integers 0 ≤ i < m3 and 0 ≤ j < r, take a new edge κi+jm3 ,
and attach κi+jm3 at low positions i + j(m3 + n + 1) < q to the boulder B1

via one end, and to B2 via the other end. These s new edges κ0, . . . , κs−1

are called the free spokes in Hm,n.



– For every pair of integers 1 ≤ i ≤ n and 0 ≤ j < r, set p = i − 1 + m3 +
j(m3 + n + 1) < q, and take two new vertices νi,j and ν′

i,j connected by an
edge µ3

i,j . Then attach a new edge µ1

i,j with one end νi,j (new edge µ5

i,j with
one end ν ′

i,j) to the boulder B1 (boulder B2) at low position p via the other
end. Finally, attach a new edge µ2

i,j with one end νi,j (new edge µ4

i,j with
one end ν ′

i,j) to the ring Ri at low (high) position p via the other end. The
path formed by three edges µ1

i,j, µ
3

i,j , µ
5

i,j is called the j-th ring spoke of Ri

in Hm,n.

We remark that the above construction attaches only one edge at the same
position of each of the boulders and rings, and so the operations are well-defined.
(Figure 3.) This remark applies also to further constructions on the graph HG.

To simplify our notation, the above names of the boulders B1, B2 and the
rings Ri are inherited to the subdivisions of those boulders and rings created in
the construction of Hm,n. The same simplified notation is used further for the
graph HG, too.

B1 B2

R1 R2 Rn

κg

νi,jµ
1

i,j ν′

i,j

Fig. 3. How to attach free and ring spokes in the graph Hm,n

So far, the constructed graph Hm,n does not depend on a particular structure
of G, but only on its size and our choice of the parameters (2). One may say that
Hm,n acts as a skeleton in the forthcomming construction, in which the rings of
Hm,n shall model the vertices of G, and the order the rings are drawn in shall
correspond to a linear arrangement of vertices of G. The following simple lemma
shows necessary “flexibility” of drawings of Hm,n with any order of the rings.
(Actually, the number of crossings in the lemma is optimal, as we implicitly show
in Section 4.)

Lemma 3.1. For any permutation π of the set {1, 2, . . . , n}, there is a drawing
of the graph Hm,n with (s + rn)nt crossings conforming to the following: The
subdrawings of all the rings are pairwise disjoint, each ring separates the two
boulders in Hm,n from each other, and any free spoke in the drawing intersects
all the rings in order Rπ(1), . . . , Rπ(n) from B1 to B2.



Finally, the particular graph HG needed for our polynomial reduction from
G is constructed as follows:

– Start with the graph Hm,n, for n = |V (G)| and m = |E(G)|. Number the
vertices V (G) = {1, 2, . . . , n}.

– For every ordered pair 0 < i, j ≤ n such that {i, j} ∈ E(G), set p = (i −
1 + jn − n)4m2(m3 + n + 1) + m3 + n < q. In the graph Hm,n, attach new
vertices χij , χ

′
ij to the rings Ri, Rj , respectively, at positions p, and add a

new edge χijχ
′
ij . The subgraph Xi,j induced on the five new edges incident

with χij , χ
′
ij is called a handle of the edge ij in HG. (Figure 4.)

That is, the rings in HG model the vertices of G, and the handles model the
edges of G. As we show later, an optimal drawing of HG uniquely determines
an ordering of the rings of Hm,n, and hence the weight of an optimal linear
arrangement of G corresponds to the number of crossings between the rings and
the handles in an optimal drawing of the graph HG.

Xi,j
χij χ′

ij

Ri Rj

Fig. 4. How to attach handles of the edges of G in the graph HG

We conclude this section with an upper bound on the crossing number of
our constructed graph, which naturally follows from the drawings introduced in
Lemma 3.1.

Lemma 3.2. Let us, for a given graph G, construct the graph HG as described
above. If G has a linear arrangement of weight A, then the crossing number of
HG is

cr(HG) ≤ (s + rn)nt + 2(A + m)t − 4m,

where the weight of a linear arrangement is defined by (1) on page 2, and
m,n, r, s, t are given by (2) on page 5.

Corollary 3.3. For any G conforming to (3), cr(HG) < z/2 = (s + rn)nt + r.



4 Sketch of the Proof

To prove correctness of our reduction, we now have to show a lower bound on
the crossing number of our graph HG, depending on weight of the optimal linear
arrangement of G. We achieve this goal by showing that an optimal drawing of
HG has to look (almost) like the drawing described in the proof of Lemma 3.2.
Since the whole proof is quite long and technical, and it uses more topological
rather than combinatorial arguments, we give here only a brief outline of the
main steps.

We argue that the boulders of HG have to be drawn without crossings at
all, and that each ring has to separate the two boulders from each other (and
hence the rings are “nested” in each other). Such a configuration already forces
the number of crossings of Hm,n as in Lemma 3.1. Then we identify a linear
ordering of the rings, and show that every edge handle in HG generates at least
as many additional crossings as expected from the ordering of rings. A special
attention has to be paid to proving that no edge crossing is counted twice in our
arguments.

The following particular claim will be useful during the proof.

Lemma 4.1. Let k, `, t be integers, and let (p1, p2, . . . , pk) be an increasing se-
quence of integers such that p1 > 4kt, pk < `, and pj+1 − pi ≥ 4kt for
j = 1, 2, . . . , k. Assume that the graph F is constructed from the cyclic cubic
grid Ct,` by attaching a vertex zj at position pj for each j = 1, 2, . . . , k. Then
cr(F ) = k(t − 2) .

We need to be a bit more formal in this section. A curve γ is a continuous
function mapping the interval [0, 1] to a topological space. A curve γ is a closed
curve if γ(0) = γ(1). A closed curve γ is contractible in a topological space
if γ can be continuously deformed to a single point there. We call a cylinder
the topological space obtained from the unit square by identifying one pair of
opposite edges in the same direction. (A cylinder has two disjoint closed curves
as the boundary.)

Recall the notation from Section 3, and assume that G is a graph on the
vertex set {1, 2, . . . , n}. Let HG denote the graph constructed along the descrip-
tion on page 7. The following statement, together with Lemma 3.2, validates our
reduction.

Proposition 4.2. If an optimal linear arrangement of a graph G has weight A,
then the crossing number of the graph HG is at least

cr(HG) ≥ (s + rn)nt + 2(A + m)t − 8m.

(See (2) and Lemma 3.2 for details on the notation.)

We proceed the proof of Proposition 4.2 along the following sequence of
claims. Assume that we have an optimal drawing of the graph HG at hand.

Lemma 4.3. In the optimal drawing of HG, the boulders B1, B2 are drawn with
no edge crossings.



Hence, in particular, the first main cycles Nj of the boulder Bj , j = 1, 2
are drawn with no crossings. Then there is a uniquely defined cylinder Π with
the boundary curves N1 and N2 in the plane. Realize that the whole subgraph
HG − V (B1) − V (B2) is drawn on Π.

Lemma 4.4. In the optimal drawing of HG, each main cycle M of every ring
Ri, i ∈ {1, 2, . . . , n} is drawn as a closed curve separating the subdrawing of the
boulder B1 from the subdrawing of B2, i.e. noncontractible on Π.

This claim is the first key step in the proof of Proposition 4.2. The idea
behind is that a main cycle drawn as a contractible curve on Π would have to
have too many crossings with the free spokes of HG.

Corollary 4.5. In the optimal drawing of HG, there are at least (s + rn)nt
crossings between edges of the main cycles of the rings and edges of the free and
ring spokes in HG.

Lemma 4.6. There is a selection of main cycles Mi ⊂ Ri, i = 1, 2, . . . , n of
the rings in HG, such that the cycles M1, . . . ,Mn are drawn as pairwise disjoint
closed curves in the above optimal drawing of HG. Hence, there is a permutation
π of {1, . . . , n} such that, for each j = 1, . . . , n, the closed curve Mπ(j) separates
the subdrawing B1 ∪ Mπ(1) ∪ . . . ∪ Mπ(j−1) from the subdrawing B2 ∪ Mπ(j+1) ∪
. . . ∪ Mπ(n).

Lemma 4.7. For every k = 0, 1, . . . , 4n2 − 1, there is an index ck ∈ Ck =
{km5 − 2m4, . . . , km5 + 2m4} such that the edge of the ck-th free spoke κck

is
crossed exactly once by each of the main cycles of all the rings, and that κck

has
no more crossings than those in the optimal drawing of HG.

Recall that the vertices of G are numbered as {1, 2, . . . , n}, and that Xi,j

denotes the subgraph of the handle in the constructed graph HG corresponding
to an edge ij ∈ E(G) (page 7).

Lemma 4.8. Let π be the permutation from Lemma 4.6, let Π be the cylinder
defined after Lemma 4.3 for the optimal drawing of HG, and let {i, j} ∈ E(G)
be an edge. For ` = i + n(j − 1), consider the indices c4`−2 and c4`+2 given
by Lemma 4.7, and denote by Σ` the region on Π bounded by the drawings of
the c4`−2, c4`+2-th free spokes and containing the subdrawing of the handle Xi,j.
Then Σ` contains at least

t
(

|π−1(i) − π−1(j)| − 1
)

crossings between edges of the subgraph Xi,j ∪ Ri ∪ Rj and edges of the main
cycles of other rings Rk in HG for k 6= i, j.

The last claim presents the second key step of our proof of Proposition 4.2.
It shows that the handles Xi,j (of edges of G) really have to cross all the rings
which are between Ri, Rj in the order given by π. Moreover, the crossings can
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Fig. 5. An illustration to Lemma 4.8

be separated in distinct regions of the cylinder Π, and so it is clear that they
will not be counted twice. See an illustration in Figure 5. Now we are ready to
finish the proof.

We are going to count three collections of edge crossings in the optimal
drawing of HG. Firstly, there are (at least) (s + rn)nt crossings described in
Corollary 4.5. Secondly, denote by di the degree of the vertex i in G. Let us
consider the subgraph Fi of HG formed by the ring Ri and by 2di pairs of incident
edges from all handles which are attached to Ri in HG. Then, by Lemma 4.1,
the subgraph Fi itself has at least 2di(t − 2) edge crossings in any drawing
of HG. Thirdly, the permutation π from Lemma 4.6 defines a linear arrangement
α = π−1 of the vertices of G. An edge {i, j} of G then contributes (via its two
handles in HG) with at least 2t

(

|α(i)−α(j)|−1
)

crossings in HG by Lemma 4.8.

Altogether, we have found at least this many distinct edge crossings in the
optimal drawing of HG:

(s + rn)nt +
∑

i∈V (G)

2di(t − 2) +
∑

{i,j}∈E(G)

2t
(

|α(i) − α(j)| − 1
)

=

= (s + rn)nt + 2t
∑

{i,j}∈E(G)

|α(i) − α(j)| − 2tm + 4tm − 8m =

= (s + rn)nt + 2tA + 2tm − 8m

Proof of Theorem 2.1. Assume that G, a is an input instance of the Optimal-
LinearArrangement problem, and that G is sufficiently large (3). The above
described graph HG is clearly cubic, it has polynomial size in n = |V (G)|,
and HG has been constructed efficiently. We now ask the problem Crossing-
Number on the input 〈HG, (s + rn)nt + 2t(a + m) 〉, and give the same answer
to OptimalLinearArrangement on 〈G, a 〉.



If there is a linear arrangement of G of weight at most a, then our correct
answer is YES according to Lemma 3.2. Conversely, if the optimal linear ar-
rangement of G has weight greater than a, then the crossing number of HG is
by Proposition 4.2

cr(HG) ≥ (s + rn)nt + 2t(a + 1 + m) − 8m >

> (s + rn)nt + 2t(a + m) ,

and so the correct answer is NO. Since the OptimalLinearArrangement
problem is known to be NP -complete [2], the statement of Theorem 2.1 follows.
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