Petr Hliněný

New almost-planar crossing-critical graph families

Faculty of Informatics, Masaryk University, Brno
&
FEI VŠB – TU Ostrava
Czech Republic

http://www.fi.muni.cz/~hlineny
Contents

1 Crossing-Critical Graphs 3
 Basic introduction of crossing-critical graphs, their usual structure and constructions, their vertex degrees.

2 Our “Belt” Construction 6
 New (extended) construction of almost-planar crossing-critical graphs, extending previous [PH, 2001] to get arbitrarily high even degrees.

3 Average Degrees in $[4, 6)$ 9
 New, almost-planar, families of crossing-critical graphs with prescribed rational average degrees.

4 Final Remarks 10
 More thoughts and future research about almost-planar crossing-critical graphs.
1 Crossing-Critical Graphs

What forces high crossing number?
1 Crossing-Critical Graphs

What forces high crossing number?

- Many edges – cf. Euler’s formula, and some strong enhancements
 [Ajtai, Chvátal, Newborn, Szemeredi, 1982; Leighton].
1 Crossing-Critical Graphs

What forces high crossing number?

• Many edges – cf. Euler’s formula, and some strong enhancements [Ajtai, Chvátal, Newborn, Szemeredi, 1982; Leighton].

• Structural properties (even with few edges) – but what exactly?
1 Crossing-Critical Graphs

What forces high crossing number?

- Many edges – cf. Euler’s formula, and some strong enhancements [Ajtai, Chvátal, Newborn, Szemeredi, 1982; Leighton].
- Structural properties (even with few edges) – but what exactly?

Definition. Graph H is k-crossing-critical
- $\text{cr}(H) \geq k$ and $\text{cr}(H - e) < k$ for all edges $e \in E(H)$.

We study crossing-critical graphs to understand what structural properties force the crossing number of a graph to be large.
1 Crossing-Critical Graphs

What forces **high crossing number**?

- Many edges – cf. Euler’s formula, and some strong enhancements [Ajtai, Chvátal, Newborn, Szemeredi, 1982; Leighton].
- Structural properties (even with few edges) – but what exactly?

Definition. Graph H is k-crossing-critical
- $\text{cr}(H) \geq k$ and $\text{cr}(H - e) < k$ for all edges $e \in E(H)$.

We study crossing-critical graphs to understand what structural properties force the crossing number of a graph to be large.

Remarks:
- 1-crossing-critical graphs are K_5 and $K_{3,3}$ (up to vertices of degree 2).
- Infinite classes of 3, 2-crossing-critical graphs, [Širáň 84, Kochol 87].
- Many infinite classes of crossing-critical graphs are known today, and they tend to have similar “global” structure.
Constructing crossing-critical graphs

Twisted Möbius band: (a classical idea)

forcing a "twist"

↓ many homogeneous planar “tiles”
Constructing crossing-critical graphs

Twisted Möbius band:
(a classical idea)

![Diagram of twisted Möbius band]

forcing a “twist”

↓ many homogeneous planar “tiles”

Crossed planar belt:
[PH, 2001]

![Diagram of crossed planar belt]

↓ union of k edge-disjoint cycles
Constructing crossing-critical graphs

Twisted Möbius band:
(a classical idea)

![Diagram showing a twisted Möbius band forcing a “twist”](image)

\[\downarrow \text{many homogeneous planar “tiles”} \]

Crossed planar belt:
[PH, 2001]

![Diagram showing a crossed planar belt](image)

\[\downarrow \text{union of } k \text{ edge-disjoint cycles} \]

Zip-product:
[Bokal, 2005] Composing crossing-critical graphs...
Looking at vertex degrees

- [folklore] Infinite families of simple 3-connected crossing-critical graphs can have average degree in $(3, 6]$. (Lower bound by connectivity and graph minors, upper via Euler.)

1993 [Richter and Thomassen]: Are there infinite families of simple 5-regular crossing-critical graphs?
Looking at vertex degrees

- [folklore] Infinite families of simple 3-connected crossing-critical graphs can have average degree in $(3, 6)$.
 (Lower bound by connectivity and graph minors, upper via Euler.)

1993 [Richter and Thomassen]: Are there infinite families of simple 5-regular crossing-critical graphs?

2003 [Salazar]: Infinite families with avg. degree eq. to any rational in $[4, 6]$.

2003 [Pinontoan and Richter]: Extending to any rational in $(3.5, 6)$.
Looking at vertex degrees

- [folklore] **Infinite** families of simple 3-connected crossing-critical graphs can have average degree in $(3, 6]$. (Lower bound by connectivity and graph minors, upper via Euler.)

1993 [Richter and Thomassen]: Are there infinite families of simple 5-regular crossing-critical graphs?

2003 [Salazar]: Infinite families with avg. degree eq. to any rational in $(4, 6]$.

2003 [Pinontoan and Richter]: Extending to any rational in $(3.5, 6)$.

2006 [Bokal]: Extending to avg. degree eq. to any rational in $(3, 6)$.
Looking at vertex degrees

- [folklore] **Infinite** families of simple 3-connected crossing-critical graphs can have average degree in \((3, 6]\).

 (Lower bound by connectivity and graph minors, upper via Euler.)

1993 **[Richter and Thomassen]**: Are there infinite families of simple 5-regular crossing-critical graphs?

2003 **[Salazar]**: Infinite families with avg. degree eq. to any **rational** in \([4, 6]\).

2003 **[Pinontoan and Richter]**: Extending to any rational in \((3.5, 6]\).

2006 **[Bokal]**: Extending to avg. degree eq. to any **rational** in \((3, 6]\).

— — —

2006 **[Bokal]**: Are there **infinite** families of simple 3-connected crossing-critical graphs having arbitr. number of vertices of degrees **other than** 3, 4, 6?
Looking at vertex degrees

- [folklore] Infinite families of simple 3-connected crossing-critical graphs can have average degree in $(3, 6)$.
 (Lower bound by connectivity and graph minors, upper via Euler.)

1993 [Richter and Thomassen]: Are there infinite families of simple 5-regular crossing-critical graphs?

2003 [Salazar]: Infinite families with avg. degree eq. to any rational in $[4, 6]$.

2003 [Pinontoan and Richter]: Extending to any rational in $(3.5, 6)$.

2006 [Bokal]: Extending to avg. degree eq. to any rational in $(3, 6)$.

2006 [Bokal]: Are there infinite families of simple 3-connected crossing-critical graphs having arbitr. number of vertices of degrees other than 3, 4, 6?

2007 [PH]: YES for all even degrees (even in a very special instance).
Looking at vertex degrees

- [folklore] Infinite families of simple 3-connected crossing-critical graphs can have average degree in \((3, 6]\).
 (Lower bound by connectivity and graph minors, upper via Euler.)

1993 [Richter and Thomassen]: Are there infinite families of simple 5-regular crossing-critical graphs?

2003 [Salazar]: Infinite families with avg. degree eq. to any rational in \([4, 6)\).

2003 [Pinontoan and Richter]: Extending to any rational in \((3.5, 6)\).

2006 [Bokal]: Extending to avg. degree eq. to any rational in \((3, 6)\).

2006 [Bokal]: Are there infinite families of simple 3-connected crossing-critical graphs having arbitr. number of vertices of degrees other than 3, 4, 6?

2007 [PH]: YES for all even degrees (even in a very special instance).

- The case of odd degrees > 3 remains open...
2 Our “Belt” Construction

• Constructing simple 3-connected \textit{almost-planar} crossing-critical graphs (such that deleting \textit{one edge} leaves them planar).

• \textbf{Extending} the previous construction [PH, 2001] much further...
2 Our “Belt” Construction

- Constructing simple 3-connected *almost-planar* crossing-critical graphs (such that deleting one edge leaves them planar).
- Extending the previous construction [PH, 2001] much further...

Definition. Crossed k-belt graphs:

- Edge-disj. planar union $C_1 \cup \ldots \cup C_k$, with a 4-terminal “bridge”.
- Forming many disjoint “radial” paths, separating the bridge terminals.
- No vertex of degree > 4 on C_k, that is, $C_k \cap C_{k-2} = \emptyset$.
Getting high-degree vertices

- We start with a “crossed fence” from [PH 2001],
Getting high-degree vertices

- We start with a “crossed fence” from [PH 2001],

- The following modif. produce vertices of degrees $2k - 2$, $2k - 4$, …

— the resulting graphs are all crossed k-belt graphs.
Proposition 1. Let \(k \) be fixed. For every integer \(m \) there is a crossed \(k \)-belt graph which is simple 3-connected and which contains more than \(m \) vertices of each of even degrees \(\ell = 4, 6, 8, \ldots, 2k - 2 \).
Proposition 1. Let k be fixed. For every integer m there is a crossed k-belt graph which is simple 3-connected and which contains more than m vertices of each of even degrees $\ell = 4, 6, 8, \ldots, 2k - 2$.

Theorem 2. For $k \geq 3$, every crossed k-belt graph is k-crossing-critical.

Proof. By induction on k:

- $k = 1 \rightarrow$ a subdivision of nonplanar $K_{3,3}$ ($k = 2$ – a false statement),
 $k = 3$ — the base case follows from the $k = 1$ case.
Crossing-criticality

Proposition 1. Let k be fixed. For every integer m there is a crossed k-belt graph which is simple 3-connected and which contains more than m vertices of each of even degrees $\ell = 4, 6, 8, \ldots, 2k - 2$.

Theorem 2. For $k \geq 3$, every crossed k-belt graph is k-crossing-critical.

Proof. By induction on k:

- $k = 1 \rightarrow$ a subdivision of nonplanar $K_{3,3}$ ($k = 2$ – a false statement), $k = 3$ — the base case follows from the $k = 1$ case.

- If C_1 is crossed, then remove it, forming a crossed $(k - 1)$-belt graph, and continue.
Proposition 1. Let k be fixed. For every integer m there is a crossed k-belt graph which is simple 3-connected and which contains more than m vertices of each of even degrees $\ell = 4, 6, 8, \ldots, 2k - 2$.

Theorem 2. For $k \geq 3$, every crossed k-belt graph is k-crossing-critical.

Proof. By induction on k:

- $k = 1 \rightarrow$ a subdivision of nonplanar $K_{3,3}$ ($k = 2$ – a false statement), $k = 3$ — the base case follows from the $k = 1$ case.

- If C_1 is crossed, then remove it, forming a crossed $(k - 1)$-belt graph, and continue.

- If C_1 is not crossed, then it forms a face in the optimal drawing. Then the radial paths witness $2k - 2$ C_1-ears separating the bridge terminals on C_1, forcing too many crossings.
3 Average Degrees in $[4, 6)$

Theorem 3. For every odd $k > 3$ there are infinitely many simple 3-connected crossed k-belt graphs with the average degree equal to any rational value in the interval $[4, 6 - \frac{8}{k+1})$.
3 Average Degrees in $[4, 6)$

Theorem 3. For every odd $k > 3$ there are infinitely many simple 3-connected crossed k-belt graphs with the average degree equal to any rational value in the interval $[4, 6 - \frac{8}{k+1})$.

Proof. We start with the following belt, and apply suitably local splittings...
4 Final Remarks

- Is there a “nice” characterization of almost planar k-crossing-critical graphs? (Can we find it?)
4 Final Remarks

- Is there a “nice” characterization of almost planar k-crossing-critical graphs? (Can we find it?)

- Is it true that (almost?) every almost planar crossing-critical graph has an optimal drawing with all crossings on one edge?
4 Final Remarks

- Is there a “nice” characterization of almost planar k-crossing-critical graphs? (Can we find it?)

- Is it true that (almost?) every almost planar crossing-critical graph has an optimal drawing with all crossings on one edge?

 - This is false for non-critical almost planar graphs!
4 Final Remarks

- Is there a “nice” characterization of almost planar k-crossing-critical graphs? (Can we find it?)

- Is it true that (almost?) every almost planar crossing-critical graph has an optimal drawing with all crossings on one edge?
 - This is false for non-critical almost planar graphs!

- Can this research help to find a polynomial algorithm for exact crossing number of almost planar graphs?
4 Final Remarks

• Is there a “nice” characterization of almost planar k-crossing-critical graphs? (Can we find it?)

• Is it true that (almost?) every almost planar crossing-critical graph has an optimal drawing with all crossings on one edge?

 – This is false for non-critical almost planar graphs!

• Can this research help to find a polynomial algorithm for exact crossing number of almost planar graphs?

Thank you for your attention...
4 Final Remarks

• Is there a “nice” characterization of almost planar k-crossing-critical graphs? (Can we find it?)

• Is it true that (almost?) every almost planar crossing-critical graph has an optimal drawing with all crossings on one edge?

 – This is false for non-critical almost planar graphs!

• Can this research help to find a polynomial algorithm for exact crossing number of almost planar graphs?

Thank you for your attention...

Any solutions or counterexamples?