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Abstract. The crossing number of a graph is the least number of pairwise edge
crossings in a drawing of the graph in the plane. We provide an O(n log n) time
constant factor approximation algorithm for the crossing number of a graph of
bounded maximum degree which is “densely enough” embeddable in any fixed
orientable surface.

Our approach combines some known tools with a powerful new lower bound on
the crossing number of an embedded graph. This result extends previous results
that gave such approximations in particular cases of projective, toroidal or apex
graphs; it is a qualitative improvement over previously published algorithms that
constructed low-crossing-number drawings of embeddable graphs without giving
any approximation guarantees. No constant factor approximation algorithms for
the crossing number problem over comparably rich classes of graphs are known
to date.
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1 Introduction

The crossing number cr(G) of a graph G is the minimum number of pairwise edge crossings in
a drawing of G in the plane. Formally, a drawing of a graph G in some surface Σ is a mapping
of its vertex set V (G) into distinct points in Σ. Edges are mapped into curves in Σ between
the images of their endvertices and must not contain the image of any non-incident vertex.
To resolve ambiguity, we consider drawings of graphs such that no three edges intersect in
a common point which is not a vertex. Then a crossing is an intersection point of two edges
that is not a vertex. We refer to Section 2 for further definitions.

The crossing number arises in several research fields: E.g., it is a natural problem in
graph drawing and diagramming applications, and can be used in VLSI design to estimate
the required chip area [2]. It is of further interest in algorithm design, since graphs with
small crossing number or genus can be regarded to be “similar” to planar graphs and thus
potentially allow more efficient algorithms for various graph problems.

Although the crossing number has been studied for over 60 years, see [27] for an extensive
bibliography, surprisingly little is known about many of its central properties. Even the
crossing number of complete and complete bipartite graphs can only be conjectured [28, 15,
16, 25], even though they were the first questions asked in this context [26].

Algorithmically, we know that the problem of computing the crossing number is NP-
hard [11]. This holds true even for graphs of bounded degree; in fact, even for graphs with
maximum degree 3 [17]. On the other hand, it has been shown that the problem is fixed
parameter tractable: We can test whether a graph has a crossing number at most k in linear
time, when considering k fixed [13, 21]. While these approaches do currently not allow practi-
cal algorithms, there exist linear programming based exact algorithms that are promising for
“real-world” graphs arising in graph drawing applications [8]. Yet, computing exact crossing
numbers is in general extremely difficult and one usually has to resort to heuristics, see,
e.g., [1, 14].

In this paper, we are especially interested in crossing number approximations. It is un-
known whether the problem allows efficient approximations at all, even for bounded degree
graphs which are the focus for virtually all approximation approaches. The best known
polynomial algorithm for the crossing number of general graphs with bounded degree ap-
proximates the quantity |V (G)|+cr(G), not directly cr(G), within a factor of log3 |V (G)| [10].
Polynomial constant factor approximations of cr(G) are known only for much more restricted
graph classes with bounded degree, in particular for apex [6, 7] and near-planar [18, 5] graphs
on the one hand, and for projective [12] and toroidal [19] graphs on the other. An apex graphs
is a graph where one can remove one specific vertex, in order to obtain a planar graph. Note
that the complexity status for computing the crossing number of apex graphs, as well as for
the subclass of near-planar graphs (where the removal of a single edge suffices) is still open.

In this paper, we are going to extend these latter results to graphs G embeddable (i.e.,
drawable without any crossings) in an orientable surface of arbitrary (fixed) genus g. This
is by far the yet richest graph class allowing a fixed factor approximation. Unfortunately, as
we shall see in the following, the proving techniques used for toroidal or projective graphs
cannot be directly extended to higher surfaces.
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Consider a graph G embedded into some surface Σ. Böröczky, Pach and Tóth [3], later
improved by Djidjev and Vrt’o [9], presented an algorithm to compute a drawing of G in the
plane with few crossings, using the embedding in Σ as a starting point. The algorithm is
based on a simple idea: One iteratively “cuts and opens” handles of Σ, temporarily removing
the affected edges from G. By greedily trying to remove the fewest number of edges and
“cheaply re-inserting” them at the end, one obtains a drawing of the graph in the plane. The
above papers were able to obtain upper bounds for the number of crossings generated by
this approach. However, in order to get an approximation guarantee for such an algorithm,
one also has to provide a matching lower bound on cr(G), and this task requires a much
more careful consideration of the cutting process. Generally, obtaining such lower bounds
has always been the hardest task for all known crossing number approximations.

Algorithmically, our approximation procedure (Algorithm 3.1) is surprisingly simple, fol-
lowing the above idea of iteratively cutting “cheap” handles. Its analysis (Theorem 3.2)
already gives a qualitative improvement over the previously published results in terms of the
upper bound. Yet, proving a matching lower bound is by far harder and constitutes the main
new contribution of this paper (Theorem 4.2). To this ends, we have to introduce a set of
novel and sophisticated tools.

The next section will introduce some crucial concepts used throughout the paper. In
Section 3 we show the actual approximation algorithm, analyse its running time, and estimate
the number of crossings it generates. Section 4 then presents the central theoretical results
necessary to obtain a constant factor approximation guarantee. The proofs for the required
lower bounds are discussed in Section 5. Overall we obtain:

Theorem 1.1. Let G be a graph embeddable in an orientable surface of genus g ≥ 1 with
nonseparating dual edge-width at least 2g+2∆ where ∆ is the maximum degree of G. The
presented Algorithm 3.1 computes a drawing of G in the plane with at most 3·23g+2 ·∆2 ·cr(G)
crossings. Hence this is a constant factor approximation algorithm of the crossing number
cr(G) for bounded degree ∆ and bounded genus g. Its running time is O(n log n) where
n = |V (G)| + |E(G)| (n = |V (G)| when ∆ is bounded).

In this result we need the technical restriction that something called “nonseparating dual
edge-width” is large enough. While it is formally defined in the following section, one can
think of it as the requirement that the graph is embedded “densely enough” in the surface.
This restriction is necessary in the lower bound part of the proof, since even a planar graph
(i.e. of crossing number 0) can be embedded (non-densely, though) in higher surfaces. Finally,
Section 6 will discuss the dependency on this and other parameters in the overall algorithm,
and sketch possible extensions.

2 Definitions and Tools

Our terminology is based on Mohar–Thomassen [24]. Specifically, we deal with unoriented
multigraphs by default; so when speaking about a graph, we allow multiple edges or loops.
The vertex set of a graph G is denoted by V (G), the edge set by E(G), and the maximum
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degree by ∆(G). We denote by len(Q) the length (number of edges) of a path or a cycle Q. We
call a graph H a theta graph if H is formed by three pairwise internally disjoint paths with
common ends. Most of the time we shall deal with graphs that are embedded in some surface
Σ, i.e., drawn on Σ without edge crossings. If b(G) (as a point set in Σ) is an embedding of
G in Σ, then the arc-connected components of Σ\b(G) are called the faces of the embedding.

We need some basic notions of classical topology. A surface is a compact 2-manifold
without boundary. A closed curve on a surface is called a loop. Two loops α, β on a surface
Σ are freely homotopic if α can be continuously transformed to β on Σ. A loop α on Σ is
contractible if α is freely homotopic to a constant curve (α can be continuously deformed to
a single point), and it is separating if Σ \α is not arc-connected. A loop α on Σ is one-sided
if Σ \α has a connected boundary, and α is two-sided otherwise. A surface with no one-sided
loops is orientable.

By the surface classification theorem, all orientable surfaces are homeomorphic to some
Sg —a sphere with g added “handles” where g is the genus of the surface. Notice that if
α is an arbitrary nonseparating loop on Sg, then α always “cuts one handle” of Sg, up to
homeomorphism. In particular, the simplest nonorientable surface is the projective plane,
and the orientable surface of genus g = 1 (next to the sphere) is torus.

We will consider only connected cellular embeddings in surfaces, i.e. embeddings in which
every face is homeomorphic to an open disc. A cellular embedding of G on Σ is, up to
homeomorphism, uniquely determined by G and a rotation system of G (a system of cyclic
permutations of edges around each vertex), see [24, Section 4.1]. This is also the graph data
structure we shall use in our algorithm. Moreover, a cellular embedding of G determines the
surface Σ, and so we do not have to explicitly mention Σ with respect to G.

We denote by G∗ the topological dual of an embedded graph G; the vertices of the graph
G∗ are the faces of G and the edges of G∗ are the edge-adjacent pairs of faces of G. There
is a natural one-to-one correspondence between the edges of G and the edges of G∗, and
so, for arbitrary F ⊆ E(G), we denote by F ∗ the corresponding subset of edges of E(G∗).
Furthermore, in the rotation-system representation of an embedded graph G, it is easy to
enumerate the faces of G and hence the topological dual can be computed in linear time.

For our crossing-number problem, the input is an abstract graph G (though assumed to
be embeddable on some Σ), but our algorithm will work with an actual embedding of G on
Σ (although generally not unique, we can use any). The first step hence is to find such an
embedding:

Theorem 2.1 (Mohar [23]). For every surface Σ there is a linear time algorithm which,
for a given graph G, either finds an embedding of G on Σ or returns a subgraph of G that is
a subdivision of a “minimal obstacle” for Σ.

A crucial ingredient of our approach is a measure of “dual density of an embedding”.
Assuming an embedded graph G, the shortest length of a cycle in G that forms a noncon-
tractible (nonseparating) loop in the embedding, is called edge-width ew(G) (nonseparating
edge-width ewn(G), respectively). Note that the edge-width of a given embedding is efficiently
computable [24, Section 4.3]. Faster recent algorithms appeared, e.g., in [22].

3



Theorem 2.2 (Kutz [22]). Given a graph G embedded in an orientable surface, there
is an algorithm running in time O(n log n), where n = |V (G)| + |E(G)|, that computes
the nonseparating edge-width k = ewn(G) and finds a length-k nonseparating cycle in the
embedding G.

For a cycle C in a graph H, we call a path P ⊂ H a C-ear if the ends r, s of P belong to
C, but the rest of P is disjoint from C. We allow r = s, i.e., a C-ear can also be a cycle. If
H is embedded in an orientable surface, then the embedding of any cycle C ⊂ H is a two-
sided loop. A C-ear P is a C-switching ear if the first and the last edges of P (wrt. r, s) are
embedded on the opposite sides of C. Measuring the edge-width and the shortest switching-
ear length in the dual graph of input G will give us, later on, the key estimate of the crossing
number of G—see Theorem 4.2.

Since we will frequently deal with dual graphs in our arguments, we introduce several
conventions to assist readers’ understanding of the paper. When we add an adjective dual to
a graph term, we mean this term in the topological dual of the (currently considered) graph.
We will denote the faces of an embedded graph G in lowercase and treat them as vertices of
its dual G∗, and we will use small Greek letters to refer to subgraphs (cycles or paths) of G∗.
When there is no danger of confusion, we will not formally distinguish between a graph and
its embedding. In particular, if α ⊆ G∗ is a dual cycle, then α also refers to the loop on the
surface determined by the embedding G. Finally, we will denote by ewd(G) = ewn(G∗) the
nonseparating edge-width of the dual G∗ of G.

We finish this section with two simple and useful technical claims.

Lemma 2.3 (cf. [19, Lemma 3.1]). If ̺ is a nonseparating dual cycle in a nonplanar
embedded graph H of length len(̺) = ewd(H), then all dual ̺-switching ears in H have
length at least 1

2
ewd(H).

Proof. Seeking a contradiction, we suppose that there is a ̺-switching ear σ of length
< 1

2
ewd(H). The ends of σ on ̺ determine two dual subpaths ̺1, ̺2 ⊆ ̺ (with the same

ends as σ). Then both σ ∪ ̺1 and σ ∪ ̺2 are nonseparating loops (as witnessed by the other
of ̺1, ̺2), and len(̺1) ≤ 1

2
len(̺) up to symmetry. Hence len(σ ∪ ̺1) ≤ len(σ) + 1

2
len(̺) <

len(̺) = ewd(H), a contradiction.

For the second claim, we need to introduce a tool—cutting a surface embedding of a
graph G along a two-sided loop γ: Intuitively, this operation should remove all edges of
G intersected by γ (we assume γ avoids vertices) and add two new faces (to “cover up”
the handle cut by γ). Formally, assume an embedded graph G represented by its rotation
system, and a dual cycle γ ⊆ G∗. Notice that γ, as a surface loop, intersects exactly those
edges of G belonging to E∗(γ), i.e. the edges corresponding to E(γ) in duality. We say that
an embedded graph H results by cutting G along γ, denoted by H = G/γ, if V (H) = V (G),
E(H) = E(G) \ E∗(γ), and the rotations of edges around the vertices of H are the same as
those of G restricted to E(H).

Notice that the faces of H = G/γ are the same as those of G, except that the faces
in V (γ) vanish and two new faces c1, c2, called the γ-cut faces, are created. For each edge
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f ∈ E∗(γ), exactly one endvertex will become incident with c1 and the other endvertex
with c2 in H.

Lemma 2.4. Let H be a graph embedded in an orientable surface of genus ≥ 2, and ̺ be
a nonseparating dual cycle in H of length ewd(H). If H0 = H/̺ is obtained by cutting the
embedding H along ̺, then ewd(H0) ≥

1
2
ewd(H).

3 Drawing Algorithm (the Upper Bound)

Recall that we represent embedded graphs via a rotation system. The topological dual of
a graph is easily computable in this representation. We refer to the cyclic permutation of
edges incident with a vertex v in embedding H as to the H-rotation around v.

Algorithm 3.1 (Drawing a surface-embeddable graph in the plane). Given is a
nonplanar graph G embeddable in the orientable surface Sg of genus g.

I) We construct an embedding G1 of G in Sg using Theorem 2.1.

II) For i = 1, 2, . . . , g; we use Theorem 2.2 to compute, in the dual graph G∗
i , a nonsepa-

rating dual cycle γi of length ci = ewd(Gi).

We construct an embedding Gi+1 = Gi/γi by cutting Gi along γi. Notice that Gi+1 is
a spanning subgraph of Gi and Gi+1 has genus g − i.

III) Now, Gg+1 is a planar embedding. For any edge e ∈ F = E(G1) \ E(Gg+1) with ends
v1, v2, let re

j (j = 1, 2) be the face incident with vj in Gg+1 such that, if f1, f2 are
the two consecutive edges of re

j at vj, then e is between f1 and f2 in the G1-rotation
around vj. We compute R = {(re

1, r
e
2) : e ∈ F}.

For every (r1, r2) ∈ R we compute, using breadth-first search, a shortest dual path
π(r1, r2) between r1 and r2 in G∗

g+1. This can be done such that no two distinct paths
π(r1, r2), π(r′1, r

′
2) intersect more than once.

IV) Within Gg+1, we draw every edge e ∈ F “along” the dual path π = π(re
1, r

e
2) while

crossing the len(π) edges of Gg+1 that are dual to E(π).

We output the resulting drawing G̃ isomorphic to input G.

Theorem 3.2. Assume a graph G is embedded in the orientable surface Sg of genus g. Let
G = G1, G2, . . . , Gg+1 be the embedded graphs constructed in the iterations of Algorithm 3.1
where, for i = 1, . . . , g, the graph Gi+1 = Gi/γi has been obtained by cutting Gi along a
nonseparating dual cycle γi of length ci. Let ℓi be the length of a shortest dual path in G∗

i+1

between the two γi-cut faces.

a) The planar drawing G̃ of the graph G produced by Algorithm 3.1 has at most

3 ·
(

2g+1 − 2 − g
)

· max{ciℓi : i = 1, 2, . . . , g} crossings.

b) Algorithm 3.1 runs in time O(n log n) where n = |V (G)| + |E(G)|.
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Proof. (a) Let Fi = E(Gi)\E(Gi+1) be the set of edges cut by γi at step i. It is easy to prove
by induction that, for k ∈ {1, . . . , g} and any edge e ∈ Fk, len

(

π(re
1, r

e
2)

)

≤ ℓk+ℓk+1+· · ·+ℓg.
So, in step IV of the algorithm, every edge e ∈ Fk is routed across the plane graph Gg+1

at cost of len
(

π(re
1, r

e
2)

)

≤
∑g

j=k ℓj crossings. Given that |Fk| = ck, 2ℓk ≥ ck by Lemma 2.3,
and also counting all potential crossings between edges of Fk and of Fk ∪ Fk+1 ∪ · · · ∪ Fg,
we get—over all choices k ∈ {1, . . . , g}—the following upper bound on the total number of
crossings in the drawing G̃:

g
∑

k=1

ck ·

(

g
∑

j=k

(cj + ℓj)

)

≤

g
∑

k=1

ck ·

(

g
∑

j=k

3ℓj

)

= 3

g
∑

j=1

ℓj ·

(

j
∑

i=1

ci

)

By inductive application of Lemma 2.4, it is ci ≤ 2j−icj for all 1 ≤ i < j ≤ g, and so we
continue using M = max{ciℓi : i = 1, 2, . . . , g}.

3

g
∑

j=1

ℓj ·

(

j
∑

i=1

ci

)

≤ 3

g
∑

j=1

ℓjcj(2
j−1 + · · · + 21 + 20) = 3

g
∑

j=1

cjℓj(2
j − 1) ≤

≤ 3M · (21 + 22 + · · · + 2g − g) = 3(2g+1 − 2 − g) · M(1)

(b) Step I of Algorithm 3.1 takes time O(n), and the g iterations (g is a constant) in step
II take O(n log n) each. The set R in step III can be computed in time O(n), and since it is
easy to prove that |R| = O(2g), all paths π(r1, r2) are computed in time O(n) again assuming
constant g. Finally, step IV takes time O

(

n + cr(G̃)
)

which is O(n + M) for constant g by
(1). However, M = O

(

cr(G)
)

by Theorem 4.1, and cr(G) = O(n) in this case for constant
g, e.g. by [3]. Therefore, also step IV is finished in time O(n).

4 Approximation Guarantee (the Lower Bound)

In order to prove that Algorithm 3.1 approximates the optimum crossing number of the
input graph G, we have to provide a lower bound on cr(G) that “matches” Theorem 3.2.
The involved proof of this lower bound in Theorem 4.1 presents the main new mathematical
contribution of our paper.

Theorem 4.1. Assume the notation of Theorem 3.2. If ewd(G) ≥ 2g+2∆, then

cr(G) ≥ 2−2g−1 · ∆−2 · max{ciℓi : i = 1, 2, . . . , g} .

The first observation regarding Theorem 4.1 is that we can safely assume c1ℓ1 = max{ciℓi :
i = 1, . . . , g} for its proof: If max{ciℓi : i = 1, . . . , g} = cjℓj for 1 < j ≤ g, then the
embedding Gj ⊂ G1 = G (see Theorem 3.2 for the notation) is on a surface of genus
g′ = g + 1− j and satisfies ewd(Gj) ≥ 21−j

ewd(G1) ≥ 2g′+2∆ using Lemma 2.4. Hence it is
enough to prove an analogous statement for G′ = Gj and g′ instead of G and g. Therefore, we
can restate Theorem 4.1 as equivalent Theorem 4.2 below which is formulated independently
of Algorithm 3.1.
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Theorem 4.2. Let G be a graph embedded in the orientable surface of genus g ≥ 1 with
nonseparating dual edge-width c = ewd(G) ≥ 2g+2∆(G), and let γ be any nonseparating dual
cycle in G of length c. If the shortest γ-switching ear in G∗ has length ℓ, then the crossing
number of G satisfies

(2) cr(G) ≥ 2−2g−1 · ∆(G)−2 · cℓ .

The proof of Theorem 4.2 is, however, not straightforward and needs a prior introduction
of several new technical terms and claims (Section 5). To motivate these terms (and assist
readers’ understanding), we first provide an informal outline of our proof ideas. We remark
in advance that the coming arguments deal with an actual embedding of the graph G, while
such an embedding may not be unique; our proofs can then work with any such embedding.

Proving a lower bound on the crossing number of a graph is quite a difficult task in
general. In our previous [19, Theorem 3.3], i.e. in the toroidal case (g = 1) of Theorem 4.2,

we have found a max
(⌊

2
3

c
⌊∆/2⌋

⌋

,
⌈

ℓ
⌊∆/2⌋

⌉)

×
⌊

2
3

c
⌊∆/2⌋

⌋

toroidal grid (a Cartesian product of

two cycles) minor in G, and then used known lower bounds [20] on its crossing number to
derive our conclusions (cf. Lemma 5.1).

An extension from this base toroidal case (g = 1) to higher surfaces may seem straight-
forward at a first glance; we should, perhaps, continue cutting the “extra” surface handles
in the embedding G while preserving γ and (at least approximately) the parameters c and
ℓ, until we get to the toroidal case. Though this could have been considered as a process
similar to Algorithm 3.1, it is a fundamentally different task due to the different objectives.

Some deep theoretical problems associated with such a cutting process are, for instance,
that cutting a handle of G can drastically decrease the dual nonseparating edge-width on one
hand, or turn the loop γ into a separating one on the other hand (hence leaving us with no
usable toroidal grid minor). These problems cannot be easily overcome if we need to preserve
bounded maximum degree of the graphs. It moreover seems that neither known results on
“planarizing cycles”, nor the homotopy-related tools from [4], lead to an alternative solution.
That is why Theorem 4.2 is actually much harder than the toroidal case in [19].

To resolve the mentioned problems, we introduce a new parameter that is more general
than our “cℓ product” from Theorem 4.2. We consider two dual cycles α and β in em-
bedded G: α and β are in a one-leap position, adj. one-leaping, if the intersection α ∩ β
has exactly one connected component π (a dual path or vertex) such that α and β meet
transversally in π (intuitively, they “cross each other” on π). Notice that α, β are then both
nonseparating loops, and that α ∩ β may contain other components in which the cycles
meet non-transversally. We define the stretch of a non-planar embedded graph G, denoted
by stretch(G), as the smallest possible value of len(α) · len(β) over all pairs of dual cycles
α, β in G in a one-leap position.

The stretch parameter is easier to work with in proofs than “cℓ” since stretch is not tied
to a particular pair of loops. It can be easily shown that always stretch(G) ≤ 2cℓ, and that
cℓ ≤ stretch(G) if G embeds in the torus.
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It is relatively straightforward to give a lower bound on cr(G) for any fixed genus
g in terms of stretch(G), using successive cuts along shortest dual nonseparating cycles
(Lemmas 5.2 and 5.1). However, apart from the toroidal case, it can easily happen that
stretch(G) << cℓ. To overcome this complication (and to show that the stretch eventually
“becomes” Ω(cℓ) during the cutting process), we trace in our graphs a pair of rather artificial
objects (see in Lemma 5.4, a,b) which initially correspond to γ and its switching ear in G∗;
later on they “vanish” whenever the stretch of the cut-subgraph of G becomes large enough.
So, this approach finally leads to the claimed lower bound (2).

Finally, Theorem 4.2 implies Theorem 4.1 and, combining the latter with Theorem 3.2,
we get the main conclusion:

Corollary 4.3 (Theorem 1.1). Let an input graph G be embeddable in the orientable sur-
face of genus g ≥ 1 with dual edge-width ewd(G) ≥ 2g+2∆(G). Then Algorithm 3.1 outputs
a drawing of G in the plane with at most 3 · 23g+2 · ∆(G)2 · cr(G) crossings.

5 Lower Bound Proof

In this section, we give a formal proof of Theorem 4.2. As already mentioned, the central
notion of this proof is that of the stretch of an embedded graph. We now give three technical
claims describing its properties.

Lemma 5.1 (cf. Hliněný and Salazar [19]). Let G be a graph embedded in the torus
such that ewd(G) ≥ 8∆(G). Then cr(G) ≥ 1

8
∆(G)−2 · stretch(G).

Lemma 5.2. Let G be a graph embedded in an orientable surface of genus at least 2, and
̺ be a nonseparating dual cycle in G of length ewd(G) = len(̺). Denote by G0 = G/̺ the
embedding obtained by cutting G along ̺. Then stretch(G0) ≥

1
4
stretch(G).

Lemma 5.3. Let H be a graph embedded in an orientable surface of genus ≥ 2, and let
α, β ⊆ H∗ be a one-leaping pair of dual cycles gaining the stretch len(α) · len(β) of H such
that len(α) ≤ len(β). We denote by H0 = H/α the embedding obtained by cutting H along
α. Then ewd(H0) ≥

1
2
ewd(H).

The rest of the proof of Theorem 4.2 needs a further generalization of the concepts of
switching and leaping. We assume a graph H cellularly embedded in a surface Σ, and choose
a subgraph (not necessarily connected) D ⊆ H. The H-induced embedding D̃ of the graph
D is determined by the system of H-rotations around vertices of D restricted to E(D).
Intuitively, D̃ is obtained from the usual subembedding of D in Σ via replacing all non-
cellular faces with discs. Notice that D̃ has a separate surface for each connected component
of D.

We consider a dual subgraph δ ⊆ H∗, and its H∗-induced embedding δ̃. If δ̃ can be
face-bicoloured, then we say that δ is bipolar in H∗, and we associate one chosen facial
bicolouring of δ̃ with δ (notice that this bicolouring is not unique when δ is not connected).
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We will refer to the facial colours of δ̃ (white and black) as to the δ-polarities in H∗ (positive
and negative). More formally, let a halfedge be a pair 〈e, v〉 where e is an edge and v is one
of the two ends of e. For v ∈ V (δ) and e 6∈ E(δ), the halfedge 〈e, v〉 (“e at v”) has a positive
(negative) δ-polarity if the position of e in the H∗-rotation around v is between consecutive
edges of a white (black) δ̃-face.

Clearly, a dual cycle in any embedding is always bipolar. On the other hand, a bipolar
graph δ must be Eulerian. A δ-ear π is δ-polarity switching if the halfedges of π incident
with the ends of π are of distinct δ-polarities. If δ is a dual cycle, then being “δ-polarity
switching” is equivalent to being “δ-switching”.

We now consider a bipolar dual subgraph δ in H∗, and a (closed) dual walk ω ⊆ H∗. A
proper subwalk µ of ω is called a leap (of ω and δ) if µ belongs to the intersection δ ∩ ω,
neither the dual edge f0 preceding µ in ω nor the dual edge f1 succeeding µ in ω belong
to δ, and the halfedges of f0, f1 incident to µ are of distinct δ-polarities. We say that ω is
odd-leaping δ if the number of all proper subwalks of ω which are leaps is odd, and ω is
even-leaping δ otherwise. Notice that being “one-leaping” (Section 4) implies “odd-leaping”
in this new sense.

The core step of our inductive approach to Theorem 4.2 is the next claim. As outlined in
Section 4, the intuition behind the application of Lemma 5.4 is to suitably (by careful choice
of α in the lemma) “cut down” the embedding G to a toroidal one, while “preserving γ”
(actually represented by δ and δ0 in (a,a’) below), and also keeping the “switching distance”
(see (c,c’) below) sufficiently long. The conditions (b) and (b’) in Lemma 5.4 have purely
technical purpose.

Notice, for instance, that if (b) is true, then the embedding H is not planar (and so the
stretch of H is well defined): A closed walk odd-leaping a bipolar planar graph δ cannot
exist since plane δ equals its H∗-induced embedding δ̃, which means that δ is face-bicoloured,
too, and a simple parity argument then gives a contradiction. For a similar “parity reason”,
(b) implies that (c) a δ-polarity switching ear in H∗ must exist. Moreover, as we proceed in
the cutting process, nonplanarity implied by (b’) guarantees that we will eventually arrive
at the exceptional conclusion (d) len(β) ≥ h in Lemma 5.4.

Lemma 5.4. Let a graph H be embedded in an orientable surface, and assume

a) there is a bipolar dual subgraph δ in H∗,
b) there exists a closed walk in H∗ that is odd-leaping δ, and
c) the shortest δ-polarity switching ear in H∗ has length h.

Let α, β be a one-leaping pair of dual cycles in H∗ such that len(α) ≤ len(β) and stretch(H) =
len(α) · len(β). We denote by H0 = H/α the embedded subgraph of H obtained by cutting H
along α. Unless (d) len(β) ≥ h, the following hold

a’) there is a bipolar dual subgraph δ0 (“induced” by δ) in H∗
0 ,

b’) there exists a closed walk in H∗
0 that is odd-leaping δ0, and

c’) the shortest δ0-polarity switching ear in H∗
0 has length h0 ≥ h − 1

2
len(α).

9



We are finally ready to give the proof of our main theorem.

Proof of Theorem 4.2. Our proof applies induction based on Lemma 5.4. Notice that all
the conditions (a),(b),(c) of Lemma 5.4 are satisfied by the graph G = H, its bipolar dual
cycle γ = δ, and by h = ℓ. Precisely, we prove the following claim by induction on g:

(5.5) Let H1 be a graph embedded in an orientable surface of genus g, and h1 be an integer.
Assume that H = H1 either (i) satisfies the conditions (a),(b),(c) of Lemma 5.4 with
h = h1 and some δ, or (ii) g ≥ 1 and stretch(H1) ≥ h1 · ewd(H1). Then there exists a
subgraph T0 ⊆ H1 that embeds in the torus with ewd(T0) ≥ 21−g

ewd(H1), and T0 has
stretch(T0) ≥ 22−2g · h1 · ewd(H1).

If (5.5) is true, then the rest of the proof is easily finished. We set H1 = G and h1 = ℓ,
and hence immediately stretch(T0) ≥ 22−2gcℓ. Recalling c = ewd(G) ≥ 2g+2∆(G), we get
ewd(T0) ≥ 23∆(G), and so by Lemma 5.1,

cr(G) ≥ cr(T0) ≥
1

8
· ∆(T0)

−2 · 22−2g · cℓ ≥ 2−2g−1 · ∆(G)−2 · cℓ .

6 Concluding Remarks

It is a natural question, whether the bounds obtained above can be improved. Comparing our
bound with related results, the dependency on ∆(G)2 seems unavoidable. The exponential
dependency on g, on the other hand, is much more interesting—it pops up independently in
multiple places within the proof, and these occurrences seem unavoidable on a local scale,
when considering each inductive step independently. Yet, it is hard to construct an example
where the exponential decrease can actually be observed; it might be that a completely
different approach with a global view can reduce the dependency to some poly(g) factor, cf.
also [9].

It would be interesting to extend our approach also to non-orientable surfaces. While this
looks promisingly straightforward at a first glance, everything becomes much more difficult
due to the fact that a “cheapest” cut through an embedding may have three different forms:
a two-sided loop cutting a handle or an anti-handle, or a one-sided loop cutting a crosscap.
In particular, one has to consider projective, toroidal, and Klein-bottle grids together as the
base cases, and to go through many more cases in the (already complicated) cutting process.

Another interesting topic of further research is the role of the “density” requirement
ewd(G) ≥ 2g+2∆ in Theorem 4.2 or 1.1. On one hand, an assumption like this one is clearly
necessary for proving a lower bound on cr(G) of order Ω(cℓ) as in Theorem 4.2 (since planar
graphs can have “non-dense” cellular embeddings in higher surfaces). On the other hand,
if ewd(G) was low (constant in the case of bounded genus and degree), then one could
use a solution to the multiple-edge insertion problem, instead, to approximate cr(G) by [7].
Unfortunately, no polynomial time (though approximation) algorithm is currently known for
solving this multiple-edge insertion problem—unlike for the single edge and vertex insertion
problems [6].
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12. I. Gitler, P. Hliněný, J. Leanos, and G. Salazar, The crossing number of a projective
graph is quadratic in the face-width. Electr. J. of Combinatorics 15 (2008), #R46.

13. M. Grohe, Computing Crossing Numbers in Quadratic Time. J. Comput. Syst. Sci. 68
(2004), 285–302.

14. C. Gutwenger and P. Mutzel, An Experimental Study of Crossing Minimization Heuris-
tics, In Proc. GD ’03; LNCS 2912, Springer (2004), 13–24.

15. R.K. Guy, The Decline and Fall of Zarankiewicz’s Theorem, In: Proof Techniques in
Graph Theory, Proc. 2nd Ann Arbor Graph Theory Conference; Academic Press (1969),
63–69.

16. R.K. Guy, Crossing numbers of graphs, In: Proc. Graph Theory and Applications, LNM,
Springer (1972), 111–124.
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7 APPENDIX

Here we include additional proofs for all the claims in our paper.

7.1 Supplements for Section 2

Let H result by cutting an embedded graph G along γ. From a dual point of view, H∗ results
from G∗ by contracting the dual cycle γ into a single vertex, and then splitting it into c1

and c2, the two γ-cut faces. So every dual edge in E(H∗) has a naturally corresponding dual
edge in E(G∗), and for every dual subgraph σ ⊆ H∗ there is a unique dual graph σ̂ ⊆ G∗

(the lift of σ) induced by the edges corresponding to E(σ) in E(G∗).

Lemma 2.4. Let H be a graph embedded in an orientable surface of genus ≥ 2, and ̺ be
a nonseparating dual cycle in H of length ewd(H). If H0 = H/̺ is obtained by cutting the
embedding H along ̺, then ewd(H0) ≥

1
2
ewd(H).

Proof. We denote by r1, r2 the two ̺-cut faces of H0, in other words the new dual vertices
r1, r2 ∈ V (H∗

0 ) \V (H∗). Suppose that σ is a nonseparating cycle in H∗
0 of length ewd(H0). If

σ avoids both r1, r2, then its lift σ̂ in H∗ is a cycle again, and so ewd(H) ≤ len(σ) = ewd(H0).
If σ hits both r1, r2 and π ⊆ σ is one of the dual paths with the ends r1, r2, then the lift π̂ is
a ̺-switching ear in H∗ as can be seen from the definition. So ewd(H0) = len(σ) ≥ len(π̂) ≥
1
2
ewd(H) by Lemma 2.3.

Hence it remains to consider that σ, up to symmetry, hits r1 and avoids r2. Then its lift
σ̂ is a ̺-ear; if σ̂ itself is a cycle, then we are done as above. Otherwise, σ̂ ∪ ̺ ⊂ H∗ forms
a theta dual subgraph, and so there are exactly three dual cycles γ1, γ2, γ3 ⊆ σ̂ ∪ ̺. Loop σ
is nonseparating in the embedding surface of H/̺, so each of γ1, γ2, γ3 is nonseparating in
that of H, and hence len(γi) ≥ ewd(H) for i = 1, 2, 3. Since every edge of σ̂ ∪ ̺ is in two
of γ1, γ2, γ3, it is len(γ1) + len(γ2) + len(γ3) = 2 len(̺) + 2 len(σ̂) = 2 ewd(H) + 2 len(σ̂) and
len(γ1) + len(γ2) + len(γ3) ≥ 3 ewd(H), from which we get ewd(H0) = len(σ) = len(σ̂) ≥
1
2
ewd(H) again.

7.2 Supplements for Section 3

Proof of Theorem 3.2. We refer to the notation from Algorithm 3.1. The proof skips an
argument for the following claim: for k ∈ {1, . . . , g} and any edge e ∈ Fk, len

(

π(re
1, r

e
2)

)

≤
ℓk + ℓk+1 + · · · + ℓg.

Let the ends of e be v1v2. For the inductive argument, let se,i
j , j = 1, 2, denote the face

of Gi+1, k ≤ i ≤ g, defined analogously to re
j above. By induction on i, the dual distance

between se,i
1 and se,i

2 in G∗
i+1 is di(s

e,i
1 , se,i

2 ) ≤ ℓk + · · ·+ ℓi. This holds at equality for i = k by

the definition of ℓk. Considering step i + 1, we see that the dual distance between se,i+1
1

and se,i+1
2 may grow by at most ℓi+1 —the dual distance between the two γi+1-cut faces in

G∗
i+2. Finally, len

(

π(re
1, r

e
2)

)

= dg(s
e,g
1 , se,g

2 ).
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7.3 Supplements for Section 5

Lemma 7.2. If δ is a nonseparating dual cycle in an embedded graph G, and ε is a δ-
switching ear in G∗, then stretch(G) ≤ len(δ) ·

(

len(ε) + 1
2
len(δ)

)

.

Proof. The ends of ε partition δ into two paths δ1, δ2 ⊆ δ, and, up to symmetry, it is
len(δ1) ≤

1
2
len(δ). In a degenerate case, δ1 can be a single vertex. Since δ and ε∪ δ1 are dual

cycles in a one-leap position, we have stretch(G) ≤ len(δ) · (len(ε) + len(δ1)).

Lemma 5.1. Let G be a graph embedded in the torus such that ewd(G) ≥ 8∆(G). Then
cr(G) ≥ 1

8
∆(G)−2 · stretch(G).

Proof. Let γ and c, ℓ be defined as in Theorem 4.2, and λ be a γ-switching ear of length
ℓ in G∗. The result [19, Corollary 3.4] claims, under the assumptions that G is toroidal
and ewd(G) ≥ 8∆(G), the bound cr(G) ≥ 1

4
∆(G)−2 · cℓ. By Lemma 2.3 (̺ = γ), ℓ ≥ c

2
.

Hence by Lemma 7.2, stretch(G) ≤ c(ℓ + c
2
) ≤ 2cℓ, and it follows cr(G) ≥ 1

8
∆(G)−2 · 2cℓ ≥

1
8
∆(G)−2 · stretch(G).

Lemma 5.2. Let G be a graph embedded in an orientable surface of genus at least 2, and
̺ be a nonseparating dual cycle in G of length ewd(G) = len(̺). Denote by G0 = G/̺ the
embedding obtained by cutting G along ̺. Then stretch(G0) ≥

1
4
stretch(G).

Proof. We denote by r1, r2 the two dual vertices (the cut-faces in G0) of the cut ̺, and recall
the notion of a lift from Section 2. To prove the statement, we are going to give an upper
bound stretch(G) ≤ 4 stretch(G0). We assume that stretch(G0) = ab is gained by a pair of
dual one-leaping cycles α, β in G∗

0 such that a = len(α), b = len(β). Using Lemma 2.4 and
the fact that both α, β are nonseparating, we get

(3) a, b ≥ ewd(G0) ≥
1

2
ewd(G) =

1

2
len(̺).

We firstly suppose that V (α ∪ β) contains both the cut-faces r1, r2 (which are naturally
treated as vertices in G∗

0). Then there exists a path π ⊆ α ∪ β connecting r1 to r2 such that
len(π) ≤ 1

2
(a+ b). Clearly, its lift π̂ is a ̺-switching ear in G∗, and so by Lemma 7.2 and (3),

stretch(G) ≤ len(̺) · (len(π̂) +
1

2
len(̺)) ≤ len(̺) ·

1

2
(a + b + len(̺))

≤
1

2
(2ba + 2ab + 4ab) = 4 stretch(G0).

Secondly, we suppose that, up to symmetry, r2 6∈ V (α ∪ β) but possibly r1 ∈ V (α ∪ β).
For the lift α̂ in G∗ (which is a ̺-ear in the case r1 ∈ V (α)), we define ᾱ equal to α̂ if it is a
cycle, and otherwise ᾱ = α̂ ∪ ̺0 where ̺0 ⊆ ̺ is the shorter subpath with the same ends on
̺ as α̂. We define β̄ analogously. With the help of a simple case-analysis, we argue that ᾱ,
β̄ forms a one-leaping pair of dual cycles in G∗, and so again
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stretch(G) ≤ len(ᾱ) · len(β̄) ≤ (a +
1

2
len(̺)) · (b +

1

2
len(̺))

≤ (a + a) · (b + b) = 4 stretch(G0).

Lemma 5.3. Let H be a graph embedded in an orientable surface of genus ≥ 2, and let
α, β ⊆ H∗ be a one-leaping pair of dual cycles gaining the stretch len(α) · len(β) of H such
that len(α) ≤ len(β). We denote by H0 = H/α the embedding obtained by cutting H along
α. Then ewd(H0) ≥

1
2
ewd(H).

Proof. A 3-path condition of a property P says that if T is a theta graph, and two of the
three cycles of T do not possess P , then neither the third cycle does (cf. [24, Section 4.3]).
Our key observation at this point is:

(7.6) Given an embedded graph G and a fixed dual cycle γ ⊆ G∗, the dual cycles in G∗

satisfy the 3-path condition w.r.t. the property of being odd-leaping γ.

Let a dual theta graph τ ⊆ G∗ be formed by three paths τ = τ1 ∪ τ2 ∪ τ3 connecting
dual vertices s, t in G∗. We consider a connected component µ of γ ∩ τ . If µ = ∅ or µ = γ,
then the 3-path condition holds. Otherwise, µ is a dual path with ends m1,m2 in G∗. We
denote by f1, f2 the edges in E(γ) \ E(µ) incident with m1,m2, respectively, and by µ+ the
union of µ and the halfedges 〈f1,m1〉 and 〈f2,m2〉. We show that the number q of leaps of
µ+ summed over all three cycles in τ is always even.

If mi 6∈ {s, t} for i ∈ {1, 2}, then contracting the edge of µ incident to mi clearly does not
change the number q. Iteratively applying this argument, we can assume that finally either
(i) m1 = m2 (and possibly m1 ∈ {s, t}), or (ii) m1 = s, m2 = t, and µ = τ1. In case (i), µ+

leaps either none or two of the cycles of τ in the single vertex m1, and so q ∈ {0, 2}.
For i = 1, 2, 3, let the edge of τi incident to s be ei and the one incident to t be e′i. In

case (ii) we routinely investigate, up to symmetry, two cyclic permutations (e1, f1, e2, e3) and
(e1, e2, f1, e3) in the G∗-rotation around s, and all six cyclic permutations of e′1, e

′
2, e

′
3, f2 in

the G∗-rotation around t. In all twelve possibilities, we get q ∈ {0, 2} except the case of
(e1, e2, f1, e3), (e′1, e

′
2, f1, e

′
3) when µ+ leaps twice the cycle τ2 ∪ τ3 and q = 4.

Altogether, the number of leaps of γ summed over all three cycles in τ is even. Hence the
number of cycles of τ which are odd-leaping with γ is also even, and the 3-path condition
follows.

Using (7.6), we observe another useful claim:

(7.7) If ψ, ϕ is an odd-leaping pair of dual cycles in H∗, then stretch(H) ≤ len(ψ) · len(ϕ).

We choose the odd-leaping pair ψ, ϕ such that len(ψ) · len(ϕ) is minimized. Up to sym-
metry, len(ψ) ≤ len(ϕ). Since ψ ∩ ϕ 6= ∅, there is a set S = {ϕ1, . . . , ϕk} of pairwise
edge-disjoint ψ-ears in ϕ, such that E(ϕ1) ∪ · · · ∪ E(ϕk) = E(ϕ) \ E(ψ). By a simple parity
argument, there exists a ψ-switching ear in S. Hence if |S| = 1, then ψ, ϕ are one-leaping,
and the claim is trivial.
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If more than one ψ-ear in S is switching, then we pick, say, ϕ1 as the shorter of these. It
is len(ϕ1) ≤

1
2
len(ϕ), and so by Lemma 7.2, we get

stretch(H) ≤ len(ψ) ·

(

len(ϕ1) +
1

2
len(ψ)

)

≤ len(ψ) ·

(

1

2
len(ϕ) +

1

2
len(ϕ)

)

.

Finally, |S| > 1 and exactly one ψ-ear in S is switching, say ϕ1 again. We pick any
ϕj ∈ S, j > 1, with the ends u, v on ψ, and compare the distance d between u and v
on ψ with len(ϕj). If d > len(ϕj), then both cycles of ψ ∪ ϕj containing ϕj are shorter
than len(ψ), and one of them is odd-leaping with ϕ by (7.6). This contradicts our minimum
choice of ψ. Hence len(ϕj) ≥ d, and summing this inequalities over all j = 1, . . . , k we get
len(ϕ1) ≤ len(ϕ) − s, where s is the distance between the ends of ϕ1 on ψ. In the same way
as in Lemma 7.2, we thus get (7.7)

stretch(H) ≤ len(ψ) · (len(ϕ1) + s) ≤ len(ψ) · (len(ϕ) − s + s) .

Now we turn our attention to the statement of the lemma. Assume that σ is a nonsep-
arating dual cycle in H∗

0 of length ewd(H0). If its lift σ̂ is a cycle again, then ewd(H) ≤
len(σ̂) = ewd(H0) since σ̂ is nonseparating in H∗. Otherwise, σ̂ contains an α-ear π ⊆ σ̂
such that α ∪ π is a theta graph, and we denote by α1, α2 ⊆ α the subpaths divided by the
ends of π on α. By (7.6), exactly two of the cycles of α ∪ π are odd-leaping with β —one of
them is α and the other one, say, is α1 ∪ π. Then len(α1 ∪ π) ≥ len(α) using (7.7), and so
len(π) ≥ len(α2). Furthermore, α2 ∪ π is nonseparating in H∗, and we conclude

ewd(H) ≤ len(α2 ∪ π) ≤ 2 len(π) ≤ 2 len(σ̂) = 2 ewd(H0) .

Lemma 5.4. Let a graph H be embedded in an orientable surface, and assume

a) there is a bipolar dual subgraph δ in H∗,
b) there exists a closed walk in H∗ that is odd-leaping δ, and
c) the shortest δ-polarity switching ear in H∗ has length h.

Let α, β be a one-leaping pair of dual cycles in H∗ such that len(α) ≤ len(β) and stretch(H) =
len(α) · len(β). We denote by H0 = H/α the embedded subgraph of H obtained by cutting H
along α. Unless (d) len(β) ≥ h, the following hold

a’) there is a bipolar dual subgraph δ0 (“induced” by δ) in H∗
0 ,

b’) there exists a closed walk in H∗
0 that is odd-leaping δ0, and

c’) the shortest δ0-polarity switching ear in H∗
0 has length h0 ≥ h − 1

2
len(α).

Proof. Recall the definition of cutting an embedding H along a dual cycle α. The dual
graph (H/α)∗ is obtained from H∗ by successive contractions of all the dual edges in E(α)
into one dual vertex a, and then “splitting” a into two a1, a2 (giving the two α-cut faces of
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H/α). This “stepwise contraction” perspective of cutting turns out to be very useful in our
proof.

(a’) Let ε denote the subgraph of H∗
0 induced by the edges E(δ) \ E(α). If α = δ, then

clearly (d) len(β) ≥ h, and so ε can be considered nonempty further on. We show that we
can choose δ0 = ε unless α contains a δ-polarity switching ear. If the latter happened, then
it would mean (d) len(β) ≥ len(α) ≥ h by (c).

To avoid confusion with the operation of cutting, we denote by G ⊳ e the result of con-
tracting the edge e in a graph G. From the definition of bipolarity, one straightforwardly
derives, in our context:

(7.9) If f ∈ E(H∗) is not a loop-edge and not a δ-polarity switching ear, then the dual
graph H∗ ⊳ f (after contraction of f) is embedded in the same surface as H∗, and the
dual subgraph δ′ induced by E(δ) \ {f} in H∗ ⊳ f is bipolar again, where the δ′-polarities
are naturally inherited from δ-polarities.

Since we assume that α contains no δ-polarity switching ear, we can iteratively apply (7.9)
to all edges of α except some (last one) f1 ∈ E(α)\E(β). In this way we get an “intermediate”
embedding H∗

1 = H∗ ⊳
(

E(α)\{f1}
)

such that f1 is a nonseparating dual loop-edge in H∗
1 ,

and bipolar ε1 ⊆ H∗
1 is naturally derived from δ. Let a be the face of H1 that is the double

end of f1, and let the H∗
1 -rotation of edges around a be e1, . . . , ei, f1, e

′
1, . . . , e

′
j, f1. The last

step in the construction of H∗
0 (and of ε) is to remove f1 and split a into a1, a2 such that the

H∗
0 -rotation around a1 is e1, . . . , ei and around a2 is e′1, . . . , e

′
j.

Clearly, ε1 = ε stays bipolar in H∗
0 if a 6∈ V (ε1), and so we assume a ∈ V (ε1). Let ε̃

denote the H∗
0 -induced embedding of ε. Let ea and eb be the first and last element of the list

e1, . . . , ei, respectively, that are also edges of ε. Note that both ends of f1 in the H∗
1 -rotation

around a are between eb and ea. Then, eb, ea appear consecutively on a unique face x of
ε̃. We define a face x′ in ε̃ analogously at a2. Loosely speaking, x, x′ are the dual ε̃-faces
“inheriting” the two H∗

1 -faces incident with f1. If f1 6∈ E(ε1), then both halfedges of f1 are
of the same ε1-polarity by our assumption on α, say positive. Hence both ε̃-faces x and x′

will get (consistently) positive polarity, and so ε is bipolar in H∗
0 .

If, on the other hand, f1 ∈ E(ε1), then one of the two faces incident with f1 in the H∗
1 -

induced embedding ε̃1 of ε1 is positive, say the one containing edge(s) from e1, . . . , ei, and
the other one is negative. Then the ε̃-face x will be (consistently) positive and x′ negative.
Hence again, ε = δ0 is bipolar in H∗

0 .

(b’) As in (a’), we assume that α contains no δ-polarity switching ear. Similarly with β;
if there is a δ-polarity switching ear contained in β, then len(β) ≥ h.

The following counterpart of claim (7.9), formulated for any closed dual walk ψ in H∗,
is easily derived from our definition of a leap:

(7.10) Suppose f ∈ E(H∗) is not a loop-edge and not a δ-polarity switching ear, and
denote by δ′, ψ′ the dual subgraphs induced by E(δ) \ {f} and E(ψ) \ {f} in H∗ ⊳ f
(after contraction of f). Then the number of leaps of δ′ and ψ′ in H∗ ⊳ f is the same as
the number of leaps of δ and ψ in H∗, with an exception when f ∈ E(ψ) \E(δ) and both
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ends of f are incident with leaps of δ and ψ in H∗—in this case the two leaps vanish in
H∗ ⊳ f .

We proceed in the same way as in (a’), and use the same notation H∗
1 , f1, a, ε1, etc., as

in (a’). Let ω be a dual closed walk in H∗ odd-leaping δ, and ω1, β1 denote the dual closed
walks in H∗

1 induced by E(ω)∩E(H∗
1 ) and E(β)∩E(H∗

1 ). By iterative application of (7.10)
to all edges in E(α) \ {f1}, we get that the parity of leaping between δ and ω (δ and β) in
H∗ is the same as that between ε1 and ω1 (ε1 and β1) in H∗

1 . Hence ω1 is odd-leaping ε1,
and β1 is even-leaping ε1, since β contains no δ-polarity switching ear in H∗ and so β is not
odd-leaping δ.

We note that a ∈ V (β1) since α intersects β, and recall f1 6∈ E(β). If f1 ∈ E(ω), then we
moreover remove f1 from ω1 which does not change the parity of leaping between ε1 and ω1.
We say that the dual walk ω1 passes through a in H∗

1 if one edge of ω1 is from e1, . . . , ei and
the next edge of ω1 is among e′1, . . . , e

′
j, or vice versa. Every time ω1 passes through a, we

replace this pass by one iteration of the cycle β1. The resulting closed dual walk ω2 in H∗
1

(which does not pass through a) is again odd-leaping ε1 since β1 is even-leaping ε1. Then ω0

which is induced by E(ω2) in the graph H∗
0 is a closed dual walk odd-leaping ε = δ0.

(c’) Let σ be a δ0-polarity switching ear in H∗
0 of length h0. If V (σ) contains both α-cut

faces a1, a2, then the lift ν̂ of a subpath ν ⊆ σ between a1 and a2 is a δ-polarity switching
ear, and hence (c) h ≤ len(ν̂) ≤ h0. Otherwise, the lift σ̂ in H∗ is an (α ∪ δ)-ear which
means that, for some subpath π ⊆ α of length at most 1

2
len(α) (possibly empty), σ̂ ∪ π

is a δ-ear. Since σ is δ0-polarity switching in H∗
0 , and the δ0-polarities are inherited from

those of δ in H∗ by (a’, 7.9), we conclude that σ̂ ∪ π is a δ-polarity switching ear. Therefore,
h ≤ len(σ̂ ∪ π) ≤ h0 + 1

2
len(α) as claimed.

Proof of Theorem 4.2. It remains to finish proof of the following claim:

(5.5) Let H1 be a graph embedded in an orientable surface of genus g, and h1 be an integer.
Assume that H = H1 either (i) satisfies the conditions (a),(b),(c) of Lemma 5.4 with
h = h1 and some δ, or (ii) g ≥ 1 and stretch(H1) ≥ h1 · ewd(H1). Then there exists a
subgraph T0 ⊆ H1 that embeds in the torus with ewd(T0) ≥ 21−g

ewd(H1), and T0 has
stretch(T0) ≥ 22−2g · h1 · ewd(H1).

We first consider that the assumption (i) is true, and apply Lemma 5.4 to H1 and h1.
Notice that the condition (b) implies that g ≥ 1, and hence no explicit assumption on g
is needed in this part. If the exceptional case len(β) ≥ h1 happens, then stretch(H1) =
len(α) · len(β) ≥ ewd(H1) · h1, and hence the assumption (ii) is also true. See below.

Otherwise, the new embedded graph H0 = H1/α has genus g − 1, and H0 satisfies the
conditions of Lemma 5.4 (implying g − 1 ≥ 1 again) with

h0 = h ≥ h1 −
1

2
len(α) ≥ h1 −

1

2
len(β) ≥

1

2
h1.

By inductive application of (5.5) to H1 = H0 and h1 = h0 in genus g − 1, we get a toroidal
graph T0 ⊆ H0 ⊆ H1 that suits our needs. Using Lemma 5.3, we have

ewd(T0) ≥ 21−(g−1) · ewd(H0) = 21−g · 2 ewd(H0) ≥ 21−g · ewd(H1),

18



and similarly,

stretch(T0) ≥ 22−2(g−1) · h0 · ewd(H0) = 22−2g · 2h0 · 2ewd(H0)

≥ 22−2g · h1 · ewd(H1).

Secondly, we consider that the assumption (ii) is true. If g = 1 (the base case), then we are
done. Otherwise, we define H0 = H1/̺ as the embedded graph of genus g − 1 obtained from
H1 by cutting along some nonseparating dual cycle ̺ of length ewd(H1). The conclusions
then straightforwardly follow from Lemmas 2.4 and 5.2, and the inductive assumption (ii)
for H0 and 1

2
h1.
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