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Abstract. Crossing minimization is one of the most challenging algo-
rithmic problems in topological graph theory, with strong ties to graph
drawing applications. Despite a long history of intensive research, no
practical “good” algorithm for crossing minimization is known (that is
hardly surprising, since the problem itself is NP-complete). Even more
surprising is how little we know about a seemingly simple particular pro-
blem: to minimize the number of crossings in an almost planar graph,
that is, a graph with an edge whose removal leaves a planar graph. This
problem is in turn a building block in an “edge insertion” heuristic for
crossing minimization. In this paper we prove a constant factor approx-
imation algorithm for the crossing number of almost planar graphs with
bounded degree. On the other hand, we demonstrate nontriviality of the
crossing minimization problem on almost planar graphs by exhibiting
several examples, among them new families of crossing critical graphs
which are almost planar and projective.
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1 Introduction

We assume that the reader is familiar with the standard notation of terminology
of graph theory, and especially with topological graphs, see [11]. In this paper
we consider finite graphs, with multiple edges allowed.

The crossing number cr(G) of a graph G is the minimum number of pairwise
edge crossings in a drawing of G in the plane (thus, a graph is planar if and only
if its crossing number is 0). A drawing of G with cr(G) crossings is (crossing-)
optimal. Crossing number problems were introduced by Turán, whose work in
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a brick factory during the Second World War led him to inquire about the
crossing number of the complete bipartite graphsKm,n. It is remarkable that this
long-standing particular question is still open. Not surprisingly, exact crossing
numbers are in general very difficult to compute.

Nowadays, computing crossing numbers has important applications in VLSI
design, and, naturally, in graph drawing. The algorithmic problem of crossing
minimization is given as follows:

Input: A (multi)graph G and an integer k.
Question: Is cr(G) ≤ k ? (Possibly: if so, find an optimal drawing.)

The problem is in NP since one could guess the optimal drawing, replace the
crossings in it with new (degree 4, subdividing) vertices, and verify planarity of
the resulting graph. It has been proved by Garey and Johnson [4] that crossing
minimization is NP-complete if k is a part of the input. The same assertion has
been proved true later by the first author [10] both for cubic graphs and for
the minor-monotone version (cf. [1]) of crossing number. An important, stub-
born open problem is to determine whether the crossing number of graphs with
bounded tree-width can be computed in polynomial time.

On the positive side, a surprising result from Grohe states that the crossing
number is an FPT parameter.

Theorem 1.1 (Grohe [6]). One can decide whether cr(G) ≤ k for an n-vertex
graph G in time O

(
f(k) · n2

)
.

Grohe’s algorithm is the only efficient algorithm (given fixed k) known so far for
computing exact crossing numbers. Unfortunately, this algorithm is not usable
in practice, not even for relatively small values of k, since f is double exponential
in k and, moreover, the “hidden constants” are very large.

Regarding approximability results, the best result known to date is a (poly-
nomial time) log3 n approximation algorithm by Even, Guha and Schieber [3].
Constant factor approximation algorithms are known only for particular families
of graphs, such as projective graphs with bounded degree [5].

Our paper brings two new main results to the theory of crossing numbers
of almost planar graphs: First, Theorem 2.2 proves that a known heuristic for
crossing minimization of an almost planar graph G+ e — take a suitable planar
embedding of G and insert e to it — is a provably good approximation on
graphs of bounded degrees. Second (on the negative side), Theorem 3.4 brings
new rich families of k-crossing-critical graphs which are both almost planar and
projective, that is, as close to planarity as one can reasonably imagine.

2 Approximating the crossing number of
bounded–degree almost planar graphs

Currently, it seems that the best known general–purpose practical heuristic ap-
proach to crossing minimization on a graph G is the following: First, delete from
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G some (small set of) edges F , so that G′ = G − F is planar. Then, take an
edge f ∈ F and a suitable planar embedding of G′, and find a way of insert-
ing f back to the drawing of G′ with the smallest number of crossings (using a
shortest-path algorithm on the topological dual of G′). After that, create a new
graph G′′ from G′ + f by replacing the crossings with new vertices, and iterate
the process with G′′ and F \ {f}.

This heuristic algorithm outlines the following interesting subproblem on
almost-planar graphs (recall that a graph is almost planar if it has an edge
whose removal leaves a planar graph), hereafter called the one-edge crossing
minimization:

Input: A planar graph G and two nonadjacent vertices u, v of G.
Problem: Find an optimal drawing of G+uv (i.e. G plus the edge uv), that is,

a drawing with the minimum number of crossings.

Although we firmly believe that computing the crossing number of an almost
planar graph cannot be an NP–hard problem, all our efforts to get a polynomial
time algorithm failed (even for graphs with bounded degrees). Thus we moved
on to investigate whether such a crossing number can be approximated by a
polynomial time algorithm. Our aim in this section is to show the existence of
such an approximation algorithm, for graphs with bounded degrees.

Attempts to solve the one-edge crossing minimization problem, in turn, have
brought a closely related subproblem with the same input, hereafter called the
one-edge bridging minimization for distinction. This modification asks for a pla-
nar embedding of G such that inserting the edge uv to it yields the minimum
possible number of crossings. Let br(G, uv) denote the minimum number of cross-
ings in the bridging minimization problem.

The one-edge bridging minimization problem has been completely solved,
giving a linear-time optimal algorithm for it, by Gutwenger, Mutzel and
Weiskircher [7, 8]. As they observe, that algorithm does not necessarily yield
an optimal solution to the crossing minimization problem, as the counterexam-
ple at the end of [8] (thereby attributed to G. Farr) shows. This is summarized
in the following statement.

Proposition 2.1. For each k > 2 there is a planar graph G, and vertices u, v,
such that cr(G+ uv) = 2, but br(G, uv) = k.

It is interesting to mention that this was asked as an open question in the
earlier conference version [7]. We have independently found a somewhat simpler
counterexample, which is (for k = 5) illustrated in Fig. 1.

We note that both Farr’s construction and our example make essential use
of vertices of large degree (of order at least 2k). It is thus natural to ask whether
large degree vertices are an essential part of any such examples. Our following
result settles this question — large degree vertices are indeed unavoidable.

Theorem 2.2. Suppose that G is a planar graph with maximum degree ∆, and
let u, v be nonadjacent vertices of G. Then the one-edge bridging minimization
problem on G and uv has an optimal solution with br(G, uv) ≤ ∆ · cr(G+ uv).

3



s

s

s

ss

s s

s s

s

s s

s

s s s

u v

s

s

s

s s

s s

s s

s

s s

s

s s s

uv

Fig. 1. A counterexample showing that a solution to one-edge bridging minimization
(left, dashed edge uv) can be arbitrarily far from the crossing number (right). The
shadow area stands for a sufficiently dense planar part.

We prove the theorem later in this section, using further Lemma 2.4. Our
statement has the following nice consequence:

Corollary 2.3. There is a polynomial time approximation algorithm for com-
puting the crossing number of an almost planar graph with bounded degrees.

Proof. Let G be an almost planar graph with maximum degree ∆. Apply any
efficient planarity algorithm to find an edge e of G such that G − e is planar.
Then apply the linear time algorithm for one-edge bridging minimization from [8]
to obtain a planar embedding of G − e such that inserting e into it yields the
minimum possible number of crossings, say k. Obviously cr(G) ≤ k, and it follows
from Theorem 2.2 that k/∆ ≤ cr(G).

If Ψ, Ψ ′ are embeddings of the same graph G, then Ψ ′ is a mirror embedding
of Ψ if there is an orientation reversing homeomorphism taking Ψ to Ψ ′.

Suppose that G has a 2–cut {x, y}, and let G1, G2 be subgraphs of G such
that G is the sum of G1 and G2 along x and y (that is, G1 and G2 are edge-
disjoint and share only x and y, and G = G1 ∪G2). A (Whitney) flipping at x, y
is a re-embedding of G such that the embedding of G2 is unchanged and the
embedding of G1 is a mirror of the original embedding. We say that G1, G2 are
the sides of the flipping. Any two (combinatorial) embeddings of a 2-connected
planar graph can be transformed to each other by a sequence of flippings. We
call a flipping prime if one of G1 or G2 has no cut-vertex separating x from y.
Obviously, every flipping can be decomposed into prime flippings.

Lemma 2.4. Suppose H is a connected plane graph (i.e. actually embedded in
the plane), and e, f are two edges not belonging to H but connecting vertices of
H, such that H + f is a planar graph. If e can be drawn in H with ` crossings,
then there is a planar embedding of H + f in which e can be drawn with at most
`+ 2 · b∆(H)/2c crossings.

It is worth noting that the statement may be false if H is disconnected and
e, f join vertices from two distinct components.
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Fig. 2. An example of a planar graph in which four flippings are necessary before the
edge f (with endpoints s and t) can be embedded in without crossings.

Proof. First we assume that H is 2-connected. Consider a sequence of flippings
which turn H into an embedding H ′ such that H ′+f is plane (although we talk
about a sequence, the order of the flippings actually does not matter to us). As
noted above, we may assume the flippings under consideration are prime. Note
that each of the sides of any relevant flipping contains one endpoint of f . We
naturally order by inclusion the set of all the sides (of all the relevant flippings)
containing an end s of f , say as S1 ⊂ S2 ⊂ . . . ⊂ Sm (see also Fig. 2). Let xi, yi
be the cut-vertices at which the flipping involving Si occurs.

Observe further that it is enough to consider those flippings that have exactly
one endpoint of e on each side as well. (If there is no such flipping, then e can
be drawn with the same number of crossings in plane H ′ + f as in H itself.)
Let i, 1 ≤ i ≤ m, be the smallest index such that Si contains an endpoint of e.
Thus, no endpoint of e is in Si−1 if i > 1, and exactly one endpoint u of e is
in Si. After we apply the flippings of S1, . . . , Si−1, the vertex s has to appear on
the unbounded face of Si due to planarity of H + f (note that those flippings
do not affect the drawing or number of crossings on the edge e). We look at the
“half-edge” e0 ⊂ e from the end u till reaching the unbounded face of Si (for this
moment we regard the edge e as a topological object in the drawing H + e): We
extend the curve e0 to e1 so that its loose end appears in a close neighbourhood
of the vertex s on the unbounded face of Si, which takes only at most bdH(xi)/2c
or bdH(yi)/2c additional crossings on e1 when passing by either vertex xi or yi,
respectively. (See Fig. 3.)

A symmetric argument can be simultaneously used to argue that the other
“half-edge” e′0 ⊂ e from the end v of the edge e = uv can be redrawn as e′1
such that its loose end appears in a close neighbourhood of the endpoint t of the
edge f . Then we apply the remaining flippings and embed the edge f into H ′.
Finally, we join the loose ends of e1 and e′1 together along the (uncrossed) edge
f in H ′ + f , producing no additional crossing with f since we have had above
a choice of redrawing of e1 either by xi or yi. In this way we get a drawing of e
inside the plane graph H ′ + f with at most 2 · b∆(H)/2c additional crossings.
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Fig. 3. An illustration of the proof of Lemma 2.4.

At last we have to consider connected H which is not 2-connected. Although
all deep arguments have been used already above, some boring technical details
are still necessary, and we only sketch them here for simplicity. Imagine H de-
composed into blocks. If the decomposition contains a leaf block not incident
with e, f , then we may simply delete it. If the decomposition contains a leaf
block incident with f but not with e, then we may contract this block into one
vertex without changing our problem. If the decomposition contains a leaf block
incident with e but not with f , then similarly we may contract this block into
one vertex and just make a note of the number of crossings e had with this block.

After processing the above reductions, we either arrive at a 2-connected
graph, or we get a graph with precisely two leaf blocks B1, B2, both incident
with e and f . Then we adapt the above “half-edge” argument to this situation:
We redraw the half-curve of e from B1 so that its loose end appears in a close
neighbourhood of the cut-vertex b1 of the block B1, in the unbounded face. Sym-
metrically, we redraw the half-curve of e from B2 so that its loose end appears in
a close neighbourhood of the cut-vertex b2 of B2. Finally we join the two halves
of e together in the unbounded face. This again costs at most 2 · b∆(H)/2c
additional crossings.

Having the previous lemma at hand, it is easy to finish the proof of Theo-
rem 2.2. We actually prove a stronger statement (indeed, to see that Theorem 2.2
follows from Lemma 2.5, it suffices to note that m ≤ cr(G+ uv)− ` ).

Lemma 2.5. Suppose that G is a planar graph with maximum degree ∆, and
let u, v be nonadjacent vertices of G. If there is a crossing-optimal drawing of
G + uv such that the edge uv has ` crossings, and removing m edges from this
drawing of G makes it plane, then br(G, uv) ≤ `+ 2b∆/2cm.

Proof. Let F be a set of edges of G such that G′ = G−F is plane and |F | = m.
Obviously, for a crossing-optimal drawing G+ uv and minimal F , the graph G′

is connected. Let F = {f1, . . . , fm}. For i = 1, 2, . . . ,m, we apply Lemma 2.4
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for H = G′ + f1 . . .+ fi−1 and f = fi, e = uv, and continue with the resulting
embedding of H + f in the next iteration until i = m.

Remark. One may also consider an analogous k-edge crossing minimization
problem for fixed k > 1. Although the related k-edge bridging minimization
problem [2, Problem 29] seems to have no efficient solution yet; if that is even-
tually found, then similar arguments could be used to prove it provides a good
approximation for crossing minimization in the case of bounded degrees.

3 Projective almost planar graphs and
crossing-critical graphs

Almost planar graphs are interesting both theoretically and practically. Although
it is trivial to construct almost planar graphs with arbitrarily large crossing
numbers (a large grid plus an edge joining vertices far apart from each other),
a strong objection to such examples is that that the graph thus obtained is, in
a way, not as close to being planar as it could be. Indeed, such a graph would
have Euler genus 0 (since it is toroidal), thus being one step further away from
planar than another large, interesting family, namely the collection of graphs
with Euler genus 1. Recall that a graph has Euler genus 1 if and only if it is
projective, that is, embeddable in the projective plane (equivalently, embeddable
in the Möbius band).

Our aim in this section is to make several remarks on the richness of projective
almost planar graphs. In our own view, this is the first step in a systematic
program to understanding almost planar graphs: as we observed above, among
almost planar graphs, projective graphs are arguably the simplest ones. We first
observe that almost planar projective graphs can have arbitrary crossing number,
and yet be strongly connected and have a small number of vertices (especially
when compared to the number of vertices in the “grid example”).

Proposition 3.1. For every k, there is a simple 4-connected graph on 2k + 4
vertices which is almost planar and projective, and whose crossing number is k.

s

s

s

s

s

s

s s

Fig. 4. The graph F2 in the proof of Lemma 3.1 – a double-wheel of length 6 with an
extra chord.
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Proof. Let Dm denote the double-wheel with the rim circuit of length m, and let
Fk be the graph obtained from D2k+2 by joining one pair of opposite vertices on
the rim circuit with edge f . This graph is projective since one may use a “Möbius
twist” applied to f and k consecutive spokes of one of the wheels (between the
ends of f) to embed it.

By an easy induction on k we show cr(Fk) = k. For k = 1, Fk is a subdi-
vision of K5, and so this is true. Again an argument with nonplanarity of K5-
subdivisions in Fk shows that in any drawing of Fk there has to be a length-2
path between the centers of the wheels that is crossed. Hence we remove the edges
of this path and an opposite path (saving 1 crossing), and apply the inductive
assumption for the resulting subdivision of Fk−1.

If we admit the possibility of multiple edges, analogous ideas can be used to
find even smaller graphs with similar properties.

Proposition 3.2. For every `, there is a graph with 4`+ 6 edges which is both
almost planar and projective, and whose crossing number is `.

Proof. This graph (C`+2 ⊕K`
2) is obtained from the disjoint union of C`+2 and

` parallel edges K`
2 by adding all edges between them. (Notice that this graph is

actually `-crossing-critical, but since it is not simple, this does not make a “good”
crossing-critical family.) The proof is very similar to that of Proposition 3.1.

If, moreover, we bound the maximal degree, we observe the following.

Proposition 3.3. Suppose a graph G is almost planar and projective, and the
maximum degree of G is bounded. Then the crossing number of G is bounded as
well, and so it can be computed in time O(n2).

Proof. According to [12], any projective embedding of an almost planar graph G
(more generally of an apex graph) has “face-width at most two”. That precisely
means the embedding admits a closed noncontractible curve intersecting G just
in two vertices u, v. Cutting the projective plane along this curve, one gets a
planar embedding with two copies of u and two of v on the unbounded face. It
is clearly possible to pairwise identify those two copies of u and those of v, with
an introduction of bdG(u)/2c · bdG(v)/2c crossings. Hence cr(G) is bounded if
the degrees are bounded, and we may use Theorem 1.1.

We finally show that almost planar projective graphs are rich enough to
provide nontrivial examples of crossing-critical graphs. Recall that a graph G
is k-crossing-critical if cr(G) ≥ k but cr(G − e) < k for all edges e ∈ E(G).
Crossing-critical graphs are of great importance in the theory of crossing num-
bers, for them giving an insight into the structural properties that force large
crossing numbers. (Notice that, in any graph of crossing number k, by successive
deleting of suitable edges we always find a k-crossing-critical subgraph. Hence
if a graph class contains a rich subclass of crossing-critical graphs, then the
crossing-minimization problem is likely not trivial on that class.)
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A rich family of almost planar simple 3-connected k-crossing critical graphs
for every k ≥ 3 has been constructed by the first author in [9]. Looking at our
second restriction, the family of [9] is not projective, but we have succeeded in
modifying that construction to obtain the following.

Theorem 3.4. For every k ≥ 3, there is an infinite family of simple 3-connected
k-crossing critical graphs which are almost planar and projective.
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Fig. 5. An illustration of a k-belt graph, k = 6 here. The left- and right-hand sides
close together as on a cylinder.

The construction of graphs in Theorem 3.4 is illustrated in Fig. 5, and we
call them k-belt graphs. Formally for k ≥ 1, a graph G with distinguished three
vertices x, y, z is a k-belt graph if the following are satisfied:

– G is simple of minimum degree 3 if k > 2.
– B = G − {x, y} is formed as an edge-disjoint union of k cycles sharing the

vertex z. These cycles are denoted by C1, C2, . . . , Ck from top to bottom —
referring the picture in Fig. 6 left.

– The neighbourhood of z in B looks exactly as depicted in Fig. 5. The neigh-
bourhoods of other vertices of B that are not adjacent to z have all “square-
grid” structure (with a small exception at C1 and Ck).

– There are two special vertices x1, x2 ∈ V (C1) \ V (C2) adjacent both to x in
G, such that x1 is adjacent to z while the distance of x2 to z is at least 3.
Another two special vertices y1, y2 ∈ V (Ck) \V (Ck−1) adjacent both to y in
G are defined symmetrically around z. Moreover, in the subgraph B − z, it
holds that x1 is farther to x2 than to y2, and y1 is farther to y2 than to x2.
(To better understand this condition, check that it implies the length of C1

is at least k + 6.)
– xy is an edge in G. (Notice that G− xy is a planar graph.)

We start with some straightforward statements about G (see again Fig. 5).
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Fig. 6. Notation in k-belt graphs: (left) the cycles C1 and Ck; (right) the cycle C′1,
vertices z, z1, z2, and dotted path P2.

Lemma 3.5. If G is a k-belt graph, k ≥ 1, then
a) G is almost planar, projective, and simple 3-connected if k ≥ 3,
b) cr(G) ≥ k but cr(G− e) < k for all e ∈ E(G).

To complete the proof of Theorem 3.4, it now remains to argue why a k-belt
graph cannot be drawn with less than k crossings. For further arguments, we
denote by C ′1 the cycle in B obtained from C1 by deleting x1 and using instead
the edge from z to the other neighbour of x1 (Fig. 6 right). The following is easy
to see from the definition of a k-belt graph.

Lemma 3.6. Suppose G is a k-belt graph, k ≥ 3, and there is an optimal draw-
ing of G with ` crossings such that the cycle C ′1 is crossed. Let G′ be the subgraph
formed by the edges

(
E(G) \E(C ′1)

)
∪{x2x

′
2}, where x′2 is one of the neighbours

of x2 in C ′1 such that x2x
′
2 is not the only crossed edge of C ′1. Then G′ is a

subdivision of a (k − 1)-belt graph, and cr(G′) ≤ `− 1.

In the opposite situation, i.e. when C ′1 is not crossed, we argue similarly. Let us
denote by z1 the neighbour of z on C2 and by z2 the subsequent vertex on C2.
See in Fig. 6 right. The path starting with z, z1, z2 and continuing then along
the vertices of C2 up to the last one before returning to z is denoted by P2.

Lemma 3.7. Suppose G is a k-belt graph, k ≥ 4, and there is an optimal draw-
ing of G with ` crossings such that C ′1 is not crossed. Then there are at least
two distinct crossings on the path P2. Consequently, there is a drawing G′ ⊆ G
which is a subdivision of a (k − 2)-belt, and cr(G′) ≤ `− 2.

Proof. Since G − V (C ′1) is a connected subgraph, all its vertices have to be
drawn in one of the faces bounded by the drawing of C ′1. Hence by Jordan’s
curve theorem, the length-2 path zz1z2 has to be crossed since it separates the
common neighbour of z and x1 from the rest of the drawing. The same can be
said about the length-2 path on P2 which connects the two vertices adjacent to
x2. Those are the desired two distinct crossings on P2.

Lemma 3.8. Suppose G is a k-belt graph, k = 1 or k ≥ 3. Then cr(G) ≥ k.

Proof. We proceed by an induction on k, similarly as we have done in [9].
Notice that a 1-belt graph is actually a subdivision of K3,3, and hence the base
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of induction holds. The main complication comes from the fact that the inductive
statement is false for k = 2, and we have to carefully avoid this in our arguments.

First consider k > 4, and the statement is true for all i < k, i 6= 2. Take
an optimal drawing of G with ` crossings. Then, depending on whether the
cycle C ′1 is crossed, apply Lemma 3.6 or 3.7 straightforwardly: For a = 1 or
a = 2, it is k − a ≤ cr(G′) ≤ ` − a, and hence k ≤ `. Next consider k = 4. If
Lemma 3.6 applies to G, induction proceeds in the same way. So assume C ′1 is
not crossed now, and by Lemma 3.7 there are two crossings on the path P2. The
same arguments can be applied to symmetrically defined cycle C ′4 and path P3

in G, and we find additional two crossings on P3 (which is disjoint from P2);
altogether 4 = k crossings.

It remains to prove the statement for k = 3. This is straightforward but
slightly too long for this restricted conference paper, and so we only sketch the
arguments. If C ′1 is not crossed, then we may still consistently apply Lemma 3.7
and induction. Otherwise, considering symmetry, both cycles C ′1 and (symmet-
ric) C ′3 are crossed. (It may happen that C ′1 crosses C ′3.) Let a cycle C ′2 be
obtained from C2 by replacing the two edges from C2 ∩ (C ′1 ∪C ′3) with the path
through y1, z, x1. If the cycle C ′2 is crossed as well, then we apply an inductive
step with removing (most of) edges of C ′1 and C ′2. Finally, if C ′2 is not crossed
at all, then one can show that C ′1 and C ′3 carry at least three distinct crossings,
since in such case the vertices x, y, x2, y2 have to be drawn in the same face
bounded by the drawing of C ′2.

We remark that the above k-belt construction could be generalized in a
similar way as the construction in [9] was. We however skip such a generalization
here to avoid the boring technical details of it.

4 Conclusions

In this paper we mainly wanted to attract attention and research to the seemingly
simple, but still quite deep and unexplored problem of crossing minimization on
almost planar graphs. As our first step, we have shown two new results – one on
the positive side (Theorem 2.2 and Corollary 2.3), and the other one somehow
negative (Theorem 3.4), indicating richness and nontriviality of the problem we
study.

Questions to the effect of whether crossing minimization remains hard even
if we focus our attention on restricted families of graphs can be interpreted as
partial efforts to answer an admittedly vague, but nonetheless appealing and still
wide-open, question: How much “nonplanarity” must one admit into a family of
graphs G in order to guarantee that computing the crossing number of a graph
in G is hard?

We put forward three questions, in order of apparent difficulty.

Question 4.1. Is there a polynomial-time algorithm to approximate the crossing
number of an almost planar graph?
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Question 4.2. Is there a polynomial-time algorithm to compute the crossing
number of an almost planar graph?

A simplified version of this last question would consider graphs with bounded
degree, as we have done in the present paper.

For the next question, recall than a graph G is apex if it has a vertex v such
that G− v is planar.

Question 4.3. Is it an NP–hard problem to compute the crossing number of an
apex graph?

We conjecture that all these questions have affirmative answers. We lastly
remark that Question 4.3 has been asked also by Mohar [private communication].
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