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Abstract
We study c-crossing-critical graphs, which are the minimal graphs that require at least c edge-
crossings when drawn in the plane. For every fixed pair of integers with c ≥ 13 and d ≥ 1, we
give first explicit constructions of c-crossing-critical graphs containing arbitrarily many vertices
of degree greater than d. We also show that such unbounded degree constructions do not exist
for c ≤ 12, precisely, that there exists a constant D such that every c-crossing-critical graph with
c ≤ 12 has maximum degree at most D. Hence, the bounded maximum degree conjecture of
c-crossing-critical graphs, which was generally disproved in 2010 by Dvořák and Mohar (without an
explicit construction), holds true, surprisingly, exactly for the values c ≤ 12.
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2 Bounded maximum degree in crossing-critical graphs

fundamentals of this contribution were developed.

1 Introduction

Minimizing the number of edge-crossings in a graph drawing in the plane (the crossing
number of the graph, see Definition 2.1) is considered one of the most important attributes of
a “nice drawing” of a graph. In the case of classes of dense graphs (those having superlinear
number of edges in terms of the number vertices), the crossing number is necessarily very
high – see the famous Crossing Lemma [1, 16]. However, within sparse graph classes (those
having only linear number of edges), we may have planar graphs at one end and graphs with
up to quadratic crossing number at the other end. In this situation, it is natural to study
the “minimal obstructions” for low crossing number, with the following definition.

Let c be a positive integer. A graph G is called c-crossing-critical if the crossing number
of G is at least c, but every proper subgraph has crossing number smaller than c. We say
that G is crossing-critical if it is c-crossing-critical for some positive integer c.

Since any non-planar graph contains at least one crossing-critical subgraph, the under-
standing of the properties of the crossing-critical graphs is a central part of the theory of
crossing numbers.

In 1984, Širáň gave the earliest construction of nonsimple c-critical-graphs for every fixed
value of c ≥ 2 [21]. Three years later, Kochol [14] gave an infinite family of c-crossing-critical,
simple, 3-connected graphs, for every c ≥ 2. Another early result on c-crossing-critical
graphs was reported in the influential paper of Richter and Thomassen [20], who proved that
c-crossing-critical graphs have bounded crossing number in terms of c. They also initiated
research on degrees in c-crossing-critical graphs by showing that, if there exists an infinite
family of r-regular, c-crossing-critical graphs for fixed c, then r ∈ {4, 5}. Of these, 4-regular
3-critical graphs were constructed by Pinontoan and Richter [19], and 4-regular c-critical
graphs are known for every c ≥ 3, c 6= 4 [4]. Salazar observed that the arguments of Richter
and Thomassen could be applied to average degree as well, showing that an infinite family of
c-crossing-critical graphs of average degree d can exist only for d ∈ (3, 6], and established
their existence for d ∈ [4, 6). Nonexistence of such families with d = 6 was established much
later by Hernández, Salazar, and Thomas [11], who proved that, for each fixed c, there
are only finitely many c-crossing-critical simple graphs of average degree at least six. The
existence of such families with d ∈ [ 7

2 , 4] was established by Pinontoan and Richter [19],
whereas the whole possible interval was covered by Bokal [3], who showed that, for sufficiently
large crossing number, both the crossing number c and the average degree d ∈ (3, 6) could
be prescribed for an infinite family of c-crossing critical graphs of average degree d.

In 2003, Richter conjectured that, for every positive integer c, there exists an integer D(c)
such that every c-crossing-critical graph has maximum degree less than D(c) [17]. Reflecting
upon this conjecture, Bokal in 2007 observed that the known 3-connected crossing-critical
graphs of that time only had degrees 3, 4, 6, and asked for existence of such graphs with
arbitrary other degrees, possibly appearing arbitrarily many times. Hliněný augmented his
construction of c-crossing-critical graphs with pathwidth linear in c to show the existence of
c-crossing-critical graphs with arbitrarily many vertices of every set of even degrees. Only a
recent paper by Bokal, Bračič, Derňár, and Hliněný [4] provided the corresponding result
for odd degrees, showing in addition that, for sufficiently high c, all the three parameters
– crossing number c, rational average degree d, and the set of degrees D ⊆ N \ {1, 2} that
appear arbitrarily often in the graphs of the infinite family – can be prescribed. They also
analysed the interplay of these parameters for 2-crossing-critical graphs that were recently
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completely characterized by Bokal, Oporowski, Richter, and Salazar [7].
Despite all this research generating considerable understanding of the behavior of degrees

in known crossing-critical graphs as well as extending the construction methods of such
graphs, the original conjecture of Richter was not directly addressed in the previous works.
It was, however, disproved by Dvořák and Mohar [10], who showed that, for each integer
c ≥ 171, there exist c-crossing-critical graphs of arbitrarily large maximum degree. Their
counterexamples, however, were not constructive, as they only exhibited, for every such c,
a graph containing sufficiently many critical edges incident with a fixed vertex and argued
that those edges belong to every c-crossing-critical subgraph of the exhibited graph. On the
other hand, as a consequence of [7] it follows that, except for possibly some small examples,
the maximum degree in a large 2-crossing-critical graph is at most 6, implying that Richter’s
conjecture holds for c = 2. In view of these results, and the fact that 1-crossing-critical
graphs (subdivisions of K5 and K3,3) have maximum degree at most 4, this leaves Richter’s
conjecture unresolved for each c ∈ {3, 4, . . . , 170}.

The richness of c-crossing-critical graphs is restricted for every c by the result of Hliněný
that c-crossing-critical graphs have bounded path-width [12]; this structural result is com-
plemented by a recent classification of all large c-crossing-critical graphs for arbitrary c by
Dvořák, Hliněný, and Mohar [9]. We use these results in Section 4 to show that Richter’s
conjecture holds for c ≤ 12. The result is stated below. It is both precise and surprising and
shows how unpredictable are even the most fundamental questions about crossing numbers.

I Theorem 1.1. There exists an integer D such that, for every positive integer c ≤ 12, every
c-crossing-critical graph has maximum degree at most D.

In fact, one can separately consider in Theorem 1.1 twelve upper bounds Dc for each of
the values c ∈ {1, 2, . . . , 12}. For instance, D1 = 4 and the optimal value of D2 (we know
D2 ≥ 8) should also be within reach using [7] and continuing research. On the other hand,
due to the asymptotic nature of our arguments, we are currently not able to give any “nice”
numbers for the remaining upper bounds, and we leave this aspect to future investigations.

We cover the remaining values of c ≥ 13 in the gap in a very strong sense, by constructing
critical graphs with arbitrarily many high-degree vertices:

I Theorem 1.2. For every positive integers d and m, there exists a 3-connected 13-crossing-
critical graph G(d, m), which contains at least m vertices of degree at least d.

I Corollary 1.3. For every positive integers c ≥ 13, d and m, there exists a 3-connected
c-crossing-critical graph G(c, d, m), which contains at least m vertices of degree at least d.

The paper is structured as follows. The preliminaries, needed to help understanding the
structure of large c-crossing critical graphs are defined in Section 2. We prove Theorem
1.1 in Section 4, and Theorem 1.2 in Section 5. An additional technical treatment and an
operation call zip product is needed to establish Corollary 1.3 in Section 6. We conclude
with some remarks and open problems in Section 7.

2 Graphs and the crossing number

In this paper, we consider multigraphs by default, even though we could always subdivide
parallel edges (while sacrificing 3-connectivity) in order to make our graphs simple. We
follow basic terminology of topological graph theory, see e.g. [18].

A drawing of a graph G in the plane is such that the vertices of G are distinct points and
the edges are simple (polygonal) curves joining their end vertices. It is required that no edge
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passes through a vertex, and no three edges cross in a common point. A crossing is then
an intersection point of two edges other than their common end. A face of the drawing is a
maximal connected subset of the plane minus the drawing. A drawing without crossings in
the plane is called a plane drawing of a graph, or shortly a plane graph. A graph having a
plane drawing is planar.

The following are the core definitions used in this work.

I Definition 2.1 (crossing number). The crossing number cr(G) of a graph G is the minimum
number of crossings of edges in a drawing of G in the plane. An optimal drawing of G is
every drawing with exactly cr(G) crossings.

I Definition 2.2 (crossing-critical). Let c be a positive integer. A graph G is c-crossing-critical
if cr(G) ≥ c, but every proper subgraph G′ of G has cr(G′) < c.

Let us remark that a c -crossing-critical graph may have no drawing with only c crossings
(for c = 2, such an example is the Cartesian product of two 3-cycles, C3�C3).

Suppose G is a graph drawn in the plane with crossings. Let G′ be the plane graph
obtained from this drawing by replacing the crossings with new vertices of degree 4. We say
that G′ is the plane graph associated with the drawing, shortly the planarization of (the
drawing of) G, and the new vertices are the crossing vertices of G′.

In some of our constructions, we will have to combine crossing-critical graphs as described
in the next definition.

I Definition 2.3. Let d = 2 or 3. For i ∈ {1, 2}, let Gi be a graph and let vi ∈ V (Gi) be a
vertex of degree d that is only incident with simple edges, such that Gi − vi is connected.
Let uj

i , j ∈ {1, . . . , d} be the neighbors of vi. The zip product of G1 and G2 at v1 and v2 is
obtained from the disjoint union of G1 − v1 and G2 − v2 by adding the edges uj

1uj
2, for each

j ∈ {1, . . . , d}.

Note that, for different labellings of the neighbors of v1 and v2, different graphs may result
from the zip product. However, the following has been shown:

I Theorem 2.4 ([5]). Let G be a zip product of G1 and G2 as in Definition 2.3. Then,
cr(G) = cr(G1) + cr(G2). Furthermore, if for both i = 1 and i = 2, Gi is ci-crossing-critical,
where ci = cr(Gi), then G is (c1 + c2)-crossing-critical.

For vertices of degree 2, this theorem was established already by Leaños and Salazar
in [15].

3 Structure of c-crossing-critical graphs with large maximum degree

Dvořák, Hliněný, and Mohar [9] recently characterized the structure of large c-crossing-
critical graphs. From their result, it can be derived that in a crossing-critical graph with
a vertex of large degree, there exist many internally vertex-disjoint paths from this vertex
to the boundary of a single face. To keep our contribution self-contained, we give a simple
independent proof. We are going to apply this structural result to exclude the existence of
large degree vertices in c-crossing-critical graphs for c ≤ 12.

Structural properties of crossing-critical graphs have been studied for more than two
decades, and we now briefly review some of the previous important results which we shall
use.

Richter and Thomassen [20] proved the following upper bound:
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Figure 1 An illustration of a 1-nest.

I Theorem 3.1 ([20]). Every c-crossing-critical graph has a drawing with at most d5c/2+16e
crossings.

Hliněný [12] proved that c -crossing-critical graphs have path-width bounded in terms
of c.

I Theorem 3.2 ([12]). There exists a function f3.2 : N → N such that, for every integer
c ≥ 1, every c-crossing-critical graph has path-width less than f3.2(c).

For simplicity, we omit the exact definition of path-width; rather, we only use the following
fact [2]. For a rooted tree T , let b(T ) denote the maximum depth of a rooted complete
binary tree which appears in T as a rooted minor (the depth of a rooted tree is the maximum
number of edges of a root-leaf path).

I Lemma 3.3. For every integer p ≥ 0, if a graph G either
contains a subtree T which can be rooted so that b(T ) ≥ p, or
contains pairwise vertex-disjoint paths P1, . . . , Pp and pairwise vertex-disjoint paths Q1,
. . . , Qp such that Pi intersects Qj for every i, j ∈ {1, . . . , p},

then G has path-width at least p.

Hliněný and Salazar [13] also proved that distinct vertices in a crossing-critical graph
cannot be joined by too many paths.

I Theorem 3.4 ([13]). There exists a function f3.4 : N → N such that, for every integer
c ≥ 1, no two vertices of a c-crossing-critical graph are joined by more than f3.4(c) internally
vertex-disjoint paths.

As seen in the construction of Dvořák and Mohar [10] and in the construction we give in
Section 5, crossing-critical graphs can contain arbitrarily many cycles intersecting in exactly
one vertex. However, such cycles cannot be drawn in a nested way. A 1-nest of depth
m in a plane graph G is a sequence C1, . . . , Cm of cycles in G and a vertex w ∈ V (G)
such that, for 1 ≤ i < j ≤ m, the cycle Ci is drawn in the closed disk bounded by Cj and
V (Ci) ∩ V (Cj) = {w} (Figure 1). Hernández-Vélez et al. [11] have shown the following.

I Theorem 3.5 ([11]). There exists a function f3.5 : N → N such that, for every integer
c ≥ 1, the planarization of every optimal drawing of a c-crossing-critical graph does not
contain a 1-nest of depth f3.5(c).

The key structure we use in the proof of Corollary 3.13 is a fan-grid, which is defined as
follows:

I Definition 3.6. Let G be a plane graph and let v be a vertex incident with the outer face
of G. Let C be a cycle in G, and let the path C − v be the concatenation of vertex-disjoint
paths L, Q1, . . . , Qn, R in that order. Let H be the subgraph of G drawn inside the closed
disk bounded by C. We say that (v, C, Q1, . . . , Qn) is an (r × n)-fan-grid with center v if
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v
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Q1
Q2

Q3
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P3

Figure 2 A (2× 3)-fan-grid with center v. The rays of this fan-grid (P1, P2, and P3) are colored
blue. The underlying cycle C is red, and the two vertex-disjoint paths from V (L) to V (R) are green.
These paths are shown in the idealized situation where they cross each of the paths Pi only once.

H contains n internally vertex-disjoint paths P1, . . . , Pn (the rays of the fan-grid), where
Pi joins v with a vertex of Qi for i = 1, . . . , n, and
H − V (Q1 ∪ . . . ∪Qn) contains r vertex-disjoint paths from V (L) to V (R). See Figure 2.

In the argument, we start with a (0× n)-fan-grid and keep enlarging it (adding new rows
while sacrificing some of the rays) as long as possible. The following definition is useful when
looking for the new rows. A comb with teeth v1, . . . , vk is a tree consisting of a path P (the
spine of the comb) and vertex-disjoint paths P1, . . . , Pk of length at least one, such that Pi

joins vi to a vertex in P . We start with simple observations on combs in trees with many
leaves.

I Lemma 3.7. There exists a function f3.7 : N3 → N such that the following holds for all
integers D, k ≥ 1 and b ≥ 0. Let T be a rooted tree of maximum degree at most D satisfying
b(T ) ≤ b. If every root-leaf path in T contains less than k vertices with at least two children,
then T has at most f3.7(D, b, k) leaves.

Proof. Let f3.7(D, b, k) = 1 if k = 1 or b = 0, and

f3.7(D, b, k) = f3.7(D, b, k − 1) + (D − 1) · f3.7(D, b− 1, k − 1)

if k ≥ 2 and b ≥ 1. We prove the claim by the induction on the number of vertices of T . If
|V (T )| = 1, then T has only one leaf. Hence, suppose that |V (T )| ≥ 2. Let v be the root of
T and let T1, . . . , Td be the components of T − v, where d = deg(v) ≤ D. If d = 1, then
the claim follows by the induction hypothesis applied to T1; hence, suppose that d ≥ 2. In
particular, b ≥ b(T ) ≥ 1 and k ≥ 2. Then, for all i ∈ {1, . . . , d}, each root-leaf path in Ti

contains less than k− 1 vertices with at least two children. Furthermore, there exists at most
one i ∈ {1, . . . , d} such that b(Ti) = b; hence, we can assume that b(Ti) ≤ b− 1 for 2 ≤ i ≤ d.
By the induction hypothesis, T1 has at most f3.7(D, b, k − 1) leaves and each of T2, . . . , Td

has at most f3.7(D, b− 1, k − 1) leaves, implying the claim. J

I Corollary 3.8. For every triple of integers satisfying D, k ≥ 1 and b ≥ 0, every rooted tree
T of maximum degree at most D, b(T ) ≤ b, and with more than f3.7(D, b, k) leaves contains
a comb with k teeth, all of which are leaves in T .
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Proof. By Lemma 3.7, T contains a root-leaf path P with at least k vertices that have at
least two children. A subpath of P together with the paths from k of these vertices to leaves
forms a comb with k teeth. J

Suppose Q is a path and K is a comb in a plane graph G, such that all teeth of K lie on
Q and K and Q are otherwise disjoint. We say that the comb is Q-clean if both Q and the
spine of K are contained in the boundary of the outer face of the subdrawing of G formed
by K ∪Q.

B Observation 3.9. Suppose Q is a path and K is a comb in a plane graph G, such that all
teeth of K lie on Q and K and Q are otherwise disjoint. Let k ≥ 2 be an integer. If Q is
contained in the boundary of the face of G and K has at least 3k− 1 teeth, then K contains
a Q-clean subcomb with at least k teeth.

Our aim is to keep growing a fan-grid using the following Lemma (increasing r at the
expense of sacrificing some of the rays, see the outcome (d)) until we either obtain a structure
that cannot appear in a planarization of a c-crossing-critical graph (outcomes (a)–(c)), or
are blocked off from further growth by many rays ending in the boundary of the same face
(outcome (e)).

I Lemma 3.10. There exists a function f3.10 : N5 → N such that the following holds. Let G

be a plane graph with a vertex v incident with the outer face. Let D, b, m, r, k, and t be
positive integers. Let n = f3.10(D, b, m, k, t). If G contains an (r× n)-fan-grid with center v,
then G also contains at least one of the following substructures:

(a) two vertices joined by more than D internally vertex-disjoint paths, or
(b) a 1-nest of depth greater than m, or
(c) a subtree T which can be rooted so that b(T ) > b, or
(d) an ((r + 1)× k)-fan-grid with center v, or
(e) more than t internally vertex-disjoint paths from v to distinct vertices contained in the

boundary of a single face of G.

Proof. Let s1 = 2f3.7(D, b, 3k+5) and s2 = 2s1m. For an integer l ≥ 0, let d(l) = (t·(s1−1))l.
Let f3.10(D, b, m, k, t) = td(s2) + 1. Let (v, C, Q1, . . . , Qn) be an (r × n)-fan-grid in G. Let
G1 be the graph obtained from G by removing the vertices and edges drawn in the open
disk bounded by C, and let f denote the resulting face bounded by C.

Suppose that, for some i ∈ {1, . . . , n}, there exists a component R of G1− (V (C)\V (Qi))
and a set J ⊆ {1, . . . , n} \ {i} of size more than s1 such that Qj has a neighbor in R for
every j ∈ J . By symmetry, we can assume that there exists J ′ ⊆ J of size more than
f3.7(D, b, 3k + 5) such that j > i for each j ∈ J ′. Observe that G contains a tree T with
all internal vertices in R and exactly |J ′| leaves, one in each of Qj for j ∈ J ′; we root T in
a vertex belonging to R. By Corollary 3.8, ∆(T ) > D or b(T ) > b or T contains a comb
K with 3k + 5 teeth, all of which are leaves of T . In the former two cases, G contains
(a) or (c). In the last case, we extract a (C − v)-clean subcomb with k + 2 teeth from K

using Observation 3.9 and combine it with a part of the (r × n)-fan-grid in G to form an
((r + 1)× k)-fan-grid in G, showing that G contains (d).

Therefore, we can assume that the following holds:
(?) For every i ∈ {1, . . . , n}, every component R of G1 − (V (C) \ V (Qi)) has neighbors in
less than s1 paths Q1, . . . , Qn other than Qi.

A C-bridge of G1 is either a graph consisting of a single edge of E(G1) \ E(C) and its
ends, or a graph consisting of a component of G1−V (C) together with all edges between the
component and C and their endpoints. For a C-bridge H, let J(H) denote the set of indices



8 Bounded maximum degree in crossing-critical graphs

j ∈ {1, . . . , n} such that H intersects Qj . By (?), we have |J(H)| ≤ s1. For two C-bridges
H1 and H2, we write H1 ≺ H2 if min(J(H2)) ≤ min(J(H1)), max(J(H1)) ≤ max(J(H2)),
and either at least one of the inequalities is strict or J(H2) ( J(H1) (note that in the last
case, the planarity implies |J(H2)| = 2).

Suppose there exist s2 + 1 C-bridges H0, H1, . . . , Hs2 such that H0 ≺ H1 ≺ . . . ≺ Hs2 .
For 1 ≤ j ≤ m + 1, let b(j) = 2(j − 1)s1. If, for 1 ≤ j ≤ m, we have min(J(Hb(j))) >

min(J(Hb(j+1))) and max(J(Hb(j))) < max(J(Hb(j+1))), then G contains (b). Hence, by
symmetry we can assume that there exists j ∈ {1, . . . , m} such that min(J(Hb(j))) =
min(J(Hb(j+1))). Consequently, there exists an index i such that min(J(Hp)) = i, for
b(j) ≤ p ≤ b(j + 1). But then |

⋃b(j+1)
p=b(j) J(Hp) \ {i}| > s1, which contradicts (?).

Consequently, there is no chain of order greater than s2 in the partial ordering ≺. For a
C-bridge H, let l(H) denote the order of the longest chain of ≺ with the maximum element
H. Suppose that max(J(H))−min(J(H)) > d(l(H)), and choose a C-bridge H with this
property such that l(H) is minimum. Since |J(H)| ≤ s1, there exist two consecutive elements
j1 and j2 of J(H) such that j2 − j1 > t · d(l(H)− 1). If l(H) = 1, this implies there exists a
face f of G such that all paths Qj with j1 ≤ j ≤ j2 contain vertices incident with f , and
G contains (e). Hence, suppose that l(H) > 1. Let B be the set of bridges H ′ ≺ H such
that j1 ≤ min(J(H ′)) ≤ max(J(H ′)) ≤ j2 that are maximal in ≺ with this property. By the
minimality of l(H), every bridge H ′ ∈ B satisfies max(J(H ′))−min(J(H ′)) ≤ d(l(H)− 1).
Consequently, there are more than t + 1 indices j such that j1 ≤ j ≤ j2 and either
j = max(J(H ′)) for some H ′ ∈ B or there does not exists any bridge H ′ ≺ H such that
min(J(H ′)) ≤ j ≤ max(J(H ′)). Observe there exists a face f of G such that, for each such
index j, the path Qj contains a vertex incident with f . Hence, G again contains (e).

Consequently, we can assume that max(J(H))−min(J(H)) ≤ d(s2), for each C-bridge
H. Since n > td(s2), applying an analogous argument to the C-bridges that are maximal in
≺ yields that G contains (e). J

To start up the growing process based on Lemma 3.10, we need to show that a fan-grid
with many rays exists.

I Lemma 3.11. Let G be a 2-connected plane graph with a vertex v incident with the outer
face. For every positive integers D, b, and k, if v has degree more than f3.7(D, b + 1, 3k + 5),
then G contains at least one of the following:

(a) two vertices joined by more than D internally vertex-disjoint paths, or
(c) a subtree T which can be rooted so that b(T ) > b, or
(d) a (0× k)-fan-grid with center v.

Proof. Let G′ be the graph obtained from G by splitting v into vertices of degree 1, and let
S be the set of these vertices. Since G is 2-connected, G′ is connected, and thus it contains
a subtree T whose leaves coincide with S. Root T arbitrarily in a non-leaf vertex. By
Corollary 3.8, ∆(T ) > D or b(T ) > b + 1 or T has a comb with 3k + 5 teeth in S. In the
first case, (a) holds. In the second case, b(T − S) > b and T − S is a subtree of G, and thus
(c) holds. In the last case, we can extract a v-clean subcomb with at least k + 2 teeth using
Observation 3.9, which gives rise to a (0× k)-fan-grid with center v in G. J

Note that a ((p+1)×(p+1))-fan-grid contains two systems of p+1 pairwise vertex-disjoint
paths such that every two paths from the two systems intersect; hence, by Lemma 3.3 a
plane graph of path-width at most p contains neither a ((p + 1) × (p + 1))-fan-grid nor a
subtree T which can be rooted so that b(T ) > p. Hence, starting from Lemma 3.11 and
iterating Lemma 3.10 at most p + 1 times, we obtain the following.
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I Corollary 3.12. There exists a function f3.12 : N4 → N such that the following holds. Let G

be a 2-connected plane graph. Let D, m, p, and t be positive integers. Let ∆ = f3.12(D, m, p, t).
If G has path-width at most p and maximum degree greater than ∆, then G contains at least
one of the following:

(a) two vertices joined by more than D internally vertex-disjoint paths, or
(b) a 1-nest of depth greater than m, or
(e) more than t internally vertex-disjoint paths from a vertex v to distinct vertices contained

in the boundary of a single face of G.

We now apply this result to an optimal planarization of a c-crossing-critical graph.

I Corollary 3.13. There exists a function f3.13 : N2 → N such that the following holds. Let
c ≥ 1 and t ≥ 3 be integers and let G be an optimal drawing of a 2-connected c-crossing-
critical graph. If G has maximum degree greater than f3.13(c, t), then there exists a path Q

contained in the boundary of a face of G and internally vertex-disjoint paths P1, . . . , Pt

starting in the same vertex not in Q and ending in distinct vertices appearing in order on Q

(and otherwise disjoint from Q), such that no crossings of G appear on P1, Pt, nor in the
face of P1 ∪ Pt ∪Q that contains P2, . . . , Pt−1.

Proof. Let c′ = d5c/2 + 16e, D = max(5, f3.4(c) + c′), m = f3.5(c), p = f3.2(c) + c′, and
f3.13(c, t) = f3.12(D, m, p, (c′ + 2)t).

By Theorem 3.1, G has at most c′ crossings. Let G′ be the planarization of G. Note
that G′ is 2-connected, since otherwise a crossing vertex would form a cut in G′ and the
corresponding crossing in G could be eliminated, contradicting the optimality of the drawing
of G. By Theorem 3.2, G has path-width at most p− c′, and thus G′ has path-width at most
p. By Theorem 3.4, G does not contain more than D − c′ internally vertex-disjoint paths
between any two vertices, and thus G′ does not contain more than D internally vertex-disjoint
paths between any two vertices. By Theorem 3.5, G′ does not contain a 1-nest of depth m.
Hence, by Corollary 3.12, G′ contains more than (c′ + 1)t internally disjoint paths from a
vertex v to distinct vertices contained in the boundary of a single face f of G′. Let Q1, . . . ,
Qc′+2 be disjoint paths contained in the boundary of f such that, for i = 1, . . . , c′ + 2, t of
the paths Pi,1, . . . , Pi,t from v end in Qi in order. Let gi denote the face of Qi ∪ Pi,1 ∪ Pi,t

containing Pi,2, . . . , Pi,t−1. Note that the closures of g1, . . . , gc′+2 intersect only in v and
since G′ contains at most c′ crossing vertices, there exists i ∈ {1, . . . , c′ + 2} such that no
crossing vertex is contained in the closure of gi and v is not in Qi. Hence, for j = 1, . . . , t,
we can set Q = Qi and Pj = Pi,j . J

4 Crossing-critical graphs with at most 12 crossings

We now use Corollary 3.13 to prove the following “redrawing” lemma.

I Lemma 4.1. Let G be a 2-connected c-crossing-critical graph. If G has maximum degree
greater than f3.13(c, 6c + 1), then there exist integers r ≥ 2 and k ≥ 0 such that kr ≤ c− 1
and G has a drawing with at most c− 1− kr +

(
k
2
)
crossings.

Proof. Consider an optimal drawing of G. Let P1, . . . , P6c+1 be paths obtained using
Corollary 3.13 and v their common end vertex. For 2 ≤ i ≤ 6c − 1, let Ti denote the 2-
connected block of G− ((V (Pi−1)∪V (Pi+2))\{v}) containing Pi and Pi+1, and let Ci denote
the cycle bounding the face of Ti containing Pi−1. Note that if 2 ≤ i and i + 3 ≤ j ≤ 6c− 1,
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Figure 3 An illustration of the proof of Lemma 4.1. a) The original optimal drawing of G, with
subdrawings of M1 and M2 (red) that will be glued into the drawing of G0 from an optimal drawing
of G− e. b) A drawing of G with at most c− 1 crossings, obtained from G0 (black, blue, green)
and M1, M2 (red). c) A drawing of G with at most

(
c−1−kr+k

2

)
crossings, obtained from G0 (black,

blue) and M1, M2 (red).
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then G− V (Ti ∪ Tj) has at most three components: one containing Pi+2 − v, one containing
P1 − v, and one containing P6c+1 − v, where the latter two components can be the same.

Let e be the edge of P3c+1 incident with v and let G′ be an optimal drawing of G− e.
Since G is c-crossing-critical, G′ has at most c− 1 crossings. Hence, there exist indices i1
and i2 such that 2 ≤ i1 ≤ 3c − 1, 3c + 2 ≤ i2 ≤ 6c − 1, and none of the edges of Ti1 and
Ti2 is crossed. Let us set L = Ti1 , CL = Ci1 , R = Ti2 , and CR = Ci2 . Let M , S1, and
S2 denote the subgraphs of G consisting of the components of G − V (L ∪ R) containing
P3c+1−v, P1−v, and P6c+1−v, respectively, together with the edges from these components
to the rest of G and their incident vertices (where possibly S1 = S2). Let SL and ML be
subpaths of CL of length at least one intersecting in v such that V (S1 ∩ CL) ⊆ V (SL) and
V (M ∩CL) ⊆ V (ML). Analogously, let SR and MR be subpaths of CR of length at least one
intersecting in v such that V (S2 ∩ CR) ⊆ V (SR) and V (M ∩ CR) ⊆ V (MR). See Figure 3.

We can assume without loss of generality (by circle inversion of the plane if necessary)
that neither CL nor CR bounds the outer face of CL ∪ CR in the drawings inherited from G

and from G′. Let eML
, eSL

, eSR
, eMR

be the clockwise cyclic order of the edges of CL ∪ CR

incident with v in the drawing G, where eQ ∈ E(Q) for every Q ∈ {ML, SL, SR, MR}. By
the same argument, we can assume that the clockwise cyclic order of these edges in the
drawing of G′ is either the same or eML

, eSL
, eMR

, eSR
.

In G, L is drawn in the closed disk bounded by CL, R is drawn in the closed disk bounded
by CR, and M , S1, and S2 together with all the edges joining them to v are drawn in the
outer face of CL∪CR. Since CL and CR are not crossed in the drawing G′, we can if necessary
rearrange the drawing of G′ without creating any new crossings1 so that the same holds for the
drawings of L, R, M , S1, and S2 in G′. Let r ≥ 1 denote the maximum number of pairwise
edge-disjoint paths in M − v from V (M ∩CL − v) to V (M ∩CR − v). By Menger’s theorem,
M − v has disjoint induced subgraphs M ′

1 and M ′
2 such that V (M − v) = V (M ′

1) ∪ V (M ′
2),

V (M ∩CL−v) ⊆ V (M ′
1), V (M ∩CR−v) ⊆ V (M ′

2), and G contains exactly r edges with one
end in M ′

1 and the other end in M ′
2. For i ∈ {1, 2}, let Mi be the subgraph of M induced by

V (M ′
i)∪{v}. Let F be a path in M−v from V (M ∩CL−v) to V (M ∩CR−v) that has in the

drawing G′ the smallest number of intersections with the edges of S1 ∪ S2, and let k denote
the number of such intersections. Let G0 denote the drawing G′ − (V (M) \ V (ML ∪MR)).
Since M − v contains r pairwise edge-disjoint paths from V (M ∩CL − v) to V (M ∩CR − v)
and each of them crosses S1 ∪ S2 at least k times, we conclude that G′ has at least kr

crossings (and thus kr ≤ c− 1) and G0 has at most c− 1− kr crossings.
Suppose first that edges of CL∪CR incident with v are in G′ drawn in the same clockwise

cyclic order as in G. We construct a new drawing of the graph G in the following way: Start
with the drawing of G0. Take the plane drawings of M1 and M2 as in G, “squeeze” them
and draw them very close to ML and MR, respectively, so that they do not intersect any
edges of G0. Finally, draw the r edges between M1 and M2 very close to the curve tracing
F (as drawn in G′), so that each of them is crossed at most k times. This gives a drawing
of G with at most (c− 1− kr) + kr < c crossings, contradicting the assumption that G is
c-crossing-critical.

Hence, we can assume that the edges of CL ∪ CR incident with v are in G′ drawn in
the clockwise order eML

, eSL
, eMR

, eSR
. If r = 1, then proceed analogously to the previous

1 As G is not 3-connected, it is possible that some 2-connected components or some edges of L, R are
drawn in the exterior of the disk bounded by CL, CR. However, these can be flipped into the interior of
CL, CR, and after such rearranging, CL, CR bound the outer face of the drawings of L, R. Similarly, if
S1 6= S2, either of them could be in the interior of CL, CR, and we flip them into the exterior, so that
the interior of CL, CR contains only drawings of L, R, respecitvely.
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paragraph, except that a mirrored version 2 of the drawing of M2 is inserted close to MR; as
there is only one edge between M1 and M2, this does not incur any additional crossings, and
we again conclude that the resulting drawing of G has fewer than c crossings, a contradiction.
Therefore, r ≥ 2.

Consider the drawing G′, and let q be a closed curve passing through v, following ML

slightly outside CL till it meets F , then following F almost till it hits MR, then following
MR slightly outside CR till it reaches v. Note that q only crosses G0 in v and in relative
interiors of the edges, and it has at most k crossings with the edges. Shrink and mirror the
part of the drawing of G0 drawn in the open disk bounded by q, keeping v at the same spot
and the parts of edges crossing q close to q; then reconnect these parts of the edges with
their parts outside of q, creating at most

(
k
2
)
new crossings in the process. Observe that in

the resulting re-drawing of G0, the path ML ∪MR is contained in the boundary of a face
(since q is drawn close to it and nothing crosses this part of q), and thus we can add M

planarly (as drawn in G) to the drawing without creating any further crossings. Therefore,
the resulting drawing has at most c− 1− kr +

(
k
2
)
crossings. J

It is now easy to prove Theorem 1.1.

Proof of Theorem 1.1. We prove by induction on c that, for every positive integer c ≤ 12,
there exists an integer ∆c such that every c-crossing-critical graph has maximum degree at
most c. The only 1-crossing-critical graphs are subdivisions of K5 and K3,3, and thus we can
set ∆1 = 4. Suppose now that c ≥ 2 and the claim holds for every smaller value. We define
∆c = max(2∆c−1, f3.13(c, 6c + 1)). Let G be a c-crossing-critical graph and suppose for a
contradiction that ∆(G) > ∆c.

If G is not 2-connected, then it contains induced subgraphs G1 and G2 such that
G1 6= G 6= G2, G = G1 ∪G2, and G1 intersects G2 in at most one vertex. Then c ≤ cr(G) =
cr(G1) + cr(G2), and for every edge e ∈ E(G1) we have c > cr(G− e) = cr(G1 − e) + cr(G2).
Hence, cr(G1) ≥ c − cr(G2) and cr(G1 − e) < c − cr(G2) for every edge e ∈ E(G1), and
thus G1 is (c− cr(G2))-crossing-critical. Similarly, G2 is (c− cr(G1))-crossing-critical. Since
cr(G1) ≥ 1 and cr(G2) ≥ 1, it follows by the induction hypothesis that ∆(Gi) ≤ ∆c−1 for
i ∈ {1, 2}, and thus ∆(G) ≤ ∆c, which is a contradiction.

Hence, G is 2-connected. By Lemma 4.1, there exist integers r ≥ 2 and k ≥ 0 such that
kr ≤ c − 1 and c − 1 − kr +

(
k
2
)
≥ c, and thus

(
k
2
)
≥ kr + 1 ≥ 2k + 1. This inequality is

only satisfied for k ≥ 6, and thus the first inequality implies c ≥ kr + 1 ≥ 13. This is a
contradiction. Hence, the maximum degree of G is at most ∆c. J

5 Explicit 13-crossing-critical graphs with large degree

We define the following family of graphs, which is illustrated in Figure 4. To simplify the
terminology and the pictures, we introduce “thick edges”: for a positive integer t, we say
that uv is a t-thick edge, or an edge of thickness t, if there is a bunch of t parallel edges
between u and v. Naturally, if a t1-thick edge crosses a t2-thick edge, then this counts as
t1t2 ordinary crossings. By routing every parallel bunch of edges along the “cheapest” edge
of the bunch, we get the following important folklore claim:

2 Mirrored version of a drawing is the drawing obtained by reversing the vertex rotations of edges around
every vertex and every crossing, and embedding the edges and the vertices accordingly. The name
explains that this is homeomorphic to the original drawing seen in a mirror.
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Figure 4 The graph G
(k−2,2)
13 of Definition 5.2, drawn with 13 crossings. The thick edges of this

graph have their thickness written as numeric labels, and all the unlabeled edges are of thickness 1.
The bowtie part of this graph is drawn in red and blue (where blue edges are those between ui and
vj vertices), and the wedges are drawn in black. Only the (k− 1)-th and k-th wedges (incident to x2)
are detailed, while the remaining k − 2 wedges to the left (which are in this example all incident
to x1) analogously span the grey shaded area.

B Claim 5.1. For every graph G, there exists an optimal drawing D of G, such that every
bunch of parallel edges is drawn as one thick edge in D.

I Definition 5.2 (Critical family {G(k1,...,km)
13 }). Let m ≥ 1 and k, k1, k2, . . . , km ≥ 1 be

integers such that k = k1+. . .+km. Let Cu be a 6-cycle on the vertex set {x1, u1, u2, u3, u4, u5}
with (thick) edges x1u1, u1u2, u2u3, u3u4, u4u5, u5x1 which are of thickness 7, 5, 4, 3, 4, 1 in
this order. Analogously, let Cv be a 6-cycle on the vertex set {xm, v1, v2, v3, v4, v5} isomorphic
to Cu in this order of vertices. Let Px be a path of length m−1 on the vertices (x1, x2, . . . , xm)
in this order and with all edges of thickness 7. We denote by B the graph obtained from the
union Cu ∪Px ∪Cv (identifying the vertex x1 of Cu and Px and the vertex xm of Cv and Px)
by adding edges u2v3 and u3v2, and 2-thick edges u1v4 and u4v1.

Let Di, for i ∈ {1, . . . , k}, denote the graph on the vertex set {xi
0, wi

1, wi
2, wi

3, wi
4} with

the edges xi
0wi

1, xi
0wi

4, wi
1wi

4, wi
2wi

3 and the 2-thick edges wi
1wi

2 and wi
3wi

4. From the union
B ∪D1 ∪ . . . ∪Dk we obtain the graph G

(k1,...,km)
13 via

identifying u5 with w1
2 and wk

3 with v5,
for i = 2, 3, . . . , k, identifying wi−1

3 with wi
2, and

for j = 1, 2, . . . , m and all i such that k1 + . . . + kj−1 + 1 ≤ i ≤ k1 + . . . + kj , identifying
xi

0 with xj of the path Px.

This definition is illustrated in Figure 4 for m = 2. For reference, we will call the graph
B the bowtie of G

(k1,...,km)
13 , and the graph Di the i-th wedge of G

(k1,...,km)
13 .

B Observation 5.3. a) For every m ≥ 1 and k1, k2, . . . , km ≥ 1, the graph G
(k1,...,km)
13 is

3-connected and non-planar.
b) For 1 < j < m, the degree of the vertex xj equals 2kj + 14, and the degree of the vertices
x1 and xm equals 2k1 + 15 and 2km + 15, respectively.
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Figure 5 Two cases of vertex wi
3 of the induction step in the proof of Lemma 5.5. In each of

them we “shrink” two wedges into one by drawing new edges wi
1wi+1

4 (green) and wi
2wi+1

3 (blue)
along the depicted paths. In case (a), this introduces no new crossing, while in case (b) the new
crossing between the green and the blue is “paid by” a crossing which must have been on the 4-cycle
(x1, wi

4, wi
3, wi+1

1 ) before.

In order to prove Theorem 1.2, it is enough to consider the graph G = G
(k1,...,km)
13 for

m ≥ 2 and k1 = · · · = km = bd/2c, and prove that cr(G) ≥ 13 and that, for every edge e

of G, we get cr(G− e) ≤ 12. Before stepping into the proof, we remark that this does not
hold for m = 1 since cr(G(k)

13 ) ≤ 12 for all k (readers aware of the earlier conference paper [6]
should note that the similarly looking construction in [6] had the edges u3u4 and v3v4 of
thickness 4 instead of 3).

I Lemma 5.4. cr(G(1,1)
13 ) = 13.

Proof. Figure 4 outlines a drawing of G
(k1,k2)
13 with 13 crossings for all k1, k2 ≥ 1. For the

lower bound on cr(G(1,1)
13 ), we use the computer tool Crossing Number Web Compute [8] which

uses an ILP formulation of the crossing number problem (based on Kuratowski subgraphs),
and solves it via a branch-and-cut-and-price routine. Moreover, this computer tool generates
machine-readable proofs3 of the lower bound, which (roughly) consist of a branching tree in
which every leaf holds an LP formulation of selected Kuratowski subgraphs certifying that,
in this case, the crossing number must be greater than 12. J

I Lemma 5.5. For every k1 ≥ 1 and k2 ≥ 1, cr(G(k1,k2)
13 ) ≥ 13.

3 See http://crossings.uos.de/job/zS43gWV2yd-ZKmit_DNwSg. Vertices x1 and x2 are labeled 0 and
6, respectively. Cycles Cu and Cv traverse vertices 0, 1, 2, 3, 4, 5 and 6, 7, 8, 9, 10, 11 in that order,
respectively.

http://crossings.uos.de/job/zS43gWV2yd-ZKmit_DNwSg
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Proof. We proceed by induction on k1 + k2, where the base case k1 = k2 = 1 is proved in
Lemma 5.4. Hence, we may assume that k1 ≥ 2, up to symmetry.

Consider a drawing of G
(k1,k2)
13 with c = cr(G(k1,k2)

13 ) crossings. Let 1 ≤ i ≤ k1 − 1. By
Claim 5.1, we may assume that all thick edges are drawn together in a bunch. We now
distinguish three cases based on the cyclic order of edges leaving the vertex wi

3 = wi+1
2 (the

orientation is not important):
The edges incident to wi

3 = wi+1
2 , in a small neighbourhood of wi

3, have the cyclic order
wi

3wi
4, wi

3wi+1
1 , wi

3wi+1
3 , wi

3wi
2. See in Figure 5 a), where this cyclic order is anti-clockwise.

In this case, we draw a new edge wi
1wi+1

4 along the path (wi
1, wi

4, wi
3, wi+1

1 , wi+1
4 ), and

another new edge wi
2wi+1

3 along the path (wi
2, wi

3, wi+1
3 ) (both new edges are of thickness 1).

Then we delete the vertices wi
4, wi

3, wi+1
1 together with incident edges. The resulting

drawing represents a graph which is clearly isomorphic to G
(k1−1,k2)
13 – the wedges i and

i + 1 incident to x1 have been replaced with one wedge.
Moreover, thanks to the assumption, we can avoid crossing between wi

1wi+1
4 and wi

2wi+1
3

in the considered neighbourhood of former wi
3. Therefore, every crossing of the new

drawing (including possible crossings of each of the new edges wi
1wi+1

4 and wi
2wi+1

3 among
themselves or with other edges) existed already in the original drawing of G

(k1,k2)
13 , and

so cr(G(k1−1,k2)
13 ) ≤ c. However, cr(G(k1−1,k2)

13 ) ≥ 13 by the induction assumption, and so
c ≥ 13 holds true in this case.
The same proof as above works if the cyclic order around wi

3 is wi
3wi

4, wi
3wi+1

1 , wi
3wi

2,
wi

3wi+1
3 .

In a small neighbourhood of wi
3 = wi+1

2 , the incident edges have (up to orientation
reversal) the cyclic order wi

3wi
4, wi

3wi+1
3 , wi

3wi+1
1 , wi

3wi
2. See Figure 5 b). Consider the

4-cycle C := (x1, wi
4, wi

3, wi+1
3 ) which, importantly, uses only single edges of the 2-thick

edges incident to wi
3. In this case of the cyclic order around wi

3, both sides of C contain a
part of the drawing of G

(k1,k2)
13 . Since G

(k1,k2)
13 − V (C) is connected, some edge of C must

be crossed. Consequently, the subdrawing of G
(k1,k2)
13 − E(C) has ≤ c− 1 crossings.

We finish similarly as in the first case, but within G
(k1,k2)
13 −E(C): we draw a new edge

wi
1wi+1

4 along the path (wi
1, wi

4, wi
3, wi+1

1 , wi+1
4 ), and another new edge wi

2wi+1
3 along the

path (wi
2, wi

3, wi+1
3 ) (both new edges are of thickness 1, and we have so far removed only

one of the two edges of each of wi
4wi

3 and wi
3wi+1

1 ). These two new edges mutually cross
once (at most – in case that the named paths cross also somewhere else than at wi

3, we
may eliminate multiple crossings by standard means). After deleting the original vertices
wi

4, wi
3, wi+1

1 , we hence get a drawing which is again clearly isomorphic to G
(k1−1,k2)
13 and

has at most c−1+1 = c crossings. Since cr(G(k1−1,k2)
13 ) ≥ 13 by the induction assumption,

c ≥ 13 holds true also in this case. J

I Theorem 5.6. For every integers m ≥ 2 and k1, k2, . . . , km ≥ 1, the graph G
(k1,...,km)
13 is

13-crossing-critical.

Proof. Let G = G
(k1,...,km)
13 and Px be the 7-thick path on the vertices (x1, x2, . . . , xm) from

Definition 5.2. We first prove that cr(G) ≥ 13. Using Claim 5.1, at most one edge of Px is
crossed, or we already have 14 crossings. So assume that all edges of Px except possibly
xjxj+1 have no crossing. Contracting the edges E(Px) \ {xjxj+1} thus creates no new
crossing and results in a valid drawing isomorphic to G

(l1,l2)
13 where l1 = k1 + . . . + kj and

l2 = kj+1 + . . . + km. We conclude with cr(G) ≥ cr(G(l1,l2)
13 ) ≥ 13 by Lemma 5.5.

Regarding criticality, our proof strategy can be described as follows. We provide a
collection of drawings of our graph G, such that each edge e of G in some of the drawings,
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Figure 6 Three drawings of the graph G
(k1,k2)
13 with 13 or 14 crossings (where k2 = 2 in cases (a)

and (b), while k1 = i− 1 in (c) ). These drawings and their straightforward adjustments are used to
argue criticality of the bowtie (red) edges of G

(k1,k2)
13 . The grey areas span the crossing-free wedges

of G
(k1,k2)
13 which are not detailed in the pictures, similarly as in Figure 4.
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Figure 7 Two drawings of the graph G
(k1,k2,k3)
13 , having (a) 13 and (b) 18 crossings. These drawings

are used to argue criticality of edges of the i-th wedge. The grey areas span the crossing-free wedges
of G

(k1,k2,k3)
13 which are not detailed in the pictures, similarly as in Figure 6.

when deleted, exhibits a “drop” of the crossing number below 13; that is cr(G − e) ≤ 12.
Note that, for thick edges, we are deleting only one edge of the multiple bunch.

We start with the edges of the bowtie of G. For the blue edges (i.e., u2v3, u3v2, u1v4, u4v1),
this follows immediately from the drawing in Figure 4 in which deleting any blue edge saves
crossings. Furthermore, one can easily split the vertices x1 and x2 in the picture to produce
the full path Px as needed. For the remaining, red bowtie edges, criticality is witnessed by
the three drawings in Figure 6. In the first one (a), which is almost the same as Figure 4, two
alternate routings of the edge u4v1 show criticality of the edges x2v5 and v4v5, respectively.
We symmetricaly argue about the edges x1u5 and u4u5. The second one (b) shows criticality
of the edge v1v2. However, by pulling v1 in this picture away from x2 we also certify criticality
of x2v1, and by pulling v2 or also v3 towards x2 we get criticality of v2v3 and v3v4. Again,
we can easily split the vertices x1 and x2 in the drawings to produce the path Px as needed
and without further crossings. The edges x1u1, u1u2, u2u3 and u3u4 are symmetric, too.

Consider now a red edge xjxj+1 of Px. Let the first wedge incident to xj+1 be the i-th
wedge Di. We twist the picture from Figure 4 at the edge xjxj+1, such that the wedges
preceding Di stay above the path Px, and the wedges succeeding Di are now below Px. This
is illustrated for j = 1 in Figure 6(c). The wedge Di now crosses the 7-thick edge xjxj+1,
giving a drawing of G with 14 crossings, and so certifying criticality of the edge xjxj+1, since
deleting it drops the number of crossings in this drawing down to 12.

We are left with the last, and perhaps most interesting, cases in which e is an edge in
the i-th wedge Di. We consider a twist of the drawing of G similar to that in Figure 6(c),
but this time with the wedge Di crossing the blue bowtie edges (and itself). This gives a
drawing with 13 crossings involving the edges x2wi

1, wi
1wi

4 and wi
2wi

3, which is illustrated
in Figure 7(a). Hence the listed edges, and the edge x2wi

4 by symmetry, are also critical
in G, as desired. Finally, we deal, up to symmetry, with the 2-thick edge wi

1wi
2. A slight

adjustement of the last drawing gives a drawing illustrated in Figure 7(b) with exactly 18
crossings which are between the blue edges and wi

2wi
3, wi

1wi
2. Since deleting one edge from

the 2-thick edge wi
1wi

2 drops the number of crossings again down to 12, we have shown also
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criticality of wi
1wi

2 and the proof is finished. J

Theorem 1.2 is now established for k1 = . . . = km = bd/2c.

6 Extended crossing-critical construction

In the previous section, we have constructed an infinite family of 13-crossing-critical graphs
with unbounded maximum degree. The construction leaves a natural question about analogous
c-crossing-critical families for c > 13.

Clearly, the disjoint union of the graph from Theorem 5.6 with c−13 disjoint copies of
K3,3 yields a (disconnected) c-crossing-critical graph with maximum degree greater than
d, for every c ≥ 14. Though, our aim is to preserve also the 3-connectivity property of the
resulting graphs.

First, to motivate the coming construction, we recall that the zip product of Definition 2.3
requires a vertex of degree 3 in the considered graphs. However, the graphs of Definition 5.2
have no such vertex, and so we come with the following modification.

t1 s t2

t3

h+1 h

 
t1 s

s′

t2

t3

h h

Figure 8 An illustration of the operation of locally introducing a vertex (s′) of degree 3 from
Lemma 6.1. This operation can be applied, e.g., to vertices t1 = v1, s = v2, t2 = v3, and t3 = u3 of
Figure 4.

I Lemma 6.1. Assume a graph H with vertices t1, t2, t3 and s such that
a) vertex s has no more neighbours than t1, t2, t3 in H, the edge t1s is (h + 1)-thick, t2s is

h-thick, t3s is 1-thick, and
b) vertex t1 is of degree at most h + 5 in H, or there is a neighbour w 6= s of t1 such that t1

is of degree at most h + 3 in H − t1w.
Other edges of H are not important.

Let H ′ be created by making the edge t1s only h-thick, deleting the edge t3s, and adding a
new vertex s′ adjacent via three 1-thick edges to the vertices t1, t3 and s. See Figure 8. Then
cr(H ′) ≥ cr(H). Furthermore, if H is a c-crossing-critical graph and cr(H ′ − ss′) < c, then
H ′ is also c-crossing-critical.

Proof. Assume a drawing D of H ′ with cr(H ′) crossings. By Claim 5.1, we have st1 and st2
drawn each as one thick edge. We consider two cases based on the crossings on ss′ in D.

First, there are at least 2 crossings on ss′ in D. We modify D to D′ as follows: delete the
current edge ss′, and pull the vertices s and s′ along their edges to t1 so that no crossing
remains on st1 and s′t1 in D′. This modification does not change the number of crossings on
the paths (t2, s, t1) and (t3, s′, t1). Then draw a new (1-thick) edge ss′ in D′ closely along
the path (s′, t1, s), crossing only some of the edges incident with t1 (and choosing “the better
side” of t1). Thanks to the assumption (b), this makes only at most 2 crossings on ss′ in D′:
if t1 is of degree h + 5 then we cross at most [(h + 5)− (h + 1)]/2 = 2, and if t1 is of degree
h+3 in H− t1w, then we can avoid crossing t1w and again cross at most (h+3)− (h+1) = 2.

Altogether, there are no more crossings in D′ than there were in D. Since st1 is crossing-
free, we can turn st1 into an (h + 1)-thick edge and still have at most cr(H ′) crossings. Then
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we delete the edge s′t1 and obtain a subdivision of the graph H with at most cr(H ′) crossings,
which certifies cr(H ′) ≥ cr(H).

Second, we assume that there is at most 1 crossing on ss′ in D. Let the number of
crossings on each edge of the parallel bunch st1 be a and on the edge s′t1 let it be b. If b ≥ a,
then we do the same as previously: delete the edge s′t1 and turn st1 into an (h + 1)-thick
edge. The resulting drawing is a subdivision of H and the new number of crossings is
cr(H ′)− b + a ≤ cr(H ′), again certifying cr(H ′) ≥ cr(H).

Otherwise, if b ≤ a−1, there are altogether at most b+ 1 ≤ a crossings along the (1-thick)
path (t1, s′, s). We hence make no more crossings than cr(H ′) if we redraw the h-thick edge
t1s closely along the path (t1, s′, s) and “through” the vertex s′, creating a subdivision of a
graph isomorphic to H (now with s subdividing h-thick edge s′t2). Again, the conclusion is
that cr(H ′) ≥ cr(H).

The last bit is to argue c-crossing-criticality of H ′ under the additional assumption of
the lemma. Consider any edge e ∈ E(H ′) ∩ E(H), and a drawing D of H − e with less than
c crossings. Since s has only three neighbours in H, the vertex s′ can be chosen in D as
subdividing a suitable one of the edges of the (h + 1)-thick bunch t1s, the one consecutive to
t3s in the rotation around s in D. This results in a drawing of H ′ − e with same number of
crossings (less than c). It remains to consider the edges of E(H ′) \E(H) = {t1s′, t3s′, ss′}.
We have got the assumption cr(H ′− ss′) < c, and drawings of H ′− t1s′ and of H ′− t3s′ with
less than c crossings are subdivisions of the corresponding drawings of H−t1s and H−t3s. J

Proof of Corollary 1.3. Similarly as in the previous section, we take the 13-crossing-critical
graph G = G

(k1,...,km)
13 of Theorem 5.6 for k1 = . . . = km = bd/2c. Then we apply Lemma 6.1

to the vertices t1 = v1, s = v2, t2 = v3 and t3 = u3 of G. This results in a graph G′ having
a vertex s′ of degree 3. Moreover, since cr(G′ − ss′) ≤ 11 which can be easily seen from
Figure 4 (we avoid crossings with u4v1), we get that G′ is 13-crossing-critical.

Hence let G(13, d, m) = G′. For c > 13, we proceed by induction, assuming that we have
already constructed the graph G(c−1, d, m) and it contains a vertex of degree 3. Theorem 2.4
establishes that G(c, d, m), as a zip product of G(c− 1, d, m) with 1-crossing-critical K3,3, is
c-crossing-critical. Furthermore, G(c, d, m) again contains a vertex of degree 3 coming from
the K3,3 part. J

7 Concluding remarks and open problems

While our contribution closes the questions related to the validity of the bounded maximum
degree conjecture, the following natural problems remain open:

B Problem 7.1. For each c ≤ 12, determine the least integer D(c) bounding maximum
degree of c-crossing-critical graphs.

B Problem 7.2. Develop a theory of wedges that parallels the theory of tiles (cf. [19]) for
constructively establishing c-crossing-criticality of graphs with large maximum degrees.

Note that with our construction we can get arbitrarily repeated even degrees in G =
G

(k1,...,km)
13 , cf. Observation 5.3 b), but only two large-odd-degree vertices there. Trying to

split the vertex x1 or x2 “inside one wedge” does not help either since the resulting critical
split edge would be only 6-thick, maintaining the parity of the degree. In general, vertices
of high odd degrees in c-crossing critical graphs seem to rely on some local property of the
graph, unlike even degrees that can rely simply on sufficiently many relevant paths passing
through the vertices. Indeed, the only other known examples of large odd degrees in infinite
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families of c-crossing-critical graphs are related to staircase-strip tiles [4]. Hence we suggest
also the following question:

B Problem 7.3. Does there exist, for some/any c ≥ 13, a family of c-crossing-critical graphs,
such that for a prescribed set O of odd integers greater than 3 and each integer m, the family
would contain a graph with at least m vertices of each degree in O?

Furthermore, Lemma 6.1 can be applied iteratively to selected vertices of each wedge
of the graphs G = G

(k1,...,km)
13 to produce new c-crossing-critical graphs which would be

3-connected and have no double edges within the wedges. However, removing the remaining
multiple edges in the bowtie subgraph would require a different approach. Hence, our final
problem is:

B Problem 7.4. For which c does there exist a family of 3-connected simple c-crossing-critical
graphs containing vertices of arbitrarily large degree?
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