
Combinatorics, Probability and Computing (19XX) 00, 000–000. c© 19XX Cambridge University Press

DOI: 10.1017/S0000000000000000 Printed in the United Kingdom

The Tutte Polynomial for Matroids
of Bounded Branch-Width†

Petr Hliněný ‡§
(not mailing address!)

School of Mathematical and Computing Sciences,

Victoria University of Wellington

P.O. Box 600, Wellington, New Zealand

It is a classical result of Jaeger, Vertigan and Welsh that evaluating the Tutte poly-
nomial of a graph is #P -hard in all but few special points. On the other hand,
several papers in past years have shown that the Tutte polynomial of a graph can

be efficiently computed for graphs of bounded tree-width. In this paper we present
a recursive formula computing the Tutte polynomial of a matroid M represented

over a finite field (which includes all graphic matroids), using a so called parse tree
of a branch-decomposition of M . This formula provides an algorithm computing the

Tutte polynomial for a representable matroid of bounded branch-width in polynomial
time with a fixed exponent.

Keywords: matroid, Tutte polynomial, branch-width, parse tree.

2000 Math subject classification: primary 05B35, secondary 68R05.

1. Introduction

We refer to the next section for necessary formal definitions. The Tutte polynomial

T (M ; x, y) of a matroid naturally extends the original Tutte’s definition of this polyno-

mial for graphs [11]. If M is the cycle matroid of a graph G, then T (M ; x, y) = T (G; x, y).

Most of the complexity related research has been so far focused on the graphic version

of the polynomial.

Specific evaluations of the Tutte polynomial include such interesting and difficult quan-

tities as the chromatic and flow polynomials of a graph, the critical number of a matroid,

the weight enumerator of a linear code, the all-terminal reliability of a network, the

partition function of the Ising model in physics, or the Jones and Kaufman bracket

polynomials of an alternating knot. See, for example, [13, 14]. It is not surprising that

computing or evaluating the Tutte polynomial is #P -hard except for a few special cases,

which was proved by Jaeger, Vertigan and Welsh [7]. It is even #P -hard to evaluate the

Tutte polynomial at all but few special points for planar graphs [12].

† The research has been supported by a New Zealand Marsden Fund research grant to Geoff Whittle.

‡ Current affiliation and mailing address: Department of Computer Science, FEI VŠB – Technical
University of Ostrava, 17. listopadu 15, 70833 Ostrava, Czech Republic.

§ E-mail: petr.hlineny@vsb.cz

2 Petr Hliněný

In view of that hardness result, researchers have focused on computing the Tutte poly-

nomial for special graph classes. Most noticeable to us are algorithms computing the Tutte

polynomial for graphs of bounded tree-width: Andrzejak [1] has given a polynomial-time

algorithm for computation of the Tutte polynomial for such graphs, but unfortunately,

with an exponent heavily depending on tree-width. Noble [9] has independently devel-

oped a low-exponent polynomial-time algorithm for evaluation of the Tutte polynomial

at a rational point. (We have noticed that some papers refer to Noble’s result as to an

evaluation of the Tutte polynomial in “linear time”, but this is not quite true – the poly-

nomial is evaluated using a linear number of arithmetic operations, and the cost of one

operation depends significantly on the size of the graph, as it is precisely stated in [9,

Theorem 1.1].) Another, “logic-type” approach to the same problem, using generating

functions definable in the monadic second order logic, has been presented by Makowsky

in [8]. However, that approach provides no reasonably explicit algorithm.

Lastly, we want to mention the concept of parametrized complexity [3] that has received

attention over the past years. In view of this concept, evaluating the Tutte polynomial at

any rational point is a uniformly fixed parameter tractable problem for graphs of bounded

tree-width. (In general, many hard graph problems become easy on bounded tree-width

graphs, and an analogous phenomenon occurs in represented matroids of bounded branch-

width [4].)

In Section 4 of this paper we present a recursive formula that straightforwardly com-

putes the Tutte polynomial of a matroid of bounded branch-width represented over a

finite field using its “parse tree”. Parse trees for those matroids have been introduced

by the author in [4]. The formula, together with an algorithm for finding a bounded

branch-decomposition [5], provide an algorithm computing the Tutte polynomial of such

a matroid in time O(n6 logn log logn).

The concept of branch-width is very similar to that of tree-width, but branch-width

has an immediate generalization to matroids. Moreover, it seems that branch-width is a

slightly better concept than tree-width for applications. (For example, the above men-

tioned Noble’s paper [9] uses a tree-decomposition of a graph to derive an information

which follows more directly from a branch-decomposition.) If a graph G has bounded

tree-width, then its cycle matroid M(G) has bounded branch-width; and a bounded-

width branch-decomposition of M(G) can be quickly computed from a bounded-width

tree-decomposition of G. So our result generalizes the results of [1, 9].

2. Basics of Matroids

We refer to Oxley [10] for matroid terminology. A matroid is a pair M = (E,B) where

E = E(M) is the ground set of M (elements of M), and B ⊆ 2E is a nonempty collection

of bases of M . Moreover, matroid bases satisfy the “exchange axiom”; if B1, B2 ∈ B and

x ∈ B1−B2, then there is y ∈ B2−B1 such that (B1−{x})∪ {y} ∈ B. Subsets of bases

are called independent sets, and the remaining sets are dependent. Minimal dependent

sets are called circuits. An element e of M is called a loop if {e} is dependent in M . All

bases have the same cardinality called the rank r(M) of the matroid. The rank (function)

rM (X) in M is the maximal cardinality of an independent subset of a set X ⊆ E(M).

The Tutte Polynomial for Matroids 3

If G is a graph, then its cycle matroid on the ground set E(G) is denoted by M(G). The

independent sets of M(G) are acyclic subsets (forests) in G, and the circuits of M(G) are

the cycles in G. Another example of a matroid is a finite set of vectors with usual linear

dependency. If A is a matrix, then the matroid formed by the column vectors of A is

called the vector matroid of A, and denoted by M(A). The matrix A is a representation

of a matroid M ' M(A). In particular, cycle matroids of graphs have representations

over any field. (Fig. 1.)

K4

a b

c

d

ef
→

a bc

d

e

f

[
1
0
0

] [
0
1
0

]
[

1
1
0

]

[
1
1
1

]

[
0
0
1

]

[
1
0
1

]

Figure 1 An example of a vector representation of the cycle matroid M(K4). The matroid elements

are depicted by dots, and their (linear) dependency is shown using lines.

The Tutte polynomial of a matroid M on the ground set E is given by

T (M ; x, y) =
∑

A⊆E
(x− 1)r(M)−rM (A)(y − 1)|A|−rM (A) .

Notice that T (M ; x, y) = T (M∗; y, x) for the dual matroid M ∗. The Tutte polynomial

of a graph G is the polynomial T (G; x, y) = T (M(G); x, y). The following statement is

proved in [7]:

Theorem 2.1. (Jaeger, Vertigan, and Welsh, 1990) Let G be a graph. Evaluating the

Tutte polynomial T (G; x, y) at (x, y) = (a, b) is #P -hard unless (a − 1)(b − 1) = 1 or

(a, b) ∈
{

(1, 1), (−1,−1), (0,−1), (−1, 0), (i,−i), (−i, i), (j, j2), (j2, j)
}

, where i2 = −1

and j = e2πi/3.

Another important concept is matroid connectivity, which is close, but somehow dif-

ferent, to traditional graph connectivity. The connectivity function λM of a matroid M

is defined for all subsets A ⊆ E = E(M) by

λM (A) = rM (A) + rM (E −A)− r(M) + 1 .

Notice that the function is symmetric λM (A) = λM (E − A). A partition (A,E − A)

is called a k-separation if λM (A) ≤ k and both |A|, |E − A| ≥ k. Geometrically, the

spans of the two sides of a k-separation intersect in a subspace of rank less than k. In a

corresponding graph view, the connectivity function λG(F) of an edge subset F ⊆ E(G)

equals the number of vertices of G incident both with F and with E(G) − F . (Then

λG(F) = λM(G)(F) provided both sides of the separation are connected in G.)

A sub-cubic tree is a tree in which all vertices have degree at most three. Let `(T)

4 Petr Hliněný

denote the set of leaves of a tree T . Let M be a matroid on the ground set E = E(M).

A branch-decomposition of M is a pair (T, τ) where T is a sub-cubic tree, and τ is an

injection of E into `(T). Let e be an edge of T , and T1 be one of the connected components

of T − e. The width of e in T equals λM (A) = λM (E − A), where A = τ−1(`(T1)) are

the elements mapped to the component T1. Width of the branch-decomposition (T, τ) is

maximum of the widths of all edges of T , and branch-width of M is the minimal width

over all branch-decompositions of M . See examples in Fig. 2.

1 2 3

5
64

987
1

2
3

4 5

6
7

9

8

1
2

3

4 8

5
6

7

1

2

3

4

5

6

7

8

Figure 2 Two examples of width-3 branch decompositions of the Pappus matroid (top left, in
rank 3) and of the binary affine cube (bottom left, in rank 4). The lines in matroid pictures show

dependencies among elements.

In the context of our research, we have to be particularly precise about the way we

handle matroid representations over a field IF :

We denote by PG(r, IF) the projective geometry (space) obtained from a vector space

IF r+1. See [10, Section 6.1,6.3] for an overview of projective spaces and of equivalence of

matroid representations. As one can easily see, a loopless matroid representation could be

viewed as a multiset of points in the projective space PG(r, IF) where r is the rank of M .

For a set A ⊆ PG(r, IF), we denote by 〈A〉 the span of A in the space (the affine closure

in terms of the underlying vector space). The projective rank r(A) of A is the maximal

cardinality of an affinely independent subset of A. A projective transformation is a map-

ping between two projective spaces over IF that is induced by a linear transformation

between the underlying vector spaces.

We call a finite multiset of points in a projective space over IF a point configuration. We

say that two point configurations P1, P2 spanning projective spaces over IF are equivalent

if there is a non-singular projective transformation between the projective spaces that

maps P1 onto P2 bijectively. We represent a loop in a point configuration by the empty

subspace ∅. In the above equivalence, loops are mapped only to loops. An IF -represented

matroid is defined as an equivalence class of finite point configurations over IF .

The Tutte Polynomial for Matroids 5

Obviously, all point configurations in one equivalence class represent the same isomor-

phism class of matroids. (The converse is not always true.) When we want to deal with

an IF -represented matroid, we actually pick an arbitrary point configuration from the

equivalence class. Standard matroidal terms are inherited from matroids to represented

matroids. Since we do not label points in our configurations, we are dealing with un-

labeled matroid elements, which is in correspondence with the definition of the Tutte

polynomial.

3. Parse Trees for Bounded Branch-Width

In this section we introduce our basic formal tool — parse trees for represented matroids

(of bounded branch-width). We repeat the definitions and basic results from [4, Section

3]. All matroids throughout the next sections are IF -represented for some fixed finite

field IF . Hence, for simplicity, if we say a “(represented) matroid”, then we mean an

IF -represented matroid. If we speak about a projective space, we mean the projective

geometry over the field IF . Let [s, t] denote the set {s, s+ 1, . . . , t}.
The following definition presents a possible way of formalizing the notion of a “matroid

with a boundary of size (rank) t”. (Since matroids have no vertices unlike graphs, we

have to introduce special elements that define the span of a matroid boundary.)

Definition. A pair N̄ = (N, δ) is called a t-boundaried (represented) matroid if the

following holds: t ≥ 0 is an integer, N is a represented matroid, and δ : [1, t]→ E(N) is

an injective mapping such that the image δ([1, t]) is independent in N .

We call J(N̄) = E(N) − δ([1, t]) the internal elements of N̄ , elements of δ([1, t]) the

boundary points of N̄ , and t the boundary rank of N̄ . We denote by ∂(N̄) the boundary

subspace spanned by δ([1, t]). To understand the definition properly, one should imagine

a represented matroid on the internal elements J(N̄), equipped with the boundary space

∂(N̄) of rank t which is represented by t additional independent boundary points of N̄ .

The basic operation we shall use is the boundary sum described by the next definition.

Definition. Let N̄1 = (N1, δ1), N̄2 = (N2, δ2) be two t-boundaried represented ma-

troids. We denote by N̄1 ⊕̄ N̄2 = N the represented matroid defined as follows: Let

Ψ1,Ψ2 be projective spaces such that the intersection Ψ1 ∩Ψ2 has rank exactly t. Sup-

pose that, for i = 1, 2, Pi ⊂ Ψi is a point configuration representing Ni such that

P1 ∩ P2 = δ1([1, t]) = δ2([1, t]) ⊂ Ψ1 ∩Ψ2, and δ2(j) = δ1(j) for j ∈ [1, t]. Then N is the

matroid represented by (P1 ∪ P2)− δ1([1, t]).

Informally, the boundary sum N̄1 ⊕̄ N̄2 = N on the ground set E(N) = J(N̄1)∪̇J(N̄2)

is obtained by gluing the representations of N1 and N2 on a common subspace of rank t,

so that the boundary points are identified in order and then deleted. See in Fig. 3. It is

a matter of elementary linear algebra to verify that a boundary sum is well defined with

respect to equivalence of point configurations.

6 Petr Hliněný

⊕̄ →

Figure 3 An example of a boundary sum of two 2-boundaried matroids. The internal elements

are drawn as solid dots, the boundary points as hollow dots, and the boundary subspaces of rank 2
are drawn with thick dashed lines. The resulting sum is a matroid represented on two intersecting
planes in rank 4 (like the “3-dimensional” picture on the right).

Definition. A ≤t-boundaried composition operator is defined as a quadruple � =

(R, γ1, γ2, γ3), where R is a represented matroid, γi : [1, ti] → E(R) is an injective

mapping for i = 1, 2, 3 and some fixed 0 ≤ ti ≤ t, each γi([1, ti]) is an independent set in

R, and
(
γi([1, ti]) : i = 1, 2, 3

)
is a partition of E(R).

The ≤t-boundaried composition operator � is a binary operator applied to a t1-

boundaried represented matroid N̄1 = (N1, δ1) and to a t2-boundaried represented ma-

troid N̄2 = (N2, δ2). The result of the composition is a t3-boundaried represented matroid

N̄ = (N, γ3), written as N̄ = N̄1� N̄2, where a matroid N is defined using boundaried

sums: N ′ = N̄1 ⊕̄(R, γ1), N = (N ′, γ2) ⊕̄ N̄2.

Speaking informally, a boundaried composition operator is a bounded-rank configura-

tion with three boundaries distinguished by γ1, γ2, γ3, and with no other internal points.

The meaning of a composition N̄ = N̄1� N̄2 is that, for i = 1, 2, we glue the repre-

sented matroid Ni with R, matching δi([1, ti]) with γi([1, ti]) in order. The result is a

t3-boundaried matroid N̄ with boundary γ3([1, t3]). Notice that, in general, there are

more than one boundaried composition operators with the same ranks. For reference we

denote by ti(�) = ti, by R(�) = R, and by γi(�) = γi.

Let Ω̄t denote the empty t-boundaried matroid (Ω, δ0) where t ≥ 0 and δ0([1, t]) = E(Ω)

(t will often be implicit in the context). If N̄ = (N, δ) is an arbitrary t-boundaried

matroid, then N̄ ⊕̄ Ω̄t is actually the restriction of N̄ to E(N) − δ([1, t]). Let Ῡ denote

the single-element 1-boundaried matroid (Υ, δ1) where E(Υ) = {x, x′} are two parallel

elements, and δ1(1) = x′. Let Ῡ0 denote the loop 0-boundaried matroid (Υ0, δ0) where

E(Υ0) = {z} is a loop, and δ0 : ∅ → ∅. Let RIFt denote the set of all ≤t-boundaried

composition operators over the field IF .

We set Πt = RIFt ∪ {Ῡ, Ῡ0}. Let Π∗∗t denote the set of all rooted sub-binary trees with

vertices labeled by elements of Πt. Considering a vertex v of a tree T ∈ Π∗∗t ; we set

%(v) = 1 if v is labeled by Ῡ, %(v) = 0 if v is labeled by Ῡ0, and %(v) = t3(�) if v is

labeled by �. We call T a ≤t-boundaried parse tree if the following are true:

• Only leaves of T are labeled by Ῡ or Ῡ0.

• If a vertex v of T labeled by a composition operator � has no left (no right) son, then

t1(�) = 0 (t2(�) = 0).

The Tutte Polynomial for Matroids 7

Ῡ

Ῡ Ῡ Ῡ Ῡ0 Ῡ

∅

�1

�2 �4

�3 �5 �6

2 21 2

3 3

4

Figure 4 An example of a boundaried parse tree. The ovals represent composition operators,

with shaded parts for the boundaries and edge-numbers for the boundary ranks. (E.g. �4 =
(R4, γ4

1 , γ
4
2 , γ

4
3) where γ4

1 , γ
4
2 : [1, 2]→ E(R4), γ4

3 : [1, 3]→ E(R4).)

• If a vertex v of T labeled by � has left son u1 (right son u2), then t1(�) = %(u1)

(t2(�) = %(u2)).

Informally, the boundary ranks of composition operators and/or single-element terminals

must agree across each edge. Notice that Ῡ or Ῡ0 are the only labels from Πt that

“create” elements of the resulting represented matroid P (T) in the next definition. See

an illustration example in Fig. 4.

Definition. Let T be a ≤t-boundaried parse tree. The ≤t-boundaried represented ma-

troid P̄ (T) parsed by T is recursively defined as follows:

• If T is an empty tree, then P̄ (T) = Ω̄0.

• If T has one vertex labeled by Ῡ (by Ῡ0), then P̄ (T) = Ῡ (= Ῡ0).

• If the root r of T is labeled �r, and r has the left subtree T1 and the right subtree T2

(possibly empty trees), then P̄ (T) = P̄ (T1)�r P̄ (T2).

The composition is well defined according to the parse-tree description in the previous

paragraph. The represented matroid parsed by T is P (T) = P̄ (T) ⊕̄ Ω̄, i.e. P̄ (T) restricted

to its internal elements.

Proposition 3.1. (PH) The set RIFt is finite if IF is a finite field.

We need one additional technical condition on a parse tree for computing of the Tutte

polynomial in Theorem 4.1. We say that a t-boundaried represented matroid M̄ = (M, δ)

is spanning if the boundary subspace ∂(M̄) is contained in the span 〈J(M̄)〉 of the internal

points of M̄ . We say that a ≤t-boundaried parse tree T is spanning if, for each nonempty

subtree T1 of T , the boundaried matroid P̄ (T1) is spanning and nonempty. The following

two theorems are proved in [4] and in [5], respectively. (Their validity is not dependent

on whether we require the additional condition of being spanning or not.)

Theorem 3.1. (PH, [4]) A represented matroid M has branch-width at most t + 1 if

and only if it is parsed by some ≤t-boundaried spanning parse tree.

8 Petr Hliněný

Theorem 3.2. (PH, [5]) Let IF be a finite field, and let t be an integer constant.

Suppose that N is an n-element IF -representable matroid given by a matrix over IF . If

N has branch-width at most t, then one can find a ≤3t-boundaried spanning parse tree T

such that P (T) ' N in time O(n3).

4. Boundaried Tutte Polynomial

After having defined the necessary formal tools, we are going to apply matroid parse trees

to a recursive computation of the Tutte polynomial. So, first of all, we need a formal way

to handle the definition of the Tutte polynomial over boundaried represented matroids;

hence to formally distinguish, or to “mark”, a subspace of the matroid boundary. Let

Ω̄t be the empty t-boundaried matroid as above, and let Φ ⊆ ∂(Ω̄t) be a subspace of

the boundary space of Ω̄t. Then the pair K = [Ω̄t,Φ] is called a t-boundary mark. (We

extend projective transformations of point configurations to subspaces in the obvious

sense.) The set of all t-boundary marks is denoted by Kt, and the cardinality |Kt| clearly

equals the number of subspaces of the rank-t projective geometry over IF .

Let M̄ = (M, δ) be a t-boundaried represented matroid, and let J = J(M̄) be the

internal elements of M̄ . We denote by Zt = (zK : K ∈ Kt) a vector of |Kt| free variables.

Moreover, for A ⊆ J , we denote by K
(
M̄ |A

)
∈ Kt the t-boundary mark formed by the

boundary points of M̄ , and by the subspace ∂(M̄) ∩ 〈A〉 which is the intersection of the

boundary of M̄ with the span of A. The boundaried Tutte polynomial of a t-boundaried

matroid M̄ is given by

TB
(
M̄ ; x, y, Zt

)
=
∑

A⊆J
(x− 1)rM (J)−rM (A) · (y − 1)|A|−rM (A) · zK(M̄ |A) .

Proposition 4.1. T
(
M̄ ⊕̄ Ω̄; x, y

)
= TB

(
M̄ ; x, y, (1, . . . , 1)

)
.

Proof. Since M̄ ⊕̄ Ω̄ = M1 is a restriction of M to J , we have J = E(M1). Moreover,

the rank function rM1
: 2J → IN is a restriction of rM to the subsets of J . Hence the

claim follows directly from the above definition.

We shall combine the machinery of boundaried parse trees with the previous definition

in order to produce a straightforward recursive formula for computing the boundaried

Tutte polynomial over a given matroid parse tree. If M is a matroid (represented over

IF) of branch-width at most t + 1, then there is a ≤t-boundaried parse tree TM by

Theorem 3.1, such that the represented matroid P (TM) parsed by TM is isomorphic to

M . Thus we may use Proposition 4.1 to compute the Tutte polynomial for M from the

boundaried one for P̄ (TM).

There is an obvious natural way to apply a composition operator to boundary marks.

For that we need the following formalization: For a t-boundary mark K = [Ω̄t,Φ] where

Ω̄t = (Ω, δ0), we say that a t-boundaried matroid L̄ = (L, δ0) is a representative for K if

E(L) ⊇ E(Ω), and the span 〈E(L)− E(Ω)〉 = Φ.

Let � = (R, γ1, γ2, γ3) be a ≤t-boundaried composition operator where ti = ti(�), and

The Tutte Polynomial for Matroids 9

let Ki ∈ Kti for i = 1, 2 be a ti-boundary mark with a representative L̄i. Then we denote

by [K1�K2] the t3-boundary mark K
(
L̄ |J

)
in the matroid L̄ = L̄1� L̄2 shown by the

set J = J(L̄) = J(L̄1)∪ J(L̄2). Moreover, we denote by σ(�) = t1 + t2 − rR
(
γ1([1, t1])∪

γ2([1, t2])
)

the projective rank of the intersection of boundaries ∂(R, γ1)∩ ∂(R, γ2) in �,

and by %(�; K1,K2) = rL(J(L̄1)) + rL(J(L̄2))− rL(J(L̄)) the rank of the intersection of

the subspaces marked by K1 and K2 in �. It is easy to see that the outcomes of these

definitions are independent of a particular choice of the representatives L̄1, L̄2.

Our recursive computation of the boundaried Tutte polynomial over a boundaried

spanning parse tree is based on the following statement. Here P (x, y, z, . . .) �z stands for

the coefficient of the variable z in a polynomial P .

Theorem 4.1. Let � be a ≤t-boundaried composition operator, and let ti = ti(�) for

i = 1, 2, 3. Suppose that N̄i, i = 1, 2 are ti-boundaried spanning represented matroids.

Then

TB
(
N̄1� N̄2; x, y, Zt3

)
=

=
∑

K1 ∈ Kt1 , K2 ∈ Kt2

(
TB
(
N̄1; x, y, Zt1

)
�zK1

)
·
(
TB
(
N̄2; x, y, Zt2

)
�zK2

)
·

·(x− 1)%(�; K1,K2)−σ(�) · (y − 1)%(�; K1,K2) · z[K1�K2] .

Proof. Let � = (R, γ1, γ2, γ3), let N̄i = (Ni, δi) for i = 1, 2, and let N̄ = (N, δ) =

N̄1� N̄2. We choose an arbitrary set A ⊆ J = J(N̄), and we denote by J1 = J(N̄1),

J2 = J(N̄2), and by A1 = A ∩ J1, A2 = A ∩ J2. (Notice that J1, J2 form a partition of

J .) We denote by Ki = K
(
N̄i |Ai

)
for i = 1, 2 the boundary mark shown by the set Ai

in N̄i. Let r(·) be the rank function of the projective space, which is modular.

For the point configuration representing N we may write rN (J) = rN (J1) + rN (J2)−
r(〈J1〉∩〈J2〉) using modularity. Since both N1, N2 are spanning, and 〈J1〉∩〈J2〉 ⊆ 〈E(R)〉
in the composition �, we get r(〈J1〉 ∩ 〈J2〉) = r

(
∂(R, γ1) ∩ ∂(R, γ2)

)
= σ(�). Hence

rN (J) = rN (J1) + rN (J2)− σ(�).

Considering similarly the points of A in N , we may write rN (A) = rN (A1) + rN (A2)−
r(〈A1〉 ∩ 〈A2〉). Let us choose a representative L̄i of the boundary mark Ki, i = 1, 2,

and denote by L̄ = L̄1� L̄2. Then (considering first the point configuration of N̄ and

then the point configuration of L̄) we have r(〈A1〉 ∩ 〈A2〉) = r
(
〈J(L1)〉 ∩ 〈J(L2)〉

)
=

rL(J(L1))+rL(J(L2))−rL(J(L)) by modularity of r(·). Hence rN (A) = rN (A1)+rN (A2)−
%(�; K1,K2).

Altogether, we conclude

(x− 1)rN (J)−rN (A) · (y − 1)|A|−rN (A) =

= (x− 1)rN1
(J1)−rN1

(A1)+rN2
(J2)−rN2

(A2) · (y − 1)|A1|−rN1
(A1)+|A2|−rN2

(A2)·

·(x− 1)%(�; K1,K2)−σ(�) · (y − 1)%(�; K1,K2) .

Moreover, [K1�K2] is the boundary mark of the set A in N̄ . After multiplying the last

10 Petr Hliněný

expression by z[K1�K2], summing over all choices of A ⊆ J , and grouping the terms by

K1,K2, we get the required formula.

In the next corollaries we provide a “computer science” view of the previous result. To

distinguish the Z-variables of distinct Tutte polynomials, we introduce additional vectors

of free variables Z ′t1 and Z ′′t2 . Then, we may rewrite the formula of the previous theorem

in the following way:

Corollary 4.1. In the setting of Theorem 4.1,

TB
(
N̄1� N̄2; x, y, Zt3

)
= TB

(
N̄1; x, y, Z ′t1

)
· TB

(
N̄2; x, y, Z ′′t2

)
,

where
z′K1
· z′′K2

= (x− 1)%(�; K1,K2)−σ(�) · (y − 1)%(�; K1,K2) · z[K1�K2]

for each pair Ki ∈ Kti , i = 1, 2.

Proof. The key fact to notice here is that each term of the polynomial TB
(
N̄1; x, y, Z ′t1

)

contains exactly one of the variables z′K1
for K1 ∈ Kt1 , and z′K1

is in the first power.

An analogous statement applies to TB
(
N̄2; x, y, Z ′′t2

)
. Hence the above substitutions of

z′K1
· z′′K2

provide the same result as the formula in Theorem 4.1.

Corollary 4.2. Let T ∈ Π∗∗t be a ≤t-boundaried spanning parse tree. If T is an empty

tree, then

TB
(
P̄ (T); x, y, Z0

)
= TB

(
Ω̄0; x, y, Z0

)
= zK(Ω̄0 |∅) .

If T has exactly one vertex labeled by Ῡ or Ῡ0, then

TB
(
P̄ (T); x, y, Z1

)
= TB

(
Ῡ; x, y, Z1

)
= (x− 1)zK(Ῡ |∅) + zK(Ῡ |J(Ῡ)) , or

TB
(
P̄ (T); x, y, Z0

)
= TB

(
Ῡ0; x, y, Z0

)
= zK(Ῡ0 |∅) + (y − 1)zK(Ῡ0 |J(Ῡ0)) .

If r is the root of T labeled by �, and T1, T2 are the sons of r in T , then

TB
(
P̄ (T); x, y, Zt3

)
= TB

(
P̄ (T1); x, y, Z ′t1

)
· TB

(
P̄ (T2); x, y, Z ′′t2

)
,

where
z′K1
· z′′K2

= (x− 1)%(�; K1,K2)−σ(�) · (y − 1)%(�; K1,K2) · z[K1�K2]

for each pair Ki ∈ Kti(�), i = 1, 2.

Proof. This corollary follows directly from the definitions of the boundaried parse tree

and of the boundaried Tutte polynomial, and from Corollary 4.1.

The last corollary provides a straightforward recursive procedure for computing the

boundaried Tutte polynomial on a boundaried parse tree T in |V (T)| steps; each step

involving one multiplication of polynomials, and a bounded number of variable substitu-

tions.

The Tutte Polynomial for Matroids 11

Remark. One may consider “element-weighted” extensions of the Tutte polynomial,

defined by various researchers. It is easy to see that our Theorem 4.1 can be simply

extended to handle also those polynomials. However, since such an extension does not

add anything substantially new to our result, we are making no formal statements about

that issue here.

5. Complexity Review

We now review running time of an algorithm based on Corollary 4.2 and Theorem 3.2.

Firstly, we want to make a remark about considering the length of arithmetic operations

in combinatorial algorithms: Usually, combinatorial algorithms work with integer num-

bers of length proportional to logn where n is the length of the input. It is common

(and well justified by practical applications) to consider that one arithmetic operation

in such a case takes constant time. However, when computing or evaluating the Tutte

polynomial, we deal with numbers of length proportional to n, which is too much to

neglect.

Theorem 5.1. Let u(n) be the number of elementary integer arithmetic operations (sum

or product) needed to compute the product of two two-variable polynomials of degrees at

most n. Let v(n) be time needed to multiply (or sum) two n-bit integers. Assume that IF

is a finite field, t is an integer constant, and that u(n) ≥ Θ(n2). If M is an n-element

rank-r IF -represented matroid of branch-width at most t given by a matrix A ∈ IF r×n,

then the Tutte polynomial T (M ; x, y) can be computed in time O(n · u(n) · v(n)).

Proof. Firstly, we compute a ≤t-boundaried parse tree T of M in time O(n3) ≤ Θ(n ·
u(n)), using the algorithm of Theorem 3.2.

Then we follow the formulas in Corollary 4.2. Computing the Tutte polynomial for

a parse tree with at most one vertex takes constant time. We turn our attention to

the main formula TB
(
P̄ (T); x, y, Zt3

)
= TB

(
P̄ (T1); x, y, Z ′t1

)
·TB

(
P̄ (T2); x, y, Z ′′t2

)
. No-

tice that the set Kti has bounded size for a constant ti ≤ t, and that the variables of

Z ′t1 , Z
′′
t2 appear only in the first power in the above polynomials. We may compute the

product of these polynomials as a bounded number of partial products, thus using only

O(u(n)) elementary arithmetic operations. Then we apply a bounded number of variable

substitutions with bounded-degree polynomials in time O(n2).

Altogether, we have to compute O(n) such products of polynomials. Looking at the

definition of the boundaried Tutte polynomial, we see that the coefficients of the involved

polynomials are not larger that 2O(n) since |E(P (T))| = n. Hence the coefficients have

lengths of at most O(n) bits, and so one elementary arithmetic operation with them

can be done in time O(v(n)). Finally, we substitute Zt = (1, . . . , 1) in time O(n2). By

combining all these estimates, we get the required upper time-bound of O(n ·u(n) ·v(n)).

12 Petr Hliněný

Corollary 5.1. Assume that IF is a finite field, and that t is an integer constant. If

M is an n-element IF -represented matroid of branch-width at most t, then the Tutte

polynomial T (M ; x, y) can be computed in time O(n6 logn log logn).

Proof. A two-variable polynomial of degree at most n has at most (n+1)2 terms. Hence

the trivial algorithm can multiply two such polynomials using u(n) = O(n4) elementary

arithmetic operations with the coefficients. A well known algorithm by Strassen multiplies

two n-bit numbers in time v(n) = O(n logn log logn). The rest follows from Theorem 5.1.

We remark that the input size of a represented matroid M is O(nr), which typically is

of order n2. It is shown in [9] that to compute the Tutte polynomial of a graph of bounded

tree-width and size n takes time at least Ω(n3). The performance of our algorithm does

not match this lower bound, but it is much better than the algorithm in [1] with the

exponent depending on t. We also show that, with our more general matroidal algorithm,

we can almost match the performance of [9] when evaluating the Tutte polynomial at a

rational point.

Corollary 5.2. Let IF be a finite field, and let t be an integer constant. Suppose that a, b

are rational numbers given as fractions of integers a = pa
qa

, b = pb
qb

such that the combined

length of pa, qa, pb, qb is l bits, and that M is an n-element IF -represented matroid of

branch-width at most t. Then the Tutte polynomial of M can be evaluated as T (M ; a, b)

at a, b in time O(n3 + n2l · log(nl) · log log(nl)).

Proof. We slightly modify the procedure of Theorem 5.1. This time TB
(
P̄ (T); a, b, Zt

)

is a polynomial of degree 1 with variables Zt. Since Zt contains a bounded number of vari-

ables, each of the polynomials in the product TB
(
P̄ (T1); a, b, Z ′t1

)
· TB

(
P̄ (T2); a, b, Z ′′t2

)

has bounded number of terms, and hence we may compute the product in total time

O(v(k)) = O(k log k log log k) where k = O(nl) is the number of bits sufficient to de-

scribe the coefficients. (We do not have to consider division since we evaluate the result

as a fraction of two integers.) The rest follows easily.

The reader may ask whether our procedure is valid when a = 1; an evaluation of

(x − 1)%(�; K1,K2)−σ(�) at x = a could mean division by zero when substituting the

z′K1
· z′′K2

variables. (See in Corollary 4.2.) Fortunately, this cannot happen, as we show

now. If %(�; K1,K2) ≤ σ(�) − 1 for some K1,K2, then at least one of the sides in the

product, say TB
(
N̄1; x, y, Z ′t1

)
� zK1

, contains the factor (x − 1). Otherwise, the term

TB
(
N̄ ; x, y, Zt

)
� z[K1�K2] of the Tutte polynomial for N̄ would have the factor (x − 1)

in a negative power by Theorem 4.1, which contradicts the definition of the polynomial.

Hence the term z′K1
· z′′K2

does not appear at all in our evaluation at x = a = 1.

Noble [9] constructs an algorithm evaluating the Tutte polynomial T (G; a, b) at a, b for

a graph G of bounded tree-width in time O((v+p) ·el · log e log log e · log l log log l), where

v is the number of vertices, e is the number of edges, and p the the size of the largest

parallel class in G. Note that n = e in our setting. The performance of our algorithm

The Tutte Polynomial for Matroids 13

in Corollary 5.2 is quite close to Noble [9]. In fact, one can compute the parse tree for

the cycle matroid of a graph of bounded branch-width in linear time using the graphic

algorithm of Bodlaender and Thilikos [2], and so one can match the performance of [9]

with our algorithm for cycle matroids of simple graphs.

6. Conclusions

Finally, we want to remark that our approach is based on similar ideas as those of No-

ble [9], but extended to represented matroids. By using a powerful, although not simple,

machinery of boundaried parse trees, we are able to provide a more straightforward re-

cursive procedure for computing the Tutte polynomial. That is why we think that our

result is interesting and useful for computing the Tutte polynomial also over graphs of

bounded branch-width.

It seems to be really necessary to consider IF -represented matroids in our approach

since the notion of a “k-sum” is not well defined for abstract matroids if k > 2, and so

we have no means to define a parse tree for an abstract matroid. Moreover, consider-

ing infinite fields IF , we have proved that computation of the Tutte polynomial (more

precisely, evaluation of the number of bases) is #P -hard on matroids of branch-width 3

represented by rational matrices [6].

References

[1] A. Andrzejak, An Algorithm for the Tutte Polynomials of Graphs of Bounded Treewidth,
Discrete Math. 190 (1998), 39–54.

[2] H.L. Bodlaender, D.M. Thilikos, Constructive Linear Time Algorithms for Branch-Width,
Proceedings 24th ICALP, Lecture Notes in Computer Science 1256, 1997, 627–637.

[3] R.G. Downey, M.R. Fellows, Parametrized Complexity, Springer-Verlag New York, 1999.
ISBN 0 387 94833 X.

[4] P. Hliněný, Branch-Width, Parse Trees, and Monadic Second-Order Logic for Matroids,
submitted, 2002. Extended abstract in: STACS 2003, Lecture Notes in Computer Science
2607, Springer Verlag (2003), 319–330.

[5] P. Hliněný, A Parametrized Algorithm for Matroid Branch-Width, submitted, 2003.
[6] P. Hliněný, It is Hard to Recognize Free Spikes, submitted, 2002.
[7] F. Jaeger, D.L. Vertigan, D.J.A. Welsh, On the Computational Complexity of the Jones and

Tutte Polynomials, Math. Proc. Camb. Phil. Soc. 108 (1990), 35–53.
[8] J.A. Makowsky, Colored Tutte Polynomials and Kauffman Brackets for Graphs of Bounded

Tree Width, Discrete Applied Mathematics, to appear.
[9] S.D. Noble, Evaluating the Tutte Polynomial for Graphs of Bounded Tree-Width, Combin.

Probab. Computing 7 (1998), 307–321.
[10] J.G. Oxley, Matroid Theory, Oxford University Press, 1992,1997.

ISBN 0-19-853563-5
[11] W.T. Tutte, A Ring in Graph Theory, Proc. Camb. Phil. Soc. 43 (1947), 26–40.
[12] D.L. Vertigan, D.J.A. Welsh, The Computational Complexity of the Tutte Plane: the Bi-

partite Case, Combin. Probab. Computing 1 (1992), 181–187.
[13] D.J.A. Welsh, The Tutte Polynomial, Random Structures Algorithms 15 (1999), 210–228.
[14] D.J.A. Welsh, Matroid Theory, Academic Press, London 1976.

ISBN 0 12 744050 X.

