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1 Open Problems

1.1 Problem 1: Planarly drawn spanning tree in every/some crossing-minimal
drawing

by Tilo Wiedera

Question 1. Does every crossing minimal drawing contains a planarly drawn spanning tree?

It seems that long time ago, Petr and Gelasio constructed examples of graphs whose optimal drawings
do not contain spanning trees. However, the answer to this question is unknown when only crossing-
minimal drawings are considered.

1.2 Problem 2: Planarly drawn spanning tree in every simple drawing of Km,n

by Irene Parada

Question 2. Does every simple drawing of Km,n have a planarly drawn spanning tree?

Certain conditions that make the answer to this question is positive:

• if the considered drawing is rectilinear;

• if m = 2 or 3; and

• when all the vertices of one of the two maximal independent sets are incident with the outer face.

Possibly a stronger statement holds: given a simple drawing ofKm,n and the set of edgesEv ⊆ E(Km,n)
incident with a fixed vertex v, is there there a planarly drawn spanning tree containing Ev? It would be
interesting to show whether this holds for pseudolinear/monotone drawings.

1.3 Problem 3: Generalizing 4-to-3 expansion (from high-degree critical construc-
tion)

by Drago Bokal
Let G be a graph with a vertex s and three neighbours t1, t2 and t3. Suppose there are two edges of

thickness 4 from s to t1 and t2, and that there is an edge of thickness one from s to t3 as indicated in the
left of Figure 1. The 4-to-3 expansion is obtained by removing s and replacing it by three vertices s1, s2
and s3. Edges with certain thickness from and between s1, s2 and s3 are added according to the right of
Figure 1.
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Figure 1: 3-to-4 expansion

In [1], Petr Hliněný introduced 4-to-3 expansions, with an ingenious proof that if G′ is a 4-to-3 ex-
pansion of a graph G and cr(G) ≥ 13, then cr(G′) ≥ 13 and G′ is 13-crossing critical. The proof uses an
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interesting fact, that in one of the cases that need to be analyzed, one can find at least 13 crossings on the
edges involved in the operation.

Generalizing the 4-to-3 expansion, for an integer d ≥ 4, define the d-to-(d − 1) operation the same as
before, but replacing the parameters 3 and 4 by d and d− 1, respectively.

Question 3. Let G′ be a graph is obtained from G by applying a d-to-(d − 1) operation. Is it true that
cr(G′) ≥ cr(G)?

It seems possible to approach this problem by using general Leighton embedding method that bounds
the crossing number.

This might be useful to produce c-crossing-critical graphs with k vertices of arbitrarily large degree for
any c ≥ 13. Current constructions only yield c-crossing-critical graphs with k vertices of arbitrarily large
degree for any c ≥ 13k.

1.4 Problem 4: Bicolouring crossings in a straight-line drawing of Kn

by Birgit Vogtenhuber

Question 4. Given a straight-line drawing D of Kn, what is the complexity of finding a 2-coloring of the set
of edges such that the number of crossings between edges of the same color is minimized?

Consider the intersection graph XD (or crossing graph) of a drawing D, whose vertices are the edges
of D and there is an edge between two vertices e, f ∈ V (XD) if and only if they cross in D.

The 2-coloring required in Question 4 can be viewed as a bipartion (A,B) of V (XD) that minimizes
the number of edges with both endpoints in A or B. Therefore, the considered problem is equivalent to
the max cut problem for the complement XD.

Observations:

• This question is NP-Hard if general graphs are considered instead of Kn.

• This questions is hard even if points are in convex position

1.5 Problem 5: Characterizing monotone drawings
by Alan Arroyo

A monotone curve is the image of a continuous function α : [0, 1]→ R2 such that, for x, y ∈ [0, 1], x < y
iff α(x) < α(y). A monotone (or x-monotone) drawing D is a drawing in which each edge is a monotone
curve.

Figure 2: A cloud, a fish and a crab.

Two drawings in R2 are homeomorphic if there is an homeomorphism R2 → R2 mapping one drawing
into the other. A drawing D of a graph G is homomonotone if there is an monotone drawing

−→
D of G

homeomorphic to D.
There are two known families of not homomonotone drawings: clouds and fish. Two of these creatures

are depicted in the left and center drawings in Fig. 2.
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Question 5. Are there more minimal obstructions to homomonotonicity, apart from clouds and fish? Can we
find all the obstructions?

This question is mainly motivated by a recent characterization of pseudolinear drawings that are indeed
homomonotone [2]. This characterization is by means of three forbidden obstructions: clouds, fish and
crabs (see Figure 2).

To solve this question, one can assume that the considered drawing is not pseudolinear; hence, there
is at least one crab.

The hope is that a good understanding of the crabs behaviour maybe sufficient to predict when a
drawing is homononotone.

1.6 Problem 6: Well-quasi ordering for surface minors (beyond the plane)
by Gelasio Salazar

Let Σ be a surface. Two graphs embedded in Σ are combinatorially equivalent if there is a self-
homeomorphism of Σ that takes one to the other. If H and G are graphs embedded in Σ, then H is a
Σ-minor of G if there is a sequence of vertex deletions, edge deletions and edge contractions performed
on Σ that take G to a graph combinatorially equivalent to H.

Question 6. Is the Σ-minor relation a well-quasi-order for every Σ?

This question has some motivation coming from Knot Theory. The answer is affirmative when Σ is the
plane [3]. For this work, the tools provided by the Graph Minor Theorem were insufficient.
Observations:

• A minor is not necessarily a surface minor.

• Maybe a good use of SPQ-trees can provide a simpler proof for the planar case.

• Seems to be an easy problem when the tree-width is bounded and when the Σ-representativity of a
subsequence of Σ-embedded graphs is increasing.

1.7 Problem 7: Tanglegrams and induced sub-tanglegrams relation, WQO
by László Székely
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Figure 3: Results of a switch and a mirror operation.

A tangelgram layout consists on two rooted binary trees L andR (left and right) and a perfect matching
M between their leafs. The left tree L is planarly drawn to the left of the x = −1 line where only its leafs
are allowed to be on this line; likewise the right tree R is planarly drawn to the right of x = 1 with its
leafs on this line. The perfect matchingM is drawn rectilinearly.

There is an important operation for tangelgrams layouts:
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• Switch: Given a non-leaf vertex v in any of the two trees L and R, there are two subtrees of descen-
dants of v. These trees are the upper and lower trees at v. The switching operation at v consists on
interchanging the upper tree by the lower tree, and the lower tree by the upper (as in Figure 3).

Two tangelgram layout represent the same tangelgram, if, after a series of switches, one layout is
obtained from the other.

In a rooted binary plane tree T , if one chooses a subset S of the leafs of T , there is a unique subtree
T ′ of T containing S as set of leafs. Moreover, T ′ is a (subdivided) binary tree. The tree obtained after
suppressing the degree 2 vertices of T ′ is the binary subtree of T induced by S.

Given two tangelgram layouts L1 = (R1, L1,M1) and L2 = (R2, L2,M2), L1 is a sub-layout of L2 if
M1 ⊂M2 and L1 and R1 are the binary subtrees induced by the leafs of L2 and R2, respectively, that are
incident withM1. A tangelgram T1 is a sub-tangelgram of T2 iff there are layouts L1 and L2 of T1 and T2,
respectively, for which L1 is a sublayout of L2.

Question 7. Is the induced-subtangelgram relation well-quasi ordered?

This question is partly motivated from the fact that planar tangelgrams (tangelgrams that have a lay-
out without crossings between the matching edges), can be characterized by forbidding two induced-
subtangelgrams.

1.8 Problem 8: Big clique big line conjecture (visibility)
by Bodhayan Roy

Given a set S of points in the plane, we say that two points u, v ∈ S are visible if the line segment
between u and v does not contain any other point from S.

Question 8. Is it true that for all integers k, ` there exists an integer n such that every finite set of at least n
points in the plane contains either ` collinear points or k pairwise visible points.

Kára, Pór, and Wood conjectured that the answer is positive [4]. The assumption that S is finite is
crucial, as the conjecture fails for infite point sets.

A possible way to approach this problem would be to consider vertex degrees in point visibility graphs
(for a set S of points in the plane, the corresponding visibility graph has vertex set S and for any two
u, v ∈ S, uv is an edge iff the points u and v are visible). Onur’s conjecture is the following.

Conjecture 1. For every ε there exists n0 such that every set of n ≥ n0 points in the plane contains either 4
collinear points or a point of degree at least (1− ε)n.

So far, we have shown that the statement in Conjecture 1 is true for ε ≥
√

2− 1.
A related, but weaker problem regards blocked point sets. A set S of points is k-blocked if every point

in S can be assigned one of k colors is such a way that every two points u, v ∈ S are visible if and only if
they are assigned different colors. Aloupis et al.[5] conjectured the following.

Conjecture 2. For every k there exists some n such that every k-blocked set has at most n points.

1.9 Problem 9: Computing the crossing number parameterized by the vertex cover
(treed)

by Petr Hliněný
The goal of this problem is to find reasonably nice and rich classes of graphs where the crossing number

is unbounded and efficiently computable. An inspiration for this qustion is the class of simple graphs
having bounded vertex cover, for which the crossing number is in FPT when parametrized by the size of a
minimum vertex cover.
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Question 9. Is determining the crossing number of edge-weighted graphs FPT, when parametrized by the size
of a minimum vertex cover?

Staying in simple graphs, a natural generalization of a small vertex cover is bounded tree-depth.

Question 10. Is there an approximation algorithm for the crossing number that is FPT when parametrized
by the tree-depth of the graph?

1.10 Problem 10: Thrackle conjecture for radial drawings
by Radoslav Fulek

A thrackle is a drawing of a graph such that each edge is a Jordan arc and every pair of edges meet
exactly once. The Thrackle conjecture (posed by Conway in 1960s) states that if a graph G = (V,E)
admits a drawing in the plane that is a thrackle, then |E| ≤ |V |.

Radial drawing is a drawing on S1 × I such that the orthogonal projection to I in injective for every
edge.

Question 11. Is the thrackle conjecture true for radial drawings?

Pach and Sterling showed monotone drawings satisfy the Thrackle conjecture, and hence, if the answer
of this question is positive, this would generalize Pach and Sterling result.
Observations:

• Perhaps looking at thrackle radial drawings of small graphs may give some insight.

• An alternative easy problem is to look a drawings such that by removing one edge the drawing
becomes monotone.

1.11 Problem 11: Computing clique size in disk graphs of two radii
Onur Çağırıcı

A biradii disk intersection graph is a disc intersection graph that can be realized by disks of radius 1 or
r for some r.

Question 12. What is the complexity of MAX CLIQUE for biradii disk intersection graphs?

1.12 Problem 12: Bipartite midrange crossing constant different than the regular
one?

Éva Czabarka
Given a class of graphs H, let kH(n, e) = min{cr(G) : G ∈ H, |V (G)| = n, |E(G)| = e}. It was shown

by Pach, Spencer and Tóth that if H is the set of all graphs with n� e� n2,

lim
n→∞

kH(n, e) · n
2

e3

exists. This limitC is known as themidrange crossing constant. Note that this midrange crossing constant is
related with the crossing lemma, stating that for any graph with n vertices and e > 7n edges, cr(G) ≥ k e3

n2

for some constant k (the best known constant is k = 1
29 due to Ackerman). Indeed, the crossing lemma

gives us a positive lower bound for the expression inside the limit. However, it is far from obvious that the
midrange crossing constant exists.

The bipartite midrange crossing constant is similarly defined for bipartite graphs.
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Question 13. Does the bipartite midrange crossing constant differ from the regular one?

A graph class H is PST if it has a graph with at least on edge and is closed under

1. taking subgraphs;

2. disjoint unions; and

3. vertex cloning.

It can be shown that every PST class has a midrange crossing constant. The set of bipartite graphs is
PST, and indeed, every PST class contains the bipartite graphs.

It is unknown whether any two PST classes have different midrange crossing constant. The existence
of two different constants would imply that the constant for the class of all graphs is smaller that the one
for the bipartite graph, and this naturally motivates Question 13.
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