
'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 1 Generation of Matroids

Canonical Generation of MatroidsCanonical Generation of Matroids
(from ancient times of matroid computing to the present)(from ancient times of matroid computing to the present)

Petr Hliněný∗Petr Hliněný∗

Faculty of Informatics, Masaryk University

Brno, Czech Republic

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 2 Generation of Matroids

1 Bit of Personal History1 Bit of Personal History

My getting to mathematical computing:

• Early 90’s – some tries to generate snarks on a computer;

that was when I had first met Brendan’s work and nauty.

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 2 Generation of Matroids

1 Bit of Personal History1 Bit of Personal History

My getting to mathematical computing:

• Early 90’s – some tries to generate snarks on a computer;

that was when I had first met Brendan’s work and nauty.

• Late 90’s – Negami’s planar cover conjecture;
unsuccessful tries to get a computer-assisted discharging argument, and

a very successful generation of all possible counterexamples to it.

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 2 Generation of Matroids

1 Bit of Personal History1 Bit of Personal History

My getting to mathematical computing:

• Early 90’s – some tries to generate snarks on a computer;

that was when I had first met Brendan’s work and nauty.

• Late 90’s – Negami’s planar cover conjecture;
unsuccessful tries to get a computer-assisted discharging argument, and

a very successful generation of all possible counterexamples to it.

• Since 2000 – MACEK, motivated by Geoff’s questions and suggestions.

Unfortunately, its development not touched since 2006.

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 2 Generation of Matroids

1 Bit of Personal History1 Bit of Personal History

My getting to mathematical computing:

• Early 90’s – some tries to generate snarks on a computer;

that was when I had first met Brendan’s work and nauty.

• Late 90’s – Negami’s planar cover conjecture;
unsuccessful tries to get a computer-assisted discharging argument, and

a very successful generation of all possible counterexamples to it.

• Since 2000 – MACEK, motivated by Geoff’s questions and suggestions.

Unfortunately, its development not touched since 2006.

• And nowadays – am I too old for programming? Or too lazy?

Perhaps, and so I leave the coding work to my students. . .

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 2 Generation of Matroids

1 Bit of Personal History1 Bit of Personal History

My getting to mathematical computing:

• Early 90’s – some tries to generate snarks on a computer;

that was when I had first met Brendan’s work and nauty.

• Late 90’s – Negami’s planar cover conjecture;
unsuccessful tries to get a computer-assisted discharging argument, and

a very successful generation of all possible counterexamples to it.

• Since 2000 – MACEK, motivated by Geoff’s questions and suggestions.

Unfortunately, its development not touched since 2006.

• And nowadays – am I too old for programming? Or too lazy?

Perhaps, and so I leave the coding work to my students. . .

For instance;

– generating all posible nonprojective graphs with planar emulators,
– and computing good heuristic partitioned branch-decompositions of

really huge graphs (e.g. the TIGER/Line road maps of USA).

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 3 Generation of Matroids

2 MACEK and Matroid Generation2 MACEK and Matroid Generation

– MAtroids Computed Efficiently toolKit.

• A system developed under influence of Geoff at VUW since 2000.

• Intended to help with tiresome small case-checking in matroid theory.

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 3 Generation of Matroids

2 MACEK and Matroid Generation2 MACEK and Matroid Generation

– MAtroids Computed Efficiently toolKit.

• A system developed under influence of Geoff at VUW since 2000.

• Intended to help with tiresome small case-checking in matroid theory.

• Handling only represented matroids over small finite fields and partial
fields, and richly supporting step-by-step generation of these matroids

from specified base minors.

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 3 Generation of Matroids

2 MACEK and Matroid Generation2 MACEK and Matroid Generation

– MAtroids Computed Efficiently toolKit.

• A system developed under influence of Geoff at VUW since 2000.

• Intended to help with tiresome small case-checking in matroid theory.

• Handling only represented matroids over small finite fields and partial
fields, and richly supporting step-by-step generation of these matroids

from specified base minors.

• Some disadvantages:

– Nonequivalent representations must be handled each one separately,
and

– no support for abstract matroids (though isomorph. testing works).

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 4 Generation of Matroids

2.1 MACEK – a practical example2.1 MACEK – a practical example

– the largest golden-mean matroids of each rank.

Consider a question;

what are the maximum-size golden-mean matroids of each rank?

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 4 Generation of Matroids

2.1 MACEK – a practical example2.1 MACEK – a practical example

– the largest golden-mean matroids of each rank.

Consider a question;

what are the maximum-size golden-mean matroids of each rank?

• These are 3-connected, and we may use the Wheels-and-Whirls theorem
to generate all of them in single-element steps.

• MACEK has been developed right for this kind of tasks. . .

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 4 Generation of Matroids

2.1 MACEK – a practical example2.1 MACEK – a practical example

– the largest golden-mean matroids of each rank.

Consider a question;

what are the maximum-size golden-mean matroids of each rank?

• These are 3-connected, and we may use the Wheels-and-Whirls theorem
to generate all of them in single-element steps.

• MACEK has been developed right for this kind of tasks. . .

{ <Wh3 <W3 }

!represgen (S) allq

!append ((S)) "!extend cccccccccccccccc (T)"

!restart

!prtree

– !restart is a tricky way to repeat (cycle) in MACEK.

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 5 Generation of Matroids

2.2 MACEK – a second practical example2.2 MACEK – a second practical example

– the intertwines of M(K3,3) and M(K3,3)
∗.

As Gordon has mentioned in his talk, another interesting task is:

Find the matroids M with both M(K3,3) and M(K3,3)
∗ as minors such

that no proper minor of M has both M(K3,3) and M(K3,3)
∗ as minors.

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 5 Generation of Matroids

2.2 MACEK – a second practical example2.2 MACEK – a second practical example

– the intertwines of M(K3,3) and M(K3,3)
∗.

As Gordon has mentioned in his talk, another interesting task is:

Find the matroids M with both M(K3,3) and M(K3,3)
∗ as minors such

that no proper minor of M has both M(K3,3) and M(K3,3)
∗ as minors.

• Having such 3-connected M , there is a 3-connected single-element minor

N of M containing M(K3,3) but not M(K3,3)
∗.

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 5 Generation of Matroids

2.2 MACEK – a second practical example2.2 MACEK – a second practical example

– the intertwines of M(K3,3) and M(K3,3)
∗.

As Gordon has mentioned in his talk, another interesting task is:

Find the matroids M with both M(K3,3) and M(K3,3)
∗ as minors such

that no proper minor of M has both M(K3,3) and M(K3,3)
∗ as minors.

• Having such 3-connected M , there is a 3-connected single-element minor

N of M containing M(K3,3) but not M(K3,3)
∗.

– All such potential matroids N can be generated in step-by-step 3-
connected extensions from M(K3,3) while excluding M(K3,3)

∗.

– This is very fast in MACEK.

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 5 Generation of Matroids

2.2 MACEK – a second practical example2.2 MACEK – a second practical example

– the intertwines of M(K3,3) and M(K3,3)
∗.

As Gordon has mentioned in his talk, another interesting task is:

Find the matroids M with both M(K3,3) and M(K3,3)
∗ as minors such

that no proper minor of M has both M(K3,3) and M(K3,3)
∗ as minors.

• Having such 3-connected M , there is a 3-connected single-element minor

N of M containing M(K3,3) but not M(K3,3)
∗.

– All such potential matroids N can be generated in step-by-step 3-
connected extensions from M(K3,3) while excluding M(K3,3)

∗.

– This is very fast in MACEK.

• The next step then adds one element to the generated N in all possible
ways creating an M(K3,3)

∗-minor. Let N1 be the extended matroid.

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 6 Generation of Matroids

– All single-element removals of N1 are then checked for M(K3,3) and
M(K3,3)

∗, which can validate N1 = M being an intertwine.

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 7 Generation of Matroids

The initial generation multi-step

In the rather curious (or even bizzare) language of MACEK this reads:

!pfield GF2

!verbose

{ <grK33 }

@name itwi

@ext-forbid grK33#

!extend $param1

!mmove ((S)) >(()(S))

!prtree

!writetreeto itwi-$param1 (()(T))

– here param1 controls the max size of intended N (the number of extension
steps we take),

– and !mmove is needed to “deprive” the generated matrices of traces (the
signatures) of their generating sequences.

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 8 Generation of Matroids

Continuing; the one-element addition

This step is already quite slow – having to “forget” the previous generating
sequence, we arrive at many duplicates.

So;

!quiet

!append (T) "@eraseall ext-forbid"

!extend b (()(S)) >((2)(S))

!prtree

!writetreeto itwi-$param1-b ((2)(T))

{ <grK33# }

!filt-minor ((2)(S)) ((3)(T))

!prtree

!writetreeto itwi-$param1-bm ((2)(T))

– all the one-element additions are tried for each potential N ,

– and only those extensions having an M(K3,3)
∗ are kept.

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 9 Generation of Matroids

Finishing; testing an intertwine

The finishing step done just by brute force – all one-element removals are tested
as follows for the presence of M(K3,3) and M(K3,3)

∗ minors.

!append ((2)(S)) "!remeach (T); !quiet"

!append ((2)(S)) "!mread grK33 >(()(t)); !mread grK33# >((2)(t))"

!append ((2)(S)) "!filt-minor ((S)) (()(T))"

!append ((2)(S)) "!filt-minor ((S)) ((2)(T))"

!append ((2)(S)) "!iflist 0 = ((S)); !writeto itwi-$param1-ok/ (T)"

!restart

!prtree

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 10 Generation of Matroids

3 Canonical Generation: Generating Sequences3 Canonical Generation: Generating Sequences

– an idea extending Brendan’s orderly generation approach.

The core: Not consider the task as just “constructing a matroid”, but “con-

structing a particular generating sequence” (leading to this matroid).

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 10 Generation of Matroids

3 Canonical Generation: Generating Sequences3 Canonical Generation: Generating Sequences

– an idea extending Brendan’s orderly generation approach.

The core: Not consider the task as just “constructing a matroid”, but “con-

structing a particular generating sequence” (leading to this matroid).

• This is a better framework to capture various involved connectivity

restrictions in chain and splitter theorems.

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 10 Generation of Matroids

3 Canonical Generation: Generating Sequences3 Canonical Generation: Generating Sequences

– an idea extending Brendan’s orderly generation approach.

The core: Not consider the task as just “constructing a matroid”, but “con-

structing a particular generating sequence” (leading to this matroid).

• This is a better framework to capture various involved connectivity

restrictions in chain and splitter theorems.

• It is really needed, say (in MACEK), if one wants to stick with a

particular matrix representation.

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 10 Generation of Matroids

3 Canonical Generation: Generating Sequences3 Canonical Generation: Generating Sequences

– an idea extending Brendan’s orderly generation approach.

The core: Not consider the task as just “constructing a matroid”, but “con-

structing a particular generating sequence” (leading to this matroid).

• This is a better framework to capture various involved connectivity

restrictions in chain and splitter theorems.

• It is really needed, say (in MACEK), if one wants to stick with a

particular matrix representation.

Canonical minimality: Among all generating sequences leading to isomorphic
“results”, define a linear canonical order.

Always generate only the canonically minimal sequence among all.

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 10 Generation of Matroids

3 Canonical Generation: Generating Sequences3 Canonical Generation: Generating Sequences

– an idea extending Brendan’s orderly generation approach.

The core: Not consider the task as just “constructing a matroid”, but “con-

structing a particular generating sequence” (leading to this matroid).

• This is a better framework to capture various involved connectivity

restrictions in chain and splitter theorems.

• It is really needed, say (in MACEK), if one wants to stick with a

particular matrix representation.

Canonical minimality: Among all generating sequences leading to isomorphic
“results”, define a linear canonical order.

Always generate only the canonically minimal sequence among all.

• Of course, this canonical order must be hereditary (on subseq.).

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 10 Generation of Matroids

3 Canonical Generation: Generating Sequences3 Canonical Generation: Generating Sequences

– an idea extending Brendan’s orderly generation approach.

The core: Not consider the task as just “constructing a matroid”, but “con-

structing a particular generating sequence” (leading to this matroid).

• This is a better framework to capture various involved connectivity

restrictions in chain and splitter theorems.

• It is really needed, say (in MACEK), if one wants to stick with a

particular matrix representation.

Canonical minimality: Among all generating sequences leading to isomorphic
“results”, define a linear canonical order.

Always generate only the canonically minimal sequence among all.

• Of course, this canonical order must be hereditary (on subseq.).

• “All” generating sequences can be easily replaced with “all conform-
ing to some arbitrary criteria” if these criteria are hereditary, too.

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 11 Generation of Matroids

The overall advantage: Now, we can define many, even really weird, restric-
tions on the generating sequences; they just have to be hereditary. . .

The price to pay: Often, the requirement of being hereditary on subsequences

implies quite “expensive” canonical orderings, such as:

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 11 Generation of Matroids

The overall advantage: Now, we can define many, even really weird, restric-
tions on the generating sequences; they just have to be hereditary. . .

The price to pay: Often, the requirement of being hereditary on subsequences

implies quite “expensive” canonical orderings, such as:

• A lexicographical ordering on the sequences with the heavier keys
“on the left” (beginning of the sequence) – unlike the orderly gen-

eration which simply takes the heaviest key at the sequence end.

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 11 Generation of Matroids

The overall advantage: Now, we can define many, even really weird, restric-
tions on the generating sequences; they just have to be hereditary. . .

The price to pay: Often, the requirement of being hereditary on subsequences

implies quite “expensive” canonical orderings, such as:

• A lexicographical ordering on the sequences with the heavier keys
“on the left” (beginning of the sequence) – unlike the orderly gen-

eration which simply takes the heaviest key at the sequence end.

• Consequently, a canonicity test has to evaluate all possible generat-

ing sequences, and not only the possible last steps.

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 11 Generation of Matroids

The overall advantage: Now, we can define many, even really weird, restric-
tions on the generating sequences; they just have to be hereditary. . .

The price to pay: Often, the requirement of being hereditary on subsequences

implies quite “expensive” canonical orderings, such as:

• A lexicographical ordering on the sequences with the heavier keys
“on the left” (beginning of the sequence) – unlike the orderly gen-

eration which simply takes the heaviest key at the sequence end.

• Consequently, a canonicity test has to evaluate all possible generat-

ing sequences, and not only the possible last steps.

• Yet, a quite efficient implementation is possible, cf. MACEK.

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 12 Generation of Matroids

Some implementation details:

• The generating framework (high-level) gets a generating sequence on one

side, and a list of all possible one-element additions on the other side.

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 12 Generation of Matroids

Some implementation details:

• The generating framework (high-level) gets a generating sequence on one

side, and a list of all possible one-element additions on the other side.

• The canonical minimality testing is coded in the framework, calling an

external elementary comparison function.

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 12 Generation of Matroids

Some implementation details:

• The generating framework (high-level) gets a generating sequence on one

side, and a list of all possible one-element additions on the other side.

• The canonical minimality testing is coded in the framework, calling an

external elementary comparison function.

• An external function for testing admissibility of a generating sequence is

provided as well.

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 12 Generation of Matroids

Some implementation details:

• The generating framework (high-level) gets a generating sequence on one

side, and a list of all possible one-element additions on the other side.

• The canonical minimality testing is coded in the framework, calling an

external elementary comparison function.

• An external function for testing admissibility of a generating sequence is

provided as well.

• Both the aforementioned external functions must be sufficiently “frag-
mented”, so that the framework can “gradually” call the admissibility
and canonicity test (from the least to the most expensive ones)!

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 13 Generation of Matroids

3.1 Back to the second MACEK example3.1 Back to the second MACEK example

Find the matroids M with both M(K3,3) and M(K3,3)
∗ as minors such

that no proper minor of M has both M(K3,3) and M(K3,3)
∗ as minors.

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 13 Generation of Matroids

3.1 Back to the second MACEK example3.1 Back to the second MACEK example

Find the matroids M with both M(K3,3) and M(K3,3)
∗ as minors such

that no proper minor of M has both M(K3,3) and M(K3,3)
∗ as minors.

• A generating sequence leading to such an intertwine M should

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 13 Generation of Matroids

3.1 Back to the second MACEK example3.1 Back to the second MACEK example

Find the matroids M with both M(K3,3) and M(K3,3)
∗ as minors such

that no proper minor of M has both M(K3,3) and M(K3,3)
∗ as minors.

• A generating sequence leading to such an intertwine M should

– start from M(K3,3) (as a minor),

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 13 Generation of Matroids

3.1 Back to the second MACEK example3.1 Back to the second MACEK example

Find the matroids M with both M(K3,3) and M(K3,3)
∗ as minors such

that no proper minor of M has both M(K3,3) and M(K3,3)
∗ as minors.

• A generating sequence leading to such an intertwine M should

– start from M(K3,3) (as a minor),

– maintain 3-connectivity by the wheels-and-whirls theorem, and

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 13 Generation of Matroids

3.1 Back to the second MACEK example3.1 Back to the second MACEK example

Find the matroids M with both M(K3,3) and M(K3,3)
∗ as minors such

that no proper minor of M has both M(K3,3) and M(K3,3)
∗ as minors.

• A generating sequence leading to such an intertwine M should

– start from M(K3,3) (as a minor),

– maintain 3-connectivity by the wheels-and-whirls theorem, and

– stipulate that there is no M(K3,3)
∗ minor except possibly at the

sequence end.

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 13 Generation of Matroids

3.1 Back to the second MACEK example3.1 Back to the second MACEK example

Find the matroids M with both M(K3,3) and M(K3,3)
∗ as minors such

that no proper minor of M has both M(K3,3) and M(K3,3)
∗ as minors.

• A generating sequence leading to such an intertwine M should

– start from M(K3,3) (as a minor),

– maintain 3-connectivity by the wheels-and-whirls theorem, and

– stipulate that there is no M(K3,3)
∗ minor except possibly at the

sequence end.

• These requirements are hereditary,

and we avoid duplicates in the previously used one-element addition step.

• The final step of validating an intertwine remains the same.

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 14 Generation of Matroids

4 Some Final Thoughts4 Some Final Thoughts

• MACEK is over. . .

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 14 Generation of Matroids

4 Some Final Thoughts4 Some Final Thoughts

• MACEK is over. . .

Yes, it is still out there, and it compiles smoothly in new Linux and gcc4.5.

Just its development stopped years ago, and many of its core design ideas

are now overcome.

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 14 Generation of Matroids

4 Some Final Thoughts4 Some Final Thoughts

• MACEK is over. . .

Yes, it is still out there, and it compiles smoothly in new Linux and gcc4.5.

Just its development stopped years ago, and many of its core design ideas

are now overcome.

• Though, some algorithmic ideas from extensive MACEK documentation

might be useful in future development of matroid computation (I hope).

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 14 Generation of Matroids

4 Some Final Thoughts4 Some Final Thoughts

• MACEK is over. . .

Yes, it is still out there, and it compiles smoothly in new Linux and gcc4.5.

Just its development stopped years ago, and many of its core design ideas

are now overcome.

• Though, some algorithmic ideas from extensive MACEK documentation

might be useful in future development of matroid computation (I hope).

• And the idea of enhanced flexible canonical generating sequences could
possibly be used in the core of the generating process in future matroid

computation kits.

'

&

$

%

'

&

$

%P. Hliněný et al., Matroids and computation 14 Generation of Matroids

4 Some Final Thoughts4 Some Final Thoughts

• MACEK is over. . .

Yes, it is still out there, and it compiles smoothly in new Linux and gcc4.5.

Just its development stopped years ago, and many of its core design ideas

are now overcome.

• Though, some algorithmic ideas from extensive MACEK documentation

might be useful in future development of matroid computation (I hope).

• And the idea of enhanced flexible canonical generating sequences could
possibly be used in the core of the generating process in future matroid

computation kits.

THANK YOU FOR YOUR ATTENTION

	Bit of Personal History
	MACEK and Matroid Generation
	MACEK – a practical example
	MACEK – a second practical example

	Canonical Generation: Generating Sequences
	Back to the second MACEK example

	Some Final Thoughts

