Where Myhill–Nerode Theorem Meets Parameterized Algorithmics

Petr Hliněný

Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic

e-mail: hlineny@fi.muni.cz http://www.fi.muni.cz/~hlineny
Contents

1 Decomposing the Input 3
And running dynamic algorithms: a try to give a useful unifying view...

2 The Concept of a Canonical Equivalence 4
Capturing the formal essence of dynamic algorithms on “recursive” decom-
positions: parse trees and Myhill-Nerode type congruences.

3 Measuring Graphs: Clique-width and Rank-width 8
Measuring tree-likeness of a graph: the *-widths.

4 #SAT – our Sample Application 14
Giving an FPT algorithm which is single-exponential in the rank-width.

5 Final remarks 19
1 Decomposing the Input and running Dynamic Algorithms

- A typical idea for a *dynamic algorithm* on a recursive decomposition:
 - Capture *all relevant* inform. about the *problem* on a *substructure*.
1 Decomposing the Input and running Dynamic Algorithms

• A typical idea for a *dynamic algorithm* on a recursive decomposition:
 – Capture all relevant inform. about the problem on a substructure.
 – Process this information bottom-up in the decomposition.
1 Decomposing the Input and running Dynamic Algorithms

• A typical idea for a dynamic algorithm on a recursive decomposition:
 – Capture all relevant inform. about the problem on a substructure.
 – Process this information bottom-up in the decomposition.
 – Importantly, this information has size depending only on k (ideally, not on the structure size), or at most polynomial size.

1 Decomposing the Input and running Dynamic Algorithms

• A typical idea for a *dynamic algorithm* on a recursive decomposition:

 – Capture *all relevant* inform. about the problem on a substructure.

 – Process this information bottom-up in the decomposition.

 – Importantly, this information has size *depending only on* k (ideally, not on the structure size), or at most polynomial size.

• How to understand words “*all relevant information about the problem*”? Use “tables”?

1 Decomposing the Input and running Dynamic Algorithms

• A typical idea for a *dynamic algorithm* on a recursive decomposition:

 – Capture all relevant inform. about the problem on a substructure.
 – Process this information bottom-up in the decomposition.
 – Importantly, this information has size depending only on \(k \) (ideally, not on the structure size), or at most polynomial size.

• How to understand words “all relevant information about the problem”? Use “tables”? Or... Look for inspiration in traditional finite automata theory!

Theorem. [Myhill–Nerode, folklore]
1 Decomposing the Input and running Dynamic Algorithms

- A typical idea for a dynamic algorithm on a recursive decomposition:
 - Capture all relevant information about the problem on a substructure.
 - Process this information bottom-up in the decomposition.
 - Importantly, this information has size depending only on k (ideally, not on the structure size), or at most polynomial size.

- How to understand words “all relevant information about the problem”? Use “tables”? Or...

 Look for inspiration in traditional finite automata theory!

Theorem. [Myhill–Nerode, folklore]
Finite automaton states (this is our information) ↔ right congruence classes on the words (of a regular language).
1 Decomposing the Input and running Dynamic Algorithms

• A typical idea for a *dynamic algorithm* on a *recursive decomposition*:

 – Capture *all relevant* inform. about the problem on a substructure.
 – Process this information bottom-up in the decomposition.
 – Importantly, this information has size *depending only on* \(k \) (ideally, not on the structure size), or at most polynomial size.

• How to understand words "*all relevant information about the problem*"? Use "tables"? Or...

 Look for inspiration in traditional finite automata theory!

Theorem. [Myhill–Nerode, folklore]
Finite automaton states (this is our information) \(\leftrightarrow \)
right congruence classes on the words (of a regular language).

• Explicit comb. extensions of this concept appeared e.g. in the works [Abrahamson and Fellows, 93], [PH, 03], or [Ganian and PH, 08].
2 The Concept of a Canonical Equivalence

How does the right congruence extend from formal words with the concatenation operation to, say, *graphs with a kind of a “join”* operation?
2 The Concept of a Canonical Equivalence

How does the right congruence extend from formal words with the concatenation operation to, say, *graphs with a kind of a “join” operation*?

- Consider the universe of structures \mathcal{U}_k implicitly associated with
 - some (small) distinguished “boundary of size k” of each graph, and
 - a *join operation* $G \otimes H$ acting on the boundaries of disjoint G, H.

- Let \mathcal{P} be a (decision) property we study.
2 The Concept of a Canonical Equivalence

How does the right congruence extend from formal words with the concatenation operation to, say, graphs with a kind of a “join” operation?

- Consider the universe of structures U_k implicitly associated with
 - some (small) distinguished “boundary of size k” of each graph, and
 - a join operation $G \otimes H$ acting on the boundaries of disjoint G, H.

- Let \mathcal{P} be a (decision) property we study.

Definition. The canonical equivalence of \mathcal{P} on U_k is defined:

$G_1 \approx_{\mathcal{P},k} G_2$ for any $G_1, G_2 \in U_k$ if and only if, for all $H \in U_k$,

$G_1 \otimes H \in \mathcal{P} \iff G_2 \otimes H \in \mathcal{P}$.
2 The Concept of a Canonical Equivalence

How does the right congruence extend from formal words with the concatenation operation to, say, graphs with a kind of a “join” operation?

• Consider the universe of structures U_k implicitly associated with
 – some (small) distinguished “boundary of size k” of each graph, and
 – a join operation $G \otimes H$ acting on the boundaries of disjoint G, H.

• Let \mathcal{P} be a (decision) property we study.

Definition. The canonical equivalence of \mathcal{P} on U_k is defined:

$G_1 \approx_{\mathcal{P},k} G_2$ for any $G_1, G_2 \in U_k$ if and only if, for all $H \in U_k$,

$G_1 \otimes H \in \mathcal{P} \iff G_2 \otimes H \in \mathcal{P}$.

• Informally, the classes of $\approx_{\mathcal{P},k}$ capture all information about the property \mathcal{P} that can “cross” our boundary of size k (regardless of actual meaning of “boundary” and “join”).
Decision properties, or more?

Definition. The *canonical equivalence* of \mathcal{P} on the universe \mathcal{U}_k is defined:

$$G_1 \approx_{\mathcal{P},k} G_2 \text{ for any } G_1, G_2 \in \mathcal{U}_k \text{ if and only if, for all } H \in \mathcal{U}_k,$$

$$G_1 \otimes H \in \mathcal{P} \iff G_2 \otimes H \in \mathcal{P}$$
Decision properties, or more?

Definition. The *canonical equivalence* of \mathcal{P} on the universe \mathcal{U}_k is defined:

$G_1 \approx_{\mathcal{P},k} G_2$ for any $G_1, G_2 \in \mathcal{U}_k$ if and only if, for all $H \in \mathcal{U}_k$,

$$G_1 \otimes H \in \mathcal{P} \iff G_2 \otimes H \in \mathcal{P}.$$

- Not only deciding the exist. of a solution, but want to find it / optimize!
Definition. The *canonical equivalence* of \mathcal{P} on the universe \mathcal{U}_k is defined:

$$G_1 \approx_{\mathcal{P},k} G_2 \text{ for any } G_1, G_2 \in \mathcal{U}_k \text{ if and only if, for all } H \in \mathcal{U}_k,$$

$$G_1 \otimes H \in \mathcal{P} \iff G_2 \otimes H \in \mathcal{P}.$$

- Not only deciding the exist. of a solution, but want to find it / optimize!
- So, let G_1, G_2 and H be assoc. with a *solution fragment*, say φ.
Decision properties, or more?

Definition. The *canonical equivalence* of \mathcal{P} on the universe \mathcal{U}_k is defined:

$$G_1 \approx_{\mathcal{P}, k} G_2 \text{ for any } G_1, G_2 \in \mathcal{U}_k \text{ if and only if, for all } H \in \mathcal{U}_k,$$

$$G_1 \otimes H \in \mathcal{P} \iff G_2 \otimes H \in \mathcal{P}.$$

- Not only deciding the exist. of a solution, but want to find it / optimize!
- So, let G_1, G_2 and H be assoc. with a *solution fragment*, say φ.

Definition, II. The *canonical equivalence* of \mathcal{P} on the extended universe \mathcal{U}_k (of structures equipped with solution fragments) is defined:

$$(G_1, \varphi_1) \approx_{\mathcal{P}, k} (G_2, \varphi_2) \text{ for } (G_i, \varphi_i) \in \mathcal{U}_k \text{ if and only if, for all } (H, \varphi) \in \mathcal{U}_k,$$

$$(G_1, \varphi_1) \otimes (H, \varphi) \models \mathcal{P} \iff (G_2, \varphi_2) \otimes (H, \varphi) \models \mathcal{P}$$
Decision properties, or more?

Definition. The canonical equivalence of \mathcal{P} on the universe \mathcal{U}_k is defined:

$$G_1 \approx_{\mathcal{P},k} G_2 \text{ for any } G_1, G_2 \in \mathcal{U}_k \text{ if and only if, for all } H \in \mathcal{U}_k,$$

$$G_1 \otimes H \in \mathcal{P} \iff G_2 \otimes H \in \mathcal{P}. $$

- Not only deciding the exist. of a solution, but want to find it / optimize!
- So, let G_1, G_2 and H be assoc. with a solution fragment, say φ.

Definition, II. The canonical equivalence of \mathcal{P} on the extended universe \mathcal{U}_k (of structures equipped with solution fragments) is defined:

$$(G_1, \varphi_1) \approx_{\mathcal{P},k} (G_2, \varphi_2) \text{ for } (G_i, \varphi_i) \in \mathcal{U}_k \text{ if and only if, for all } (H, \varphi) \in \mathcal{U}_k,$$

$$(G_1, \varphi_1) \otimes (H, \varphi) \models \mathcal{P} \iff (G_2, \varphi_2) \otimes (H, \varphi) \models \mathcal{P}. $$

- For simplicity, solution fragments φ can be “embedded” in \mathcal{U}_k and \otimes.
Decision properties, or more?

Definition. The canonical equivalence of \mathcal{P} on the universe \mathcal{U}_k is defined:

$$G_1 \approx_{\mathcal{P},k} G_2 \text{ for any } G_1, G_2 \in \mathcal{U}_k \text{ if and only if, for all } H \in \mathcal{U}_k,$$

$$G_1 \otimes H \in \mathcal{P} \iff G_2 \otimes H \in \mathcal{P}.$$

- Not only deciding the exist. of a solution, but want to find it / optimize!
- So, let G_1, G_2 and H be assoc. with a solution fragment, say φ.

Definition, II. The canonical equivalence of \mathcal{P} on the extended universe \mathcal{U}_k (of structures equipped with solution fragments) is defined:

$$(G_1, \varphi_1) \approx_{\mathcal{P},k} (G_2, \varphi_2) \text{ for } (G_i, \varphi_i) \in \mathcal{U}_k \text{ if and only if, for all } (H, \varphi) \in \mathcal{U}_k,$$

$$(G_1, \varphi_1) \otimes (H, \varphi) \models \mathcal{P} \iff (G_2, \varphi_2) \otimes (H, \varphi) \models \mathcal{P}.$$

- For simplicity, solution fragments φ can be “embedded” in \mathcal{U}_k and \otimes.
- Can, e.g., count the solutions in each class of $\approx_{\mathcal{P},k}$, or keep an opt. one.
Some particular issues, beyond Myhill-Nerode

Definition. The *canonical equivalence* of \mathcal{P} on the universe \mathcal{U}_k is defined:

$G_1 \approx_{\mathcal{P},k} G_2$ for any $G_1, G_2 \in \mathcal{U}_k$ if and only if, for all $H \in \mathcal{U}_k$,

$G_1 \otimes H \models \mathcal{P} \iff G_2 \otimes H \models \mathcal{P}$.

- Are the elements of \mathcal{U}_k required *recursively decomposable*?
Some particular issues, beyond Myhill-Nerode

Definition. The *canonical equivalence* of \mathcal{P} on the universe \mathcal{U}_k is defined:

$$G_1 \cong_{\mathcal{P}, k} G_2 \quad \text{for any } G_1, G_2 \in \mathcal{U}_k \quad \text{if and only if, for all } H \in \mathcal{U}_k,$$

$$G_1 \otimes H \models \mathcal{P} \iff G_2 \otimes H \models \mathcal{P}.$$

• Are the elements of \mathcal{U}_k required *recursively decomposable*?
 – somehow surprisingly, does not seem to play role...
Some particular issues, beyond Myhill-Nerode

Definition. The canonical equivalence of \mathcal{P} on the universe \mathcal{U}_k is defined:

$G_1 \approx_{\mathcal{P},k} G_2$ for any $G_1, G_2 \in \mathcal{U}_k$ if and only if, for all $H \in \mathcal{U}_k$,

$G_1 \otimes H \models \mathcal{P} \iff G_2 \otimes H \models \mathcal{P}$.

• Are the elements of \mathcal{U}_k required recursively decomposable?
 – somehow surprisingly, does not seem to play role...

• Can we have a different “right-hand-side universe” $H \in \mathcal{U}_k'$?
 – yes, useful e.g. for bi-rank-width of digraphs.
Some particular issues, beyond Myhill-Nerode

Definition. The canonical equivalence of \mathcal{P} on the universe \mathcal{U}_k is defined:

$G_1 \approx_{\mathcal{P},k} G_2$ for any $G_1, G_2 \in \mathcal{U}_k$ if and only if, for all $H \in \mathcal{U}_k$,

$G_1 \otimes H \models \mathcal{P} \iff G_2 \otimes H \models \mathcal{P}$.

- Are the elements of \mathcal{U}_k required recursively decomposable?
 - somehow surprisingly, does not seem to play role.

- Can we have a different “right-hand-side universe” $H \in \mathcal{U}_k'$?
 - yes, useful e.g. for bi-rank-width of digraphs.

- Can we use more different join operators \otimes? Why?
 - related to “prepartitioning” (expectation) of right-hand universe.
Some particular issues, beyond Myhill-Nerode

Definition. The canonical equivalence of \(P \) on the universe \(U_k \) is defined:

\[G_1 \approx_{P,k} G_2 \quad \text{for any } G_1, G_2 \in U_k \quad \text{if and only if, for all } H \in U_k, \]
\[G_1 \otimes H \models P \iff G_2 \otimes H \models P. \]

- Are the elements of \(U_k \) required recursively decomposable?
 - somehow surprisingly, does not seem to play role. . .

- Can we have a different “right-hand-side universe” \(H \in U_k' \)?
 - yes, useful e.g. for bi-rank-width of digraphs.

- Can we use more different join operators \(\otimes \)? Why?
 - related to “prepartitioning” (expectation) of right-hand universe.

- **XP algorithms**, i.e. getting away from finite automata?
Some particular issues, beyond Myhill-Nerode

Definition. The *canonical equivalence* of \(\mathcal{P} \) on the universe \(\mathcal{U}_k \) is defined:

\[
G_1 \approx_{\mathcal{P},k} G_2 \quad \text{for any } G_1, G_2 \in \mathcal{U}_k \quad \text{if and only if, for all } H \in \mathcal{U}_k,
G_1 \otimes H \models \mathcal{P} \iff G_2 \otimes H \models \mathcal{P}.
\]

- Are the elements of \(\mathcal{U}_k \) required *recursively decomposable*?
 - somehow surprisingly, does not seem to play role. . .

- Can we have a different “right-hand-side universe” \(H \in \mathcal{U}'_k \)?
 - yes, useful e.g. for bi-rank-width of digraphs.

- Can we use more different *join operators* \(\otimes \)? Why?
 - related to “prepartitioning” (expectation) of right-hand universe.

- **XP algorithms**, i.e. getting away from finite automata?
 - yes, still works quite nicely, cf. [Ganian, PH, Obdržálek, 09].
 - brings new application issues such as “quantification inside \(\otimes \)” (cf. sol. fragments), or a “second-level” congruence on top of \(\approx_{\mathcal{P},k} \).
Parse trees of decompositions

To give an algor. usable meaning to the terms “boundary, join, and universe” we set them in the context of *tree-shaped* decompositions as follows...
Parse trees of decompositions

To give an algor. usable meaning to the terms “boundary, join, and universe” we set them in the context of tree-shaped decompositions as follows…

- Considering a rooted \(* \)-decomposition of a graph \(G \), we build on the following correspondence:
 - \textit{boundary size} \(k \) \(\leftrightarrow \) restricted bag-size / width / etc in decomposition
 - \textit{join operator} \(\otimes \) \(\leftrightarrow \) the way pieces of \(G \) “\textit{stick together}” in decomp.
Parse trees of decompositions

To give an algorithm usable meaning to the terms “boundary, join, and universe” we set them in the context of *tree-shaped* decompositions as follows…

- Considering a **rooted *-decomposition** of a graph G, we build on the following correspondence:

 - *boundary size* k \leftrightarrow restricted bag-size / width / etc in decomposition
 - *join operator* \otimes \leftrightarrow the way pieces of G “*stick together*” in decomp.

- This can be (visually) seen as…
3 Measuring Graphs: Clique-width and Rank-width

Motivation: Trees are easy to understand and to handle, so how “tree-like” our graph is in some well-defined sense (the width)?

- A topic occurring both in pure theory (e.g. Graph Minors), and in algorithms (Fixed parameter tractability).
3 Measuring Graphs: Clique-width and Rank-width

Motivation: Trees are easy to understand and to handle, so how “tree-like” our graph is in some well-defined sense (the width)?

- A topic occurring both in pure theory (e.g. Graph Minors), and in algorithms (Fixed parameter tractability).

- Many definitions known, e.g. *tree-width*, *path-width*, *branch-width*, *DAG-width* . . .
3 Measuring Graphs: Clique-width and Rank-width

Motivation: Trees are easy to understand and to handle, so how “tree-like” our graph is in some well-defined sense (the width)?

- A topic occurring both in pure theory (e.g. Graph Minors), and in algorithms (Fixed parameter tractability).

- Many definitions known, e.g. tree-width, path-width, branch-width, DAG-width . . .

- **Clique-width** – another graph complexity measure [Courcelle and Olariu], defined by operations on vertex–labeled graphs:
 - create a new vertex with label \(i\),
 - take the disjoint union of two labeled graphs,
 - add all edges between vertices of label \(i\) and label \(j\),
 - and relabel all vertices with label \(i\) to have label \(j\).
3 Measuring Graphs: Clique-width and Rank-width

Motivation: Trees are easy to understand and to handle, so how “tree-like” our graph is in some well-defined sense (the width)?

- A topic occurring both in pure theory (e.g. Graph Minors), and in algorithms (Fixed parameter tractability).

- Many definitions known, e.g. tree-width, path-width, branch-width, DAG-width . . .

- **Clique-width** – another graph complexity measure [Courcelle and Olariu], defined by operations on vertex–labeled graphs:
 - create a new vertex with label i,
 - take the disjoint union of two labeled graphs,
 - add all edges between vertices of label i and label j,
 - and relabel all vertices with label i to have label j.

 \[\rightarrow\] giving the expression tree (parse tree) for clique-width.
Rank-decomposition

• [Oum and Seymour, 03] Bringing the branch-decomposition approach to measure “complexity” of vertex subsets $X \subseteq V(G)$ via cut-rank:

$$\varrho_G(X) = \text{rank of } V(G) - X \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \end{pmatrix} \pmod{2}$$
Rank-decomposition

- [Oum and Seymour, 03] Bringing the branch-decomposition approach to measure “complexity” of vertex subsets $X \subseteq V(G)$ via cut-rank:

$$
\rho_G(X) = \text{rank of } X \begin{pmatrix}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 \\
\end{pmatrix} \mod 2
$$

Definition. Decompose $V(G)$ one-to-one into the leaves of a subcubic tree. Then

$$
\text{width}(e) = \rho_G(X) \text{ where } X \text{ is displayed by } f \text{ in the tree.}
$$
Rank-decomposition

- [Oum and Seymour, 03] Bringing the branch-decomposition approach to measure “complexity” of vertex subsets $X \subseteq V(G)$ via cut-rank:

$$\rho_G(X) = \text{rank of } X \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \end{pmatrix} \mod 2$$

Definition. Decompose $V(G)$ one-to-one into the leaves of a subcubic tree. Then

$$\text{width}(e) = \rho_G(X) \text{ where } X \text{ is displayed by } f \text{ in the tree.}$$

- **Rank-width** = $\min_{\text{rank-decs. of } G} \max \{ \text{width}(f) : f \text{ tree edge} \}$
An example. Cycle C_5 and its *rank-decomposition* of width 2:
Comparing these two

- Rank-width t is related to clique-width k as $t \leq k \leq 2^{t+1} - 1$.
- Both these measures are NP-hard in general.
Comparing these two

- Rank-width t is related to clique-width k as $t \leq k \leq 2^{t+1} - 1$.
- Both these measures are NP-hard in general.
- Clique-width *expressions* seem to be much more “explicit” than *rank-decompositions*, and more suited for design of actual algorithms.

On the other hand, however...
Comparing these two

- Rank-width t is related to clique-width k as $t \leq k \leq 2^{t+1} - 1$.
- Both these measures are NP-hard in general.
- Clique-width expressions seem to be much more “explicit” than rank-decompositions, and more suited for design of actual algorithms.

On the other hand, however...

- [Corneil and Rotics, 05] Clique-width can really be up to exponentially higher than rank-width.
Comparing these two

- Rank-width t is related to clique-width k as $t \leq k \leq 2^{t+1} - 1$.
- Both these measures are NP-hard in general.
- Clique-width expressions seem to be much more “explicit” than rank-decompositions, and more suited for design of actual algorithms.

On the other hand, however...

- [Corneil and Rotics, 05] Clique-width can really be up to exponentially higher than rank-width.
- [Oum and PH, 07] There is an FPT algorithm for computing an optimal width-t rank-decomposition of a graph in time $O(f(t) \cdot n^3)$.
Comparing these two

- Rank-width t is related to clique-width k as $t \leq k \leq 2^{t+1} - 1$.
- Both these measures are NP-hard in general.
- Clique-width expressions seem to be much more “explicit” than rank-decompositions, and more suited for design of actual algorithms.

On the other hand, however...

- [Corneil and Rotics, 05] Clique-width can really be up to exponentially higher than rank-width.
- [Oum and PH, 07] There is an FPT algorithm for computing an optimal width-t rank-decomposition of a graph in time $O(f(t) \cdot n^3)$.
- And new results show that certain algorithms designed on rank-decompositions run faster than their analogues designed on clique-width expressions... (subst. $poly(t)$ in place of cw, instead of 2^t)
Parse trees for rank-decompositions

Unlike for tree- or clique-decompositions with obvious parse trees, what is the "boundary" and "join" operation for rank-width?

Our "boundary" includes all vertices, and "join" is just an implicit matrix rank.
Parse trees for rank-decompositions

Unlike for tree- or clique-decompositions with obvious parse trees, what is the “boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix rank.

- **Bilinear product** approach of [Courcelle and Kanté, 07]:

 -

 boundary \sim labeling $lab : V(G) \rightarrow 2^{\{1,2,\ldots,t\}}$ (multi-colouring),
Parse trees for rank-decompositions

Unlike for tree- or clique-decompositions with obvious parse trees, what is the “boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix rank.

- **Bilinear product** approach of [Courcelle and Kanté, 07]:
 - **boundary** ∼ labeling \(lab : V(G) \rightarrow 2^{\{1,2,...,t\}} \) (multi-colouring),
 - **join** ∼ bilinear form \(g \) over \(GF(2) \) \(^t\) (i.e. “odd intersection”) s.t.

 \[
 \text{edge } uv \iff lab(u) \cdot g \cdot lab(v) = 1.
 \]
Parse trees for rank-decompositions

Unlike for tree- or clique-decompositions with obvious parse trees, what is the “boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix rank.

- **Bilinear product** approach of [Courcelle and Kanté, 07]:
 - boundary \sim labeling $\text{lab} : V(G) \rightarrow 2^{\{1,2,\ldots,t\}}$ (multi-colouring),
 - join \sim bilinear form g over $GF(2)^t$ (i.e. “odd intersection”) s.t.

 $$\text{edge } uv \leftrightarrow \text{lab}(u) \cdot g \cdot \text{lab}(v) = 1.$$

- Join \rightarrow a composition operator with relabelings f_1, f_2;

 $$(G_1, \text{lab}^1) \otimes [g | f_1, f_2] (G_2, \text{lab}^2) = (H, \text{lab})$$

 \implies the rank-width parse tree [Ganian and PH, 08]:

Parse trees for rank-decompositions

Unlike for tree- or clique-decompositions with obvious parse trees, what is the “boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix rank.

- **Bilinear product** approach of [Courcelle and Kanté, 07]:
 - boundary ∼ labeling $lab : V(G) \rightarrow 2^{\{1,2,\ldots,t\}}$ (multi-colouring),
 - join ∼ bilinear form g over $GF(2)^t$ (i.e. “odd intersection”) s.t.
 $$\text{edge } uv \iff lab(u) \cdot g \cdot lab(v) = 1.$$

- Join → a *composition* operator with relabelings f_1, f_2;
 $$\left(G_1, lab^1\right) \otimes [g | f_1, f_2] \left(G_2, lab^2\right) = (H, lab)$$
 \implies the rank-width *parse tree* [Ganian and PH, 08]:
 - t-labeling parse tree for G \iff rank-width of $G \leq t$.
Parse trees for rank-decompositions

Unlike for tree- or clique-decompositions with obvious parse trees, what is the “boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix rank.

- **Bilinear product** approach of [Courcelle and Kanté, 07]:
 - boundary \sim labeling $lab : V(G) \rightarrow 2^{\{1,2,\ldots,t\}}$ (multi-colouring),
 - join \sim bilinear form g over $GF(2)^t$ (i.e. “odd intersection”) s.t. edge $uv \leftrightarrow lab(u) \cdot g \cdot lab(v) = 1$.

- Join \rightarrow a composition operator with relabelings f_1, f_2;
 $$(G_1, lab^1) \otimes [g | f_1, f_2] (G_2, lab^2) = (H, lab)$$
 \implies the rank-width parse tree [Ganian and PH, 08]:
 t-labeling parse tree for $G \iff$ rank-width of $G \leq t$.

- Independently considered related notion of R_t-join decompositions by [Bui-Xuan, Telle, and Vatshelle, 08].
A parse tree. An example generating the cycle C_5 (of rank-width 2):
4 \textbf{#SAT – our Sample Application}

- \textit{#SAT} – counting satisfying assignments of a CNF formula, a well-known \#P-hard problem.
#SAT – our Sample Application

- **#SAT** – counting satisfying assignments of a CNF formula, a well-known \#P-hard problem.

- FPT solutions on *formulas of bounded *-width*:
 - [Fisher, Makowsky, and Ravve, 08] – tree-width and clique-width,
 - [Samer and Szeider, 10] – tree-width improved.
4 \#SAT – our Sample Application

- **\#SAT** – counting satisfying assignments of a CNF formula, a well-known \#P-hard problem.

- FPT solutions on *formulas of bounded *-width*:
 - [Fisher, Makowsky, and Ravve, 08] – tree-width and clique-width,
 - [Samer and Szeider, 10] – tree-width improved.

- On the other hand. . .

Quote. [Samer and Szeider, 10] – regarding \#SAT and *clique-width*:

. . . A single-exponential algorithm (for \#SAT) is due to Fisher, Makowsky, and Ravve. However, both algorithms rely on clique-width approximation algorithms. The known polynomial-time algorithms for that purpose admit an exponential approximation error and are of limited practical value.
4 #SAT – our Sample Application

- **#SAT** – counting satisfying assignments of a CNF formula, a well-known \#P-hard problem.
- FPT solutions on formulas of bounded *-width:
 - [Fisher, Makowsky, and Ravve, 08] – tree-width and clique-width,
 - [Samer and Szeider, 10] – tree-width improved.
- On the other hand...

Quote. [Samer and Szeider, 10] – regarding #SAT and clique-width:

... A single-exponential algorithm (for #SAT) is due to Fisher, Makowsky, and Ravve. However, both algorithms rely on clique-width approximation algorithms. The known polynomial-time algorithms for that purpose admit an exponential approximation error and are of limited practical value.

Where is the problem?
A resulting double-exponential worst-case dependency on a width estimate!
The problem, again

Quote. [Samer and Szeider, 10] – regarding \#SAT and \textit{clique-width}:

A single-exponential algorithm (for \#SAT) is due to Fisher, Makowsky, and Ravve. However, both algorithms rely on clique-width approximation algorithms. The known polynomial-time algorithms for that purpose admit an exponential approximation error and are of limited practical value.

Our answer – considering \textit{rank-width}:
The problem, again

Quote. [Samer and Szeider, 10] – regarding \#SAT and \textit{clique-width}:

A single-exponential algorithm (for \#SAT) is due to Fisher, Makowsky, and Ravve. However, both algorithms rely on clique-width approximation algorithms. The known polynomial-time algorithms for that purpose admit an exponential approximation error and are of limited practical value.

Our answer – considering \textit{rank-width}:

- No loss in the promised width, and yet single-exponential in it.
The problem, again

Quote. [Samer and Szeider, 10] – regarding \#SAT and *clique-width*:

A single-exponential algorithm (for \#SAT) is due to Fisher, Makowsky, and Ravve. However, both algorithms rely on clique-width approximation algorithms. The known polynomial-time algorithms for that purpose admit an exponential approximation error and are of limited practical value.

Our answer – considering *rank-width*:

- **No loss** in the promised width, and yet **single-exponential** in it.
- A clear and rigorous algorithm employing many of the above tricks.

Theorem. [Ganian, PH, Obdržálek, 10] \#SAT solved in FPT time

\[O(t^3 \cdot 2^{3t(t+1)/2} \cdot |\phi|) \]

where \(t \) is the **signed rank-width** of the input instance (CNF formula) \(\phi \).
Signed graphs of CNF formulas

• The common way to measure structure / width of a formula:

 \textbf{vertices} \; := \; V \cup C \quad \text{variables and clauses of } \phi.
Signed graphs of CNF formulas

The common way to measure structure/width of a formula:

- **vertices** := $V \cup C$ variables and clauses of ϕ.
- **edges** := $E^+ \cup E^-$ where

 $x_i c_j \in E^+$ if $c_j = (\cdots \lor x_i \ldots) \in C$, and

 $x_i c_j \in E^-$ if $c_j = (\cdots \lor \neg x_i \ldots) \in C$.
Signed graphs of CNF formulas

- The common way to measure structure/width of a formula:

vertices := $V \cup C$ variables and clauses of ϕ.

edges := $E^+ \cup E^-$ where

- $x_i c_j \in E^+$ if $c_j = (\cdots \lor x_i \ldots) \in C$, and
- $x_i c_j \in E^-$ if $c_j = (\cdots \lor \neg x_i \ldots) \in C$.

- **Signed clique-width** – using distinct operations for E^+ and E^- (ordinary clique-width is not enough!).
Signed graphs of CNF formulas

- The common way to measure structure/width of a formula:

 - **vertices** := $V \cup C$ variables and clauses of ϕ.
 - **edges** := $E^+ \cup E^-$ where

 $x_i c_j \in E^+$ if $c_j = (\cdots \lor x_i \cdots) \in C$, and

 $x_i c_j \in E^-$ if $c_j = (\cdots \lor \neg x_i \cdots) \in C$.

- **Signed clique-width** – using distinct operations for E^+ and E^- (ordinary clique-width is not enough!).

- **Signed rank-width** – using separate joins for E^+ and E^-, formally

 $G = G^+ \cup G^-$ on the same vertex set (sim. bi-rank-width).
Signed graphs of CNF formulas

- The common way to measure structure/width of a formula:

 vertices := \(V \cup C \) variables and clauses of \(\phi \).

 edges := \(E^+ \cup E^- \) where

 \[x_i c_j \in E^+ \quad \text{if} \quad c_j = (\cdots \lor x_i \cdots) \in C, \quad \text{and} \]

 \[x_i c_j \in E^- \quad \text{if} \quad c_j = (\cdots \lor \neg x_i \cdots) \in C. \]

 - **Signed clique-width** – using distinct operations for \(E^+ \) and \(E^- \) (ordinary clique-width is not enough!).

 - **Signed rank-width** – using separate joins for \(E^+ \) and \(E^- \), formally

 \[G = G^+ \cup G^- \quad \text{on the same vertex set (sim. bi-rank-width)}. \]

 Then

 \[G_1 \oplus G_2 = (G_1^+ \oplus G_2^+) \cup (G_1^- \oplus G_2^-) \]

 and the same decomposition is used.
The canonical equivalence for SAT

- Corresp. $G = G[\phi]$ signed graph $\iff \phi = \phi[G]$ CNF formula.
The canonical equivalence for SAT

- Corresp. $G = G[\phi]$ signed graph $\leftrightarrow \phi = \phi[G]$ CNF formula.
- Valuation $\nu_G : V \to \{0, 1\}$.
The canonical equivalence for SAT

- Corresp. \(G = G[\phi] \) signed graph \(\iff \) \(\phi = \phi[G] \) CNF formula.
- Valuation \(\nu_G : V \to \{0, 1\} \).
- The canonical equivalence: \((G_1, \nu_1) \approx_{\text{SAT},t} (G_2, \nu_2)\) iff, for all \((H, \nu_H)\),

\[
\nu_1 \cup \nu_H \models \phi[G_1 \otimes H] \iff \nu_2 \cup \nu_H \models \phi[G_2 \otimes H].
\]
The canonical equivalence for SAT

- Corresp. \(G = G[\phi] \) signed graph \(\iff \phi = \phi[G] \) CNF formula.
- Valuation \(\nu_G : V \to \{0, 1\} \).

- The canonical equivalence: \((G_1, \nu_1) \approx_{SAT,t} (G_2, \nu_2)\) iff, for all \((H, \nu_H)\),
 \[
 \nu_1 \cup \nu_H \models \phi[G_1 \otimes H] \iff \nu_2 \cup \nu_H \models \phi[G_2 \otimes H].
 \]

Proposition. \((G_1, \nu_1) \approx_{SAT,t} (G_2, \nu_2) \) if the foll. equal for \((G_i, \nu_i), i = 1, 2:\)
- the set of \(G_i^+\)-labels occurring at true (under \(\nu_i \)) variables,
The canonical equivalence for SAT

- Corresp. \(G = G[\phi] \) signed graph \(\iff \phi = \phi[G] \) CNF formula.
- Valuation \(\nu_G : V \rightarrow \{0, 1\} \).
- The canonical equivalence: \((G_1, \nu_1) \approx_{SAT,t} (G_2, \nu_2) \) iff, for all \((H, \nu_H) \),
 \[
 \nu_1 \cup \nu_H \models \phi[G_1 \otimes H] \iff \nu_2 \cup \nu_H \models \phi[G_2 \otimes H].
 \]

Proposition. \((G_1, \nu_1) \approx_{SAT,t} (G_2, \nu_2) \) if the foll. equal for \((G_i, \nu_i), i = 1, 2 \):

- the set of \(G_i^+ \)-labels occurring at true (under \(\nu_i \)) variables,
- analog., the set of \(G_i^- \)-labels of false (under \(\nu_i \)) variables, and
The canonical equivalence for \(\text{SAT} \)

- Corresp. \(G = G[\phi] \) signed graph \(\iff \phi = \phi[G] \) CNF formula.
- Valuation \(\nu_G : V \to \{0, 1\} \).
- The canonical equivalence: \((G_1, \nu_1) \approx_{\text{SAT},t} (G_2, \nu_2) \) iff, for all \((H, \nu_H) \),
 \[
 \nu_1 \cup \nu_H \models \phi[G_1 \otimes H] \iff \nu_2 \cup \nu_H \models \phi[G_2 \otimes H].
 \]

Proposition. \((G_1, \nu_1) \approx_{\text{SAT},t} (G_2, \nu_2) \) if the foll. equal for \((G_i, \nu_i) \), \(i = 1, 2 \):
- the set of \(G_i^+ \)-labels occurring at true (under \(\nu_i \)) variables,
- analog., the set of \(G_i^- \)-labels of false (under \(\nu_i \)) variables, and
- the set of pair labels of all unsatisfied (under \(\nu_i \)) clauses of \(\phi[G_i] \).
The canonical equivalence for SAT

• Corresp. \(G = G[\phi] \) signed graph \(\iff \phi = \phi[G] \) CNF formula.

• Valuation \(\nu_G : V \to \{0, 1\} \).

• The canonical equivalence: \((G_1, \nu_1) \approx_{SAT,t} (G_2, \nu_2) \) iff, for all \((H, \nu_H)\),

\[
\nu_1 \cup \nu_H \models \phi[G_1 \otimes H] \iff \nu_2 \cup \nu_H \models \phi[G_2 \otimes H].
\]

Proposition. \((G_1, \nu_1) \approx_{SAT,t} (G_2, \nu_2) \) if the foll. equal for \((G_i, \nu_i), i = 1, 2:\)

– the set of \(G_i^+ \)-labels occurring at true (under \(\nu_i \)) variables,
– analog., the set of \(G_i^- \)-labels of false (under \(\nu_i \)) variables, and
– the set of pair labels of all unsatisfied (under \(\nu_i \)) clauses of \(\phi[G_i] \).

Easy to prove... but does it help?

Subsets of labels from \(2^{\{1,2,\ldots,t\}} \) \(\longrightarrow \) \(\Omega(2^t) \) classes!
Getting coarser equivalences for SAT

We improve the runtime with the following two main tricks:
Getting coarser equivalences for SAT

We improve the runtime with the following two main tricks:

- **Linear algebra**:
 Subset of labels \rightarrow the *spanning subspace* in $GF(2)^t$.
Getting coarser equivalences for SAT

We improve the runtime with the following two main tricks:

- **Linear algebra:**

 Subset of labels \rightarrow the *spanning subspace* in $GF(2)^t$.

Theorem. [Goldman and Rota, 69] The number of subspaces of $GF(2)^t$ is

$$S(t) \leq 2^{t(t+1)/4} \text{ for all } t \geq 12.$$
Getting coarser equivalences for SAT

We improve the runtime with the following two main tricks:

- **Linear algebra:**
 Subset of labels \rightarrow the *spanning subspace* in $GF(2)^t$.

Theorem. [Goldman and Rota, 69] The number of subspaces of $GF(2)^t$ is

$$S(t) \leq 2^{t(t+1)/4} \text{ for all } t \geq 12.$$

- **Expectation:**
 Labels of unsat. clauses \rightarrow *expected labels* of variables in H,
 and the subspace trick once again.
Getting coarser equivalences for SAT

We improve the runtime with the following two main tricks:

- **Linear algebra:**
 Subset of labels \longrightarrow the *spanning subspace* in $GF(2)^t$.

Theorem. [Goldman and Rota, 69] The number of subspaces of $GF(2)^t$ is
\[
S(t) \leq 2^{t(t+1)/4} \text{ for all } t \geq 12.
\]

- **Expectation:**
 Labels of unsat. clauses \longrightarrow *expected labels* of variables in H,
 and the subspace trick once again.

In other words, $\approx_{SAT,t}$ “suitably restricted” to (H, ν_H)’s of the expected
label subspaces of its false and true variables. . .
Getting coarser equivalences for SAT

We improve the runtime with the following **two main tricks**:

- **Linear algebra**: Subset of labels \rightarrow the *spanning subspace* in $GF(2)^t$.

Theorem. [Goldman and Rota, 69] The number of subspaces of $GF(2)^t$ is

$$S(t) \leq 2^{t(t+1)/4} \text{ for all } t \geq 12.$$

- **Expectation**:

Labels of unsat. clauses \rightarrow *expected labels* of variables in H, and the subspace trick once again.

In other words, $\approx_{SAT,t}$ “suitably restricted” to (H, ν_H)’s of the expected label subspaces of its false and true variables.

Conclusion. Breaking the satisfying assignments of ϕ into $S(t)^4$ classes, and processing a node of the parse tree in $O^*(S(t)^6)$.
5 Final remarks

Our talk suggests (tries to, at least) the following research directions... as ordered from the very general one to the very concrete example:
5 Final remarks

Our talk suggests (tries to, at least) the following research directions... as ordered from the very general one to the very concrete example:

- The use of *Myhill–Nerode type congruences* in dynamic progr. alg. design
 - can give very rigorous proofs for algorithms (almost for free), and
5 Final remarks

Our talk suggests (tries to, at least) the following research directions... as ordered from the very general one to the very concrete example:

- The use of *Myhill–Nerode type congruences* in dynamic progr. alg. design
 - can give very rigorous proofs for algorithms (almost for free), and
 - immediately provides a rather simple test of “what is possible”.
5 Final remarks

Our talk suggests (tries to, at least) the following research directions... as ordered from the very general one to the very concrete example:

- The use of *Myhill–Nerode type congruences* in dynamic progr. alg. design
 - can give very *rigorous proofs* for algorithms (almost for free), and
 - immediately provides a rather simple test of “*what is possible*”.

- *Rank-width* to be used in place of *clique-width* in param. algorithms.
5 Final remarks

Our talk suggests (tries to, at least) the following research directions... as ordered from the very general one to the very concrete example:

- The use of *Myhill–Nerode type congruences* in dynamic progr. alg. design
 - can give very rigorous proofs for algorithms (almost for free), and
 - immediately provides a rather simple test of “what is possible”.

- *Rank-width* to be used in place of *clique-width* in param. algorithms.

- Rank-width is useful for variants of *SAT* via the *signed graph*.
5 Final remarks

Our talk suggests (tries to, at least) the following research directions... as ordered from the very general one to the very concrete example:

- The use of Myhill–Nerode type congruences in dynamic progr. alg. design
 - can give very rigorous proofs for algorithms (almost for free), and
 - immediately provides a rather simple test of “what is possible”.

- Rank-width to be used in place of clique-width in param. algorithms.

- Rank-width is useful for variants of SAT via the signed graph.

THANK YOU FOR YOUR ATTENTION