
Petr Hliněný* and Robert Ganian

Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic

e-mail: hlineny@fi.muni.cz http://www.fi.muni.cz/~hlineny
ganian@mail.muni.cz
1 Measuring Graph “Width”

Motivation: Trees are easy to understand and to handle, so how “tree-like” our graph is in some well-defined sense?

- A topic occurring both in pure theory (e.g. Graph Minors), and in algorithms (Fixed parameter tractability)
Motivation: Trees are easy to understand and to handle, so how “tree-like” our graph is in some well-defined sense?

- A topic occurring both in pure theory (e.g. Graph Minors), and in algorithms (Fixed parameter tractability)

- Many definitions known, e.g. *tree-width*, *path-width*, *branch-width*, *DAG-width* . . .
1 Measuring Graph “Width”

Motivation: Trees are easy to understand and to handle, so how “tree-like” our graph is in some well-defined sense?

- A topic occurring both in pure theory (e.g. Graph Minors), and in algorithms (Fixed parameter tractability)
- Many definitions known, e.g. tree-width, path-width, branch-width, DAG-width . . .

- **Clique-width** – another graph complexity measure [Courcelle and Olariu], defined by operations on vertex–labeled graphs:
 - create a new vertex with label i,
 - take the disjoint union of two labeled graphs,
 - add all edges between vertices of label i and label j,
 - and relabel all vertices with label i to have label j.
Rank-Decomposition

- [Oum and Seymour, 03] Bringing the branch-decomposition approach to measure “complexity” of vertex subsets $X \subseteq V(G)$ via cut-rank:

$$\rho_G(X) = \text{rank of } X \left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 \\
\end{array} \right) \pmod{2}$$

$$V(G) - X$$
Rank-Decomposition

- [Oum and Seymour, 03] Bringing the branch-decomposition approach to measure “complexity” of vertex subsets $X \subseteq V(G)$ via *cut-rank*:

$$\varrho_G(X) = \text{rank of } X \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \end{pmatrix} \mod 2$$

Definition. Decompose $V(G)$ one-to-one into the leaves of a subcubic tree. Then

$$\text{width}(e) = \varrho_G(X) \text{ where } X \text{ is displayed by } f \text{ in the tree.}$$
Rank-Decomposition

- [Oum and Seymour, 03] Bringing the branch-decomposition approach to measure “complexity” of vertex subsets \(X \subseteq V(G) \) via cut-rank:

\[
\varrho_G(X) = \text{rank of } X \begin{pmatrix}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 1
\end{pmatrix} \mod 2
\]

Definition. Decompose \(V(G) \) one-to-one into the leaves of a subcubic tree. Then

\[
width(e) = \varrho_G(X) \text{ where } X \text{ is displayed by } f \text{ in the tree.}
\]

Rank-width = \(\min_{\text{rank-decs. of } G} \max \{ width(f) : f \text{ tree edge} \} \)
An example. Cycle C_5 and its rank-decomposition of width 2:
Comparing these two

- Rank-width t is related to clique-width k as $t \leq k \leq 2^{t+1} - 1$.
- Both these measures are NP-hard in general.
Comparing these two

- Rank-width \(t \) is related to clique-width \(k \) as \(t \leq k \leq 2^{t+1} - 1 \).
- Both these measures are \(NP \)-hard in general.
- Clique-width expressions seem to be much more “explicit” than rank-decompositions, and more suited for design of actual algorithms.

On the other hand, however...
Comparing these two

- Rank-width t is related to clique-width k as $t \leq k \leq 2^{t+1} - 1$.
- Both these measures are NP-hard in general.
- Clique-width expressions seem to be much more “explicit” than rank-decompositions, and more suited for design of actual algorithms.

On the other hand, however...

- [Corneil and Rotics, 05] Clique-width can really be up to exponentially higher than rank-width.
Comparing these two

- Rank-width t is related to clique-width k as $t \leq k \leq 2^{t+1} - 1$.
- Both these measures are NP-hard in general.
- Clique-width expressions seem to be much more “explicit” than rank-decompositions, and more suited for design of actual algorithms.

On the other hand, however . . .

- [Corneil and Rotics, 05] Clique-width can really be up to exponentially higher than rank-width.
- [Oum and PH, 07] There is an FPT algorithm for computing an optimal rank-decomposition of a graph in time $O(f(t) \cdot n^3)$.
Comparing these two

• Rank-width t is related to clique-width k as $t \leq k \leq 2^{t+1} - 1$.

• Both these measures are NP-hard in general.

• Clique-width expressions seem to be much more “explicit” than rank-decompositions, and more suited for design of actual algorithms.

On the other hand, however...

• [Corneil and Rotics, 05] Clique-width can really be up to exponentially higher than rank-width.

• [Oum and PH, 07] There is an FPT algorithm for computing an optimal rank-decomposition of a graph in time $O(f(t) \cdot n^3)$.

• And some new results suggest that algorithms designed on rank-decompositions run faster than those designed on clique-width expressions...
2 Dynamic Algorithms and Parse Trees

• A typical idea for a *dynamic algorithm* on a “tree-like” decomposition:
 – Capture all relevant information about the problem on a subtree.
 – Process this information bottom-up in the decomposition.
 – Importantly, this information has size depending only on k, and not on the graph size.
2 Dynamic Algorithms and Parse Trees

- A typical idea for a \textit{dynamic algorithm} on a “tree-like” decomposition:
 - Capture \textbf{all relevant} information about the problem on a subtree.
 - Process this information bottom-up in the decomposition.
 - Importantly, this information has size \textit{depending only on } \(k \), and not on the graph size.

- How to understand words “all relevant information about the problem”? Look for inspiration in traditional finite automata theory!
Dynamic Algorithms and Parse Trees

- A typical idea for a dynamic algorithm on a “tree-like” decomposition:
 - Capture all relevant information about the problem on a subtree.
 - Process this information bottom-up in the decomposition.
 - Importantly, this information has size depending only on k, and not on the graph size.

- How to understand words “all relevant information about the problem”?
 Look for inspiration in traditional finite automata theory!

Theorem. [Myhill–Nerode, folklore]

Finite automaton states (this is our information) \leftrightarrow

right congruence classes on the words (of a regular language).
2 Dynamic Algorithms and Parse Trees

- A typical idea for a *dynamic algorithm* on a “tree-like” decomposition:
 - Capture all relevant information about the problem on a subtree.
 - Process this information bottom-up in the decomposition.
 - Importantly, this information has size depending only on k, and not on the graph size.

- How to understand words “all relevant information about the problem”? Look for inspiration in traditional finite automata theory!

Theorem. [Myhill–Nerode, folklore]
Finite automaton states (this is our information) \leftrightarrow *right congruence* classes on the words (of a regular language).

- Combinatorial extensions of this concept appeared e.g. in the works [Abrahamson and Fellows, 93], [PH, 03], or [Ganian and PH, 08].
The concept of a canonical equivalence

How does the right congruence extend from formal words with the concatenation operation to, say, graphs with a kind of a “join” operation?
The concept of a canonical equivalence

How does the right congruence extend from formal words with the concatenation operation to, say, graphs with a kind of a “join” operation?

- Consider the universe of graphs \mathcal{U}_k implicitly associated with
 - some (small) distinguished “boundary of size k” of each graph, and
 - a join operation $G \oplus H$ acting on the boundaries of disjoint G, H.

- Let \mathcal{P} be a graph property we study.
The concept of a canonical equivalence

How does the right congruence extend from formal words with the concatenation operation to, say, graphs with a kind of a “join” operation?

• Consider the universe of graphs \mathcal{U}_k implicitly associated with
 – some (small) distinguished “boundary of size k” of each graph, and
 – a join operation $G \oplus H$ acting on the boundaries of disjoint G, H.

• Let \mathcal{P} be a graph property we study.

Definition. The canonical equivalence of \mathcal{P} on \mathcal{U}_k is defined:

$$ G_1 \approx_{\mathcal{P},k} G_2 $$

for any $G_1, G_2 \in \mathcal{U}_k$ if and only if, for all $H \in \mathcal{U}_k$,

$$ G_1 \oplus H \in \mathcal{P} \iff G_2 \oplus H \in \mathcal{P}. $$
The concept of a canonical equivalence

How does the right congruence extend from formal words with the concatenation operation to, say, graphs with a kind of a “join” operation?

- Consider the universe of graphs U_k implicitly associated with
 - some (small) distinguished “boundary of size k” of each graph, and
 - a join operation $G \oplus H$ acting on the boundaries of disjoint G, H.

- Let \mathcal{P} be a graph property we study.

Definition. The canonical equivalence of \mathcal{P} on U_k is defined:

$$G_1 \approx_{\mathcal{P},k} G_2 \text{ for any } G_1, G_2 \in U_k \text{ if and only if, for all } H \in U_k,$$

$$G_1 \oplus H \in \mathcal{P} \iff G_2 \oplus H \in \mathcal{P}.$$

- Informally, the classes of $\approx_{\mathcal{P},k}$ capture all information about the property \mathcal{P} that can “cross” our graph boundary of size k

 (regardless of actual meaning of “boundary” and “join”).
Parse Trees of decompositions

To give a real usable meaning to the above terms “boundary, join, and universe” we set them in the context of tree-shaped decompositions as follows...
Parse Trees of decompositions

To give a real usable meaning to the above terms “boundary, join, and universe” we set them in the context of tree-shaped decompositions as follows.

- Considering a rooted decomposition of a graph \(G \), we build on the following correspondence:

 \[\text{boundary size } k \leftrightarrow \text{restricted bag-size / width / etc in decomposition} \]

 \[\text{join operator } \oplus \leftrightarrow \text{the way pieces of } G \text{ “stick together” in decomp.} \]
Parse Trees of decompositions

To give a real usable meaning to the above terms “boundary, join, and universe” we set them in the context of tree-shaped decompositions as follows...

- Considering a **rooted** decomposition of a graph G, we build on the following correspondence:

 - **boundary size k** \leftrightarrow restricted bag-size / width / etc in decomposition
 - **join operator \oplus** \leftrightarrow the way pieces of G “stick together” in decomp.

- This can be (visually) seen as...
3 Parse Trees for Rank-Decompositions

Unlike for branch- or tree-decompositions with obvious parse trees, what is the “boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix rank!
3 Parse Trees for Rank-Decompositions

Unlike for branch- or tree-decompositions with obvious parse trees, what is the “boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix rank!

- **Bilinear product** approach of [Courcelle and Kanté, 07]:

 \[
 boundary \sim \text{labeling } lab : V(G) \rightarrow 2^{\{1,2,\ldots,t\}} \text{ (multi-colouring)},
 \]
3 Parse Trees for Rank-Decompositions

Unlike for branch- or tree-decompositions with obvious parse trees, what is the “boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix rank!

- **Bilinear product** approach of [Courcelle and Kanté, 07]:

 - **boundary** \sim labeling $\text{lab} : V(G) \rightarrow 2^{\{1,2,\ldots,t\}}$ (multi-colouring),

 - **join** \sim bilinear form g over $GF(2)^t$ (i.e. “odd intersection”) s.t.

 $$
 \text{edge } uv \leftrightarrow \text{lab}(u) \cdot g \cdot \text{lab}(v) = 1.
 $$
3 Parse Trees for Rank-Decompositions

Unlike for branch- or tree-decompositions with obvious parse trees, what is the "boundary" and "join" operation for rank-width?

Our "boundary" includes all vertices, and "join" is just an implicit matrix rank!

- **Bilinear product** approach of [Courcelle and Kanté, 07]:
 - boundary ~ labeling \(lab : V(G) \rightarrow 2^{\{1,2,\ldots,t\}} \) (multi-colouring),
 - join ~ bilinear form \(g \) over \(GF(2)^t \) (i.e. "odd intersection") s.t.
 \[
 \text{edge } uv \leftrightarrow lab(u) \cdot g \cdot lab(v) = 1.
 \]

- Join \(\rightarrow \) a composition operator with relabelings \(f_1, f_2 \);
 \[
 (G_1, lab^1) \otimes [g | f_1, f_2] (G_2, lab^2) = (H, lab)
 \]
 \[\implies\] the rank-width parse tree [Ganian and PH, 08]:

P. Hliněný and R. Ganian, AGT 2009
3 Parse Trees for Rank-Decompositions

Unlike for branch- or tree-decompositions with obvious parse trees, what is the “boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix rank!

- **Bilinear product** approach of [Courcelle and Kanté, 07]:
 - boundary ~ labeling \(\text{lab} : V(G) \rightarrow 2^{\{1,2,\ldots,t\}} \) (multi-colouring),
 - join ~ bilinear form \(g \) over \(GF(2)^t \) (i.e. “odd intersection”) s.t.
 \[
 \text{edge } uv \iff \text{lab}(u) \cdot g \cdot \text{lab}(v) = 1.
 \]

- Join \(\rightarrow \) a composition operator with relabelings \(f_1, f_2 \);
 \[(G_1, \text{lab}^1) \otimes [g | f_1, f_2] (G_2, \text{lab}^2) = (H, \text{lab})\]
 \(\implies\) the rank-width parse tree [Ganian and PH, 08]:
 \(k\)-labeling parse tree for \(G \iff \text{rank-width of } G \leq t.\)
3 Parse Trees for Rank-Decompositions

Unlike for branch- or tree-decompositions with obvious parse trees, what is the “boundary” and “join” operation for rank-width?

Our “boundary” includes all vertices, and “join” is just an implicit matrix rank!

- **Bilinear product** approach of [Courcelle and Kanté, 07]:

 - boundary ∼ labeling \(\text{lab} : V(G) \rightarrow 2^{\{1,2,\ldots,t\}} \) (multi-colouring),

 - join ∼ bilinear form \(g \) over \(GF(2)^t \) (i.e. “odd intersection”) s.t.

 \[
 \text{edge } uv \leftrightarrow \text{lab}(u) \cdot g \cdot \text{lab}(v) = 1.
 \]

- Join → a composition operator with relabelings \(f_1, f_2 \);

 \[
 (G_1, \text{lab}^1) \otimes [g \mid f_1, f_2] \ (G_2, \text{lab}^2) = (H, \text{lab})
 \]

 \(\implies \) the rank-width **parse tree** [Ganian and PH, 08]:

 \(k \)-labeling parse tree for \(G \) \(\iff \) rank-width of \(G \leq t \).

- Independently considered related notion of \(R_k \)-join decompositions by [Bui-Xuan, Telle, and Vatshelle, 08].
Parse tree. An example generating the cycle C_5 (of rank-width 2):
4 Canonical Equivalence and Algorithms

So, how can one use a canonical equivalence when designing actual algorithms?
4 Canonical Equivalence and Algorithms

So, how can one use a canonical equivalence when designing actual algorithms?

- Let us recall...

Theorem. [Myhill–Nerode, folklore]
A finite automaton accepts a given language \iff the number of *right congruence* classes on the words is *finite*.
So, how can one use a canonical equivalence when designing actual algorithms?

- Let us recall...

Theorem. [Myhill–Nerode, folklore]
A finite automaton accepts a given language \iff the number of *right congruence* classes on the words is finite.

- This automaton is *constructible* and can be emulated in linear time.
4 Canonical Equivalence and Algorithms

So, how can one use a canonical equivalence when designing actual algorithms?

• Let us recall…

Theorem. [Myhill–Nerode, folklore]
A finite automaton accepts a given language \(\iff \) the number of *right congruence* classes on the words is finite.

• This automaton is *constructible* and can be emulated in linear time.

• For parse trees, a straightforward generalization reads:

Theorem. (Analogy of [Myhill–Nerode])
\(\mathcal{P} \) is accepted by a *finite tree automaton* on parse trees of boundary size \(\leq k \) \(\iff \) the *canonical equivalence* \(\approx_{\mathcal{P},k} \) has finitely many classes on \(\mathcal{U}_k \).

(Actually, this is a “metatheorem” which requires several more unspoken technical conditions on the parse trees to hold true. . .)
Extended canonical equivalence

\[G_1 \approx_{\mathcal{P}, k} G_2 \] for any \(G_1, G_2 \in \mathcal{U}_k \) if and only if, for all \(H \in \mathcal{U}_k \),

\[G_1 \oplus H \models \mathcal{P} \iff G_2 \oplus H \models \mathcal{P}. \]

- To apply this concept to predicates \(\mathcal{P}(X_1, \ldots) \) with free variables, we extend the universe \(\mathcal{U}_k \) to **partially-equipped** graphs of boundary \(\leq k \).
Extended canonical equivalence

\[G_1 \approx_{P,k} G_2 \text{ for any } G_1, G_2 \in \mathcal{U}_k \text{ if and only if, for all } H \in \mathcal{U}_k, \]

\[G_1 \oplus H \models P \iff G_2 \oplus H \models P. \]

- To apply this concept to predicates \(P(X_1, \ldots) \) with free variables, we extend the universe \(\mathcal{U}_k \) to partially-equipped graphs of boundary \(\leq k \).

Theorem. [Ganian and PH, 08]

Suppose \(\phi \) is a formula in the language MS\(_1\). Then the canonical equivalence \(\approx_{\phi,t} \) has finite index in the universe of \(t \)-labeled partially-equipped graphs.
Extended canonical equivalence

\[G_1 \approx_{P,k} G_2 \text{ for any } G_1, G_2 \in U_k \text{ if and only if, for all } H \in U_k, \]
\[G_1 \oplus H \models P \iff G_2 \oplus H \models P. \]

- To apply this concept to predicates \(P(X_1, \ldots) \) with free variables, we extend the universe \(U_k \) to *partially-equipped* graphs of boundary \(\leq k \).

Theorem. [Ganian and PH, 08]

Suppose \(\phi \) is a formula in the language \(MS_1 \). Then the canonical equivalence \(\approx_{\phi,t} \) has **finite index** in the universe of \(t \)-labeled partially-equipped graphs.

- From that one easily concludes an older result:

Theorem. [Courcelle, Makowsky, and Rotics 00]

All *LinEMSO graph optimization* problems (in \(MS_1 \) language – only vertices!) on the graphs of bounded rank-width \(t \) can be solved in time \(O(f(t) \cdot n) \).

Core idea: In dynamic processing of the given parse tree, record **optimal representatives** of each class of the extended canonical equivalence \(\approx_{\phi,t} \ldots \)
Faster new algorithms

Furthermore, the concept of a canonical equivalence gives us a fine control over the runtime dependency on the width parameter – we simply estimate its index.

Consider the universe of partially-equipped t-labeled graphs (of rank-width $\leq t$).

- As shown already by [Bui-Xuan, Telle, and Vatshelle, 08];
 the canonical equivalence of $\text{independent-set}(X)$ has index $\leq 2^{t(t+1)/4}$
 (this relates to the number of subspaces of $GF(2)^t$).
Faster new algorithms

Furthermore, the concept of a canonical equivalence gives us a fine control over the runtime dependency on the width parameter – we simply estimate its index.

Consider the universe of partially-equipped t-labeled graphs (of rank-width $\leq t$).

- As shown already by [Bui-Xuan, Telle, and Vatshelle, 08];
 the canonical equivalence of independent-set(X) has index $\leq 2^{t(t+1)/4}$ (this relates to the number of subspaces of $GF(2)^t$).

Theorem. [Bui-Xuan, Telle, and Vatshelle, 08]
The independent set problem can be solved in time $O\left(2^{t(t+1)/2} \cdot t^3 \cdot |V(G)|\right)$, and the c-colourability (fixed c) in time $O\left(2^{c t(t+1)/2} \cdot c t^3 \cdot |V(G)|\right)$.
Faster new algorithms

Furthermore, the concept of a canonical equivalence gives us a fine control over the runtime dependency on the width parameter – we simply estimate its index.

Consider the universe of partially-equipped t-labeled graphs (of rank-width $\leq t$).

- As shown already by [Bui-Xuan, Telle, and Vatshelle, 08];
 the canonical equivalence of $\text{independent-set}(X)$ has index $\leq 2^{t(t+1)/4}$ (this relates to the number of subspaces of $GF(2)^t$).

Theorem. [Bui-Xuan, Telle, and Vatshelle, 08]
The independent set problem can be solved in time $O\left(2^{t(t+1)/2} \cdot t^3 \cdot |V(G)|\right)$, and the $\text{$c$-colourability}$ (fixed c) in time $O\left(2^{ct(t+1)/2} \cdot ct^3 \cdot |V(G)|\right)$.

- An extension: the canonical equiv. of $\text{clique}(X)$ has index $\leq 2^{(t+1)(t+2)/4}$.
Faster new algorithms

Furthermore, the concept of a canonical equivalence gives us a fine control over the runtime dependency on the width parameter – we simply estimate its index.

Consider the universe of partially-equipped t-labeled graphs (of rank-width $\leq t$).

- As shown already by [Bui-Xuan, Telle, and Vatshelle, 08];
 the canonical equivalence of \textit{independent-set}(X) has index $\leq 2^{t(t+1)/4}$
 (this relates to the number of subspaces of $GF(2)^t$).

\textbf{Theorem.} [Bui-Xuan, Telle, and Vatshelle, 08]
The \textit{independent set} problem can be solved in time $O\left(2^{t(t+1)/2} \cdot t^3 \cdot |V(G)|\right)$, and the \textit{c-colourability} (fixed c) in time $O\left(2^{ct(t+1)/2} \cdot ct^3 \cdot |V(G)|\right)$.

- An extension: the canonical equiv. of \textit{clique}(X) has index $\leq 2^{(t+1)(t+2)/4}$.

\textbf{Theorem.} [Ganian and PH, 08]
\textit{Split graphs} can be recognized in time $O\left(2^{(t+1)^2} \cdot t^3 \cdot |V(G)|\right)$, and so called \textit{c-co-colourability} problem can be solved in time $O\left(2^{ct(t+1)} \cdot ct^3 \cdot |V(G)|\right)$.
5 The new extension: PCE Scheme

(PCE = prepartitioned canonical equivalence)

Starting point: The \textit{dominating-set}(X) predicate has a double-exponential number of canonical equivalence classes. Yet solvable with single-exponential dependency on the rank-width [Bui-Xuan, Telle, and Vatshelle, 08].
5 The new extension: PCE Scheme

(PCE = prepartitioned canonical equivalence)

Starting point: The dominating-set(X) predicate has a double-exponential number of canonical equivalence classes. Yet solvable with single-exponential dependency on the rank-width [Bui-Xuan, Telle, and Vatshelle, 08].

How to cope with this in our formalism?

- Canonical equivalence records only the information we already know.
5 The new extension: PCE Scheme

(PCE = prepartitioned canonical equivalence)

Starting point: The dominating-set\((X)\) predicate has a double-exponential number of canonical equivalence classes. Yet solvable with single-exponential dependency on the rank-width [Bui-Xuan, Telle, and Vatshelle, 08].

How to cope with this in our formalism?

- Canonical equivalence records only the information we already know.

- What can we do with the future information we get from further dynamic processing of our graph? Possible at all?
5 The new extension: PCE Scheme

(PCE = prepartitioned canonical equivalence)

Starting point: The dominating-set(X) predicate has a double-exponential number of canonical equivalence classes. Yet solvable with single-exponential dependency on the rank-width [Bui-Xuan, Telle, and Vatshelle, 08].

How to cope with this in our formalism?

- Canonical equivalence records only the information we already know.
- What can we do with the future information we get from further dynamic processing of our graph?
 Possible at all?
- Yes, we work with an “expectation” of future graph data (of H), and record known information wrt. all these possible “expectations”.

Recall: $G_1 \approx_{\mathcal{P},k} G_2$ for any $G_1, G_2 \in \mathcal{U}_t$ if and only if, for all $H \in \mathcal{U}_t,$

$G_1 \oplus H \models \mathcal{P} \iff G_2 \oplus H \models \mathcal{P}.$
What is a PCE scheme

Consider the universe \mathcal{U}_t of part.-equipped t-labeled graphs (of rank-width $\leq t$).

Definition. A property π has a *prepartitioned canonical equivalence scheme* (PCE scheme) if, for all t, there exist partitions \mathcal{B}_t and \mathcal{A}_t^B, $B \in \mathcal{B}_t$, of \mathcal{U}_t:

- Classes of \mathcal{B}_t present our “expectation” of future data (graph H).
- Wrt. particular expectation $B \in \mathcal{B}_t$, we record only a class of \mathcal{A}_t^B the (so far processed) graph G_1 belongs to.
What is a PCE scheme

Consider the universe \mathcal{U}_t of part.-equipped t-labeled graphs (of rank-width $\leq t$).

Definition. A property π has a *prepartitioned canonical equivalence scheme* (PCE scheme) if, for all t, there exist partitions \mathcal{B}_t and \mathcal{A}_t^B, $B \in \mathcal{B}_t$, of \mathcal{U}_t:

- Classes of \mathcal{B}_t present our “expectation” of future data (graph H).
- Wrt. particular expectation $B \in \mathcal{B}_t$, we record only a class of \mathcal{A}_t^B the (so far processed) graph G_1 belongs to.

(i) \mathcal{B}_t is “compatible” with the composition oper. occurring in the parse trees.
What is a PCE scheme

Consider the universe \mathcal{U}_t of part.-equipped t-labeled graphs (of rank-width $\leq t$).

Definition. A property π has a *prepartitioned canonical equivalence scheme* (PCE scheme) if, for all t, there exist partitions \mathcal{B}_t and \mathcal{A}_t^B, $B \in \mathcal{B}_t$, of \mathcal{U}_t:

- Classes of \mathcal{B}_t present our “expectation” of future data (graph H).
- Wrt. particular expectation $B \in \mathcal{B}_t$, we record only a class of \mathcal{A}_t^B the (so far processed) graph G_1 belongs to.

(i) \mathcal{B}_t is “compatible” with the composition oper. occurring in the parse trees.

(ii) The \mathcal{A}_t^B-class of our graph is “uniq. determined” from a \mathcal{B}_t-expectation.
What is a PCE scheme

Consider the universe \mathcal{U}_t of part.-equipped t-labeled graphs (of rank-width $\leq t$).

Definition. A property π has a *prepartitioned canonical equivalence scheme* (PCE scheme) if, for all t, there exist partitions \mathcal{B}_t and \mathcal{A}_t^B, $B \in \mathcal{B}_t$, of \mathcal{U}_t:

- Classes of \mathcal{B}_t present our “expectation” of future data (graph H).
- Wrt. particular expectation $B \in \mathcal{B}_t$, we record only a class of \mathcal{A}_t^B the (so far processed) graph G_1 belongs to.

(i) \mathcal{B}_t is “compatible” with the composition oper. occurring in the parse trees.

(ii) The \mathcal{A}_t^B-class of our graph is “uniq. determined” from a \mathcal{B}_t-expectation.

(iii) There is a constant d independent of t such that the following equivalence $\sim_{\pi}^{A,B}$ on A has index $\leq d$ (even $d = 1$) for all $B \in \mathcal{B}_t$ and $A \in \mathcal{A}_t^B$:

It is $\bar{G}_1 \sim_{\pi}^{A,B} \bar{G}_2$ if and only if $\bar{G}_1, \bar{G}_2 \in A$ and

$$\bar{G}_1 \otimes \bar{H} \models \pi \iff \bar{G}_2 \otimes \bar{H} \models \pi \quad \text{for all } \bar{H} \in B.$$
Algorithms coming from PCE schemes

- Re-using the idea of an independent-set canonical classes, and employing “expectations”, one gets:

Theorem. cf. [Bui-Xuan, Telle, and Vatshelle, 08]
The *dominating set* problem can be solved in time $O\left(2^{3t(t+1)/4} \cdot t^3 \cdot |V(G)|\right)$.
Algorithms coming from PCE schemes

- Re-using the idea of an independent-set canonical classes, and employing “expectations”, one gets:

Theorem. cf. [Bui-Xuan, Telle, and Vatshelle, 08]
The dominating set problem can be solved in time $O\left(2^{3t(t+1)/4} \cdot t^3 \cdot |V(G)|\right)$.

- Furthermore, with some more involved linear algebra;

Theorem. [Ganian and PH, 08] The $\text{acyclic-set}(X)$ and $\text{connected-set}(X)$ predicates have PCE schemes of “size” $2^{O(t^2)}$.
Algorithms coming from PCE schemes

- Re-using the idea of an independent-set canonical classes, and employing “expectations”, one gets:

Theorem. cf. [Bui-Xuan, Telle, and Vatshelle, 08]
The dominating set problem can be solved in time $O\left(2^{3t(t+1)/4} \cdot t^3 \cdot |V(G)|\right)$.

- Furthermore, with some more involved linear algebra;

Theorem. [Ganian and PH, 08]
The $\text{acyclic-set}(X)$ and $\text{connected-set}(X)$ predicates have PCE schemes of “size” $2^{O(t^2)}$.

Corrolaries.
- The acyclic colouring problem solvable in $O\left(2^{5c^2t^2} \cdot c^2t^3 \cdot |V(G)|\right)$.
Algorithms coming from PCE schemes

- Re-using the idea of an independent-set canonical classes, and employing “expectations”, one gets:

Theorem. cf. [Bui-Xuan, Telle, and Vatshelle, 08] The *dominating set* problem can be solved in time $O(2^{3t(t+1)/4} \cdot t^3 \cdot |V(G)|)$.

- Furthermore, with some more involved linear algebra;

Theorem. [Ganian and PH, 08] The *acyclic-set*(X) and *connected-set*(X) predicates have PCE schemes of “size” $2^{O(t^2)}$.

Corrolaries.
- The *acyclic colouring* problem solvable in $O(2^{5c^2t^2} \cdot c^2t^3 \cdot |V(G)|)$.
- Other problems like connected dominating set, feedback vertex set, etc, have $O(2^{O(t^2)} \cdot |V(G)|)$ algorithms on graphs of rank-width t . . .
6 Conclusions

• Parse trees give a useful tool for algorithms on graphs of bounded width,
 – giving an accessible “bridge” between design of specific algorithms
 and those very general results (like the MSO theorem).
6 Conclusions

- Parse trees give a useful tool for algorithms on graphs of bounded width, giving an accessible “bridge” between design of specific algorithms and those very general results (like the MSO theorem).

- Focus on the precise number of canonical equivalence classes gives a fine control over the runtime of a dynamic algorithm wrt. our width parameter.
 - not being considered in depth before...
6 Conclusions

• Parse trees give a useful tool for algorithms on graphs of bounded width,
 – giving an accessible “bridge” between design of specific algorithms and those very general results (like the MSO theorem).

• Focus on the precise number of canonical equivalence classes gives a fine control over the runtime of a dynamic algorithm wrt. our width parameter.
 – not being considered in depth before.

• Even more, one can work with an “expectation” of future data and achieve additional speed-up, as with our new PCE scheme formalism.
 – can this be useful in other areas of algorithmic design?
6 Conclusions

- Parse trees give a useful tool for algorithms on graphs of bounded width, giving an accessible "bridge" between design of specific algorithms and those very general results (like the MSO theorem).

- Focus on the precise number of canonical equivalence classes gives a fine control over the runtime of a dynamic algorithm wrt. our width parameter. not being considered in depth before.

- Even more, one can work with an "expectation" of future data and achieve additional speed-up, as with our new PCE scheme formalism. can this be useful in other areas of algorithmic design?

- and is there a room for even more powerful speed-up techniques on parse trees? Where and how?
6 Conclusions

- Parse trees give a useful tool for algorithms on graphs of bounded width,
 - giving an accessible “bridge” between design of specific algorithms
 and those very general results (like the MSO theorem).

- Focus on the precise number of canonical equivalence classes gives a fine
 control over the runtime of a dynamic algorithm wrt. our width parameter.
 - not being considered in depth before...

- Even more, one can work with an “expectation” of future data and achieve
 additional speed-up, as with our new PCE scheme formalism.
 - can this be useful in other areas of algorithmic design?
 - and is there a room for even more powerful speed-up techniques on
 parse trees? Where and how?

THANK YOU FOR YOUR ATTENTION