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Abstract. Rank-width is a structural graph measure introduced by
Oum and Seymour and aimed at better handling of graphs of bounded
clique-width. We propose a formal mathematical framework and tools
for easy design of dynamic algorithms running directly on a rank-
decomposition of a graph (on contrary to the usual approach which trans-
lates a rank-decomposition into a clique-width expression, with a possible
exponential jump in the parameter). The main advantage of this frame-
work is a fine control over the runtime dependency on the rank-width
parameter. Our new approach links to a work of Courcelle and Kanté
[WG 2007] who first proposed algebraic expressions with a so-called bi-
linear graph product as a better way of handling rank-decompositions,
and to a parallel recent research of Bui-Xuan, Telle and Vatshelle.

Keywords: Parameterized algorithm, rank-width, graph colouring,
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1 Introduction

Most graph problems are known to be NP -hard in general, and yet a solution
to these is needed for practical applications. One common method to provide
such a solution is through restricting the input graph to have a certain structure.
Often the input graphs are restricted to have bounded tree-width [23] (or branch-
width), but another weaker useful structural restriction has appeared with the
notion of clique-width, defined by Courcelle and Olariu in [9].

Now, many hard graph problems (particularly all those expressible in MS1

logic, see Section 4) are solvable in polynomial time [8, 11, 19, 15], as long as the
input graph has bounded clique-width and is given in the form of the “decom-
position for clique-width”, called a k-expression. A k-expression is an algebraic
expression with the following four operations on vertex-labeled graphs using k
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labels: create a new vertex with label i; take the disjoint union of two labeled
graphs; add all edges between vertices of label i and label j; and relabel all ver-
tices with label i to have label j. However, for fixed k > 3, it is not known how
to find a k-expression of an input graph having clique-width at most k.

Rank-width (see Section 2) is another graph complexity measure introduced in
2003 by Oum and Seymour [21, 20], aimed at providing an f(k)-expression of the
input graph having clique-width k for some fixed function f in polynomial time.
Furthermore, rank-width can be computed, together with an optimal decompo-
sition, in time O(n3) on n-vertex graphs of bounded rank-width [18]. Since, in
reality, clique-width can be up to exponentially larger than rank-width [5], it
now appears desirable to design algorithms running directly on an optimal rank-
decomposition rather than transforming a width-k rank-decomposition into an
f(k)-expression, with f(k) up to 2k+1 − 1 by [21], cf. also [5].

Unfortunately, the latter goal seems impossible in a direct way given the
rather “strange nature” of a rank-decomposition, and so one has to look for
suitable indirect alternatives. Courcelle and Kanté [7] in 2007 gave an alterna-
tive characterization of a rank-decomposition using bilinear product terms over
multi-coloured graphs—see Section 2 and particularly Theorem 2.2. In our view,
the latter characterization can be equivalently formulated in terms of labeling
parse trees (rank-width parse trees of [13]), which straightforwardly leads to a
new Myhill–Nerode–type characterization of finite state properties of graphs of
bounded rank-width in Theorem 3.4, and which opens new mathematical ground
for easier algorithmic design in the subsequent sections.

Recently, also Bui-Xuan, Telle and Vatshelle have studied [4] this topic in
terms of H-join decompositions, see Remark 2.4. They, moreover, gave new FPT
algorithms [4] for solving the independent set, colourability, and dominating set

problems on graphs of bounded tree-width in time O(2Θ(t2)n). These particular
algorithms, actually the one for dominating set, have inspired us to come with
a significantly enhanced formal scheme which is presented in Section 5.

We now outline the structure of our paper: After providing some technical
definitions and basic known results in Section 2, we state in Section 3 a useful
characterization (Theorem 3.4) of the regular, i.e. decidable by tree automata,
properties of bounded rank-width graphs. Subsequently in Section 4, we prove
that any MS1 formula (not neccessarily closed) defines a regular language over
the “equipped” bounded rank-width graphs. That, particularly, provides an al-
ternative combinatorial proof of Courcelle, Makowsky, and Rotics’ [8] results.

The main new contributions of our paper, which extend far beyond the scope
of our conference version [14], are then presented in Sections 5 and 6. We par-
ticularly provide a new formal mathematical approach to designing dynamic
algorithms on rank-decompositions of graphs, see Definition 5.2, which allows
a much finer control over dependency of runtime on the rank-width and yet it
stays very general. Applications of this new scheme are comparable with the
above mentioned algorithms in [4], and they include solving new hard problems
like co-colouring or acyclic colouring (for a fixed number of colours) in time

O(2Θ(t2)n) for graphs of rank-width t.
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2 Definitions and Basics

We consider finite simple undirected graphs by default. In this section we bring
up some (maybe less known) definitions and previous claims which are the build-
ing blocks of our research. We particularly pay attention to branch- and rank-
decompositions of graphs, and extend their scope to “parse trees” which are
more suitable for handling of such decompositions with the tools of traditional
automata theory in coming Sections 3,4.

Branch-width. A set function f : 2M → Z is called symmetric if f(X) =
f(M \ X) for all X ⊆ M . A tree is subcubic if all its nodes have degree at
most 3. For a symmetric function f : 2M → Z on a finite set M , the branch-
width of f is defined as follows.

A branch-decomposition of f is a pair (T, µ) of a subcubic tree T and a
bijective function µ : M → {t : t is a leaf of T}. For an edge e of T , the connected
components of T \ e induce a bipartition (X,Y ) of the set of leaves of T . The
width of an edge e of a branch-decomposition (T, µ) is f(µ−1(X)). The width of
(T, µ) is the maximum width over all edges of T . The branch-width of f is the
minimum of the width of all branch-decompositions of f . (If |M | ≤ 1, then we
define the branch-width of f as f(∅).)

A natural application of this definition is the branch-width of a graph, as
introduced by Robertson and Seymour [23] along with better known tree-width,
and its natural matroidal counterpart. In that case we use M = E(G), and f the
connectivity function of G. There is, however, another interesting application of
the aforementioned general notions, in which we consider the vertex set V (G) =
M of a graph G as the ground set.

Rank-width. For a graph G, let AG[U,W ] be the bipartite adjacency matrix
of a bipartition (U,W ) of the vertex set V (G) defined over the two-element field
GF(2) as follows: the entry au,w, u ∈ U and w ∈W , of AG[U,W ] is 1 if and only
if uw is an edge of G. The cut-rank function ρG(U) = ρG(W ) then equals the
rank of AG[U,W ] over GF(2). A rank-decomposition and rank-width of a graph
G is the branch-decomposition and branch-width of the cut-rank function ρG
of G on M = V (G), respectively.

The main reason for the popularity of rank-width over clique-width is the
fact that there are parameterized algorithms for rank-decompositions [21, 18].

Theorem 2.1 ([18]). For every fixed t there is an O(n3)-time algorithm that,
for a given n-vertex graph G, either finds a rank-decomposition of G of width at
most t, or confirms that the rank-width of G is more than t.

Few rank-width examples. Any complete graph of more than one vertex has
clearly rank-width 1 since any of its bipartite adjacency matrices consists of all
1s. It is similar with complete bipartite graphs if we split the decomposition
along the parts. We illustrate the situation with graph cycles: while C3 and C4
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have rank-width 1, C5 and all longer cycles have rank-width equal 2. A rank-
decomposition of, say, the cycle C5 is shown in Fig. 1. Conversely, every subcubic
tree with at least 4 leaves has an edge separating at least 2 leaves on each side,
and every corresponding bipartition of C5 gives a matrix of rank ≥ 2.
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Fig. 1. A rank-decomposition of the graph cycle C5.

One may also mention distance-hereditary graphs, i.e. graphs such that the
distances in any of their connected induced subgraphs are the same as in the
original graph, which have been independently studied, e.g. [3], before. It turns
out that distance-hereditary graphs are exactly the graphs of rank-width one
[20], and this simple fact explains many of their “nice” algorithmic properties.

Labeling parse trees. In a search for a “more suitable form” of a rank-
decomposition, Courcelle and Kanté [7] defined the bilinear products of multiple-
coloured graphs, and proposed algebraic expressions over these operators as an
equivalent description of a rank-decomposition (cf. Theorem 2.2). Here we in-
troduce (following [13]) the same idea in terms of parse trees which we propose
as a more convenient notation for the results in the next sections.

A (vertex) t-labeling of a graph is a mapping lab : V (G) → 2Lt where Lt =
{1, 2, . . . , t} is the set of labels (this notion is exactly equivalent to multiple-
coloured graphs of [7]). Having a graph G with an (implicitly) associated t-
labeling lab, we refer to the pair (G, lab) as to a t-labeled graph and use nota-
tion Ḡ. Notice that each vertex of a t-labeled graph may have zero, one or more
labels. So even an unlabeled graph can be considered as t-labeled with no labels,
and every t-labeled graph is also t′-labeled for all t′ > t. We will often view a
t-labeling of G equivalently as a mapping V (G) → GF (2)t to the binary vector
space of dimension t (cf. [7] again).

A t-relabeling is a mapping f : Lt → 2Lt . For a t-labeled graph Ḡ = (G, lab)
we define f(Ḡ) as the same graph with a vertex t-labeling lab′ = f ◦ lab. Since
lab maps into subsets of Lt which are interpretable as vectors from GF(2)t, the
relabeling f in the composition f ◦ lab acts as a linear transformation in the
vector space GF(2)t. Informally, f is applied separately to each label in lab(v)
and the outcomes are summed up “modulo 2”; such as for lab(v) = {1, 2} and
f(1) = {1, 3, 4}, f(2) = {1, 2, 3}, we get f ◦ lab(v) = {2, 4} = {1, 3, 4}△{1, 2, 3}.

Let ⊙ be a nullary operator creating a single new graph vertex of label {1}.
For t-relabelings f1, f2, g : Lt → 2Lt let ⊗[g | f1, f2] be a binary operator, called
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t-labeling composition (as bilinear product of [7]), over pairs of t-labeled graphs
Ḡ1 = (G1, lab

1) and Ḡ2 = (G2, lab
2) defined as follows:

(G1, lab
1) ⊗[g | f1, f2] (G2, lab

2) = (H, lab)

where the graph H is constructed from the disjoint union G1∪̇G2 by adding all
edges uw, u ∈ V (G1) and w ∈ V (G2) such that |lab1(u) ∩ g ◦ lab2(w)| is odd,
and with the new labeling lab(v) = fi ◦ lab

i(v) for v ∈ V (Gi), i = 1, 2.
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Fig. 2. An example of a labeling parse tree which generates a 2-labeled cycle C5, with
symbolic operators at the nodes (id denotes the relabeling preserving all labels).

A t-labeling parse tree T , see also [13, Definition 6.11], is a finite rooted
ordered subcubic tree (with the root degree at most 2) such that

– all leaves of T contain the ⊙ symbol, and
– each internal node of T contains one of the t-labeling composition symbols.

A parse tree T then generates (parses) the graph G which is obtained by succes-
sive leaves-to-root applications of the operators in the nodes of T . See Fig. 2,3
for an illustration.

We make two short notes to this definition. First, the role of relabeling g in
⊗[g | f1, f2] is unavoidable for Theorem 2.2 to hold true, but we can sometimes
(when needed) avoid it as in Proposition 3.2 later on. Second, our definition
of a parse tree allows a node with just one descendant, and in such a case the
⊗[g | f1, f2] operator is (naturally) applied to the empty graph on the other side.

From the prior work of Courcelle and Kanté we get a crucial statement:

Theorem 2.2 (Rank-width parsing theorem [7]). A graph G has rank-
width at most t if and only if (some labeling of) G can be generated by a t-labeling
parse tree. Furthermore, a width-t rank-decomposition of G can be transformed
into a t-labeling parse tree on Θ(|V (G)|) nodes in time O(t2 · |V (G)|2).

This statement is equivalent to [7, Theorem 3.4] which reads: G has rank-width
at most t if and only if G is the value of a term over Ct and Rt, where Ct
is the set of t-labeled singletons and Rt is the set of bilinear product forms of
rank at most t. A bilinear product ⊗f,g,h of [7] is straighforwardly equivalent to
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Fig. 3. “Bottom-up” generation of C5 by the parse tree from Fig. 2.

our ⊗[f | g, h] , and a t-labeled singleton vertex f(⊙) can be emulated with two
nodes—the ⊙ singleton symbol with a ⊗[∅ | f, ∅] “relabeling” parent.

Finally, time complexity bound O(t2 · |V (G)|2) for turning a rank-decom-
position into a labeling parse tree is not explicit in [7], but it easily follows from
an independent self-contained proof of Theorem 2.2 in the first author’s Master
thesis [13, Chapter 6].

Remark 2.3. We suggest that the “nearly linear” term |V (G)|2 in the time com-
plexity of Theorem 2.2 can be improved to linear |E(G)| if one carefully recon-
siders all the technical details, but that would not be profitable in our context in
which we use Theorem 2.2 together with Theorem 2.1 to construct an optimal
labeling parse tree of a given graph G in parameterized O(|V (G)|3) time.

Remark 2.4. Besides the bilinear product terms and labeling parse trees (Theo-
rem 2.2), another alternative characterization of rank-width suitable for dynamic
algorithm design has popped up recently [4]: Bui-Xuan, Telle and Vatshelle de-
fined so called H-join operation, and proved that graphs of rank-width ≤ k are
exactly those having an Rk-join decomposition [4, Theorem 4.3]. One can see
that an Rk-join decomposition is equivalent to a k-labeling parse tree in which
the relabelings f1, f2 of each composition operator ⊗[g | f1, f2] are “forgotten”
(this lost information is then recovered in dynamic processing [4, Lemma 3.2]).

3 Regularity Theorem for Rank-width

Our goal is to develop further new mathematical formalisms for easier handling
of certain algorithmic problems on graphs of bounded rank-width. A typical idea
of a dynamic algorithm is
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– to capture “all relevant information” about the studied problem through a
restricted (“decomposed”) part of the input, and

– to process this information bottom-up in the given “decomposition” (what-
ever this term means in a particular case).

Of course, besides finding a suitable “decomposition”, the main question here
is how to correctly specify the meaning of “relevant information”. In contrast
to usual problem specific or ad-hoc approaches, our formal method is closely
tied with the classical Myhill–Nerode regularity tool in automata theory. That
is possible since our parse trees, for every fixed t, have nodes with symbols of a
finite alphabet and hence can be used as an input for finite tree automata. Such
thinking is not quite new in theory—it has been inspired by analogous machinery
successfully used in [1] or [10, Chapter 6] (for graphs of bounded tree-width) and
in [17] (for matroids of bounded branch-width) before. The case of rank-width,
however, brings some new obstacles.

We make two simple technical remarks. First, it could be necessary to inter-
change the operands of a t-labeling composition which itself is not commutative.
Since a t-relabeling g is a linear transformation in GF (2)t, this g is determined
by a square binary matrix (cf. also the bilinear product of [7]), and hence we
can define a t-relabeling gT as the matrix-transpose of the linear mapping g.

Proposition 3.1. Let Ḡ1, Ḡ2 be t-labeled graphs and g : Lt → 2Lt be a t-
relabeling. If a relabeling gT is given by the transposed linear mapping of g, then

Ḡ1 ⊗[g | f1, f2] Ḡ2 = Ḡ2 ⊗[gT | f2, f1] Ḡ1 .

Second, we shortly write ⊗[g] for ⊗[g | ∅, ∅] where ∅ stands for the relabeling
Lt → {∅} “forgetting” all vertex labels. The role of specific relabeling g in ⊗[g]
is rather technical after all, as the next immediate claim specifies:

Proposition 3.2. Let Ḡ1, Ḡ2 be t-labeled graphs generated by labeling parse
trees T1, T2, and g be a t-relabeling. Then there is a tree T g2 parsing a t-labeled
graph Ḡg2 (actually unlabeled-equal to Ḡ2) such that

Ḡ1 ⊗[g] Ḡ2 = Ḡ1 ⊗[id] Ḡg2 .

Recall that id denotes the identity relabeling, and so we will omit it completly
in subsequent text, writing just ⊗ instead ⊗[id] . In this way we obtain a generic
summation operator ⊗ (join) making an unlabeled graph out of two labeled
ones, which is needed in the coming definitions.

The canonical equivalence. Let Πt denote the finite set (alphabet) of all the
t-labeling composition symbols and ⊙, and let subsequently Pt ⊆ Π∗∗

t be the
class (language) of all valid t-labeling parse trees. If Rt denotes the class of all
unlabeled graphs of rank-width at most t and Rt is the class of all t-labeled
graphs parsed by the trees from Pt, then (Theorem 2.2) G ∈ Rt if and only if
Ḡ ∈ Rt for some t-labeling Ḡ of G.
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Let D be any class of graphs, and Dt = D ∩Rt. In analogy to the classical
theory of regular languages we define a canonical equivalence of Dt, denoted by
≈D,t, as follows: Ḡ1 ≈D,t Ḡ2 for any Ḡ1, Ḡ2 ∈ Rt if and only if, for all H̄ ∈ Rt,

(3.3) Ḡ1 ⊗ H̄ ∈ Dt ⇐⇒ Ḡ2 ⊗ H̄ ∈ Dt .

In informal words, the classes of ≈D,t “capture” all information we need to know
about a t-labeled subgraph Ḡ ∈ Rt to decide membership in D further on in
our parse tree processing (we do not need to consider arbitrary g of ⊗[g] in this
canonical equivalence thanks to Proposition 3.2).

This informal finding can be formalized as follows (cf. [13, Chapter 7]):

Theorem 3.4 (Rank-width regularity theorem). Let t ≥ 1, D be a graph
class, and Dt = D ∩ Rt. The collection of all those t-labeling parse trees which
generate the members of Dt is accepted by a finite tree automaton if, and only
if, the canonical equivalence ≈D,t of Dt over Rt is of finite index.

Proof. Our starting point is the classical Myhill–Nerode theorem for tree au-
tomata. Let Σ∗∗ denote the set of all rooted binary trees over a finite alphabet
Σ. For a language λ ⊆ Σ∗∗ we can define a congruence ∼λ such that T1 ∼λ T2

for T1, T2 ∈ Σ∗∗ if, and only if, T1 ⋄x U ∈ λ ⇐⇒ T2 ⋄x U ∈ λ where U runs
over all special rooted binary trees over Σ with one distinguished leaf node x,
and Ti ⋄x U results from U by replacing the leaf x with the subtree Ti. Then λ

is accepted by a finite tree automaton if and only if ∼λ has finite index.

In our case Σ = Πt, and λ are the labeling parse trees of the members of Dt.
So, to prove our theorem it is enough to show that ≈D,t has infinite index if and
only if ∼λ has infinite index.

Suppose the former holds, i.e. there are infinitely many Ḡk ∈ Rt, k = 1, 2, . . . ,
such that for all indices i 6= j there exists H̄i,j ∈ Rt for which Ḡi⊗ H̄i,j ∈ Dt
but Ḡj ⊗ H̄i,j 6∈ Dt, or vice versa. Let Sk be a labeling parse tree of Ḡk, and
Qi,j that of H̄i,j . We define a new parse tree Ui,j such that the root operator
is ⊗[id | ∅, ∅] , its left son is the distinguished leaf x, and its right subtree is
Qi,j . Hence the special trees Ui,j witness that all the parse trees Sk, k = 1, 2, . . .
belong to distinct classes of ∼λ.

Conversely, suppose that the latter holds. So there are infinitely many trees
Sk ∈ Π∗∗

t , k = 1, 2, . . . , such that for each pair of indices i 6= j there exists Ui,j
as above for which Si⋄xUi,j ∈ λ but Sj ⋄xUi,j 6∈ λ, or vice versa. We may assume
without loss of generality that Sk ∈ Pt are valid labeling parse trees for all k. Let
Ḡk be the graphs parsed by Sk. Using technical Lemma 3.6 and Proposition 3.2,
we deduce that there exist graphs H̄i,j such that

– the graph parsed by Si ⋄x Ui,j is equal up to labeling to Ḡi⊗ H̄i,j ∈ Dt,
– and the graph parsed by Sj ⋄x Ui,j equals up to labeling Ḡj ⊗ H̄i,j 6∈ Dt.

This assertion certifies that the graphs Ḡk indeed belong to distinct classes of
our canonical equivalence ≈D,t.
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Corollary 3.5. There is a natural bijection between the states of the tree au-
tomaton of Theorem 3.4 and the classes of the canonical equivalence ≈D,t.

Lemma 3.6. Let T be a labeling parse tree generating an unlabeled graph G, let
v be a node of T , and let Tv denote the subtree of T rooted at v. Then there exist
a labeling parse tree W and a t-relabeling ℓ such that G = Ḡv ⊗[ℓ] H̄, where Ḡv
is the t-labeled graph parsed by Tv and H̄ is the t-labeled graph parsed by W .
Furthermore, the tree W does not depend on Tv.

Proof. First of all, by switching the subtrees of suitable nodes of T , as in
Proposition 3.1, we can assume that the node v is on the leftmost branch of T .
Then we continue by induction on the distance between v and the root r of T .
If the distance is 1, we are done: we take W the right subtree of r, and ℓ from
the composition operator of r. If not, then we will reduce the distance from the
root to v by 1 by using the right tree rotation (at r) as in Fig. 4.
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Indeed, the parse tree T ′ obtained from T by the rotation of Fig. 4 generates
the same unlabeled graph G′ = G if we choose: k = id, k′ = fT2 ◦g′, h′1 = g, and
h′2 = fT1 ◦ g′, where fTi , i = 1, 2, are given by the transposed linear mapping of
fi. We leave the straightforward algebraic verification of this fact to the reader.
(Notice, however, that the vertex labeling of the resulting graph G′ generally
cannot be preserved the same as that of G, and so such a construction can be
used only at the parse-tree root.)

The proof is thus finished by induction. Since, moreover, we have not used
any information about the subtree Tv in the construction, the resulting right
subtree W of the root will not depend on Tv.

Remark 3.7. Notice that the arguments used in our proof of Theorem 3.4 do
not straightforwardly translate from rank-width (and labeling parse trees) to
clique-width (and its k-expressions). Quite the opposite, the “only if” direction
of this theorem seems not at all provable in the above way since one cannot freely
choose the “root” of a k-expression. We consider that another small reason to
favor rank-width over clique-width in CS applications.

3-colourability example. We demonstrate the use of Theorem 3.4 on graph
3-colourability which is a well-known NP-complete problem. Let C denote the
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class of all simple 3-colourable graphs. To construct a tree automaton accepting
the labeling parse trees of the members of C ∩ Rt, it is enough to identify the
classes of the canonical equivalence ≈C,t. We actually give below finitely many
classes X = {X0,X1,X2, . . . } of a refinement of ≈C,t.

Assume a t-labeled graph Ḡ = (G, lab) with a proper 3-colouring χ. Let, for
i = 1, 2, 3, γi(Ḡ, χ) = {lab(u) : u ∈ V (G) ∧ χ(u) = i}. Then

– X0 = {Ḡ : G is not 3-colourable}, and
– X1,X2, . . . ,Xj(t) are the equivalence classes of ∼, where over t-labeled

graphs Ḡ1 ∼ Ḡ2 if and only if it holds

(3.8)
{(

γ1(Ḡ1, χ), γ2(Ḡ1, χ), γ3(Ḡ1, χ)
)

: χ is a proper 3-colouring of G1

}

=
{(

γ1(Ḡ2, χ), γ2(Ḡ2, χ), γ3(Ḡ2, χ)
)

: χ is a proper 3-colouring of G2

}

.

Proposition 3.9. If Ḡ1 and Ḡ2 belong to the same class of X , then Ḡ1 ≈C,t Ḡ2.

The fact that the 3-colourability problem is efficiently solvable (even by a tree
automaton) on graphs of bounded rank-width then follows from Theorems 2.1
and 3.4. This is also extendable to c-colourability for any fixed c.

Returning to the original motivation of this section, we can now say what
“relevant information” about the 3-colourability problem we want to remember
in a dynamic algorithm solving it on a labeling parse tree; it is the set (3.8). How-
ever, is this optimal? On one hand, the number of our classes j(t) is a constant
independent of the input size, and so it does not matter in the O() notation. On
the other hand, the amount of information we have to remeber in (3.8) is “double-

exponential” in the rank-width t (i.e. j(t) is of order exp(23·2t

) ), and that can be
too much in practical applications. A much better analysis—showing that there
are at most 2O(t2) distinct canonical classes of the c-colourability problem, can
be found in [4, Section 3.3] and also in Section 6.

4 From Regularity to MSO Properties

Monadic second-order (MSO in short) logic is a language particularly suited for
description of problems on “tree-like” decompositions of graphs. Already about
20 years ago it was shown that all MSO definable properties of incidence graphs
can be solved in linear time if a tree-decomposition of bounded width is given on
the input [2, 6]. Analogous statement has been shown by Courcelle, Makowsky,
and Rotics [8] for MSO definable properties of adjacency graphs if a k-expression
(cf. clique-width) of bounded k is given on the input, and this readily extends to
graphs with a given rank-decomposition of bounded width, e.g. [7, Corollary 3.3].

From a logic point of view, we consider an adjacency graph as a relational
structure on the ground set V , with one binary predicate edge(u, v). When the
language of MSO logic is applied to such a graph adjacency structure, one gets
a descriptional language over graphs commonly abbreviated as MS1. For an
illustration we show an MS1 expression of the 3-colourability property of a graph:

∃V1, V2, V3

[

∀v (v ∈ V1 ∨ v ∈ V2 ∨ v ∈ V3) ∧
∧

i=1,2,3 ∀v,w (v 6∈ Vi ∨ w 6∈ Vi ∨ ¬ edge(v,w))
]

10



It is also common to consider the “counting” version of MSO logic which more-
over has predicates modp,q(X) stating that |X| mod p = q.

To avoid possible confusion we remark that the previously mentioned stronger
MSO language of incidence graphs, abbreviated as MS2, allows to quantify also
over graph edges and their sets. There are MS2 expressible graph properties, e.g.
Hamiltonicity, which are not expressible in MS1, whilst MS2 properties cannot
be (in general) efficiently handled on graphs of bounded rank-width.

In this section we would like to show that the “MS1”-statement of Courcelle,
Makowsky, and Rotics [8] can also be set up in the scope of our Rank-width reg-
ularity Theorem 3.4. Briefly saying, we consider the class F of graphs described
by an MS1 sentence φ, and show by structural induction on φ that the canonical
equivalence ≈F,t has finite index. The latter actually needs an extension of ≈F,t

to an equivalence ≈σ
φ,t (see below) allowing for formulas φ with free variables.

This new view shall not only be an elementary combinatorial alternative
to the proof [8] which used MSO interpretation (transduction) of the graphs
generated by k-expressions into labeled binary trees, but also leads to new The-
orem 4.1 which could be of independent interest (see Remark 4.8 and the proof
of Theorem 4.12).

Extended canonical equivalence of MS1 formulas. We propose an exten-
sion analogous to the previous works [1, 17], but new in the context of rank-width.

Let Free(φ) = Fr(φ)∪FR(φ) be the partition of the free variables into those
Fr = Fr(φ) for vertices and those FR = FR(φ) for vertex sets. We define a
partial equipment signature of φ as a triple σ = (Fr, FR, q) where q : Fr →
{0, 1}. A t-labeled graph Ḡ is σ-partially equipped if it has distinguished vertices
and vertex sets assigned as interpretations of the free variables in σ. Formally, for
each X ∈ FR there is a distinguished subset SX ⊆ V (G), and for each x ∈ Fr

such that q(x) = 0 there is a distinguished vertex vx ∈ V (G). Nothing is assigned
to variables x ∈ Fr such that q(x) = 1. For σ we define a complemented partial
equipment signature σ− = (Fr, FR, q′) where q′(x) = 1 − q(x) for all x ∈ Fr.

See that if H̄1 is σ-partially equipped and H̄2 is σ−-partially equipped, then
H = H̄1 ⊗[g] H̄2 has a full and consistent interpretation for all the free variables
of φ (hence this H is a logic model for φ). So, we can define equivalence ≈σ

φ,t

over all t-labeled σ-partially equipped graphs as follows: Ḡ1 ≈σ
φ,t Ḡ2 if and only

if the following
(Ḡ1 ⊗ H̄) |= φ ⇐⇒ (Ḡ2 ⊗ H̄) |= φ

holds for all t-labeled σ−-partially equipped graphs H̄.
Comparing to (3.3), we have extended ≈σ

φ,t in two directions. First, by al-
lowing free variables in φ we enlarge the studied universe to partially equipped
graphs. Second, the universe is further enlarged by allowing all t-labeled under-
lying graphs – not only those from Rt. Yet we can prove:

Theorem 4.1. Let t ≥ 1 be fixed. Suppose φ is a formula in the language MS1,
and σ is a partial equipment signature for φ. Then ≈σ

φ,t has finite index in the
universe of t-labeled σ-partially equipped graphs.

11



Proof. We retain the notation introduced above. The induction base is to
prove the statement for the atomic formulas in MS1: φ ≡ (v ∈ W ), (v = w),
modp,q(W ), or edge(u, v). The first three are all rather trivial cases which we
skip here, and we focus on the last predicate edge(u, v) (since this one actually
“defines” the graph we study).

(4.2) Suppose φ ≡ edge(u, v). Then the index of ≈σ
φ,t is one if q(u) = q(v) = 1,

two if q(u) = q(v) = 0, and 2t if q(u) = 0 and q(v) = 1 or vice versa.

In the first case both vertices u, v with a possible edge uv are interpreted in
the right-hand graph H̄, and hence no matter what Ḡ1 or Ḡ2 are, they become
equivalent in ≈σ

φ,t. In the second case both vertices u, v are interpreted in the

left-hand graphs Ḡi, and hence there are exactly two classes formed by those
graphs having and those not having u adjacent to v. It is the third case which
interests us: Recalling the definition of our join operator ⊗ , we see that all
information needed to decide whether some u in the left-hand graph is adjacent
to a specific v in the right-hand graph is encoded in the labeling of u, and hence
the 2t possibilities there.

For the inductive step, we consider that a formula φ is created from shorter
formula(s) in one of the following ways: φ ≡ ¬ψ, ψ ∧ η, ∃v ψ(v), or ∃W ψ(W ),
where v ∈ Fr(ψ) or W ∈ FR(ψ) in the latter cases. One may easily express the
∨ or ∀ symbols using these. The arguments we are going to give in the rest of this
proof are not completely novel—they are similar to [1] and nearly a translation
of the arguments used in [17, Lemma 6.2] (unfortunately, a simple reference to
that is not enough here).

We assume by induction that ≈π
ψ,t (≈ ρ

η,t) has finite index, where the signature
π (ρ) is inherited from σ for ψ (for η, see below the case-by-case details). The
first case is quite easy to resolve:

(4.3) If φ ≡ ¬ψ, then the equivalence ≈π
ψ,t is the same as ≈σ

φ,t.

We look at the second, only slightly more involved, case.

(4.4) Suppose φ ≡ ψ ∧ η, and let π, ρ denote the restrictions of signature σ
to Free(ψ), Free(η), respectively. If ≈π

ψ,t has index p and ≈ ρ
η,t has index r,

then ≈σ
φ,t has index at most p · r.

Consider an arbitrary pair of t-labeled σ-partially equipped graphs Ḡ1 6≈σ
φ,t Ḡ2,

and an associated σ−-partially equipped graph H̄ such that (Ḡ1 ⊗ H̄) |= φ but
(Ḡ2 ⊗ H̄) 6|= φ. Then it has to be (Ḡ1 ⊗ H̄) |= ψ (or |= η) but (Ḡ2 ⊗ H̄) 6|= ψ (or
6|= η, resp.). Hence it immediately holds that Ḡ1 6≈π

ψ,t Ḡ2 or Ḡ1 6≈ ρ
η,t Ḡ2 with

the restricted equipments, and so the equivalence classes of ≈σ
φ,t are suitable

unions of the classes of the “intersection” ≈π
ψ,t ∩ ≈ ρ

η,t.

The third case of ∃v ψ(v) is technically more complicated, and so we first
deal with the similar but easier fourth case of ∃W ψ(W ).

(4.5) Suppose φ ≡ ∃W ψ(W ), and let the signature π = (Fr, FR ∪ {W}, q). If
≈π
ψ,t has index p, then ≈σ

φ,t has index at most 2p − 1.
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Again, consider an arbitrary pair of t-labeled σ-partially equipped graphs
Ḡ1 6≈σ

φ,t Ḡ2, and H̄ such that (Ḡ1 ⊗ H̄) |= φ but (Ḡ2 ⊗ H̄) 6|= φ. We shortly

write Ḡ[W = S] for the π-partially equipped graph obtained from σ-partially
equipped Ḡ by interpreting the variable W as S ⊆ V (Ḡ). Then our assump-
tion about Ḡ1, Ḡ2 means there exist SW ⊆ V (Ḡ1) and S′

W ⊆ V (H̄) such that
(

Ḡ1[W = SW ]⊗ H̄[W = S′
W ]
)

|= ψ, whilst
(

Ḡ2[W = TW ]⊗ H̄[W = S′
W ]
)

6|= ψ

for all TW ⊆ V (Ḡ2). Hence Ḡ1[W = SW ] 6≈π
ψ,t Ḡ2[W = TW ].

We now, in search for a contradiction, look at the problem from the other side.
Let the equivalence classes of ≈π

ψ,t over t-labeled π-partially equipped graphs

be C1, C2, . . . , Cp. For a σ-partially equipped graph Ḡ we define a nonempty set
Ix(Ḡ) ⊆ {1, 2, . . . , p} as follows: i ∈ Ix(Ḡ) if and only if Ḡ[W = S] ∈ Ci for some
S ⊆ V (Ḡ). If there were 2p pairwise incomparable σ-partially equipped graphs
in the relation ≈σ

φ,t, then some two of them, say Ḡ1 6≈σ
φ,t Ḡ2, would receive

Ix(Ḡ1) = Ix(Ḡ2) by the pigeon-hole principle. However, from the argument

of the previous paragraph — Ḡ1[W = SW ] 6≈π
ψ,t Ḡ2[W = TW ] for some SW ⊆

V (Ḡ1) and all TW ⊆ V (Ḡ2), we conclude that j ∈ Ix(Ḡ1) \ Ix(Ḡ2) where j is
such that Ḡ1[W = SW ] ∈ Cj . This contradiction proves (4.5).

(4.6) Suppose φ ≡ ∃v ψ(v), and let signatures π = (Fr ∪ {v}, FR, q1) and
ρ = (Fr ∪ {v}, FR, q2) where q1(v) = 0 and q2(v) = 1. If ≈π

ψ,t has index p

and ≈ ρ
ψ,t has index r, then ≈σ

φ,t has index at most 2p · r + 1 − r.

Notice that a ρ-partial equipment of Ḡ does not interpret the variable v in
V (G), and so σ-partially equipped graph Ḡ may be viewed also as ρ-partially
equipped. Take an arbitrary pair of nonempty t-labeled σ-partially equipped
graphs Ḡ1 6≈σ

φ,t Ḡ2, and H̄ such that (Ḡ1 ⊗ H̄) |= φ but (Ḡ2 ⊗ H̄) 6|= φ. Let xv ∈

V (Ḡ1)∪V (H̄) be an interpretation of the variable v that satisfies ψ over Ḡ1 ⊗ H̄ .
In particular, ψ is false over Ḡ2 ⊗ H̄ here. If xv ∈ V (H̄), then immediately
Ḡ1 6≈ ρ

ψ,t Ḡ2. Otherwise, xv ∈ V (Ḡ1) and we are in a situation analogous to the

first paragraph of (4.5):
(

Ḡ1[v = xv]⊗ H̄
)

|= ψ, whilst
(

Ḡ2[v = yv]⊗ H̄
)

6|= ψ for
all yv ∈ V (Ḡ2).

In search for a contradiction, we again look at the problem from the other
side. If there are 2pr+ 2− r pairwise incomparable σ-partially equipped graphs
with respect to ≈σ

φ,t, then at least 2pr + 1 − r = (2p − 1)r + 1 of those graphs
are nonempty, and out of them at least 2p belong to the same equivalence
class of ≈ ρ

ψ,t. Let their set be denoted by G (hence for each pair in G, the
latter conclusion of the previous paragraph applies). Considering the equiva-
lence classes C1, C2, . . . , Cp of ≈π

ψ,t, we again (as in 4.5) define a nonempty set

Ix(Ḡ) ⊆ {1, 2, . . . , p}, for σ-partially equipped Ḡ, by i ∈ Ix(Ḡ) if and only if
Ḡ[v = y] ∈ Ci for some y ∈ V (Ḡ). Then some pair, say Ḡ1, Ḡ2 ∈ G, must sat-
isfy Ix(Ḡ1) = Ix(Ḡ2) by the pigeon-hole principle. However, that analogously
contradicts the latter conclusion of the previous paragraph.

This contradiction proves (4.6), and thus the whole theorem.

Having a closed MS1 formula φ, the associated equipment signature is always
empty and hence we, in conjunction with Theorem 3.4, easily conclude:
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Corollary 4.7 (cf. [8, 7]). Let t ≥ 1. If F is a graph class definable in the MS1

language, then the language of all those t-labeling parse trees which generate the
members of F ∩Rt is accepted by a finite tree automaton.

Remark 4.8. Corollary 4.7 straightforwardly generalizes also to classes Fφ de-
fined by non-closed MS1 formulas φ if we extend the universe to equipped t-
labeling parse trees—additional labels are used (in the leaves) to encode a spe-
cific interpretation of the free variables of φ in these parse trees.

Solving optimization problems. Unfortunately, direct algorithmic applica-
bility of the “MS1 theorem” (Corollary 4.7) is limited to pure decision problems
(like 3-colourability), but many practical problems are formulated as optimiza-
tion ones. And the usual way of transforming optimization problems into decision
ones does not work here since MS1 language cannot handle arbitrary numbers.

Nevertheless, there is a known solution. Arnborg, Lagergren, and Seese [2]
(while studying graphs of bounded tree-width), and later Courcelle, Makowsky,
and Rotics [8] (for graphs of bounded clique-width), specifically extended the
expressive power of MSO logic to define so-called LinEMSO optimization prob-
lems, and consequently shown existence of efficient (parameterized) algorithms
for such problems in the respective cases. Briefly saying, the LinEMSO language
allows, in addition to ordinary MSO expressions, to compare between and opti-
mize over linear evaluational terms.

We now briefly introduce the LinEMSO optimization problems as given in [8].
Consider any MS1 formula ψ(X1, . . . ,Xp) with free set variables, and state the
following problem on an input graph G:

(4.9) opt
{

flin(U1, . . . , Up) : U1, . . . , Up ⊆ V (G), G |= ψ(U1, . . . , Up)
}

,

where opt can be min or max, and flin is a linear evaluational function. It is

(4.10) flin(U1, . . . , Up) =

p
∑

i=1

m
∑

j=1

(

ai,j ·
∑

x∈Ui

fj(x)

)

where m and ai,j are (integer) constants and fj are (integer) weight functions
on the vertices of G. Typically flin is just a cardinality function. Such as,

ψ = ι(X) ≡ ∀v,w
(

v 6∈ X ∨ w 6∈ X ∨ ¬ edge(v,w)
)

and “ max |X|”

describes the maximum independent set problem, or

(4.11) ψ = δ(X) ≡ ∀v∃w
[

v ∈ X ∨
(

w ∈ X ∧ edge(v,w)
)]

and “ min |X|”

is the minimum dominating set problem. Further examples like minimum inde-
pendent or connected dominating set problems are easily possible.

We can achieve an analogous solution to [8] in our framework directly using
Theorem 4.1. The basic idea is that, in a dynamic processing of the input labeling
parse tree, we can keep track only of suitable “optimal” representatives of all
possible interpretations of the free variables in ψ, per each class of the extended
canonical equivalence ≈σ

ψ,t.
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Theorem 4.12 (cf. Courcelle et al. [8]). Assume G is an input graph of rank-
width t, and T its given t-labeling parse tree. Then the LinEMSO optimization
problem (4.9) can be solved in linear time in |V (G)| for fixed t.

Proof. Let σ = (∅, {X1, . . . ,Xp}, ∅). We denote by Tx the subtree below a node
x of T , and by Ḡx the t-labeled subgraph of G parsed by Tx.

For any U1, . . . , Up ⊆ V (Gx), the σ-partially equipped graph Ḡx with in-
terpretation Xi = Ui, i = 1, . . . , p falls into one of the (fixed number) ℓ

classes of ≈σ
ψ,t (Theorem 4.1). A dynamic algorithm for solving (4.9) has to

remember just one representative interpretation (U j1 , . . . , U
j
p ) achieving maxi-

mum flin(X1, . . . ,Xp) over the j-th class of ≈σ
ψ,t, for j = 1, 2, . . . , ℓ. Thanks to

linearity of the objective function (4.10), and with knowledge of the associated
tree automaton (Remark 4.8), this information can easily be processed from
leaves of T to the root in total linear time (t fixed).

5 Extending the Regularity Framework

As already mentioned in the introduction, the driving force of our research is to
provide a framework for easier design of efficient parameterized algorithms run-
ning on a bounded-width rank-decomposition of a graph. The theory of param-
eterized complexity [10] defines a problem to be fixed parameter tractable (FPT)
with respect to an integer parameter k if it is solvable in time O(f(k) ·nc) where
c is a constant and f is any function. The results of Theorem 2.1, Proposition 3.9
or Corollary 4.7 fall into this framework.

For practical applications it is good to have a “small” function f in the
expression O(f(k) · nc), while the previous universal Theorem 4.1 provides f(k)
as a tower of exponents generally growing with quantifier alternation in the
formula, cf. (4.5) and (4.6). This is, indeed, generally unavoidable for results
capturing all MSO (or even FO) properties, cf. [12].

Obviously, we can hardly expect f to be polynomial for any NP -complete
problem, but say, f(k) of order 2poly(k) (“single-exponential”) with reasonable
coefficients can lead to practically usable algorithms when k is not big. In our
context, k = t is the rank-width of an input graph, and the desire is to find
FPT algorithms for (some) hard problems with, at the best, a single-exponential
dependency of running time on t.

This particular question has been, perhaps, the first time explicitly asked
by Bui-Xuan, Telle and Vatshelle in [4]. They have provided three new explicit
algorithms for the independent set, c-colourability, and dominating set problems
which all run in time O(2Θ(t2)n) for graphs with rank-decompositions of width
at most t. While the first two are comparable with our regularity framework
of Section 3 (as we discuss in Section 6), the algorithm for the dominating set
problem [4, Theorems 3.13,3.14] is most interesting for us at this point.

Consider (4.11) the predicate δ(X) stating that X is a dominating set in G,
and write shortly (X) for the equipment signature (∅, {X}, ∅). Then the extended
canonical equivalence of δ(X) has too many distinct classes, and so Theorem 4.12
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cannot provide a parameterized algorithm with a single-exponential dependency
on t:

Proposition 5.1. The equivalence ≈
(X)
δ(X),t has at least 22t

−1 distinct classes in

the universe of all (X)-partially equipped t-labeled graphs.

Still, Bui-Xuan, Telle and Vatshelle have managed to overcome this difficulty
with a new trick—simultaneously with the current fragment of a dominating
set, one should record also an “expectation” of the rest of that dominating set.

As we present next, this clever idea has a very nice generalized formalization
which (we suggest) has consequences reaching far beyond the scope of [4].

Prepartitioned canonical equivalence scheme. While introducing this new
concept, which enhances canonical equivalences of Section 3, we remark that it
is in no specific way tied with rank-width or labeling parse trees, and so it can be
formulated on a more general level (basically all we need is a “good” notion of
parse trees, a corresponding join operator, and an analogue of Proposition 5.7).

Informally, the purpose of a prepartitioned canonical equivalence scheme is
to provide a general formalism for capturing the above mentioned “expectation”
of information which is not accessible yet. This is achieved by prepartitioning
our universe of graphs in advance, and then restricting the scope of a canonical
equivalence (the “right-hand” graph of (3.3) ) to each part. We advise the reader
to compare the coming technical definition with its applications in Section 6.

We consider the universe Uσt of all σ-partially equipped t-labeled graphs
where σ = (Fr, FR, q) is a fixed equipment signature, i.e. we allow interpreta-
tions of free element variables from Fr and free set variables from FR along
with our graphs. Let π be a graph property (a predicate) with free variables
from Fr ∪ FR. More precisely, π is a property of σ-partially equipped graphs.
Assume that Bt is, for any natural number t, an arbitrary partition of Uσ

−

t into
nonempty parts, and for any B ∈ Bt let AB

t be any partition of Uσt . We say that
a part B′ ∈ Bt is stronger than B ∈ Bt if the partition AB′

t is a refinement of
AB
t (notice that this ordering is reflexive).

Definition 5.2. A property π has a prepartitioned canonical equivalence scheme
(abbreviated as PCE scheme) if, for all integer t, there exist partitions Bt and
AB
t , B ∈ Bt, of Uσt as above such that the following points are satisfied:

(i) Consider any t-labeling composition operator ⊗. For any B,B′ ∈ Bt and
every choice of F̄ , Ḡ ∈ B and F̄ ′, Ḡ′ ∈ B′, the graphs F̄ ⊗ F̄ ′ and Ḡ⊗ Ḡ′

belong to the same class B0 ∈ Bt. Furthermore, B0 is stronger than B,B′.

(ii) Consider any B1, B2, B3 ∈ Bt where B1, B2 are both stronger than B3, any
A1 ∈ AB1

t and A2 ∈ AB2

t , and any t-labeling composition operator ⊗. For
every F̄1, Ḡ1 ∈ A1 and every F̄2, Ḡ2 ∈ A2, the graphs F̄1 ⊗ F̄2 and Ḡ1 ⊗ Ḡ2

belong to the same class A3 ∈ AB3

t .
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(iii) There is a constant d independent of t such that the following equivalence
∼A,Bπ on A has index at most d for all choices of B ∈ Bt and A ∈ AB

t . It is
Ḡ1 ∼A,Bπ Ḡ2 if and only if Ḡ1, Ḡ2 ∈ A and

Ḡ1 ⊗ H̄ |= π ⇐⇒ Ḡ2 ⊗ H̄ |= π for all H̄ ∈ B.

We believe this complicated definition deserves a very informal explanation
now. In the run of a dynamic algorithm, one faces input data which have already
been read and processed, and remaining data which are to be accessed in future.
The parts of Bt in a PCE scheme record our “expectation” of the remaining
(future) data, and relatively to a particular B ∈ Bt, the parts of AB

t classify
the information we remember about the processed data. Part (i) of the defi-
nition then states that our “expectations” are consistent with the composition
operators we find in our parse trees. Part (ii) states that also the information
we rememeber in AB

t is consistent with the compositions, provided that our ex-
pectations are sound. That is also the only place where we use the property of
stronger parts which restricts our requirements on a PCE scheme to necessary
minimum. Finally, part (iii) determines that only bounded information (fixed
number d of states) about the property π has to be kept in addition to our
knowledge of the pairs B and A ∈ AB

t . This d is usually very small, like 1 or 2.
Definition 5.2 naturally extends the definition of a canonical equivalence ≈σ

π,t:

set trivially Bt = {Uσ
−

t }, and At equal to the classes of ≈σ
π,t. Then (iii) d = 1.

PCE scheme and dynamic algorithms. The reason for using a PCE scheme
is that in many cases (problems) we can get the partitions Bt and AB

t with num-
bers of classes much smaller than the index of the associated ordinary canon-
ical equivalence (for instance Proposition 5.1). Therefore we can give dynamic
algorithms for such problems whose runtime has asymptotically much smaller
dependency on t than, say, those coming from Theorem 4.12.

Actually, to avoid disturbing technical difficulties with handling a σ−-partial
equipment of free element variables (cf. Section 4), we restrict our attention
to the easier case of Fr = ∅, i.e. σ = (∅, FR, ∅) = σ−. That means we are
going to handle labeled graphs Uσt which are all σ-partially equipped with in-
terpretations of the free set variables from FR (which is enough for LinEMSO
optimization problems), but we remark our concept is extendable to the general
case of nonempty Fr. The core new outcome of this concept is the following:

Theorem 5.3. Let π(X1, . . . ,Xp) be a graph property with free set variables.
Assume π has a PCE scheme consisting of partitions Bt and AB

t , B ∈ Bt,
such that each AB

t is a refinement of Bt, and denote by b(t) = |Bt| and a(t) =
max{|AB

t | : B ∈ Bt}. Then any LinEMSO optimization problem (4.9) defined
via the formula ψ = π is solvable on graphs G of rank-width ≤ t with a given
t-labeling parse tree T in time

O
(

a(t)2 · b(t)2 · (c(t) + d(t)) · |V (G)|
)

,

where c(t) is time needed to determine the class A3 defined in Definition 5.2(ii)
from known B3, A1 and A2, and d(t) is time needed to determine the class of
∼A,Bπ in Definition 5.2(iii) to which a graph Ḡ ∈ A ⊆ Uσt belongs.
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Remark 5.4. The words “determine the class A3 from known B3, A1 and A2”
should be made very clear this time. Imagine we have an “indexing” scheme for
the classes of Bt (of AB

t ), i.e. an assignment of the natural numbers 1, 2, . . . to
the classes. Then the task is to find the index of A3 from known indices of B3,
A1 and A2. Since Theorem 5.3 does care about runtime dependency on t, this
task is not simply a “constant operation” like in Theorem 4.12.

Proof. Let FR = {X1, . . . ,Xp} and σ = (∅, FR, ∅) be the equipment signature
of π. We use a notation w : FR → 2V (G) for the σ-equipment interpreting Xi

as w(X1) in G, and explicitly denote such a σ-equipped graph by (G,w). Recall
(4.10) the linear objective function flin of our LinEMSO optimization problem.
For (Ḡ, w) ∈ Uσt , we shortly write flin(Ḡ, w) = flin

(

w(X1), . . . , w(Xp)
)

.
Our algorithm parses T in the leaves-to-root direction. At each node x of T ,

we remember the following information: For every B ∈ Bt and every correspond-
ing A ∈ AB

t , and for each class D of ∼A,Bπ from Definition 5.2(iii), we record (if
it exists) a representative interpretation wox[A,B,D] = wx which attains opti-
mal value flin(Ḡx, wx) of the objective function over all possible σ-equipments
(Ḡx, w) ∈ D of the graph Ḡx (the subgraph parsed by the subtree below x).
This is trivial at the leaves.

How is this wox[ ] updated at the internal nodes of T? We suppose that a node
x has left son y and right son z, and carries a composition operator ⊗. We loop

through all Bx ∈ Bt, all By ∈ Bt and Ay ∈ A
By

t , and all Bz ∈ Bt and Az ∈ ABz

t .
At the beginning of each iteration, we verify the “consistency of expectations”

condition

(5.5) By = Az ⌈⊗Bx and Bz = Bx⊗⌉Ay ,

which has the following formal meaning: Proposition 5.7 defines the operators ⌈⊗
and ⊗⌉ associated with ⊗. From Definition 5.2(i) we know that the composition
of two Bt-parts is well defined, and each of Ay, Az is a subset of a unique Bt-part
(AB

t is a refinement of Bt) to which the composition is applied. The intuition
behind (5.5) is that the expectation we work with at the son y is a combination
of the expectation at its parent x and the real data coming from its sibling z.

Only if (5.5) holds true, we continue with the iteration. We determine the
unique A3 = Ax ∈ ABx

t from Definition 5.2(ii) where we choose A1 = Ay and
A2 = Az. Notice that we have Ḡx = Ḡy⊗ Ḡz by the definition of a parse tree, and
that for any σ-equipments wy, wz, it is flin(Ḡx, w) = flin(Ḡy, wy)+ flin(Ḡz, wz)
thanks to linearity of the objective function, where w(Xi) = wy(Xi) ∪ wz(Xi).

For each of the (fixed number d of) classes Dy of ∼
Ay,By

π and each Dz of ∼Az,Bz
π ,

there is a unique class Dx of ∼Ax,Bx
π to which this (Ḡx, w) belongs, cf. Defini-

tion 5.2(iii). Thus, we now look at wy = woy[Ay , By,Dy] and wz = woz [Az, Bz ,Dz]:

If flin(Ḡy, wy) + flin(Ḡz, wz) is better than flin(Ḡx, w
o
x[Ax, Bx,Dx]) (or if the

record does not exist yet), then we store wox[Ax, Bx,Dx] = w.
Finally, at the root r of T , we simply check all the recorded representatives

wor [A,B0,D], where B0 is the class to which the empty graph belongs, for a
globally optimal true answer to our problem.
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At every iteration of the above defined loops, we do a finite number of opera-
tions among which only three have runtime depending on t—checking (5.5), com-
puting Ax, and determining Dx. The latter two can be done in time c(t)+d(t) by
the assumptions. Interestingly, also (say) Az ⌈⊗Bx can be computed in time c(t):
Set B1 = B2 = B3 = Bx, and A1 = Az and A2 be any ABz

t -part contained in Bx.
Then compute A3 of Definition 5.2(ii) and check that A3 ⊆ By (which is correct
thanks to Definition 5.2(i) ). Hence any iteration takes O(c(t) + d(t)).

For each of the O(|V (G)|) nodes of T , we do 5 nested loops above, but,
actually, we can save one. After selecting Bx, By, and Ay, the next Bz can be
determined from (5.5) as in the previous paragraph. Hence we have to do only
a(t)2 · b(t)2 iterations. The runtime bound follows.

We finish the proof by showing that our algorithm computes correctly. That
includes two tasks. First, for a node x of T , let Ḡx be the subgraph parsed by the
subtree below x, and Ḡ−

x be such that Ḡx⊗ Ḡ−
x = G (which can be constructed

by Lemma 3.6). We claim that if B ∈ Bt is such that (Ḡ−
x , w

−) ∈ B for some
σ-equipment w− of Ḡ−

x , then for any recorded interpretation wox[A,B,D] = wx
at the node x, the following is true: There exists a σ-equipment w for the whole
graph Ḡ such that wx is the restriction of w to Ḡx and w−

x is the restriction
to Ḡ−

x , and (Ḡx, wx) ∈ D ⊆ A. That holds true at the leaves, and carries up the
tree T inductively by (5.5). Notice that at the root x = r, it is Ḡ−

r = ∅ ∈ B0,
and so the solution found in the final stage of the algorithm is admissible.

Second, we show that if there exists a σ-equipment w for Ḡx such that
(Ḡx, w) ∈ D, then flin(Ḡx, w

o
x[A,B,D]) ≥ flin(Ḡx, w) (assuming that the ob-

jective function is maximized). As Ḡx = Ḡy⊗ Ḡz, we have w(Xi) = wy(Xi) ∪
wz(Xi) (a disjoint union) for all Xi ∈ FR. With help of Lemma 3.6 on T at
v = x, we see that there are unique expectations By, Bz ∈ Bt for this B and w,

and then uniquely (Ḡy, wy) ∈ Dy ⊆ Ay ∈ A
By

t and (Ḡz, wz) ∈ Dz ⊆ Az ∈ ABz

t .
(5.5) holds true at this point. By induction on the depth of the parse tree we
can assume that flin(Ḡy, wy) ≤ flin(Ḡy, w

o
y[Ay , By,Dy]), and analogously for z.

Hence
flin(Ḡx, w) = flin(Ḡy, wy) + flin(Ḡz, wz) ≤

≤ flin(Ḡy, w
o
y [Ay, By,Dy ]) + flin(Ḡz, w

o
z [Az, Bz ,Dz]) ≤ flin(Ḡx, w

o
x[A,B,D]) ,

where the last step holds after the respective iteration of our algorithm.

Corollary 5.6. In the setting of Theorem 5.3, assume that the partitions AB
t =

At are the same for all B ∈ Bt. Then the runtime bound of Theorem 5.3 can be
improved to O

(

a(t)2 · b(t) · c(t) · |V (G)|
)

.

Proof. In this special case, we can select the parts A1, A2 ∈ At prior to con-
sidering B1 and B2, and then B1, B2 are uniquely determined by (5.5).

The following technical property is needed in the proof of Theorem 5.3.

Proposition 5.7. Let ⊗ = ⊗[g | f1, f2] be a t-labeling composition operator.
Then there exist t-labeling composition operators ⌈⊗ and ⊗⌉ such that, for all

19



t-labeled graphs Ḡ1,Ḡ2,Ḡ3, it is

(Ḡ1 ⊗ Ḡ2)⊗ Ḡ3 = (Ḡ2 ⌈⊗ Ḡ3)⊗ Ḡ1 = (Ḡ3 ⊗⌉ Ḡ1)⊗ Ḡ2 .

This natural statement can be perhaps better understood in the following
scheme, in which we display a node x of a parse tree generating the graph
G, and claim that any two branches at x can be composed together before the
third one is joined, to generate the same (unlabeled) graph G.

Ḡ1 Ḡ2

⊗
x

(Ḡ1 ⊗ Ḡ2)⊗ Ḡ3 = G Ḡ3

Ḡ2

⌈⊗

G = Ḡ3 ⊗(Ḡ2 ⊗ Ḡ3) Ḡ1

Ḡ3

⊗⌉

(Ḡ3 ⊗ Ḡ1)⊗ Ḡ3 = G

Proof. We simply set ⌈⊗ = ⊗[fT2 | g, fT1 ] and ⊗⌉ = ⊗[fT1 | fT2 , g
T ] .

6 Applications in FPT algorithms

In this section we focus on several particular algorithmic problems on which we
illustrate the use of our formal tools from previous sections to design parame-
terized algorithms of practically reasonable runtime. We take full advantage of
our dual view of labelings of a graph G, on one hand as lab : V (G) → 2Lt where
Lt = {1, 2, . . . , t}, and on the other hand as a mapping lab : V (G) → GF (2)t into
a binary vector space (an edge uv is added in ⊗ iff lab(u) · lab(v) = 1), cf. Sec-
tion 2. This view, for instance, allows much easier handling of the situation using
linear-algebra tools.

One of the tools is the following classical result.

Proposition 6.1 ([16]). The number S(t) of subspaces of binary vector space
GF (2)t is at most 2t(t+1)/4 − 2 for t ≥ 12.

Proof. Goldman and Rota gave [16] the exact recurrence S(t + 1) = 2S(t)+
(2t − 1)S(t − 1). From that we routinely get S(t) ≤ 2t(t+1)/4 − 2 for t ≥ 12.

We remark that the “−2” term in this estimate is rather random—the bound
works, and it is better suited for Lemma 6.2. Another potential issue in appli-
cations can be the condition t ≥ 12, but that is “hidden” in the O(. . . ) notation
further on. We also have an alternative proof (without using [16]) giving a uni-
versal bound S(t) ≤ 2t(t+4)/4 with elementary tools of linear algebra.

Recall that ι(X) is the predicate stating that X (the interpretation of it) is
an independent set in a graph G. We analogously define γ(X) stating that X is
a clique in G. The important relation between independence of a vertex set in
a graph and the vector subspace generated by this set has been first given by
Bui-Xuan, Telle and Vatshelle in [4]. We restate and extend their findings in the
next lemma.
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Lemma 6.2 (cf. [4, Proposition 3.6] for part (a)).
Consider the universe of (X)-equipped t-labeled graphs. Then the number of
classes of the canonical equivalence

(a) ≈
(X)
ι,t for ι(X) (independent set) is at most 1 + S(t), and

(b) ≈
(X)
γ,t for γ(X) (clique) is at most 2 + S(t+ 1).

Proof. (a) For a subspace Σ of GF (2)t, we define PΣ as the class of all
those (X)-equipped t-labeled graphs Ḡ = (G, lab) such that G ↾ X is inde-
pendent, and that the vectors of lab(X) generate the space Σ. Let Ḡ1, Ḡ2 ∈ PΣ
with interpretations X = U1 and X = U2, respectively. By (3.3), assume that
Ḡ1 ⊗ H̄ |= ι(U1 ∪W ) where X = W in H̄. Then both G1 ↾U1 and H ↾W are
independent. Moreover, G2 ↾U2 is independent since Ḡ2 ∈ PΣ .

If Ḡ2 ⊗ H̄ 6|= ι(U2 ∪W ), then there would be an edge between v ∈ W and
some vertex of U2. So there is a vector α ∈ Σ such that α·lab(v) = 1 over GF (2).
However, α ∈ Σ is generated as a sum α = α1 + · · ·+αc where αj = lab(uj) for
some uj ∈ U1, j = 1, . . . , c, and αj · lab(v) = 0 by the assumption. Hence also
α · lab(v) = 0, a contradiction. The conclusion is that our parts PΣ , together

with one “leftover” part, refine the classes of ≈
(X)
ι,t , and (a) follows.

(b) For any t-labeled graph Ḡ = (G, lab), we define a (t + 1)-labeled graph
Ḡ+ = (G, lab+) such that lab+(v) = lab(v)∪{t+1}. Let ΣX denote the subspace
of GF (2)t generated by the labelings lab(X), and Σ+

X the subspace of GF (2)t+1

generated by lab+(X). We consequently define QΣ to be the class of all those
(X)-equipped t-labeled graphs Ḡ = (G, lab) such that G ↾X is a clique, and that
Σ = Σ+

X has the same dimension as ΣX . Furthermore, we define Qo as the class
of all Ḡ = (G, lab) such that G ↾X is a clique, and that Σ = Σ+

X has higher
dimension than ΣX . We again claim that these parts QΣ , the part Qo, and the

“leftover” part, refine the classes of ≈
(X)
γ,t .

Our claim is supported by the following two facts. First, assume for our
(X)-equipped Ḡ ∈ Qo that Σ+

X has higher dimension than ΣX , and still,
Ḡ⊗ H̄ |= γ where H̄ has a nonempty interpretation of X. Then there exist
vertices u1, . . . , up ∈ U , where U is the interpretation of X in Ḡ, such that
lab(u1) + · · ·+ lab(up) = 0 but lab+(u1) + · · ·+ lab+(up) = α 6= 0. Since it must
be α = (0, . . . , 0, 1), we have p odd. If Ḡ⊗ H̄ |= γ and β is the labeling of some
vertex of X in H̄, then β · (lab(u1) + · · · + lab(up)) = β · 0 = 0, but at the same
time β · lab(u1) + · · · + β · lab(up) = 1 + · · · + 1 = 1, a contradiction. Hence all
of Qo belong to one canonical class.

Second, if Σ+
X has the same dimension as ΣX , then we can use a simple

algebraic observation: An edge uv, where u ∈ V (G) and v ∈ V (H), is created in
the join Ḡ⊗ H̄ if and only if no edge uv is created in the join Ḡ+ ⊗ H̄+. Hence
in this case the partition of graphs Ḡ into QΣ (where Σ = Σ+

X for a particular

(X)-equipped Ḡ) refines the relevant canonical classes of ≈
(X)
γ,t for the same

reasons as in (a).

Independent set, c-colourability, and extensions. As we have already
briefly mentioned, Bui-Xuan, Telle and Vatshelle gave in [4, Theorem 3.10] an
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FPT algorithm computing the maximum independent set in a graph G with a
rank-decomposition of width t in single-exponential time O

(

2t(t+9)/2 ·t2 · |V (G)|
)

(this expression is translated from their “Rt-joins” to our notation).
By a combination of Lemma 6.2, Proposition 6.1, and the procedure of The-

orem 4.12, we can immediately get a similar FPT algorithm for this problem
with runtime O

(

2t(t+1)/2 · t3 · |V (G)|
)

, where time O(t3) is needed to compute
the closure of two subspaces. The slight improvement in our runtime bound has
two sources—a finer analysis of S(t) in Proposition 6.1, and labeling parse trees
which better suit this specific algorithmic purpose.

To be very precise with the runtime bounds of both previous independent
set algorithms, we should note that some time amount depending only on t is
needed to build an indexing data structure for all the subspaces of GF (2)t. This
is specified in the next claim.

Lemma 6.3. There exists an indexing structure which allows to determine the
index of a subspace Σ of GF (2)t from a given set of generators in time O(t3).
This structure can be built in time O

(

23t(t+1)/4 · t3
)

.

Proof. We build an indexing structure consisting of all 2t(t+1)/2 upper-
triangular binary matrices – potential generator sets of all the subspaces of
GF (2)t. We let each matrix refer to the first one in the list which generates the
same subspace, using Gaussian elimination in time O(t3). Even by brute force
this all takes time O

(

t3 2t(t+1)/2 S(t)
)

. One access to this structure then consists
of Gaussian elimination of the generator set to an upper-triangular matrix.

It is easy to extend an independent set algorithm into one for the c-
colourability problem (with fixed c). The corresponding extension by Bui-Xuan,
Telle and Vatshelle in [4, Theorem 3.11] runs in time O

(

2ct(t+5)/2+2t · t2c·|V (G)|
)

.
Since c-colourability of a graph Gmeans decomposability of G into c indepen-

dent sets, we consider the predicate ιι(X1, . . . ,Xc) stating that all X1, . . . ,Xc are
independent in G. We apply Claim (4.4) to show that the canonical equivalence
of ιι has at most (1 + S(t))c classes, and Theorem 4.1 to prove that the MS1

property τ(X1, . . . ,Xc) ≡ “X1, . . . ,Xc is a partition of V (G)” has a constant
number of canonical classes. In this way we can get an FPT algorithm solving
c-colourability in time O

(

2ct(t+1)/2 · ct3 · |V (G)|
)

. Again, we have implicitly used
Lemma 6.3 for indexing the canonical classes via subspaces.

So far, we have only used part (a) of Lemma 6.2 (which seems to be a much
more frequent case), but new part (b) is also useful in solving some problems. To
illustrate this, we will present the next two new FPT algorithms, for recognition
of split graphs, and for the so called co-colouring problem (both of which are
NP-complete in general).

A graph G is a split graph if the vertices of G can be partitioned into two
parts such that one is independent and the other is a clique in G. A graph
G is c-co-colourable if its vertex set can be partitioned into c parts such that
each part is independent or a clique. A non-FPT pseudopolynomial algorithm,
i.e. one running in time O(nf(t)) for c on the input, has been given for this
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problem in [22]. We, on the other hand, present an FPT algorithm taking c as
the second parameter here. (So these two are uncomparable results.)

Theorem 6.4. Assume G is an input graph of rank-width t, and T its given
t-labeling parse tree. Then there is an FPT algorithm deciding whether

(a) G is a split graph in time O
(

2(t+1)2 · t3 · |V (G)|
)

,

(b) G is c-co-colourable in time O
(

2ct(t+1) · ct3 · |V (G)|
)

.

Proof. Recalling the predicates ι(X) and γ(X) for the independent set and
clique X, respectively, and the predicate τ(X1,X2) expressing a vertex partition,
we can write ψ(X1,X2) ≡ ι(X1)∧γ(X2)∧τ(X1,X2) to describe a split partition
of a graph G. Let σ = (∅, {X1,X2}, ∅). Now the canonical partition of τ has a
finite index independent of t, and hence applying Lemma 6.2 and Claim (4.4) we
get that ≈σ

ψ,t has at most q(t) = (1+S(t))(2+S(t+1)) ≤ 2t(t+1)/4· 2(t+1)(t+2)/4 =

2(t+1)2/2 equivalence classes.
We now apply Theorem 4.12. Although we do not have an optimization

problem, we can decide the existence of U1, U2 such that G |= ψ(U1, U2) using
any, even constant, objective function in (4.9). The runtime of this algorithm
is linear in |V (G)|, but what is the precise dependence on t? The finite tree
automaton A associated with ≈σ

ψ,t has q(t) states. At each node of the parse
tree, we have to combine the optimal representatives of all the A-states from
the left subtree with all the A-states from the right subtree, and the transition
function of A can be computed in time O(t3) as a join of two subspaces of
GF (t)t. Thus our algorithm runs in time O

(

q(t)2 · t3 · |V (G)|
)

.

The same approach works also for (b). This time we express ψ(X1, . . . ,Xc) ≡
τ(X1, . . . ,Xc) ∧

∧c
i=1

(

ι(Xj) ∨ γ(Xj)
)

, and the number of classes of ≈σ
ψ,t is at

most (2 + S(t+ 1))2c. The transition function of the associated tree automaton
now computes 2c joins of pairs of subspaces in time O(ct3). The total runtime
of our algorithm thus is O

(

(2 + S(t+ 1))4c · ct3 · |V (G)|
)

.

Dominating set. The single-exponential FPT algorithm for computing the
minimum dominating set in a graph G with a rank-decomposition of width t,
as given by Bui-Xuan, Telle and Vatshelle in [4, Theorem 3.14], has runtime
O
(

23t(t+5)/4+2t · t3 · |V (G)|
)

. As mentioned before, we have studied and gen-
eralized its core idea in Section 5; and now we show how this dominating set
algorithm easily fits back into our PCE scheme formalism:

Let σ = (∅, {X}, ∅), and δ(X) be the predicate stating that X is a dominating
set in the graph. Let Pt be the partition of all σ-equipped t-labeled graphs such
that Ḡ belongs to PΣ ∈ Pt if and only if the labelings of the interpretation of X
generate the subspace Σ of GF (2)t. In Definition 5.2 we simply set Bt = AB

t =
Pt. Then the points (i) and (ii) are easily satisfied. We have to verify (iii), say
for A = PΣ and B = PΣ′ .

We consider Ḡ ∈ A and H̄ ∈ B, with interpretations of X as U and W , re-
spectively. Repeating the arguments of Lemma 6.2(a), we claim that it is enough
to know the space Σ′ to decide whether an arbitrary vertex u of Ḡ is adjacent
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to at least one vertex from W in the join Ḡ⊗ H̄ —we shortly say in such situ-
ation that lab(u) is adjacent to Σ′. Hence there are precisely two classes of the

equivalence ∼A,Bδ from Definition 5.2(iii); the one containing all graphs Ḡ ∈ A

such that every vertex u of Ḡ not dominated by U has lab(u) adjacent to Σ′,
and the other one containing the rest.

By Corollary 5.6, the minimum dominating set problem can now be solved in
time O

(

23t(t+1)/4 · t3 · |V (G)|
)

. Furthermore, we can easily extend this algorithm
to solve the minimum independent dominating set problem, for instance.

Acyclic colouring. Finally, we are going to illustrate the full strength of PCE
schemes and Theorem 5.3 on the example of acyclic colourability. A graph colour-
ing is acyclic if no cycle of the graph has only two colours.

Theorem 6.5. Assume G is an input graph of rank-width t, and T its given
t-labeling parse tree. Then there is an FPT algorithm deciding whether G has an
acyclic c-colouring in time O

(

25 c2t2 · c2t3 · |V (G)|
)

.

Proof. We can describe an acyclic colour c-partition of a graph with the fol-
lowing predicate ψ(X1, . . . ,Xc) ≡ τ(X1, . . . ,Xc)∧

∧c
i=1 ι(Xi)∧

∧c
i,j=1 λ(Xi,Xj),

where λ(X1,X2) means that X1 ∪ X2 induces an acyclic subgraph. Let σ =
(∅, {X1, . . . ,Xc}, ∅). Our approach is generaly analogous to the previously pre-
sented results, but much more technically complicated this time.

Assume we have got a PCE scheme (Definition 5.2) for λ(X,Y ) consisting of
partitions Bt and AB

t , B ∈ Bt, and denote by b(t) = |Bt| and a(t) = max{|AB
t | :

B ∈ Bt}. We construct
(

c
2

)

isomorphic copies (Bt)i,j and (AB
t )i,j of these Bt and

AB
t , for each choice of a variable pair {X,Y } = {Xi,Xj} over the universe of all

σ-equipped graphs. The intersections of these partitions (Bt)+ =
⋂c
i,j=1(Bt)i,j

and (AB
t )+ =

⋂c
i,j=1(A

B
t )i,j then again form a PCE scheme. In combination with

at most (1+S(t))c canonical equivalence classes of ιι(X1, . . . ,Xc) ≡
∧c
i=1 ι(Xi),

we finally get an FPT algorithm solving acyclic c-coluring in time

(6.6) O
(

(1 + S(t))2c · (a(t)b(t))2c(c−1)/2 · c2t3 · |V (G)|
)

(the details are analogous to the previous algorithms in this section).

Hence it remains to find our PCE scheme for above mentioned λ(X,Y ). For
that we will need some technical results from linear algebra. Let Pt be again the
partition of all (X,Y )-equipped t-labeled graphs such that Ḡ = (G, lab) belongs
to PΣ ∈ Pt if and only if the labelings lab(U) of the interpretation U ⊆ V (G) of
X ∪ Y generate the subspace Σ of GF (2)t.

For a space Σ ⊆ GF (2)t, let Σ̃ denote a minimal subspace of GF (2)t such
that Σ̃ together with the space orthogonal to Σ generates whole GF (2)t. Beware
that GF (2)t contains self-orthogonal vectors, and so we cannot simply set Σ̃ =
Σ, but these two do have the same dimension. Every t-labeling lab(v) of a vertex
v in Ḡ = (G, lab) can be written as q1α+ q2β, q1, q2 ∈ {0, 1}, where α is a vector
orthogonal to Σ and β is from Σ̃. We then define lab′(v) = q2β. Notice that
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u ∈ V (G) is adjacent to v ∈W ⊆ V (H) in Ḡ⊗ H̄, where H̄ ∈ PΣ and W is the
interpretation of X ∪ Y , if and only if u, v are adjacent in (G, lab′)⊗ H̄.

We say that U ⊆ V (G) is light with respect to Σ if G ↾U is a forest, and if
the following are true for the t-labeled graph G′

U = (G, lab′) ↾U :

– at most 2t− 1 distinct points of GF (2)t \ {∅} occur as labelings in G′
U ,

– no component of G′
U contains two vertices u 6= v with lab′(u) = lab′(v),

– at most t − 1 components of G′
U contain two vertices u 6= v with lab′(u) 6=

∅ 6= lab′(v), and the same label pair {lab′(u), lab′(v)} occurs in that way in
at most one component of G′

U .

(6.7) Assume H̄ ∈ PΣ with the interpretation W ⊆ V (H) of X ∪ Y , and
U ⊆ V (G) such that U is not light with respect to Σ. Then U ∪W is not
acyclic in Ḡ⊗ H̄.

We choose any W0 ⊆W such that lab(W0) is a basis of Σ, and form a matrix
A from these row vectors lab(W0). For any row basis A

′ of Σ̃ (defined above),
the product A

′×A
T is a square nonsingular matrix, and hence it has an inverse.

We set A1 =
(

A
′ × A

T
)−1

× A
′, and so A1 × A

T = I. If U is not light with
respect to Σ, then one of the three conditions is violated. First, if at least t of
the labelings in G′

U are not from A1 and not ∅, then the corresponding vertices
in G “connect” t pairs of vertices of W0 where |W0| ≤ t, and so U ∪W cannot
be acyclic. Second, if lab′(u) = lab′(v), then u and v are adjacent to the same
(at least one) vertex in W0, and that produces a cycle in their component. The
third condition follows in the same way. (6.7) is proved.

To provide a PCE scheme for λ(X,Y ), we set Bt = Pt, and for B = PΣ ∈ Pt
we define a partition AB

t as follows. First, we take the intersection of Pt with
the class of all those (X,Y )-equipped graphs Ḡ such that the interpretation U

of X ∪Y is not light with respect to Σ. Second, for the remaining graphs Ḡ with
light interpretation U of X ∪ Y , we define the U -trace of Ḡ as follows: Let ΣU
be the subspace generated by lab(U), L = lab′(U) \ {∅} where |L| ≤ 2t− 1, and
M be the multiset of all those labeling sets lab′(P ) \ {∅} where P is the vertex
set of a component of G′

U . The U -trace of Ḡ is the quintuple (ΣU , L,R, S, C)
where R ⊆ L are the labelings that occur as singleton sets in M and S ⊆ R are
those with multiple occurence in M, and C is the set of all the (at most t − 1
by the definition of lightness) non-singleton members of M, i.e. those in M of
cardinality more than one. Then Ḡ1 and Ḡ2 belong to the same class of AB

t if
and only if their U -traces are equal.

Notice that AB
t is a refinement of Bt (cf. the assumptions of Theorem 5.3).

Verification of parts (i) and (ii) of Definition 5.2 is quite straightforward, and so
we skip it here. We just observe that a part PΣ is stronger than a part PΣ′ if
Σ′ is a subspace of Σ in this case. Also part (iii) holds true in this setting, even
with d = 1, as it follows from (6.7) and the next claim.

(6.8) Assume H̄ ∈ PΣ with the interpretation W ⊆ V (H) of X ∪ Y , and
U ⊆ V (G) such that U is light with respect to Σ. Then it is enough to know
the U -trace of Ḡ in order to decide whether U ∪W is acyclic in Ḡ⊗ H̄.
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Let HU be the minor of Ḡ′
U ⊗ H̄ obtained by contracting every component

of Ḡ′
U into a single vertex. Clearly, the graph HU is fully determined by H̄ and

the U -trace of Ḡ, up to possible degree-1 vertices from U . On the other hand,
if Ḡ′

U is a forest, then HU determines whether U ∪W is acyclic in Ḡ⊗ H̄. We
have verified all the conditions we need in a PCE scheme for λ.

It remains to estimate the numbers of classes in the above PCE scheme. We

have b(t) = 1+S(t) (Proposition 6.1), and a(t) ≤ (1+S(t)) ·
(

2t

2t−1

)

·32t−1 ·
(

22t−1

t−1

)

where
(

2t

2t−1

)

bounds possible choices of L, 32t−1 enumerates the choices of R

and S, and
(

22t−1

t−1

)

is a rough estimate of choices of C. Altogether

a(t) ≤ (1 + S(t)) · 22t2−t · 32t−1 · 22t2−3t ≤ (1 + S(t)) · 24t2 .

Hence from (6.6) we get a runtime bound

O
(

(1 + S(t))2c+2c(c−1) · 24t2c(c−1) · c2t3 · |V (G)|
)

≤

≤ O
(

(2t(t+1)/4)2c
2

· 24t2c2 · c2t3 · |V (G)|
)

≤

≤ O
(

2(t2/2)·2c2 · 24c2t2 · c2t3 · |V (G)|
)

= O
(

25c2t2 · c2t3 · |V (G)|
)

.

On side effect of the existence of a PCE scheme for the property λ is that
we can now easily find the largest induced acyclic subgraph of a given graph
of bounded rank-width. The set-complement of an induced acyclic subgraph is
commonly called the feedback vertex set. Hence we get the following for free.

Theorem 6.9. Assume G is an input graph of rank-width t, and T its given
t-labeling parse tree. Then there is an FPT algorithm solving the feedback vertex
set problem in time O

(

25t2 · t3 · |V (G)|
)

.

7 Concluding Notes

We have provided a wide range of formal mathematical tools for constructing
dynamic algorithms on graphs with bounded-width rank-decompositions in our
paper. The employed mathematical formalism is, we believe, close to the theoret-
ical computer science community and suitable for designing actual algorithms.

It is an interesting question (to which we do not have an answer right now)
whether Theorems 4.1 and 5.3 could be used to give FPT algorithms for problems
beyond the scope of the LinEMSO properties [8] and of the vertex-partitioning
framework [15, 22]. We plan to aim our future research at more general theoret-
ical questions rather than developing particular specialized algorithms. A sound
suggestion for future studies would be, for instance, to try to identify a gen-
eral class of problems within the LinEMSO language for which there exist FPT
algorithms with a single-exponential dependency on the rank-width parameter.
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