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Abstract: “V − E + F = 2”, the famous Euler’s polyhedral formula, has a natural
generalization to convex polytopes in every finite dimension, also known as the Euler–
Poincaré Formula. We provide another short inductive combinatorial proof of the general
formula. Our proof is self-contained and it does not use shellability of polytopes.

1 Introduction

In this paper we follow the standard terminology of polytopes theory, such as Ziegler [7].
We consider convex polytopes, defined as a convex hull of finitely many points, in the
d-dimensional Euclidean space for an arbitrary d ∈ N, d ≥ 1. We shortly say a polytope
to mean a convex polytope. A landmark discovery in the history of combinatorial in-
vestigation of polytopes was famous Euler’s formula, stating that for any 3-dimensional
polytope with v vertices, e edges and f faces, v− e+ f = 2 holds. This finding was later
generalized, in every dimension d, to what is nowadays known as (generalized) Euler’s
relation or Euler–Poincaré formula, as follows.

For instance, in dimension d = 1 we have v = 2, which can be rewritten as v− 1 = 1,
and in dimension d = 2 we have got v − e = 0 or v − e + 1 = 1. Similarly, the d = 3
case can be rewritten as v − e + f − 1 = 1. Note that the ‘1’ left of ‘=’ stands in these
expressions for the polytope itself. In general, the following holds:

Theorem 1 (“Euler–Poincaré formula”; Schläfli [5] 1852). Let P be a convex polytope
in Rd, and denote by f c, c ∈ {0, 1, . . . , d}, the numbers of faces of P of dimension c. Then

(1) f0 − f1 + f2 − · · ·+ (−1)dfd = 1.

We refer to classical textbooks of Grünbaum [3] and Ziegler [7] for a closer discussion
of the interesting history of this formula and of the difficulties associated with its proof.
Here we just briefly remark that all the historical attempts to prove the formula in a
combinatorial way, starting from Schläfli, implicitly assumed validity of a special property
called shellability of a polytope. However, the shellability of any polytope was formally
established only in 1971 by Bruggesser and Mani [1].

We provide a new short and self-contained inductive combinatorial proof of (1) which
does not assume shellability of polytopes.

2 New Combinatorial Proof

Our proof of Theorem 1 proceeds by induction on the dimension d ≥ 1. Note that
validity of (1) is trivial for d = 1, 2, and hence it is enough to show the following:

Lemma 2. Let k ≥ 2 and P be a polytope of dimension k + 1. Assume that (1) holds
for any polytope of dimension d ∈ {k − 1, k}. Then (1) holds for P (with d = k + 1).
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Figure 1. Proof of Lemma 2: a facet in a 3-dimensional polytope P
(k = 2). Each vertex of P initially gets charge of 1 and each edge −1.
Consider, e.g., a facet Ti of P which is a pentagon with vertices a, b, c, d, e
and sides (edges) A,B,C,D,E in order. Let ti be the point in which the
plane of Ti intersects the line q (see in the proof). On the left of the
picture (ti 6∈ Ti, for i ≥ 3), we have that the vertices b, c, d send charge
of 1

2 to Ti by the rule (3), while a, e are not sending to Ti. On the right

(ti ∈ Ti, i = 1, 2), all the vertices a, b, c, d, e send charge of 1
2 to Ti. In both

cases, every side A,B,C,D,E sends charge of −1
2 to Ti. Consequently,

on the left Ti ends up with charge −1 (compare to (5)), while on the right
with charge 0 (cf.(4)).

Proof. Recall that f c, c ∈ {0, 1, . . . , k + 1}, denote the numbers of faces of P of dimen-
sion c. The only (improper) face of dimension k+1 is P itself, and the faces of dimension
k are the facets of P . Our goal is to prove

f0 − f1 + f2 − · · ·+ (−1)k−1fk−1 + (−1)kfk + (−1)k+1fk+1 = 1,

or equivalently, since fk+1 = 1,

(2) f0 − f1 + f2 − · · ·+ (−1)k−1fk−1 = 1 + (−1)k(1− fk).

We choose arbitrary two facets T1, T2 of P (distinct, but not necessarily disjoint)
and two points t1 ∈ T1 and t2 ∈ T2 in their relative interior, such that the straight line
q = t1t2 passing through t1, t2 is in a general position with respect to P . In particular,
we demand that no nontrivial line segment lying in a face of P of dimension c ≤ k− 1 is
coplanar with q. We also denote by T3, . . . , Tfk the remaining facets of P , in any order.

In the proof we use a discharging argument, an advanced variant of the double-
counting method in combinatorics. To every face F of P of dimension 0 ≤ c ≤ k− 1, we
assign charge of value (−1)c (the facets start with no charge). Hence the total change
initially assigned to all faces of P equals the left-hand side of (2).

Now we discharge all the assigned charge from those faces to the facets of P (which
initially have no charge). The discharging rule is only one and very simple. Consider a
facet Ti of P , 1 ≤ i ≤ fk. Let ti ∈ q denote the unique point which is the intersection of
the line q with the support hyperplane of Ti. This is a sound definition of ti according to a
general position of q, and it is consistent with the choice of t1, t2 above. Consider further
any proper face F of Ti (so F is a face of P as well and is of dimension 0 ≤ c ≤ k−1), and
choose a fixed point xF in the relative interior of F (note that xv = v if v is a vertex of P ).
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Figure 2. Proof of Lemma 2: A polygon N which is the intersection of
the polytope P with the plane spanning q and a point xF of a face F .
The two sides A1, A2 of N incident to xF determine the two unique facets
Ti1 , Ti2 of P that F sends charge to.

Our discharging rule reads (see in Figure 1):

(3) The face F sends half of its initial charge, i.e. 1
2(−1)c, to the facet Ti if, and only

if, the straight line passing through xF and ti intersects the relative interior of Ti.

Note that we will be finished if we prove that, after applying the discharging rule, (i) every
face of P of dimension ≤ k − 1 ends up with charge 0, and (ii) the total charge of the
facets of P sums up to the right-hand side of (2).

For the task (i), consider any face F of P of dimension c ≤ k − 1 and the point xF
chosen in F above. Let L denote the plane determined by the line q = t1t2 and the point
xF 6∈ q. Then N := P ∩ L is a convex polygon. See Figure 2. We claim that xF must
be a vertex of N : indeed, if xF belonged to a relative interior of a side A0 of N , then
A0 ⊆ F and A0 would be coplanar with q, contradicting our assumption of a general
position of q. Consequently, xF is incident to two sides A1, A2 of N , and there exist
facets Ti1 , Ti2 of P , 1 ≤ i1 6= i2 ≤ fk, such that Aj = Tij ∩ L for j = 1, 2. Observe
that the support line of Aj intersects q precisely in tij (which has been defined as the
intersection of the support hyperplane of Tij with q).

Moreover, since Aj is coplanar with q, by our assumption of a general position of q
it cannot happen that Aj is contained in a face of dimension ≤ k − 1. Consequently,
Aj (except its ends) belongs to the relative interior of Tij , and Tij is a unique such face
for Aj . Hence, taking this argument for j = 1, 2, we see that F sends away by (3) exactly
two halves of its initial charge, ending up with charge 0.

For the task (ii), let f c
i , where c ∈ {0, 1, . . . , k} and i ∈ {1, . . . , fk}, denote the

number of faces of Ti of dimension c. We first look at the two special facets Ti, i = 1, 2
(Figure 1 right). Since ti ∈ Ti in this case, by (3) Ti receives charge from every of its
proper faces. Using (1) for Ti, which is of dimension k, we thus get that the total charge
Ti ends up with, is

(4)
1

2
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f0
i − f1

i + · · ·+ (−1)k−1fk−1
i
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)
=
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2

(
1− (−1)k

)
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Second, consider a facet Ti where i ≥ 3. Let Hi be the support hyperplane of Ti.
Then {ti} = Hi ∩ q and ti 6∈ Ti. We restrict ourselves to the affine space formed by
Hi, and denote by Si a projection of Ti from the point ti onto a suitable hyperplane
within Hi. Since ti is in a general position with respect to Ti (which is implied by a
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general position of q), the following holds: every proper face of Si is the image of an
equivalent face of Ti (of the same dimension!). Furthermore, by convexity, a face F of Ti

has no image among the faces of Si if, and only if, the line through xF and ti intersects
the relative interior of Ti. See also Figure 1 left.

Consequently, as directed by (3), Ti receives charge precisely from those of its faces
F which do not have an image among the proper faces of Si (in particular, Ti receives
charge from all of its faces of dimension k − 1). Denote by gci the number of faces of Si

of dimension c ≤ k − 1, and notice that fk
i = gk−1

i = 1. Hence, precisely, Ti receives
1
2(−1)k−1 of charge from each of its fk−1

i faces of dimension k − 1, and 1
2(−1)c from

f c
i − gci of its faces of dimension 0 ≤ c ≤ k − 2. Summing together, and using (1) for Ti

(of dimension k) and for Si (of dimension k − 1), we get

1

2
(−1)k−1fk−1

i +
1

2

k−2∑
c=0

(−1)c(f c
i − gci ) =

1

2
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c=0

(−1)cf c
i −

1

2

k−2∑
c=0

(−1)cgci

=
1

2

(
1− (−1)kfk

i

)
− 1

2

(
1− (−1)k−1gk−1

i

)
= −(−1)k.(5)

Since the total charge is not changed (only redistributed), we get that (the left-hand
side of) (2) must equal the sum of (4) over i = 1, 2 and of (5) over i = 3, . . . , fk, leading to

f0−f1 +f2−· · ·+(−1)k−1fk−1 = 2 · 1
2

(
1− (−1)k

)
−(fk−2) ·(−1)k = 1+(−1)k(1−fk),

and thus finishing the proof of (2) for P . �

3 Final Remarks

We have shown a full proof of the Euler–Poincaré formula (1) with only simple, com-
binatorial and elementary geometric arguments. Our proof has been in parts inspired
by a proof of basic Euler’s formula via angles [2, “Proof 8: Sum of Angles”], and by
Welzl’s probabilistic proof [6] of Gram’s equation. Although, the resulting exposition of
the proof does not resemble either of those; in fact, it might look like a generalization of
a discharging proof [2, “Proof 6: Electrical Charge”], but that was not our way to the
result . Lastly, we remark that the underlying idea of our proof can be expressed also in
an alternative, more geometric way, such as the exposition in the preprint [4].
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