
Planar Emulators Conjecture Is Nearly True for Cubic Graphs

Martin Derka and Petr Hliněný ?
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Abstract. We prove that a cubic nonprojective graph cannot have a finite planar emulator, unless
one of two very special cases happen (in which the answer is open). This shows that Fellows’ planar
emulator conjecture, disproved for general graphs by Rieck and Yamashita in 2008, is nearly true
on cubic graphs, and might very well be true there definitely.

1 Introduction

A graph G has a finite planar emulator H if H is a planar graph and there is a graph homo-
morphism ϕ : V (H) → V (G) where ϕ is locally surjective, i.e. for every vertex v ∈ V (H), the
neighbours of v in H are mapped surjectively onto the neighbours of ϕ(v) in G. We also say
that such a G is planar-emulable. If we insist on ϕ being locally bijective, we get a planar cover.

The concept of planar emulators was proposed in 1985 by M. Fellows [5], and it tightly relates
(although of independent origin) to the better known planar cover conjecture of Negami [10].
Fellows also raised the main question: What is the class of graphs with finite planar emula-
tors? Soon later he conjectured that the class of planar-emulable graphs coincides with the
class of graphs with finite planar covers (conjectured to be the class of projective graphs by
Negami [10]—still open nowadays). This was later restated as follows:

Conjecture 1.1 (M. Fellows, falsified in 2008). A connected graph has a finite planar
emulator if and only if it embeds in the projective plane.

For two decades the research focus was exclusively on Negami’s conjecture and no substantial
new results on planar emulators had been presented until 2008, when emulators for two non-
projective graphs were given by Rieck and Yamashita [12], effectively disproving Conjecture 1.1.

Planar emulable nonprojective graphs. Following Rieck and Yamashita, Chimani et al [2]
constructed finite planar emulators of all the minor minimal obstructions for the projective plane
except those which have been shown non-planar-emulable already by Fellows (K3,5 and “two
disjoint k-graphs” cases, Def. 2.2), and K4,4 − e. The graph K4,4 − e is thus the only forbidden
minor for the projective plane where the existence of a finite planar emulator remains open.
Even though we do not have a definite replacement for falsified Conjecture 1.1 yet, the results
obtained so far [4, 2] suggest that, vaguely speaking, up to some trivial operations (“planar
expansions”), there is only a finite family of nonprojective planar-emulable graphs. A result like
that would nicely correspond with the current state-of-art [9] of Negami’s conjecture.

While characterization of planar-emulable graphs has proven itself to be difficult in general,
significant progress can be made in a special case. Negami’s conjecture has been confirmed in
the case of cubic graphs in [11], and the same readily follows from [9]. Here we prove:

Theorem 1.2. If a cubic nonprojective graph H has a finite planar emulator, then H is a
planar expansion (Def. 2.1) of one of two minimal cubic nonprojective graphs shown in Fig. 1.
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Fig. 1. Two (out of six in total) cubic irreducible obstructions for the projective plane [6]. Although these graphs
result by splitting nonprojective graphs for which we have finite planar emulators [2] (namely K7 − C4 and its
“relatives”), it is still open whether they are planar-emulable.

2 Cubic planar-emulable graphs

The purpose of this section is to prove Theorem 1.2. In order to do so, we need to define two
important concepts as follows.

Definition 2.1. A planar expansion of a graph G is a graph which results from G by repeatedly
adding a planar graph sharing one vertex with G, or by replacing an edge or a cubic vertex with
a connected planar graph with its attachments (two or three, resp.) on the outer face.

Definition 2.2. Graph G is said to contain two disjoint k-graphs if there exist two vertex-
disjoint subgraphs J1, J2 ⊆ G such that, for i = 1, 2, the graph Ji is isomorphic to a subdivision
of K4 or K2,3, the subgraph G−V (Ji) is connected and adjacent to Ji, and contracting in G all
the vertices of V (G) \ V (Ji) into one results in a nonplanar graph.

The next claim describes some folklore known facts about planar-emulable graphs.

Proposition 2.3. Let G be a connected graph.

1. The class of planar-emulable graphs is closed under taking minors.
2. If G is projective, then G has a finite planar emulator in form of its finite planar cover.
3. If G contains two disjoint k-graphs or a K3,5 minor, then G is not planar-emulable.
4. G is planar-emulable if, and only if, so is any planar expansion of G.

A computerized search for all possible counterexamples to Conjecture 1.1, carried out so
far [4], shows that a nonprojective planar-emulable graph G cannot be cubic, unless G contains
a minor isomorphic to E2, K4,5− 4K2, or a member of the so called “K7−C4 family”. Our new
approach, Theorem 1.2, actually dismisses the former two possibilities completely and strongly
restricts the latter one.

Proof of Theorem 1.2. Glover and Huneke [6] characterized the cubic graphs with projective
embedding using six minimal forbidden cubic topological minors (see Fig. 1 for two of them).

Theorem 2.4 (Glover–Huneke [6]). There is a set I of six cubic graphs such that; if H is
a cubic graph that does not embed in the projective plane, then H contains a graph G ∈ I as a
topological minor.

Let us point out that four out of the six graphs in I contain two disjoint k-graphs, and so
only the remaining two—G1 ∈ I and G2 ∈ I of Fig. 1, can potentially be planar-emulable.
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Hence the cubic graph H in Theorem 1.2 contains one of G1, G2 as a topological minor. In other
words, there is a subgraph G′ ⊆ H being a subdivision of a cubic G ∈ {G1, G2}.

We call a bridge of G′ in H any connected component B of H − V (G′) together will all
the incident edges. In a degenerate case, B might consist just of one edge from E(H) \ E(G′)
with both ends in G′. We would like, for simplicity, to speak about positions of bridges with
respect to the underlying cubic graph G: Such a bridge B connects to vertices u of G′ which
subdivide edges f of G—this is due to the cubic degree bound, and we (with neglectable abuse
of terminology) say that B attaches to this edge f in G itself.

A bridge B is nontrivial if B attaches to some two nonadjacent edges of G, and B is trivial
otherwise. For a trivial bridge B; either B attaches to only one edge in G, and we say exclusively,
or all the edges to which B attaches in G have a vertex w in common (since G contains no
triangle), and we say that B attaches to this w.

We divide the rest of the proof into two main cases; that either some bridge of G′ in H is
nontrivial or all such bridges are trivial. We moreover assume that G′ ⊆ H being a subdivision
of G is chosen such that it has a nontrivial bridge if possible. In the “all-trivial” case one more
technical condition has to be observed: Suppose B1, B2 are bridges such that B1 attaches to w
and B2 attaches to an edge f incident to w in G (perhaps B2 exclusively to f). On the path Pf

which replaces (subdivides) f in G′, suppose that B2 connects to some vertex which is closer
to w on Pf than some other vertex to which B1 connects to. Then we declare that B2 attaches
to w, too. The transitive closure of declared attachment is well defined because of the following:

Lemma 2.5. Let G′ ⊆ H be a subdivision of G where G,H are cubic graphs. Suppose that all
bridges of G′ in H are trivial, and that a bridge B0 attaches (or, is declared to) both to w1

and w2, where w1w2 ∈ E(G). Then there is G′′ ⊆ H which is a subdivision of G, too, and a
nontrivial bridge of G′′ in H exists.

Proof (sketch). Let Pf be the path representing f = w1w2 in H. In the described situation, we
call B0 a conflicting bridge, and assume that H − B0 has no conflicting bridge of G′. By the
definition of declared attachment there exist vertices u1, u2 ∈ V (Pf ) such that the following
holds for i = 1, 2: Either ui = wi and B0 attaches to at least two edges incident to wi, or there
is a bridge Bi connecting to ui such that Bi attaches (or, is declared to) to wi in G and B0

connects the two components of Pf − ui together. Notice that B1 6= B2 and u1 is closer to w1

on Pf than u2 (since H −B0 has no conflicting bridge).
One can now easily check that there exist two internally disjoint paths from ui to the two

neighbours of wi not on Pf , for each i = 1, 2 (Fig. 2). Hence there exists new G′′ ⊆ H a
subdivision of G such that the vertices w1, w2 now correspond to u1, u2, respectively, and the
bridge of G′′ arising from B0 is nontrivial. ut

Fig. 2. Illustration for sketch proof of Lemma 2.5. The trivial bridge on the left takes over the role of a branch
vertex of G in the graph G′, resulting in existence of a nontrivial bridge. The other case shows when the transitive
closure of declared attachment becomes important.
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Lemma 2.6. Let G′ ⊆ H be a subdivision of G where G,H are cubic nonprojective graphs and
G does not contain two disjoint k-graphs. Suppose that all bridges of G′ in H are trivial, and
no one is conflicting (cf. Lemma 2.5). Then H does not contain two disjoint k-graphs if, and
only if, H is a planar expansion of G.

Proof (sketch). If H is a planar expansion of G, then two disjoint k-graphs in H would imply
containment of those in G itself, which is not possible. In the converse direction, we assume
that H is not a planar expansion of G. Let Bv be the union of all trivial bridges of G′ in H that
attach or are declared to attach to a vertex v ∈ V (G). Let Bf be the union of all trivial bridges
of G′ in H that attach exclusively to an edge f ∈ E(G). Since H is not a planar expansion of
G, for at least one x ∈ V (G)∪E(G) the subgraph Hx = G′∪Bx is not a planar expansion of G,
too. For simplicity, we consider only the more interesting case x = u ∈ V (G). See an illustration
in Fig. 3.
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Fig. 3. Illustration of three collections of trivial bridges that attach to a cubic vertex u. The first collection gives
a planar expansion, while the other two are “minimal” non-planar-expansion cases.

Let G′
u ⊆ G′ denote the corresponding subdivision of G−u. Let C = {e1, e2, e3} be a minimal

edge-cut in Hu which separates G′
u on one side and B′

u ⊃ Bu ∪ {u} on the other side. Then our
graph Hu is not a planar expansion of G′ iff B′

u is not planar with all the three connections
to C on the outer face. The latter can be characterized by containment of a K2,3 subdivision
in B′

u with the size-three part incident to C. Then it is easy to show that G′ ∪ Bu confirms to
Def. 2.2 of two disjoint k-graphs, since G− u is connected and particularly G is nonplanar. ut

Lemma 2.7. Let G′ ⊆ H be a subdivision of G ∈ {G1, G2} (Fig. 1) in a cubic graph H. If
there exists a nontrivial bridge of G′ in H, then H does not have a finite planar emulator.

Proof (sketch). We have exhaustively verified that for G ∈ {G1, G2}, all the graphs G′+e where
e is a nontrivial bridge of G do not admit existence of finite planar emulator. Up to one case,
all such graphs contain two disjoint k-graphs. In the one special case, the graph G′

2 + e does
not contain two disjoint k-graphs, but it contains a K3,5 minor. We would like to point out that
due to the necessity of K3,5 in that one case, there is likely no simple argument summarizing
the cases similarly as done in Lemma 2.6. ut

Theorem 1.2 is then an immediate corollary of Lemmas 2.7 and 2.6.

3 Conclusions

While our main effort (started in [4, 2]) is to provide a new finite characterization of nonprojec-
tive graphs with finite planar emulators, this paper shows that the problem becomes significantly
easier when only a restricted class of graphs is considered. We identified two graphs (Fig. 1), for
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which existence of finitie planar emulator now becomes extremely interesting. We would like to
point out that similarity of these two graphs suggest that if one has a finite planar emulator,
so does the other one. If we however elaborate on this idea and attempt to “unify” the graphs
as depicted in Fig. 4, we have to use a nontrivial bridge. Perhaps, this provides a clue that
these two graphs should not be planar-emulable. Thus, providing an answer for any of these
two graphs would bring a better insight to the problem of planar emulations not only for the
cubic case, but also in general.

Fig. 4. “Unification” of pictures of G1 and G2 using a nontrivial bridge.

References

1. D. Archdeacon, A Kuratowski Theorem for the Projective Plane, J. Graph Theory 5 (1981), 243–246.
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