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Near-planar graphs

Non-planar H is near-planar if H = G + xy for planar G

[
B —

» weak relaxation of planarity

» near-planar C toroidal, apex
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Near-planar — Riskin

» G planar, 3-connected, and 3-regular [Riskin "96]

+ ¢cr(G + xy) attained by the following drawing:
draw G planarly (unique) and insert xy minimizing crossings
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Near-planar — Riskin

» G planar, 3-connected, and 3-regular [Riskin "96]

+ ¢cr(G + xy) attained by the following drawing:
draw G planarly (unique) and insert xy minimizing crossings
» ¢cr(G + xy) is a distance in (G — x — y)*
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Near-planar — Riskin

» No extension to non-cubic graphs possible [Mohar "06]
also [Farr],[Hlin&ny, Salazar '06]
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also [Farr],[Hlin&ny, Salazar '06]

il
ik
l//( L
S—/
\ |
\ “//"/ 1
N 7
} )
\ 4

WA\

el

Sergio Cabello | Near-planar



Near-planar — Objective

understanding near-planar graphs
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Near-planar — Objective

understanding near-planar graphs

» combinatorial properties
» crossing number

» 1-planarity
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Planar separability

v

G a planar graph

x,y € V(G) distinct
RQCG—x—y

Q planarly separates x and y if

v

v

v

» in each embedding I of G each (x, y)-arc intersects Q
« in each embedding I' of G, x and y in different faces of [(Q)
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Planar separability — Bridges

» G a planar graph
» Q C G acycle
» Q-bridges
« edges ¢ @ joining vertices in Q
» connected components of G — @ with edges of attachment
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Planar separability — Overlapping bridges

» G a planar graph
» Q C G acycle
» two bridges overlap iff
» they have 3 common vertices of attachment
» each has 2 vertices of attachment alternating along Q
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Planar separability — Overlap graph

» G a planar graph
» Q C G acycle
» overlap(G, C)
« vertices are Q-bridges
» edges between overlapping Q-bridges




Planar separability — Separating cycle

G a planar graph. x,y € V(G)

QR C G—x—yacycle

B,(Q) is Q-bridge containing x

Q planarly separates x and y < B,(Q) and B, (Q) weakly
overlap

vV VvV Vv vV
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Planar separability — Separating cycle

G a planar graph. x,y € V(G)
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Planar separability — Tutte

v

G a planar graph. x,y € V(G)

\4

@ C G — x — y a cycle that planarly separates x and y

B«(Q) and B, (Q) weakly overlap

exits cycle Q" C G — x — y such that B,(Q’) and B,(Q’) overlap
Q' edge-disjoint from B,(Q) and B,(Q)

v

v

v
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Planar separability — Tutte

v

G a planar graph. x,y € V(G)

v

@ C G — x — y a cycle that planarly separates x and y
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Planar separability — Tutte

v

G a planar graph. x,y € V(G)

v

@ C G — x — y a cycle that planarly separates x and y

B«(Q) and B, (Q) weakly overlap
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Planar separability — Tutte

v

G a planar graph. x,y € V(G)

v

@ C G — x — y a cycle that planarly separates x and y

B«(Q) and B, (Q) weakly overlap

exits cycle Q" C G — x — y such that B,(Q’) and B,(Q’) overlap
Q' edge-disjoint from B,(Q) and B,(Q)
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Planar separability — Tutte

v

G a planar graph. x,y € V(G)

v

@ C G — x — y a cycle that planarly separates x and y

B«(Q) and B, (Q) weakly overlap

exits cycle Q" C G — x — y such that B,(Q’) and B,(Q’) overlap
Q' edge-disjoint from B,(Q) and B,(Q)

v

v

v
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Planar separability — Tutte

Theorem
[Tutte '75]

» G a planar graph
» x,y € V(G) distinct

G + xy non-planar < exists cycle Q C G — x — y s.t. By(Q') and
B, (Q') overlap
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Planar separability — An extension

Theorem
» G planar graph
» x,y € V(G) distinct
» Q C G — x — y planarly separates x and y

= exists cycle Q' C Q that planarly separates x and y
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Planar separability — Connectivity reductions

G + xy 2-connected = G 2-connected

» G =Gy UG planar graphand G NGy = v

> xEGlandyer

» QCG—x—y
Q planarly separates x and y < Q N Gy — v separates x and v or
@ N Gy — v separates x and v
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Planar separability — Connectivity reductions

G + xy 2-connected = G 2-connected

» G =Gy UG planar graphand G NGy = v

> xEGlandyer

» QCG—x—y
Q planarly separates x and y < Q N Gy — v separates x and v or
@ N Gy — v separates x and v
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Planar separability — Connectivity reductions

G + xy 2-connected = G 2-connected

» G =Gy UG planar graphand G NGy = v

> xEGlandyeGg

» QCG—x—y
Q planarly separates x and y < Q N Gy — v separates x and v or
@ N Gy — v separates x and v
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Planar separability — Connectivity reductions

G 2-connected = G + xy 3-connected

G = Gy U G, 2-connected planar graph and G; N Gy = {u, v}
» x,y € Gy

» QCG—x—y

Q1 = QU Gy + uv (if u-v connected in Go N Q) or

Q1 = (QU Gy) + uv (otherwise)

Q planarly separates x and y < @ separates x and y in Gy + uv

v

v
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Planar separability — Connectivity reductions

G 2-connected = G + xy 3-connected

G = Gy U Gy 2-connected planar graph and G; N Gy = {u, v}
» X,y € Gy

» QCG—x—y

Q1 = QU Gy + uv (if u-v connected in Go N Q) or

Q1 = (Q U G1) + uv (otherwise)

Q planarly separates x and y < @ separates x and y in G; + uv

v

v
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Planar separability — Connectivity reductions

G + xy 3-connected = G essentially 3-connected

» G = G; U Gy 2-connected planar graph and G1 N Gy = {u, v}

> XEGlandyGGg

» QCG—x—y
Q planarly separates x and y < Q N G separates x and z in Gfr or
Q N G; separates y and z in G5

v
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Dual and facial distance — Plane

G plane graph (embedding in the plane is fixed)
X,y vertices of G.

» Dual distance of vertices x, y is

d*(x,y) = min{cr(v, G) | v is an (x, y)-arc avoiding V(G)}
» Facial distance between x and y is

d'(x,y) = min{cr(y, G) | 7 is an (x, y)-arc}
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— Plane

Dual and facial distance




Dual and facial distance — Plane

G a plane graph (embedding in the plane is fixed)
x, y vertices of G.

» Dual distance d*(x, y) computable in linear time via dual graphs.

» Facial distance d’(x,y) computable in linear time via face-vertex
incidence graph.

Theorem (Riskin '96)

G planar, 3-connected, and 3-regular
=cr(G+xy) = d*(x,y)
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Dual and facial distance — Planar

G a planar graph (no embedding given)

» dj(x,y) = mind*(x, y) over all embeddings of G
Computable in linear time [Gutwenger, Mutzel, Weiskircher '05]
Alternative approach via connectivity reductions

» di(x,y) = mind'(x, y) over all embeddings of G
Computable in linear time via connectivity reductions
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Dual and facial distance — Meaning

Theorem
G planar graph
x,y € V(G)
> dy(x,y) is the maximum r such that:
G has r edge-disjoint cycles planarly separating x and y.
» dy(x,y) is the maximum r such that:
G has r vertex-disjoint cycles planarly separating x and y

This is easy if G essentially 3-connected because of unique
embeddability.
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Dual distance — 3-connected

NNNNIN=V
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Dual distance — 3-connected

NNNNAN=aV
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Dual distance — 3-connected

NNNNAN=aV
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Dual distance — 3-connected

NNNNZN=V/
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Dual distance — 3-connected

RN NEZZ
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Dual distance — 3-connected

N
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Facial distance — 3-connected

NNNNAN=aV
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Dual and facial distance — General

For general G, use induction on |V(G)| and connectivity reductions.
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Dual and facial distance — General

For general G, use induction on |V(G)| and connectivity reductions.
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Dual and facial distance — General

For general G, use induction on |V(G)| and connectivity reductions.
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Dual and facial distance — General

For general G, use induction on |V(G)| and connectivity reductions.
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Dual and facial distance — General

For general G, use induction on |V(G)| and connectivity reductions.

L J@ 7
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Nested cycles
» G plane graph

» Cycles Q1 and @, in G are nested in G if a small perturbation of
@1 makes them disjoint.

N
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Edge-disjoint nested cycles

» G plane graph

» X,y vertices of G

» Q1,2 C G — x — y edge-disjoint cycles that planarly separate x
and y

= There are nested edge-disjoint cycles Q], Q5 C Q1 U @ that
planarly separate x and y

» if Q1 and Q> nested, done
» connectivity reductions to assume essential 3-connectivity of G

» take any embedding I' of G

» take Q] and Q} as the facial cycles of [(Q; U @2) containing
M(x) and I'(y)

» Q1 and Q) are edge disjoint
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Dual and facial distance — Meaning

Theorem
G planar graph
x,y € V(G)
> dy(x,y) is the maximum r such that:
G has r edge-disjoint cycles planarly separating x and y.
» dj(x,y) is the maximum r such that:
in any embedding of G there are r nested edge-disjoint cycles
planarly separating x and y.
> dy(x,y) is the maximum r such that:
G has r vertex-disjoint cycles planarly separating x and y

Get item 2 from item 1 by repeatedly nesting pairs.
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Dual and facial distance — Meaning

Corollary

G planar graph

x,y € V(G)

G — x — y max degree A

= d5(x.y) < [3] do(x.y)

» fix an embedding of G

» take a family of dj(x,y) nested edge-disjoint cycles planarly
separating x and y

» select each L%Jth cycle
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Dual and facial distance — Meaning

Corollary
G planar graph
x,y € V(G)
G — x — y max degree A
= d§(x.y) < [3] - dylx,y)

o,

(e,

O
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Dual and facial distance — Meaning

Corollary

G planar graph
x,y € V(G)
G — x — y max degree A

= dj(x,y) < [3] - dy(x.y)
Corollary

G — x — y max degree 3
= d5(x,y) = dy(x,y)
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Approximating cr(G + xy)

» Obvious candidate:

 embed G such that d*(x,y) = dj(x,y)
» draw xy on top minimizing crossings
« crossing number drawing is dg(x, y)

» Optimal when G is 3-connected and 3-regular
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Approximating cr(G + xy)

Obvious candidate:
 embed G such that d*(x,y) = dj(x,y)
» draw xy on top minimizing crossings
« crossing number drawing is dg(x, y)

v

v

Optimal when G is 3-connected and 3-regular

v

How good or bad for general graphs?

v

analyzed first (and proposed?) by Hliné&ny & Salazar '06
» A-approximation

v

in fact | 2 ]-approximation
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Bounding cr(G + xy)

Theorem
If G is a planar graph and x,y € V(G), then

dg(x,y) < cr(G +xy) < dg(x. y).

v

Extends [Riskin'96] since dy = dj for cubic graphs.

v

Works also for non-3-connected graphs.

v

Right inequality is obvious.

v

Let’s concentrate on the left inequality.
Take r = dj(x,y).

v
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dy(x,y) < cr(G + xy) — Nested cycles

» Take r vertex-disjoint cycles @1, ... Q, that planarly separate x
and y

» Q=xand Qry1 =y
» Indexed by as nested
» For 1 <j < r bridges B«(Qj) and B, (Q;) weakly overlap
» Reroute each Q; such that By(Q;) and Bx(Q;) overlap
» Q1,...Q, vertex-disjoint cycles;
B«(Qj) and B, (Q;) overlap (1 <i <)
> P paths connecting Q; to Q41
P:” paths connecting Q; to Qi1
P U P show overlap of B,(Q;) and B, (Q;)
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dy(x,y) < cr(G + xy) — Nested cycles

W,

Qit+1
oo e oY




r < cr(G + xy) — Lower bound

v

Consider a drawing of G + xy
Assign to some crossings a label “type /", where 1 < i <r

v

v

Assignment is algorithmic
Argue that for each 1 </ < r there is a crossing of type i

v

(a) If two edges of the same cycle Q; cross, we declare such a crossing to be of
type i.

(b) If two cycles Q; and Q; cross, where j # i, then they make at least two cross-
ings, and we declare one of them to be a crossing of type i. and another one a
crossing of type j.

(c) If the edge xy crosses Q;. we declare such a crossing to be of type i.

(d) If there are no crossings of type i because of rules (a)—(c), then we consider the set

F; of the edges on the paths S', $2, ..., " and on the paths R, R7*+! ..., R".If

an edge in F; crosses an edge of Q;, we select one of such crossings and declare

it to be of type 7.

If two edges ¢ € E(S) and f € E(R') cross, we say that the crossing is of type

(e
i.

(f) If two edges e € E(S") and f € E(Qi41) cross and this crossing does not have
type i + | assigned by rule (d), we say that this crossing is of type i. Similarly,
if two edges ¢ € E(R') and f € E(Q;_) cross and this crossing does not have
type i — 1 assigned by rule (d), we also say that this crossing is of type 7.

(g) Finally. if the cycles Q;—; and Q;4 intersect more than twice, we take one of
the intersections that have no type assigned and declare it to be of type 7.
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r < cr(G + xy) — Assigning types

1. A selfcrossing of Q; getss type /

Qi
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r < cr(G + xy) — Assigning types

2. If Q; and @ cross, they have > 2 crossings.
Two such crossings get type i and j
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r < cr(G + xy) — Assigning types

3. If xy crosses Q;, type i
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r < cr(G + xy) — Assigning types

4. If no crossing of type i yet and Q; crosses P_; U P;r,-,
one such crossing gets type i
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r < cr(G + xy) — Assigning types

5. If Qi—1 and Qj;1 cross > 4 times,
one of the untyped crossings gets type i
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r < cr(G + xy) — Assigning types

6. A crossing between P;” and P,-+ gets type i
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r < cr(G + xy) — Assigning types

7. If a crossing between P;” and Q;y1 has no type / + 1 assigned yet,
gets type i. Similar for P,.Jr and Q;_1.
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Weights

» it is convenient to consider edge-weighted graphs
» positive integer weights
» crossing of edges with weights w and w’ give w - w’ crossings

» edge of weight w = w parallel subdivided edges

—_ = @ w copies

» polynomial vs. non-polynomial weights

» degree = sum of weights of incident edges
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Near-planar graphs are hard

Theorem
Computing cr(G) for near-planar graphs is NP-hard.
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Near-planar graphs are hard

Theorem
Computing cr(G) for near-planar graphs is NP-hard.

» adding one edge messes up a lot
» easy for weighted crossing number
» polynomial weights would be ok
» new reduction from SAT
« previous reductions are from Linear Ordering

» new problem: anchored drawings
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Tool: anchored drawings

Q a disk

Anchored graph: graph G with assigned placements for a subset
Ac € V(G) of anchors on the boundary of Q

Anchored drawing: drawing in 2 extending the placement of Ag

v

v

v

\4

Anchored embedding: anchored drawing without crossings

v

Anchored crossing number: minimize crossings
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Tool: anchored drawings
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New problem: red-blue anchored drawings

Q a disk

R an anchored embedded red graph in Q
B an anchored embedded blue graph in
anchored crossing number of RU B

v

v

v

v
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New problem: red-blue anchored drawings

Q a disk

R an anchored embedded red graph in Q
B an anchored embedded blue graph in
anchored crossing number of RU B

2 %o

v

v

v

v

V
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Red-blue anchored drawings

Theorem
It is NP-hard to compute the anchored crossing number of R U B.
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Red-blue anchored drawings

Theorem
It is NP-hard to compute the anchored crossing number of R U B.

» also true if R and B disjoint
» also true if restricted to embeddings of R and B
» reduction from SAT
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Why red-blue anchored drawings?
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Red-blue anchored drawings

Theorem
It is NP-hard to compute the anchored crossing number of R U B.

» reduction from SAT

» proof by example

» we will use polynomial weights
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forcing

X1 \/XQ

X2 V X3

|
|

X1 VX3V Xg
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forcing
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Low hanging fruit

v

Rotation systems

v

Cubic graphs

v

3-connected planar with an additional edge

v

Planar with rotation systems
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1-planarity

G is 1-planar if there is a drawing where each edge participates in 0

or 1 crossings.

Theorem
Deciding if a given graph is 1-planar is NP-hard even for near-planar

graphs.

» known for general graphs [Korzhik, Mohar '09]

» similar proof technique

» different local structure
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1-planarity — Two tricks

In a 1-planar drawing with fewest crossings

» parallel paths of length 2 do not cross

» with some connectivity, no vertex inside faces of parallel edges of
length 2
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Conclusions

» Near-planar graphs are not easy.

» Crossing numbers are hard.

» New problem: anchored drawing in a disk.

» is it hard to compute cr(G + xy) when A(G) < 4 (via Petr)

» if R and B anchored planar graph, is cra(R U B) given by a
drawing without monochromatic crossings?

» if R and B anchored planar graph with 3 anchors each, can we
compute optimal drawing restricted to embeddings in each color?

» crossing number for graphs of bounded treewidth
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