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Near-planar graphs

Non-planar H is near-planar if H = G + xy for planar G

x

y

I weak relaxation of planarity

I near-planar ( toroidal, apex
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Near-planar – Riskin

I G planar, 3-connected, and 3-regular [Riskin ’96]

• cr(G + xy) attained by the following drawing:
draw G planarly (unique) and insert xy minimizing crossings

• cr(G + xy) is a distance in (G − x − y)∗

x

y
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Near-planar – Riskin

I No extension to non-cubic graphs possible [Mohar ’06]
also [Farr],[Hliněný, Salazar ’06]
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Near-planar – Objective

understanding near-planar graphs

I combinatorial properties

I crossing number

I 1-planarity
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Planar separability

I G a planar graph

I x , y ∈ V (G ) distinct

I Q ⊂ G − x − y

I Q planarly separates x and y if

• in each embedding Γ of G each (x , y)-arc intersects Q
• in each embedding Γ of G , x and y in different faces of Γ(Q)
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Planar separability – Bridges

I G a planar graph
I Q ⊂ G a cycle
I Q-bridges

• edges /∈ Q joining vertices in Q
• connected components of G − Q with edges of attachment

Q
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Planar separability – Overlapping bridges

I G a planar graph
I Q ⊂ G a cycle
I two bridges overlap iff

• they have 3 common vertices of attachment
• each has 2 vertices of attachment alternating along Q

Q
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Planar separability – Overlap graph

I G a planar graph

I Q ⊂ G a cycle

I overlap(G ,C )
• vertices are Q-bridges
• edges between overlapping Q-bridges

Q
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Planar separability – Separating cycle

I G a planar graph. x , y ∈ V (G )
I Q ⊂ G − x − y a cycle
I Bx(Q) is Q-bridge containing x
I Q planarly separates x and y ⇔ Bx(Q) and By (Q) weakly

overlap

Q

B2B1

B3

B4

B5
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Planar separability – Tutte

I G a planar graph. x , y ∈ V (G )
I Q ⊂ G − x − y a cycle that planarly separates x and y
I Bx(Q) and By (Q) weakly overlap
I exits cycle Q ′ ⊂ G − x − y such that Bx(Q ′) and By (Q ′) overlap
I Q ′ edge-disjoint from Bx(Q) and By (Q)

Q
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Planar separability – Tutte

Theorem
[Tutte ’75]

I G a planar graph

I x , y ∈ V (G ) distinct

G + xy non-planar ⇔ exists cycle Q ⊂ G − x − y s.t. Bx(Q ′) and
By (Q ′) overlap
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Planar separability – An extension

Theorem

I G planar graph

I x , y ∈ V (G ) distinct

I Q ⊂ G − x − y planarly separates x and y

⇒ exists cycle Q ′ ⊂ Q that planarly separates x and y

Sergio Cabello Near-planar



Planar separability – Connectivity reductions

G + xy 2-connected ⇒ G 2-connected

I G = G1 ∪ G2 planar graph and G1 ∩ G2 = v

I x ∈ G1 and y ∈ G2

I Q ⊂ G − x − y

Q planarly separates x and y ⇔ Q ∩ G1 − v separates x and v or
Q ∩ G2 − v separates x and v

v v
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Planar separability – Connectivity reductions

G 2-connected ⇒ G + xy 3-connected

I G = G1 ∪ G2 2-connected planar graph and G1 ∩ G2 = {u, v}
I x , y ∈ G1

I Q ⊂ G − x − y

I Q1 = Q ∪ G1 + uv (if u-v connected in G2 ∩ Q) or
Q1 = (Q ∪ G1) + uv (otherwise)

Q planarly separates x and y ⇔ Q1 separates x and y in G1 + uv

v v

uu
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Planar separability – Connectivity reductions
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Planar separability – Connectivity reductions

G + xy 3-connected ⇒ G essentially 3-connected

I G = G1 ∪ G2 2-connected planar graph and G1 ∩ G2 = {u, v}
I x ∈ G1 and y ∈ G2

I Q ⊂ G − x − y

Q planarly separates x and y ⇔ Q ∩ G1 separates x and z in G+
1 or

Q ∩ G2 separates y and z in G+
2

v

u G+
1 G+

2

z
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Dual and facial distance – Plane

G plane graph (embedding in the plane is fixed)
x , y vertices of G .

I Dual distance of vertices x , y is
d∗(x , y) = min{cr(γ,G ) | γ is an (x , y)-arc avoiding V (G )}

I Facial distance between x and y is
d ′(x , y) = min{cr(γ,G ) | γ is an (x , y)-arc}
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Dual and facial distance – Plane
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Dual and facial distance – Plane

G a plane graph (embedding in the plane is fixed)
x , y vertices of G .

I Dual distance d∗(x , y) computable in linear time via dual graphs.

I Facial distance d ′(x , y) computable in linear time via face-vertex
incidence graph.

Theorem (Riskin ’96)

G planar, 3-connected, and 3-regular
⇒ cr(G + xy) = d∗(x , y)
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Dual and facial distance – Planar

G a planar graph (no embedding given)

I d∗0 (x , y) = min d∗(x , y) over all embeddings of G
Computable in linear time [Gutwenger, Mutzel, Weiskircher ’05]
Alternative approach via connectivity reductions

I d ′0(x , y) = min d ′(x , y) over all embeddings of G
Computable in linear time via connectivity reductions
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Dual and facial distance – Meaning

Theorem
G planar graph
x , y ∈ V (G )

I d∗0 (x , y) is the maximum r such that:
G has r edge-disjoint cycles planarly separating x and y.

I d ′0(x , y) is the maximum r such that:
G has r vertex-disjoint cycles planarly separating x and y

This is easy if G essentially 3-connected because of unique
embeddability.
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Dual distance – 3-connected

Sergio Cabello Near-planar



Dual distance – 3-connected
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Dual distance – 3-connected
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Dual distance – 3-connected
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Dual distance – 3-connected
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Dual distance – 3-connected
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Facial distance – 3-connected
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Facial distance – 3-connected
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Dual and facial distance – General

For general G , use induction on |V (G )| and connectivity reductions.
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Nested cycles

I G plane graph

I Cycles Q1 and Q2 in G are nested in G if a small perturbation of
Q1 makes them disjoint.
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Edge-disjoint nested cycles

I G plane graph

I x , y vertices of G

I Q1,Q2 ⊂ G − x − y edge-disjoint cycles that planarly separate x
and y

⇒ There are nested edge-disjoint cycles Q ′1,Q
′
2 ⊂ Q1 ∪ Q2 that

planarly separate x and y

I if Q1 and Q2 nested, done

I connectivity reductions to assume essential 3-connectivity of G

I take any embedding Γ of G

I take Q ′1 and Q ′2 as the facial cycles of Γ(Q1 ∪ Q2) containing
Γ(x) and Γ(y)

I Q ′1 and Q ′2 are edge disjoint
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Dual and facial distance – Meaning

Theorem
G planar graph
x , y ∈ V (G )

I d∗0 (x , y) is the maximum r such that:
G has r edge-disjoint cycles planarly separating x and y.

I d∗0 (x , y) is the maximum r such that:
in any embedding of G there are r nested edge-disjoint cycles
planarly separating x and y.

I d ′0(x , y) is the maximum r such that:
G has r vertex-disjoint cycles planarly separating x and y

Get item 2 from item 1 by repeatedly nesting pairs.
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Dual and facial distance – Meaning

Corollary

G planar graph
x , y ∈ V (G )
G − x − y max degree ∆

⇒ d∗0 (x , y) ≤ b∆
2 c · d ′0(x , y)

I fix an embedding of G

I take a family of d∗0 (x , y) nested edge-disjoint cycles planarly
separating x and y

I select each b∆
2 cth cycle
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Dual and facial distance – Meaning

Corollary

G planar graph
x , y ∈ V (G )
G − x − y max degree ∆

⇒ d∗0 (x , y) ≤ b∆
2 c · d ′0(x , y)
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Dual and facial distance – Meaning

Corollary

G planar graph
x , y ∈ V (G )
G − x − y max degree ∆

⇒ d∗0 (x , y) ≤ b∆
2 c · d ′0(x , y)

Corollary

G − x − y max degree 3
⇒ d∗0 (x , y) = d ′0(x , y)
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Approximating cr(G + xy)

I Obvious candidate:

• embed G such that d∗(x , y) = d∗0 (x , y)
• draw xy on top minimizing crossings
• crossing number drawing is d∗0 (x , y)

I Optimal when G is 3-connected and 3-regular

I How good or bad for general graphs?

I analyzed first (and proposed?) by Hliněný & Salazar ’06

• ∆-approximation

I in fact b∆
2 c-approximation
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• ∆-approximation

I in fact b∆
2 c-approximation

Sergio Cabello Near-planar



Bounding cr(G + xy)

Theorem
If G is a planar graph and x , y ∈ V (G ), then

d ′0(x , y) ≤ cr(G + xy) ≤ d∗0 (x , y).

I Extends [Riskin’96] since d ′0 = d∗0 for cubic graphs.

I Works also for non-3-connected graphs.

I Right inequality is obvious.

I Let’s concentrate on the left inequality.

I Take r = d ′0(x , y).
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d ′0(x , y) ≤ cr(G + xy) – Nested cycles

I Take r vertex-disjoint cycles Q1, . . .Qr that planarly separate x
and y

I Q0 = x and Qr+1 = y

I Indexed by as nested

I For 1 ≤ i ≤ r bridges Bx(Qi ) and By (Qi ) weakly overlap

I Reroute each Qi such that Bx(Qi ) and Bx(Qi ) overlap

I Q1, . . .Qr vertex-disjoint cycles;
Bx(Qi ) and By (Qi ) overlap (1 ≤ i ≤ r)

I P+
i paths connecting Qi to Qi+1

P−i paths connecting Qi to Qi−1

P+
i ∪ P−i show overlap of Bx(Qi ) and By (Qi )
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d ′0(x , y) ≤ cr(G + xy) – Nested cycles

x y

Qi−1 Qi Qi+1

P−
i

P+
i
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r ≤ cr(G + xy) – Lower bound

I Consider a drawing of G + xy
I Assign to some crossings a label “type i”, where 1 ≤ i ≤ r
I Assignment is algorithmic
I Argue that for each 1 ≤ i ≤ r there is a crossing of type i
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r ≤ cr(G + xy) – Assigning types

1. A selfcrossing of Qi getss type i

Qi

Qi
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r ≤ cr(G + xy) – Assigning types

2. If Qi and Qj cross, they have ≥ 2 crossings.
Two such crossings get type i and j

Qi

Qi

Qj

j

i
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r ≤ cr(G + xy) – Assigning types

3. If xy crosses Qi , type i

i
Qi

Qi
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r ≤ cr(G + xy) – Assigning types

4. If no crossing of type i yet and Qi crosses P−≤i ∪ P+
≥i ,

one such crossing gets type i

QiQi

i

Qi+1

Qi−1
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r ≤ cr(G + xy) – Assigning types

5. If Qi−1 and Qi+1 cross ≥ 4 times,
one of the untyped crossings gets type i

QiQi
i+ 1

Qi+1

Qi−1

Qi+1

Qi−1

i− 1

i
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r ≤ cr(G + xy) – Assigning types

6. A crossing between P−i and P+
i gets type i

QiQi

Qi−1

Qi+1

Qi−1

i P−
i

P+
i

P−
i

P+
i
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r ≤ cr(G + xy) – Assigning types

7. If a crossing between P−i and Qi+1 has no type i + 1 assigned yet,
gets type i . Similar for P+

i and Qi−1.

QiQi

Qi−1

Qi+1

P−
i

P+
i

Qi−1

Qi+1

P−
i

P+
i

i− 1

i+ 1

i i

i− 1
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Weights

I it is convenient to consider edge-weighted graphs

I positive integer weights

I crossing of edges with weights w and w ′ give w · w ′ crossings

I edge of weight w ≡ w parallel subdivided edges

w ≡ w copies

I polynomial vs. non-polynomial weights

I degree = sum of weights of incident edges

Sergio Cabello Near-planar



Near-planar graphs are hard

Theorem
Computing cr(G ) for near-planar graphs is NP-hard.

I adding one edge messes up a lot

I easy for weighted crossing number

• polynomial weights would be ok

I new reduction from SAT

• previous reductions are from Linear Ordering

I new problem: anchored drawings
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Tool: anchored drawings

I Ω a disk

I Anchored graph: graph G with assigned placements for a subset
AG ⊆ V (G ) of anchors on the boundary of Ω

I Anchored drawing: drawing in Ω extending the placement of AG

I Anchored embedding: anchored drawing without crossings

I Anchored crossing number: minimize crossings
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Tool: anchored drawings
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New problem: red-blue anchored drawings

I Ω a disk
I R an anchored embedded red graph in Ω
I B an anchored embedded blue graph in Ω
I anchored crossing number of R ∪ B

R B
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Red-blue anchored drawings

Theorem
It is NP-hard to compute the anchored crossing number of R ∪ B.

I also true if R and B disjoint

I also true if restricted to embeddings of R and B

I reduction from SAT
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Red-blue anchored drawings

Theorem
It is NP-hard to compute the anchored crossing number of R ∪ B.

I also true if R and B disjoint

I also true if restricted to embeddings of R and B

I reduction from SAT
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Why red-blue anchored drawings?
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Why red-blue anchored drawings?
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Red-blue anchored drawings

Theorem
It is NP-hard to compute the anchored crossing number of R ∪ B.

I reduction from SAT

I proof by example

I we will use polynomial weights
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x2 ∨ ¬x3

x1 ∨ x2

















forcing

T F T F T F T F

x1 x2 x3 x4
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Low hanging fruit

I Rotation systems

I Cubic graphs

I 3-connected planar with an additional edge

I Planar with rotation systems
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Outline

1. Near-planar graphs

2. Planar separability

3. Dual and facial distances

4. Approximating crossing number

5. Hardness crossing number

6. 1-planarity
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1-planarity

G is 1-planar if there is a drawing where each edge participates in 0
or 1 crossings.

Theorem
Deciding if a given graph is 1-planar is NP-hard even for near-planar
graphs.

I known for general graphs [Korzhik, Mohar ’09]

I similar proof technique

I different local structure
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1-planarity – Two tricks

In a 1-planar drawing with fewest crossings

I parallel paths of length 2 do not cross

I with some connectivity, no vertex inside faces of parallel edges of
length 2
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1-planarity – Gadget
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d′1

x1 x2 x3 x4

x
1
∨
x
2

















                                                   

x
2
∨
¬x

3
¬x

2
∨
¬x

4
¬x

1
∨
¬x

3
∨
x
4

CT
1 CF

1 CT
2 CF

2 CT
3 CF

3 CT
4 CF

4

a0 a1 a2 a3 a4

d0

d1

d2

d3

d4

c0

c1

c2

c3

c4

b0 b1 b2 b3 b4

d′2

d′3

d′4

c′1

c′2

c′3

c′4
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Conclusions

I Near-planar graphs are not easy.

I Crossing numbers are hard.

I New problem: anchored drawing in a disk.

I is it hard to compute cr(G + xy) when ∆(G ) ≤ 4 (via Petr)

I if R and B anchored planar graph, is cra(R ∪ B) given by a
drawing without monochromatic crossings?

I if R and B anchored planar graph with 3 anchors each, can we
compute optimal drawing restricted to embeddings in each color?

I crossing number for graphs of bounded treewidth
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