Crossings of near-planar graphs

Sergio Cabello University of Ljubljana Slovenia

(based on joint work with Bojan Mohar)

Valtice 2012

Outline

- 1. Near-planar graphs
- 2. Planar separability
- 3. Dual and facial distances
- 4. Approximating crossing number
- 5. Hardness crossing number
- 6. 1-planarity

Near-planar graphs

Non-planar *H* is near-planar if H = G + xy for planar *G*

- weak relaxation of planarity
- ▶ near-planar ⊊ toroidal, apex

- G planar, 3-connected, and 3-regular
 - cr(G + xy) attained by the following drawing: draw G planarly (unique) and insert xy minimizing crossings

[Riskin '96]

► *G* planar, 3-connected, and 3-regular

cr(G + xy) attained by the following drawing:
 draw G planarly (unique) and insert xy minimizing crossings

[Riskin '96]

• cr(G + xy) is a distance in $(G - x - y)^*$

 No extension to non-cubic graphs possible [Mohar '06] also [Farr],[Hliněný, Salazar '06]

 No extension to non-cubic graphs possible [Mohar '06] also [Farr],[Hliněný, Salazar '06]

Near-planar – Objective

understanding near-planar graphs

Near-planar – Objective

understanding near-planar graphs

- combinatorial properties
- crossing number
- 1-planarity

Outline

- 1. Near-planar graphs
- 2. Planar separability
- 3. Dual and facial distances
- 4. Approximating crossing number
- 5. Hardness crossing number
- 6. 1-planarity

Planar separability

- ► G a planar graph
- $x, y \in V(G)$ distinct
- $Q \subset G x y$
- Q planarly separates x and y if
 - in each embedding Γ of G each (x, y)-arc intersects Q
 - in each embedding Γ of G, x and y in different faces of $\Gamma(Q)$

Planar separability – Bridges

- ► G a planar graph
- $Q \subset G$ a cycle
- Q-bridges
 - edges $\notin Q$ joining vertices in Q
 - connected components of G Q with edges of attachment

Planar separability – Overlapping bridges

- ► G a planar graph
- $Q \subset G$ a cycle
- two bridges overlap iff
 - they have 3 common vertices of attachment
 - each has 2 vertices of attachment alternating along Q

Planar separability – Overlap graph

- ► G a planar graph
- $Q \subset G$ a cycle
- overlap(G, C)
 - vertices are *Q*-bridges
 - edges between overlapping Q-bridges

Planar separability – Separating cycle

- G a planar graph. $x, y \in V(G)$
- $Q \subset G x y$ a cycle
- ► B_x(Q) is Q-bridge containing x
- Q planarly separates x and $y \Leftrightarrow B_x(Q)$ and $B_y(Q)$ weakly overlap

Planar separability – Separating cycle

- G a planar graph. $x, y \in V(G)$
- $Q \subset G x y$ a cycle
- ► B_x(Q) is Q-bridge containing x
- Q planarly separates x and $y \Leftrightarrow B_x(Q)$ and $B_y(Q)$ weakly overlap

- G a planar graph. $x, y \in V(G)$
- $Q \subset G x y$ a cycle that planarly separates x and y
- $B_x(Q)$ and $B_y(Q)$ weakly overlap
- exits cycle $Q' \subset G x y$ such that $B_x(Q')$ and $B_y(Q')$ overlap
- Q' edge-disjoint from $B_x(Q)$ and $B_y(Q)$

- G a planar graph. $x, y \in V(G)$
- $Q \subset G x y$ a cycle that planarly separates x and y
- $B_x(Q)$ and $B_y(Q)$ weakly overlap
- exits cycle $Q' \subset G x y$ such that $B_x(Q')$ and $B_y(Q')$ overlap
- Q' edge-disjoint from $B_x(Q)$ and $B_y(Q)$

- G a planar graph. $x, y \in V(G)$
- $Q \subset G x y$ a cycle that planarly separates x and y
- $B_x(Q)$ and $B_y(Q)$ weakly overlap
- exits cycle $Q' \subset G x y$ such that $B_x(Q')$ and $B_y(Q')$ overlap
- Q' edge-disjoint from $B_x(Q)$ and $B_y(Q)$

- G a planar graph. $x, y \in V(G)$
- $Q \subset G x y$ a cycle that planarly separates x and y
- $B_x(Q)$ and $B_y(Q)$ weakly overlap
- exits cycle $Q' \subset G x y$ such that $B_x(Q')$ and $B_y(Q')$ overlap
- Q' edge-disjoint from $B_x(Q)$ and $B_y(Q)$

- G a planar graph. $x, y \in V(G)$
- $Q \subset G x y$ a cycle that planarly separates x and y
- $B_x(Q)$ and $B_y(Q)$ weakly overlap
- exits cycle $Q' \subset G x y$ such that $B_x(Q')$ and $B_y(Q')$ overlap
- Q' edge-disjoint from $B_x(Q)$ and $B_y(Q)$

Theorem

[Tutte '75]

- ► G a planar graph
- $x, y \in V(G)$ distinct

G + xy non-planar \Leftrightarrow exists cycle $Q \subset G - x - y$ s.t. $B_x(Q')$ and $B_y(Q')$ overlap

Planar separability – An extension

Theorem

- G planar graph
- $x, y \in V(G)$ distinct
- $Q \subset G x y$ planarly separates x and y
- \Rightarrow exists cycle $Q' \subset Q$ that planarly separates x and y

G + xy 2-connected \Rightarrow G 2-connected

- $G = G_1 \cup G_2$ planar graph and $G_1 \cap G_2 = v$
- $x \in G_1$ and $y \in G_2$

•
$$Q \subset G - x - y$$

Q planarly separates x and $y \Leftrightarrow Q \cap G_1 - v$ separates x and v or $Q \cap G_2 - v$ separates x and v

G + xy 2-connected \Rightarrow G 2-connected

- $G = G_1 \cup G_2$ planar graph and $G_1 \cap G_2 = v$
- $x \in G_1$ and $y \in G_2$

•
$$Q \subset G - x - y$$

Q planarly separates x and $y \Leftrightarrow Q \cap G_1 - v$ separates x and v or $Q \cap G_2 - v$ separates x and v

G + xy 2-connected \Rightarrow G 2-connected

- $G = G_1 \cup G_2$ planar graph and $G_1 \cap G_2 = v$
- $x \in G_1$ and $y \in G_2$
- $Q \subset G x y$

Q planarly separates x and $y \Leftrightarrow Q \cap G_1 - v$ separates x and v or $Q \cap G_2 - v$ separates x and v

G 2-connected \Rightarrow G + xy 3-connected

- $G = G_1 \cup G_2$ 2-connected planar graph and $G_1 \cap G_2 = \{u, v\}$
- ▶ x, y ∈ G₁
- $Q \subset G x y$
- $Q_1 = Q \cup G_1 + uv$ (if *u*-*v* connected in $G_2 \cap Q$) or $Q_1 = (Q \cup G_1) + uv$ (otherwise)

Q planarly separates x and $y \Leftrightarrow Q_1$ separates x and y in $G_1 + uv$

G 2-connected \Rightarrow G + xy 3-connected

- $G = G_1 \cup G_2$ 2-connected planar graph and $G_1 \cap G_2 = \{u, v\}$
- ▶ x, y ∈ G₁
- $Q \subset G x y$
- $Q_1 = Q \cup G_1 + uv$ (if *u*-*v* connected in $G_2 \cap Q$) or $Q_1 = (Q \cup G_1) + uv$ (otherwise)

Q planarly separates x and $y \Leftrightarrow Q_1$ separates x and y in $G_1 + uv$

G + xy 3-connected \Rightarrow G essentially 3-connected

- ▶ $G = G_1 \cup G_2$ 2-connected planar graph and $G_1 \cap G_2 = \{u, v\}$
- $x \in G_1$ and $y \in G_2$

•
$$Q \subset G - x - y$$

Q planarly separates x and $y \Leftrightarrow Q \cap G_1$ separates x and z in G_1^+ or $Q \cap G_2$ separates y and z in G_2^+

Outline

- 1. Near-planar graphs
- 2. Planar separability
- 3. Dual and facial distances
- 4. Approximating crossing number
- 5. Hardness crossing number
- 6. 1-planarity

Dual and facial distance – Plane

G plane graph (embedding in the plane is fixed) x, y vertices of G.

- Dual distance of vertices x, y is
 d*(x, y) = min{cr(γ, G) | γ is an (x, y)-arc avoiding V(G)}
- Facial distance between x and y is d'(x, y) = min{cr(γ, G) | γ is an (x, y)-arc}

Dual and facial distance – Plane

Dual and facial distance – Plane

G a plane graph (embedding in the plane is fixed) x, y vertices of G.

- Dual distance $d^*(x, y)$ computable in linear time via dual graphs.
- ► Facial distance d'(x, y) computable in linear time via face-vertex incidence graph.

Theorem (Riskin '96) *G* planar, 3-connected, and 3-regular $\Rightarrow cr(G + xy) = d^*(x, y)$

Dual and facial distance – Planar

G a planar graph (no embedding given)

- ▶ d₀^{*}(x, y) = min d^{*}(x, y) over all embeddings of G
 Computable in linear time [Gutwenger, Mutzel, Weiskircher '05]
 Alternative approach via connectivity reductions
- *d*[']₀(*x*, *y*) = min *d*['](*x*, *y*) over all embeddings of *G* Computable in linear time via connectivity reductions

Dual and facial distance – Meaning

Theorem

G planar graph

- $x, y \in V(G)$
 - d₀^{*}(x, y) is the maximum r such that:
 G has r edge-disjoint cycles planarly separating x and y.
 - d'₀(x, y) is the maximum r such that:
 G has r vertex-disjoint cycles planarly separating x and y

This is easy if G essentially 3-connected because of unique embeddability.

Dual distance – 3-connected

Facial distance – 3-connected

Facial distance – 3-connected

Nested cycles

- ► *G* plane graph
- Cycles Q₁ and Q₂ in G are nested in G if a small perturbation of Q₁ makes them disjoint.

Edge-disjoint nested cycles

- ► G plane graph
- ► x, y vertices of G
- Q₁, Q₂ ⊂ G − x − y edge-disjoint cycles that planarly separate x and y

 \Rightarrow There are nested edge-disjoint cycles $Q_1',Q_2'\subset Q_1\cup Q_2$ that planarly separate x and y

- if Q_1 and Q_2 nested, done
- connectivity reductions to assume essential 3-connectivity of G
- take any embedding Γ of G
- ▶ take Q'_1 and Q'_2 as the facial cycles of $\Gamma(Q_1 \cup Q_2)$ containing $\Gamma(x)$ and $\Gamma(y)$
- Q'_1 and Q'_2 are edge disjoint

Theorem

- G planar graph
- $x, y \in V(G)$
 - d₀^{*}(x, y) is the maximum r such that:
 G has r edge-disjoint cycles planarly separating x and y.
 - d₀^{*}(x, y) is the maximum r such that: in any embedding of G there are r nested edge-disjoint cycles planarly separating x and y.
 - d'₀(x, y) is the maximum r such that:
 G has r vertex-disjoint cycles planarly separating x and y

Get item 2 from item 1 by repeatedly nesting pairs.

Corollary

- $\begin{array}{l} G \ \text{planar graph} \\ x,y \in V(G) \\ G-x-y \ \text{max degree } \Delta \\ \Rightarrow d_0^*(x,y) \leq \lfloor \frac{\Delta}{2} \rfloor \cdot d_0'(x,y) \end{array}$
 - fix an embedding of G
 - take a family of d^{*}₀(x, y) nested edge-disjoint cycles planarly separating x and y
 - select each $\lfloor \frac{\Delta}{2} \rfloor$ th cycle

Corollary

 $\begin{array}{l} G \ \text{planar graph} \\ x,y \in V(G) \\ G-x-y \ \text{max degree } \Delta \\ \Rightarrow d_0^*(x,y) \leq \lfloor \frac{\Delta}{2} \rfloor \cdot d_0'(x,y) \end{array}$

Corollary

 $\begin{array}{l} G \ \text{planar graph} \\ x,y \in V(G) \\ G-x-y \ \text{max degree } \Delta \\ \Rightarrow d_0^*(x,y) \leq \lfloor \frac{\Delta}{2} \rfloor \cdot d_0'(x,y) \end{array}$

Corollary

$$G - x - y \text{ max degree 3}$$

 $\Rightarrow d_0^*(x, y) = d_0'(x, y)$

Outline

- 1. Near-planar graphs
- 2. Planar separability
- 3. Dual and facial distances
- 4. Approximating crossing number
- 5. Hardness crossing number
- 6. 1-planarity

Approximating cr(G + xy)

- Obvious candidate:
 - embed G such that $d^*(x,y) = d_0^*(x,y)$
 - draw xy on top minimizing crossings
 - crossing number drawing is $d_0^*(x, y)$
- Optimal when G is 3-connected and 3-regular

Approximating cr(G + xy)

- Obvious candidate:
 - embed G such that $d^*(x,y) = d_0^*(x,y)$
 - draw xy on top minimizing crossings
 - crossing number drawing is $d_0^*(x, y)$
- Optimal when G is 3-connected and 3-regular
- How good or bad for general graphs?
- analyzed first (and proposed?) by Hliněný & Salazar '06
 - Δ -approximation
- in fact $\lfloor \frac{\Delta}{2} \rfloor$ -approximation

Bounding cr(G + xy)

Theorem

If G is a planar graph and $x, y \in V(G)$, then

$$d_0'(x,y) \leq cr(G+xy) \leq d_0^*(x,y).$$

- Extends [Riskin'96] since $d'_0 = d^*_0$ for cubic graphs.
- Works also for non-3-connected graphs.
- Right inequality is obvious.
- Let's concentrate on the left inequality.

• Take
$$r = d'_0(x, y)$$
.

$d_0'(x,y) \leq cr(G+xy)$ – Nested cycles

- ► Take r vertex-disjoint cycles Q₁,...Q_r that planarly separate x and y
- $Q_0 = x$ and $Q_{r+1} = y$
- Indexed by as nested
- ▶ For $1 \le i \le r$ bridges $B_x(Q_i)$ and $B_y(Q_i)$ weakly overlap
- Reroute each Q_i such that $B_x(Q_i)$ and $B_x(Q_i)$ overlap
- Q_1, \ldots, Q_r vertex-disjoint cycles; $B_x(Q_i)$ and $B_y(Q_i)$ overlap $(1 \le i \le r)$
- ▶ P_i^+ paths connecting Q_i to Q_{i+1} P_i^- paths connecting Q_i to Q_{i-1} $P_i^+ \cup P_i^-$ show overlap of $B_x(Q_i)$ and $B_y(Q_i)$

$d_0'(x,y) \leq cr(G+xy)$ – Nested cycles

$r \leq cr(G + xy)$ – Lower bound

- Consider a drawing of G + xy
- Assign to some crossings a label "type *i*", where $1 \le i \le r$
- Assignment is algorithmic
- Argue that for each $1 \le i \le r$ there is a crossing of type *i*
 - (a) If two edges of the same cycle Q_i cross, we declare such a crossing to be of type i.
 - (b) If two cycles Q_i and Q_j cross, where j ≠ i, then they make at least two crossings, and we declare one of them to be a crossing of type i, and another one a crossing of type j.
 - (c) If the edge xy crosses Q_i , we declare such a crossing to be of type i.
 - (d) If there are no crossings of type *i* because of rules (a)–(c), then we consider the set F_i of the edges on the paths S^1, S^2, \ldots, S^i and on the paths $R^i, R^{i+1}, \ldots, R^r$. If an edge in F_i crosses an edge of Q_i , we select one of such crossings and declare it to be of type *i*.
 - (e) If two edges $e \in E(S^i)$ and $f \in E(R^i)$ cross, we say that the crossing is of type *i*.
 - (f) If two edges $e \in E(S^i)$ and $f \in E(Q_{i+1})$ cross and this crossing does not have type i + 1 assigned by rule (d), we say that this crossing is of type i. Similarly, if two edges $e \in E(R^i)$ and $f \in E(Q_{i-1})$ cross and this crossing does not have type i - 1 assigned by rule (d), we also say that this crossing is of type i.
 - (g) Finally, if the cycles Q_{i-1} and Q_{i+1} intersect more than twice, we take one of the intersections that have no type assigned and declare it to be of type i.

1. A selfcrossing of Q_i getss type i

2. If Q_i and Q_j cross, they have ≥ 2 crossings. Two such crossings get type i and j

3. If xy crosses Q_i , type i

4. If no crossing of type *i* yet and Q_i crosses $P_{\leq i}^- \cup P_{\geq i}^+$, one such crossing gets type *i*

5. If Q_{i-1} and Q_{i+1} cross ≥ 4 times, one of the untyped crossings gets type *i*

6. A crossing between P_i^- and P_i^+ gets type i

7. If a crossing between P_i^- and Q_{i+1} has no type i + 1 assigned yet, gets type *i*. Similar for P_i^+ and Q_{i-1} .

Outline

- 1. Near-planar graphs
- 2. Planar separability
- 3. Dual and facial distances
- 4. Approximating crossing number
- 5. Hardness crossing number
- 6. 1-planarity

Weights

- it is convenient to consider edge-weighted graphs
- positive integer weights
- crossing of edges with weights w and w' give $w \cdot w'$ crossings
- edge of weight $w \equiv w$ parallel subdivided edges

- polynomial vs. non-polynomial weights
- degree = sum of weights of incident edges

Near-planar graphs are hard

Theorem

Computing cr(G) for near-planar graphs is NP-hard.

Near-planar graphs are hard

Theorem

Computing cr(G) for near-planar graphs is NP-hard.

- adding one edge messes up a lot
- easy for weighted crossing number
 - polynomial weights would be ok
- new reduction from SAT
 - previous reductions are from Linear Ordering
- new problem: anchored drawings
Tool: anchored drawings

- Ω a disk
- Anchored graph: graph G with assigned placements for a subset $A_G \subseteq V(G)$ of anchors on the boundary of Ω
- Anchored drawing: drawing in Ω extending the placement of A_G
- Anchored embedding: anchored drawing without crossings
- Anchored crossing number: minimize crossings

Tool: anchored drawings

New problem: red-blue anchored drawings

- Ω a disk
- R an anchored embedded red graph in Ω
- B an anchored embedded blue graph in Ω
- anchored crossing number of $R \cup B$

New problem: red-blue anchored drawings

- Ω a disk
- R an anchored embedded red graph in Ω
- B an anchored embedded blue graph in Ω
- anchored crossing number of $R \cup B$

Red-blue anchored drawings

Theorem

It is NP-hard to compute the anchored crossing number of $R \cup B$.

Red-blue anchored drawings

Theorem

It is NP-hard to compute the anchored crossing number of $R \cup B$.

- also true if R and B disjoint
- also true if restricted to embeddings of R and B
- reduction from SAT

Why red-blue anchored drawings?

Why red-blue anchored drawings?

Red-blue anchored drawings

Theorem

It is NP-hard to compute the anchored crossing number of $R \cup B$.

- reduction from SAT
- proof by example
- we will use polynomial weights

Sergio Cabello

Near-planar

Low hanging fruit

- Rotation systems
- Cubic graphs
- 3-connected planar with an additional edge
- Planar with rotation systems

Outline

- 1. Near-planar graphs
- 2. Planar separability
- 3. Dual and facial distances
- 4. Approximating crossing number
- 5. Hardness crossing number
- 6. 1-planarity

1-planarity

G is 1-planar if there is a drawing where each edge participates in 0 or 1 crossings.

Theorem

Deciding if a given graph is 1-planar is NP-hard even for near-planar graphs.

- known for general graphs
- similar proof technique
- different local structure

[Korzhik, Mohar '09]

1-planarity – Two tricks

In a 1-planar drawing with fewest crossings

parallel paths of length 2 do not cross

with some connectivity, no vertex inside faces of parallel edges of length 2

Near-plana

Sergio Cabello

Near-planar

Conclusions

- Near-planar graphs are not easy.
- Crossing numbers are hard.
- New problem: anchored drawing in a disk.
- ▶ is it hard to compute cr(G + xy) when $\Delta(G) \leq 4$ (via Petr)
- ▶ if *R* and *B* anchored planar graph, is $cr_a(R \cup B)$ given by a drawing without monochromatic crossings?
- ▶ if R and B anchored planar graph with 3 anchors each, can we compute optimal drawing restricted to embeddings in each color?
- crossing number for graphs of bounded treewidth