
Model of Grid Scheduling Problem

Pavel Fibich and Luděk Matyska and Hana Rudová
Faculty of Informatics, Masaryk University

Botanicḱa 68a, Brno 602 00, Czech Republic
{xfibich,ludek,hanka }@fi.muni.cz

Abstract

An extension of Graham’s classification of scheduling prob-
lems is proposed to cover Grid Scheduling Problems (GSP).
The GSP consists of heterogeneous resources in distributed
structures (queues), various jobs, and optimality criteria. We
will discuss the characteristics (fault tolerance, competitive
behavior) of this model and the hierarchies applied for de-
scription of the Grid structure.

Introduction
Efficient use of Grids has become an important problem.
A Grid is a structure with distributed heterogeneous re-
sources that are offered to users. Users submit jobs that
should be efficiently processed using resources available on
the Grid (Nabrzyski, Schopf, & Weglarz 2003). In the Grid
Scheduling Problem (GSP) we are looking for an optimal
(efficient) assignment of jobs to resources. The resources
(e.g., machines, CPUs, memory, storage space) often have
a limited capacity and their characteristics change in time
(due for example to machine breakdown or consumption of
storage space). The Grid environment dynamically evolves
as jobs change (due to breakdowns or other interactions) and
randomly arrive from users. The goal in this problem is to
find an optimal placement of tasks with respect to the costs
of the resources assigned. The cost function is often mini-
mized, for example, a maximal estimated completion time
of all tasks in the scheduling problem.

The GSP could not be fully classified by Graham’s classi-
fication of scheduling problems because of the layered struc-
ture of the Grid. Scheduling theory (Pinedo 1995; Brucker
1998; Lueng 2004) studies the environments without struc-
tures that are suitable for the GSP. We consider an exten-
sion of Graham’s classification using a hierarchy of queues
that reflects the real structure and needs of the GSP. We will
also discuss robustness, competitive behavior, the schedul-
ing properties of the Grid structure, and open problems.

This paper is organized as follows. The first section sum-
marizes basic definitions. A scheduling problem is defined
by its model (environment, characteristics, constraints and
the objective). This model will be described by Graham’s

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

classification in the following section. Possible representa-
tive of the proposed model will be presented and their prop-
erties will be discussed in the end.

Basic Definitions
The following definitions are a summary of applicable
terms from scheduling theory (Pinedo 1995; Brucker 1998;
Lueng 2004) and extensions suited to the GSP (Andrieuxet
al. 2004). Initially, a schedule may be viewed as an assign-
ment of tasks to resources. A more precise definition will be
considered after definition of other basic terms. Scheduling
is considered to be the activity of creating such a schedule.
We will start with a basic classification of resources and job
variables, and conclude with a definition of the scheduling
problem.

Resource and Machine

A resource is a basic device where jobs are sched-
uled/processed/assigned (Blazewicz, Brauner, & Finke
2004). Each resource has a limitedcapacity(e.g., number of
CPUs, amount of memory). Each resource also has aspeed
and aload. Both may evolve in time. The speed defines how
quickly the task can be processed on the resource. The load
measures how much of the capacity of the resource is used
over a time interval.

Now the resources will be classified according to their
characteristics.Processingresources are needed together
with a processor (machine) to complete a given task set. If
a resource is needed either before or after processing it is
referred to as ani/o resource. A resource isrenewableif its
use at any time is constrained, but it may be used again when
it is released from a task. The resource is callednonrenew-
able, if its total consumption is constrained (once used by
some task, it cannot be assigned to any other task). A re-
source may bedoubly constrainedif its total usage at any
time and the total amount that may be consumed are both
constrained. A problem may also contain bothdiscreteand
continuousresources. The classification should also take
into account the functions resources fulfill (e.g., CPU, main
memory, storage space). Next, resources can be catego-
rized (Baptiste, Pape, & Nuijten 2001) asdisjunctive(unary)
or cumulative. At most one task can be processed on a dis-
junctive resource at any time. However, several tasks can

be assigned to a cumulative resource at one time as long as
the capacity of the resource is not exceeded.
Definition 1. A machine (computing unit) is a set of cu-
mulative resources (CPUs, memory, storage space, list of
specializations) with limited capacities. A machine is de-
scribed by a name, a set of resources, a list of specializa-
tions (e.g., architecture, accelerator), and by its capacity,
load, speed and location. All these characteristics are called
descriptorsof the machine. The capacity (speed, load) of
the machine can be a general value for the machine or there
may be many capacities (speeds, loads), e.g., according to
the cumulative resources or the specializations.

Job
Definition 2. A job (task, activity) is a basic entity which
is scheduled over the resources. A job has specific require-
ments on the amounts and types of resources (including ma-
chines), or required time intervals on these resources, where
the job can be scheduled.

The jobj has the following variables (properties):
Theprocessing timeis denoted aspj . If processing time

is dependent on the machine (i), then we denote it by by
pij . If this quantity is not known with certainty in advance,
it must be estimated. The processing time may be estimated
as the due date of a chosen time queue (often too big), or by
using statistics based on recent runs of the chosen program
(e.g., Gaussian1, Amber2). Also the processing time is esti-
mated according to the length of the input data or by other
advanced techniques (e.g., fuzzy estimate). The estimate
may be wrong, though, and the scheduling should watch
for this. Definingpj=p means that all jobs have the same
processing timep. Many algorithms work with this simplifi-
cation, but we will consider jobs with heterogeneous times.

A release date (rj) is the time when a job is available
to start processing (includingi/o operations). The release
date could be explicitly set (a static plan, an allocation in
future) or unknown (the release date as the time when the job
appears).

A due date (dj) is implicitly set by the chosen time queue
or explicitly by the user. Both cases arehard due dates.
The job is killed (ended) after the due date is reached.

A weight (wj) signifies the importance of a jobj, e.g., it
may be set according to the user’s group (project). It should
reflect natural preferences, e.g., a local job has a greater
weight than a global one.

A setup time (sj) may be used to designate the time re-
quired for retrieving (copying) input data or the time for
linking to a needed library. This may be dependent on the se-
quence of jobs. In this case,sji denotes the setup time
needed to process jobj after jobi.

A machine eligibility restriction (Mj) denotes a set of
machines which are capable of processing the jobj. This
may be useful when the user specifies a particular machine
architecture or location.

Thestart time (Sj) is a time when the job actually begins
its processing (Sj ≥ rj).

1see http://www.gaussian.com/
2see http://amber.scripps.edu/

The completion time (Cj) is the time when a job com-
pletes its processing (pj = Cj − Sj if preemptions are not
allowed).

It is important to mention thatdj , rj , Cj andSj are often
the wall-clock times. However,sj andpj are CPU times.
The wall-clock time is often faster or equal to the CPU time
(e.g., compare two minutes of the CPU time and two minutes
of the wall-clock time).

Scheduling Problem
Informally we have defined a schedule as an assignment of
tasks to resources. A more concrete definition follows.

Definition 3. A schedule of tasks(or schedule) is the as-
signment of tasks to specific time intervals of resources,
such that no two tasks are on any resource at the same time,
or such that the capacity of the resource is not exceeded by
the tasks.

The schedule of tasks isoptimal if it minimizes a given
optimality criterion (function). The jobs are scheduled to
the parts of the machines (e.g., CPUs and memory). Many
jobs can be scheduled on one machine at any specific time if
the capacities of the resources are not exceeded.

Definition 4. A scheduling problem is specified by a set
of machines, a set of tasks, an optimality criterion, environ-
mental specifications, and by other constraints.

The environment defines relations and connections be-
tween the machines and other used structures. This will be
described in theα field of Graham’s classification. The con-
straints mainly refer to constraints on resources (e.g., capac-
ity) and jobs (e.g., ordering). Agoal of the scheduling prob-
lem is to find an optimal schedule in the environment and to
satisfy all constraints.

We can see that the definition of the scheduling problem
is very general. We will begin by concentrating on the opti-
mality criterion, specifications of the environment, and other
constraints, and conclude with a more specific definition of
the Grid scheduling problem.

Model of Scheduling Problem
Scheduling problems are often classified according to Gra-
ham’s classification (Pinedo 1995; Brucker 1998; Lueng
2004; Baptiste, Pape, & Nuijten 2001). This is a three field
notationα | β | γ, whereα describes the machine envi-
ronment,β provides details of the processing characteristics
and the constraints. Theγ field contains the objective to be
minimized.

Machine Environment (α)
The basic notations of machine environments aresingle ma-
chine (1), identical machines in parallel (Pm), machines in
parallel with different speeds (Qm), unrelated machines in
parallel (Rm), and(flow|open|job) shop (Fm, Om, Jm).

When1 is in theα field, it indicates that we are working
with only one machine where jobs can be scheduled. A sin-
gle machine can be seen as a disjunctive resource and other
environments as cumulative resources. We could schedule
the jobs onm identical machines in a parallel environment

Pm. This environment is widely discussed (Pinedo 1995;
Lueng 2004) and has many feasible methods for solving.
If the machines inPm instead have different speeds, then
the environment is denoted asQm. Rm is a generalization
of Qm where different speeds of the machine are used for
different jobs.

It is important to mention that machines used here are not
the same as in Definition 1. A machine in Graham’s classi-
fication corresponds to a unary resource (processor), but we
consider (in Definition 1) that a machine has a set of cumu-
lative resources (e.g., processors, memory).

The shop environments apply the idea that the task is pro-
cessed on multiple machines. Each task must be processed
on every machine in the same order inFm. In Om, each
task must be processed on every machine in an order that is
not known in advance and scheduling must choose the order
for all tasks.Jm is close toOm, but differs in that the order
in which tasks are processed is known in advance.

Grid Hierarchy (α)
We suppose a more structured environment in the Grid
scheduling problem (Nabrzyski, Schopf, & Weglarz 2003)
than has been defined for the previous environments. An ex-
tension of the machine environment field in Graham’s classi-
fication is therefore suggested. The actual structure of a Grid
can be seen as a hierarchy that includes queues, machines
and other resources. Our motivation here is the real-life Grid
structure applied in theMETACentrum3, a national com-
puting and data Grid operated byCESNET , and having its
nodes distributed at the Supercomputing centers at Masaryk
University in Brno, Charles University in Prague, and Uni-
versity of West Bohemia in Pilsen. The hierarchy should
provide easy access to the Grid facilities and scheduling ca-
pabilities.

Let us first consider the term queue and its types.

Queue A queue is an abstract structure that accepts,
schedules, and/or sends jobs that have been submitted by
users to resources that belong to the queue. The queue often
has a set of jobs it has accepted that are waiting for schedul-
ing. It may also contain a set of scheduled jobs. Either
these copies of jobs previously sent to the resource(s) are
saved by the queue in case there is a failure of a resource or
these copies wait until the chosen resource(s) will be free.
The queueQi has a set of resources (machines) that we de-
noteQi.R = Mi1 ∪ . . .∪Mimi

, whereMij is j-th machine
that belongs to the queueQi. The machines in theQi.R
define a restriction on the set of eligible machines (Mj).
The length of the queue indicates the load of resources that
belong to the queue or/and the number of jobs waiting for
processing or scheduling in this queue. Here we assume that
a resource may be either a machine or another queue.

Now consider three basic types of queues that are in-
cluded in the hierarchies.

A global queueGQ schedules jobs to resources that be-
long to it and/or sends the jobs to a local queue (LQ) be-
longing to theGQ. The global queue is a main entry point

3Informations about theMETACentrum are available in
http://meta.cesnet.cz/cms/opencms/en/

to the hierarchy because it can distribute jobs among many
resources in the hierarchy. The parameters of theGQ indi-
cate which local queues (LQs) may be used for scheduling
a job entering the hierarchy via theGQ.

A local queueLQ schedules jobs to resources that belong
to it and/or sends the jobs to a FIFO queueFQ(s) belonging
to theLQ. The local queue is an alternative entry point to
the hierarchy and it often distributes jobs among a smaller
set of resources than those available to theGQ. TheLQs
have parameters that indicate:

• the length of time a job may be processed (run) on a re-
source belonging to theLQ,

• the limit on the number of users (jobs) that can be in
theFQs belonging to theLQ,

• the limit on the number of machines that can be assigned
to one job and other limits.

The motivation for these parameters is thePortable
Batch System (PBS) in theMETACentrum4. The lo-
cal queues decompose the scheduling decision of the global
queue, so as to be more easily computed.

A FIFO queueFQ accepts the jobs from someLQ and
such jobs are processed (run) on the resources (machines)
that belong to this queue, nowhere else. TheFQ does not
make any scheduling decisions. It applies a First-In First-
Out method to run the jobs on the free resource(s) or on
the resource(s) that was/were explicitly defined in theGQ
or LQ, or by the user who entered the job. If the required
resource is not free, the job has to wait in the queue and it
blocks similar jobs that were also accepted by theFQ and
that require the same resource. If jobs with a high weight
may forerun jobs with a lower weight, then we speak about
a weighted FIFO queue. Each FIFO queue can serve one or
many machines.

A queue schedules jobs on the resources that belong to it.
TheFQi schedules jobs onFQi.R = Mi1 ∪ . . . ∪ Mimi

.
The LQj schedules jobs on the resources of allFQi that
belong toLQj , LQj .R = ∪iFQi.R = ∪i,k≤mi

Mik. Like-
wise, theGQk schedules jobs on the resources of allLQj

that belong toGQk, GQk.R = ∪jLQj .R.

Queue Copies The queue may be copied into new
queue(s). Such new copies have the same properties as
the original queue. The resources of the original queue are
shared between the original and the copied queues. This
method is often used to accommodate a possible unavail-
ability of the original queue. This will be discussed in
greater detail later. Two methods of communication between
the original and copied queues may be applied, each result-
ing in different behavior. The queue and its copies may ei-
ther be synchronized or only one may be active at any mo-
ment.

When the queues are synchronized, all queues are ac-
tive, accept jobs, and have the same schedules. However,
only one of the queues sends jobs to other queue(s) or re-

4More about thePBS in the METACentrum is avail-
able in http://meta.cesnet.cz/cms/opencms/en/docs/software/sys-
tem/pbs.html

source(s). In the second method, only one queue is ac-
tive and accepts (schedules) jobs. The remaining copies of
the queue are inactive and only wait in case the active queue
crashes (becomes unavailable). One of them then substitutes
for the crashed queue. Both methods require some synchro-
nization. The first method synchronizes the schedule and
the second synchronizes the active state. For the original
queueQi, we denote byQsi

j , the queue that issynchronized
with theQi. And we denote byQni

j , the queue that is anon-
activecopy of theQi.

Only global and local queues can be copied. The FIFO
queues are tightly coupled with the resources and there is
no reason to duplicate them. The copy of some queue must
have the same type (global, local) as the origin one.

Competitive Behavior Competitive behavior for the re-
sources of queueQi refers to the situation where the capac-
ity of the resources inQi is divided among other queues.
A percentile of the resources use (or simply usage of
the queue) is often applied here. This percentage is com-
puted over a chosen time interval and small deviations are al-
lowed. For example, when two queuesQj andQk both want
to useQi, we might indicate that the usage ofQi is divided
30 % forQj and 70 % forQk. Generally, we want to denote
competitive behavior forQi among the queuesQ1, . . . , Qj

in pr1, . . . , prj percentages, whereQl should getprl percent
of the resources inQi andpr1 + . . . + prj = 100 %. This
is denoted asj new queuesQpr1

i , . . . , Q
prj

i where theQprk

i
belongs toQk.

Hierarchy We now denote a hierarchy of queues for fur-
ther use in Graham’s three field classification. Let
H3 = GQ1{LQ1,1, . . . , LQ1,l1}[FQ1,1, . . . , FQ1,f1],

. . . ,
GQk{LQk,1, . . . , LQk,lk}[FQk,1, . . . , FQk,fk]

be a basic 3-layer hierarchy withk global queues with un-
derlying local and FIFO queues. The brackets are applied to
describe which queues belong to other queues. It may also
happen that some global queues share same FIFO queues.
Notation for two such global queues is

(GQij
{LQi,1, . . . , LQi,li},

GQj{LQj,1, . . . , LQj,lj})[FQij,1, . . . , FQij,fij] .

It means thatGQi andGQj have still different local queues
but they share same FIFO queues. Thecp co H3 hierarchy
is an extension of the previous hierarchy. Thecp parame-
ter denotes that some copies of the global or local queues
are used. Theco parameter notates competitive behavior for
some FIFO queues. TheH2 defines the hierarchy without
the local queues or global queues. We say that the hier-
archy iscentralizedif the jobs are scheduled in only one
place (often in theGQ). The opposite is adecentralizedhi-
erarchy where scheduling decisions are decomposed among
parts of the hierarchy (decisions are made in the global and
local queues, or in copies of the queues).

For example, the decentralized hierarchy in Figure 1 may
be denoted as

cp co H3 = (GQ1{LQ1, LQ2}, GQn1
2 {LQs1

3 , LQs2
4 })

[FQ1, FQ2, FQ30
3 , FQ4], GQ3{LQ5,

LQ6, LQ7}[FQ5, FQ6, FQ70
3 , FQ7].

skirit(set)
CPUs=128

FQ30
3

skurut63
CPUs=2

FQ1
skurut64
CPUs=2

FQ2
skurut65
CPUs=2

FQ4
nymfe63
CPUs=2

FQ5
nymfe64
CPUs=2

FQ6
skirit(set)
CPUs=128

FQ70
3

nymfe65
CPUs=2

FQ7

LQ
normal

2LQ
short

1

GQ1 GQ2
n1

GQ3

LQ
short

3
s1 LQ

normal
4
s2 LQ

short
5� LQ

normal
6 LQ

priority
7

Figure 1: A decentralizedcp co H3 hierarchy.

In this example, there is an inactive copyGQn1
2 of theGQ1,

synchronized copiesLQs1
3 andLQs2

4 of LQ1 andLQ2, and
competition for FIFO queueFQ3. The GQn1

2 and GQ1

consist of different local queues but they share the FIFO
queues. The parameters listed under the local queues de-
fine their types. The name of the machine(s) that belong
to theFQ, along with the number of CPUs is listed under
theFQ.

Characteristics and Constraints (β)
We want to look first at the two parameters relating to tasks
and then discuss machine unavailability types and resource
constraints. The main types of online scheduling are also
mentioned.

Preemptions (prmp) allow us to change the resource on
which a task runs. These must be considered with respect
to other parameters (e.g., restart of a task after preemption,
whether the task must continue on the same resource after
the preemption, and the possibility of checkpoint-ability of
the job).

Precedence constraints (prec) specify an order in which
the jobs can be processed (e.g., first retrieve the data and then
compute on them). They are often in atree format, where
the schedule must start with the job in the root or with some
jobs in the leaves. Achain format can also be considered,
where jobs are ordered in chains. Theprec parameter is also
called aworkflow.

Machine Unavailability (Breakdown) A machine may
be unavailable due to maintenance or a breakdown. There
are three different cases of working with unavailable ma-
chines (Lee 2004).
Resumable (r-a): The machine isresumable if the unfin-
ished job can continue after the end of the unavailable inter-
val without any penalty.
Non-resumable (nr-a): The machine isnon-resumableif
the job must be fully restarted after the unavailable interval.
Semi-resumable (sr-a): The machine issemi-resumableif
the job must be partially restarted after the unavailable inter-
val.

Online Scheduling Online scheduling supposes that jobs
arrive over time or one by one (Pruhs, Sgall, & Torng 2004;
Sgall 1997). Jobs are scheduled without any knowledge of
the future, and often without knowledge of the processing

times of jobs. An online schedule is compared with an op-
timal schedule by competitive or worst-case analysis. Three
different types could be in theβ field.
In online-time, scheduling must decide which job has to run
at timet. Once a job is released, we assume that the sched-
uler learns the processing time of a job (e.g., a web server
serving static documents).
In online-time-nclv, the scheduler is given no information
about the processing times (e.g., in the operating system).
This lack is called non-clairvoyance.
In online-list, the jobs are ordered in a list/sequence. As
soon as the job is presented, we know all its characteristics.
The job is then assigned to some machine and time slots
(consistent with restrictions). The scheduler cannot change
this assignment once it has been made (e.g., load balancer
working in front of a server farm).

Objective Function (γ)
Here we consider the objective functions that evaluate
the quality of solutions. There are two groups of schedul-
ing objective functions.

In the first group there are basic functions.

• A makespan (Cmax) defined asmax(C1, . . . , Cn),
the completion time of the last job. This objective func-
tion formalizes the viewpoint of the owner of the ma-
chines. If the makespan is small, the utilization of the ma-
chines is high.

• A total weighted completion time (
∑

wjCj) or the total
unweighted completion time defined as

∑
Cj . This ob-

jective is more suitable for the user, the time it takes to
finish individual jobs may be more important.

• A maximum lateness (Lmax) defined as
max(L1, . . . , Ln), where Lj = Cj − dj (the dif-
ference between the completion time and the due
date).

• A total weighted tardiness (
∑

wjTj) or the unweighted
case (

∑
Tj), whereTj = max(Lj , 0) andLj = Cj − dj .

• A weighted number of tardy jobs (
∑

wjUj) or the un-
weighted case (

∑
Uj), whereUj = 1 if Cj > dj ; other-

wiseUj = 0.

The second group consists of objective functions that are
more suitable for online scheduling. They define theflow of
a job asFj = Cj−rj (the difference between the completion
time and the release date) and thestretchof a job asStj =
(Cj − rj)/pj (the flow of the job over the processing time).

• A total weighted flow time (
∑

wjFj) or the unweighted
case (

∑
Fj).

• A total weighted stretch (
∑

wjStj) or the unweighted
case (

∑
Stj).

• A maximum flow time (max Fj).

• A maximum stretch (max Stj).

• A lp norm of the flow times ((
∑

Fj
p)1/p), provides

a QoS measure for a collection of jobs.

The previous functions may be combined together to al-
low optimization over more than one function.

Grid Scheduling Problem
Our discussion of the parameters of Graham’s classification
can be concluded by applying them in the following defini-
tion.

Definition 5. The Grid scheduling problem (GSP) is
the scheduling problem defined on

Rm, cp co H3 | rj , dj , sjk,Mj , nr−a, online− time | fo

We now consider the purpose of the resources and param-
eters used in the definition of the GSP.

Resources We will work with processing resources (pro-
cessors, memory) and i/o resources (storage space). The i/o
resources allow us to retrieve data at the beginning of
the task and to save the data at the end of the task. The in-
put resource for the jobj could be modeled as the setup
time s0j , where the jobs are numbered from 1. And simi-
larly for the output resourcesj0. All other resources may be
supposed to be processing resources.

Renewable resources will also be considered in our case
(machine, processor, memory) along with the doubly con-
strained category (storage space).

Discrete resources are supposed only, because we do not
need a continuous division of resources.

A CPU is a disjunctive resource, but in the definition of
our machine we work with a set of CPUs, which is a cu-
mulative resource. The memory and storage space are also
cumulative resources.

α field We concentrate onRm because a Grid consists of
unrelated machines with different speeds for different jobs.
This could describe the specialized architectures (e.g., for
matrix or graphic operations). However, there are more so-
lution methods for the machinesQm andPm and those can
be generalized toRm. Here it is important to mention that
we will work with machines in the sense of Definition 1.

Shop environments are more closely related to manu-
facturing problems (producing similar products) than to
the Grid scheduling problem (heterogeneous jobs).

The basic information about the hierarchycp co H3 has
been discussed above and further discussion about the char-
acteristics of a suitable hierarchy is deferred until the end of
this paper.

β field A list of the variables and the constraints is in-
cluded in theβ field of the GSP. We consider the following
parameters.

Therj parameter defines that jobs have specified release
dates. It may be useful to an allocation in the future. Most
jobs want to start processing when they are accepted by
some queue. This parameter is required for time allocation.

The dj parameter indicates that jobs have specified due
dates. This is a significant parameter of the job, because
violation of the due date implies killing a job.

Thesjk is used when jobs have specified sequence depen-
dent setup times. We will include this parameter in the mod-
eling of i/o resources.

TheMj means that jobs may be processed only on a sub-
set of all machines. This parameter assists with specification
of special architectures.

Thepreemption (prmp) of the job could bring a high cost
(e.g., repeating transport of input data). We will not work
with this parameter initially as it may be more complicated
for modeling.

The precedence constraints (prec) may be included
when the user can partition a large job into smaller jobs and
specifies the order that is needed to accomplish all jobs. Ini-
tially, we will not consider this feature not to have a need to
precise workflows.

The breakdowns (brkdwn) parameter indicates that
the machines (resources) can break down. More accurate are
r-a, nr-a andsr-a parameters (see section on breakdowns).
We are interested in thenr-a case, at the beginning, and
checkpoint-ability of a job will be added later.

Theonline-timeparameter defines that a job that appears
is scheduled as early as possible, and we have estimated its
processing time (our case). For theonline-time-nclvtype
a round-robin, or other preemptive balancing methods of-
ten proposed. Theonline-list is close to batch scheduling,
where the time between assignments of jobs to the machine
is meaningless (for online types see section about online
scheduling).

γ field (fo) We will work with weighted jobs. This im-
plies working with weighted objective functions. We will
also include the due dates and the release dates (implicitly
by theonline-timeparameter). The suitability of a maximum
or a total objective is compared by including the weights
and the dates. The maximum is not as strong (but has
lower computationally cost) than the total objective, which
includes the variables of all jobs. The objectives

∑
wjUj

and
∑

wjTj are the most interesting basic functions without
the online assumption. With the online assumption, the ob-
jectives

∑
wjFj and

∑
wjStj are more favorable. We are

more interested in the due dates than the release dates, so
the first two objectives would be better.

We may also use a multi-criterion objective function that
can be defined to optimize several objective functions.

Discussion about Hierarchies
We now consider various hierarchies of queues and discuss
their characteristics to find one best suited to our needs.

Example 1 (trivial structure). Let us start with the exam-
ple in Figure 2 where the hierarchy

H2 = GQ[FQ1, FQ2, FQ3, FQ4]

without the local queues is depicted. Jobs are submitted by
users to the pool of jobs to be scheduled in the global queue
GQ. TheGQ knows the parameters of all jobs in the pool. It
chooses a freeFQ and a job for scheduling. TheFQs send
the GQ information about their loads. If aFQ announces
that it is free, then theGQ chooses one job from the pool
for the freeFQ to process. TheGQ then sends the cho-
sen job to theFQ for processing. TheGQ has to do some
preprocessing for the scheduling decision. In this hierarchy,
theFQ may be a machine.

This hierarchy is feasible for homogeneous jobs. If we
consider heterogeneous jobs, though, there may be a starva-
tion of hard jobs processed in the queue. If only one machine

GQ

skurut63
CPUs=2

FQ1
skurut64
CPUs=2

FQ2
skurut65
CPUs=2

FQ4
skirit(set)
CPUs=128

FQ3

Figure 2: An example of the centralizedH2 hierarchy with
one Global queue (GQ) and the FIFO queues (FQ).

is free, an easy job requiring few resources will be more fea-
sible to schedule for processing. A hard job, requiring many
resources to be available at one time, likely must wait un-
til there are no easy jobs and sufficient resource capacity
is available. A similar structure is applied in theCondor5

project, where a match-making between the requirements of
the jobs and the abilities (e.g., number of CPUs) of theFQs
is evaluated.

TheGQ is a bottleneck in this hierarchy for two reasons.

1. If the GQ is unavailable then no jobs (new and from
the pool) can be scheduled. This will be discussed in
the following section.

2. It is difficult to schedule many jobs on many resources in
only one place.

Fault Tolerance We will discuss a problem if failures
(crashes) of some parts of the hierarchy happened. The hier-
archy isfault tolerantif for all parts of the hierarchy it holds
that if a failure of some part happens, there is another part
that substitutes for the function of the failed part. The func-
tion of the part (e.g., queue, machine) may be accepting,
processing, and/or scheduling of jobs. We are interested in
failures of machines and queues. We do not consider crash-
ing jobs, as it is difficult to automatically find the reason of
the failure (it can be a wrong scheduling, the misconfigura-
tion of a machine, or user’s mistake).

Fault tolerance of the global and local queues can be
achieved by copying the queues in such a way that there is
some queue that accepts and schedules jobs at every time.
We do not make a comparison of the methods of communi-
cation between copies of the queues. However, we note that
the task of synchronization of the schedule among queues
becomes harder. The FIFO queues and machines cannot
be copied. We must save their state in the higher levels of
the hierarchy. Thestateof some resource is the schedule
for this resource and information about jobs in the sched-
ule which could be re-scheduled. This idea may be applied
on the whole hierarchy, such that each part of the hierarchy
saves copies of the states of the lower parts. However, we
should be watchful for too many copies of the states and for
the cost of saving the state. For example, when someFQ
has a failure, its state is saved in someLQ andGQ. And
the re-scheduling of jobs that were in theFQ could be done
by theLQ or GQ.

5Details aboutCondor are in http://www.cs.wisc.edu/condor/

In Example 2, we could solve the first reason for the bot-
tleneck of theGQ by copying theGQ and by copying
the state of allFQs into all global queues. This solution
is shown in Figure 3 where the hierarchy

cp H2 = (GQ1, GQs1
2)[FQ1, FQ2, FQ3, FQ4]

with two global queues that share the same FIFO queues is
described.

skurut63
CPUs=2

FQ1
skurut65
CPUs=2

FQ4
skirit(set)
CPUs=128

FQ3
skurut64
CPUs=2

FQ2

GQ1 GQ2
s1

Figure 3: An extended example, thecp H2 hierarchy.

Example 2 (decomposition). We now focus on the de-
composition of theGQ from the previous example. In
the distributed environment, it is often suitable to decom-
pose a hard problem into sub-problems. Therefore, we de-
compose theGQ into smaller parts where it should be easier
to compute a schedule.

Look at the example in Figure 4 where the decentralized
hierarchy

H3 = GQ1{LQ1, LQ2, LQ3}[FQ1, FQ2, FQ3, FQ4]

is shown. The globalGQ was decomposed into theGQ1

GQ

skurut63
CPUs=2

FQ1
skurut64
CPUs=2

FQ2
skurut65
CPUs=2

FQ4
skirit(set)
CPUs=128

FQ3

LQ
normal

2 LQ
priority

3

1

LQ
short

1

Figure 4: An example of the decomposition of the global
queueGQ and theH3 hierarchy.

and LQ1, LQ2, LQ3. The jobs should enter the hierar-
chy by some global queue (in Figure 4 by theGQ1).
However, the job could specify someLQ, FQ or directly
some machine. The parameters under local queues indi-
cate the groups where theGQ1 schedules (divides) the jobs.
Here, we use the time of processing and the priority classes
of the jobs. Short jobs are scheduled inLQ1, priority jobs
in theLQ3 and other jobs are scheduled inLQ2. Choosing
a suitableLQ is often the first part of scheduling. TheLQ
then has to choose some suitableFQ.

Decomposition of the scheduling decision may be more
suitable for decentralized structures like the Grid modeled
by the hierarchy in Figure 4. We should define some uniform
distribution of the jobs between the local queues that reflects
real world usage. Such distributions often divide jobs ac-
cording to the estimated time of processing, their priority,
resources specified, locations, etc.

The fault tolerant solution of the hierarchy in Figure 4 is
the same as the solution for the hierarchy in Figure 2. We
make copies of the decomposed queues (as the oldGQ) and
save all states. This solution is illustrated in Figure 5 where
the hierarchy

cp H3 = (GQ1, GQs1
2){LQ1, LQ2, LQ3, LQs1

4 ,
LQs2

5 , LQs3
6 }[FQ1, FQ2, FQ3, FQ4]

is depicted. Here, the synchronized copyGQs1
2 of theGQ1

skurut63
CPUs=2

FQ1
skurut64
CPUs=2

FQ2
skurut65
CPUs=2

FQ4
skirit(set)
CPUs=128

FQ3

GQ

LQ
normal

2 LQ
priority

3

1

LQ
short

1 LQ
short

4
s1 LQ

normal
5
s2 LQ

priority
6
s3

GQ2
s1

Figure 5: An example of the fault tolerantcp H3 hierarchy.

forms a second entry point to the hierarchy. Both global
queues share the same local queues. The local queues are
also copied and synchronized in case of a possible failure in
some of them. For the same reason, the global queues can
send jobs to the original and copied queues.

Example 3 (competitiveness).Competitive behavior for
the queueQi is a situation where the capacity of the re-
sources ofQi is divided between theQs. We may say that
theQs share the resources ofQi.

Look at the example in Figure 6 for the hierarchy

co H3 = GQ1{LQ1, LQ2, LQ3}[FQ1, FQ2, FQ30
3 ,

FQ4], GQ2{LQ4, LQ5, LQ6}[FQ5, FQ6,
FQ70

3 , FQ7]

where there are two independent global queues with similar
structures that belong to the hierarchy. However, the same
shared FIFO queueFQ3, skirit(set), CPU = 128 is in-
cluded in both global queues. TheGQ1 can use 30 % of
the FQ3 capacity and theGQ2 can use 70 %. This real
requirement, the competitive behavior, has to be handled
somehow. There is only oneFQ3. FQ30

3 andFQ70
3 arevir-

tual queues. We must send the jobs from the virtual queues
to the single realFQ3 that can process the jobs.

Here we must also solve how and where to compute
the required percentages of use. These percentages should
be computed in the original shared resource (e.g.,FQ3 in
Figure 6), but may also be computed in theLQs or GQs.

skirit(set)
CPUs=128

FQ30
3

skurut63
CPUs=2

FQ1
skurut64
CPUs=2

FQ2
skurut65
CPUs=2

FQ4

GQ
Brno

1 GQ
Praha

2

nymfe63
CPUs=2

FQ5
nymfe64
CPUs=2

FQ6
skirit(set)
CPUs=128

FQ70
3

nymfe65
CPUs=2

FQ7

LQ
normal

5 LQ
priority

6LQ
normal

2 LQ
priority

3LQ
short

1 LQ
short

4

Figure 6: An example of theco H3 hierarchy.

The local queues to which the virtual queues belong should
be informed of the actual percentages of used capacity. This
is suitable for the situation when a large deviation from
the percentages occurs. Then, such local queues must not
send jobs to the shared resource until the percentages are
repaired.

Suitable Hierarchy In the previous examples, we dis-
cussed the characteristics of hierarchies and tried to high-
light their problems. Decomposition of the global queue
into a new global queue and smaller local queues is more
suitable for decentralization and load balancing of the hier-
archy. This decomposes scheduling into small independent
parts and can handle situations when some parts are unavail-
able. Using additional copies of the global and local queues
helps us in situations where there are failures to queues.

Saving the states of resources can also solve the problem
of failures of these resources. Also, in case of significant
changes to the load on the resources, or diversion of the ca-
pacity of the shared resources, we can easily re-schedule.
This is because the states have been saved in the higher lev-
els of the hierarchy.

In Grid environment, we have a small number of global
queues either serving groups of users, or as copies for fault
tolerance. The groups are often divided by location, institu-
tion, and/or by specialization. The different global queues
often use different resources, but they may share or make
competition for them.

The connections between the global and local queues, and
between local and FIFO queues are often evolving. In our
examples, each local queue can send a job to each FIFO
queue that belongs to the common global queue. However,
this situation is not true for all instances, because such con-
nections may be added or removed for other reasons (e.g.,
network crashes) or by scheduling policy (e.g., deviation in
percentages of use in competitive behavior).

The distribution of the local queues should reflect the dis-
tribution of job requirements. Independent groups of ma-
chines or an independent single machine should form a FIFO
queue.

Conclusion and Future Work
In this paper, we have defined the basic terms and summa-
rized the elements of the Grid scheduling problem (GSP).

Resources and job properties have been discussed. We have
suggested a model for the scheduling problem based on
an extension of Graham’s classification. A Grid hierarchy,
such as a machine environment, was designed. This consists
of a few types of queues, that are applied for scheduling, and
of machines. We presented a concrete definition of the GSP.
The discussion about hierarchies summarized the proper-
ties and problems of the hierarchies. We focused on fault
tolerance and competitive behavior. We suggested solving
methods for the first property by copying and decomposing
the queues and by saving the state of the resources. A so-
lution for competitive behavior was also proposed. The dis-
cussion concluded with suggestions for a hierarchy that is
suitable for the GSP.

Future work will be focused on formalizing the char-
acteristics of the hierarchies and discussion of them. We
will extend the model for preemption and precedence con-
straints. Our work on modeling should conclude with choos-
ing a suitable Grid hierarchy with precise definitions of its
characteristics and functions. The modeling of the problem
introduces the first step in the proposal of suitable solving
methods for scheduling tasks in the Grid environment. We
would like to extend the model in direction towards the con-
straint optimization model and apply constraint program-
ming (Dechter 2003) to solve the extended GSP.

References
Andrieux, A.; Berry, D.; Garibaldi, J.; Jarvis, S.; Ma-
cLaren, J.; Ouelhadj, D.; and Snelling, D. 2004.Open
issues in Grid scheduling. Technical report, National e-
Science Centre and the Inter-disciplinary Scheduling Net-
work.
Baptiste, P.; Pape, C. L.; and Nuijten, W. 2001.Constraint-
Based Scheduling: Applying Constraint Programming to
Scheduling Problems. Kluwer Academic Publishers.
Blazewicz, J.; Brauner, N.; and Finke, G. 2004.Schedul-
ing with Discrete Resource Constraints, In Lueng (2004).
chapter 23.
Brucker, P. 1998.Scheduling Algorithms. Springer.
Dechter, R. 2003.Constraint Processing. Morgan Kauf-
mann Publishers.
Lee, C. Y. 2004. Machine Scheduling with Availability
Constraints, In Lueng (2004). chapter 22.
Lueng, J. Y.-T., ed. 2004.Handbook of Scheduling: Algo-
rithms, Models and Performance Analysis. CRC Press.
Nabrzyski, J.; Schopf, J. M.; and Weglarz, J. 2003.Grid
Resource Management: State of the Art and Future Trends.
Kluwer Publishing.
Pinedo, M. 1995. Scheduling : theory, algorithms and
systems. Prentice Hall.
Pruhs, K.; Sgall, J.; and Torng, E. 2004.Online Scheduling,
In Lueng (2004). chapter 15.
Sgall, J. 1997. Online scheduling – a survey. In Fiat,
A., and Woeginger, G., eds.,On-Line Algorithms, Lecture
Notes in Computer Science. Springer-Verlag, Berlin.

