### The Normal Translation Algorithm in Transparent Intensional Logic for Czech

Aleš Horák

Faculty of Informatics, Masaryk University

Botanická 68a, CZ-60200 Brno, Czech Republic

E-mail: hales@fi.muni.cz

#### Outline

- motivations for NTA
- syntactic analysis
- logical analysis
- results & examples
- conclusions



Knowledge of language is modular.

COLING'2000: Angela Friederici, Language Processing in the Human Brain, Max

Planck Institute of Cognitive Neuroscience, Leipzig

### **The CAT System Outline** Communication and Artificial Reasoning with TIM input: NLE NTA NLE parser NLE lexicon Logical analysis Transl. rules 1 input: TIM TIM parser Reasoning Module тім output: TIM TIM synthesizer pretty print NLE synthesizer output: NLE

# Syntactic Parser (NTA<sub>1</sub>)

- team work with Pavel Smrž and Vladimír Kadlec
- metagrammar concept
- head-driven chart parser
- packed shared forest + packed dependency graph
- output:
  - derivation trees
  - dependency trees

# Parsing System Design

- efficiency and portability of the parser C/C++ code implementation
- procedural approach vs. rule based (simplicity of rules)
- grammar maintenance by linguists  $\rightarrow$  declarativeness
- connection to the morphological analyser
- massive syntactic ambiguity

#### metagrammar formalism:

- CF backbone + functional constraints
- translation of functional constraints to CF rules
- Czech free word order + very rich morphology (3000 tags)
- searching the optimal parsing strategy for Czech

## **Forms of Grammar**

#### Metagrammar (G1)

- rules with combinatoric constructs + global order constraints
- actions (= grammatical tests + contextual actions)
- Czech linguistics tradition dependency structures, agreement checks, word order rules: topic–focus (thema–rhema), strict rules for enclitics

#### **Generated Grammar (G2)**

- CF rules
- tests (functional constraints) + actions

#### **Expanded Grammar (G3)**

• CF rules (tests translated to rules)

### Meta-grammar

### = global order constraints + special flags

```
The main combinatoric constructs in the meta-grammar are order(), rhs() and first() which are used for generating variants of assortments of given terminals and nonterminals.
```

```
order() generates all possible permutations of its components.
```

```
first() argument cannot be preceded by any other construct
```

```
{\tt rhs}\,( ) gives all possible RHS of its argument
```

```
/* budu se ptát */
clause ===> order(VBU,R,VRI)
/* který ... */
relclause ===> first(relprongr) rhs(clause)
```

### Meta-grammar (cont.)

- -> ordinary CFG transcription
- --> intersegments between each couple of listed elements
- ==> + checking of correct enclitics order
- ===> intersegments in the beginning and the end of RHS, conjunctions, ...

```
ss -> conj clause
/* budu muset číst */
futmod --> VBU VOI VI
/* byl bych býval */
cpredcondgr ==> VBL VBK VBLL
/* musím se ptát */
clause ===> VO R VRI
```

### Meta-grammar (cont.)

Global order constraints inhibit some combinations of terminals in rules

%enclitic - which terminals should be regarded as enclitics
%order guarantees the pre-defined order

```
/* jsem, bych, se */
%enclitic = (VB12, VBK, R)
/* byl — četl, ptal, musel */
%order VBL = {VL, VRL, VOL}
/* býval — četl, ptal, musel */
%order VBLL = {VL, VRL, VOL}
```

### **Grammatical tests**

• grammatical case test for particular words and noun groups

```
noun-genitive-group -> noun-group noun-group
test_genitive($2)
propagate_all($1)
```

- agreement test of case in prepositional construction
- agreement test of number and gender for relative pronouns
- agreement test of case, number and gender for noun groups

```
prepositional-group -> PREPOSITION noun-group
    agree_case_and_propagate($1,$2)
    add prep ngroup($1)
```

- test of agreement between subject and predicate
- test of the verb valencies

```
clause -> subj-part verb-part
    agree_subj_pred($1,$2)
    test_valency_of($2)
```

# **Contextual actions**

- propagate\_all and \*\_and\_propagate
   propagate relevant information upwards in derivative tree
- head and depends
   build dependency structure
- rule\_schema and verb\_rule\_schema definitions for TIL logical analysis

# **Parser Actions**

4 kinds of contextual actions, tests or functional constraints:

- 1. rule-tied actions
- 2. agreement fulfilment constraints
- 3. post-processing actions
- 4. actions based on derivation tree

### Parser

- head-driven chart parser
- 6 hash tables for edges and rules
- resulting data structure packed shared forest

#### data structure for constraint evaluation



- motivations for NTA
- syntactic analysis
- $\Rightarrow$  logical analysis
  - results & examples
  - conclusions

### Logical Analysis in TIL (NTA<sub>2</sub>)

- based on *compositionality principle*
- aim: prepare input for *TIL Inference Machine*
- description of Knowledge Base Representation
- in cooperation with Leo hadacz

# **Expression-Meaning Relationship**

a) the expression-meaning relation in TIL and b) with Materna's conceptual approach.



# **TIL** — Transparent Intensional Logic

Tichý, P., The Foundations of Frege's Logic, de Gruyter, Berlin, New York, 1988.

- logical system suitable as a meaning surrogate (intensions, possible worlds, temporal and modal variability)
- parallel to Montague's logic, TIL has greater expressivity
- typed  $\lambda\text{-calculus}$  logic with particular epistemic framework
- **basic types** = { $\iota$ , o,  $\tau$ ,  $\omega$ }, (individuals, truth values, real numbers or time moments and possible worlds); **other types**: functions or higher rank types ( $\iota_{\tau\omega}$  individual role,  $(o\iota)_{\tau\omega}$  class of individuals or property,  $(o\alpha\beta)_{\tau\omega}$  intensional relation between object of types  $\alpha$  and  $\beta$ ,  $*_n$  class of constructions of order n,...)
- constructions  $\lambda$ -calculus formulae with specific modes of constructions (trivialization).
- inference rules for TIL are well defined
- Normal Translation Algorithm (NTA)



- Verb Phrase
- Noun Phrase
- Sentence Building
- Folding of Constituents
- Special Compound
- Questions and Imperatives

# **Verb Phrase**

- Episodic Verb events, episodes, verbal object, verb
- Verb Aspect
- Verb Tense
- Active and Passive Voice
- Adverbial Modification
- Auxiliary and Modal Verbs
- Infinitive
- Verb Valency

# **Noun Phrase**

- Adjective Modifier
- Prepositional Noun Phrase
- Genitive Construction
- Pronoun and Proper Name (interrogative, indefinite and negative pronoun)
- Numeral
- Quantificational Phrase

# **Compound Constituents**

#### **Sentence Building**

- subordinate clauses
- coordinate clauses

#### **Folding of Constituents**

• lists of constituents

#### **Special Compound**

• extensions (numbers, date, time, ...)

# **Questions and Imperatives**

match x:C

```
x \dots object or variable, C construction
```

both construct (or are) one and the same object

kinds of attitudes to proposition:

#### Yes/No

Je Petr vyšší než Karel? (Is Peter taller than Charles?)

#### Wh-

Která hora je nevyšší na světě? (Which mountain is the highest in the world?)

#### Expl

Proč je Marie smutná? (Why is Mary sad?)

#### Imp

Petře, uvař oběd! (Peter, make lunch!)

- motivations for NTA
- syntactic analysis
- logical analysis
- $\Rightarrow$  results & examples
  - conclusions

# Results

#### **Grammar** — number of rules

| G1 meta-grammar – # rules      | 326   |
|--------------------------------|-------|
| G2 generated grammar – # rules | 2919  |
| shift/reduce conflicts         | 48833 |
| reduce/reduce conflicts        | 5067  |
| G3 expanded grammar – # rules  | 10207 |

# System coverage on 10000 sentences

|                                | # of sent. | percentage |
|--------------------------------|------------|------------|
| successful at level 0, corpus  | 5150       | 51.5%      |
| successful at level 99, corpus | 3986       | 39.9%      |
| successful at level 0, text    | 304        | 3.0%       |
| successful at level 99, text   | 211        | 2.1%       |
| unsuccessful                   | 349        | 3.5%       |
| overall successful             | 9651       | 96.5%      |
| sum                            | 10000      | 100.0%     |

# **Timing Results**

| average time for sentence           | 0.17 s              |
|-------------------------------------|---------------------|
| minimum —  —                        | <0.01 s             |
| maximum — — —                       | 32.47 s             |
| median of $-$                       | 0.09 s              |
| average number of words in sentence | 15.4                |
| minimum —  —                        | 1                   |
| maximum — — —                       | 73                  |
| median of <u> </u>                  | 14                  |
| average number of trees             | $890 \cdot 10^{12}$ |
| minimum —  —                        | 1                   |
| maximum —  —                        | $5.7 \cdot 10^{18}$ |
| median of                           | 56                  |
| average number of edges             | 6519.7              |
| minimum —  —                        | 81                  |
| maximum —    —                      | 186329              |
| median of                           | 4181                |

### **Precision Estimates**

*correct analysis* — passes the parsing process + (at least one) output tree reflects the required *context* relations in the input.

*hit precision* — percentage describing the portion of correct analyses.

Statistical data describing the analysis of 100 sentences and their hit precision:

|                                                  | # of sent. | percentage |
|--------------------------------------------------|------------|------------|
| hit precision of sentences of 1-10 words         | 32         | 100.0 %    |
| hit precision of sentences of 11-20 words        | 37         | 80.4%      |
| hit precision of sentences of more than 20 words | 8          | 57.1 %     |
| overall hit precision                            | 77         | 83.7 %     |
| number of sentences with mistakes in input       | 8          | 8.0%       |
| number of sentences                              | 100        | 100.0 %    |

### **Example** — derivation tree

An example of resulting derivation tree for sentence 'Jedl dnes k večeři pečené kuře.' (*He ate a roast chicken for dinner today*.)



### **Example — logical analysis**

evaluation of rule\_schema for np 'pečené kuře'

4, 6, -npnl -> .{ left\_modif } np .: klgNnSc145
agree\_case\_number\_gender\_and\_propagate OK
rule\_schema: 2 nterms, 'lwtx(awtx(#1) and awtx(#2))'
And constrs, Abstr and Exi vars are just gathered
1 (1x1) constructions:

 $\lambda w_2 \lambda t_3 \lambda x_4 ([\texttt{pečen} \mathbf{y}_{w_2 t_3}, x_4] \land [\texttt{kuře}_{w_2 t_3}, x_4]) \dots (o\iota)_{\tau \omega}$ 

And constrs: none added Exi vars: none added

### Example — logical analysis (cont.)

```
evaluation of verb rule schema for the whole clause
verb_rule_schema: 3 groups
no acceptable subject found: supplying an inexplicit one
inexplicit subject: k3xPqMnSc1, k3xPqInSc1: On \dots \iota
Clause valency list: jíst <v>#1:(1)hA-#2:(2)hPTc1,
Verb valency list: jist <v>#2:hH-#1:hPTc4ti
Matched valency list: jíst <v>#2:(1)hH-#1:(2)hPTc4ti
time span: \lambda t_{12} dnes_{t t_{12}} \dots (o\tau)
frequency: Onc...((o(o\tau))\pi)_{\omega}
verbal object: x_{15} \dots (o(o\pi)(o\pi))
present tense clause:
\lambda w_{17} \lambda t_{18}(\exists i_{10})(\exists x_{15})(\exists i_{16})([\mathsf{Does}_{w_{17}t_{18}}, On, [\mathsf{Imp}_{w_{17}}, x_{15}]] \land
 [	extsf{večeře}_{w_{17}t_{18}}, i_{10}] \land [	extsf{pečen} \acute{y}_{w_{17}t_{18}}, i_{16}] \land [	extsf{kuře}_{w_{17}t_{18}}, i_{16}] \land x_{15} = 0
[jist, i_{16}]_{w_{17}} \land [[k_{w_{17}t_{18}}, i_{10}]_{w_{17}}, x_{15}]) \dots \pi
clause:
\lambda w_{19} \lambda t_{20}[\mathbf{P}_{t_{20}}, [\mathbf{Onc}_{w_{19}}, \lambda w_{17} \lambda t_{18} (\exists i_{10}) (\exists x_{15}) (\exists i_{16}) ([\mathbf{Does}_{w_{17}t_{18}}, On, [\mathbf{Imp}_{w_{17}}, x_{15}]]
\wedge \left[ {\rm ve\check{c}e\check{r}e}_{w_{17}t_{18}}, i_{10} \right] \ \wedge \ \left[ {\rm pe\check{c}en\check{y}}_{w_{17}t_{18}}, i_{16} \right] \ \wedge \ \left[ {\rm ku\check{r}e}_{w_{17}t_{18}}, i_{16} \right] \ \wedge \ x_{15} =
[jist, i_{16}]_{w_{17}} \land [[k_{w_{17}t_{18}}, i_{10}]_{w_{17}}, x_{15}])], \lambda t_{12} dnes_{tt_{12}}] \dots \pi
```

# Conclusions

- the mettagrammar formalism for syntactic analysis
- translation of functional constraints to CF rules is feasible
- implementation of a fully competitive parser for Czech
- comparison of TIL to other semantic representations
- new definition of concept
- Normal Translation Algorithm
  - first exact algorithm of such extent
  - new analysis of most phenoma in Czech