Achim Blumensath
blumens@fi.muni.cz

This document was last updated 2018-07-15.
The latest version can be found at
www.fi.muni.cz/~blumens

COPYRIGHT 2018 Achim Blumensath

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Contents

A. Set Theory

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Basic set theory</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>Sets and classes</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Stages and histories</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>The cumulative hierarchy</td>
<td>18</td>
</tr>
<tr>
<td>A2</td>
<td>Relations</td>
<td>27</td>
</tr>
<tr>
<td>1</td>
<td>Relations and functions</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>Products and unions</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>Graphs and partial orders</td>
<td>39</td>
</tr>
<tr>
<td>4</td>
<td>Fixed points and closure operators</td>
<td>47</td>
</tr>
<tr>
<td>A3</td>
<td>Ordinals</td>
<td>57</td>
</tr>
<tr>
<td>1</td>
<td>Well-orders</td>
<td>57</td>
</tr>
<tr>
<td>2</td>
<td>Ordinals</td>
<td>64</td>
</tr>
<tr>
<td>3</td>
<td>Induction and fixed points</td>
<td>74</td>
</tr>
<tr>
<td>4</td>
<td>Ordinal arithmetic</td>
<td>85</td>
</tr>
<tr>
<td>A4</td>
<td>Zermelo-Fraenkel set theory</td>
<td>105</td>
</tr>
<tr>
<td>1</td>
<td>The Axiom of Choice</td>
<td>105</td>
</tr>
<tr>
<td>2</td>
<td>Cardinals</td>
<td>113</td>
</tr>
<tr>
<td>3</td>
<td>Cardinal arithmetic</td>
<td>116</td>
</tr>
<tr>
<td>4</td>
<td>Cofinality</td>
<td>122</td>
</tr>
</tbody>
</table>
Contents

5 The Axiom of Replacement 131
6 Stationary sets 134
7 Conclusion .. 145

B. General Algebra 147

B1 Structures and homomorphisms 149
1 Structures ... 149
2 Homomorphisms 156
3 Categories .. 162
4 Congruences and quotients 175

B2 Trees and lattices 189
1 Trees .. 189
2 Lattices .. 197
3 Ideals and filters 205
4 Prime ideals and ultrafilters 209
5 Atomic lattices and partition rank 217

B3 Universal constructions 231
1 Terms and term algebras 231
2 Direct and reduced products 242
3 Directed limits and colimits 250
4 Equivalent diagrams 262
5 Links and dense functors 275

B4 Accessible categories 289
1 Filtered limits and inductive completions 289
2 Extensions of diagrams 304
3 Presentable objects 320
4 Accessible categories 333
Contents

B5 Topology

1 Open and closed sets ... 345
2 Continuous functions 350
3 Hausdorff spaces and compactness 354
4 The Product topology 361
5 Dense sets and isolated points 365
6 Spectra and Stone duality 374
7 Stone spaces and Cantor-Bendixson rank 381

B6 Classical Algebra

1 Groups ... 389
2 Group actions .. 393
3 Rings ... 401
4 Modules .. 407
5 Fields .. 414
6 Ordered fields .. 429

C. First-Order Logic and its Extensions 445

C1 First-order logic 447

1 Infinitary first-order logic 447
2 Axiomatisations ... 458
3 Theories ... 464
4 Normal forms ... 469
5 Translations ... 476
6 Extensions of first-order logic 485

C2 Elementary substructures and embeddings 497

1 Homomorphisms and embeddings 497
2 Elementary embeddings 502
3 The Theorem of Löwenheim and Skolem 508
Contents

4 The Compactness Theorem .. 515
5 Amalgamation .. 525

C3 Types and type spaces
1 Types ... 531
2 Type spaces .. 537
3 Retracts ... 550
4 Local type spaces .. 561
5 Stable theories ... 566

C4 Back-and-forth equivalence
1 Partial isomorphisms .. 581
2 Hintikka formulae ... 590
3 Ehrenfeucht-Fraïssé games .. 593
4 \(\kappa \)-complete back-and-forth systems 602
5 The theorems of Hanf and Gaifman 609

C5 General model theory
1 Classifying logical systems ... 617
2 Hanf and Löwenheim numbers 621
3 The Theorem of Lindström .. 628
4 Projective classes ... 640
5 Interpolation .. 651
6 Fixed-point logics .. 661

D. Axiomatisation and Definability

D1 Quantifier elimination
1 Preservation theorems ... 689
2 Quantifier elimination ... 693
3 Existentially closed structures 703
4 Abelian groups ... 709

viii
Contents

5 Fields .. 714

D2 Products and varieties

1 Ultraproducts .. 721
2 The theorem of Keisler and Shelah 726
3 Reduced products and Horn formulae 739
4 Quasivarieties 744
5 The Theorem of Feferman and Vaught 756

D3 O-minimal structures

1 Ordered topological structures 761
2 O-minimal groups and rings 767
3 Cell decompositions 769

E. Classical Model Theory

E1 Saturation ... 789

1 Homogeneous structures 791
2 Saturated structures 797
3 Projectively saturated structures 808
4 Pseudo-saturated structures 811

E2 Definability and automorphisms 819

1 Definability in projectively saturated models ... 819
2 Imaginary elements and canonical parameters ... 830
3 Galois bases 838
4 Elimination of imaginaries 844
5 Weak elimination of imaginaries 850
Contents

E3 Prime models

1 Isolated types ... 859
2 The Omitting Types Theorem 861
3 Prime and atomic models 869
4 Constructible models 873

E4 \aleph_0-categorical theories

1 \aleph_0-categorical theories and automorphisms 881
2 Back-and-forth arguments in accessible categories 897
3 Fraïssé limits ... 909
4 Zero-one laws .. 921

E5 Indiscernible sequences

1 Ramsey Theory .. 929
2 Ramsey Theory for trees 934
3 Indiscernible sequences 945
4 The independence and strict order properties 956

E6 Functors and embeddings

1 Local functors .. 969
2 Word constructions 976
3 Ehrenfeucht-Mostowski models 985

E7 Abstract elementary classes

1 Abstract elementary classes 999
2 Amalgamation and saturation 1008
3 Limits of chains .. 1021
4 Categoricity and stability 1025

F. Independence and Forking

1033
Contents

F1 Geometries

1. Dependence relations .. 1035
2. Matroids and geometries 1040
3. Modular geometries .. 1047
4. Strongly minimal sets 1053
5. Vaughtian pairs and the Theorem of Morley 1061

F2 Ranks and forking

1. Morley rank and Δ-rank 1073
2. Independence relations 1087
3. Preforking relations 1101
4. Forking relations ... 1118

F3 Simple theories

1. Dividing and forking 1131
2. Simple theories and the tree property 1141

F4 Theories without the independence property

1. Honest definitions ... 1159
2. Lascar invariant types 1174
3. $\sqrt{\cdot}$-Morley sequences 1200
4. Dp-rank ... 1213

F5 Theories without the array property

1. The array property ... 1225
2. Forking and dividing 1234
3. The Independence Theorem 1253

G. Geometric Model Theory

1267
Contents

G1 Stable theories 1269
1 Definable types ... 1269
2 Forking in stable theories 1274
3 Stationary types .. 1278
4 The multiplicity of a type 1284
5 Morley sequences in stable theories 1291
6 The stability spectrum 1296

G2 Models of stable theories 1303
1 Isolation relations ... 1303
2 Constructions ... 1312
3 Prime models ... 1320
4 \sqrt{a}\text{-constructible models} 1325
5 Strongly independent stratifications 1334
6 Representations .. 1343

Recommended Literature 1355
Symbol Index 1357
Index 1369
Part A.

Set Theory
A1. Basic set theory

1. Sets and classes

In mathematics there are basically two ways to define the objects under consideration. On the one hand, one can explicitly construct them from already known objects. For instance, the rational numbers and the real numbers are usually introduced in this way. On the other hand, one can take the axiomatic approach, that is, one compiles a list of desired properties and one investigates any object meeting these requirements. Some well known examples are groups, fields, vector spaces, and topological spaces.

Since set theory is meant as foundation of mathematics there are no more basic objects available in terms of which we could define sets. Therefore, we will follow the axiomatic approach. We will present a list of six axioms and any object satisfying all of them will be called a model of set theory. Such a model consists of two parts: (1) a collection \mathcal{S} of objects that we will call sets, and (2) some method which, given two sets a and b, tells us whether a is an element of b.

We will not care what exactly the objects in \mathcal{S} are or how this method looks like. For example, one could imagine a model of set theory consisting of natural numbers. If we define that a natural number a is an element of the natural number b if and only if the a-th bit in the binary encoding of b is 1, then all but one of our axioms will be satisfied. It is conceivable that a similar but more involved definition might yield a model that satisfies all of them.

We will introduce our axioms in a stepwise fashion during the following sections. To help readers trying to look up a certain axiom we
A1. Basic set theory

include a complete list below even if most of the needed definitions are still missing.

Axiom of Extensionality. Two sets a and b are equal if, and only if, we have $x \in a \iff x \in b$, for all sets x.

Axiom of Separation. If a is a set and φ a property then $\{ x \in a \mid \varphi \}$ is a set.

Axiom of Creation. For every set a there is a set S such that S is a stage and $a \in S$.

Axiom of Infinity. There exists a set that is a limit stage.

Axiom of Choice. For every set A there exists a well-order R over A.

Axiom of Replacement. If F is a function and $\text{dom} \ F$ is a set then so is $\text{rng} \ F$.

Asking whether these axioms are *true* does make as much sense as the question of whether the field axioms are true, or those of a vector space. Instead, what we are concerned with is their *consistency* and *completeness*. That is, there should *exist* at least one object satisfying these axioms and all such objects should *look alike*. Unfortunately, one can prove that there is no complete axiom system for set theory. Hence, we will have to deal with the fact that there are many different models of set theory and there is no way to choose one of them as the ‘canonical one’. In particular, there is no such thing as ‘the real model of set theory’.

More seriously, it is even impossible to prove that our axiom system is consistent. That is, it might be the case that there is no model of set theory and we have wasted our time studying a nonsensical theory.

The first problem is dealt with rather easily. It does not matter which of these models we are given since any theorem that we can derive from the axioms holds in every model. But the second problem is serious. All we can do is to restrict ourselves to as few axioms as possible and to hope that no one will ever be able to derive a contradiction. Of course, the weaker the axioms the more different models we might get and the fewer theorems we will be able to prove.
In the following we will assume that \(S \) is an arbitrary but fixed model of set theory. That is, \(S \) is a collection of objects that satisfies all the axioms we will introduce below. \(S \) will be called the universe and its elements are called sets. Note that \(S \) itself is not a set since we will prove below that no set is an element of itself. By convention, if below we say that some set exists then we mean that it is contained in \(S \). Similarly, we say that all sets have some property if all elements of \(S \) do so.

Intuitively, a set is a collection of objects called its elements. If \(a \) and \(b \) are sets, i.e., elements of \(S \), we write \(a \in b \) if \(a \) is an element of \(b \) and we define

\[
a \subseteq b \quad \text{iff} \quad \text{every element } x \in a \text{ is also an element } x \in b.
\]

If \(a \subseteq b \), we call \(a \) a subset of \(b \), and we say that \(a \) is included in \(b \), or that \(b \) is a superset of \(a \). We use the usual abbreviations such as \(a \subset b \) for \(a \subseteq b \) and \(a \not\subseteq b \); \(a \supset b \) for \(b \in a \); and \(a \not\supset b \) if \(a \in b \) does not hold.

Since a set is a collection of objects it is natural to require that a set is uniquely determined by its elements. Our first axiom can therefore be regarded as the definition of a set.

Axiom of Extensionality. Two sets \(a \) and \(b \) are equal if, and only if,

\[
x \in a \quad \text{iff} \quad x \in b, \quad \text{for all sets } x.
\]

Lemma 1.1. Two sets \(a \) and \(b \) are equal if and only if \(a \subseteq b \) and \(b \subseteq a \).

In order to define a set we have to say what its elements are. If the set is finite we can just enumerate them. Otherwise, we have to find some property \(\varphi \) such that an object \(x \) is an element of \(a \) if, and only if, it has the property \(\varphi \).

Definition 1.2. (a) Let \(\varphi \) be a property. \(\{ x \mid \varphi \} \) denotes the set \(a \) such that, for all sets \(x \), we have

\[
x \in a \quad \text{iff} \quad x \text{ has property } \varphi.
\]
A1. Basic set theory

If \(S \) does not contain such an object then the expression \(\{ x \mid \varphi \} \) is undefined.

(b) Let \(b_0, \ldots, b_{n-1} \) be sets. We define

\[
\{b_0, \ldots, b_{n-1}\} := \{ x \mid x = b_i \text{ for some } i < n \}.
\]

(c) The empty set is \(\emptyset := \{ x \mid x \neq x \} \).

Note that, by the Axiom of Extensionality, if the set \(\{ x \mid \varphi \} \) exists, it is unique.

In a model of set theory nothing but sets exists. But how can we have sets without some objects that serve as elements? The answer of course is to construct sets of other sets. First of all, there is one set that we can form even if we do not have any suitable elements: the empty set \(\emptyset \). So we already have one object and we use it as element of other sets. In the next step we can form the set \(\{ \emptyset \} \), then we can form the sets \(\{ \emptyset, \emptyset \} \) and \(\{ \emptyset, \emptyset \} \) and so on.

Sometimes it is helpful to imagine such sets as trees. The empty set \(\emptyset \) corresponds to a single vertex \(\bullet \). To a nonempty sets \(a \) we associate the tree consisting of a root to which we attach, for every element \(b \in a \) the tree corresponding to \(b \). For example, we have

\[
\emptyset \quad \{\emptyset\} \quad \{\emptyset, \emptyset\} \quad \{\emptyset, \emptyset, \emptyset\}
\]

To better understand this inductive construction of sets we introduce a toy version of set theory which has the advantage that it can be defined explicitly. It consists of all sets that one can construct from the empty set in finitely many steps.

Definition 1.3. We construct a sequence \(\text{HF}_0 \subseteq \text{HF}_1 \subseteq \ldots \) of sets as follows. We start with the empty set \(\text{HF}_0 := \emptyset \). When the set \(\text{HF}_n \) has
already been defined, the next stage

\[HF_{n+1} := \{ x \mid x \subseteq HF_n \} \]

consists of all sets that we can construct from elements of \(HF_n \). A set is called hereditary finite if it is an element of some \(HF_n \). The set of all hereditary finite sets is

\[HF := \{ x \mid x \in HF_n \text{ for some } n \} . \]

Note that we cannot prove at the moment that \(HF \) really is a set. Since the empty universe \(\mathbb{S} = \emptyset \) trivially satisfies the Axiom of Extensionality, we even cannot show that the empty set exists without additional axioms. Let us assume for the moment that \(HF \) does exists. Its first stages are

\[
\begin{align*}
HF_0 &= \emptyset \\
HF_1 &= \{ \emptyset \} \\
HF_2 &= \{ \emptyset, \{ \emptyset \} \} \\
HF_3 &= \{ \emptyset, \{ \emptyset \}, \{ \{ \emptyset \} \}, \{ \emptyset, \{ \emptyset \} \} \}
\end{align*}
\]

\[\ldots \]

By induction on \(n \), one can prove that \(HF_n \subseteq HF_{n+1} \) and each set \(a \in HF_{n+1} \) is of the form \(a = \{ b_0, \ldots, b_{k-1} \} \), for finitely many elements \(b_0, \ldots, b_{k-1} \in HF_n \). Note that each stage \(HF_n \) is hereditary finite since \(HF_n \in HF_{n+1} \subseteq HF \), but their union \(HF \) is not because \(HF \notin HF \).

Exercise 1.1. Prove the following statements by induction on \(n \). (Although we have not defined the natural numbers yet, you may assume for this exercise that they are available and that their usual properties hold.)

(a) \(HF_n \subseteq HF_{n+1} \).

(b) \(HF_n \) has finitely many elements.
A1. Basic set theory

(c) Every set \(a \in HF_{n+1} \) is of the form \(a = \{b_0, \ldots, b_{k-1}\} \), for finitely many elements \(b_0, \ldots, b_{k-1} \in HF_n \).

HF can be regarded as an approximation to the class of all sets. In fact, all but one of the usual axioms of set theory hold for HF. The only exception is the Axiom of Infinity which states that there exists an infinite set.

We can encode natural numbers by special hereditary finite sets.

Definition 1.4. To each natural number \(n \) we associate the set

\[
[n] := \{[0], \ldots, [n - 1]\}.
\]

The set of all natural numbers is

\[
\mathbb{N} := \{[n] \mid n \text{ a natural number}\}.
\]

Note that \([n] \in HF_{n+1}\) but \([n] \notin HF_n\), and \(\mathbb{N} \notin HF\). This construction can be used to define the natural numbers in purely set theoretic terms. In the following by a natural number we will always mean a set of the form \([n]\).

It would be nice if there were a universe \(S \) that contains all sets of the form \(\{x \mid \phi\} \). Unfortunately, such a universe does not exists, that is, if we add the axiom that claims that \(\{x \mid \phi\} \) is defined for all \(\phi \), we obtain a theory that is inconsistent, i.e., it contradicts itself. In fact, we can even show that there are properties \(\phi \) such that no model of set theory contains a set of the form \(\{x \mid \phi\} \). And we can do so without using a single axiom of set theory.

Theorem 1.5 (Zermelo-Russell Paradox). \(\{x \mid x \notin x\} \) is not a set.

Proof. Suppose that the set \(a := \{x \mid x \notin x\} \) exists. Let \(x \) be an arbitrary set. By definition, we have \(x \in a \) if and only if \(x \notin x \). In particular, for \(x = a \), we obtain \(a \in a \) iff \(a \notin a \). A contradiction. \(\square \)

To better understand what is going on, let us see what happens if we restrict ourselves to hereditary finite sets. The set \(\{x \in HF \mid x \notin x\} \)
equals HF since no hereditary finite set contains itself. But HF \notin HF is not hereditary finite. The same happens in real set theory. The condition \(x \notin x \) is satisfied by all sets and we have \(\{ x \mid x \notin x \} = \Sigma \), which is not a set.

In general, an expression of the form \(\{ x \mid \varphi \} \) denotes a collection \(X \subseteq \Sigma \) that may or may not be a set, i.e., an element \(X \in \Sigma \). We will call objects of the form \(\{ x \mid \varphi \} \) classes. Classes that are not sets will be called proper classes. If \(X = \{ x \mid \varphi \} \) and \(Y = \{ x \mid \psi \} \) are classes and \(a \) is a set, we write

\[
\begin{align*}
 a \in X & : \text{iff } a \text{ has property } \varphi , \\
 X \subseteq Y & : \text{iff } \text{every set with property } \varphi \text{ also has property } \psi , \\
 \text{and } X = Y & : \text{iff } X \subseteq Y \text{ and } Y \subseteq X .
\end{align*}
\]

If \(X \) is a proper class then we define \(X \notin Y \), for every \(Y \). Note that, if \(X \) and \(Y \) are sets then these definitions coincide with the ones above. Finally, we remark that every set \(a \) is a class since we can write \(a \) as \(\{ x \mid x \in a \} \).

When defining classes we have to be a bit careful about what we call a property. Let us define a property to be a statement that is build up from basic propositions of the form \(x \in y \) and \(x = y \) by

- logical conjunctions like 'and', 'or', 'not', 'if-then';
- constructs of the form 'there exists a set \(x \) such that \(\ldots \)' and 'for all sets \(x \) it holds that \(\ldots \).'

(Such statements will be defined in a more formal way in Chapter C1 where we will call them 'first-order formulae'.) Things we are not allowed to say include statements of the form 'There exists a property \(\varphi \) such that \(\ldots \)' or 'For all classes \(X \) it holds that \(\ldots \).'

We have defined a class to be an object of the form \(\{ x \mid \varphi \} \) where \(\varphi \) is a statement about sets. What happens if we allow statements about arbitrary classes? Note that, if \(\varphi \) is a property referring to a class \(X = \{ x \mid \psi \} \) then we can transform \(\varphi \) into an equivalent statement only talking about sets by replacing all propositions \(y \in X, X \in y, X = y \), etc. by their respective definitions.
A1. Basic set theory

Example. Let \(X = \{ x \mid \emptyset \notin x \} \). We can write the class

\[\{ y \mid y \neq \emptyset \text{ and } y \subseteq X \} \]

in the form

\[\{ y \mid y \neq \emptyset \text{ and } \emptyset \notin x \text{ for all } x \in y \} . \]

The situation is analogous to the case of the complex numbers which are obtained from the real numbers by adding imaginary elements. We can translate any statement about complex numbers \(x + iy \) into one about pairs \(\langle x, y \rangle \) of real numbers. Consequently, it does not matter whether we allow classes in the definition of other classes.

Intuitively, the reason for a proper class such as \(S \) not being a set is that it is too ‘large’. For instance, when considering HF we see that a set \(a \subseteq \text{HF} \) is hereditary finite if, and only if, it has only finitely many elements. Hence, if we can show that a class \(X = \{ x \mid \varphi \} \) is ‘small’, it should form a set. What do we mean by ‘small’? Clearly, we would like every set to be small. Furthermore, it is natural to require that, if \(Y \) is small and \(X \subseteq Y \) then \(X \) is also small. Therefore, we define a class \(X \) to be small if it is a subclass \(X \subseteq a \) of some set \(a \).

Definition 1.6. For a class \(A \) and a property \(\varphi \) we define

\[\{ x \in A \mid \varphi \} := \{ x \mid x \in A \text{ and } x \text{ has property } \varphi \} . \]

This definition ensures that every class of the form \(X = \{ x \in a \mid \varphi \} \) where \(a \) is a set is small. Conversely, if \(X = \{ x \mid \varphi \} \) is small then \(X \subseteq a \), for some set \(a \), and we have \(X = \{ x \in a \mid \varphi \} \). Our second axiom states that every small class is a set.

Axiom of Separation. If \(a \) is a set and \(\varphi \) a property then the class

\[\{ x \in a \mid \varphi \} \]

is a set.
With this axiom we still cannot prove that there is any set. But if we have at least one set a, we can deduce, for instance, that also the empty set $\emptyset = \{ x \in a \mid x \not= x \}$ exists.

Definition 1.7. Let A and B be classes.

(a) The *intersection* of A is the class

$$\bigcap A := \{ x \mid x \in y \text{ for all } y \in A \}.$$

(b) The *intersection* of A and B is

$$A \cap B := \{ x \mid x \in A \text{ and } x \in B \}.$$

(c) The *difference* between A and B is

$$A \setminus B := \{ x \in A \mid x \not\in B \}.$$

Lemma 1.8. Let a be a set and B a class. Then $a \cap B$ and $a \setminus B$ are sets. If B contains at least one element then $\bigcap B$ is a set.

Proof. The fact that $a \cap B = \{ x \in a \mid x \in B \}$ and $a \setminus B$ are sets follows immediately from the Axiom of Separation. If B contains at least one element $c \in B$ then we can write

$$\bigcap B = \{ x \in c \mid x \in y \text{ for all } y \in B \}.$$

Note that $\bigcap \emptyset = \emptyset$ is not a set.

2. Stages and histories

The construction of HF above can be extended to one of the class \mathbb{S} of all sets. We define \mathbb{S} as the union of an increasing sequence of sets S_α, called the *stages* of \mathbb{S}. Again, we start with the empty set $S_\emptyset := \emptyset$. If S_α is defined then the next stage $S_{\alpha+1}$ contains all subsets of S_α. But this time, we do not stop when we have defined S_α for all natural numbers α. Instead,
every time we have defined an infinite sequence of stages we continue
by taking their union to form the next stage. So our sequence starts with

\[S_0 = \text{HF}_0, \quad S_1 = \text{HF}_1, \quad S_2 = \text{HF}_2, \quad \ldots \]

The next stage after all the finite ones is \(S_\omega := \text{HF} \) and we continue with

\[S_{\omega + 1} = \{ x \mid x \subseteq \text{HF} \}, \quad S_{\omega + 2} = \{ x \mid x \subseteq S_{\omega + 1} \}, \quad \ldots \]

After we have defined \(S_{\omega + n} \) for all natural numbers \(n \) we again take the union

\[S_{\omega + \omega} = \{ x \mid x \in S_{\omega + n} \text{ for some } n \}, \]

and so on.

Unfortunately, making this construction precise turns out to be quite technical since we cannot define the numbers \(\alpha \) yet that we need to index the sequence \(S_\alpha \). This has to wait until Section A3.2. Instead, we start by giving a condition for some set \(S \) to be a stage, i.e., one of the \(S_\alpha \). If we order all such sets by inclusion then we obtain the desired sequence

\[S_0 \subseteq S_1 \subseteq \cdots \subseteq S_\omega \subseteq S_{\omega + 1} \subseteq \cdots, \]

without the need to refer to its indices.

First, we isolate some characteristic properties of the sets \(\text{HF}_n \) which
we would like that our stages \(S_\alpha \) share. Note that, at the moment, we
cannot prove that any of the sets mentioned below actually exists.

Definition 2.1. Let \(A \) be a class.

(a) We call \(A \) transitive if \(x \in y \in A \) implies \(x \in A \).

(b) We call \(A \) hereditary if \(x \subseteq y \in A \) implies \(x \in A \).

(c) The accumulation of \(A \) is the class

\[\text{acc}(A) := \{ x \mid \text{there is some } y \in A \text{ such that } x \in y \text{ or } x \subseteq y \}. \]

Note that each stage \(\text{HF}_n \) of HF is hereditary and transitive.
Exercise 2.1. By induction on \(n \), show that the set \([n]\) is transitive. Give an example of a number \(n \) such that \([n]\) is not hereditary.

The next lemmas follow immediately from the definitions.

Lemma 2.2. Let \(A \) be a class, and \(b, c \) sets. The following statements are equivalent:

(a) \(c \in b \in A \) implies \(c \in A \), that is, \(A \) is transitive.

(b) \(b \in A \) implies \(b \subseteq A \).

(c) \(b \in A \) implies \(b \cap A = b \).

Lemma 2.3. Let \(A \) and \(B \) be classes.

(a) \(A \subseteq \text{acc}(A) \)

(b) If \(B \) is hereditary and transitive and if \(A \subseteq B \), then \(\text{acc}(A) \subseteq B \).

(c) \(A \) is hereditary and transitive if, and only if, \(\text{acc}(A) = A \).

Lemma 2.4. If \(A \) and \(B \) are transitive classes then so is \(A \cap B \).

Exercise 2.2. Prove Lemmas 2.2, 2.3, and 2.4.

Definition 2.5. Let \(A \) be a class.

(a) A **minimal element** of \(A \) is an element \(b \in A \) such that \(b \cap A = \emptyset \), that is, there is no element \(c \in A \) with \(c \in b \).

(b) A set \(a \) is **founded** if every set \(b \ni a \) has a minimal element.

(c) The **founded part** of \(A \) is the set

\[
\text{fnd}(A) := \{ x \in A \mid x \text{ is founded} \}.
\]

Example. The empty set \(\emptyset \) and the set \(\{ \emptyset \} \) are founded. To see that \(\{ \emptyset \} \) is founded, consider a set \(b \ni \{ \emptyset \} \). If \(\{ \emptyset \} \) is not a minimal element of \(b \), then \(b \cap \{ \emptyset \} \neq \emptyset \). Hence, \(\emptyset \in b \) is a minimal element of \(b \).

Exercise 2.3. Prove that every hereditary finite set is founded.
A.1. Basic set theory

We will introduce an axiom below which implies that every class has a minimal element. Hence, every set is founded and we have $\text{fnd}(A) = A$, for all classes A. Although the notions of a founded set and the founded part of a set will turn out to be trivial, we still need them to define stages and to formulate the axiom.

Lemma 2.6. If B is a hereditary class and $a \in B$ then $\text{fnd}(a) \in \text{fnd}(B)$.

Proof. For a contradiction suppose that $\text{fnd}(a) \notin \text{fnd}(B)$. Since B is hereditary and $\text{fnd}(a) \subseteq a \in B$, we have $\text{fnd}(a) \in B$. Consequently, $\text{fnd}(a) \notin \text{fnd}(B)$ implies that there is some set $x \ni \text{fnd}(a)$ without minimal element. In particular, $\text{fnd}(a)$ is not a minimal element of x, that is, there exists some set $y \in x \cap \text{fnd}(a)$. But $y \in \text{fnd}(a)$ implies that y is founded. Therefore, from $y \in x$ it follows that x has a minimal element. A contradiction.

In the language of Section A3.1 the next theorem states that the membership relation \in is well-founded on every class of transitive, hereditary sets.

Theorem 2.7. Let A be a nonempty class. If every element $x \in A$ is hereditary and transitive, then A has a minimal element.

Proof. Choose an arbitrary element $c \in A$ and set

$$b := \{ \text{fnd}(x) \mid x \in c \cap A \} .$$

If $b = \emptyset$ then $c \cap A = \emptyset$ and c is a minimal element of A. Therefore, we may assume that $b \neq \emptyset$. Since $c \in A$ is hereditary, it follows from Lemma 2.6 that $b \subseteq \text{fnd}(c)$. Fix some $x \in b \subseteq \text{fnd}(c)$. Then x is founded and $x \in b$ implies that b has a minimal element y. By definition of b, we have $y = \text{fnd}(z)$, for some $z \in c \cap A$.

We claim that z is a minimal element of A. Suppose otherwise. Then there exists some element $u \in z \cap A$. Since c is transitive we have $u \in c$. Hence, $u \in c \cap A$ implies $\text{fnd}(u) \in b$. On the other hand, since $z \in A$ is hereditary it follows from Lemma 2.6 that $\text{fnd}(u) \in \text{fnd}(z)$. Hence,
Lemma 2.9. Let \(S \) be a stage with history \(H \).

(a) \(H \subseteq S \).

(b) Every set \(a \in H \) is a stage with history \(H \cap a \).

(c) \(S \) is hereditary and transitive.

(d) \(S = \{ x \mid x \subseteq s \text{ for some stage } s \in S \} \).

(e) \(H(S) := \{ s \in S \mid s \text{ is a stage} \} \) is a history of \(S \).
A1. Basic set theory

Proof. (a) \(a \subseteq a \in H \) implies \(a \in \text{acc}(H) = S \).

(b) By definition of a history, we have \(a = \text{acc}(H \cap a) \). Hence, if we can show that \(H \cap a \) is a history then its stage is \(a \). Clearly, every element of \(H \cap a \subseteq H \) is hereditary and transitive. Let \(b \in H \cap a \). Then \(b \subseteq \text{acc}(H \cap a) = a \). It follows that \(H \cap b = (H \cap a) \cap b \). Furthermore, since \(H \) is a history we have

\[
b = \text{acc}(H \cap b) = \text{acc}((H \cap a) \cap b),
\]

which shows that \(H \cap a \) is a history.

(c) Let \(b \in S \). The class

\[
a := \{ s \in H \mid b \in s \text{ or } b \subseteq s \}
\]
is nonempty because \(b \in S = \text{acc}(H) \). By Theorem 2.7, it has a minimal element \(s \in a \).

If \(b \in s = \text{acc}(H \cap s) \), there is some set \(z \in H \cap s \) such that \(b \in z \) or \(b \subseteq z \). It follows that \(z \in a \). But \(z \in s \cap a \) implies that \(s \) is not a minimal element of \(a \). Contradiction.

Therefore, \(b \notin s \) which implies, by definition of \(a \), that \(b \subseteq s \). For transitivity, note that \(x \in b \) implies

\[
x \in b \subseteq s = \text{acc}(H \cap s) \subseteq \text{acc}(H) = S .
\]

For hereditariness, let \(x \subseteq b \). Then \(x \subseteq b \subseteq s \in H \), which implies \(x \in \text{acc}(H) = S \).

(d) By (c) we know that \(x \subseteq s \in S \) implies \(x \in S \). For the other direction, suppose that \(x \in S = \text{acc}(H) \). There is some set \(s \in H \) such that \(x \in s \) or \(x \subseteq s \). By (a), (b), and (c) it follows that \(s \in S \), \(s \) is a stage, and \(s \) is hereditary and transitive. By transitivity, if \(x \in s \) then \(x \subseteq s \). Consequently, we have \(x \subseteq s \in S \) in both cases and the claim follows.

(e) By (d), we have \(S = \text{acc}(H(S)) \). It remains to show that \(H(S) \) is a history. By (c), every element \(s \in H(S) \) is hereditary and transitive. Furthermore, since \(S \) is transitive we have \(s \subseteq S \) and it follows that

\[
H(S) \cap s = \{ x \in s \mid x \text{ is a stage } \} .
\]

Since \(s \) is a stage we know by (d) that \(s = \text{acc}(H(S) \cap s) \).

\(\square \)
Note that, by (a) and (b) above, we have \(H \subseteq H(S) \), for all histories \(H \) of \(S \). In fact, \(H(S) \) is the only history of \(S \) but we need some further results before we can prove this.

Exercise 2.4. Prove, by induction on \(n \), that \(\{ \text{HF}_0, \ldots, \text{HF}_{n-1} \} \) is a history with stage \(\text{HF}_n \).

Exercise 2.5. Construct a hereditary transitivity set \(a \) that is not a stage. *Hint.* It is sufficient to consider sets \(\text{HF}_n \subset a \subset \text{HF}_{n+1} \), for a small \(n \).

After we have seen how to define stages we now prove that they form a strictly increasing sequence \(S_0 \subseteq S_1 \subseteq \ldots \). Together with Theorem 2.7 it follows that the class of all stages is well-ordered by the membership relation \(\in \) (see Section A3.1).

Theorem 2.10. If \(S \) and \(T \) are stages that are sets then we have

\[S \in T \quad \text{or} \quad S = T \quad \text{or} \quad T \in S. \]

Proof. Suppose that there are stages \(S \) and \(T \) such that

\[(*) \quad S \notin T, \quad S \not\in T, \quad \text{and} \quad T \notin S. \]

Define

\[A := \{ s \mid s \text{ is a stage and there is some stage } t \text{ such that } s \text{ and } t \text{ satisfy } (*) \}. \]

By Theorem 2.7, the class \(A \) has a minimal element \(S_0 \). Define

\[B := \{ t \mid t \text{ is a stage such that } S_0 \text{ and } t \text{ satisfy } (*) \}. \]

Again there is a minimal element \(T_0 \in B \).

If we can show that \(H(S_0) = H(T_0) \), it follows that

\[S_0 = \text{acc}(H(S_0)) = \text{acc}(H(T_0)) = T_0. \]
A1. Basic set theory

in contradiction to our choice of S_o and T_o.

Let $s \in S_o$ be a stage. Then $s \not\in T_o$ since $T_o \not\in S_o$. Furthermore, we have $T_o \not\in s$ since, otherwise, transitivity of S_o would imply that $T_o \in S_o$. By minimality of S_o it follows that s and T_o do not satisfy (\ast). Therefore, we have $s \in T_o$.

We have shown that $H(S_o) \subseteq H(T_o)$. A symmetric argument shows that $H(T_o) \subseteq H(S_o)$. Hence, we have $H(S_o) = H(T_o)$ as desired. \quad \Box

Lemma 2.11. Let S and T be stages that are sets.

(a) $S \notin S$

(b) $S \subseteq T$ if and only if $S \in T$ or $S = T$.

(c) $S \subseteq T$ or $T \subseteq S$.

(d) $S \subset T$ if, and only if, $S \in T$.

Proof. (a) Suppose otherwise. Let X be the class of all stages s such that $s \in s$. By Theorem 2.7, X has a minimal element s, that is, an element such that $s \cap X = \emptyset$. But $s \in s \cap X$. Contradiction.

(b) If $S = T$ then $S \subseteq T$, and if $S \in T$ then $S \subseteq T$, by transitivity of T. Conversely, if neither $S = T$ nor $S \in T$ then Theorem 2.10 implies that $T \in S$. If $S \subseteq T$ then $T \in S \subseteq T$ would contradict (a).

(c) If $S \notin T$ then (b) implies that $S \notin T$ and $S \not\neq T$. By Theorem 2.10, it follows that $T \in S$ which, again by (b), implies $T \subseteq S$.

(d) We have $S \subset T$ iff $S \subseteq T$ and $S \not\neq T$. By (a) and (b), the latter is equivalent to $S \in T$. \quad \Box

3. The cumulative hierarchy

In the previous section we have seen that we can arrange all stages in an increasing sequence

$$S_o \subset S_1 \subset \cdots \subset S_a \subset \cdots,$$

which we will call the cumulative hierarchy. If $S \in T$ are stages then we will say that S is earlier than T, or that T is later than S.

18
3. The cumulative hierarchy

From the axioms we have available we cannot prove that there actually are any stages. We introduce a new axiom which ensures that enough stages are available.

Axiom of Creation. For every set a there is a set $S \ni a$ which is a stage.

In particular, this axiom implies that

- for every stage S that is a set, there exists a later stage $T \ni S$ that is also a set.
- the universe \mathbb{S} is the union of all stages.

Of course, even with this new axiom we might still have $\mathbb{S} = \emptyset$. But if at least one set exists, we can now prove that $\text{HF} \subseteq \mathbb{S}$. In particular, $\mathbb{S} = \text{HF}$ satisfies all axioms we have introduced so far.

Exercise 3.1. Prove that \mathbb{S} is a stage with history

$$H(\mathbb{S}) = \{ S \mid S \text{ is a stage} \}.$$

Definition 3.1. (a) We say that a stage T is the successor of the stage S if $S \in T$ and there exists no stage T' such that $S \in T' \in T$. A nonempty stage is a limit if it is not the successor of some other stage.

(b) Let A be a class. We denote by $S(A)$ the earliest stage such that $A \subseteq S(A)$.

Note that $S(A)$ is well-defined by Theorem 2.7. We have $S(s) = s$, for every stage s, in particular, $S(\emptyset) = \emptyset$. The stages \mathbb{S} and HF are limits and HF_{n+1} is the successor of the stage HF_n.

Lemma 3.2. $a \in b$ implies $S(a) \in S(b)$.

Proof. Since $a \in b \subseteq S(b) = \text{acc}(H(S(b)))$ it follows that there is some stage $s \in S(b)$ such that $a \in s$ or $a \subseteq s$. In particular, $S(a)$ is not later than s which implies that $S(a) \subseteq s \in S(b)$. As $S(b)$ is hereditary we therefore have $S(a) \in S(b)$. \qed

Lemma 3.3. \mathbb{S} is the only stage that is a proper class.
A1. Basic set theory

Proof. Let S be a stage. If $S \neq \mathbb{S}$, there is some set $a \in \mathbb{S} \setminus S$. Hence, $S(a) \notin S$ which implies that

$$T \notin H(S), \quad \text{for all stages } T \supseteq S(a).$$

By Lemma 2.9 (e) and Theorem 2.10, we have

$$H(S) \subseteq \{T \mid T \text{ is a stage with } T \in S(a)\} = H(S(a)).$$

In particular, $H(S)$ is a set, which implies that so is $S = \text{acc}(H(S))$. \hfill \qed

Lemma 3.4. Let A be a class. The following statements are equivalent:

1. A is a proper class.
2. $S(A)$ is a proper class.
3. $S(A) = \mathbb{S}$.

Proof. (3) \Rightarrow (1) By the Axiom of Creation, if A is a set then so is $S(A)$.

(1) \Rightarrow (2) If $S(A)$ is a set then $A \subseteq S(A)$ implies that

$$A = \{x \in S(A) \mid x \in A\}$$

is also a set.

(2) \Rightarrow (3) follows by Lemma 3.3. \hfill \qed

With the Axiom of Creation we are finally able to prove most ‘obvious’ properties of sets such that no set is an element of itself or that the union of sets is a set.

Lemma 3.5. If a is a set then $a \notin a$.

Proof. Suppose that there exists some set such that $a \in a$. Then $a \in a \subseteq S(a)$ and, by Lemma 2.9 (d), there is some stage $s \in S(a)$ with $a \subseteq s$. This contradicts the minimality of $S(a)$. \hfill \qed

Theorem 3.6. Every nonempty class A has a minimal element.
Lemma 3.8. If \(a \) and \(b \) are sets then so are \(\bigcup a \), \(a \cup b \), \(\{a\} \), and \(\mathcal{P}(a) \).

Example. By induction on \(n \), it trivially follows that, if \(a_0 \supseteq \cdots \supseteq a_{k-1} \) is a sequence of sets starting with \(a_0 \in \mathcal{H}_n \), then \(k < n \). What happens if \(a_0 = \mathcal{H}_n \)? Then \(a_k \in \mathcal{H}_n \), for some \(n \), and the sequence is of length \(k \leq n \). But note that, for every \(n \), we can find a sequence of length \(n \) starting with \(a_0 = \mathcal{H}_n \). So there is no one bound that works for all sequences.

Definition 3.7. Let \(A \) and \(B \) be classes.

(a) The union of \(A \) is the class
\[
\bigcup A := \{ x \mid x \in b \text{ for some } b \in A \}.
\]

(b) The union of \(A \) and \(B \) is
\[
A \cup B := \{ x \mid x \in A \text{ or } x \in B \}.
\]

(c) The power set of \(A \) is the class
\[
\mathcal{P}(A) := \{ x \mid x \subseteq A \}.
\]

Remark. Note that, by definition, a class contains only sets. In particular, the power set \(\mathcal{P}(A) \) of a proper class contains only the subsets of \(A \), not all subclasses. For instance, we have \(\mathcal{P}(\mathbb{S}) = \mathbb{S} \).
A1. Basic set theory

Proof. Let S_0 and S_1 be stages such that $a \in S_0$ and $b \in S_1$. We know that $S_0 \subseteq S_1$ or $S_1 \subseteq S_0$. By choosing either S_0 or S_1 we can find a stage S such that $S_0 \subseteq S$ and $S_1 \subseteq S$. By transitivity of S it follows that

$$\bigcup a = \{ x \in S \mid x \in b \text{ for some } b \in a \},$$
$$a \cup b = \{ x \in S \mid x \in a \text{ or } x \in b \},$$
$$\{a\} = \{ x \in S \mid x = a \},$$
and $\mathcal{P}(a) = \{ b \in S \mid b \subseteq a \}$. □

Corollary 3.9. If a_0, \ldots, a_{n-1} are sets then so is

$$\{a_0, \ldots, a_{n-1}\} = \{a_0\} \cup \cdots \cup \{a_{n-1}\}.$$

In particular, every finite class is a set.

The next definition provides a useful tool which sometimes allows us to replace a proper class A by a set a. Instead of taking every element $x \in A$ we only consider those such that $S(x)$ is minimal.

Definition 3.10. The cut of a class A is the set

$$\text{cut } A := \{ x \in A \mid S(x) \subseteq S(y) \text{ for all } y \in A \}.$$

Exercise 3.2. What are cut \emptyset and cut $\{ x \mid a \in x \}$?

Lemma 3.11. Every class of the form cut A is a set.

Proof. If $A = \emptyset$ then cut $A = \emptyset$. Otherwise, choose an arbitrary set $a \in A$. Then cut $A \subseteq S(a)$ which implies that cut A is a set. □

The following lemmas clarify the structure of the cumulative hierarchy.

Lemma 3.12. The successor of a stage S is $\mathcal{P}(S)$.
3. The cumulative hierarchy

Proof. By Theorem 2.7, there exists a minimal stage \(T \) with \(S \in T \). We have to prove that \(T = \mathcal{P}(S) \). \(a \subseteq S \in T \) implies \(a \in T \) since \(T \) is hereditary. Hence, \(\mathcal{P}(S) \subseteq T \).

Conversely, if \(s \in T \) is a stage then \(S \not\subseteq s \) because \(T \) is the successor of \(S \). By Theorem 2.10, it follows that \(s \in S \) or \(s = S \). This implies \(s \subseteq S \).

We have shown that \(s \in T \) iff \(s \subseteq S \), for all stages \(s \). It follows by Lemma 2.9 (d) that

\[
T = \{ x \mid x \subseteq s \text{ for some stage } s \in T \} \\
= \{ x \mid x \subseteq s \text{ for some stage } s \subseteq S \} = \{ x \mid x \subseteq S \} = \mathcal{P}(S). \quad \square
\]

Lemma 3.13. Let \(S \) be a nonempty stage. The following statements are equivalent:

1. \(S \) is a limit stage.
2. \(S = \bigcup H(S) \).
3. For every set \(a \in S \), there exists some stage \(s \in S \) with \(a \in s \).
4. If \(a \in S \) then \(\mathcal{P}(a) \in S \).
5. If \(a \in S \) then \(\{a\} \in S \).
6. If \(a \subseteq S \) then cut \(a \in S \).

Proof. (2) ⇒ (1) Suppose that \(S \) is the successor of a stage \(T \). Then we have

\[
H(S) = \{ T \} \cup H(T) .
\]

Since \(s \subseteq T \), for all \(s \in H(T) \), it follows that

\[
\bigcup H(S) = T \neq S.
\]

(1) ⇒ (2) Suppose that \(S \) is a limit stage. By Lemma 2.9 (d), we have

\[
S = \bigcup \{ \mathcal{P}(s) \mid s \in H(S) \} \\
= \bigcup \{ t \mid t \text{ is the successor of some stage } s \in H(S) \} \\
= \bigcup \{ t \mid t \in H(S) \} \\
= \bigcup H(S).
\]
A1. Basic set theory

(1) ⇒ (3) Suppose that S is a limit and let $a \in S$. By Lemma 2.9 (d), there is some stage $s \in S$ with $a \subseteq s$. Hence, $a \in \mathcal{P}(s)$. Since $T := \mathcal{P}(s)$ is the successor of s we have $T \in S$.

(3) ⇒ (4) For each $a \in S$, there is some stage $s \in S$ with $a \in s$. Since s is transitive it follows that $x \subseteq a$ implies $x \in s$. Hence, $\mathcal{P}(a) \subseteq s$. By transitivity of S, we obtain $\mathcal{P}(a) \in S$.

(4) ⇒ (5) If $a \in S$ then $\{a\} \subseteq \mathcal{P}(a) \in S$. Since S is hereditary, it follows that $\{a\} \in S$.

(5) ⇒ (1) If S is no limit, there is some stage $T \in S$ such that $S = \mathcal{P}(T)$. By assumption, $\{T\} \in S = \mathcal{P}(T)$. Hence, $\{T\} \subseteq T$ which implies that $T \in T$. A contradiction.

(3) ⇒ (6) Let $b := \text{cut } a$. If $a = \emptyset$ then $b = \emptyset$ and we are done. If there is some element $x \in a$ then, by assumption, we can find a stage $s \in S$ with $x \in s$. By definition, $b \subseteq s$, and it follows that $b \in S$.

(6) ⇒ (5) Let $a \in S$ and set $b := \{x \in S \mid a \subseteq x\}$. Clearly, $b \subseteq S$. By assumption, we therefore have $c := \text{cut } b \in S$. Hence, $\{a\} \subseteq c$ implies $\{a\} \in S$.

So far, we still might have $S = \emptyset$ or $S = \text{HF}$. To exclude these cases we introduce a new axiom which states that $\text{HF} \in S$.

Axiom of Infinity. There exists a set that is a limit stage.

We call the theory consisting of the four axioms

- Axiom of Extensionality
- Axiom of Separation
- Axiom of Creation
- Axiom of Infinity

basic set theory. Every model of this theory consist of a hierarchy of stages

$$S_0 \subset S_1 \subset \cdots \subset S_\omega \subset S_{\omega + 1} \subset \cdots$$

where $S_n = \text{HF}_n$, for finite n. The differences between two such models can be classified according to two axes: the length of the hierarchy and the size of each stage.
3. The cumulative hierarchy

Let S and S' be two models with stages $(S_\alpha)_{\alpha<\kappa}$ and $(S'_\alpha)_{\alpha<\lambda}$, respectively. We know that their lengths κ and λ are at least what we will call $\omega + \omega$ in Section A3.2. But our current axioms do not tell us whether the process of creation stops there or whether we again take the union of all stages and continue taking power sets until we reach $\omega + \omega + \omega$. At this point we again have to decide whether to stop or to continue, and so on.

The second possible difference stems from the fact that the power-set operation is ambiguous. We know that $S_n = \text{HF}_n = S'_n$, for all finite n. But we might have $S_\alpha \neq S'_\alpha$, for infinite α. The reason is that there is no way to express that all subsets of S_α are contained in $S_{\alpha+1}$. We have the Axiom of Separation which states that all subsets exist that we can explicitly define. But there are much more possible subsets than there are definitions.
A1. *Basic set theory*
A2. Relations

1. Relations and functions

With basic set theory available we can define most of the concepts used in mathematics. The simplest one is the notion of an ordered pair. The characteristic property of such pairs is that \(\langle a, b \rangle = \langle c, d \rangle \) implies \(a = c \) and \(b = d \).

Definition 1.1. (a) Let \(a \) and \(b \) be sets. The ordered pair \(\langle a, b \rangle \) is the set
\[
\langle a, b \rangle := \{ \{ a \}, \{ a, b \} \}.
\]

(b) Let \(A \) and \(B \) be classes. The cartesian product of \(A \) and \(B \) is the class
\[
A \times B := \{ c \mid c = \langle a, b \rangle \text{ for some } a \in A \text{ and } b \in B \}.
\]

Let us show that ordered pairs have the desired property.

Lemma 1.2. If \(\{ a, b \} = \{ a, c \} \) then \(b = c \).

Proof. We have \(b \in \{ a, b \} = \{ a, c \} \). Hence, \(b = a \) or \(b = c \). In the latter case we are done. Otherwise, we have \(c \in \{ a, c \} = \{ a, b \} = \{ b \} \) which implies that \(c = b \).

Lemma 1.3. If \(\langle a, b \rangle = \langle c, d \rangle \) then \(a = c \) and \(b = d \).

Proof. Suppose that \(\langle a, b \rangle = \langle c, d \rangle \).
\[
\{ a \} \in \{ \{ a \}, \{ a, b \} \} = \{ \{ c \}, \{ c, d \} \}
\]
A2. Relations

implies \{a\} = \{c\} or \{a\} = \{c, d\}. In the latter case, we have \(a = c = d\). In both cases, we therefore have \{a\} = \{c\}. By the preceding lemma, it follows that \(\{a, b\} = \{c, d\}\) and, applying the lemma again, we obtain \(b = d\). \(\Box\)

Remark. The above definition of an ordered pair \(\langle a, b\rangle\) does only work for sets. Nevertheless we will use also pairs \(\langle A, B\rangle\) where \(A\) or \(B\) are proper classes. There are several ways to make such an expression well-defined. A simple one is to define

\[
\langle A, B \rangle := (\{0\} \times A) \cup (\{1\} \times B) \quad (= A \cup B)
\]

whenever at least one of \(A\) and \(B\) is a proper class. (The operation \(\cup\) will be defined more generally in the next section.) It is easy to check that with this definition the term \(\langle A, B \rangle\) has the properties of an ordered pair, that is, \(A \cup B = C \cup D\) implies \(A = C\) and \(B = D\).

Definition 1.4. (a) For sets \(a_0, \ldots, a_n\) we define inductively

\[
\langle \rangle := \emptyset, \quad \langle a_0 \rangle := a_0,
\]

and \(\langle a_0, \ldots, a_n \rangle := \langle\langle a_0, \ldots, a_{n-1}\rangle, a_n\rangle\).

We call \(\langle a_0, \ldots, a_{n-1} \rangle\) a tuple of length \(n\). \(\langle \rangle\) is the empty tuple.

(b) For a class \(A\), we define its \(n\)-th power by

\[
A^0 := \{\langle \rangle \}, \quad A^1 := A, \quad \text{and} \quad A^{n+1} := A^n \times A, \quad \text{for } n > 1.
\]

Definition 1.5. A relation, or a predicate, of arity \(n\) is a subclass \(R \subseteq S^n\). If \(R \subseteq A^n\), for some class \(A\), we say that \(R\) is over \(A\).

Note that \(\emptyset\) and \(\{\langle \rangle \}\) are the only relations of arity 0. In logic they are usually interpreted as false and true. A relation of arity 1 over \(A\) is just a subclass \(R \subseteq A\).

Definition 1.6. Let \(R\) be a binary relation. The domain of \(R\) is the class

\[
\text{dom } R := \{ a \mid \langle a, b \rangle \in R \text{ for some } b \},
\]
and its range is

$$\text{rng } R := \{ b \mid (a, b) \in R \text{ for some } a \}.$$

The field of R is $\text{dom } R \cup \text{rng } R$.

In particular, $\text{dom } R$ and $\text{rng } R$ are the smallest classes such that

$$R \subseteq \text{dom } R \times \text{rng } R.$$

Definition 1.7. (a) A binary relation R is called *functional* if, for every $a \in \text{dom } R$, there exists exactly one set b such that $(a, b) \in R$. We denote this unique element b by $R(a)$. Hence, we can write R as

$$R = \{ (a, R(a)) \mid a \in \text{dom } R \}.$$

A functional relation $R \subseteq A \times B$ is also called a *partial function* from A to B.

(b) A *function* from A to B is a functional relation $f \subseteq A \times B$ with $\text{dom } f = A$ and $\text{rng } f \subseteq B$. Functions are also called *maps* or *mappings*. We write $f : A \to B$ to denote the fact that f is a function from A to B.

A function of *arity* n is a function of the form

$$f : A_0 \times \cdots \times A_{n-1} \to B.$$

We will write $x \mapsto y$ to denote the function f such that $f(x) = y$. (Usually, y will be an expression depending on x.)

(c) For a set a and a class B, we denote by B^a the class of all functions $f : a \to B$.

Remark. A 0-ary function $f : A^0 \to B$ is uniquely determined by the value $f(\langle \rangle)$. We will call such functions *constants* and identify them with their only value.

Sometimes we write binary relations and functions in infix notation, that is, for a relation $R \in A \times A$, we write $a R b$ instead of $(a, b) \in R$ and, for $f : A \times A \to A$, we write $a f b$ instead of $f(a, b)$.

A2. Relations

Definition 1.8. (a) For every class A, we define the *identity function* $\text{id}_A : A \to A$ by $\text{id}_A(a) := a$.

(b) If $R \subseteq A \times B$ and $S \subseteq B \times C$ are relations, we can define their *composition* $S \circ R : A \times C$ by

$$S \circ R := \{ (a, c) \mid \text{there is some } b \in B \text{ such that } (a, b) \in R \text{ and } (b, c) \in S \}.$$

(Note the reversal of the ordering.) In particular, if $f : A \to B$ and $g : B \to C$ are functions then

$$(g \circ f)(x) := g(f(x)).$$

(c) The *inverse* of a relation $R \subseteq A \times B$ is the relation

$$R^{-1} := \{ (b, a) \mid (a, b) \in R \}.$$

In particular, a function $g : B \to A$ is the inverse of the function $f : A \to B$ if

$$g(f(a)) = a \quad \text{and} \quad f(g(b)) = b, \quad \text{for all } a \in A \text{ and } b \in B,$$

that is, if $g \circ f = \text{id}_A$ and $f \circ g = \text{id}_B$.

For $b \in B$, we will write

$$R^{-1}(b) := \{ a \mid (a, b) \in R \}.$$

Note that, if R^{-1} is a function, we have already defined

$$R^{-1}(b) := a \quad \text{for the unique } a \text{ such that } (a, b) \in R.$$

It should always be clear from the context which of these two definitions we have in mind when we write $R^{-1}(b)$.

(d) The *restriction* of a relation $R \subseteq A \times B$ to a class C is the relation

$$R|_C := R \cap (C \times C).$$
1. Relations and functions

Its left restriction is

\[R \upharpoonright C := R \cap (C \times B) . \]

(e) The image of a class C under a binary relation \(R \subseteq A \times B \) is the class

\[R[C] := \text{rng } (R \upharpoonright C) . \]

Remark. The set \(A^A \) together with the operation \(\circ \) forms a monoid, that is, \(\circ \) is associative

\[f \circ (g \circ h) = (f \circ g) \circ h , \quad \text{for all } f, g, h \in A^A , \]

and there exists a neutral element

\[\text{id}_A \circ f = f \quad \text{and} \quad f \circ \text{id}_A = f \quad \text{for all } f \in A^A . \]

Exercise 1.1. Is it true that \(R^{-1} \circ R = \text{id}_A \), for all relations \(R \subseteq A \times B \)?

Exercise 1.2. Prove that \(\circ \) is associative and that \(\text{id}_A \) is a neutral element.

Definition 1.9. Let \(f : A \to B \) be a function.

(a) \(f \) is injective if there is no pair \(a, a' \in A \) of distinct elements such that \(f(a) = f(a') \).

(b) \(f \) is surjective if \(\text{rng } f = B \).

(c) \(f \) is called bijective if it is both injective and surjective.

Lemma 1.10. Let \(f : A \to B \) be a function.

(a) The following statements are equivalent:

(1) \(f \) is bijective.

(2) \(f^{-1} \) is a function \(B \to A \).

(3) There exists a function \(g : B \to A \) such that \(g \circ f = \text{id}_A \) and \(f \circ g = \text{id}_B \).
A2. Relations

(b) The following statements are equivalent:

1. \(f \) is injective.
2. \(f \circ g = f \circ h \) implies \(g = h \), for all functions \(g, h : C \to A \).
3. \(A = \emptyset \) or there exists some function \(g : B \to A \) such that \(g \circ f = \text{id}_A \).
4. \(f^{-1}[f[X]] = X \), for all \(X \subseteq A \).

(c) The following statements are equivalent:

1. \(f \) is surjective.
2. \(g \circ f = h \circ f \) implies \(g = h \), for all functions \(g, h : B \to C \).
3. \(f[f^{-1}[Y]] = Y \), for all \(Y \subseteq B \).

(d) If there exists some function \(g : B \to A \) such that \(f \circ g = \text{id}_B \) then \(f \) is surjective.

Proof. (a) (1) \(\Rightarrow \) (2) Let \(b \in B \). Since \(f \) is surjective there exists some \(a \in A \) such that \(f(a) = b \). If \(a' \in A \) is some element with \(f(a') = b \) then the injectivity of \(f \) implies that \(a' = a \). We have shown that, for every element \(b \in B \), there is a unique \(a \in A \) such that \(f^{-1}(b) = a \). Hence, \(f^{-1} \) is functional and \(\text{dom} f^{-1} = B \).

(2) \(\Rightarrow \) (3) \(f^{-1} : B \to A \) is a function and we have \(f^{-1} \circ f = \text{id}_A \) and \(f \circ f^{-1} = \text{id}_B \).

(3) \(\Rightarrow \) (1) If \(f(a) = f(b) \), for \(a, b \in A \), then

\[
a = \text{id}_A(a) = (g \circ f)(a) = (g \circ f)(b) = \text{id}_A(b) = b.
\]

Consequently, \(f \) is injective. To show that it is also surjective let \(b \in B \). Setting \(a := g(b) \) we have

\[
f(a) = (f \circ g)(b) = \text{id}_B(b) = b.
\]

Hence, \(b \in \text{rng} f \).

(b) (1) \(\Rightarrow \) (4) Let \(X \subseteq A \). For every \(a \in X \), we have \(f(a) \in f[X] \) and, therefore, \(a \in f^{-1}[f[X]] \). Consequently, \(X \subseteq f^{-1}[f[X]] \). Conversely,
1. Relations and functions

Suppose that \(a \in f^{-1}[f[X]] \) and set \(b := f(a) \). Since \(b \in f[X] \) there is some \(c \in X \) with \(f(c) = b \). As \(f \) is injective this implies that \(a = c \in X \).

(4) \(\Rightarrow \) (3) If \(A = \emptyset \) then there is nothing to do. Hence, assume that \(A \neq \emptyset \). We define \(g \) as follows. For every \(b \in \text{rng} f \), there is some element \(a \in A \) with \(f(a) = b \). Since \(f^{-1}(b) = f^{-1}[f[\{a\}]] = \{a\} \) it follows that this element \(a \) is unique. Hence, fixing \(a_o \in A \) we can define \(g \) by

\[
g(b) := \begin{cases}
a & \text{if } f^{-1}(b) = \{a\}, \\
a_o & \text{if } b \notin \text{rng} f.
\end{cases}
\]

(3) \(\Rightarrow \) (2) If \(A = \emptyset \), there are no functions \(C \to A \) and the claim holds trivially. Hence, assume that \(A \neq \emptyset \) and let \(k \) be a function such that \(k \circ f = \text{id}_A \). Then \(f \circ g = f \circ h \) implies

\[
g = \text{id}_A \circ g = k \circ f \circ g = k \circ f \circ h = \text{id}_A \circ h = h. \]

(2) \(\Rightarrow \) (1) Suppose that \(f \) is not injective. Then there are two elements \(a, b \in A \) with \(a \neq b \) such that \(f(a) = f(b) \). Let \(C := [1] = \{0\} \) be a set with a single element and define \(g, h : C \to A \) by \(g(0) := a \) and \(h(0) := b \). Then \(g \neq h \) but \(f \circ g = f \circ h \).

(c) (1) \(\Rightarrow \) (2) Suppose that \(g \neq h \). There is some element \(b \in B \) with \(g(b) \neq h(b) \). Since \(f \) is surjective we can find an element \(a \in A \) with \(f(a) = b \). Hence, \((g \circ f)(a) = g(b) \neq h(b) = (h \circ f)(a) \).

(2) \(\Rightarrow \) (1) Suppose that \(f \) is not surjective. Then there is some element \(b \in B \setminus \text{rng} f \). Let \(C := [2] = \{0, 1\} \) be a set with two elements and define \(g, h : B \to C \) by

\[
g(x) := \begin{cases}
1 & \text{if } x = b, \\
0 & \text{otherwise,}
\end{cases}
\]

and \(h(x) := 0 \), for all \(x \in B \).

Then we have \(g \neq h \) but \(g \circ f = h \circ f \).

(3) \(\Rightarrow \) (1) \(f[f^{-1}[B]] = B \) implies that \(\text{rng} f = B \).

(1) \(\Rightarrow \) (3) Let \(Y \subseteq B \). If \(b \in f[f^{-1}[Y]] \) then there is some \(a \in f^{-1}[Y] \) with \(f(a) = b \). Hence, \(a \in f^{-1}[Y] \) implies that \(b = f(a) \in Y \). Consequently, we have \(f[f^{-1}[Y]] \subseteq Y \).
A2. Relations

For the converse, let \(b \in Y \). Since \(f \) is surjective there is some \(a \in A \) with \(f(a) = b \). Hence, \(a \in f^{-1}[Y] \) and it follows that \(b = f(a) \in f[f^{-1}[Y]] \).

(d) Let \(k \) be a function such that \(f \circ k = \text{id}_B \). Then \(g \circ f = h \circ f \) implies

\[
g = g \circ \text{id}_B = g \circ f \circ k = h \circ f \circ k = h \circ \text{id}_B = h.
\]

By (c), it follows that \(f \) is surjective. \(\square \)

Remark. The converse of (d) also holds but we cannot prove it without the Axiom of Choice, which we will introduce in Section A4.1 below. Actually one can prove that the Axiom of Choice is equivalent to the claim that, for every surjective function \(f \), there exists some function \(g \) with \(f \circ g = \text{id} \).

Remark. The subset of all bijective functions \(f : A \to A \) forms a group since, by the preceding lemma, every element \(f \) has an inverse \(f^{-1} \).

Exercise 1.3. Let \(f : A \to B \) and \(g : B \to C \) be functions. Prove that, if \(f \) and \(g \) are (a) injective, (b) surjective, or (c) bijective then so is \(g \circ f \).

We conclude this section with two important results about the existence of functions. The first one can be used to prove that there exists a bijection between two given sets without constructing this function explicitly.

Lemma 1.11. Let \(A \subseteq B \subseteq C \) be sets. If there exists a bijective function \(f : C \to A \), there is also a bijection \(g : C \to B \).

Proof. Let

\[
Z := \bigcap \{ X \subseteq C \mid C \setminus B \subseteq X \text{ and } f[X] \subseteq X \}.
\]

Then \(C \setminus B \subseteq Z \) and \(f[Z] \subseteq Z \). We claim that

\[
g(x) := \begin{cases} f(x) & \text{if } x \in Z, \\ x & \text{otherwise}, \end{cases}
\]

34
is the desired bijection \(g : C \to B \).

Let \(Y := C \setminus Z \) be the complement of \(Z \). Since \(g[Y] \subseteq Y \) and \(g[Z] \subseteq Z \) it is sufficient to show that the restrictions \(g | Y : Y \to Y \) and \(g | Z : Z \to Z \cap B \) are bijections. Clearly, \(g | Y = \text{id}_Y \) is bijective and \(g | Z = f | Z \) is injective. Therefore, we only need to prove that \(f[Z] = Z \cap B \).

By definition of \(Z \), we have \(f[Z] \subseteq Z \cap \text{rng } f \subseteq Z \cap B \). For the other inclusion, suppose that there exists some element \(a \in (Z \cap B) \setminus f[Z] \). Since \(a \in B \) the set \(X := Z \setminus \{a\} \) satisfies \(C \setminus B \subseteq X \) and \(f[X] \subseteq X \). By definition of \(Z \), it follows that \(Z \subseteq X \). Contradiction.

\[\square \]

Theorem 1.12 (Bernstein). If there are injective functions \(f : A \to B \) and \(g : B \to A \) then there exists a bijective function \(h : A \to B \).

Proof. We have \(g[f[A]] \subseteq g[B] \subseteq A \). Since \(f \) and \(g \) are injective so is their composition \(g \circ f \). When regarded as function \(g \circ f : A \to g[f[A]] \) it is also surjective. Hence, by the preceding lemma, there exists a bijective mapping \(h : A \to g[B] \). Since \(k := g^{-1} \circ g[B] : g[B] \to B \) is bijective it follows that so is \(k \circ h : A \to B \).

\[\square \]

The second result deals with functions between a set and its power set.

Theorem 1.13 (Cantor). For every set \(a \), there exists an injective function \(a \to \wp(a) \) but no surjective one.
A2. Relations

Proof. The function \(f : a \to \mathcal{P}(a) \) with \(f(x) := \{x\} \) is injective.

For a contradiction, suppose that there is also a surjective function \(f : a \to \mathcal{P}(a) \). We define the set

\[
z := \{ x \in a \mid x \notin f(x) \} \subseteq a .
\]

Since \(f \) is surjective there is some element \(b \in a \) with \(f(b) = z \). By definition of \(z \), we have

\[
b \in z \quad \text{iff} \quad b \notin f(b) = z .
\]

A contradiction. \(\Box \)

Corollary 1.14. For all sets \(a \), there are no injective functions \(\mathcal{P}(a) \to a \).

Proof. Suppose that \(f : \mathcal{P}(a) \to a \) is injective. We define a function \(g : a \to \mathcal{P}(a) \) by

\[
g(x) := \begin{cases} f^{-1}(x) & \text{if } x \in \text{rng } f , \\ \emptyset & \text{otherwise .} \end{cases}
\]

Note that \(g \) is well-defined since \(f \) is injective. Furthermore, we have \(g \circ f = \text{id}_{\mathcal{P}(a)} \). Hence, Lemma 1.10 (d) implies that \(g \) is surjective. This contradicts the Theorem of Cantor. \(\Box \)

2. Products and unions

So far, we have defined cartesian products of finitely many sets and tuples of finite length. In this section we will show how to generalise these definitions to infinitely many factors.

Remark. (a) There is a canonical bijection \(\pi : A^\mathbb{N} \to A^n \) between the set \(A^\mathbb{N} \) of all functions \(\mathbb{N} \to A \) and the \(n \)-th power \(A^n \) of \(A \). \(\pi \) maps a function \(f : \mathbb{N} \to A \) to the tuple

\[
\pi(f) := (f(1), \ldots, f(n-1)) ,
\]
and its inverse \(\pi^{-1} \) maps a tuple \((a_0, \ldots, a_{n-1})\) to the function \(f : [n] \to A \) with \(f(i) = a_i \).

(b) There is also a canonical bijection \(\pi : (A \times B) \times C \to A \times (B \times C) \) defined by

\[
\pi((a, b), c) := (a, (b, c)).
\]

(c) Finally, let us define a canonical bijection \(\pi : A^{B \times C} \to (A^C)^B \) that maps a function \(f : B \times C \to A \) to the function \(g : B \to A^C \) with

\[
g(b) := h_b \quad \text{where} \quad h_b(c) := f(b, c), \quad \text{for } b \in B, c \in C.
\]

In the theory of programming languages this transformation of a function \(B \times C \to A \) into a function \(B \to A^C \) is called currying.

Part (a) of the above remark gives a hint on how to generalise finite tuples. A tuple of length \(n \) corresponds to a map \([n] \to A\). Therefore, we define an infinite tuple as map \(\mathbb{N} \to A \).

Definition 2.1. (a) Let \(A \) be a class and \(I \) a set. A function \(f : I \to A \) is called a sequence, or family, over \(I \). If \(f(i) = a_i \) then we also write \(f \) in the form \((a_i)_{i \in I}\).

(b) Let \(I \) be a set, \((A_i)_{i \in I}\) a sequence of sets, and \(A := \bigcup \{A_i \mid i \in I\} \) their union. The product of \((A_i)_{i \in I}\) is the class

\[
\prod_{i \in I} A_i := \{ f \in A^I \mid f(i) \in A_i \text{ for all } i \}.
\]

(c) Let \((A_i)_{i \in I}\) be a sequence of sets and \(k \in I \). The projection to the \(k \)-th coordinate is the map

\[
\text{pr}_k : \prod_{i \in I} A_i \to A_k \quad \text{with} \quad \text{pr}_k(f) := f(k).
\]

Remark. (a) If \(A_i = A \), for all \(i \in I \), then \(\prod_{i \in I} A_i = A^I \).

(b) As we have seen above there is a canonical bijection between \(A_0 \times A_1 \) and \(\prod_{i \in [2]} A_i \). In the following we will not distinguish between these sets.
A2. Relations

Let us introduce some notation and conventions regarding sequences. To indicate that a certain variable refers to a sequence we will write it with a bar: \bar{a}. If the sequence is over I, the components of \bar{a} will always be $(a_i)_{i \in I}$. Sometimes we will not distinguish between a sequence $\bar{a} = (a_i)_{i \in I}$ and its range $\text{rng} \bar{a} = \{ a_i \mid i \in I \}$. In particular, we write $\bar{a} \cup \bar{b}$ instead of $\text{rng} \bar{a} \cup \text{rng} \bar{b}$ and, if we do not want to specify the index set I, we will write $\bar{a} \subseteq A$ instead of $\bar{a} \subseteq A^I$. Finally, for a function $f : A \to B$, we write $f(\bar{a})$ to denote the sequence $(f(a_i))_{i \in I}$.

Lemma 2.2. Let A be a set and $(B_i)_{i \in I}$ a sequence of sets. For every sequence $(f_i)_{i \in I}$ of functions $f_i : A \to B_i$ there exists a unique function $g : A \to \prod_i B_i$ such that

$$\text{pr}_i \circ g = f_i, \quad \text{for all } i \in I.$$

Proof. The function

$$g(a) := (f_i(a))_{i \in I}$$

has obviously the desired properties. We have to show that it is unique. Let $h : A \to \prod_i B_i$ be another such function. If $g \neq h$, there is some element $a \in A$ such that $g(a) \neq h(a)$. Let $(b_i)_{i \in I} := h(a)$. For every $i \in I$, we have

$$b_i = (\text{pr}_i \circ h)(a) = f_i(a).$$

Hence $g(a) = (f_i(a))_i = (b_i)_i = h(a)$. A contradiction. □

Definition 2.3. The *disjoint union* of a sequence $(A_i)_{i \in I}$ of sets is the class

$$\bigcup_{i \in I} A_i := \{ (i, a) \mid i \in I, \ a \in A_i \}. $$

Similarly, if A and B are classes then we can define their disjoint union as

$$A \cup B := ([0] \times A) \cup ([1] \times B).$$

38
3. Graphs and partial orders

The k-th insertion is the canonical map

$$\text{in}_k : A_k \to \bigsqcup_{i \in I} A_i$$

with $\text{in}_k(a) := (k, a)$.

Remark. If $A_i = A$, for all $i \in I$, then $\bigsqcup_{i \in I} A_i = I \times A$.

Lemma 2.4. Let B be a set and $(A_i)_{i \in I}$ a sequence of sets. For every sequence $(f_i)_{i \in I}$ of functions $f_i : A_i \to B$ there exists a unique function $g : \bigsqcup_{i \in I} A_i \to B$ such that

$$g \circ \text{in}_i = f_i, \quad \text{for all } i \in I.$$

Proof. The function

$$g(i, a) := f_i(a)$$

has obviously the desired properties. We have to show that it is unique. Let $h : \bigsqcup_{i \in I} A_i \to B$ be another such function. If $g \neq h$ then there is some element $(k, a) \in \bigcup_{i \in I} A_i$ such that $g(k, a) \neq h(k, a)$. We have

$$h(k, a) = (h \circ \text{in}_k)(a) = f_k(a) = g(k, a).$$

A contradiction.

3. Graphs and partial orders

When considering relations it is frequently necessary to specify the sets they are over.

Definition 3.1. A graph is a pair $\langle A, R \rangle$ where $R \subseteq A \times A$ is a binary relation on A.

More generally one can consider sets together with several relations and functions. This will lead to the notion of a structure in Chapter B1.

Definition 3.2. Let $\langle A, R \rangle$ be a graph.
A2. Relations

(a) R is reflexive if $\langle a, a \rangle \in R$, for all $a \in A$.

(b) R is irreflexive if $\langle a, a \rangle \notin R$, for all $a \in A$.

(c) R is symmetric if we have $\langle a, b \rangle \in R$, if, and only if, $\langle b, a \rangle \in R$, for all $a, b \in A$.

(d) R is antisymmetric if $\langle a, b \rangle \in R$ and $\langle b, a \rangle \in R$ implies $a = b$.

(e) R is transitive if $\langle a, b \rangle \in R$ and $\langle b, c \rangle \in R$ implies $\langle a, c \rangle \in R$, for all $a, b, c \in A$.

Note that, for the definition of reflexivity, it is important to specify the set A. If $\langle A, R \rangle$ is reflexive and $A \subset B$ then $\langle B, R \rangle$ is not reflexive.

Example. (a) The relation $A \times A$ is reflexive, symmetric, and transitive. It is irreflexive if, and only if, $A = \emptyset$, and it is antisymmetric if, and only if, A contains at most one element.

(b) The diagonal $\text{id}_A = \{ \langle a, a \rangle \mid a \in A \}$ is reflexive, symmetric, antisymmetric, and transitive. It is irreflexive if, and only if, $A = \emptyset$.

(c) The empty relation $\emptyset \subseteq A \times A$ is reflexive, symmetric, antisymmetric, and transitive. It is reflexive if, and only if, $A = \emptyset$.

Definition 3.3. (a) A (non-strict) partial order is a graph $\langle A, \leq \rangle$ where \leq is reflexive, transitive, and antisymmetric.

(b) A strict partial order is a graph $\langle A, < \rangle$ where $<$ is irreflexive and transitive.

(c) A partial order $\langle A, \leq \rangle$ is linear, or total, if

$$a \leq b \text{ or } b \leq a \text{, for all } a, b \in A.$$

(d) Instead of saying that $\langle A, R \rangle$ is a partial or linear order we also say that R is a partial/linear order on A, or that R orders A partially/linearly.

(e) If $\mathcal{A} = \langle A, \leq \rangle$ is a partial order, we denote by $\mathcal{A}^{\text{op}} := \langle A, \leq^{-1} \rangle$ the graph where the order relation is reversed. \mathcal{A}^{op} is called the opposite order.
3. Graphs and partial orders

Remark. (a) To each non-strict partial order \(\leq \) on \(A \) we can associate the strict partial order

\[
a < b \quad : \iff \quad a \leq b \text{ and } a \neq b.
\]

Similarly, if \(< \) is a strict partial order on \(A \), we can define a non-strict version by

\[
a \leq b \quad : \iff \quad a < b \text{ or } a = b.
\]

(b) If \(\mathcal{A} \) is a partial order then so is \(\mathcal{A}^{\text{op}} \).

Example. (a) The subset relation \(\subseteq \) is a partial order on \(\mathcal{S} \).
(b) The usual ordering \(\leq \) is a linear order on the rational numbers \(\mathbb{Q} \).
(c) The divisibility relation

\[
a \mid b \quad : \iff \quad b = ac \text{ for some } c
\]

is a partial order on the natural numbers \(\mathbb{N} \).

Definition 3.4. Let \(\mathcal{A} = \langle A, \leq \rangle \) be a partial order.

(a) An initial segment of \(A \) is a subset \(I \subseteq A \) such that \(a \in I \) and \(b \leq a \) implies \(b \in I \). Similarly, a final segment of \(A \) is a subset \(F \subseteq A \) such that \(a \in F \) and \(b \geq a \) implies \(b \in F \).
(b) A set \(X \subseteq A \) generates the segments

\[
\downarrow_{\mathcal{A}} X := \{ a \in A \mid a \leq b \text{ for some } b \in X \},
\]

and

\[
\uparrow_{\mathcal{A}} X := \{ a \in A \mid a \geq b \text{ for some } b \in X \}.
\]

For \(X = \{ x \} \), we also write \(\downarrow_{\mathcal{A}} x \) and \(\uparrow_{\mathcal{A}} x \). Similarly, we define

\[
\downarrow_{\mathcal{A}} X := \{ a \in A \mid a < b \text{ for some } b \in X \},
\]

and

\[
\uparrow_{\mathcal{A}} X := \{ a \in A \mid a > b \text{ for some } b \in X \}.
\]

Finally, we set

\[
[a, b]_{\mathcal{A}} := \uparrow_{\mathcal{A}} a \cap \downarrow_{\mathcal{A}} b \quad \text{and} \quad (a, b)_{\mathcal{A}} := \uparrow_{\mathcal{A}} a \cap \downarrow_{\mathcal{A}} b.
\]
A2. Relations

(c) Let \(X \subseteq A \) and \(a \in X \). We call \(a \) the greatest element of \(X \) if \(x \leq a \), for all \(x \in X \). And we say that \(a \) is maximal if there is no \(x \in X \) with \(a < x \). Least and minimal elements are defined analogously. We denote the greatest element of \(X \) by \(\max_\mathcal{I} X \) and the least element by \(\min_\mathcal{I} X \), provided these elements exist.

(d) Let \(X \subseteq A \). We say that \(a \) is an upper bound of \(X \) if \(x \leq a \), for all \(x \in X \). If \(a \) is an upper bound of \(X \) and \(a \leq b \), for every other upper bound \(b \) of \(X \), then \(a \) is the least upper bound, or supremum, of \(X \). If the least upper bound of \(X \) exists, we denote it by \(\sup_\mathcal{I} X \).

The notion of a (greatest) lower bound is defined analogously. The greatest lower bound is also called the infimum of \(X \). We denote it by \(\inf_\mathcal{I} X \). If the order \(\mathcal{I} \) is understood we will omit the subscript \(\mathcal{I} \) and we just write \(\sup X \) and \(\inf X \).

(e) A linearly ordered subset \(C \subseteq A \) is called a chain.

Example. (a) Let \(\mathcal{Q} := (\mathbb{Q}, \leq) \). The set \(I := \{ x \in \mathbb{Q} \mid x < \sqrt{2} \} \) is an initial segment of \(\mathcal{Q} \). Every rational number \(y > \sqrt{2} \) is an upper bound of \(I \) but \(I \) has no least upper bound.

(b) Consider \((\mathbb{N}, \mid) \). Its least element is the number 1 and its greatest element is 0. The least upper bound of two elements \([k], [m] \in \mathbb{N} \) is their least common multiple \(\text{lcm}(k, m) \), and their greatest lower bound is their greatest common divisor \(\text{gcd}(k, m) \). The set \(P \subseteq \mathbb{N} \) of all prime numbers has the least upper bound 0 and the greatest lower bound 1. The set \(\{ 2^n \mid n \in \mathbb{N} \} \) of all powers of two forms a chain.

Exercise 3.1. Consider \((B, \subseteq) \) where

\[
B := \{ X \subseteq \mathbb{N} \mid X \text{ is finite or } \mathbb{N} \setminus X \text{ is finite} \}.
\]

(a) Construct a set \(X \subseteq B \) that has no minimal element.

(b) Construct a set \(X \subseteq B \) with lower bounds but without infimum.

Lemma 3.5. Let \((A, \leq) \) be a partial order. If \(A \) is a set, the following statements are equivalent:

1. Every subset \(X \subseteq A \) has a supremum.

42
3. Graphs and partial orders

(2) Every subset \(X \subseteq A \) has an infimum.

Proof. We only prove \((1) \Rightarrow (2)\). The other direction follows in exactly the same way. Let \(X \subseteq A \) and set

\[
C := \{ a \in A \mid a \text{ is a lower bound of } X \}.
\]

By assumption, \(c := \sup C \) exists. We claim that \(\inf X = c \). Let \(b \in X \). By definition, we have \(a \leq b \), for all \(a \in C \). Hence, \(b \) is an upper bound of \(C \) and we have \(b \geq \sup C = c \). As \(b \) was arbitrary it follows that \(c \) is a lower bound of \(X \). If \(a \) is an arbitrary lower bound of \(X \), we have \(a \in C \), which implies that \(a \leq c \). Consequently, \(c \) is the greatest lower bound of \(X \).

\[\square \]

Definition 3.6. A partial order \(\langle A, \leq \rangle \) is complete if every subset \(X \subseteq A \) has an infimum and a supremum.

Remark. Every complete partial order has a least element \(\bot := \sup \emptyset \) and a greatest element \(\top := \inf \emptyset \).

Example. (a) Let \(A \) be a set. The partial order \(\langle \mathcal{P}(A), \subseteq \rangle \) is complete. If \(X \subseteq \mathcal{P}(A) \) then

\[
\sup X = \bigcup X \in \mathcal{P}(A) \quad \text{and} \quad \inf X = \bigcap X \in \mathcal{P}(A).
\]

(b) The order \(\langle \mathbb{R}, \leq \rangle \) is complete. \(\langle \mathbb{Q}, \leq \rangle \) is not since the set

\[
\{ x \in \mathbb{Q} \mid x \leq \pi \}
\]

has no least upper bound in \(\mathbb{Q} \).

(c) The order \(\langle \mathbb{N}, \leq \rangle \) is not complete since \(\inf \emptyset \) and \(\sup \mathbb{N} \) do not exist.

(d) Let \(\mathcal{A} = \langle A, \leq \rangle \) be an arbitrary partial order. We can construct a complete partial order \(\mathcal{C} = \langle C, \subseteq \rangle \) containing \(\mathcal{A} \) as follows. Let \(C \subseteq \mathcal{P}(A) \) be the set of all initial segments of \(A \) ordered by inclusion. The desired embedding \(f : A \to C \) is given by \(f(a) := \downarrow_a \).

43
A2. Relations

Next we turn to the study of functions between partial orders. In particular, we will consider functions \(f : A \rightarrow A \) mapping one partial order into itself. To simplify notation, we will write

\[f : \mathcal{A} \rightarrow \mathcal{B}, \]

for partial orders \(\mathcal{A} = \langle A, \leq_A \rangle \) and \(\mathcal{B} = \langle B, \leq_B \rangle \), to denote that \(f \) is a function \(f : A \rightarrow B \).

Definition 3.7. Let \(\mathcal{A} = \langle A, \leq_A \rangle \) and \(\mathcal{B} = \langle B, \leq_B \rangle \) be partial orders.

(a) A function \(f : A \rightarrow B \) is increasing if

\[a \leq_A b \quad \text{implies} \quad f(a) \leq_B f(b), \quad \text{for all } a, b \in A, \]

and \(f \) is strictly increasing if

\[a <_A b \quad \text{implies} \quad f(a) <_B f(b), \quad \text{for all } a, b \in A. \]

(b) A function \(f : A \rightarrow B \) is an embedding if we have

\[a \leq_A b \quad \text{iff} \quad f(a) \leq_B f(b), \quad \text{for all } a, b \in A. \]

A bijective embedding is called an isomorphism. If there exists an isomorphism \(f : A \rightarrow A \) then we say that \(\mathcal{A} \) and \(\mathcal{B} \) are isomorphic and we write \(\mathcal{A} \cong \mathcal{B} \).

Remark. Every isomorphism is strictly increasing.

Exercise 3.2. Define a function that is

(a) increasing but not strictly increasing;
(b) strictly increasing but not an embedding;
(c) an embedding but not an isomorphism.

Exercise 3.3. Construct a strictly increasing function

\[f : \langle \mathbb{N}, \mid \rangle \rightarrow \langle \mathcal{P}(\mathbb{N}), \subseteq \rangle. \]
Lemma 3.8. Let \(\langle A, \leq_A \rangle \) and \(\langle B, \leq_B \rangle \) be partial orders and \(h : A \to B \) an increasing function. Let \(C \subseteq A \) and \(a \in A \).

(a) If \(a \) is an upper bound of \(C \) then \(h(a) \) is an upper bound of \(h[C] \).
(b) If \(a \) is a lower bound of \(C \) then \(h(a) \) is a lower bound of \(h[C] \).

Lemma 3.9. Let \(\langle A, \leq_A \rangle \) and \(\langle B, \leq_B \rangle \) be partial orders and \(h : A \to B \) an embedding. Let \(C \subseteq A \) and \(a \in A \).

(a) \(h(a) = \sup h[C] \) implies \(a = \sup C \).
(b) \(h(a) = \inf h[C] \) implies \(a = \inf C \).

Proof. (a) Since \(h \) is an embedding it follows that \(h(c) \leq_B h(a) \) implies \(c \leq_A a \), for \(c \in C \). Hence, \(a \) is an upper bound of \(C \). To show that it is the least one, suppose that \(b \) is another upper bound of \(C \). Then \(c \leq_A b \), for \(c \in C \), implies \(h(c) \leq_B h(b) \). Hence, \(h(b) \) is an upper bound of \(h[C] \). Since \(h(a) \) is the least such bound it follows that \(h(a) \leq_B h(b) \). Consequently, we have \(a \leq_A b \), as desired.

(b) \(h \) is also an embedding of \(\langle A, \geq_A \rangle \) into \(\langle B, \geq_B \rangle \). Hence, (b) follows from (a) by reversing the orders. \qed

Corollary 3.10. Let \(\langle F, \subseteq \rangle \) be a partial order with \(F \subseteq \mathcal{P}(A) \) and \(C \subseteq F \).

(a) \(\bigcup C \in F \) implies \(\sup C = \bigcup C \).
(b) \(\bigcap C \in F \) implies \(\inf C = \bigcap C \).

Proof. We can apply Lemma 3.9 to the inclusion map \(F \to \mathcal{P}(A) \). \qed

Corollary 3.11. Let \(\mathcal{A} = \langle A, \leq \rangle \) be a partial order. If \(B \subseteq A \) is a nonempty set such that

\[
\inf_{\mathcal{A}} X \in B \quad \text{and} \quad \sup_{\mathcal{A}} X \in B, \quad \text{for every nonempty } X \subseteq B,
\]

then \(\mathcal{B} := \langle B, \leq \rangle \) is a complete partial order where, for every nonempty subset \(X \subseteq B \), we have

\[
\inf_{\mathcal{B}} X = \inf_{\mathcal{A}} X \quad \text{and} \quad \sup_{\mathcal{B}} X = \sup_{\mathcal{A}} X.
\]
A2. Relations

Proof. If \(X \subseteq B \) is nonempty then, applying Lemma 3.9 to the inclusion map \(\mathfrak{B} \to \mathfrak{A} \), it follows that

\[
\inf_{\mathfrak{B}} X = \inf_{\mathfrak{A}} X \quad \text{and} \quad \sup_{\mathfrak{B}} X = \sup_{\mathfrak{A}} X.
\]

In particular, \(\inf_{\mathfrak{B}} X \) and \(\sup_{\mathfrak{B}} X \) exist. For the empty set, it follows similarly that

\[
\inf_{\mathfrak{B}} \emptyset = \sup_{\mathfrak{B}} B = \sup_{\mathfrak{A}} B \in B,
\]

and \(\sup_{\mathfrak{B}} \emptyset = \inf_{\mathfrak{B}} B = \inf_{\mathfrak{A}} B \in B \).

Consequently, \(\mathfrak{B} \) is complete. \(\Box \)

We have seen that although increasing functions preserve the ordering of elements they do not necessarily preserve supremaums and infimums. Let us take a look at functions that do.

Definition 3.12. Let \(\langle A, \leq_A \rangle \) and \(\langle B, \leq_B \rangle \) be partial orders. A function \(f : A \to B \) is continuous if, whenever a nonempty chain \(C \subseteq A \) has a supremum then \(f[C] \) also has a supremum and we have

\[
\sup f[C] = f(\sup C).
\]

\(f \) is called strictly continuous if it is continuous and injective.

Remark. Every (strictly) continuous function is (strictly) increasing.

Exercise 3.4. Prove that continuous functions are increasing.

Example. (a) Let \(\langle A, \leq \rangle \) be the linear order where \(A = \mathbb{N} \cup \mathbb{N} \) and

\[
\langle i, a \rangle \leq \langle k, b \rangle : \text{iff} \quad i < k, \text{ or } i = k \text{ and } a \leq b.
\]

\[
\begin{array}{ccccccccccc}
\langle 0,0 \rangle & \langle 0,1 \rangle & \langle 0,2 \rangle & \langle 0,3 \rangle & \cdots & \langle 1,0 \rangle & \langle 1,1 \rangle & \langle 1,2 \rangle & \langle 1,3 \rangle & \cdots \\
\bullet & \bullet & \bullet & \bullet & \cdots & \bullet & \bullet & \bullet & \bullet & \cdots \\
\end{array}
\]
4. Fixed points and closure operators

The function $f : A \to A : (i, a) \mapsto (i, a + 1)$ is not continuous. Consider
the initial segment $X := \{0\} \times \mathbb{N} = \downarrow (1, 0) \subseteq A$. We have $\text{sup } X = (1, 0)$
but
\[
\text{sup } f[X] = (1, 0) < (1, 1) = f((1, 0)) .
\]

(b) Let A be a set and (F, \subseteq) the partial order with
\[
F := \{ X \subseteq A \mid A \setminus X \text{ is finite } \} .
\]

For every bijective function $\sigma : A \to A$ we obtain a continuous mapping
$f : F \to F$ by setting
\[
f(X) := \{ \sigma(x) \mid x \in X \} .
\]

Lemma 3.13. Every isomorphism $f : \mathcal{A} \to \mathcal{B}$ is strictly continuous.

Proof. Let $C \subseteq A$ be a nonempty chain with supremum. For every $a \in C$, we have $a \leq \text{sup } C$, which implies that $f(a) \leq f(\text{sup } C)$. Hence,
\[
\text{sup } f[C] \leq f(\text{sup } C) .
\]

For the converse, let $b := \text{sup } f[C]$. By Lemma 3.9, it follows that $\text{sup } C = f^{-1}(b)$. \hfill \Box

4. Fixed points and closure operators

Many objects can be defined as solution to an equation of the form $x = f(x)$. Such solutions are called fixed points of the function f. For example, the solutions of a system of linear equations $Ax = b$ are exactly the fixed points of the function
\[
f(x) := Ax + x - b .
\]
Definition 4.1. Let \(f : A \rightarrow A \) be a function. An element \(a \in A \) with \(f(a) = a \) is called a fixed point of \(f \). The class of all fixed points of \(f \) is denoted by

\[
\text{fix } f := \{ a \in A \mid f(a) = a \}.
\]

We denote the least and greatest fixed point of \(f \), if it exists, by

\[
\text{lfp } f := \min \text{ fix } f \quad \text{and} \quad \text{gfp } f := \max \text{ fix } f.
\]

Example. (a) Let \(\langle \mathbb{R}, < \rangle \) be the order of the real numbers. The function

\[
f(x) := \frac{1}{4}x^3 - \frac{3}{4}x^2 + \frac{3}{4}x + \frac{3}{4}
\]

has 3 fixed points: \(\text{fix } f = \{-1, 1, 3\} \).

(b) Consider \(\langle \mathbb{N}, \leq \rangle \). The function \(f : \mathbb{N} \rightarrow \mathbb{N} \) with \(f(n) := n + 1 \) has no fixed points.

(c) Consider \(\langle \mathcal{P}[2], \subseteq \rangle \). The function \(f : \mathcal{P}[2] \rightarrow \mathcal{P}[2] \) with

\[
f(x) := \begin{cases} \{0\} & \text{if } x = \emptyset, \\ x & \text{otherwise}, \end{cases}
\]
has the fixed points \(\{0\}, \{1\}, \{0, 1\} \). It has no least fixed point.

(d) Consider \((F, \subseteq) \) where

\[
F := \{ X \subseteq \mathbb{N} \mid X \text{ or } \mathbb{N} \setminus X \text{ is finite} \}.
\]

The function \(f : F \to F \) defined by

\[
f(X) := \begin{cases}
X \cup \{1 + \max X\} & \text{if } X \text{ is finite,} \\
X & \text{otherwise,}
\end{cases}
\]

has fixed points

\[
\text{fix } f = \{ X \subseteq \mathbb{N} \mid \mathbb{N} \setminus X \text{ is finite} \},
\]

but no least one.

Exercise 4.1. Let \(\mathcal{A} = (\mathcal{P}(\mathbb{N}), \subseteq) \). Construct a function \(f : \mathcal{A} \to \mathcal{A} \) that has a least fixed point but no greatest one.

Not every function has fixed points. The next theorem presents an important special case where we always have a least fixed point. In Section A3.3 we will collect further results about the existence of fixed points and methods to compute them.

Theorem 4.2 (Knaster, Tarski). Let \(\langle A, \leq \rangle \) be a complete partial order where \(A \) is a set. Every increasing function \(f : A \to A \) has a least fixed point and we have

\[
\text{lfp } f = \inf \{ a \in A \mid f(a) \leq a \}.
\]

Proof. Set \(B := \{ a \in A \mid f(a) \leq a \} \) and \(b := \inf B \). For every \(a \in B \), \(b \leq a \) implies \(f(b) \leq f(a) \leq a \), since \(f \) is increasing. Hence, \(f(b) \) is a lower bound of \(B \) and it follows that \(f(b) \leq \inf B = b \). This implies that \(f(f(b)) \leq f(b) \) and, by definition of \(B \), it follows that \(f(b) \in B \). Hence, \(f(b) \geq \inf B = b \). Consequently, we have \(f(b) = b \) and \(b \) is a fixed point of \(f \).

Let \(a \) be another fixed point of \(f \). Then \(f(a) = a \) implies \(a \in B \) and we have \(b = \inf B \leq a \). Hence, \(b \) is the least fixed point of \(f \). \(\square \)
Theorem 4.3. Let \(\langle A, \leq \rangle \) be a complete partial order where \(A \) is a set and let \(f : A \to A \) be increasing. The set \(F := \text{fix} f \) is nonempty and \(\mathcal{G} := \langle F, \leq \rangle \) forms a complete partial order where, for \(X \subseteq F \),

\[
\inf_{\mathcal{G}} X = \sup_{\mathcal{G}} \{ a \in A \mid a \leq \inf_{\mathcal{G}} X \text{ and } f(a) \geq a \} ,
\]
\[
\sup_{\mathcal{G}} X = \inf_{\mathcal{G}} \{ a \in A \mid a \geq \sup_{\mathcal{G}} X \text{ and } f(a) \leq a \} .
\]

Proof. We have already shown in the preceding theorem that \(F \neq \emptyset \). It remains to prove that \(\mathcal{G} \) is complete. For \(X \subseteq A \), let \(U := \uparrow \sup_{\mathcal{G}} X \subseteq A \) be the set of all upper bounds of \(X \). If \(Z \subseteq U \) then

\[
\sup_{\mathcal{G}} Z \geq \sup_{\mathcal{G}} X \quad \text{and} \quad \inf_{\mathcal{G}} Z \geq \inf_{\mathcal{G}} X .
\]

It follows that the partial order \(\langle U, \leq \rangle \) is complete. Furthermore, if \(a \in U \) and \(x \in X \) then \(a \geq x \) implies \(f(a) \geq f(x) \). Hence, \(f \uparrow U \) is an increasing function \(U \to U \). By Theorem 4.2, it follows that

\[
\sup_{\mathcal{G}} X = \inf \{ a \in U \mid f(a) \leq a \} ,
\]

as desired. The claim for \(\inf_{\mathcal{G}} X \) follows by applying the equation for \(\sup_{\mathcal{G}} X \) to the opposite order \(\mathcal{G}^{\text{op}} \).

Example. Consider a closed interval \([a, b] \subseteq \mathbb{R}\) of the real line.

(a) Since the order \(\langle [a, b], \langle \rangle \) is complete, it follows by the Theorem of Knaster and Tarski that every increasing function \(f : [a, b] \to [a, b] \) has a fixed point.

(b) Let \(f : [0, 2] \to [0, 2] \) be the polynomial function

\[
f(x) := \frac{1}{4}x^3 - \frac{3}{2}x^2 + \frac{3}{2}x + \frac{3}{4}
\]

from Figure 2. We have \(\{ x \mid f(x) \leq x \} = [1, 2] \) and \(\inf f = 1 \).

(c) The order \(\langle \mathbb{R}, \langle \rangle \) is not complete. Again, let \(f : \mathbb{R} \to \mathbb{R} \) by the function from Figure 2. We have already seen that its fixed points are \(-1, 1, \) and \(3 \). But the set

\[
\{ x \mid f(x) \leq x \} = (-\infty, -1] \cup [1, 3]
\]

has no minimal element.
4. Fixed points and closure operators

As a special case of Theorem 4.3 we consider complete partial orders obtained via closure operators.

Definition 4.4. Let \(A \) be a class.

(a) A **closure operator** on \(A \) is a function \(c : \mathcal{P}(A) \to \mathcal{P}(A) \) such that, for all \(x, y \in \mathcal{P}(A) \),

- \(x \subseteq c(x) \),
- \(c(c(x)) = c(x) \), and
- \(x \subseteq y \) implies \(c(x) \subseteq c(y) \).

(b) A set \(x \subseteq A \) is **\(c \)-closed** if \(c(x) = x \).

(c) A closure operator \(c \) has **finite character** if, for all sets \(x \subseteq A \), we have

\[
c(x) = \bigcup \{ c(x_o) \mid x_o \subseteq x \text{ is finite} \}.
\]

If \(c \) has finite character we also say that \(c \) is **algebraic**.

(d) A closure operator \(c \) is **topological** if we have

- \(c(\emptyset) = \emptyset \) and
- \(c(x \cup y) = c(x) \cup c(y) \), for all \(x, y \in \mathcal{P}(A) \).

Remark. Let \(c \) be a closure operator on \(A \).

(a) The class of \(c \)-closed sets is \(\text{fix } c = \text{rng } c \).

(b) If the class \(A \) is a set then it is \(c \)-closed.

Example. (a) Let \(V \) be a vector space. For \(X \subseteq V \), let \(\langle X \rangle \) be the subspace of \(V \) spanned by \(X \). The function \(X \mapsto \langle X \rangle \) is a closure operator with finite character.

(b) Let \(X \) be a topological space. For \(A \subseteq X \), let \(c(A) \) be the topological closure of \(A \) in \(X \). Then \(c \) is a topological closure operator.

(c) Let \(A \) be a set and \(a \in A \). The functions \(c, d : \mathcal{P}(A) \to \mathcal{P}(A) \) with

\[
c(X) := X \quad \text{and} \quad d(X) := X \cup \{a\}
\]

are closure operators on \(A \).
Exercise 4.2. Let \(\mathcal{A} = (A, \leq) \) be a partial order. For \(X \subseteq A \), we define
\[
c(X) := \{ \sup C \mid C \subseteq X \text{ is a nonempty chain with supremum} \}.
\]

(a) Prove that the function \(c \) is a topological closure operator on \(A \).
(b) Let \(\mathcal{B} \) be a second partial order and \(d \) the corresponding closure operator. Prove that a function \(f : \mathcal{A} \to \mathcal{B} \) is continuous if, and only if, every \(d \)-closed set \(X \in \text{fix } d \) has a \(c \)-closed preimage \(f^{-1}[X] \in \text{fix } c \).

Exercise 4.3. Let \((A, \leq) \) be a partial order. For sets \(X \subseteq A \), we define
\[
U(X) := \{ a \in A \mid a \text{ is an upper bound of } X \},
\]
\[
L(X) := \{ a \in A \mid a \text{ is a lower bound of } X \}.
\]

Prove that the function \(c : X \mapsto L(U(X)) \) is a closure operator on \(A \).

Lemma 4.5. Let \(c \) be a closure operator on \(A \) and \(x, y \subseteq A \) sets.

(a) \(c(x) \cup c(y) \subseteq c(x \cup y) \).
(b) \(c(x \cup y) = c(c(x) \cup c(y)) \).

Proof. (a) By monotonicity of \(c \), we have \(c(x) \subseteq c(x \cup y) \) and \(c(y) \subseteq c(x \cup y) \).
(b) It follows from \(x \cup y \subseteq c(x) \cup c(y) \) and (a) that
\[
c(x \cup y) \subseteq c(c(x) \cup c(y)) \subseteq c(c(x \cup y)) = c(x \cup y).
\]

Lemma 4.6. Let \(c \) be a closure operator on \(A \) with finite character. For every chain \(C \subseteq \text{fix } c \), we have
\[
c(\cup C) = \cup C.
\]

Proof. By definition, we have \(U \subseteq \cup C \subseteq c(\cup C) \). For the converse, let \(x_0 \subseteq \cup C \) be finite. Since \(C \) is linearly ordered by \(\leq \) there exists some element \(x \in C \) with \(x_0 \subseteq x \). Hence, we have \(c(x_0) \subseteq c(x) = x \subseteq \cup C \). It follows that
\[
c(\cup C) = \bigcup \{ c(x_0) \mid x_0 \subseteq \cup C \text{ finite} \} \subseteq \cup C.
\]
4. Fixed points and closure operators

If c is a closure operator, the set $C := \text{fix } c$ of c-closed sets has the following properties.

Definition 4.7. A set $C \subseteq \mathcal{P}(A)$ is called a system of closed sets if we have

- $A \in C$ and
- $\bigcap Z \in C$, for every $Z \subseteq C$.

A pair (A, C) where $C \subseteq \mathcal{P}(A)$ is a system of closed sets is called a closure space.

Lemma 4.8. (a) If c is a closure operator on A then $\text{fix } c$ forms a system of closed sets.

(b) If $C \subseteq \mathcal{P}(A)$ is a system of closed sets then the mapping

$$c : X \mapsto \bigcap \{ C \in C \mid X \subseteq C \}$$

defines a closure operator on A with $\text{fix } c = C$.

The following theorem states that the family of c-closed sets forms a complete partial order. We can use this result to prove that a given partial order \mathfrak{I} is complete by defining a closure operator whose closed sets are exactly the elements of \mathfrak{I}. An example of such a proof is provided in Corollary 4.17.

Theorem 4.9. Let A be a set and c a closure operator on A. The graph (F, \subseteq) with $F := \text{fix } c$ forms a complete partial order with

$$\inf X = \bigcap X \quad \text{and} \quad \sup X = c(\bigcup X), \quad \text{for all } X \subseteq F.$$

Proof. Since closure operators are increasing we can apply Theorem 4.3. By Lemma 4.8 (b), it follows that

$$\sup X = \bigcap \{ Z \subseteq A \mid Z \supseteq \bigcup X \text{ and } c(Z) \subseteq Z \}$$

$$= \bigcap \{ Z \subseteq A \mid Z \supseteq \bigcup X \text{ and } c(Z) = Z \}$$

$$= c(\bigcup X),$$

53
A2. Relations

and \(\inf X = \bigcup \{ Z \subseteq A \mid Z \subseteq X \text{ and } c(Z) \supseteq Z \} \)
\[= \bigcup \{ Z \subseteq A \mid Z \subseteq X \} \]
\[= \cap X. \]

\textbf{Corollary 4.10.} Let \(c \) be a closure operator on \(A \) and set \(F := \text{fix } c \). The operator \(c \) is continuous if we consider it as a function

\[c : (\mathcal{P}(A), \subseteq) \to (F, \subseteq). \]

\textit{Proof.} For a nonempty chain \(X \subseteq \mathcal{P}(A) \), we have

\[c(\sup X) = c(\bigcup X) \subseteq c(\bigcup c[X]) = \sup c[X] \]
\[\subseteq \sup \{ c(\sup X) \} = c(\sup X). \]

As an application of closure operators we consider equivalence relations.

\textbf{Definition 4.11.} (a) A binary relation \(\sim \subseteq A \times A \) is an \textit{equivalence relation} on \(A \) if it is reflexive, symmetric, and transitive.

(b) Let \(\sim \subseteq A \times A \) be an equivalence relation. If \(A \) is a set, we define the \(\sim \)-class of an element \(a \in A \) by

\[[a]_{\sim} := \{ b \in A \mid b \sim a \}. \]

For proper classes \(A \), we set

\[[a]_{\sim} := \text{cut } \{ b \in A \mid b \sim a \}. \]

Note that, despite the name, a \(\sim \)-class is always a set. We denote the class of all \(\sim \)-classes by

\[A/\sim := \{ [a]_{\sim} \mid a \in A \}. \]

\textit{Example.} (a) The diagonal \(\text{id}_A \) is the smallest equivalence relation on \(A \). The largest one is the full relation \(A \times A \).

(b) The isomorphism relation \(\cong \) is an equivalence relation on the class of all partial orders.
4. Fixed points and closure operators

Lemma 4.12. Let \(\sim \) be an equivalence relation on \(A \) and \(a, b \in A \). Then

\[
a \sim b \quad \text{iff} \quad [a]_\sim = [b]_\sim \quad \text{iff} \quad [a]_\sim \cap [b]_\sim \neq \emptyset.
\]

Remark. Let \(A \) be a set. A partition of \(A \) is a set \(P \subseteq \mathcal{P}(A) \) of nonempty subsets of \(A \) such that \(A = \bigcup P \) and \(p \cap q = \emptyset \), for all \(p, q \in P \) with \(p \neq q \).

If \(\sim \) is an equivalence relation on \(A \) then \(A/\sim \) forms a partition on \(A \). Conversely, given a partition \(P \) of \(A \), we can define an equivalence relation \(\sim_P \) on \(A \) with \(A/\sim_P = P \) by setting

\[
a \sim_P b : \text{iff} \quad \text{there is some } p \in P \text{ with } a, b \in p.
\]

Definition 4.13. Let \(A \) be a set and \(R \subseteq A \times A \) a binary relation on \(A \). The transitive closure of \(R \) is the relation

\[
TC(R) := \bigcap \{ S \subseteq A \times A \mid S \supseteq R \text{ is transitive} \}.
\]

Since the family of transitive relations is closed under intersections we can use Lemma 4.8 (b) to prove that \(TC \) is a closure operator.

Lemma 4.14. Let \(A \) be a class. \(TC \) is a closure operator on \(A \times A \).

Lemma 4.15. If \(R \subseteq A \times A \) is a symmetric relation then so is \(TC(R) \).

Proof. Let \(S := TC(R) \cap (TC(R))^{-1} \). Since \(R \) is symmetric we have \(R \subseteq S \).

We claim that \(S \) is transitive.

Let \(\langle a, b \rangle, \langle b, c \rangle \in S \). Then \(\langle a, b \rangle, \langle b, c \rangle \in TC(R) \) and \(\langle b, a \rangle, \langle c, b \rangle \in TC(R) \). Therefore, we have \(\langle a, c \rangle \in TC(R) \) and \(\langle c, a \rangle \in TC(R) \). This implies that \(\langle a, c \rangle \in S \), as desired.

We have shown that \(S \) is a transitive relation containing \(R \). By the definition of \(TC \) it follows that \(TC(R) \subseteq S = TC(R) \cap TC(R)^{-1} \). This implies that \(TC(R)^{-1} = TC(R) \). Hence, \(TC(R) \) is symmetric. \(\square \)

Lemma 4.16. Let \(R \subseteq A \times A \) be a binary relation.

(a) The smallest reflexive relation containing \(R \) is \(R \cup id_A \).
A2. Relations

(b) The smallest symmetric relation containing R is $R \cup R^{-1}$.
(c) The smallest transitive relation containing R is $TC(R)$.
(d) The smallest equivalence relation containing R is $TC(R \cup R^{-1} \cup id_A)$.

Proof. (a) $R \cup id_A$ is obviously reflexive and it contains R. Conversely, suppose that $S \supseteq R$ is reflexive. Then $id_A \subseteq S$ implies that $R \cup id_A \subseteq S$.
(b) is proved analogously.
(c) Let $S \supseteq R$ be transitive. Then the intersection in the definition of TC contains S. Hence, $TC(R) \subseteq S$. Furthermore, we have $R \subseteq TC(R)$ by definition. It remains to prove that $TC(R)$ is transitive.
Let $\langle a, b \rangle, \langle b, c \rangle \in TC(R)$. Then we have $\langle a, b \rangle, \langle b, c \rangle \in S$, for every transitive relation $S \supseteq R$. Hence, we have $\langle a, c \rangle \in S$, for each such relation S. This implies that $\langle a, c \rangle \in TC(R)$.
(d) Set $E := TC(R \cup R^{-1} \cup id_A)$. Clearly, we have $R \subseteq E$ and, if $S \supseteq R$ is an equivalence relation then $E \subseteq S$. Hence, it is remains to prove that E is an equivalence relation. It is transitive by (c), symmetric by Lemma 4.15, and E is reflexive since $id_A \subseteq TC(R \cup R^{-1} \cup id_A)$.

Corollary 4.17. Let A be a set and $F \subseteq \mathcal{P}(A \times A)$ the set of all equivalence relations on A. Then $\langle F, \subseteq \rangle$ forms a complete partial order. If $X \subseteq F$ is nonempty then we have

\[\inf X = \bigcap X \quad \text{and} \quad \sup X = TC(\bigcup X). \]

Proof. By Lemma 4.16, we have $F = \text{fix } c$ where c is the closure operator with

\[c(R) := TC(R \cup R^{-1} \cup id_A). \]

The relation $E := \bigcup X$ is reflexive and symmetric since X is nonempty. Hence, we have $TC(E \cup E^{-1} \cup id_A) = TC(E)$. Consequently, the claim follows from Theorem 4.9. \hfill \square
A3. Ordinals

1. Well-orders

When defining stages we frequently used the fact that any class of stages has a minimal element. In this section we study arbitrary orders with this property.

Definition 1.1. Let \(\langle A, R \rangle \) be a graph.

(a) An element \(a \in A \) is \(R \)-minimal if \(\langle b, a \rangle \in R \) implies \(b = a \).

(b) A relation \(R \) is left-narrow if \(R^{-1}(a) \) is a set, for every set \(a \in \text{rng} \ R \).

(c) \(R \) is well-founded if every nonempty subset \(B \subseteq A \) contains an \(R \)-minimal element. A left-narrow, well-founded linear order is called a well-order.

Example. (a) \(\langle \mathbb{N}, \leq \rangle \) is a well-order.

(b) \(\langle \mathbb{N}, \mid \rangle \) is a well-founded partial order.

(c) The membership relation \(\epsilon \) is a well-founded partial order on \(\mathbb{S} \). It is a well-order on the class of all stages.

(d) \(\langle \mathcal{P}(\mathbb{N}), \subseteq \rangle \) is not well-founded.

(e) A partial order \(\langle A, \leq \rangle \) is left-narrow if, and only if, \(\downarrow a \) is a set, for all \(a \in A \).

Exercise 1.1. Prove that \(\langle \mathcal{P}(\mathbb{N}), \subseteq \rangle \) is not well-founded.

Lemma 1.2. If \(\langle A, R \rangle \) is a well-founded graph and \(B \subseteq A \) then \(\langle B, R|_B \rangle \) is also well-founded.

Proof. Every nonempty subset \(C \subseteq B \) is also a nonempty subset of \(A \) and has an \(R \)-minimal element. \(\square \)
A3. *Ordinals*

Lemma 1.3. If \(\langle A, \leq \rangle \) is a well-founded and left-narrow partial order, there exists no infinite sequence \((a_n)_{n \in \mathbb{N}} \in A^\mathbb{N}\) such that \(a_n \neq a_{n+1}\) and \(a_{n+1} \leq a_n\), for all \(n\).

Proof. If there exists such an infinite sequence then the class \(\text{rng} \, \bar{a} = \{ a_n \mid n \in \mathbb{N} \}\) is nonempty and has no \(\leq\)-minimal element. Furthermore, \(\text{rng} \, \bar{a} \subseteq \downarrow a_o\) is a set since the order is left-narrow. \(\square\)

The reason why well-founded relations are of interest is that these are exactly those relations that admit proofs by induction. As the theorem below shows we can prove that every element of a well-founded partial order \(\langle A, \leq \rangle\) satisfies a given property \(\varphi\) by showing that, if every element \(b < a\) satisfies \(\varphi\) then \(a\) also satisfies \(\varphi\).

Lemma 1.4. Let \(\langle A, \leq \rangle\) be a well-founded, left-narrow partial order. Every nonempty subclass \(X \subseteq A\) has a minimal element.

Proof. Let \(X \subseteq A\) be nonempty and fix some element \(a \in X\). \(\downarrow a\) is a set since \(\leq\) is left-narrow. Hence, \(Y := X \cap \downarrow a\) is a nonempty subset of \(A\) and has a minimal element \(b\). Note that \(b \in Y \subseteq X\) and, if \(c \in X\) is some element with \(c \leq b \leq a\), then \(c \in Y\). Therefore, it follows that \(b\) is also a minimal element of \(X\). \(\square\)

Theorem 1.5. Let \(\langle A, \leq \rangle\) be a well-founded, left-narrow partial order. If \(X \subseteq A\) is a subclass such that

\[\downarrow a \subseteq X \quad \text{implies} \quad a \in X, \quad \text{for all} \quad a \in A, \]

then \(X = A\).

Proof. Let \(X \subseteq A\) be a class as above. For a contradiction, suppose that \(X \neq A\). Fix some element \(a \in A \setminus X\). Since \(\leq\) is left-narrow \(B := \downarrow a \setminus X\) is a set. Hence, \(B\) has a \(\leq\)-minimal element \(b\). It follows that \(\downarrow b \subseteq A \setminus B \subseteq X\), which implies that \(b \in X\). Contradiction. \(\square\)
1. Well-orders

Example. Consider the well-order \(\langle \mathbb{N}, < \rangle\) of the natural numbers. Suppose that \(X \subseteq \mathbb{N}\) is a subset such that we can show that

\[b \in X, \text{ for all } b < a, \implies a \in X, \]

then we have \(X = \mathbb{N}\). Proofs based on this fact are called ‘proofs by induction’. The above corollary states that such proofs work not only for the natural numbers but for all well-orders.

Let \(\langle A, \leq \rangle\) be a well-order. The minimal element of a given subclass \(X \subseteq A\) is unique since \(A\) is linearly ordered. Therefore, if \(A\) is not empty, it has a least element \(\bot\). The *successor* \(a^+\) of an element \(a \in A\) is the least element of the class \(\uparrow a\). \(a^+\) is defined for every element of \(A\) except for the greatest one. An element that is neither the least one nor a successor of some other element is called a *limit*.

It turns out that we can define a canonical well-founded order on the class \(\text{Wo}\) of all well-orders.

Remark. Note that speaking of ‘the class of all well-orders’ is sloppy language since, by definition, a class contains only sets. Instead, we should call \(\text{Wo}\) ‘the class of all well-orders that are sets’.

Definition 1.6. Let \(\mathcal{A} = \langle A, \leq_A \rangle\) and \(\mathcal{B} = \langle B, \leq_B \rangle\) be well-orders. We define

\[
\mathcal{A} < \mathcal{B} : \text{iff } A \text{ is a set and, for some } b \in B, \text{ there exists an isomorphism } f : A \to \downarrow_B b .
\]

(Note that, if \(f\) exists, it is necessarily a set because \(A\) and \(\downarrow_B b\) are both sets.)

To prove that this defines an order on \(\text{Wo}\) we need some technical lemmas.

Lemma 1.7. Let \(\langle A, \leq \rangle\) be a well-order. If \(f : A \to A\) is a strictly increasing function then \(a \leq f(a)\), for all \(a \in A\).
A3. Ordinals

Proof. Suppose that there exists some \(a \in A \) with \(a > f(a) \). Let \(a_0 \) be the minimal such element. By minimality of \(a_0 \) we have

\[
f(a_0) \leq f(f(a_0)).
\]

On the other hand, since \(f \) is strictly increasing we have

\[
f(f(a_0)) < f(a_0).
\]

Contradiction.

Lemma 1.8. Let \(\langle A, \leq \rangle \) be a well-order and \(I \subseteq A \). The following statements are equivalent:

1. \(I \) is a proper initial segment of \(A \).
2. \(I = \downarrow_{A} a \), for some \(a \in A \).
3. \(I \) is an initial segment of \(A \) and \(I \) is non-isomorphic to \(A \).

Proof. (1) \(\Rightarrow \) (2) If \(I \) is a proper subclass of \(A \) then \(A \setminus I \) is nonempty and has a least element \(a \). Consequently, we have \(I = \downarrow a \).

(2) \(\Rightarrow \) (3) Let \(I = \downarrow a \). Suppose there exists an isomorphism \(f : A \to I \). By Lemma 1.7, we have \(f(a) \geq a \). Hence, \(f(a) \notin I = \text{rng } f \). Contradiction.

(3) \(\Rightarrow \) (1) is trivial.

Corollary 1.9. \(< \) is a strict partial order on \(\text{Wo} \).

Proof. We can see immediately from the definition that \(< \) is transitive. Suppose that \(\mathcal{A} < \mathcal{A} \), for some well-order \(\mathcal{A} = \langle A, \leq \rangle \). By definition there exists an element \(a \in A \) and an isomorphism \(f : A \to \downarrow_{A} a \). This contradicts the preceding lemma.

Lemma 1.10. Let \(\langle A, \leq_A \rangle \) and \(\langle B, \leq_B \rangle \) be well-orders. There exists at most one isomorphism \(f : A \to B \).
1. Well-orders

Proof. Let $f, g : A \to B$ be isomorphisms. Then so is $g \circ f^{-1} : B \to B$. In particular, $g \circ f^{-1}$ is strictly increasing. By Lemma 1.7, we obtain

$$ f(a) \leq (g \circ f^{-1})(f(a)) = g(a), \quad \text{for all } a \in A. $$

Similarly, we derive $g(a) \leq f(a)$, for all a. It follows that $f = g$. \[\square\]

We still have to prove that $<$ is linear. Unfortunately, this is not true. The following theorem states that, for all well-orders \mathcal{A} and \mathcal{B}, exactly one of the following conditions holds $\mathcal{A} < \mathcal{B}$ or $\mathcal{A} \cong \mathcal{B}$ or $\mathcal{A} > \mathcal{B}$. In order for $<$ to be linear, the second condition should read $\mathcal{A} = \mathcal{B}$. We will see how to deal with this problem in the next section.

Theorem 1.11. Let $\langle A, \leq_A \rangle$ and $\langle B, \leq_B \rangle$ be well-orders. Exactly one of the following statements holds:

1. There exists an isomorphism $f : A \to J$ where $J \subseteq B$ is a proper initial segment of B.
2. There exists an isomorphism $f : A \to B$.
3. There exists an isomorphism $f : I \to B$ where $I \subseteq A$ is a proper initial segment of A.

(f might be a proper class.)

Proof. We claim that

$$ f := \{ (a, b) \in A \times B \mid \text{there is an isomorphism} \downarrow a \to \downarrow b \}. $$

is the desired isomorphism.

First, we show that $(a_o, b_o), (a_1, b_1) \in f$ implies

$$ a_o < a_1 \quad \text{iff} \quad b_o < b_1. $$

For a contradiction, suppose that $a_o < a_1$ and $b_o \geq b_1$. We have isomorphisms

$$ h_o : \downarrow a_o \to \downarrow b_o \quad \text{and} \quad h_1 : \downarrow a_1 \to \downarrow b_1. $$
A3. Ordinals

The restriction of h_1 to $\downarrow a_0$ is an isomorphism

$$h_1 \upharpoonright \downarrow a_0 : \downarrow a_0 \to \downarrow h_1(a_0).$$

Composing it with h_0^{-1} yields an isomorphism

$$(h_1 \upharpoonright \downarrow a_0) \circ h_0^{-1} : \downarrow b_0 \to \downarrow h_1(a_0).$$

But this contradicts $h_1(a_0) < b_1 \leq b_0$, by Lemma 1.8.

Therefore, f is the graph of a strictly increasing function. We claim that $\text{dom } f$ and $\text{rng } f$ are initial segments of, respectively, A and B. Suppose, for a contradiction, that there are elements $a < b$ such that $a \notin \text{dom } f$ and $b \notin \text{dom } f$. By definition, there is an isomorphism $h : \downarrow b \to \downarrow f(b)$. Its restriction to $\downarrow a$ yields an isomorphism $h \upharpoonright \downarrow a : \downarrow a \to \downarrow h(a)$ which shows that $a \in \text{dom } f$. Contradiction. Analogously, it follows that $\text{rng } f$ is an initial subclass of B.

It remains to show that $\text{dom } f = A$ or $\text{rng } f = B$. Suppose, otherwise. Let a be the minimal element of $A \setminus \text{dom } f$ and b the minimal one of $B \setminus \text{rng } f$. Then $\text{dom } f = \downarrow a$ and $\text{rng } f = \downarrow b$ and f is an isomorphism from $\downarrow a$ to $\downarrow b$. By definition, we therefore have $\langle a, b \rangle \in f$. Contradiction.

Corollary 1.12. For all $\mathcal{A}, \mathcal{B} \in \text{Wo}$, we have either

$$\mathcal{A} < \mathcal{B} \quad \text{or} \quad \mathcal{A} \cong \mathcal{B} \quad \text{or} \quad \mathcal{A} > \mathcal{B}.$$

We conclude this section with two remarks about continuous mappings between well-orders. The following lemma provides a simple criterion to check whether a mapping between well-orders is continuous.

Lemma 1.13. Let $\langle A, \leq \rangle$ be a well-order and $\langle B, \leq \rangle$ an arbitrary partial order. A function $f : A \to B$ is continuous if, and only if, it satisfies the following conditions:

1. $f(a^+) \geq f(a)$, for all $a \in A$,
2. $f(a) = \sup \{ f(b) \mid b < a \}$, for every limit $a \in A$.

62
1. Well-orders

Proof. \(\Rightarrow\) By definition, every continuous function satisfies (2). Furthermore, \(a^+ = \sup \{a, a^+\}\) implies that \(f(a^+) = \sup \{f(a), f(a^+)\}\).

\(\Leftarrow\) For the other direction, suppose that \(f\) satisfies (1) and (2). First, we show that \(f\) is increasing. Suppose otherwise and let \(a \in A\) be the minimal element such that \(f(b) > f(a)\), for some \(b < a\). Note that \(a\) is not the minimal element of \(A\) since \(b < a\). If \(a\) were a limit then (2) would imply that

\[f(a) = \sup \{ f(x) \mid x < a \} \geq f(b). \]

Contradiction. Hence, \(a\) must be a successor and we have \(a = c^+\), for some \(c \in A\). By choice of \(a\), we have \(f(x) \leq f(c)\), for all \(x \leq c\). In particular, \(f(c) \geq f(b) > f(a)\). But (1) implies \(f(a) = f(c^+) \geq f(c)\). Again a contradiction.

We have shown that \(f\) is increasing. But what we really want to prove is that it is continuous. Let \(X \subseteq A\) be a nonempty subset of \(A\) with supremum \(a := \sup X\). If \(b \in X\) then \(b \leq a\) implies \(f(b) \leq f(a)\). Hence, \(f(a)\) is an upper bound of \(f[X]\). To prove that \(f(a)\) is its least upper bound we distinguish two cases.

If \(a \in X\) then \(f(a) \in f[X]\), which implies \(f(a) = \sup f[X]\).

If \(a \notin X\) then \(a = \sup X\) is a limit and, for every \(b < a\), there is some \(x \in X\) with \(b \leq x\). If \(c\) is another upper bound of \(f[X]\) then \(f(b) \leq f(x) \leq c\). By (2), it follows that

\[f(a) = \sup \{ f(b) \mid b < a \} \leq \sup \{ f(x) \mid x \in X \} \leq c. \]

Hence, \(f(a)\) is the least upper bound of \(f[X]\). \(\square\)

Lemma 1.14. Let \((A, \leq)\) be a well-order and \(f : A \to A\) strictly continuous. If \(a \geq f(\bot)\) then

\[\max \{ b \in A \mid f(b) \leq a \} \]

exists.
A3. *Ordinals*

Proof. If \(a \) is the greatest element of \(A \), we can set \(b := a \). Otherwise, we have \(f(a^+) > f(a) \geq a \), by Lemma 1.7. Hence, there are elements \(x \in A \) with \(f(x) \geq a \). Let \(c \) be the least such element. We have \(c > \bot \) since \(f(c) \geq a \geq f(\bot) \). If \(c \) were a limit then, by choice of \(c \), we would have

\[
 f(c) = \sup \{ f(x) \mid x < c \} \leq a < f(c).
\]

A contradiction. Hence, \(c \) is a successor and there exists some \(b \in A \) with \(c = b^+ \). By choice of \(c \), we have \(f(b) \leq a \). Furthermore, if \(x > b \) then \(x \geq c \), which implies that \(f(x) \geq f(c) > a \). Therefore, \(b \) is the desired element. \(\square \)

2. *Ordinals*

We have seen that there exists a well-order on \(\text{Wo} \) if one does not distinguish between isomorphic orders. We would like to define a subclass \(\text{On} \subseteq \text{Wo} \) of *ordinals* such that, for each well-order \(\mathfrak{A} \), there exists a unique element \(\mathfrak{B} \in \text{On} \) that is isomorphic to \(\mathfrak{A} \).

We will present two approaches to do so. The usual one – due to von Neumann – has the disadvantage that it requires the Axiom of Replacement. Without it we cannot prove that, for every well-order \(\alpha \), there exists an isomorphic von Neumann ordinal. Therefore, we will adopt a different approach. The relation \(\simeq \) forms a congruence (see Section B1.4 below) on the class of all well-orders. A first try might thus consist in representing a well-ordering by its congruence class. Unfortunately, the class of all well-orders isomorphic to a given one is not a set. Hence, with this definition one could not form sets of ordinals. Instead of considering *all* isomorphic well-orders we will therefore only take some of them.

Definition 2.1. The *order type* of a well-order \(\mathfrak{A} \) is the set

\[
 \text{ord}(\mathfrak{A}) := [\mathfrak{A}]\simeq = \text{cut} \{ \mathfrak{B} \mid \mathfrak{B} \text{ is a well-order isomorphic to } \mathfrak{A} \}.
\]

The elements of \(\text{On} := \text{rng}(\text{ord}) \) are called *ordinals*.
2. Ordinals

Instead of a subclass On ⊆ Wo the above definition results in a function \(\text{ord} : \text{Wo} \to \text{On} \). Below we will see that there exists a canonical way to associate with every ordinal \(\alpha \in \text{On} \) a well-order \(f(\alpha) \in \text{Wo} \). Using this injection \(f : \text{On} \to \text{Wo} \) we can identify the class \(\text{On} \) with its image \(f[\text{On}] \subseteq \text{Wo} \).

First, let us show that the mapping \(\text{ord} : \text{Wo} \to \text{On} \) has the desired property of characterising a well-order up to isomorphism.

Lemma 2.2. Let \(\mathcal{A} \) and \(\mathcal{B} \) be well-orders that are sets. There exists an isomorphism \(f : \mathcal{A} \to \mathcal{B} \) if, and only if, \(\text{ord}(\mathcal{A}) = \text{ord}(\mathcal{B}) \).

Proof. If \(f : \mathcal{A} \to \mathcal{B} \) is an isomorphism then a well-order \(\mathcal{C} \) is isomorphic to \(\mathcal{A} \) if, and only if, it is isomorphic to \(\mathcal{B} \). Therefore \(\text{ord}(\mathcal{A}) = \text{ord}(\mathcal{B}) \). Conversely, suppose \(\text{ord}(\mathcal{A}) = \text{ord}(\mathcal{B}) \). Since \(\mathcal{A} \) is a well-order isomorphic to \(\mathcal{A} \), we have \(\text{ord}(\mathcal{A}) \neq \emptyset \). Fix an arbitrary element \(\mathcal{C} \in \text{ord}(\mathcal{A}) \). By definition, \(\mathcal{C} \) is isomorphic to \(\mathcal{A} \) and to \(\mathcal{B} \). Consequently, \(\mathcal{A} \) and \(\mathcal{B} \) are isomorphic. \(\square \)

Remark. We will prove in Lemma A4.5.3 with the help of the Axiom of Replacement that any two well-ordered proper classes are isomorphic. In particular, it follows that in the above lemma we can drop the requirement of \(\mathcal{A} \) and \(\mathcal{B} \) being sets.

Definition 2.3. Let \(\text{On} := (\text{On},<) \) where the ordering \(<\) is defined by

\[
\text{ord}(\mathcal{A}) < \text{ord}(\mathcal{B}) \quad \text{iff} \quad \mathcal{A} < \mathcal{B}.
\]

For \(\alpha \in \text{On} \), recall that \(\downarrow \alpha = \{ \beta \in \text{On} \mid \beta < \alpha \} \).

Remark. (a) The ordering \(<\) is well-defined since \(\text{ord}(\mathcal{A}) = \text{ord}(\mathcal{A}') \) and \(\text{ord}(\mathcal{B}) = \text{ord}(\mathcal{B}') \) implies that \(\mathcal{A} < \mathcal{B} \) iff \(\mathcal{A}' < \mathcal{B}' \).

(b) In the chapters on set theory we will strictly distinguish between an ordinal \(\alpha \) and the set \(\downarrow \alpha \). But in the remainder of the book we will usually drop the arrow and write \(\alpha \) in both cases.

Combining Corollaries 1.9 and 1.12 and Lemma 2.2 it follows that \(\text{On} \) is well-ordered.
Theorem 2.4. \(\mathcal{O}n \) is a well-order.

The notions of a successor ordinal and a limit ordinal are defined in the same way as for arbitrary well-orders. Recall that we denote the successor of \(\alpha \) by \(\alpha^+ \). Furthermore, we define

\[
o := \text{ord} (\varnothing, \varnothing), \quad 1 := 0^+, \quad 2 := 1^+, \ldots
\]

The first limit ordinal is \(\omega := \text{ord} (\mathbb{N}, \leq) \).

Lemma 2.5. Let \(\alpha, \beta \in \mathcal{O}n \). If \(\alpha \leq \beta \) then \(S(\alpha) \subseteq S(\beta) \).

Proof. If \(\alpha = \beta \), the claim is trivial. Therefore, we assume that \(\alpha < \beta \). Let \(\mathcal{A} = (A, \leq_A) \in \alpha \) and \(\mathcal{B} = (B, \leq_B) \in \beta \). Since \(\alpha < \beta \) there exists an isomorphism \(f : A \to \downarrow_B b \), for some \(b \in B \). Set \(\mathcal{A}_0 := (\downarrow_B b, \leq_B) \). Then \(\text{ord} \mathcal{B}_0 = \alpha \) and \(\mathcal{A} \in \text{ord} \mathcal{B}_0 \) implies that \(S(\mathcal{A}) \subseteq S(\mathcal{B}_0) \). Since \(S(\mathcal{B}_0) \subseteq S(\mathcal{B}) \) it follows that \(S(\mathcal{A}) \subseteq S(\mathcal{B}) \). We have shown that \(S(x) \subseteq S(y) \), for all \(x \in \alpha \) and \(y \in \beta \). Consequently, we have \(S(\alpha) \subseteq S(\beta) \). \(\square \)

To every ordinal \(\alpha \) we can associate a canonical well-order of type \(\alpha \).

Lemma 2.6. \(\langle \downarrow \alpha, \leq \rangle \) is a well-order of type \(\text{ord} \langle \downarrow \alpha, \leq \rangle = \alpha \).

Proof. Let \(\langle A, \leq \rangle \) be a well-order of type \(\text{ord} \langle A, \leq \rangle = \alpha \). We claim that the function \(f : A \to \mathcal{O}n \) with

\[
f(a) := \text{ord} \langle \downarrow_A a, \leq \rangle
\]

is an isomorphism \(f : A \to \downarrow \alpha \).

\(f \) is strictly increasing since, if \(a < b \) then \(\downarrow_A a \) is a proper initial segment of \(\downarrow_A b \). By Lemma 1.8 and Lemma 2.2, it follows that

\[
f(a) = \text{ord} \langle \downarrow_A a, \leq \rangle < \text{ord} \langle \downarrow_A b, \leq \rangle = f(b).
\]

Furthermore, \(f \) is surjective since, for every \(\beta < \alpha \), there exists some \(a \in A \) with

\[
\beta = \text{ord} \langle \downarrow_A a, \leq \rangle = f(a).
\]
Lemma 2.7. On is not a set.

Proof. Suppose that On is a set. Since On is well-ordered there exists some ordinal $\alpha \in \text{On}$ with $\alpha = \text{ord}(\text{On}, \leq)$. We have just seen that $\text{ord}(\downarrow \alpha, \leq) = \alpha$. Therefore, there exists an isomorphism $f : \downarrow \alpha \to \text{On}$. But $\downarrow \alpha$ is a proper initial segment of On. This contradicts Lemma 1.8. $$\square$$

Lemma 2.8. A subclass $X \subseteq \text{On}$ is a set if, and only if, it has an upper bound.

Proof. (\Leftarrow) If $X \subseteq \text{On}$ has an upper bound α then $X \subseteq \downarrow \alpha$. Since $\downarrow \alpha$ is a set the claim follows.

(\Rightarrow) Suppose that X is a set. Since On is a proper class there exists some ordinal $\alpha \in \text{On} \setminus S(X)$. We claim that α is an upper bound of X. Suppose there exists some $\beta \in X$ with $\beta \not\leq \alpha$. Then $\alpha < \beta$ and we have $\alpha \subseteq S(\alpha) \subseteq S(\beta) \in S(X)$, which implies that $\alpha \in S(X)$. This contradicts our choice of α. $$\square$$

Corollary 2.9. Every set of ordinals has a supremum.

Another consequence is the following special case of the Axiom of Replacement which we will introduce in Section A4.5.

Corollary 2.10. If $F : \text{On} \to \text{On}$ is increasing then $F[\downarrow \alpha]$ is a set, for all $\alpha \in \text{On}$.

Proof. Suppose that F is increasing. Then we have $F(\beta) \leq F(\alpha)$, for all $\beta < \alpha$. Consequently, $F(\alpha)$ is an upper bound of $F[\downarrow \alpha]$ and, by Lemma 2.8, it follows that $F[\downarrow \alpha]$ is a set. $$\square$$

Let us give a simpler characterisation of the relation \leq on well-orders.

Lemma 2.11. Let \mathfrak{A} and \mathfrak{B} be well-orders. Then $\mathfrak{A} \leq \mathfrak{B}$ if, and only if, there exists a strictly increasing function $f : A \to B$.

67
Proof. (\Rightarrow) If $\mathcal{A} \subseteq \mathcal{B}$ then, by definition, there exists an isomorphism $f : A \to I$ between A and an initial segment I of B. In particular, $f : A \to B$ is a strictly increasing function.

(\Leftarrow) Suppose that $f : A \to B$ is a strictly increasing function and let $C := \text{rng } f$. Since $C \subseteq B$ is well-ordered there exists an isomorphism $g : C \to I \subseteq \text{On}$ between C and an initial segment of On. Similarly, there is some isomorphism $h : B \to J \subseteq \text{On}$. We claim that

$$k := h^{-1} \circ g \circ f : A \to B$$

is the desired isomorphism between A and an initial segment of B. Since f, g, and h^{-1} are isomorphisms so is k. What remains to be shown is that k is in fact well-defined, that is, $I = \text{rng } g \subseteq \text{rng } h = J$.

We claim that $g(c) \leq h(c)$, for all $c \in C$. Since I and J are initial segments this implies that $I \subseteq J$. For a contradiction, suppose that there is some $c \in C$ with $g(c) > h(c)$ and let c be the minimal such element. Note that, since g and h are strictly increasing and $\text{rng } g$ and $\text{rng } h$ are initial segments we must have

$$g(c) = \min (I \setminus \text{rng } (g \upharpoonright_C c))$$

and

$$h(c) = \min (J \setminus \text{rng } (h \upharpoonright_B c)).$$

By choice of c, we have $\text{rng } (g \upharpoonright_C c) \subseteq \text{rng } (h \upharpoonright_B c)$. But, by the above equations, this implies that $g(c) \leq h(c)$. A contradiction. \qed

In order to use the theory of ordinals for proofs about arbitrary sets one usually needs to define a well-order on a given set. In general this is only possible if one assumes the Axiom of Choice. Until we introduce this axiom the following theorem will serve as a stopgap. Once we have defined the cardinality of a set in Section A4.2 it will turn out that the ordinal the theorem talks about is $\alpha = |A|^+$.

Theorem 2.12 (Hartogs). For every set A there exists an ordinal α such that there are no injective functions $\downarrow \alpha \to A$.

68
2. Ordinals

Proof. For a contradiction, suppose that there exists a set A such that, for every ordinal α, there is an injective function $f_\alpha : \downarrow \alpha \to A$. Let $A_\alpha := \text{rng } f_\alpha \subseteq A$ and set

$$R_\alpha := \{ (a, b) \in A_\alpha \times A_\alpha \mid f_\alpha^{-1}(a) \leq f_\alpha^{-1}(b) \}.$$

By construction, $f_\alpha : \downarrow \alpha, \leq \to \langle A_\alpha, R_\alpha \rangle$ is an isomorphism. Hence, by the definition of an ordinal, we have

$$S(\alpha) \subseteq S(\langle A_\alpha, R_\alpha \rangle).$$

Since $R_\alpha \subseteq A \times A \in \mathcal{P}^3(A) \subseteq \mathcal{P}^3(S(A))$ it follows that

$$\langle A_\alpha, R_\alpha \rangle = \{ \{ A_\alpha \}, \{ A_\alpha, R_\alpha \} \} \subseteq \mathcal{P}^4(S(A)).$$

We have shown that

$$\alpha \subseteq S(\alpha) \subseteq S(\langle A_\alpha, R_\alpha \rangle) \subseteq \mathcal{P}^4(S(A)), \text{ for all } \alpha \in \text{On}.$$

Consequently, $\text{On} \subseteq \mathcal{P}^5(S(A))$, which implies that On is a set. This contradicts Lemma 2.7.

Von Neumann ordinals

We conclude this section with an alternative definition of ordinals. This definition is simpler and the resulting ordinals have many nice properties such that $\alpha = \downarrow \alpha$ and $\text{sup } X = \bigcup X$. The only disadvantage is that one needs an additional axiom in order to prove that every well-ordered is isomorphic to some ordinal. Intuitively, we define a von Neumann ordinal to be the set of all smaller ordinals, that is, $\alpha := \downarrow \alpha$. As usual, the actual definition is more technical and we have to verify afterwards that it has the desired effect.

Definition 2.13. A set α is a von Neumann ordinal if it is transitive and linearly ordered by the membership relation \in. We denote the class of all von Neumann ordinals by On_0 and we set $\mathcal{O}_0 := \langle \text{On}_0, \in \rangle$.

69
A3. **Ordinals**

Example. The set \([n] = \{0, \ldots, n-1\}\) is a von Neumann ordinal, for each \(n \in \mathbb{N}\).

Lemma 2.14. If \(\alpha \in \text{On}_{\omega}\) and \(\beta \in \alpha\) then \(\beta \in \text{On}_{\omega}\).

Proof. First, note that \(\beta \in \alpha\) implies \(\beta \subseteq \alpha\). As \(\alpha\) is linearly ordered by \(\in\) it therefore follows that so is \(\beta \subseteq \alpha\).

It remains to prove that \(\beta\) is transitive. Suppose that \(\eta \in \gamma \in \beta\). By transitivity of \(\alpha\), we have \(\eta, \gamma, \beta \in \alpha\). Since \(\alpha\) is linearly ordered by \(\in\) we know that the relation \(\in\), restricted to \(\alpha\), is transitive. Hence, \(\eta \in \gamma\) and \(\gamma \in \beta\) implies that \(\eta \in \beta\).

Remark. Note that, for \(\alpha \in \text{On}_{\omega}\), we have

\[\downarrow \alpha = \{ \beta \in \text{On}_{\omega} \mid \beta \in \alpha \} .\]

Hence, \(\alpha = \downarrow \alpha\) and our definition of a von Neumann ordinal coincides with the intuitive one.

Exercise 2.1. Suppose that \(\alpha = \{\beta_0, \ldots, \beta_{n-1}\}\) is a von Neumann ordinal with \(n < \omega\) elements. Prove, by induction on \(n\), that \(\alpha = [n]\).

Theorem 2.15. \(\text{On}_{\omega}\) is a well-order.

Proof. \(\in\) is irreflexive since we have \(a \notin a\), for all sets. Furthermore, \(\in\) is transitive on \(\text{On}_{\omega}\) since, \(\alpha \in \beta \in \gamma\) implies \(\alpha \in \gamma\), by transitivity of \(\gamma\). Consequently, \(\in\) is a strict partial order on \(\text{On}_{\omega}\). Since \(\in\) is well-founded on any class it remains to prove that it is linear.

Let \(\alpha, \beta \in \text{On}_{\omega}\). The set \(\gamma := \alpha \cap \beta\) is transitive by Lemma A1.2.4. As \(\alpha\) is linearly ordered by \(\in\) so is \(\gamma \subseteq \alpha\). Therefore, \(\gamma \in \text{On}_{\omega}\). Furthermore, \(\gamma\) is an initial segment of \(\alpha\) since \(\delta \in \eta \in \gamma\) implies \(\delta \in \gamma\), by transitivity. By Lemma 1.8, it follows that \(\gamma = \alpha\) or \(\gamma = \downarrow \delta = \delta\), for some \(\delta \in \alpha\). Hence, we either have \(\gamma = \alpha\) or \(\gamma \in \alpha\). Similarly, we can prove that either \(\gamma = \beta\) or \(\gamma \in \beta\). Since \(\gamma \notin \gamma = \alpha \cap \beta\) it follows that either \(\gamma \notin \alpha\) or \(\gamma \notin \beta\). Consequently, we either have \(\beta = \gamma \in \alpha\) or \(\alpha = \gamma \in \beta\) or \(\alpha = \gamma = \beta\).

Exercise 2.2. Show that \(\alpha^+ = \alpha \cup \{\alpha\}\), for every \(\alpha \in \text{On}_{\omega}\).
Lemma 2.16. \(\text{On}_\omega \) is not a set.

Proof. \(\text{On}_\omega \) is transitive and well-ordered by \(\epsilon \). If it were a set, it would be an element of itself.

\(\text{On}_\omega \) is linearly ordered by \(\epsilon \). The following sequence of lemmas contains several characterisations of this ordering. In particular, we show that the mapping

\[
\text{ord} : (\text{On}_\omega, \epsilon) \rightarrow (\text{On}, <)
\]

is strictly increasing. After we have introduced the Axiom of Replacement in Section A4.5 we will prove that it is actually an isomorphism.

Lemma 2.17. Let \(\alpha, \beta \in \text{On}_\omega \). We have \(\alpha \in \beta \) if, and only if, \(\alpha \subset \beta \).

Proof. \((\Rightarrow) \) was already proved in Lemma A1.2.2. For \((\Leftarrow) \), suppose that \(\alpha \notin \beta \). By Lemma 2.15, it follows that \(\alpha = \beta \) or \(\beta \in \alpha \). Since \(\alpha \subset \beta \) we therefore have \(\beta \subset \beta \) or \(\beta \in \beta \). Contradiction.

Lemma 2.18. Let \(\alpha, \beta \in \text{On}_\omega \). If \(f : \alpha \rightarrow \beta \) is an isomorphism between \(\alpha \) and an initial segment of \(\beta \) then \(f = \text{id}_\alpha \).

Proof. Suppose that \(f \neq \text{id}_\alpha \) and let \(y \in \alpha \) be the minimal element of \(\alpha \) such that \(\delta := f(y) \neq y \). Since \(f \) is an isomorphism we have \(\xi = f(\xi) \in f(y) = \delta \), for all \(\xi \in y \). Hence, \(y \subset \delta \). Since \(\delta \neq y \) it follows that \(y \subset \delta \), which implies, by Lemma 2.17, that \(y \in \delta \). But \(y \notin \text{rng} f \), since \(f(\xi) = \xi \in y \), for \(\xi \in y \), and \(f(\xi) \ni f(y) = \delta \), for \(\xi \ni y \). Hence, \(\text{rng} f \) is not an initial segment of \(\beta \). Contradiction.

Lemma 2.19. Let \(\alpha, \beta \in \text{On}_\omega \). The following statements are equivalent:

1. \(\alpha \in \beta \).
2. \(\alpha \subset \beta \).
3. \(S(\alpha) \in S(\beta) \).
4. \(\langle \alpha, \epsilon \rangle < \langle \beta, \epsilon \rangle \).
A3. Ordinals

Proof. (1) \Leftrightarrow (2) was already shown in Lemma 2.17.

(1) \Rightarrow (3) $a \in b$ implies $S(a) \in S(b)$, for arbitrary sets a and b.

(3) \Rightarrow (1) If $\alpha \notin \beta$ then, by Lemma 2.15, we either have $\alpha = \beta$ or $\beta \in \alpha$. Consequently, either $S(\alpha) = S(\beta)$ or $S(\beta) \in S(\alpha)$. It follows that $S(\alpha) \notin S(\beta)$.

(2) \Rightarrow (4) If $\alpha \subseteq \beta$, the identity $\text{id}_\alpha : \alpha \to \alpha \subseteq \beta$ is an isomorphism from α to an initial segment of β. Hence, $\alpha < \beta$.

(4) \Rightarrow (2) If $\alpha < \beta$, there exists an isomorphism $f : \alpha \to I \subseteq \beta$ between α and a proper initial subset of β. By the preceding lemma, it follows that $f = \text{id}_\alpha$ and $\alpha = I \subseteq \beta$. \hfill \square

It follows that, similarly to On, the von Neumann ordinals are linearly ordered by the relation $<$. If we could prove that every well-order is isomorphic to some von Neumann ordinal, we could use On_o as representatives instead of On.

Corollary 2.20. For all $\alpha, \beta \in \text{On}_o$, we have

$$\alpha < \beta \quad \text{or} \quad \alpha = \beta \quad \text{or} \quad \alpha > \beta.$$

Infimum and supremum of sets of von Neumann ordinals can be computed especially easily.

Lemma 2.21. Let $X \subseteq \text{On}_o$.

(a) If X is nonempty then $\inf X = \bigcap X$.

(b) If X has an upper bound then $\sup X = \bigcup X$.

Proof. (a) Since X is nonempty it has a minimal element α, which is also the infimum of X. Clearly, $\bigcap X \subseteq \alpha$. Conversely, if $\beta \in \alpha$ then $\beta \in \gamma$, for all $\gamma \in X$, which implies $\beta \in \bigcap X$. It follows that $\inf X = \alpha = \bigcap X$.

(b) Note that we have $\alpha \leq \beta$ iff $\alpha \subseteq \beta$, for all von Neumann ordinals $\alpha, \beta \in \text{On}_o$.

Clearly, we have $\alpha \subseteq \bigcup X$, for all $\alpha \in X$. Hence, $\bigcup X$ is an upper bound of X. Conversely, let β be an upper bound of X. Then $\alpha \subseteq \beta$, for all $\alpha \in X$, which implies that $\bigcup X \subseteq \beta$. \hfill \square
The reason why there might be less von Neumann ordinals than elements of On is that each von Neumann ordinal is contained in a new stage. That is, we have exactly one von Neumann ordinal for every stage.

Lemma 2.22. The function \(f : \text{On}_0 \rightarrow H(\mathbb{S}) \) defined by \(f(\alpha) := S(\alpha) \) is an isomorphism between \(\text{On}_0 \) and the class of all stages.

Proof. By Lemma 2.19 it follows that \(f \) is injective and increasing. Suppose that it is not surjective. Let \(S \) be the minimal stage such that \(S \notin \text{rng} \, f \), and set

\[
X := \{ \alpha \in \text{On}_0 \mid S(\alpha) \in S \}.
\]

Since \(X \subseteq S \), \(X \) is a set and, hence, a proper initial segment of \(\text{On}_0 \). Therefore, there is some \(\alpha \in \text{On}_0 \) such that \(X = \downarrow \alpha \). Since \(S(\beta) \in S \), for all \(\beta \in \alpha \), it follows that \(S(\alpha) \subseteq S \). By choice of \(S \), we have \(S(\alpha) \neq S \). Hence, \(S(\alpha) \in S \), which implies that \(\alpha \in X = \downarrow \alpha \). Contradiction. \(\square \)

Definition 2.23. For \(\alpha \in \text{On}_0 \), we set \(S_\alpha := S(\alpha) \).

Remark. In \(\text{On}_0 \) we have finally found the indices to enumerate the cumulative hierarchy

\[
S_0 \subset S_1 \subset \cdots \subset S_\alpha \subset S_{\alpha+1} \subset \cdots
\]

The class of all stages can be written in the form

\[
H(\mathbb{S}) = \{ S_\alpha \mid \alpha \in \text{On}_0 \},
\]

and we have \(\mathbb{S} = \bigcup \{ S_\alpha \mid \alpha \in \text{On}_0 \} \).

Definition 2.24. The rank \(\rho(a) \) of a set \(a \) is the von Neumann ordinal \(\alpha \) such that \(S(\alpha) = S_\alpha \).

Remark. (a) For \(\alpha \in \text{On}_0 \), we have \(\rho(\alpha) = \alpha \).

(b) Note that

\[
\text{cut} \, A = \{ x \in A \mid \rho(x) \leq \rho(y) \text{ for all } y \in A \}.
\]

Lemma 2.25. A class \(X \) is a set if, and only if, \(\{ \rho(x) \mid x \in X \} \) is bounded.

Exercise 2.3. Prove the preceding lemma.
3. Induction and fixed points

The importance of ordinals stems from the fact that they allow proofs and constructions by induction. The next theorem follows immediately from Theorem 1.5.

Theorem 3.1 (Principle of Transfinite Induction). Let $I \subseteq \text{On}$ be an initial segment of On. If $X \subseteq I$ is a class such that, for every $\alpha \in I$,

$$\downarrow \alpha \subseteq X \quad \text{implies} \quad \alpha \in X$$

then $X = I$.

Usually one applies this theorem in the following way. If one wants to prove that all ordinals satisfy a certain property φ, it is sufficient to prove that

- ω satisfies φ;
- if α satisfies φ then so does α^+;
- if δ is a limit ordinal and every $\alpha < \delta$ satisfies φ then so does δ.

Transfinite induction is not only useful for proofs but also to define sequences. For a class A, we set

$$A^{<\infty} := \{ f \mid f : \downarrow \beta \rightarrow a \text{ for some } \beta \in \text{On} \text{ and } a \subseteq A \} .$$

Lemma 3.2. Let H be a partial function $H : S^{<\infty} \rightarrow S$. For each ordinal $\alpha \in \text{On}$, there exists at most one function $f : \downarrow \alpha \rightarrow S$ such that f is a set and

$$f(\beta) = H(f \uparrow \downarrow \beta), \quad \text{for all } \beta < \alpha .$$

Proof. Suppose that f and g both satisfy the above condition. We apply the Principle of Transfinite Induction to prove that $f = g$. Let

$$X := \{ \beta \in \downarrow \alpha \mid f(\beta) = g(\beta) \} .$$
If $\beta < \alpha$ is an ordinal such that $\downarrow \beta \subseteq X$ then $f \uparrow \downarrow \beta = g \uparrow \downarrow \beta$, which implies that

$$f(\beta) = H(f \uparrow \downarrow \beta) = H(g \uparrow \downarrow \beta) = g(\beta).$$

Consequently, $\beta \in X$. By the Principle of Transfinite Induction, it follows that $X = \downarrow \alpha$, that is, $f = g$. \Box

Remark. If a function f satisfies the conditions of the preceding lemma then so does $f \uparrow I$, for every initial segment $I \subseteq \text{dom } f$. In particular, if $f : \downarrow \alpha \rightarrow S$ and $g : \downarrow \beta \rightarrow S$ are two such functions with $\alpha \leq \beta$ then $f = g \uparrow \downarrow \alpha$.

Definition 3.3. Let H be a partial function $H : S^{<\infty} \rightarrow S$ and let f_α be the unique function $f_\alpha : \downarrow \alpha \rightarrow S$ such that f_α is a set and

$$f_\alpha(\beta) = H(f_\alpha \uparrow \downarrow \beta), \quad \text{for all } \beta < \alpha.$$

Let $I \subseteq \text{On}$ be the class of all α such that f_α^+ is defined. (Note that I is an initial segment since if $\alpha \in I$ and $\beta < \alpha$ then $f_{\beta^+} = f_{\alpha^+} \uparrow \downarrow \beta$.)

We say that H defines the function F by **transfinite recursion** if

$$\text{dom } F = I \quad \text{and} \quad F(\alpha) = f_{\alpha^+}(\alpha), \quad \text{for all } \alpha \in \text{dom } F.$$

Theorem 3.4 (Principle of Transfinite Recursion). Every partial function $H : S^{<\infty} \rightarrow S$ defines a unique function F by transfinite recursion. We have $F \notin \text{dom } H$ and

$$F(\alpha) = H(F \uparrow \downarrow \alpha), \quad \text{for all } \alpha \in \text{dom } F.$$

Proof. The existence of F follows immediately from the definition. Note that, by the remark after Lemma 3.2, we have $f_\beta(\alpha) = f_\gamma(\alpha)$, for all $\beta, \gamma > \alpha$. Consequently,

$$F(\alpha) = f_{\alpha^+}(\alpha) = f_\beta(\alpha), \quad \text{for all } \beta > \alpha.$$
A3. *Ordinals*

which implies that

$$F \uparrow \downarrow \alpha = f_\beta \uparrow \downarrow \alpha, \quad \text{for all } \beta \geq \alpha.$$

Therefore, it follows that

$$F(\alpha) = f_{\alpha^+}(\alpha) = H(f_{\alpha^+} \uparrow \downarrow \alpha) = H(F \uparrow \downarrow \alpha).$$

In particular, if F is a set then $F = f_\alpha$, for some α. Hence, we have $\text{dom } F = \text{dom } f_\alpha = \downarrow \alpha$. Since $\alpha \notin \text{dom } F$ it follows that f_{α^+} does not exist. Hence, $H(f_\alpha) = H(F)$ is undefined and $F \notin \text{dom } H$. If F is a proper class then we trivially have $F \notin \text{dom } H$.

Remark. After we have introduced the Axiom of Replacement we can actually show that, if $H : \mathbb{S}^{<\infty} \to \mathbb{S}$ is a total function then $\text{dom } F = \text{On}$.

At the moment we can prove this statement only for the special case where $\text{rng } H$ is a set.

Lemma 3.5. Let A be a set. If $H : A^{<\infty} \to A$ is a total function that defines the function F by transfinite recursion then F is a proper class with $\text{dom } F = \text{On}$.

Proof. Note that $\text{rng } F \subseteq \text{rng } H \subseteq A$ is a set. If $\text{dom } F = \downarrow \alpha \subset \text{On}$ then $F \in A^{\downarrow \alpha} \subset A^{<\infty} = \text{dom } H$ in contradiction to Theorem 3.4.

Usually definitions by transfinite recursion have the following simpler form. Given an element $a \in A$ and two functions $s : A \to A$ and $h : \mathcal{P}(A) \to A$ one can construct a unique function $f : I \to A$ such that

- $f(0) = a$;
- $f(\beta^+) = s(f(\beta))$; and
- $f(\delta) = h(f[\downarrow \delta])$, for limit ordinals δ.

Example. We can define addition and multiplication of ordinals as follows. By transfinite recursions, we first define the function $\beta \mapsto \alpha + \beta$
by
\[\alpha + 0 := \alpha,\]
\[\alpha + \beta^+ := (\alpha + \beta)^+,\]
\[\alpha + \delta := \sup \{ \alpha + \beta \mid \beta < \delta \}, \quad \text{for limit ordinals } \delta,\]
and then we define the function \(\beta \mapsto \alpha \cdot \beta \) by
\[\alpha \cdot 0 := 0,\]
\[\alpha \cdot \beta^+ := \alpha \cdot \beta + \alpha,\]
\[\alpha \cdot \delta := \sup \{ \alpha \cdot \beta \mid \beta < \delta \}, \quad \text{for limit ordinals } \delta.\]

By the above theorem, we know that these operations are defined on some initial segment of \(\text{On} \) and that they are uniquely determined by these equations. Below we will give a different, more concrete definition of addition and multiplication.

Definitions by transfinite recursion are special cases of so-called inductive fixed points. Consider a partial order \(\langle A, \leq \rangle \) and a function \(f : A \to A \). If certain conditions on \(\langle A, \leq \rangle \) and \(f \) are satisfied, one can compute a fixed point of \(f \) in the following way. Starting with some element \(a \in A \) we construct the sequence \(a, f(a), f(f(a)), \ldots \). If it converges, its limit will be a fixed point of \(f \). The next definition formalises this process.

Definition 3.6. Let \(\langle A, \leq \rangle \) be a partial order. A function \(f : A \to A \) is inductive over an element \(a \in A \) if there exists an increasing function \(F : I \to A \) where \(I \subset \text{On} \) is an initial segment of \(\text{On} \) such that \(F \) is a proper class and we have
\[F(0) = a,\]
\[F(\beta^+) = f(F(\beta)),\]
and \(F(\delta) = \sup F[\downarrow \delta], \quad \text{for limits } \delta.\)

We call \(F \) the fixed-point induction of \(f \) over \(a \). The element \(F(\alpha) \) is also called the \(\alpha \)-th stage of the induction.
A3. Ordinals

Remark. (a) Note that, if A is a set then, by the Principle of Transfinite Recursion, there exists a unique function $F : \text{On} \to A$ satisfying the above equations provided we can show that, for every limit δ, the supremum $\sup F[\downarrow \delta]$ exists. If, furthermore, we can prove that $F(\beta^+) \geq F(\beta)$, for all β, then it follows that f is inductive.

(b) Every fixed-point induction F is continuous, by Lemma 1.13.

Example. (a) The function $f : \text{On} \to \text{On} : \alpha \mapsto \alpha^+$ is inductive. Its fixed-point induction over \emptyset is the identity function $F : \text{On} \to \text{On} : \alpha \mapsto \alpha$.

(b) Let $f : \mathbb{S} \to \mathbb{S}$ be the function with $f(a) := \wp(a)$, the fixed-point induction of f over \emptyset is the function $F : \text{On}_0 \to \mathbb{S}$ with

$$F(\alpha) := S_\alpha.$$

(c) The graph of addition

$$A := \{ (x, y, z) \in \mathbb{N}^3 \mid x + y = z \}$$

is the least fixed point of the function $f : \wp(\mathbb{N}^3) \to \wp(\mathbb{N}^3)$ with

$$f(R) := \{ (x, 0, x) \mid x \in \mathbb{N} \}$$

$$\cup \{ (x, y + 1, z + 1) \mid (x, y, z) \in R \}.$$

Its fixed-point induction over \emptyset is the function

$$F(\alpha) := \begin{cases} \{ (x, y, z) \mid x + y = z, y < \alpha \} & \text{if } \alpha < \omega, \\ A & \text{if } \alpha \geq \omega. \end{cases}$$

(d) Let $\langle V, E \rangle$ be a graph. The function

$$f : \wp(V \times V) \to \wp(V \times V)$$

defined by $f(R) := E \cup E \circ R$ is increasing. Let F be the fixed-point induction of f over \emptyset. Then

$$F(0) = \emptyset,$$

$$F(1) = E,$$

$$F(2) = E \cup E \circ E,$$

$$F(3) = E \cup E \circ E \cup E \circ E \circ E,$$

78
and, generally, we have

\[F(n) = \bigcup_{k<n} E^k, \quad \text{for } n < \omega, \]
and \[F(\alpha) = \bigcup_{k<\omega} E^k, \quad \text{for } \alpha \geq \omega. \]

Hence, the inductive fixed point of \(f \) is the relation \(\bigcup_{k<\omega} E^k = \text{TC}(E) \).

(e) We consider the following simple game between two players. It is played on a graph \((V, E) \) where the set of vertices \(V = V_0 \cup V_1 \) is partitioned into vertices \(V_0 \) that belong to player 0 and vertices \(V_1 \) belonging to player 1. At the start of the game a pebble is placed on the starting position \(v_0 \in V \). In every round one of the players moves this pebble along an edge to a new vertex. If the pebble is on a vertex in \(V_0 \) then player 0 can choose where to move, if it is on a vertex in \(V_1 \) then player 1 may move. Hence, a play of the game determines a path \(v_0, \ldots, v_n \) through the graph. If at some point the pebble is on a vertex in \(V_1 \) without outgoing edge then player 1 loses. If none of the players manage to manœuvre his opponent into such a situation then the game never stops and both players lose. The \textit{winning region} \(W_i \) for player \(i \) is the set of all vertices \(w \) such that, if we start the game in \(w \), then player \(i \) has a strategy to win the game. We can compute these winning regions by the fixed-point induction \(F_i \) of the function

\[
F_i(X) := \{ x \in V_i \mid \text{there is some } y \in X \text{ with } (x, y) \in E \} \\
\quad \cup \{ x \in V_{i-1} \mid \text{every } y \text{ with } (x, y) \in E \text{ is element of } X \}.
\]

Note that \(F_i(1) \) is the set of all vertices \(x \in V_{i-1} \) without outgoing edge. Generally, \(F_i(n) \) contains all vertices such that player \(i \) has a strategy to win the game in at most \(n \) rounds.

Exercise 3.1. Let \((V, E) \) be a graph. Prove that \(\text{TC}(E) = \bigcup_{n<\omega} E^n \).

If the fixed point induction of a function \(f \) converges, its limit is a fixed point of \(f \).

Lemma 3.7. Let \(F \) be the fixed-point induction of a function \(f \). If \(F(\alpha) = F(\alpha^+) \) then \(F(\alpha) \in \text{fix } F \).
A3. Ordinals

Proof. $F(\alpha)$ is a fixed point of f since $f(F(\alpha)) = F(\alpha^+) = F(\alpha)$. \hfill \Box

Thus, we can use the fixed point induction F of f to compute a fixed point provided F converges.

Lemma 3.8. Let F be the fixed-point induction of a function f. If $F(\alpha) = F(\alpha^+)$ then $F(\alpha) = F(\beta)$, for all $\beta \geq \alpha$.

Proof. We prove the claim by induction on β. If $\beta = \alpha$ then the claim is trivial. For the successor step, we have

$$F(\beta^+) = f(F(\beta)) = f(F(\alpha)) = F(\alpha^+) = F(\alpha).$$

Finally, if $\delta > \alpha$ is a limit ordinal, then

$$F(\delta) = \sup \{ F(\beta) \mid \beta < \delta \} = \sup \{ F(\beta) \mid \alpha \leq \beta < \delta \}
= \sup \{ F(\alpha) \} = F(\alpha).$$

If the universe A is a set, every fixed-point induction stabilises at some ordinal. Intuitively, the reason is that the size of the universe A is bounded. Therefore, if we repeat the application of f long enough, we will obtain some element $a \in A$ that already appeared in the sequence.

Theorem 3.9. Let $\langle A, \leq \rangle$ be a partial order where A is a set. Let $f : A \to A$ be inductive over $a \in A$ and $F : \text{On} \to A$ the corresponding fixed-point induction. There exists some ordinal α such that $F(\alpha) = F(\beta)$, for all $\beta \geq \alpha$.

Proof. By Theorem 2.12, there exists an ordinal γ such that there is no injective function $\downarrow \gamma \to A$. We claim that there is some $\alpha < \gamma$ such that $F(\alpha) = F(\alpha^+)$. By Lemma 3.8, it then follows that $F(\beta) = F(\alpha)$, for all $\beta \geq \alpha$. Suppose that $F(\alpha) \neq F(\alpha^+)$, for all $\alpha < \gamma$. Since F is increasing it follows that $F \uparrow \downarrow \gamma : \downarrow \gamma \to A$ is injective. This contradicts our choice of γ. \hfill \Box

Remark. This proof actually shows that $\alpha < |A|^+$ where $|A|$ is the cardinality of A (see Section A4.2).
3. Induction and fixed points

Definition 3.10. Let $f : A \to A$ be inductive and $F : \text{On} \to A$ the corresponding fixed-point induction. The minimal ordinal α such that $F(\alpha) = F(\alpha^+)$ is called the closure ordinal of the induction and the element $F(\alpha) := F(\alpha)$ is the inductive fixed point of f over a.

Remark. If A is a set, every inductive function $f : A \to A$ has an inductive fixed point.

Example. Let (A, R) be a graph. The well-founded part of R is the maximal subset $B \subseteq A$ such that $(B, R|_B)$ is well-founded and, for all $(a, b) \in R$ with $b \in B$, we also have $a \in B$. We can compute B as inductive fixed point over \emptyset of the function

$$f(X) := \{ x \in A \mid R^{-1}(x) \subseteq X \cup \{x\} \}.$$

If we want to apply the above machinery to compute fixed points, we need methods to show that a given function f is inductive. Basically, there are two conditions a function f has to satisfy. The sequence obtained by iterating f has to be linearly ordered and its supremum must exists.

Definition 3.11. Let $\mathfrak{A} = (A, \preceq)$ be a partial order.

(a) \mathfrak{A} is inductively ordered if every chain $C \subseteq A$ that is a set has a supremum.

(b) A function $f : A \to A$ is inflationary if $f(a) \geq a$, for all $a \in A$.

Remark. (a) Every inductively ordered set has a least element \bot since the set \emptyset is linearly ordered.

(b) Every complete partial order is inductively ordered.

(c) (On, \leq) is inductively ordered.

(d) If (A, \leq) is a well-order then according to Lemma 1.7 all strictly continuous functions $f : A \to A$ are inflationary.

Example. (a) The partial order (F, \subseteq) where

$$F := \{ X \subseteq \mathbb{N} \mid X \text{ is finite} \}.$$
A3. Ordinals

is not inductively ordered since the chain

\[[0] \subset [1] \subset [2] \subset \cdots \subset [n] \subset \cdots \]

has no upper bound.

(b) Let \(V \) be a vector space over the field \(K \) and set

\[I := \{ B \subseteq V \mid B \text{ is linearly independent} \} . \]

We claim that \(\langle I, \subseteq \rangle \) is inductively ordered.

Let \(C \subseteq I \) be a chain. We show that \(\text{sup } C = \bigcup C \). By Corollary A2.3.10, it is sufficient to prove that \(\bigcup C \in I \).

Suppose otherwise. Then \(\bigcup C \) is not linearly independent and there are elements \(v_\alpha, \ldots, v_n \in \bigcup C \) and \(\lambda_\alpha, \ldots, \lambda_n \in K \) such that \(\lambda_i \neq 0 \), for all \(i \), and

\[\lambda_\alpha v_\alpha + \cdots + \lambda_n v_n = 0 . \]

For each \(v_i \), fix some \(B_i \in C \) with \(v_i \in B_i \). Since \(C \) is linearly ordered so is the set \(\{ B_\alpha, \ldots, B_n \} \). This set is finite and, therefore, it has a maximal element \(B_k \), that is, \(B_i \subseteq B_k \), for all \(i \). It follows that \(v_\alpha, \ldots, v_n \in B_k \), which implies that \(B_k \) is not linearly independent. Contradiction.

Lemma 3.12. Let \(\mathcal{A} = (A, \leq) \) be inductively ordered.

(a) If \(f : A \to A \) is inflationary, \(f \) is inductive over every element \(a \in A \).

(b) If \(f : A \to A \) is increasing, \(f \) is inductive over every element \(a \) with \(f(a) \geq a \).

(c) If \(f : A \to A \) is continuous, \(f \) is inductive over every element \(a \) with \(f(a) \geq a \). Furthermore, if the inductive fixed point of \(f \) over \(a \) exists, its closure ordinal is at most \(\omega \).

Proof. (a) By transfinite recursion, we construct an increasing function \(F : I \to A \) satisfying the equations in Definition 3.6. Let \(F(\alpha) := a \).

For the inductive step, suppose that \(F(\alpha) \) is already defined. We set \(F(\alpha^+) := f(F(\alpha)) \). Since \(f \) is inflationary, it follows that \(F(\alpha^+) = f(F(\alpha)) \geq F(\alpha) \). Finally, suppose that \(\delta \) is a limit ordinal. If \(F \upharpoonright \downarrow \delta \)
is a proper class, we are done. Otherwise, $F[\downarrow \delta]$ is a set which, furthermore, is linearly ordered because $F \uparrow \downarrow \delta$ is increasing. As (A, \leq) is inductively ordered it follows that $F[\downarrow \delta]$ has a supremum and we can set $F(\delta) := \sup F[\downarrow \delta]$.

(b) Again we define an increasing function $F : I \to A$ by transfinite recursion. Let $F(\omega) := a$. For the inductive step, suppose that $F(\alpha)$ is already defined. We set $F(\alpha^+) := f(F(\alpha))$. To prove that $F(\alpha^+) \geq F(\alpha)$ we consider three cases. For $\alpha = 0$ we have $F(1) = f(a) \geq a = F(\omega)$. If $\alpha = \beta^+$ is a successor, we know by inductive hypothesis that $F(\beta^+) \geq F(\beta)$. Since f is increasing it follows that

$$F(\alpha^+) = f(F(\beta^+)) \geq f(F(\beta)) = F(\beta^+) = F(\alpha).$$

If α is a limit then $F(\alpha) = \sup F[\downarrow \alpha]$ and

$$F(\alpha^+) = f(\sup F[\downarrow \alpha]) \geq f(F(\beta)) = F(\beta^+), \quad \text{for all } \beta < \alpha.$$

This implies that

$$F(\alpha^+) \geq \sup F[\downarrow \alpha] = F(\alpha).$$

Finally, let δ be a limit ordinal. Again, if $F \uparrow \downarrow \delta$ is a proper class, we are done. Otherwise, $F[\downarrow \delta]$ is a set and, as above, $F(\delta) := \sup F[\downarrow \delta]$ exists.

(c) Since continuous functions are increasing it follows from (b) that f is inductive over a. Let F be the corresponding fixed-point induction. It remains to show that, if $\omega \in \text{dom } F$ then $F(\omega) = F(\omega)$. Since f is continuous we have

$$F(\omega^+) = f(\sup F[\downarrow \omega])$$

$$= \sup \{ f(F(\alpha)) \mid \alpha < \omega \}$$

$$= \sup \{ F(\alpha^+) \mid \alpha < \omega \}$$

$$= \sup F[\downarrow \omega] = F(\omega),$$

as desired. \qed

Lemma 3.13. Let $f : \text{On} \to \text{On}$ be strictly continuous and let $\alpha \in \text{On}$.
A3. Ordinals

(a) \(f \) is inductive over \(\alpha \).

(b) If \(F \) is the fixed-point induction of \(f \) over \(\alpha \) then \(F(\omega) \) exists if, and only if, the set \(\{ f^n(\alpha) \mid n < \omega \} \) is bounded. In this case we have \(F(\omega) = F(\omega) \).

Proof. (a) In Lemma 1.7 we have shown that every strictly continuous function on a well-order is inflationary. Therefore, Lemma 3.12 implies that \(f \) is inductive over \(\alpha \).

(b) We prove by induction on \(n < \omega \) that \(n \in \text{dom} \ F \). By definition we have \(\circ \in \text{dom} \ F \). If \(n \in \text{dom} \ F \) then \(f(F(n)) \geq F(n) \) since \(f \) is inflationary. Hence, \(F(n + 1) = f(F(n)) \) is defined. If

\[\{ f^n(\alpha) \mid n < \omega \} = F[\downarrow \omega] \]

is bounded, it follows that \(F(\omega) = \sup F[\downarrow \omega] \) is defined. Consequently, Lemma 3.12 implies that \(F(\omega) = F(\omega) \). \(\square \)

Exercise 3.2. Let \(f : \mathcal{P}(A) \to \mathcal{P}(A) \) be inflationary and increasing, and let \(c : \mathcal{P}(A) \to \mathcal{P}(A) \) be the function that maps \(X \subseteq A \) to the inductive fixed point of \(f \) over \(X \). Prove that \(c \) is a closure operator.

We conclude this section with two theorems which can be used to prove the existence of fixed points. The first one is an immediate consequence of the above results.

Theorem 3.14 (Bourbaki). Let \(\langle A, \leq \rangle \) be an inductively ordered graph. If \(A \) is a set then every inflationary function \(f : A \to A \) has an inductive fixed point.

Proof. By Lemma 3.12, \(f \) is inductive over \(\bot \). Consequently, \(f \) has an inductive fixed point, by Theorem 3.9. \(\square \)

Example. The condition of \(A \) being a set is necessary. For instance, \(\text{On} \) is inductively ordered since every set of ordinals has a supremum and the function \(f : \text{On} \to \text{On} : \alpha \mapsto \alpha^+ \) is inflationary. But \(f \) has no fixed point.
The second theorem is a version of the Theorem of Knaster and Tarski which shows that we can compute the least fixed point of a function \(f \) by a fixed-point induction.

Theorem 3.15. Let \((A, \leq) \) be an inductively ordered graph where \(A \) is a set and let \(f : A \to A \) be an increasing function. If the least fixed point of \(f \) exists then it coincides with its inductive fixed point over \(\bot \).

Proof. Let \(F : \text{On} \to A \) be the fixed-point induction of \(f \) over \(\bot \). Suppose that \(a := \text{lfp} \, f \) exists. We prove by induction on \(\alpha \) that \(F(\alpha) \leq a \). Then it follows that \(F(\infty) \leq a \) and the minimality of \(a \) implies that \(F(\infty) = a \).

Clearly, \(F(\emptyset) = \bot \leq a \). For the inductive step, suppose that \(F(\alpha) \leq a \). Since \(f \) is increasing it follows that

\[
F(\alpha^+) = f(F(\alpha)) \leq f(a) = a.
\]

Finally, if \(\delta \) is a limit ordinal, the inductive hypothesis implies that

\[
F(\delta) = \sup \{ F(\alpha) \mid \alpha < \delta \} \leq a.
\]

\[\square \]

4. Ordinal arithmetic

Many properties of natural numbers can be generalised to ordinals. We have already seen that ordinals allow proofs by induction. In this section we will show how to define addition, multiplication, and exponentiation for such numbers.

We start by defining these operations for arbitrary linear orders. Intuitively, the sum of two linear orders \(\mathfrak{A} \) and \(\mathfrak{B} \) is the order consisting of a copy of \(\mathfrak{A} \) followed by a copy of \(\mathfrak{B} \). Similarly, their product is obtained from \(\mathfrak{B} \) by replacing every element by a copy of \(\mathfrak{A} \).

Definition 4.1. Let \(\mathfrak{A} = \langle A, \leq_A \rangle \) and \(\mathfrak{B} = \langle B, \leq_B \rangle \) be linear orders.

(a) The sum \(\mathfrak{A} + \mathfrak{B} \) is the graph \(\langle C, \leq_C \rangle \) where

\[
C := A \cup B = (\{0\} \times A) \cup (\{1\} \times B)
\]
A3. **Ordinals**

\[
\rightarrow + \rightarrow = \rightarrow \quad \rightarrow \cdot \downarrow = \[
\]

Figure 1. Sum and product of linear orders

and the order is defined by

\[
\langle i, a \rangle \leq_C \langle k, b \rangle \quad \text{iff} \quad i = k = 0 \text{ and } a \leq_A b \\
\text{or } i = k = 1 \text{ and } a \leq_B b \\
\text{or } i = 0 \text{ and } k = 1.
\]

(b) The product \(\mathfrak{A} \cdot \mathfrak{B} \) is the graph \((C, \leq_C) \) where \(C := A \times B \) and the order is defined by

\[
\langle a, b \rangle \leq_C \langle a', b' \rangle \quad \text{iff} \quad b <_B b' \text{ or } (b = b' \text{ and } a \leq_A a').
\]

(This is the reversed lexicographic ordering, see Definition B2.1.1.)

(c) If \(\mathfrak{A} \) and \(\mathfrak{B} \) are well-orders then we define \(\mathfrak{A}(\mathfrak{B}) := (C, \leq_C) \) where

\[
C := \{ f \in A^B \mid \text{there are only finitely many } b \in B \text{ with } f(b) \neq \bot \},
\]

and the order is defined by

\[
f <_C g \quad \text{iff} \quad \text{the set } \{ b \in B \mid f(b) \neq g(b) \} \text{ has a maximal } \\
\text{element } b_o \text{ and we have } f(b_o) <_A g(b_o).
\]

For natural numbers, these operations coincide with the usual ones.

Exercise 4.1. Let \(\mathfrak{K} := ([k], \leq) \) and \(\mathfrak{M} := ([m], \leq) \) where \(k, m < \omega \). Prove that

(a) \(\mathfrak{K} + \mathfrak{M} \cong ([k + m], \leq) \),

(b) \(\mathfrak{K} \cdot \mathfrak{M} \cong ([km], \leq) \),

86
(c) $\mathcal{R}^{(\mathbb{N})} \cong ([k^m], \leq)$.

Addition of linear orders is associative and the empty order is a neutral element. Below we will give an example showing that, in general, it is not commutative.

Lemma 4.2. If \mathcal{A}, \mathcal{B}, and \mathcal{C} are linear orders then

$$(\mathcal{A} + \mathcal{B}) + \mathcal{C} \cong \mathcal{A} + (\mathcal{B} + \mathcal{C}).$$

Proof. Let $\mathcal{A} = \langle A, \leq_A \rangle$, $\mathcal{B} = \langle B, \leq_B \rangle$, and $\mathcal{C} = \langle C, \leq_C \rangle$. We can define a bijection $f : (A \cup B) \cup C \rightarrow A \cup (B \cup C)$ by

$$
\begin{align*}
 f(0, (0, a)) & := (0, a) \quad \text{for } a \in A, \\
 f(0, (1, b)) & := (1, (0, b)) \quad \text{for } b \in B, \\
 f(1, c) & := (1, (1, c)) \quad \text{for } c \in C.
\end{align*}
$$

Since this bijection preserves the ordering it is the desired isomorphism.

As we want to define arithmetic operations on ordinals we have to show that, if we apply the above operations to well-orders, we again obtain a well-order.

Lemma 4.3. If \mathcal{A} and \mathcal{B} are well-orders then so are $\mathcal{A} + \mathcal{B}$, $\mathcal{A} \cdot \mathcal{B}$, and $\mathcal{A}^{(\mathbb{N})}$.

Proof. Suppose that $\mathcal{A} = \langle A, \leq_A \rangle$ and $\mathcal{B} = \langle B, \leq_B \rangle$. We will prove the claim only for $\mathcal{C} := \mathcal{A}^{(\mathbb{N})}$. The other operations are left as an exercise to the reader.

Let $\mathcal{C} = \langle C, \leq_C \rangle$. The relation $<_C$ is irreflexive since, for each $f \in C$, the set $\{ b \in B \mid f(b) \neq f(b) \}$ is empty and has no maximal element. Furthermore, $<_C$ is linear. For transitivity, let $f, g, h \in C$ be functions such that $f <_C g <_C h$. Let $b_0, b_1 \in B$ be the maximal elements such...
that, respectively, \(f(b_o) \neq g(b_o) \) and \(g(b_1) \neq h(b_1) \). By definition, we have \(f(b_o) <_A g(b_o) \) and \(g(b_1) <_A h(b_1) \). If \(b_o \leq_B b_1 \) then
\[
f(b_1) \leq g(b_1) <_A h(b_1)
\]
and \(f(b) = g(b) = h(b) \), for \(b >_B b_1 \), implies that \(f <_C h \). Similarly, if \(b_1 <_B b_o \) then
\[
f(b_o) <_A g(b_o) = h(b_o)
\]
and \(f(b) = g(b) = h(b) \), for \(b >_B b_o \).

In both cases it follows that \(f <_C h \). Consequently, \(<_C \) is a strict linear order.

It remains to prove that every nonempty subset \(X \subseteq C \) has a minimal element. We prove the claim by induction on \(\beta := \text{ord}(\mathcal{B}) \). If \(\beta = 0 \) then \(C = A(\emptyset) = \{ \emptyset \} \) and we are done. Suppose that \(\beta > 0 \) and select an arbitrary element \(f \in X \). If \(f(b) = \bot \), for all \(b \in B \), then \(f \) is the minimal element of \(X \) and we are done. Hence, we may assume that there is some \(b \in B \) with \(f(b) \neq \bot \). Since there are only finitely many such elements we may assume that \(b \) is the maximal one. Define
\[
Y := \{ g \in X \mid g(c) = \bot \text{ for all } c > b \}.
\]
This set is nonempty since \(f \in Y \). Set
\[
a := \min \{ g(b) \mid g \in Y \} \quad \text{and} \quad Z := \{ g \in Y \mid g(b) = a \}.
\]
By construction, we have \(g <_C h \) whenever \(g \in Z \) and \(h \in X \setminus Z \). Consequently, if we can find a minimal element of \(Z \), we also have the minimal element of \(X \). Let
\[
U := \{ g \upharpoonright \downarrow b \mid g \in Z \} \subseteq A^{(\uparrow b)}.
\]
Since \(\text{ord}(\uparrow b) < \beta \) we can apply the inductive hypothesis and there exists a minimal element \(h \in U \). Note that the restriction map
\[
\rho : Z \to U : g \mapsto g \upharpoonright \downarrow b
\]
4. Ordinal arithmetic

is a bijection since we have

\[g(c) = g'(c) \quad \text{for all } g, g' \in Z \text{ and every } c \geq b. \]

Furthermore, \(\rho \) preserves the ordering, that is, it is an isomorphism. It follows that \(\rho^{-1}(h) \) is the minimal element of \(Z \) and of \(X \).

\(\square \)

Exercise 4.2. Show that, if \(\mathcal{A} \) and \(\mathcal{B} \) are well-orders then so are \(\mathcal{A} + \mathcal{B} \) and \(\mathcal{A} \cdot \mathcal{B} \).

It is easy to see that \(\mathcal{A} \cong \mathcal{A}' \) and \(\mathcal{B} \cong \mathcal{B}' \) implies that the sums, products, and powers are also isomorphic. Therefore, we can define the corresponding operations on ordinals by taking representatives.

Definition 4.4. For \(\alpha = \text{ord}(\mathcal{A}) \) and \(\beta = \text{ord}(\mathcal{B}) \) we define

\[
\begin{align*}
\alpha + \beta & := \text{ord} (\mathcal{A} + \mathcal{B}) , \\
\alpha \cdot \beta & := \text{ord} (\mathcal{A} \cdot \mathcal{B}) , \\
\alpha^{(\beta)} & := \text{ord} (\mathcal{A}^{(\beta)}) .
\end{align*}
\]

Example. The following equations can be proved easily by the lemmas below. We encourage the reader to derive them directly from the definitions.

\[
\begin{align*}
1 + 1 & = 2 \\
\omega + \omega & = \omega^2 \\
1 + \omega & = \omega < \omega + 1 \\
2 \omega & = \omega < \omega^2 \\
(3 + 6) \omega & = 9 \omega = \omega < 2 \omega = 3 \omega + 6 \omega \\
(\omega 6 + 17) \omega & = \omega \omega = \omega^{(2)} \\
2^{(\omega)} & = \omega
\end{align*}
\]

Exercise 4.3. Show that \(\alpha + \beta, \alpha \cdot \beta, \) and \(\alpha^{(\beta)} \) are well-defined, for all \(\alpha, \beta \in \text{On} \).

Exercise 4.4. Show that \(\alpha^+ = \alpha + 1 \).
Ordinal addition

The properties of ordinal addition, multiplication, and exponentiation are similar to, but not quite the same as those for integers. The following sequence of lemmas summarises them. We start with addition.

Lemma 4.5. Let \(\alpha, \beta, \gamma \in \text{On} \). If \(\beta < \gamma \) then \(\alpha + \beta < \alpha + \gamma \).

Proof. Fix representatives \(\alpha = \text{ord}(\mathcal{A}) \), \(\beta = \text{ord}(\mathcal{B}) \), and \(\gamma = \text{ord}(\mathcal{C}) \). There exists an isomorphism \(f : B \to I \subset C \) between \(B \) and some proper initial segment \(I \) of \(C \). We define an isomorphism \(g : A \cup B \to A \cup I \) by

\[
g((\langle 0, a \rangle)) := \langle 0, a \rangle, \quad \text{for } a \in A, \\
g((\langle 1, b \rangle)) := \langle 1, f(b) \rangle, \quad \text{for } b \in B.
\]

Hence, \(\mathcal{A} + \mathcal{B} < \mathcal{A} + \mathcal{C} \). \(\square \)

In the last section we gave an inductive definition of addition. The next lemma shows that it is equivalent to the official definition above.

Lemma 4.6. Let \(\alpha, \beta \in \text{On} \).

(a) \(\alpha + 0 = \alpha \).
(b) \(\alpha + \beta^+ = (\alpha + \beta)^+ \).
(c) \(\alpha + \delta = \sup \{ \alpha + \beta \mid \beta < \delta \} \), for limit ordinals \(\delta \).

Proof. Fix representatives \(\alpha = \text{ord}(\mathcal{A}) \) and \(\beta = \text{ord}(\mathcal{B}) \).

(a) follows immediately since \(\mathcal{A} + \langle \emptyset, \leq \rangle \cong \mathcal{A} \).

(b) By Lemma 4.2, we have

\[
(\mathcal{A} \cup \mathcal{B}) + \mathcal{C} \cong \mathcal{A} + (\mathcal{B} \cup \mathcal{C}), \quad \text{for all linear orders } \mathcal{A}, \mathcal{B}, \mathcal{C}.
\]

Since \(\beta^+ = \text{ord}(\mathcal{B} + \langle [1], \leq \rangle) \) the result follows.

(c) Let \(X := \{ \alpha + \beta \mid \beta < \delta \} \) and set \(\gamma := \sup X \). By Lemma 4.5, we have \(\alpha + \beta < \alpha + \delta \), for all \(\beta < \delta \), which implies that \(\gamma \leq \alpha + \delta \).
4. Ordinal arithmetic

For a contradiction suppose that $\gamma < \alpha + \delta$. Fix representatives $\gamma = \text{ord}(C)$ and $\delta = \text{ord}(D)$. Since $\alpha + \delta < \gamma < \alpha + \delta$ there exists an isomorphism $f : C \rightarrow A \cup I$, for some proper initial segment $\emptyset \subset I \subset D$. Let $C_o := f^{-1}[A]$ and $C_i := f^{-1}[I]$. Since f is an isomorphism we have

$$\mathfrak{A} \cong \langle C_o, \leq \rangle \quad \text{and} \quad \mathfrak{C} \cong \langle C_o, \leq \rangle + \langle C_i, \leq \rangle.$$

Set $\beta := \text{ord}(\langle C_i, \leq \rangle)$. It follows that $\gamma = \alpha + \beta$. Furthermore, because of the inclusion map $I \rightarrow D$ we have $\beta < \delta$. By (b) it follows that

$$\gamma < (\alpha + \beta)^+ = \alpha + \beta^+ \leq \sup X.$$

Contradiction.

\[\square \]

Corollary 4.7. The function $f_\alpha : \text{On} \rightarrow \text{On}$ with $f_\alpha(\beta) := \alpha + \beta$ is strictly continuous, for every $\alpha \in \text{On}$.

Proof. The claim follows immediately from the preceding lemma and Lemma 1.13.

\[\square \]

Since ordinal addition is not commutative there are two possible ways to subtract ordinals. Given $\alpha \geq \beta$ we can ask for some ordinal γ such that $\alpha = \beta + \gamma$, or we can ask for some γ with $\alpha = \gamma + \beta$. The next lemma shows that the first operation is well-defined. The second one is not since, for example, $1 + \omega = \omega = 2 + \omega$.

Lemma 4.8. For all ordinals $\beta \leq \alpha$, there exists a unique ordinal γ such that $\alpha = \beta + \gamma$.

Proof. By Corollary 4.7 and Lemma 1.14, there exists a greatest ordinal γ such that $\beta + \gamma \leq \alpha$. If $\beta + \gamma < \alpha$ then we would have

$$(\beta + \gamma)^+ = \beta + \gamma^+ \leq \alpha$$

in contradiction to the choice of γ. Hence, $\beta + \gamma = \alpha$. The uniqueness of γ follows from the fact that the function $\gamma \mapsto \beta + \gamma$ is injective.

\[\square \]
A3. Ordinals

The next lemma summarises the laws of ordinal addition.

Lemma 4.9. Let \(\alpha, \beta, \gamma \in \text{On} \).

(a) \(\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma \).
(b) \(\alpha + \beta = \alpha + \gamma \) implies \(\beta = \gamma \).
(c) \(\alpha \leq \beta \) implies \(\alpha + \gamma \leq \beta + \gamma \).
(d) If \(X \subseteq \text{On} \) is nonempty and bounded then

\[
\alpha + \sup X = \sup \{ \alpha + \beta \mid \beta \in X \}.
\]

(e) \(\beta \leq \alpha \) if, and only if, \(\alpha = \beta + \gamma \), for some \(\gamma \in \text{On} \).
(f) \(\beta < \alpha \) if, and only if, \(\alpha = \beta + \gamma \), for some \(\gamma \in \text{On} \setminus \{0\} \).

Proof. Fix representatives \(\alpha = \text{ord}(A), \beta = \text{ord}(B) \) and \(\gamma = \text{ord}(C) \).

(a) follows from Lemma 4.2; (b) follows from Lemma 4.8; and (d) follows from Corollary 4.7.

(c) We prove the claim by induction on \(\gamma \). For \(\gamma = 0 \), we have

\[
\alpha + 0 = \alpha \leq \beta = \beta + 0.
\]

For the successor step, note that \(\alpha \leq \beta \) implies \(\alpha^+ \leq \beta^+ \). Hence, it follows that

\[
\alpha + \gamma^+ = (\alpha + \gamma)^+ \leq (\beta + \gamma)^+ = \beta + \gamma^+.
\]

It remains to consider the limit step. For every \(\eta < \gamma \), the inductive hypothesis yields

\[
\alpha + \eta \leq \beta + \eta < \beta + \gamma.
\]

Therefore, Lemma 4.6 (c) implies that

\[
\alpha + \gamma = \sup \{ \alpha + \eta \mid \eta < \gamma \} \leq \beta + \gamma.
\]
(e) If \(\beta < \alpha \), we obtain by Lemma 4.8 some \(\gamma \in \text{On} \) with \(\alpha = \beta + \gamma \). Conversely, if \(\beta + \gamma = \alpha \) then there exists an isomorphism

\[
f : B \cup C \to A.
\]

We can define an isomorphism \(g : B \to I \subseteq A \) by

\[
g(b) := f(\langle o, b \rangle).
\]

This implies that \(\mathcal{B} \leq \mathcal{A} \).

(f) follows immediately from (e). \(\square \)

Ordinal multiplication

After addition we turn to ordinal multiplication. The development is analogous to the one above. First, we show that the function \(\beta \mapsto \alpha \beta \) is strictly increasing.

Lemma 4.10. Let \(\alpha, \beta, \gamma \in \text{On} \). If \(\alpha \neq o \) and \(\beta < \gamma \) then \(\alpha \beta < \alpha \gamma \).

Proof. Fix representatives \(\alpha = \text{ord}(\mathcal{A}), \beta = \text{ord}(\mathcal{B}), \) and \(\gamma = \text{ord}(\mathcal{C}) \). By assumption, there exists an isomorphism \(f : B \to I \subseteq C \) between \(B \) and a proper initial segment of \(C \). We can define an isomorphism \(g : A \times B \to A \times I \) by

\[
g(\langle a, b \rangle) := \langle a, f(b) \rangle.
\]

Since \(A \times I \) is a proper initial segment of \(A \times C \) it follows that \(\alpha \beta < \alpha \gamma \). \(\square \)

Again the inductive definition coincides with the official one.

Lemma 4.11. Let \(\alpha, \beta \in \text{On} \).

(a) \(\alpha \cdot o = o \).

(b) \(\alpha \beta^* = \alpha \beta + \alpha \).

(c) \(\alpha \delta = \sup \{ \alpha \beta \mid \beta < \delta \} \), \(\text{for limit ordinals } \delta \).
A3. Ordinals

Proof. Fix representatives \(\alpha = \text{ord}(\mathcal{A}) \) and \(\beta = \text{ord}(\mathcal{B}) \).

(a) follows immediately from the fact that \(\mathcal{A} \cdot (\varnothing, \varnothing) = (\varnothing, \varnothing) \).

(b) The canonical bijection

\[
A \times (B \cup [1]) \to (A \times B) \cup A
\]

given by

\[
\langle a, \langle 0, b \rangle \rangle \mapsto \langle 0, \langle a, b \rangle \rangle ,
\]

\[
\langle a, \langle 1, 0 \rangle \rangle \mapsto \langle 1, a \rangle ,
\]

induces an isomorphism

\[
\mathcal{A} \cdot (\mathcal{B} + ([1], \leq)) \to \mathcal{A} \cdot \mathcal{B} + \mathcal{A} .
\]

(c) Let \(X := \{ \alpha \beta \mid \beta < \delta \} \) and set \(\gamma := \sup X \). By Lemma 4.10, we have \(\alpha \beta < \alpha \delta \), for all \(\beta < \delta \). Hence, \(\gamma = \sup X \leq \alpha \delta \).

For a contradiction suppose that \(\gamma < \alpha \delta \). Fix representatives \(\gamma = \text{ord}(\mathcal{C}) \) and \(\delta = \text{ord}(\mathcal{D}) \). Since \(\gamma < \alpha \delta \) there exists an isomorphism \(f : C \to I \), for some proper initial segment \(\varnothing \subset I \subset A \times D \). Let \(\langle a, d \rangle \) be the minimal element of \(A \times D \setminus I \). Then \(I = (A \times \downarrow d) \cup (\downarrow a \times \{ d \}) \), which implies that

\[
\gamma = \alpha \cdot \text{ord}(\downarrow d) + \text{ord}(\downarrow a) .
\]

Since \(\text{ord}(\downarrow a) < \alpha \) and \(\beta := \text{ord}(\downarrow d) < \delta \) it follows that

\[
\gamma < \alpha \beta + \alpha = \alpha \beta^+ \leq \sup X .
\]

Contradiction. \(\square \)

Corollary 4.12. The function \(f_\alpha : \text{On} \to \text{On} \) with \(f_\alpha(\beta) := \alpha \beta \) is strictly continuous, for every \(\alpha > 0 \).

Proof. The claim follows immediately from the preceding lemma and Lemma 1.13. \(\square \)
We can also show that ordinals allow a limited form of division.

Lemma 4.13. For all ordinals \(\alpha, \beta \in \text{On} \) with \(\beta \neq 0 \), there exist unique ordinals \(\gamma \) and \(\rho < \beta \) such that \(\alpha = \beta \gamma + \rho \).

Proof. By Corollary 4.12 and Lemma 1.14, there exists a greatest ordinal \(\gamma \) such that \(\beta \gamma \leq \alpha \), and, by Lemma 4.8, there exists some ordinal \(\rho \) such that \(\beta \gamma + \rho = \alpha \). By choice of \(\gamma \), we have

\[
\beta \gamma + \beta = \beta (y + 1) > \alpha = \beta \gamma + \rho ,
\]

which implies that \(\rho < \beta \).

Suppose there exist ordinals \(\delta \neq \gamma \) and \(\sigma < \beta \) such that \(\beta \delta + \sigma = \alpha \). Since \(\beta \delta \leq \alpha \) we have \(\delta < \gamma \), which implies that

\[
\alpha = \beta \gamma + \rho \geq \beta \delta + \sigma = \beta \delta + \beta > \beta \delta + \sigma = \alpha .
\]

A contradiction. It follows that \(\gamma \) is unique. Hence, the uniqueness of \(\rho \) follows from Lemma 4.8.

Lemma 4.14. \(\alpha \) is a limit ordinal if, and only if, \(\alpha = \omega \beta \), for some \(\beta > 0 \).

Proof. \((\Rightarrow)\) By Lemma 4.13, we have \(\alpha = \omega \beta + n \) for some \(\beta \in \text{On} \) and \(n < \omega \). Suppose that \(n \neq 0 \). Then \(n = m + 1 \), for some \(m < \omega \), and

\[
\alpha = \omega \beta + (m + 1) = (\omega \beta + m) + 1 .
\]

Consequently, \(\alpha \) is a successor ordinal. Contradiction.

\((\Leftarrow)\) Suppose that \(\omega \beta \) is a successor ordinal. That is, \(\omega \beta = \gamma + 1 \), for some \(\gamma \). By Lemma 4.13, we can write \(\gamma \) as \(\gamma = \omega \eta + n \), for some \(n < \omega \). Hence,

\[
\omega \beta = \gamma + 1 = \omega \eta + (n + 1) .
\]

By Lemma 4.13, it follows that \(\beta = \eta \) and \(\sigma = n + 1 \). Contradiction.

The laws of ordinal multiplication are summarised in the following lemma.
Lemma 4.15. Let $\alpha, \beta, \gamma \in \text{On}$.

(a) $\alpha(\beta\gamma) = (\alpha\beta)\gamma$.
(b) $\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$.
(c) If $\alpha \neq 0$ and $\alpha\beta = \alpha\gamma$ then $\beta = \gamma$.
(d) $\alpha \leq \beta$ implies $\alpha\gamma \leq \beta\gamma$.
(e) If $X \subseteq \text{On}$ is nonempty and bounded then

$$\alpha \cdot \sup X = \sup \{ \alpha\beta \mid \beta \in X \}.$$

Proof. (b) We prove the claim by induction on γ. For $\gamma = 0$, we have

$$\alpha(\beta + 0) = \alpha\beta = \alpha\beta + 0 = \alpha\beta + \alpha 0.$$

For the successor step, we have

$$\alpha(\beta + \gamma^+) = \alpha(\beta + \gamma)^+$$

$$= \alpha(\beta + \gamma) + \alpha$$

$$= \alpha\beta + \alpha\gamma + \alpha$$

$$= \alpha\beta + \alpha\gamma^+.$$

Finally, if γ is a limit ordinal then

$$\alpha(\beta + \gamma) = \alpha \cdot \sup \{ \beta + \rho \mid \rho < \gamma \}$$

$$= \sup \{ \alpha(\beta + \rho) \mid \rho < \gamma \}$$

$$= \sup \{ \alpha\beta + \alpha\rho \mid \rho < \gamma \}$$

$$= \alpha\beta + \sup \{ \alpha\rho \mid \rho < \gamma \}$$

$$= \alpha\beta + \alpha\gamma.$$

(a) and (d) can also be proved by induction on γ. We leave the details as an exercise to the reader.

(c) and (e) follow immediately from Corollary 4.12.

96
4. Ordinal arithmetic

Ordinal exponentiation

Finally, we consider ordinal exponentiation. Again, the basic steps are the same as for addition and multiplication.

Lemma 4.16. Let $\alpha, \beta, \gamma \in \text{On}$. If $\alpha > 1$ and $\beta < \gamma$ then $\alpha(\beta) < \alpha(\gamma)$.

Proof. Fix representatives $\alpha = \text{ord}(\mathfrak{A})$, $\beta = \text{ord}(\mathfrak{B})$, and $\gamma = \text{ord}(\mathfrak{C})$. There exists an isomorphism $f : B \to I \subset C$ between B and a proper initial segment I of C. The desired isomorphism

$$A(B) \to A(I) \subset A(C)$$

is given by the mapping $g \mapsto g \circ f^{-1}$. \hfill \square

Ordinal exponentiation can also be defined inductively.

Lemma 4.17. Let $\alpha, \beta \in \text{On}$.

(a) $\alpha^{(0)} = 1$.

(b) $\alpha^{(\beta^+)} = \alpha^{(\beta)} \alpha$.

(c) $\alpha^{(\delta)} = \sup \{ \alpha^{(\beta)} \mid \beta < \delta \}$, for limit ordinals δ.

Proof. Fix representatives $\alpha = \text{ord}(\mathfrak{A})$ and $\beta = \text{ord}(\mathfrak{B})$.

(a) Since \varnothing is the only function with empty domain we have $A(\varnothing) = A^{\varnothing} = \{\varnothing\}$.

(b) There is a canonical bijection $A^{(B \cup [1])} \to A(B) \times A$ given by

$$f \mapsto \{ f', f((1, 0)) \}$$

where the function $f' : B \to A$ is defined by $f'(b) := f((\langle 0, b \rangle))$. This bijection induces the desired isomorphism

$$\mathfrak{A}^{(\mathfrak{B} + \{1\}, \preceq)} \to \mathfrak{A}(\mathfrak{B}) \cdot \mathfrak{A}.$$

(c) If $\alpha < 2$, the claim is trivial. Hence, we may assume that $\alpha > 1$. Let $X := \{ \alpha^{(\beta)} \mid \beta < \delta \}$ and set $\gamma := \sup X$. By Lemma 4.16, we have $\alpha^{(\beta)} < \alpha^{(\delta)}$, for all $\beta < \delta$. Hence, $\gamma = \sup X \leq \alpha^{(\delta)}$.

97
A3. **Ordinals**

For a contradiction suppose that \(\gamma < \alpha^{(\delta)} \). Fix representatives \(\gamma = \text{ord}(C) \) and \(\delta = \text{ord}(\mathfrak{D}) \). Since \(\gamma < \alpha^{(\delta)} \), there exists an isomorphism \(f : C \rightarrow I \), for some proper initial segment \(I \subset A^{(D)} \). Let \(g \) be the minimal element of \(A^{(D)} \setminus I \) and let \(d_0 < \cdots < d_n \) be the enumeration of the set \(\{ d \in D \mid g(d) \neq 0 \} \). We can decompose \(I \) as \(I = I_n \cup \cdots \cup I_o \) where, for each \(i \leq n \),

\[
I_i := \{ h \in A^D \mid h(d_i) < g(d_i) \text{ and } h(x) = g(x) \text{, for } x > d_i \}.
\]

Set \(\beta_i := \text{ord}(\downarrow d_i) < \delta \) and \(\eta_i := \text{ord}(\downarrow g(d_i)) \). It follows that

\[
\gamma = \alpha^{(\beta_n)} \cdot \eta_n + \cdots + \alpha^{(\beta_o)} \cdot \eta_o < \alpha^{(\beta_n)} \alpha + \cdots + \alpha^{(\beta_o)} \alpha \\
\leq \alpha^{(\beta_n)} \alpha + \cdots + \alpha^{(\beta_n)} \alpha \\
= \alpha^{(\beta_n+1)} (n + 1).
\]

Since \(\alpha > 1 \) there is some finite ordinal \(m \) such that \(\alpha^{(m)} \geq n + 1 \). Therefore, it follows by (b) that

\[
\gamma < \alpha^{(\beta_n+1)} \alpha^{(m)} = \alpha^{(\beta_n+m+1)} \leq \sup X.
\]

Contradiction. \(\square \)

Corollary 4.18. The function \(f_\alpha : \text{On} \rightarrow \text{On} \) with \(f_\alpha (\beta) := \alpha^{(\beta)} \) is strictly continuous, for every \(\alpha > 1 \).

Proof. The claim follows immediately from the preceding lemma and Lemma 1.13. \(\square \)

Besides subtraction and division we can also take a limited form of logarithms.

Lemma 4.19. For all ordinals \(\alpha, \beta \in \text{On} \) with \(\alpha > 0 \) and \(\beta > 1 \), there exist unique ordinals \(\gamma, \eta, \) and \(\rho \) with \(0 < \gamma < \beta \) and \(\rho < \beta^{(\eta)} \) such that \(\alpha = \beta^{(\eta)} \gamma + \rho \).
4. Ordinal arithmetic

Proof. By Corollary 4.18 and Lemma 1.14, there exists a greatest ordinal \(\eta \) such that \(\beta^{(\eta)} \leq \alpha \), and, by Lemma 4.13, there exist ordinals \(\gamma \) and \(\rho < \beta^{(\eta)} \) such that \(\beta^{(\eta)} \gamma + \rho = \alpha \). If \(\gamma = 0 \), we would have \(\rho = \alpha \geq \beta^{(\eta)} > \rho \). A contradiction. And, if \(\gamma \geq \beta \), we would have

\[
\alpha < \beta^{(\eta+1)} = \beta^{(\eta)} \beta \leq \beta^{(\eta)} \gamma \leq \beta^{(\eta)} \gamma + \rho = \alpha.
\]

Again a contradiction. Therefore, \(0 < \gamma < \beta \).

Suppose there exist ordinals \(\mu \neq \eta, \delta \), and \(\sigma \) such that \(\beta^{(\mu)} \delta + \sigma = \alpha \). Since \(\beta^{(\mu)} \leq \alpha \) we have \(\mu < \eta \), which implies that

\[
\alpha = \beta^{(\eta)} \gamma + \rho \geq \beta^{(\mu+1)} = \beta^{(\mu)} \beta \geq \beta^{(\mu)} (\delta + 1) = \beta^{(\mu)} \delta + \beta^{(\mu)}
\]

\[
> \beta^{(\mu)} \delta + \sigma = \alpha.
\]

A contradiction. It follows that \(\eta \) is unique. Hence, the uniqueness of \(\gamma \) and \(\rho \) follows from Lemma 4.8. \(\square \)

Let us summarise the laws of ordinal exponentiation.

Lemma 4.20. Let \(\alpha, \beta, \gamma \in \text{On} \).

(a) \(\alpha^{(\beta + \gamma)} = \alpha^{(\beta)} \alpha^{(\gamma)} \).

(b) \(\alpha^{(\beta \gamma)} = (\alpha^{(\beta)})^{(\gamma)} \).

(c) \(\alpha > 1 \) implies \(\beta \leq \alpha^{(\beta)} \).

(d) \(\text{If } \alpha > 1 \text{ and } \alpha^{(\beta)} = \alpha^{(\gamma)} \text{ then } \beta = \gamma \).

(e) \(\alpha \leq \beta \) implies \(\alpha^{(\beta)} \leq \alpha^{(\gamma)} \).

(f) \(\text{If } \alpha > 1 \text{ then we have } \beta < \gamma \text{ if, and only if, } \alpha^{(\beta)} < \alpha^{(\gamma)} \).

(g) \(\text{If } X \subseteq \text{On is nonempty and bounded then we have} \)

\[
\alpha^{(\text{sup } X)} = \sup \{ \alpha^{(\beta)} \mid \beta \in X \}.
\]

Proof. (a), (b) and (e) can be proved by a simple induction on \(\gamma \). (c) follows from Lemma 1.7, while (d), (f) and (g) are immediate consequences of Corollary 4.18. \(\square \)
A3. Ordinals

Cantor normal form

We can apply the logarithm to decompose every ordinal in a canonical way.

Theorem 4.21. For all ordinals \(\alpha, \beta \in \text{On} \) with \(\beta > 1 \), there are unique finite sequences \((\gamma_i)_{i<n}\) and \((\eta_i)_{i<n}\) of ordinal numbers such that

\[
\alpha = \beta^{(\eta_0)} \gamma_0 + \ldots + \beta^{(\eta_{n-1})} \gamma_{n-1},
\]

\[
\eta_o > \ldots > \eta_{n-1}, \quad \text{and} \quad 0 < \gamma_i < \beta, \quad \text{for } i < n.
\]

Proof. We decompose \(\alpha \) successively with the help of Lemma 4.19. We start by writing \(\alpha = \beta^{(\eta_0)} \gamma_0 + \rho_0 \). Applying the lemma to \(\rho_0 \) we get \(\rho_0 = \beta^{(\eta_1)} \gamma_1 + \rho_1 \). By induction on \(i \), we obtain \(\rho_i = \beta^{(\eta_{i+1})} \gamma_{i+1} + \rho_{i+1} \). If this process did not terminate then we would get an infinite decreasing sequence \(\alpha > \rho_o > \rho_1 > \ldots \) of ordinals which is impossible. Consequently, there is some number \(n \) such that \(\rho_n = 0 \) and we have

\[
\alpha = \beta^{(\eta_o)} \gamma_0 + \ldots + \beta^{(\eta_{n-1})} \gamma_{n-1}.
\]

\[\square\]

Definition 4.22. Let \(\alpha \) be an ordinal. The unique decomposition

\[
\alpha = \omega^{(\eta_0)} \gamma_0 + \ldots + \omega^{(\eta_n)} \gamma_n,
\]

with \(\eta_0 > \ldots > \eta_n \) and \(0 < \gamma_i < \omega \), for \(i \leq n \).

is called the **Cantor normal form** of \(\alpha \).

The Cantor normal form is very convenient for ordinal calculations. Let us see how this is done. We start with addition.

Lemma 4.23. \(\alpha < \beta \) implies \(\omega^{(\alpha)} + \omega^{(\beta)} = \omega^{(\beta)} \).
Proof. Suppose that \(\beta = \alpha + \gamma \), for \(\gamma > 0 \). We have
\[
\omega(\alpha) + \omega(\beta) = \omega(\alpha) + \omega(\alpha + \gamma) \\
= \omega(\alpha) + \omega(\alpha) \omega(\gamma) \\
= \omega(\alpha) (1 + \omega(\gamma)) \\
= \omega(\alpha) \omega(\gamma) \\
= \omega(\alpha + \gamma) = \omega(\beta).
\]

Corollary 4.24. Let \(\alpha, \beta \in \text{On} \) be ordinals with Cantor normal form
\[
\alpha = \omega(\eta_0) k_0 + \cdots + \omega(\eta_{m-1}) k_{m-1}, \\
\beta = \omega(\gamma_0) l_0 + \cdots + \omega(\gamma_{n-1}) l_{n-1}.
\]
If \(i \) is the maximal index such that \(\eta_i \geq \gamma_0 \) then we have
\[
\alpha + \beta = \omega(\eta_0) k_0 + \cdots + \omega(\eta_i) k_i + \omega(\gamma_0) l_0 + \cdots + \omega(\gamma_{n-1}) l_{n-1}.
\]

Lemma 4.25. An ordinal \(\alpha > 0 \) is of the form \(\alpha = \omega(\eta) \), for some \(\eta \), if, and only if, \(\beta + \gamma < \alpha \), for all \(\beta, \gamma < \alpha \).

Proof. (\(\Rightarrow \)) Let
\[
\beta = \omega(\rho_m) k_m + \cdots + \omega(\rho_0) k_0 \quad \text{and} \quad \gamma = \omega(\sigma_n) l_n + \cdots + \omega(\sigma_0) l_0
\]
be the Cantor normal forms of \(\beta \) and \(\gamma \). If \(\beta, \gamma < \omega(\eta) \) then \(\rho_m, \sigma_n < \eta \). By symmetry, we may assume that \(\gamma \leq \beta \). Thus,
\[
\beta + \gamma \leq \beta + \beta \\
= \omega(\rho_n) (k_m + k_m) + \omega(\rho_{m-1}) k_{m-1} + \cdots + \omega(\rho_0) k_0 \\
< \omega(\eta).
\]

(\(\Leftarrow \)) Suppose that \(\alpha = \omega(\eta) k + \rho \) where \(k < \omega \) and \(\rho < \omega(\eta) \). We have to show that \(k = 1 \) and \(\rho = 0 \).
If $k > 1$, we set $\beta := \omega^{(\eta)}(k - 1) + \rho < \alpha$. It follows that

$$\beta + \beta = \omega^{(\eta)}(k + (k - 2)) + \rho \geq \omega^{(\eta)}k + \rho = \alpha.$$

Contradiction.

Suppose that $k = 1$ but $\rho > 0$. In this case we can set $\beta := \omega^{(\eta)}$ and we have

$$\beta + \beta = \omega^{(\eta)} + \omega^{(\eta)} > \omega^{(\eta)} + \rho = \alpha.$$

Again a contradiction. \qed

The next two lemmas provide the laws of multiplication and exponentiation of ordinals in Cantor normal form.

Lemma 4.26. If $\gamma > 0$, $0 \leq \rho < \omega^{(\eta)}$, and $0 < k < \omega$ then

$$(\omega^{(\eta)}k + \rho)\omega^{(\gamma)} = \omega^{(\eta + \gamma)}.$$

Proof. We have

$$\omega^{(\eta)}\omega^{(\gamma)} \leq (\omega^{(\eta)}k + \rho)\omega^{(\gamma)}$$

$$\leq (\omega^{(\eta)}(k + 1))\omega^{(\gamma)}$$

$$= \omega^{(\eta)}(k + 1)\omega^{(\gamma)} = \omega^{(\eta)}\omega^{(\gamma)}.$$ \qed

Lemma 4.27. If $\gamma, \eta > 0$, $0 \leq \rho < \omega^{(\eta)}$, and $0 < k < \omega$ then

$$(\omega^{(\eta)}k + \rho)\omega^{(\gamma)} = \omega^{(\eta + \omega^{(\gamma)})}.$$

Proof. We have

$$\omega^{(\eta\omega^{(\gamma)})} = (\omega^{(\eta)})\omega^{(\gamma)}$$

$$\leq (\omega^{(\eta)}k + \rho)\omega^{(\gamma)}$$

$$\leq (\omega^{(\eta+1)})\omega^{(\gamma)}$$

$$= \omega^{((\eta+1)\omega^{(\gamma)})} = \omega^{(\eta\omega^{(\gamma)})}.$$ \qed
4. Ordinal arithmetic

Example. By the above lemmas we have

\[
\left(\omega^{(\omega(5)+\omega 4+2)} + \omega^{(5)} \right)^{\omega(2)+\omega+1} = \\
\left(\omega^{(\omega(5)+\omega 4+2)} + \omega^{(5)} \right)^{\omega(2)} \cdot \left(\omega^{(\omega(5)+\omega 4+2)} + \omega^{(5)} \right)^{(\omega)}.
\]

Exercise 4.5. Compute the cantor normal form of

\[\left(\omega^{(\omega(5)+\omega 3+4)} + \omega^{(\omega 6+3)} + \omega^{(4)} + 1 \right)^{(\omega(2)+\omega 7+2)}\]

Remark. We will prove in Lemma A.4.5.6 that we can find, for every \(\beta \), arbitrarily large ordinals \(\alpha_0, \alpha_1, \alpha_2 \) such that

\[\alpha_0 = \beta + \alpha_0, \quad \alpha_1 = \beta \alpha_1, \quad \text{and} \quad \alpha_2 = \beta^{(\alpha_1)}.
\]

In particular, there are ordinals \(\varepsilon \) such that \(\varepsilon = \omega^{(\varepsilon)} \). By \(\varepsilon_{\alpha} \) we denote the \(\alpha \)-th ordinal such that \(\beta^{(\varepsilon_{\alpha})} = \varepsilon_{\alpha} \), for all \(\beta < \varepsilon_{\alpha} \). Note that the Cantor normal form of \(\varepsilon_{\alpha} \) is \(\varepsilon_{\alpha} = \omega^{(\varepsilon_{\alpha})} \).

Let us summarise the picture of On that we have obtained. The first
A3. *Ordinals*

Ordinals are

\[0, 1, 2, 3, \ldots \]
\[\ldots, \omega, \omega + 1, \omega + 2, \ldots \]
\[\ldots, \omega^2, \omega^2 + 1, \omega^2 + 2, \ldots \]
\[\ldots, \omega^3, \ldots, \omega^4, \ldots, \omega^{(2)}, \ldots, \omega^{(3)}, \ldots \]
\[\ldots, \omega^{(\omega)}, \ldots, \omega^{(\omega^{(\omega)})}, \ldots \]
\[\ldots, \varepsilon_0, \ldots, \varepsilon_0^{(\varepsilon_0)}, \ldots, \varepsilon_1, \ldots, \varepsilon_2, \ldots, \varepsilon_\omega, \ldots \]
\[\ldots, \omega_1, \ldots, \omega_2, \ldots, \omega_\omega, \ldots \]

The ordinals \(\omega_\alpha \) will be defined in Section A4.2.
A4. Zermelo-Fraenkel set theory

1. The Axiom of Choice

We have seen that induction is a powerful technique to prove statements and to construct objects. But in order to use this tool we have to relate the sets we are interested in to ordinals. In basic set theory this is not always possible. Therefore, we will introduce a new axiom which states that, for every set A, there is a well-order over A. Before doing so, let us present several statements that are equivalent to this axiom. We need two new notions.

Definition 1.1. A set $F \subseteq \mathcal{P}(A)$ has finite character if, for all sets $x \subseteq A$, we have

$$x \in F \quad \text{iff} \quad x_0 \in F, \text{ for every finite } x_0 \subseteq x.$$

Lemma 1.2. Suppose that $F \subseteq \mathcal{P}(A)$ has finite character.

(a) F is an initial segment of $\mathcal{P}(A)$.

(b) If $X \subseteq F$ is nonempty then $\bigcap X \in F$.

(c) If $C \subseteq F$ is a chain and $\bigcup C$ is a set then $\bigcup C \in F$.

Proof. (a) follows immediately from the definition and (b) is a consequence of (a). For (c), let $C \subseteq F$ be a chain such that $X := \bigcup C$ is a set. If $X_0 \subseteq X$ is finite, there exists some element $Z \in C$ with $X_0 \subseteq Z \in F$. Hence, $X_0 \in F$, for all finite subsets $X_0 \subseteq X$. This implies that $X \in F$. \qed

Lemma 1.3. If F has finite character then (F, \subseteq) is inductively ordered.
A4. Zermelo-Fraenkel set theory

Proof. Let \(C \subseteq F \) be a linearly ordered subset of \(F \). By Corollary A2.3.10 and Lemma 1.2 (c), it follows that \(\sup C = \bigcup C \in F \). \(\square \)

Example. Let \(V \) be a vector space over the field \(K \). The set

\[F := \{ B \subseteq V \mid B \text{ is linearly independent} \} \]

has finite character.

The second notion we need is that of a choice function. Intuitively, a choice function is a function that, given some set \(A \), selects an element of \(A \).

Definition 1.4. A function \(f \) is a choice function if \(f(a) \in a \), for all \(a \in \text{dom } f \).

Exercise 1.1. Let \(\mathcal{I} \) be the set of all open intervals \((a, b) \) of real numbers \(a, b \in \mathbb{R} \) with \(a < b \). Define a choice function \(\mathcal{I} \rightarrow \mathbb{R} \).

Lemma 1.5. Let \(A \) be a set and \(C \) the set of all choice functions \(f \) with \(\text{dom } f \subseteq \mathcal{P}(A) \).

(a) \(C \) has finite character.

(b) If \(f \) is a \(\subseteq \)-maximal element of \(C \) then \(\text{dom } f = \mathcal{P}(A) \setminus \{\emptyset\} \).

Proof. (a) Suppose that \(f \) is a binary relation such that every finite \(f_0 \subseteq f \) is a choice function. If \(\langle a, b \rangle, \langle a, c \rangle \in f \) then \(\{\langle a, b \rangle, \langle a, c \rangle \} \in C \) implies that \(b = c \). Hence, \(f \) is a partial function. Furthermore, if \(\langle a, b \rangle \in f \) then \(\{\langle a, b \rangle \} \in C \) implies that \(b \in a \). Consequently, \(f \) is a choice function.

(b) Let \(f \in C \) be \(\subseteq \)-maximal. Since \(f \) is a choice function we have \(\emptyset \notin \text{dom } f \). Therefore, \(\text{dom } f \subseteq \mathcal{P}(A) \setminus \{\emptyset\} \). Suppose that there is some element \(B \in (\mathcal{P}(A) \setminus \{\emptyset\}) \setminus \text{dom } f \). Since \(B \neq \emptyset \) we can choose some element \(b \in B \). The relation \(f \cup \{\langle B, b \rangle \} \supseteq f \) is again a choice function in contradiction to the maximality of \(f \). \(\square \)

Lemma 1.6. Let \(A \) be a set. Given a choice function \(f : \mathcal{P}(A) \setminus \{\emptyset\} \rightarrow A \) we can define a well-order \(R \) on \(A \).
1. The Axiom of Choice

Proof. Let \(f : \mathcal{P}(A) \setminus \{\emptyset\} \to A \) be a choice function. We define a function \(g : \mathcal{P}(A) \to \mathcal{P}(A) \) by

\[
g(X) := \begin{cases} A & \text{if } X = A, \\ X \cup \{f(A \setminus X)\} & \text{if } X \neq A. \end{cases}
\]

Since \(g(X) \supseteq X \) this function is inflationary. Furthermore, the partial order \(\langle \mathcal{P}(A), \subseteq \rangle \) is complete. By Theorem A.3.3.14, \(g \) has an inductive fixed point. Since \(g(X) \neq X \), for \(X \neq A \), it follows that this fixed point is \(A \). Let \(G : \text{On} \to \mathcal{P}(A) \) be the fixed-point induction of \(g \) over \(\emptyset \) and let \(\alpha \) be the closure ordinal. For every \(\beta < \alpha \), there exists a unique element \(a_\beta \) such that \(G(\beta + 1) \setminus G(\beta) = \{a_\beta\} \). We define a function, \(h : \downarrow \alpha \to A \) by \(h(\beta) := a_\beta \). Since \(G(\alpha) = \emptyset \) it follows that \(\text{rng } h = G(\infty) = A \). Hence, \(h : \downarrow \alpha \to A \) is bijective and we can define the desired well-order \(R \) over \(A \) by

\[
R := \{ (a, b) \mid h^{-1}(a) \leq h^{-1}(b) \}.
\]

Each of the following statements cannot be proved in basic set theory.

Theorem 1.7. The following statements are equivalent:

1. For every set \(A \), there exists a well-order \(R \) over \(A \).
2. For every set \(A \), there exists a choice function \(f : \mathcal{P}(A) \setminus \{\emptyset\} \to A \).
3. If \((A_i)_{i \in I} \) is a sequence of nonempty sets then \(\prod_{i \in I} A_i \neq \emptyset \).
4. If \((A_i)_{i \in I} \) is a sequence of disjoint nonempty sets then \(\prod_{i \in I} A_i \neq \emptyset \).
5. Every inductively ordered partial order has a maximal element.
6. If \(F \) is a set of finite character and \(A \in F \), there exists a maximal element \(B \in F \) with \(A \subseteq B \).
7. For all sets \(A \) and \(B \), there exists an injective function \(f : A \to B \) or an injective function \(f : B \to A \).
8. For every surjective function \(f : A \to B \) where \(A \) is a set, there exists a function \(g : B \to A \) such that \(f \circ g = \text{id}_B \).
Proof. (2) ⇒ (3) If $\prod_{i \in I} A_i$ is a proper class, it is nonempty and we are done. Hence, we may assume that it is a set. Then $A := \bigcup \{ A_i \mid i \in I \}$ is also a set. By (2) there exists a choice function $f : \mathcal{P}(A) \setminus \{ \emptyset \} \to A$. Let $g : I \to A$ be the function defined by $g(i) := f(A_i)$. Since $g(i) \in A_i$ it follows that $g \in \prod_{i \in I} A_i \neq \emptyset$.

(3) ⇒ (4) is trivial.

(4) ⇒ (2) Let $I := \mathcal{P}(A) \setminus \{ \emptyset \}$ and set $A_X := X \times \{ X \}$, for $X \in I$. Since $\prod_{X \in I} A_X \neq \emptyset$ there exists some element $f \in \prod_{X \in I} A_X$. We can define the desired choice function $g : \mathcal{P}(A) \setminus \{ \emptyset \} \to A$ by

$$g(X) = a \quad \text{iff} \quad f(X) = (a, X).$$

(2) ⇒ (1) was proved in Lemma 1.6.

(1) ⇒ (5) Suppose that $\langle A, \leq \rangle$ is inductively ordered, but A has no maximal element. For every $a \in A$, we can find some $b \in A$ with $b > a$. By assumption, there exists a well-order R over A. Let $f : A \to A$ be the function such that $f(a)$ is the R-minimal element $b \in A$ with $b > a$. By definition, we have $f(a) > a$, for all $a \in A$. Hence, f is inflationary and, by Theorem A3.3.14, f has a fixed point a. But $f(a) = a$ contradicts the definition of f.

(5) ⇒ (6) Let F be a set of finite character and $A \in F$. It is sufficient to prove that the subset $F_o := \{ X \in F \mid A \subseteq X \}$ is inductively ordered by \subseteq. By Lemma 1.3, we know that $\langle F, \subseteq \rangle$ is inductively ordered. Let C be a chain in F_o. Then $C \subseteq F_o \subseteq F$ and C is also a chain in F. Consequently, it has a least upper bound $B \in F$. Since $A \subseteq X$, for all $X \in C$, it follows that $A \subseteq B$, that is, $B \in F_o$ and B is also the least upper bound of C in F_o.

(6) ⇒ (2) Let A be a set. By Lemma 1.5 (a), the set C of choice functions f with $\text{dom} f \subseteq \mathcal{P}(A) \setminus \{ \emptyset \}$ has finite character and, therefore, there is a maximal element $f \in C$. By Lemma 1.5 (b), it follows that f is the desired choice function.

(1) ⇒ (7) Fix well-orders R and S on, respectively, A and B. By Corollary A3.1.12, exactly one of the following conditions is satisfied:

$$\langle A, R \rangle < \langle B, S \rangle \quad \text{or} \quad \langle A, R \rangle \cong \langle B, S \rangle \quad \text{or} \quad \langle A, R \rangle > \langle B, S \rangle.$$
1. The Axiom of Choice

In the first two cases there exists an injection $A \to B$ and in the second and third case there exists an injection $B \to A$ in the other direction.

(7) \Rightarrow (1) Let A be a set. By Theorem A3.2.12, there exists an ordinal α such that there is no injective function $\downarrow\alpha \to A$. Consequently, there exists an injective function $f : A \to \downarrow\alpha$. We define a relation R on A by

$$ R := \{ (a, b) \mid f(a) < f(b) \}. $$

Since f is injective and $\text{rng } f \subseteq \downarrow\alpha$ is well-ordered it follows that R is the desired well-order on A.

(2) \Rightarrow (8) Let $h : \mathcal{P}(A) \setminus \{\emptyset\} \to A$ be a choice function. We can define $g : B \to A$ by

$$ g(b) := h(f^{-1}(b)). $$

(8) \Rightarrow (4) Let $(A_i)_{i \in I}$ be a family of disjoint nonempty sets. We define a function $f : \bigcup \{ A_i \mid i \in I \} \to I$ by

$$ f(a) = i \quad : \text{iff} \quad a \in A_i. $$

Since the A_i are disjoint and nonempty it follows that f is well-defined and surjective. Hence, there exists a function $g : I \to \bigcup \{ A_i \mid i \in I \}$ such that $f(g(i)) = i$, for all $i \in I$. By definition of f, this implies that $g(i) \in A_i$. Hence, $g \in \prod_{i \in I} A_i \neq \emptyset$. \hfill \square

Axiom of Choice. For every set A there exists a well-order R over A.

Lemma 1.8. A left-narrow partial order (A, \preceq) is well-founded if, and only if, there exists no infinite strictly decreasing sequence $a_0 > a_1 > \ldots$.

Proof. One direction was already proved in Lemma A3.1.3. For the other one, fix a choice function $f : \mathcal{P}(A) \setminus \emptyset \to A$. Suppose that there exists a nonempty set $A_0 \subseteq A$ without minimal element. We can define a descending chain $a_0 > a_1 > \ldots$ by induction. Let $a_0 := f(A_0)$ and, for $k > 0$, set

$$ a_k := f(\{ b \in A_0 \mid b < a_{k-1} \}). $$
A4. Zermelo-Fraenkel set theory

Note that \(a_k \) is well-defined since \(a_{k-1} \) is not a minimal element of \(A_\circ \).

\[\square \]

Exercise 1.2. We call a set a **countable** if there exists a bijection \(\downarrow \omega \rightarrow a \). Prove that a left-narrow partial order \((A, \leq) \) is well-founded if, and only if, every countable nonempty subset \(X \subseteq A \) has a minimal element.

Exercise 1.3. Let \((A, R) \) be a well-founded partial order that is a set. Prove that there exists a well-order \(\leq \) on \(A \) with \(R \subseteq \leq \).

The following variant of the Axiom of Choice (statement (5) in the above theorem) is known as ‘Zorn’s Lemma’.

Lemma 1.9 (Kuratowski, Zorn). Every inductively ordered partial order has a maximal element.

Example. We have seen that the system of all linearly independent subsets of a vector space \(V \) is inductively ordered. It follows that every vector space contains a maximal linearly independent subset, that is, a basis.

This example can be generalised to a certain kind of closure operators.

Definition 1.10. Let \(c \) be a closure operator on \(A \).

(a) \(c \) has the **exchange property** if

\[b \in c(X \cup \{a\}) \setminus c(X) \quad \text{implies} \quad a \in c(X \cup \{b\}). \]

(b) A set \(I \subseteq A \) is **\(c \)-independent** if

\[a \notin c(I \setminus \{a\}), \quad \text{for all} \quad a \in I. \]

We call \(D \subseteq A \) **\(c \)-dependent** if it is not **\(c \)-independent**.

(c) Let \(X \subseteq A \). A set \(I \subseteq X \) is a **\(c \)-basis** of \(X \) if \(I \) is \(c \)-independent and \(c(I) = c(X) \).
1. The Axiom of Choice

Lemma 1.11. Let c be a closure operator on A and let $F \subseteq \mathcal{P}(A)$ be the class of all c-independent sets. If c has finite character then F has finite character.

Proof. Let $I \in F$ and $I_o \subseteq I$. For every $a \in I_o$, we have

$$a \notin c(I \setminus \{a\}) \supseteq c(I_o \setminus \{a\}).$$

Hence, I_o is c-independent. Conversely, suppose that $I \notin F$. Then there is some $a \in I$ with

$$a \in c(I \setminus \{a\}).$$

Since c has finite character we can find a finite subset $I_o \subseteq I \setminus \{a\}$ with $a \notin c(I_o)$. Thus, $I_o \cup \{a\}$ is a finite subset of I that is not c-independent. \square

Before proving the converse let us show with the help of the Axiom of Choice that there is always a c-basis. We start with an alternative description of the exchange property.

Lemma 1.12. Let c be a closure operator on A with the exchange property. If $D \subseteq A$ is a minimal c-dependent set then

$$a \in c(D \setminus \{a\}), \text{ for all } a \in D.$$

Proof. Let $a \in D$. Since D is c-dependent there exists some element $b \in D$ with $b \in c(D \setminus \{b\})$. If $b = a$ then we are done. Hence, suppose that $b \neq a$ and let $D_o := D \setminus \{a, b\}$. By minimality of D we have $b \notin c(D_o)$. Hence, $b \in c(D_o \cup \{a\}) \setminus c(D_o)$ and the exchange property implies that $a \in c(D_o \cup \{b\})$. \square

Proposition 1.13. Let c be a closure operator on A that has finite character and the exchange property. Every set $X \subseteq A$ has a c-basis.
A4. Zermelo-Fraenkel set theory

Proof. The family F of all c-independent subsets of X has finite character. By the Axiom of Choice, there exists a maximal c-independent set $I \subseteq X$. We claim that $c(I) = c(X)$, that is, I is a c-basis of X.

Clearly, $c(I) \subseteq c(X)$. If $X \subseteq c(I)$, it follows that

$$c(X) \subseteq c(c(I)) = c(I)$$

and we are done. Hence, it remains to consider the case that there is some element $a \in X \setminus c(I)$. We derive a contradiction to the maximality of I by showing that $I \cup \{a\}$ is c-independent.

Suppose that $I \cup \{a\}$ is not c-independent. Since F has finite character there exists a finite c-dependent subset $D \subseteq I \cup \{a\}$ with $a \in D$. Suppose that D is chosen minimal. By Lemma 1.12, it follows that $a \in c(D \setminus \{a\}) \subseteq c(I)$. A contradiction. \hfill \Box

Proposition 1.14. Let c be a closure operator on A with the exchange property and let $F \subseteq P(A)$ be the class of all c-independent sets. Then c has finite character if, and only if, F has finite character.

Proof. (\Rightarrow) has already been proved in Lemma 1.11.

(\Leftarrow) For a contradiction, suppose that there is a set $X \subseteq A$ such that

$$Z := \bigcup \{ c(X_o) \mid X_o \subseteq X \text{ is finite} \}$$

is a proper subset of $c(X)$. Fix some element $a \in c(X) \setminus Z$. By Proposition 1.13 there exists a c-basis I for X. It follows that $a \in c(X) = c(I)$. Since F has finite character we can find a finite subset $I_o \subseteq I$ such that $I_o \cup \{a\}$ is c-dependent. By Lemma 1.12, it follows that $a \in c(I_o) \subseteq Z$. A contradiction. \hfill \Box

A more extensive treatment of closure operators with the exchange property will be given in Section F1.1.
2. Cardinals

The notion of the cardinality of a set is a very natural one. It is based on the same idea which led to the definition of the order type of a well-order. But instead of well-orders we consider just sets without any relation. Although conceptually simpler than ordinals we introduce cardinals quite late in the development of our theory since most of their properties cannot be proved without resorting to ordinals and the Axiom of Choice.

Intuitively, the cardinality of a set \(A \) measures its size, that is, the number of its elements. So, how do we count the elements of a set? We can say that ‘\(A \) has \(\alpha \) elements’ if there exists an enumeration of \(A \) of length \(\alpha \), that is, a bijection \(\downarrow \alpha \to A \). For infinite sets, such an enumeration is not unique. We can find several sequences \(\downarrow \alpha \to A \) with different values of \(\alpha \). To get a well-defined number we therefore pick the least one.

Definition 2.1. The **cardinality** \(|A| \) of a class \(A \) is the least ordinal \(\alpha \) such that there exists a bijection \(\downarrow \alpha \to A \). If there exists no such ordinal then we write \(|A| := \infty \). Let \(\mathbb{C}n := \text{rng} \{ | \cdot | \subseteq \text{On} \} \) be the range of this mapping. (We do not consider \(\infty \) to be an element of the range.) We set \(\mathbb{C}n := \langle \mathbb{C}n, \leq \rangle \). The elements of \(\mathbb{C}n \) are called **cardinals**.

Remark. Clearly, if \(|A|, |B| < \infty \) then we have \(|A| = |B| \) iff there exists a bijection \(A \to B \).

Lemma 2.2. Every set \(A \) has a cardinality and we have \(|A| < \infty \).

Proof. Let \(A \) be a set. By the Axiom of Choice, we can find a well-order \(R \) over \(A \). Set \(\alpha := \text{ord} \langle A, R \rangle \). By definition of an ordinal, there exists a bijection \(\downarrow \alpha \to A \). In particular, the class of all ordinals \(\beta \) such that there exists a bijection \(\downarrow \beta \to A \) is nonempty and, therefore, there exists a least such ordinal. \(\square \)

Lemma 2.3. Let \(A \) and \(B \) be nonempty sets. The following statements are equivalent:

(1) \(|A| \leq |B| \)
(2) There exists an injective function $A \to B$.

(3) There exists an surjective function $B \to A$.

Proof. Set $\kappa := |A|$ and $\lambda := |B|$ and let $g : \downarrow \kappa \to A$ and $h : \downarrow \lambda \to B$ be the corresponding bijections.

(1) \Rightarrow (2) Since $\kappa \leq \lambda$ there exists an isomorphism $f : \downarrow \kappa \to I$ between $\downarrow \kappa$ and an initial segment $I \subseteq \downarrow \lambda$. In particular, f is injective. The composition $h \circ f \circ g^{-1} : A \to B$ is the desired injective function.

(2) \Rightarrow (1) For a contradiction, suppose that there exists an injective function $A \to B$ but we have $|A| > |B|$. By (1) \Rightarrow (2), the latter implies that there is an injective function $B \to A$. Hence, applying Theorem A2.1.12 we find a bijection $A \to B$. It follows that $|A| = |B|$. Contradiction.

(2) \Rightarrow (3) Let $f : A \to B$ be injective. By Lemma A2.1.10 (b), there exists a function $g : B \to A$ such that $g \circ f = \text{id}_A$. Furthermore, it follows by Lemma A2.1.10 (d) that g is surjective.

(3) \Rightarrow (2) As above, given a surjective function $f : B \to A$ we can apply Lemma A2.1.10 (and the Axiom of Choice) to obtain an injective function $g : A \to B$ with $f \circ g = \text{id}_B$.

For every cardinal, there is a canonical set with this cardinality.

Lemma 2.4. For every cardinal $\kappa \in \text{Cn}$, we have $\kappa = |\downarrow \kappa|$. It follows that $\text{Cn} = \{ \alpha \in \text{On} \mid |\downarrow \alpha| = \alpha \}$.

Exercise 2.1. Let α and β be ordinals such that $|\alpha| \leq |\beta| \leq \alpha$. Show that $|\alpha| = |\beta|$.

Exercise 2.2. Prove that $\alpha \in \text{Cn}$, for every ordinal $\alpha \leq \omega$. Hint. Show, by induction on α, that there is no surjective function $\downarrow \alpha \to \downarrow \beta$ with $\alpha < \beta \leq \omega$.

Using the notion of cardinality we can restate Theorem A2.1.13 in the following way.

Theorem 2.5. We have $|A| < |\mathcal{P}(A)|$, for every set A.

114
Proof. By Theorem A2.1.13, there exists an injective function \(A \to \mathcal{P}(A) \) but no surjective one. By Lemma 2.3, it follows that \(|A| \leq |\mathcal{P}(A)|\) and \(|\mathcal{P}(A)| \leq |A|\).

Cn is a proper class since it is an unbounded subclass of On.

Lemma 2.6. Cn is a proper class.

Proof. For a contradiction, suppose otherwise. By Lemma A3.2.8, it follows that there is some \(\alpha \in \text{On} \) such that \(\kappa < \alpha \), for all cardinals \(\kappa \). But, by Theorem A3.2.12, there exists some ordinal \(\beta \) such that \(\lambda := |\downarrow \beta| > |\downarrow \alpha| \), which implies that \(\lambda > \alpha \). A contradiction.

Lemma 2.7. \(\mathcal{O}_{\eta_0} \leq \mathcal{C}_n \leq \mathcal{O}_n \).

Proof. Since \(\mathcal{C}_n \subseteq \text{On} \) it follows that \(\mathcal{C}_n \) is a well-order. Therefore, there exists an isomorphism \(h : \mathcal{C}_n \to I \), for some initial segment \(I \subseteq \text{On} \).

By Theorem 2.5 we know that the function \(f : \mathcal{O}_{\eta_0} \to \mathcal{C}_n \) with \(f(\alpha) := |S_\alpha| \) is strictly increasing. Consequently, we have \(\mathcal{O}_{\eta_0} \leq \mathcal{C}_n \), by Lemma A3.2.11.

Remark. With the Axiom of Replacement which we will introduce in Section 5 we can actually prove that \(\langle \mathcal{O}_{\eta_0}, \in \rangle \cong \langle \text{On}, < \rangle \). Therefore, all three orders are isomorphic.

Definition 2.8. (a) By the preceding lemma and Lemma A3.1.10, there exists a unique isomorphism \(h : I \to \mathcal{C}_n \) where \(I \) is an initial segment of \(\text{On} \). We define \(\aleph_\alpha := h(\omega + \alpha) \) (‘aleph alpha’), for all \(\alpha \) such that \(\omega + \alpha \in I \). Furthermore, we denote by \(\omega_\alpha \) the minimal ordinal such that \(|\omega_\alpha| = \aleph_\alpha|.

(b) A set \(A \) is finite if \(|A| < \aleph_0 \). Otherwise, \(A \) is called infinite. Similarly, we say that \(A \) is countable if \(|A| \leq \aleph_0 \), and \(A \) is uncountable, if \(|A| > \aleph_0 \). A countable set that is not finite is called countably infinite.

(c) For cardinals \(\kappa \), we will denote by \(\kappa^+ \) the minimal infinite cardinal greater than \(\kappa \).
A4. Zermelo-Fraenkel set theory

Note that, by our definition of a cardinal, we have \(\omega_\alpha = \aleph_\alpha \) and \(\aleph_0 = \omega_0 = \omega \). Furthermore, \(\aleph_\alpha^+ = \aleph_{\alpha+1} \). Since we have defined the operation \(\kappa^+ \) differently for cardinals and ordinals we will use this notation only for cardinals in the remainder of this book. If we consider the successor of an ordinal \(\alpha \) we will write \(\alpha + 1 \).

3. Cardinal arithmetic

Similarly to ordinals we can define arithmetic operations on cardinals. Note that, except for finite cardinals, these operations are different from the ordinal operations. Therefore, we have chosen different symbols to denote them.

Definition 3.1. Let \(\kappa, \lambda \in \mathbb{C} \) be cardinals. We define

\[
\kappa \oplus \lambda := |\downarrow \kappa \cup \downarrow \lambda|, \quad \kappa \otimes \lambda := |\downarrow \kappa \times \downarrow \lambda|, \quad \kappa^\lambda := |\downarrow \kappa^{\downarrow \lambda}|.
\]

The following lemmas follows immediately from the definition if one recalls that, for \(\kappa := |A| \) and \(\lambda := |B| \), there exist bijections \(A \to \downarrow \kappa \) and \(B \to \downarrow \lambda \).

Lemma 3.2. Let \(A \) and \(B \) be sets.

\[
|A \cup B| = |A| \oplus |B|, \quad |A \times B| = |A| \otimes |B|, \quad |A^B| = |A|^{|B|}.
\]

Corollary 3.3. For all \(\alpha, \beta \in \mathbb{O} \), we have

\[
|\downarrow (\alpha + \beta)| = |\downarrow \alpha| \oplus |\downarrow \beta| \quad \text{and} \quad |\downarrow (\alpha \beta)| = |\downarrow \alpha| \otimes |\downarrow \beta|.
\]

The corresponding equation for ordinal exponentiation will be delayed until Lemma 4.4.

Exercise 3.1. Prove that, if \(A \) is a set then \(|\wp(A)| = 2^{|A|} \). Hint. Take the obvious bijection \(\wp(A) \to 2^A \).

For finite cardinals these operations coincide with the usual ones.
Lemma 3.4. For $m, n < \omega$, we have
\[m \oplus n = m + n, \quad m \otimes n = mn, \quad m^n = m^n, \]
where the operations on the left are the ones defined above while those on the right are the usual arithmetic operations.

Let us summarise the basic properties of cardinal arithmetic. The proofs are similar to, but much simpler than, the corresponding ones for ordinal arithmetic.

Lemma 3.5. Let $\kappa, \lambda, \mu \in \text{Cn}$.

(a) $(\kappa \oplus \lambda) \oplus \mu = \kappa \oplus (\lambda \oplus \mu)$
(b) $\kappa \oplus \lambda = \lambda \oplus \kappa$
(c) $\kappa \oplus \emptyset = \kappa$
(d) $\kappa \leq \lambda$ if, and only if, there is some μ with $\lambda = \kappa \oplus \mu$.
(e) $\lambda \leq \mu$ implies $\kappa \oplus \lambda \leq \kappa \oplus \mu$.
(f) $\kappa \geq \aleph_0$ if, and only if, $\kappa \oplus 1 = \kappa$

Proof. (a) There is a canonical bijection $(A \cup B) \cup C \to A \cup (B \cup C)$ with
\[\langle 0, \langle 0, a \rangle \rangle \mapsto \langle 0, a \rangle, \]
\[\langle 0, \langle 1, b \rangle \rangle \mapsto \langle 1, \langle 0, b \rangle \rangle, \]
\[\langle 1, c \rangle \mapsto \langle 1, \langle 1, c \rangle \rangle. \]

(b) There is a canonical bijection $A \cup B \to B \cup A$ with $\langle 0, a \rangle \mapsto \langle 1, a \rangle$ and $\langle 1, b \rangle \mapsto \langle o, b \rangle$.

(c) $A \cup \emptyset = \{0\} \times A$. We can define a bijection $A \to \{0\} \times A$ by $a \mapsto \langle o, a \rangle$.

(d) If $\kappa \leq \lambda$, there exists an injective function $f : \downarrow \kappa \to \downarrow \lambda$. Let $X := \downarrow \lambda \setminus \text{rng} f$ and $\nu := |X|$. We can define a bijection $\downarrow \kappa \cup X \to \downarrow \lambda$ by
\[\langle 0, a \rangle \mapsto f(a) \quad \text{and} \quad \langle 1, a \rangle \mapsto a. \]
A4. Zermelo-Fraenkel set theory

(e) If there is an injective function \(f : B \to C \), we can define an injective function \(A \cup B \to A \cup C \) by

\[
\langle o, a \rangle \mapsto \langle o, a \rangle \quad \text{and} \quad \langle 1, b \rangle \mapsto \langle 1, f(b) \rangle.
\]

(f) If \(\kappa \geq \aleph_0 = \omega \) then \(\kappa = \omega + \alpha \), for some \(\alpha \in \text{On} \). We can define a bijection \(\downarrow \omega \to \downarrow (\omega + 1) \) by \(o \mapsto \omega \) and \(n \mapsto n - 1 \), for \(n > 0 \). This function can be extended to a bijection \(\downarrow \omega \cup \downarrow \alpha \to \downarrow \omega \cup \downarrow \alpha \cup [1] \). Conversely, if \(\kappa < \omega \) then \(\kappa \oplus 1 = \kappa + 1 > \kappa \).

\[\square\]

Lemma 3.6. Let \(\kappa, \lambda, \mu \in Cn. \)

(a) \((\kappa \otimes \lambda) \otimes \mu = \kappa \otimes (\lambda \otimes \mu) \)

(b) \(\kappa \otimes \lambda = \lambda \otimes \kappa \)

(c) \(\kappa \otimes 0 = 0, \kappa \otimes 1 = \kappa, \kappa \otimes 2 = \kappa \oplus \kappa. \)

(d) \(\kappa \otimes (\lambda \oplus \mu) = (\kappa \otimes \lambda) \oplus (\kappa \otimes \mu) \)

(e) \(\lambda \leq \mu \) implies \(\kappa \otimes \lambda \leq \kappa \otimes \mu. \)

Proof. (a) There is a canonical bijection \((A \times B) \times C \to A \times (B \times C) \) with \(\langle (a, b), c \rangle \mapsto \langle a, \langle b, c \rangle \rangle. \)

(b) There is a canonical bijection \(A \times B \to B \times A \) with \(\langle a, b \rangle \mapsto \langle b, a \rangle. \)

(c) \(A \times \emptyset = \emptyset. \) There are canonical bijections

\[
A \times \{o\} \to A \quad \text{and} \quad A \cup A = [2] \times A \to A \times [2].
\]

(d) There exists a bijection \(A \times (B \cup C) \to (A \times B) \cup (A \times C) \) with

\[
\langle a, \langle o, b \rangle \rangle \mapsto \langle o, \langle a, b \rangle \rangle \quad \text{and} \quad \langle a, \langle 1, c \rangle \rangle \mapsto \langle 1, \langle a, c \rangle \rangle.
\]

(e) Given an injective function \(f : B \to C \) we define an injective function \(A \times B \to A \times C \) by \(\langle a, b \rangle \mapsto \langle a, f(b) \rangle. \)

\[\square\]

Lemma 3.7. Let \(\kappa, \lambda, \mu, \nu \in Cn. \)

(a) \((\kappa^\lambda)^\mu = \kappa^{\lambda \otimes \mu} \)

(b) \((\kappa \otimes \lambda)^\mu = \kappa^\mu \otimes \lambda^\mu \)
3. Cardinal arithmetic

(c) $\kappa^{\lambda+\mu} = \kappa^\lambda \times \kappa^\mu$

(d) $\kappa^0 = 1$, $\kappa^1 = \kappa$, $\kappa^2 = \kappa \times \kappa$.

(e) If $\kappa \leq \lambda$ and $\mu \leq \nu$ then $\kappa^\mu \leq \lambda^\nu$.

(f) $\kappa < 2^\kappa$

Proof. (a) There is a canonical bijection $(A^B)^C \rightarrow A^{B \times C}$ given by $f \mapsto g$ where $g(b, c) := f(c)(b)$.

(b) We define a bijection $A^C \times B^C \rightarrow (A \times B)^C$ by

$$\langle g, h \rangle \mapsto f \quad \text{where} \quad f(c) := \langle g(c), h(c) \rangle.$$

(c) We define a bijection $A^B \cup C \rightarrow A^B \times A^C$ by $f \mapsto \langle g, h \rangle$ where

$$g(b) := f((\emptyset, b)) \quad \text{and} \quad h(c) := f((1, c)).$$

(d) $A^\emptyset = \{\emptyset\}$. A bijection $A^{[1]} \rightarrow A$ is given by $f \mapsto f(\emptyset)$, and a bijection $A^{[2]} \rightarrow A \times A$ by $f \mapsto (f(\emptyset), f(1))$.

(e) Suppose that $f : A \rightarrow B$ and $g : C \rightarrow D$ are injective. According to Lemma A2.1.10 (b), there exists a surjective function $g' : D \rightarrow C$ such that $g' \circ g = \text{id}_C$. We define an injection $A^C \rightarrow B^D$ by $h \mapsto f \circ h \circ g'$. To show that this mapping is injective consider functions $h, h' \in A^C$ with $h \neq h'$. Fix some $c \in C$ with $h(c) \neq h'(c)$ and set $d := g(c)$. Then $g'(d) = g'(g(c)) = \text{id}_C(c) = c$. Since f is injective it follows that

$$(f \circ h \circ g')(d) = f(h(c)) \neq f(h'(c)) = (f \circ h' \circ g')(d).$$

Consequently, $f \circ h \circ g' \neq f \circ h' \circ g'$.

(f) follows immediately from Theorem 2.5. \qed

We will show that addition and multiplication of infinite cardinals is especially simple since they just consist of taking the maximum of the operands. In particular, we have $\kappa \oplus \lambda = \kappa \times \lambda$ if at least one operand is infinite.
A4. Zermelo-Fraenkel set theory

Figure 1. Ordering on $\downarrow\kappa \times \downarrow\kappa$

Exercise 3.2. Prove that $\aleph_0 \otimes \aleph_0 = \aleph_0$ by showing that the function

$$\downarrow \omega \times \downarrow \omega \to \downarrow \omega : (i, k) \mapsto \frac{1}{2}(i + k)(i + k + 1) + k$$

is bijective.

We start by computing $\kappa \otimes \kappa$ by induction on $\kappa \geq \aleph_0$.

Theorem 3.8. If $\kappa \geq \aleph_0$ then $\kappa \otimes \kappa = \kappa$.

Proof. We have $\kappa = \kappa \otimes 1 \leq \kappa \otimes \kappa$. For the converse, we prove that $\kappa \otimes \kappa \leq \kappa$ by induction on κ.

Note that, since κ is a cardinal we have $\alpha < \kappa$ if, and only if, $|\downarrow \alpha| < \kappa$, for all ordinals α. We define an order on $K := \downarrow \kappa \times \downarrow \kappa$ by

$$\langle \beta_0, \beta_1 \rangle < \langle \gamma_0, \gamma_1 \rangle$$

if $\max \{\beta_0, \beta_1\} < \max \{\gamma_0, \gamma_1\}$, or

$\max \{\beta_0, \beta_1\} = \max \{\gamma_0, \gamma_1\}$ and $\beta_0 < \gamma_0$, or

$\max \{\beta_0, \beta_1\} = \max \{\gamma_0, \gamma_1\}$ and $\beta_0 = \gamma_0$ and $\beta_1 < \gamma_1$.

One can check easily that this order is a well-order. For every ordinal $\alpha \leq \kappa$, the set

$I(\alpha) := \downarrow \alpha \times \downarrow \alpha$
is an initial subset of K. If $\omega \leq \alpha < \kappa$, it follows by inductive hypothesis that
\[|I(\alpha)| = |\downarrow \alpha \times \downarrow \alpha| = |\downarrow \alpha| \otimes |\downarrow \alpha| = |\downarrow \alpha| < \kappa. \]

Similarly, if $\alpha < \omega$ then we have
\[|I(\alpha)| = |\downarrow \alpha| \otimes |\downarrow \alpha| = |\downarrow \alpha|^2 = \alpha^2 < \aleph_\omega \leq \kappa. \]

Hence, we have $\text{ord } I(\alpha) < \kappa$, for all ordinals $\alpha < \kappa$.

We claim that $K = \bigcup \{ I(\alpha) \mid \alpha < \kappa \}$. Let $\langle \alpha, \beta \rangle \in K$. Since $\alpha, \beta < \kappa$ and κ is a limit ordinal we have $\gamma := \max \{ \alpha + 1, \beta + 1 \} < \kappa$ and $\langle \alpha, \beta \rangle \in I(\gamma)$. It follows that
\[\text{ord } (K, \leq) = \sup \{ \text{ord } (I(\alpha), \leq) \mid \alpha < \kappa \} \leq \kappa. \]

In particular, there exists an isomorphism between K and some initial segment of κ. This implies that $\kappa \otimes \kappa = |K| \leq \kappa$. \hfill \bbox

The general case now follows easily.

Lemma 3.9. If $\kappa > 0$ and $\lambda \geq \aleph_\omega$ then $\kappa \oplus \lambda = \kappa \otimes \lambda = \max \{ \kappa, \lambda \}$.

Proof. By symmetry, we may assume that $\kappa \leq \lambda$. For $\kappa = 1$, the claim follows from Lemmas 3.5 and 3.6. Suppose that $\kappa > 1$. Then
\[\lambda \leq \kappa \oplus \lambda \leq \lambda \oplus \lambda = 2 \oplus \lambda \leq \kappa \otimes \lambda \leq \lambda \otimes \lambda = \lambda. \hfill \bbox \]

Corollary 3.10. If $\kappa \geq \aleph_\omega$ then $\kappa^n = \kappa$, for all $n < \omega$.

Example. We have
\[\aleph_4^{\aleph_3} \otimes (\aleph_5 \oplus \aleph_4^{\aleph_7})^{\aleph_2} = \aleph_4^{\aleph_3} \otimes (\aleph_4^{\aleph_7})^{\aleph_2} = \aleph_4^{\aleph_3} \otimes \aleph_4^{\aleph_7} \oplus \aleph_4^{\aleph_7} \]
\[= \aleph_4^{\aleph_3} \otimes \aleph_4^{\aleph_7} = \aleph_4^{\aleph_7} \oplus \aleph_4^{\aleph_7} = \aleph_4^{\aleph_7}. \]
4. Cofinality

Frequently, we will construct objects as the union of an increasing sequence \(A_0 \subseteq A_1 \subseteq \ldots \) of sets. In this section we will study the cardinality of such unions.

Definition 4.1. For a sequence \((\kappa_i)_{i<\alpha}\) of cardinals, we define

\[
\sum_{i<\alpha} \kappa_i := \left| \bigcup_{i<\alpha} \kappa_i \right| \quad \text{and} \quad \prod_{i<\alpha} \kappa_i := \left| \prod_{i<\alpha} \kappa_i \right| .
\]

Lemma 4.2. If \(\kappa \geq \aleph_0 \) and \(\lambda_i \geq 1 \), for \(i < \kappa \), then

\[
\sum_{i<\kappa} \lambda_i = \kappa \otimes \sup \{ \lambda_i \mid i < \kappa \}.
\]

Proof. Let \(\mu := \sup \{ \lambda_i \mid i < \kappa \} \). Note that

\[
\kappa = \sum_{i<\kappa} 1 \leq \sum_{i<\kappa} \lambda_i \quad \text{and} \quad \mu = \sup \{ \lambda_i \mid i < \kappa \} \leq \sum_{i<\kappa} \lambda_i
\]

implies \(\kappa \otimes \mu = \max \{\mu, \kappa\} \leq \sum_{i<\kappa} \lambda_i \leq \sum_{i<\kappa} \mu = \kappa \otimes \mu \). \(\square \)

Corollary 4.3. If \(\kappa \geq \aleph_0 \) and \(\lambda_i \leq \kappa \), for \(i < \kappa \), then \(\sum_{i<\kappa} \lambda_i \leq \kappa \).

We have seen in Lemma 3.7 (f) that \(\kappa^\lambda > \kappa \), for infinite \(\lambda \). Ordinal exponentiation, on the other hand, does not increase the cardinality.

Lemma 4.4. If \(\alpha \) and \(\beta > 0 \) are ordinals and at least one of them is infinite then

\[
\downarrow(\alpha^{(\beta)}) = \downarrow \alpha \otimes \downarrow \beta .
\]

Proof. If \(\alpha = 0 \) then \(\downarrow(\alpha^{(\beta)}) = \aleph = \downarrow \alpha \otimes \downarrow \beta \). Otherwise, we obviously have \(\downarrow \alpha \leq \downarrow(\alpha^{(\beta)}) \) and \(\downarrow \beta \leq \downarrow(\alpha^{(\beta)}) \). Conversely,

\[
\downarrow(\alpha^{(\beta)}) = \bigcup_{n<\omega} \bigcup \{ (\downarrow \alpha)^X \mid X \subseteq \downarrow \beta , |X| = n \} .
\]
4. Cofinality

Since $|(\downarrow \alpha)^n| \leq |\downarrow \alpha| \otimes \aleph_0$, for $n < \omega$, it follows from Corollary 4.3 that

$$|\downarrow (\alpha(\beta))| \leq \sum_{n<\omega} \sum_{i<|\downarrow (\beta)|} |(\downarrow \alpha)^n|$$

$$\leq \sum_{n<\omega} |(\downarrow \beta)| \otimes |\downarrow \alpha| \otimes \aleph_0$$

$$= \sum_{n<\omega} |\downarrow \alpha| \otimes |\downarrow \beta| \otimes \aleph_0$$

$$= \aleph_0 \otimes |\downarrow \alpha| \otimes |\downarrow \beta| \otimes \aleph_0$$

$$= |\downarrow \alpha| \otimes |\downarrow \beta|. \quad \square$$

Corollary 4.5. Let A and $B \neq \emptyset$ be sets, at least one of them infinite. There are exactly $|A| \oplus |B|$ functions $p : A_\alpha \to B$ with finite domain $A_\alpha \subseteq A$.

Theorem 4.6 (König). If $\kappa_i < \lambda_i$, for $i < \alpha$, then

$$\sum_{i<\alpha} \kappa_i < \prod_{i<\alpha} \lambda_i.$$

Proof. We show that there is no surjective function

$$f : \cup_{i<\alpha} \downarrow \kappa_i \to \prod_{i<\alpha} \downarrow \lambda_i.$$

For a contradiction, suppose such a function exists and define

$$Z_k := \{ \beta_k < \lambda_k \mid (\beta_i)_i = f(k, \gamma) \text{ for some } \gamma < \kappa_k \}.$$

Then $|Z_k| \leq \kappa_k < \lambda_k$. Hence, $\downarrow \lambda_k \setminus Z_k \neq \emptyset$ and there is some sequence $(\beta_i)_i \in \prod_{i<\alpha} (\downarrow \lambda_i \setminus Z_i)$. As f is surjective there must be some element (k, γ) with $f(k, \gamma) = (\beta_i)_i$. But this implies that $\beta_k \in Z_k$. A contradiction. \square

Consider some set A of cardinality $|A| = \kappa$. What is the shortest sequence of sets $(B_\alpha)_{\alpha<\kappa}$ of cardinality $|B_\alpha| < \kappa$ such that $A = \bigcup_{\alpha<\kappa} B_\alpha$? This question leads to the notion of cofinality.
A4. Zermelo-Fraenkel set theory

Definition 4.7. (a) Let \((A, \leq) \) be a linear order. A subset \(X \subseteq A \) is cofinal in \(A \) if, for every \(a \in A \), there is some element \(x \in X \) with \(a \leq x \).

We call a function \(f : B \to A \) cofinal if \(\text{rng } f \) is cofinal in \(A \).

(b) The cofinality \(\text{cf } \alpha \) of an ordinal \(\alpha \) is the minimal ordinal \(\beta \) such that there exists a cofinal function \(f : \downarrow \beta \to \downarrow \alpha \).

Exercise 4.1. Prove that every linear order \((A, \leq) \) contains a cofinal subset \(X \subseteq A \) such that \((X, \leq) \) is well-ordered.

Lemma 4.8. Let \((A, \leq) \) be a linear order. If \(X \) is cofinal in \(A \) and \(Y \) is cofinal in \(X \) then \(Y \) is cofinal in \(A \).

We can restate the definition of the cofinality in a more useful form as follows.

Lemma 4.9. If \(\left(\alpha_i \right)_{i<\lambda} \) is a sequence of ordinals \(\alpha_i < \kappa \) of length \(\lambda < \text{cf } \kappa \) then

\[
\sup \{ \alpha_i \mid i < \lambda \} < \kappa.
\]

Exercise 4.2. Prove that \(\text{cf } \omega = \omega \) and \(\text{cf } \aleph_\omega = \omega \).

The following lemmas provide tools to compute the cofinality of an ordinal.

Lemma 4.10. For every ordinal \(\alpha \), we have

\[
\text{cf } \alpha \leq \alpha \quad \text{and} \quad \text{cf } (\alpha + 1) = 1.
\]

Proof. For the first inequality, it is sufficient to note that the identity function \(\text{id}_{\downarrow \alpha} : \downarrow \alpha \to \downarrow \alpha \) is cofinal. The second claim follows from the fact that the function \(f : [1] \to \downarrow (\alpha + 1) \) with \(f(0) := \alpha \) is cofinal. \(\square \)

Lemma 4.11. If there exists a cofinal function \(f : \downarrow \beta \to \downarrow \alpha \), we can construct such a function that is strictly increasing.
4. Cofinality

Proof. The function $g : \downarrow \beta \to \downarrow \alpha$ with
\[g(\gamma) = \max \left\{ f(\gamma), \sup \{ g(\eta) + 1 \mid \eta < \gamma \} \right\} \]
is cofinal and increasing. \qed

Lemma 4.12. If $f : \downarrow \alpha \to \downarrow \beta$ is strictly increasing and cofinal then $\text{cf} \ \alpha = \text{cf} \ \beta$.

Proof. Let $g : \downarrow \text{cf} \ \alpha \to \downarrow \alpha$ and $h : \downarrow \text{cf} \ \beta \to \downarrow \beta$ be strictly increasing cofinal maps. Since the composition $f \circ g : \downarrow \text{cf} \ \alpha \to \downarrow \beta$ is cofinal we have $\text{cf} \ \alpha \leq \text{cf} \ \beta$.

For the converse, we distinguish two cases. If $\alpha = \alpha_0 + 1$ is a successor, then $\text{cf} \ \alpha = 1$ and $\{ f(\eta) \}$ is cofinal in $\downarrow \beta$. Hence, $\beta = f(\alpha) + 1$ is a successor and $\text{cf} \ \beta = 1$. If α is a limit ordinal, we define a function $k : \downarrow \text{cf} \ \beta \to \downarrow \alpha$ by
\[k(\gamma) := \min \left\{ \eta \mid f(\eta) > h(\gamma) \right\}. \]

This function is cofinal since, given $\eta < \alpha$, there is some $\gamma < \text{cf} \ \beta$ with $h(\gamma) \geq f(\eta)$. It follows that $k(\gamma) \geq \eta$ since $f(k(\gamma)) > h(\gamma) \geq f(\eta)$ and f is strictly increasing. \qed

Corollary 4.13. $\text{cf}(\text{cf} \ \alpha) = \text{cf} \ \alpha$, for every $\alpha \in \text{On}$.

We will see many examples showing that cardinals κ with $\text{cf} \ \kappa = \kappa$ behave in a sane way while, for other cardinals, we might have to deal with pathological cases. Cardinals of the first kind are therefore called regular; the other ones are singular.

Definition 4.14. An ordinal α is called regular if α is a limit ordinal and $\text{cf} \ \alpha = \alpha$. A cardinal which is not regular is called singular.

Remark. In Corollary 4.13 we have shown that every ordinal of the form $\text{cf} \ \alpha$ is regular. It follows that the class of all regular ordinals is precisely the range $\text{rng}(\text{cf})$ of the function cf.
A4. Zermelo-Fraenkel set theory

Example. ω and \aleph_1 are regular while \aleph_ω is singular.

The next lemma indicates that the notion of cofinality is mainly interesting for cardinals.

Lemma 4.15. Every regular ordinal is a cardinal.

Proof. Let $\alpha \in \text{On} \setminus \text{Cn}$ be an ordinal that is not a cardinal and set $\kappa := |\alpha| < \alpha$. By definition, there exists a bijection $f : \downarrow \kappa \to \downarrow \alpha$. This function is surjective and, hence, cofinal. Consequently, we have $\text{cf} \, \alpha \leq \kappa < \alpha$. \qed

It turns out that all successor cardinals are regular while most limit cardinals are singular.

Lemma 4.16. Every successor cardinal is regular.

Proof. Suppose there exists a cardinal $\kappa \in \text{Cn}$ such that $\alpha := \text{cf} \, \kappa^+ < \kappa^+$. Let $f : \downarrow \alpha \to \downarrow \kappa^+$ be a cofinal map. Since κ^+ is a limit ordinal we have

$$\downarrow \kappa^+ = \bigcup \{ \downarrow f(\beta) \mid \beta < \alpha \}.$$

By Corollary 4.3, it follows that

$$\kappa^+ = |\downarrow \kappa^+| = \left| \bigcup \{ \downarrow f(\beta) \mid \beta < \alpha \} \right| \leq \sum_{\beta < \alpha} \kappa = \kappa.$$

A contradiction. \qed

Lemma 4.17. If δ is a limit ordinal then $\text{cf} \, \aleph_\delta = \text{cf} \, \delta$.

Proof. We can define a strictly increasing cofinal function $f : \downarrow \delta \to \downarrow \aleph_\delta$ by $f(\alpha) := \aleph_\alpha$. Hence, the claim follows from Lemma 4.12. \qed

It follows that regular limit cardinals are quite rare.

Corollary 4.18. If δ is a limit ordinal such that \aleph_δ is regular then $\aleph_\delta = \delta$.

126
4. Cofinality

Cardinal exponentiation is the least understood operation of those introduced so far. There are many open questions that the usual axioms of set theory are not strong enough to answer. For example, we do not know what the value of 2^\aleph_0 is. Given an arbitrary model of set theory we can construct a new model where $2^\aleph_0 = \aleph_1$, but we can also find models where 2^\aleph_0 equals \aleph_2 or \aleph_3.

In the remainder of this section we present some elementary results that can be proved. The notion of cofinality appears at several places in these proofs. First, let us compute the cardinality of all stages S_α, by a simple induction.

Definition 4.19. We define the cardinal $\beth_\alpha(\kappa)$ ('beth alpha'), for $\alpha \in \text{On}$ and $\kappa \in \text{Cn}$, recursively by

\[\beth_0(\kappa) := \kappa, \]
\[\beth_{\alpha+1}(\kappa) := 2^{\beth_\alpha(\kappa)}, \]

and \[\beth_\delta(\kappa) := \sup \{ \beth_\alpha(\kappa) \mid \alpha < \delta \}, \quad \text{for limit ordinals } \delta. \]

Further, let $\beth_\alpha := \beth_\alpha(\aleph_0)$.

Lemma 4.20. For $\alpha \in \text{On}_0$, we have

\[|S_\alpha| = \beth_\alpha(0) \quad \text{and} \quad |S_{\omega + \alpha}| = \beth_\alpha. \]

The next lemma shows that most questions about cardinal exponentiation can be reduced to the computation of the cardinality of power sets.

Lemma 4.21. If $2 \leq \kappa \leq 2^\lambda$ and $\lambda \geq \aleph_0$ then $\kappa^\lambda = 2^\lambda$.

Proof. $2^\lambda \leq \kappa^\lambda \leq (2^\lambda)^\lambda = 2^{\lambda \cdot \lambda} = 2^\lambda$. \hfill \□

What is the value of κ^λ, for $\lambda < \kappa$? We can give only partial answers.

Lemma 4.22. If $\kappa \geq \aleph_0$ and $\lambda \geq \text{cf } \kappa$ then $\kappa^\lambda > \kappa$. In particular, $\kappa^{\text{cf } \kappa} > \kappa$.

127
A4. Zermelo-Fraenkel set theory

Proof. Fix a cofinal function $f : \downarrow \lambda \rightarrow \downarrow \kappa$. By Theorem 4.6, we have

$$
\kappa^{\lambda} = \left| \frac{\downarrow \kappa}{\downarrow \lambda} \right| = \left| \bigcap_{\alpha \in \lambda} \downarrow f(\alpha) \right| \geq \left| \bigcup_{\alpha \in \lambda} \downarrow f(\alpha) \right| = \kappa.
$$

\square

Corollary 4.23. $\text{cf } 2^\kappa > \kappa$.

Proof. $\text{cf } 2^\kappa \leq \kappa$ would imply $(2^\kappa)^{\text{cf } 2^\kappa} \leq (2^\kappa)^\kappa = 2^{\kappa \otimes \kappa} = 2^\kappa < (2^\kappa)^{\text{cf } 2^\kappa}$. Contradiction. \square

The next theorem summarises the extend of our knowledge about cardinal exponentiation. First, we introduce some abbreviations.

Definition 4.24. For cardinals κ and λ we set

$$(< \kappa)^{\lambda} := \sup \{ \mu^{\lambda} \mid \mu < \kappa \} \quad \text{and} \quad \kappa^{< \lambda} := \sup \{ \kappa^{\mu} \mid \mu < \lambda \}.$$

Lemma 4.25. $\text{cf } (< \kappa)^{\lambda} \leq \text{cf } \kappa$ and $\text{cf } \kappa^{< \lambda} \leq \text{cf } \lambda$.

Theorem 4.26. Let $\kappa \geq 2$ and $\lambda \geq \kappa_0$.

(a) If $2 < \kappa \leq \lambda$ then $\kappa^{\lambda} = 2^\lambda = (< \kappa)^{\lambda}$.

(b) If $\text{cf } \kappa \leq \lambda < \kappa$ then $\kappa < \kappa^{\lambda} = ((< \kappa)^{\lambda})^{\text{cf } \kappa} \leq 2^\kappa$.

(c) If $\lambda < \text{cf } \kappa$ then $\kappa^{\lambda} = \kappa \oplus (< \kappa)^{\lambda}$.

Proof. (a) The first equality was proved in Lemma 4.21. For the second one, note that $\kappa > 2$ implies $2^\lambda \leq (< \kappa)^{\lambda} \leq \kappa^{\lambda}$.

(b) By (a) and Corollary 4.22, it follows that $\kappa < \kappa^{\lambda} \leq 2^\lambda$. Further, $(< \kappa)^{\lambda} \leq \kappa^{\lambda}$ implies that

$$((< \kappa)^{\lambda})^{\text{cf } \kappa} \leq (\kappa^{\lambda})^{\text{cf } \kappa} = \kappa^{\lambda \oplus \text{cf } \kappa} = \kappa^{\lambda}.$$

For the converse, fix a cofinal function $f : \downarrow \kappa \rightarrow \downarrow \kappa$. We have

$$
\kappa^{\lambda} \leq \left| \bigcup_{\alpha \in \text{cf } \kappa} \downarrow f(\alpha) \right|^{\lambda} \leq \left| \prod_{\alpha \in \text{cf } \kappa} \downarrow f(\alpha) \right|^{\lambda} = \left| \prod_{\alpha \in \text{cf } \kappa} \downarrow (f(\alpha))^{\lambda} \right| \leq \left| \prod_{\alpha \in \text{cf } \kappa} \downarrow (< \kappa)^{\lambda} \right| \leq ((< \kappa)^{\lambda})^{\text{cf } \kappa}.
$$

128
(c) If \(\lambda < \text{cf} \, \kappa \) then
\[
(\downarrow \kappa)_{\downarrow \lambda} = \bigcup \{ (\downarrow \mu)_{\downarrow \lambda} \mid \mu < \kappa \},
\]
since the range of every function \(\downarrow \lambda \to \downarrow \kappa \) is bounded by some \(\mu < \kappa \). Hence,
\[
\kappa_{\downarrow \lambda} \leq \sum_{\mu<\kappa} \mu_{\downarrow \lambda} \leq \sum_{\mu<\kappa} (\kappa_{\downarrow \lambda}) = \kappa \otimes (\kappa_{\downarrow \lambda}).
\]
If \(\kappa = \mu^+ \) then \((\kappa_{\downarrow \lambda}) = \mu_{\downarrow \lambda} \) and
\[
\kappa_{\downarrow \lambda} \leq \kappa \otimes (\kappa_{\downarrow \lambda}) = \kappa \otimes \mu_{\downarrow \lambda} \leq \kappa_{\downarrow \lambda}.
\]
Otherwise, \(\kappa \) is a limit and \((\kappa_{\downarrow \lambda}) \geq \sup \{ \mu \mid \mu < \kappa \} = \kappa \), which implies that
\[
\kappa_{\downarrow \lambda} \leq \kappa \otimes (\kappa_{\downarrow \lambda}) = (\kappa_{\downarrow \lambda}) \leq \kappa_{\downarrow \lambda}.
\]

Corollary 4.27. If \(\kappa \) and \(\lambda \) are cardinals such that \(2^\mu = \mu^+ \), for all \(\mu \leq \kappa \), then
\[
\kappa_{\downarrow \lambda} = \begin{cases}
2_{\downarrow \lambda} & \text{if } \kappa \leq \lambda , \\
\kappa^+ & \text{if } \text{cf} \, \kappa \leq \lambda < \kappa , \\
\kappa & \text{if } \lambda < \text{cf} \, \kappa .
\end{cases}
\]

Lemma 4.28. Let \(\kappa \) be a cardinal. We have \(\kappa = \text{cf} \, \delta \), for some limit ordinal \(\delta \), if and only if \(\kappa > \aleph_0 \) and \(2^{\downarrow \lambda} < \kappa \), for all \(\lambda < \kappa \).

Proof. \((\Rightarrow)\) We have \(\text{cf} \, \delta > \text{cf} \, \omega = \aleph_0 \). If \(\lambda < \text{cf} \, \delta \) then \(\lambda \leq \text{cf} \, \alpha \), for some \(\alpha < \delta \). Hence, \(2^{\downarrow \lambda} \leq 2^{2^{\alpha}} = \omega_{\alpha+1} < \text{cf} \, \delta \).

\((\Leftarrow)\) Let \(A := \{ \alpha + 1 \mid \text{cf} \, \alpha < \kappa \} \) and \(\delta := \sup A \). By definition of \(A \), it follows that \(\text{cf} \, \delta \geq \kappa \). On the other hand,
\[
\kappa = \sup \{ 2_{\downarrow \lambda} \mid \lambda < \kappa \} \\
\geq \sup \{ 2^{2^{\alpha}} \mid \text{cf} \, \alpha < \kappa \} = \sup \{ \text{cf} \, \alpha \mid \alpha \in A \} = \text{cf} \, \delta .
\]
A4. Zermelo-Fraenkel set theory

Hence, \(\kappa = \beth_\delta \). Since \(\beth_\delta = \kappa > \aleph_\omega \) we have \(\delta > 0 \). To show that \(\delta \) is a limit suppose that \(\delta = \alpha + 1 \). Then \(\beth_\alpha < \kappa \) implies \(\beth_\delta = 2^{2^\alpha} < \kappa \). Contradiction.

We conclude this section with some results about sets of sequences indexed by ordinals. As we will see in Section B2.1, such a set forms the domain of a tree. Recall that a sequence indexed by an ordinal \(\alpha \) is just a function \(\downarrow \alpha : A \to \aleph_\omega \).

Definition 4.29. If \(A \) is a set and \(\alpha \in \text{On} \), we define

\[
A^\alpha := A^{1^\alpha} \quad \text{and} \quad A^{<\alpha} := \bigcup_{\beta < \alpha} A^\beta.
\]

Let us compute the cardinality of \(A^{<\alpha} \). We are especially interested in the case where \(\alpha = \omega \), i.e., in the set of all finite sequences.

Lemma 4.30. If \(|A| > 1 \) then \(|A^{<\alpha}| = |A|^{<|\alpha|} \).

Lemma 4.31. If \(\kappa > 0 \) then \(\kappa^{<\aleph_\omega} = \kappa \oplus \aleph_\omega \).

Proof. If \(\kappa \geq \aleph_\omega \) then

\[
\kappa^{<\aleph_\omega} = \sup \{ \kappa^n \mid n < \aleph_\omega \} = \sup \{ \kappa \} = \kappa = \kappa \oplus \aleph_\omega.
\]

For \(\kappa = 1 \), we can define a bijection \([1]^{<\omega} \to \downarrow \omega \) by

\[
(\underbrace{0, \ldots, 0}_{n \text{ times}}) \mapsto n.
\]

Hence, \(1^{<\aleph_\omega} = \aleph_\omega \). If \(1 < \kappa < \aleph_\omega \), it follows that

\[
\aleph_\omega = 1^{<\aleph_\omega} \leq \kappa^{<\aleph_\omega} \leq \aleph_\omega^{<\aleph_\omega} = \aleph_\omega.
\]

Corollary 4.32. \(\kappa^{<\kappa} \geq \kappa \), for all \(\kappa > 0 \). If \(\kappa \geq \aleph_\omega \) then \(\kappa \leq 2^{<\kappa} \leq \kappa^{<\kappa} \).

Proof. If \(\kappa \geq \aleph_\omega \) then \(2^{<\kappa} = \sup \{ 2^\lambda \mid \lambda < \kappa \} \geq \sup \{ \lambda^+ \mid \lambda < \kappa \} \geq \kappa \).
5. The Axiom of Replacement

Lemma 4.33. If κ is an infinite regular cardinal then $\kappa^{<\kappa} = 2^{<\kappa}$.

Proof. For $\kappa_0 \leq \lambda, \mu < \kappa$ we have

$$\lambda^\mu \leq (\lambda \oplus \mu)^{\lambda \oplus \mu} = 2^{\lambda \oplus \mu} \leq 2^{<\kappa}.$$

If $\text{cf} \kappa = \kappa$, it follows by Theorem 4.26 and Corollary 4.32 that

$$\kappa^\mu = \kappa \oplus (<\kappa)^\mu = \kappa \oplus \sup \{ \lambda^\mu \mid \lambda < \kappa \} \leq 2^{<\kappa}, \text{ for all } \mu < \kappa.$$

Consequently, $\kappa^{<\kappa} \leq 2^{<\kappa}$. \hfill \qed

Corollary 4.34. Let κ be an infinite cardinal. We have $\kappa^{<\kappa} = \kappa$ if, and only if, κ is regular and $2^{<\kappa} = \kappa$.

Proof. One direction follows from the preceding lemma. For the other one, note that $\text{cf} \kappa < \kappa$ implies $\kappa^{<\kappa} \geq \kappa^{\text{cf} \kappa} > \kappa$, and $2^{<\kappa} > \kappa$ implies $\kappa^{<\kappa} \geq 2^{<\kappa} > \kappa$. \hfill \qed

5. The Axiom of Replacement

At several times when mappings between classes were concerned we remarked that we need an additional axiom to prove the desired statement. This axiom is the generalisation of the following lemma to functions that are proper classes.

Lemma 5.1. Let f be a function. If f is a set then so is $f[A]$, for all $A \subseteq \text{dom } f$.

Proof. Since f is a set so is $\text{rng } f$. Therefore,

$$f[A] = \{ y \in \text{rng } f \mid y = f(x) \text{ for some } x \in A \}$$

is a set. \hfill \qed

Before stating the axiom let us collect several equivalent formulations of it.
A4. Zermelo-Fraenkel set theory

Theorem 5.2. The following statements are equivalent:

1. If F is a function and $A \subseteq \text{dom } F$ is a set then $F[A]$ is also a set.
2. If F is a function and $\text{dom } F$ is a set then so is $\text{rng } F$.
3. A function F is a set if, and only if, $\text{dom } F$ is a set.
4. There exists no bijection $F : a \to B$ between a set a and a proper class B.
5. A class A is a set if, and only if, $|A| < \infty$.
6. If $\alpha \in \text{On}$ is an ordinal and $(A_i)_{i<\alpha}$ a sequence of sets then the class $\cup_{i<\alpha} A_i$ is also a set.

Proof. (3) \Rightarrow (2) Let F be a function and suppose that $\text{dom } F$ is a set. Then F is a set and so is $\text{rng } F$.

(2) \Rightarrow (3) Clearly, if F is a set then so is $\text{dom } F$. For the converse, let F be a function such that $\text{dom } F$ is a set. By assumption, then $\text{rng } F$ is also a set. Since $F \subseteq \text{dom } F \times \text{rng } F$ it follows that F is a set.

(2) \Rightarrow (1) Let F be a function and $A \subseteq \text{dom } F$ a set. Let $G := F \upharpoonright A$ be the restriction of F to A. We apply the assumption to G. Since $\text{dom } G = A$ is a set so is $\text{rng } G = F[A]$.

(1) \Rightarrow (6) Let $F : \downarrow \alpha \to \mathbb{S}$ be the function with $F(i) = A_i$, for $i < \alpha$. By assumption, $B := F[\downarrow \alpha]$ is a set. Hence, so is

$$\bigcup B = \bigcup_{i<\alpha} A_i.$$

(6) \Rightarrow (2) Let $F : A \to B$ be a function and $A = \text{dom } F$ a set. Let $\kappa := |A|$ and fix a bijection $g : \downarrow \kappa \to A$. We define a sequence $(B_i)_{i<\kappa}$ of sets by $B_i := S(F(g(i)))$. By assumption, $C := \bigcup_{i<\kappa} B_i$ is a set. For every $a \in A$, we have $S(F(a)) \subseteq C$ or, equivalently, $S(F(a)) \in \mathcal{P}(C)$. It follows that $S(\text{rng } F) = S(F[A]) \subseteq \mathcal{P}(C)$. In particular, $\text{rng } F$ is a set.

(2) \Rightarrow (5) If A is a set then $|A| < \infty$, by Lemma 2.2. For the converse, suppose that $\kappa := |A| < \infty$ and let $F : \downarrow \kappa \to A$ be a bijection. Since κ is a set it follows by assumption that $A = \text{rng } F$ is also a set.

(5) \Rightarrow (4) Let $F : a \to B$ be a bijection where a is a set. Then $|B| = |a| < \infty$. Hence, B is also a set.
(4) ⇒ (2) Let $F: A \to B$ be a function where $A = \text{dom } F$ is a set. Let $B_o := \text{rng } F$. Since the function $F: a \to B_o$ is surjective there exists a function $G: B_o \to a$ such that $F \circ G = \text{id}_{B_o}$. Let $A_o := \text{rng } G$. The restriction $F: A_o \to B_o$ is a bijection. Since $A_o \subseteq A$ is a set so is $B_o = \text{rng } F$.

Axiom of Replacement. If F is a function and $\text{dom } F$ is a set then so is $\text{rng } F$.

Let us finally prove the results we promised in the preceding sections. First, up to isomorphism, \mathbb{On} is the only well-order that is a proper class.

Lemma 5.3. Let $\mathcal{A} = \langle A, \leq_A \rangle$ and $\mathcal{B} = \langle B, \leq_B \rangle$ be well-orders. If A and B are proper classes then $\mathcal{A} \cong \mathcal{B}$.

Proof. Suppose that $\mathcal{A} \not\cong \mathcal{B}$. By Theorem A3.1.11, there either exists an isomorphism $f: A \to \downarrow b$, for some $b \in B$, or some isomorphism $g: \downarrow a \to B$, for some $a \in A$. By symmetry, we may assume w.l.o.g. the latter. $\downarrow a$ is a set since \leq_A is left-narrow. Hence, by the Axiom of Replacement, $B = g[\downarrow a]$ is also a set. Contradiction.

It follows that it does not matter which of the two definitions of an ordinal we adopt.

Corollary 5.4. $\mathbb{On}_0 \cong \mathbb{Cn} \cong \mathbb{On}$.

Finally, we state the general form of the Principle of Transfinite Recursion.

Theorem 5.5 (Principle of Transfinite Recursion). If $H: A^{<\infty} \to A$ is a total function that defines the function F by transfinite recursion then $\text{dom } F = \text{On}$.

Proof. For a contradiction, suppose that $\text{dom } F = \downarrow \alpha \subset \text{On}$. In particular, $\text{dom } F$ is a set. By the Axiom of Replacement, it follows that $\text{rng } F$ is also a set. Since $\text{rng } F \subseteq A$ we therefore have $F \in A^{<\infty} = \text{dom } H$ in contradiction to Theorem A3.3.4.
A4. Zermelo-Fraenkel set theory

Lemma 5.6. Every strictly continuous function \(f : \text{On} \to \text{On} \) has arbitrarily large fixed points.

Proof. For every \(\alpha \in \text{On} \) we have to find a fixed point \(\gamma \geq \alpha \). If \(F \) is the fixed-point induction of \(f \) over \(\alpha \) then \(F[\downarrow \omega] \) exists. By Lemma A3.3.13 it follows that \(\gamma := F(\omega) = F(\omega) \geq \alpha \) is a fixed point of \(f \). \(\square \)

Corollary 5.7. There are arbitrarily large cardinals \(\kappa \) such that \(\text{cf}\kappa = \aleph_0 \) and either \(\aleph_\kappa = \kappa \) or \(\beth_\kappa = \kappa \).

Proof. The functions \(f : \alpha \mapsto \aleph_\alpha \) and \(g : \alpha \mapsto \beth_\alpha \) are strictly continuous. Furthermore, they are defined by transfinite recursion. Therefore, Theorem 5.5 implies that their domain is all of \(\text{On} \). By Lemma A3.3.13 and Lemma 5.6, it follows that \(f \) and \(g \) have arbitrarily large inductive fixed points \(\kappa \), and these fixed points are of the form

\[
\kappa = \sup \{ f^n(\alpha) \mid n < \omega \}, \quad \text{for some } \alpha.
\]

In particular, \(\text{cf}\kappa = \aleph_0 \). \(\square \)

Exercise 5.1. Prove that \(S_{\omega_2} \) satisfies all axioms of set theory except for the Axiom of Replacement.

6. Stationary sets

There are many places in mathematics where one wants to argue that there are ‘many’ objects with a certain property. This has lead to several notions of ‘large’ and ‘small’ sets, for instance, being dense, being cofinite, having measure 1, or belonging to a given ultrafilter.

Example. Let \(\kappa \) be a regular cardinal and \(A \) a set of size \(|A| = \kappa \). We call a subset \(X \subseteq A \) **large** if it has size \(\kappa \). A subset \(X \subseteq A \) is **very large** if its complement \(A \setminus X \) is not large. It is straightforward to check that the classes of large and very large sets have the following properties:

(a) Every very large set is large.
6. Stationary sets

(b) A set X is large if, and only if, it has a non-empty intersection with every very large set.

(c) The intersection of less than κ very large sets is very large.

(d) The intersection of a very large set and a large one is large.

(e) Every large set can be partitioned into κ disjoint large subsets.

(f) If $f : X \to Y$ is a function from a large set X into a set Y that is not large, there is some element $y \in Y$ such that the fibre $f^{-1}(y)$ is large.

In this section we introduce two notions of 'largeness' for sets of ordinals which exhibit the same properties as the large and very large sets of the above example: closed unbounded sets correspond to the very large sets and stationary sets correspond to the large one. We will prove analogues to all of the above properties. We start with closed unbounded sets.

Definition 6.1. Let κ be a cardinal. A subset $C \subseteq \kappa$ is closed unbounded if it is cofinal in κ and, for every non-empty subset $X \subseteq C$ with $\sup X < \kappa$, we have $\sup X \in C$.

Example. For every ordinal $\alpha < \kappa$, the set $\uparrow \alpha$ is obviously closed unbounded. Another example of a closed unbounded set is the set of all limit ordinals $\alpha < \kappa$.

Before verifying the above properties let us present two ways to construct closed unbounded subsets of a given closed unbounded set.

Lemma 6.2. Let κ be an uncountable regular cardinal and $C \subseteq \kappa$ closed unbounded.

(a) The set $C' := \{ \alpha \in C \mid C \cap \alpha \text{ is cofinal in } \alpha \}$ is closed unbounded.

(b) For every cardinal λ such that $C \cap \lambda$ is cofinal in λ, the set $C \cap \lambda$ is closed unbounded in λ.

135
A4. Zermelo-Fraenkel set theory

Proof. (a) To show that C' is cofinal, let $\alpha < \kappa$. Since C is cofinal, we can construct an increasing sequence $\alpha < \beta_0 < \beta_1 < \ldots$ of elements $\beta_n \in C$, for $n < \omega$. Since C is closed and κ is regular, it follows that $\delta := \sup_{n<\omega} \beta_n \in C$. Furthermore, the fact that all β_n belong to $C \cap \delta$ implies that $C \cap \delta$ is cofinal in δ. Hence, $\delta \in C'$.

It remains to show that C' is closed. Consider a set $X \subseteq C'$ such that $\delta := \sup X < \kappa$. If $\delta \in X \subseteq C'$, we are done. Hence, we may assume that $\delta \notin X$. Note that $X \subseteq C$ implies that $\delta \in C$. Furthermore, $X \subseteq C \cap \delta$ implies that $C \cap \delta$ is cofinal in δ. Consequently, $\delta \in C'$.

(b) By assumption, $C \cap \lambda$ is cofinal in λ. To show that it is also closed, let $X \subseteq C \cap \lambda$ be a set with $\sup X < \lambda$. Then $X \subseteq C$ implies that $\sup X \in C$. Hence, $\sup X \in C \cap \lambda$. \hfill \square

The first property we check is that closed unbounded sets are closed under intersections. We consider two variants: ordinary intersections and so-called diagonal intersections.

Lemma 6.3. Let κ be an uncountable regular cardinal. If $C, D \subseteq \kappa$ are closed unbounded then so is $C \cap D$.

Proof. If $X \subseteq C \cap D$ and $\sup X < \kappa$ then $X \subseteq C$ implies $\sup X \in C$ and $X \subseteq D$ implies $\sup X \in D$. Consequently, we have $\sup X \in C \cap D$.

To show that $C \cap D$ is cofinal let $\alpha < \kappa$. Then there is some element $\beta_0 \in C$ with $\alpha \leq \beta_0$. Similarly, there is some element $\gamma_0 \in D$ with $\beta_0 \leq \gamma_0$. Continuing in this way we obtain an increasing sequence

$$\alpha \leq \beta_0 \leq \gamma_0 \leq \beta_1 \leq \gamma_1 \leq \ldots$$

where $\beta_i \in C$ and $\gamma_i \in D$. Since $\text{cf} \ \kappa > \omega$ it follows that

$$\delta := \sup_i \beta_i = \sup_i \gamma_i < \kappa.$$

As C and D are closed unbounded we have $\delta \in C$ and $\delta \in D$. Thus, we have found an element $\delta \in C \cap D$ with $\alpha \leq \delta$. \hfill \square

Exercise 6.1. Show that this lemma fails for closed unbounded subsets of \aleph_0.
Proposition 6.4. Let κ be an uncountable regular cardinal. If $\mathcal{C} \subseteq \mathcal{P}(\kappa)$ is a family of closed unbounded sets with $|\mathcal{C}| < \kappa$ then $\cap \mathcal{C}$ is closed unbounded.

Proof. Let $(C_i)_{i<\alpha}$ be a sequence of closed unbounded subsets of κ with $\alpha < \kappa$. By induction on α, we prove that $\cap_{i<\alpha} C_i$ is closed unbounded.

For $\alpha = 1$ there is nothing to do and the successor step follows immediately from the preceding lemma. Hence, we may assume that α is a limit ordinal. Furthermore, we know by inductive hypothesis that the sets $\cap_{i<\beta} C_i$, for $\beta < \alpha$ are closed unbounded. Therefore, replacing C_β by $\cap_{i<\beta} C_i$, we may assume that $C_\alpha \supseteq C_i$, for $i < \alpha$.

Let $C := \cap_{i<\alpha} C_i$. If $X \subseteq C$ is a set with $\sup X < \kappa$, then $X \subseteq C_i$ implies that $\sup X \in C_i$, for all i. Consequently, we have $\sup X \in C$.

To show that C is cofinal let $\beta < \kappa$. We construct an increasing sequence $(y_i)_{i<\alpha}$ as follows. Choose some $y_0 \in C_\alpha$ with $\beta \leq y_0$. For $0 < i < \alpha$, let $y_i \in C_i$ be some element with $y_i \geq \sup \{ y_k \mid k < i \}$. Since κ is regular it follows that $\delta := \sup_i y_i < \kappa$. For $i < \alpha$, let

$$X_i := \{ y_k \mid i \leq k < \alpha \}.$$

Then $X_i \subseteq C_i$. Since C_i is closed unbounded it follows that $\delta = \sup X_i \in C_i$. Consequently, we have found an element $\delta \in C$ with $\beta < \kappa$.

The second variant of intersection we consider has no correspondence in the above example since it relies on the presence of a linear order.

Definition 6.5. The diagonal intersection of a sequence $(C_\alpha)_{\alpha<\kappa}$ of subsets $C_\alpha \subseteq \kappa$ is the set

$$D := \{ \beta < \kappa \mid \beta \in C_\alpha \text{ for all } \alpha < \beta \}.$$
A4. Zermelo-Fraenkel set theory

Remark. Note that, if D is the diagonal intersection of $(C_\alpha)_{\alpha<\kappa}$, then $D \setminus (\alpha + 1) \subseteq C_\alpha$, for all α.

Proposition 6.6. Let κ be an uncountable regular cardinal. The diagonal intersection of a sequence $(C_\alpha)_{\alpha<\kappa}$ of closed unbounded sets is closed unbounded.

Proof. Let $(C_\alpha)_{\alpha<\kappa}$ be a sequence of closed unbounded sets and let D be their diagonal intersection. By Proposition 6.4, the intersections $C'_\alpha := \bigcap_{\beta<\alpha} C_\beta$ are closed unbounded. Furthermore, the diagonal intersection of $(C'_\alpha)_{\alpha<\kappa}$ is also equal to D. Replacing C_α by C'_α, we may therefore assume that the sequence $(C_\alpha)_{\alpha<\kappa}$ is decreasing.

To show that D is closed, let $X \subseteq D$ be a set with $\delta := \sup X < \kappa$. For $\alpha < \delta$, consider the set $Y_\alpha := \{ \beta \in D \mid \alpha < \beta < \delta \}$. By the definition of the diagonal intersection, we have $Y_\alpha \subseteq D \setminus (\alpha + 1) \subseteq C_\alpha$. As C_α is closed, it follows that $\delta = \sup Y_\alpha \in C_\alpha$, for all $\alpha < \delta$. Consequently, $\delta \in D$.

To show that D is unbounded, let $\alpha < \kappa$. To find a bound $\delta \in D$ with $\alpha < \delta$, we construct an increasing sequence $(\beta_n)_{n<\omega}$ of ordinals as follows. Choose some element $\beta_0 \in C_0$ with $\beta_0 > \alpha$. If β_n is already defined, we choose an element $\beta_{n+1} \in C_{\beta_n}$ with $\beta_{n+1} > \beta_n$. We claim that $\delta := \sup_{n<\omega} \beta_n \in D$. Hence, let $\gamma < \delta$. Then there is some $n < \omega$ with $\gamma < \beta_n$. Since $\beta_k \in C_{\beta_{k-1}} \subseteq C_{\beta_\alpha}$, for $k > n$, it follows that $\delta = \sup_{k>n} \beta_k \in C_{\beta_n} \subseteq C_\gamma$. Hence, $\delta \in C_\gamma$, for all $\gamma < \delta$. This implies that $\delta \in D$. \qed

Our second notion of a large set is that of a stationary one. As definition we use the analogue of Property (b) from the above example.

Definition 6.7. Let κ be a cardinal. A set $S \subseteq \kappa$ is *stationary* if $S \cap C \neq \emptyset$, for every closed unbounded set $C \subseteq \kappa$.

We start by constructing several kinds of stationary sets.

Lemma 6.8. Let κ be an uncountable regular cardinal.

(a) The set $\{ \alpha < \kappa \mid \text{cf} \, \alpha = \lambda \}$ is stationary, for every regular $\lambda < \kappa$.

(b) Every closed unbounded set is stationary.
(c) If S is stationary and C closed unbounded, then $S \cap C$ is stationary.

Proof. (a) Let $C \subseteq \kappa$ be closed unbounded. We have to find some element $\gamma \in C$ with cofinality λ. Let $f : \langle \kappa, \leq \rangle \to \langle C, \leq \rangle$ be an order isomorphism and set $\gamma := \text{sup} f[\lambda]$. Since C is closed unbounded, we have $\gamma \in C$. As the function $f \upharpoonright \lambda : \lambda \to \gamma$ is a strictly increasing and cofinal, it follows by Lemma 4.12 that $\text{cf} \gamma = \text{cf} \lambda = \lambda$.

(b) Let C be closed unbounded. For every closed unbounded set D, it follows by Lemma 6.3 that the intersection $C \cap D$ is also closed unbounded. In particular, $C \cap D \neq \emptyset$.

(c) If there were a closed unbounded set D with $(S \cap C) \cap D = \emptyset$, then S would not be stationary since $C \cap D$ is closed unbounded, by Lemma 6.3.

Note that it follows from Lemma 6.8 (a) that there are disjoint stationary sets. Hence, the intersection of two stationary sets is not necessarily stationary.

The next theorem is a very strong version of Property (f) from the example.

Theorem 6.9 (Fodor). Let κ be an uncountable regular cardinal, $S \subseteq \kappa$ stationary, and $f : S \to \kappa$ a function with $f(\alpha) < \alpha$, for all $\alpha \in S$. Then there exists an ordinal $\gamma < \kappa$ such that $f^{-1}(\gamma)$ is stationary.

Proof. For a contradiction, suppose that $f^{-1}(\gamma)$ is non-stationary, for every $\gamma < \kappa$. For each $\gamma < \kappa$, choose a closed unbounded set $C_\gamma \subseteq \kappa$ such that $C_\gamma \cap f^{-1}(\gamma) = \emptyset$. By Proposition 6.6, the diagonal intersection D of $(C_\gamma)_{\gamma < \kappa}$ is closed unbounded. Consequently, Lemma 6.8 (c) implies that $S \cap D$ is stationary. Fix an element $\alpha \in S \cap D$. Then $\alpha \in C_\gamma$, for all $\gamma < \alpha$. Since $C_\gamma \cap f^{-1}(\gamma) = \emptyset$, it follows that $\alpha \notin f^{-1}(\gamma)$. Thus, $f(\alpha) \neq \gamma$, for all $\gamma < \alpha$, which implies that $f(\alpha) \geq \alpha$. A contradiction.

Corollary 6.10. Let κ be an uncountable regular cardinal, $S \subseteq \kappa$ stationary, and $f : S \to \lambda$ a function with $\lambda < \kappa$. Then there exists an ordinal $\gamma < \lambda$ such that $f^{-1}(\gamma)$ is stationary.
A4. Zermelo-Fraenkel set theory

Proof. By Lemma 6.8 (c), the set $S' := S \setminus \lambda$ is stationary. Since $f(\alpha) < \alpha$, for $\alpha \in S'$, we can apply the Theorem of Fodor to $f \upharpoonright S'$ to find the desired ordinal γ. \hfill \square

As an application, we prove the existence of so-called sunflowers.

Lemma 6.11 (Sunflower lemma). Let κ be a regular cardinal and λ a cardinal such that $\mu ^{< \lambda} < \kappa$, for all $\mu < \kappa$.

For every family $(S_\alpha)_{\alpha < \kappa}$ of sets of size $|S_\alpha| < \lambda$, there exists a set U and a subset $I \subseteq \kappa$ of size $|I| = \kappa$ such that

$$S_\alpha \cap S_\beta = U, \quad \text{for all distinct } \alpha, \beta \in I.$$

Proof. First, we consider the case where $\kappa = \aleph_0$. Then λ is finite and we can prove the claim by induction on λ. We distinguish two cases. If there is no element a that belongs to infinitely many sets S_α, we can choose a set $I \subseteq \kappa$ such that

$$S_\alpha \cap S_\beta = \emptyset, \quad \text{for all distinct } \alpha, \beta \in I.$$

Otherwise, choose such an element a and set $K := \{ \alpha < \kappa \mid a \in S_\alpha \}$. Applying the inductive hypothesis to the family $(S_\alpha \setminus \{ a \})_{\alpha \in K}$, we obtain an infinite set $I \subseteq K$ and some set U' such that

$$(S_\alpha \setminus \{ a \}) \cap (S_\beta \setminus \{ a \}) = U', \quad \text{for all distinct } \alpha, \beta \in I.$$

Consequently, the sets I and $U := U' \cup \{ a \}$ have the desired properties.

It remains to consider the case where κ is uncountable. Note that $\lambda \leq \kappa$. Hence, by choosing some injective function $\bigcup_{\alpha < \kappa} S_\alpha \to \kappa$ we may assume that $S_\alpha \subseteq \kappa$, for every α. According to Lemma 6.8 (a), the set

$$E := \{ \alpha < \kappa \mid \text{cf } \alpha \geq \lambda \}$$

is stationary. We define a function $f : E \to \kappa$ by

$$f(\alpha) = \sup (S_\alpha \cap \alpha).$$
Note that \(\text{cf} \alpha \geq \lambda \geq |S_\alpha| \) implies that
\[
f(\alpha) = \sup (S_\alpha \cap \alpha) < \alpha, \quad \text{for all } \alpha \in E.
\]
Consequently, we can use the Theorem of Fodor to find a stationary subset \(W \subseteq E \) and an ordinal \(\gamma \) such that
\[
f(\alpha) = \gamma, \quad \text{for all } \alpha \in W.
\]
Since there are at most \(|\gamma|^\lambda < \kappa \) sets of the form \(S_\alpha \cap \gamma \), we can use Corollary 6.10 to find a stationary subset \(W' \subseteq W \) and some set \(U \subseteq \gamma \) such that
\[
S_\alpha \cap \gamma = U, \quad \text{for all } \alpha \in W'.
\]
We construct a strictly increasing sequence \((\xi_\alpha)_{\alpha < \kappa}\) of ordinals \(\xi_\alpha \in W' \) as follows. Let \(\xi_\alpha \) be the minimal element of \(W' \). For the inductive step, suppose that we have already defined \(\xi_\alpha \) for all \(\alpha < \beta \). Then we choose some element \(\xi_\beta \in W' \) such that
\[
\xi_\beta \supset \xi_\alpha \quad \text{and} \quad \xi_\beta \supset \sup S_{\xi_\alpha}, \quad \text{for all } \alpha < \beta.
\]
Note that such an element exists since \(\kappa \) is regular.

Having constructed \((\xi_\alpha)_{\alpha < \kappa}\), it follows for \(\alpha < \beta < \kappa \) that
\[
S_{\xi_\alpha} \cap S_{\xi_\beta} = (S_{\xi_\alpha} \cap \xi_\beta) \cap S_{\xi_\beta} = S_{\xi_\alpha} \cap (S_{\xi_\beta} \cap \gamma) = U.
\]
Consequently, the set \(I := \{ \xi_\alpha \mid \alpha < \kappa \} \) has the desired properties. \(\square\)

Exercise 6.2. Let \(k, m, n < \omega \) be finite numbers with \(n > k!(m - 1)^{k+1} \). Prove that, for every family \((S_i)_{i<n}\) of sets of size \(|S_i| = k \), there exists a subset \(I \subseteq [n] \) of size \(|I| = m \) and some set \(U \) such that
\[
S_i \cap S_j = U, \quad \text{for all distinct } i, j \in I.
\]

We conclude this section by proving that every stationary set can be partitioned into \(\kappa \) disjoint stationary subsets. We start with two technical lemmas.
Lemma 6.12. Let κ be an uncountable regular cardinal and $S \subseteq \kappa$ a stationary set every element of which is an uncountable regular cardinal. Then the set

$$W := \{ \lambda \in S \mid S \cap \lambda \text{ is not stationary in } \lambda \}$$

is stationary.

Proof. To show that W is stationary, let $C \subseteq \kappa$ be closed unbounded. By Lemma 6.2 (a), the set

$$C' := \{ \alpha \in C \mid C \cap \alpha \text{ is cofinal in } \alpha \}.$$

is closed unbounded. Hence, $S \cap C' \neq \emptyset$. Let λ be the minimal element of $S \cap C'$. Then λ is a regular cardinal and $C \cap \lambda$ is cofinal in λ. Consequently, it follows by Lemma 6.2 (b) that $C \cap \lambda$ is a closed unbounded subset of λ. Hence, Lemma 6.2 (a) implies that $C' \cap \lambda$ is also closed unbounded. Since, by choice of λ, the sets $C' \cap \lambda$ and $S \cap \lambda$ are disjoint, it follows that $S \cap \lambda$ is not stationary. Consequently, $\lambda \in W \cap C$, as desired. \qed

Lemma 6.13. Let κ be an uncountable regular cardinal, $S \subseteq \kappa$ stationary, and, for every $\alpha \in S$, let $\gamma_\alpha : \text{cf } \alpha \to \alpha$ be a cofinal and strictly increasing function. If either

(i) there is an infinite cardinal λ such that $\text{cf } \alpha = \lambda$, for all $\alpha \in S$, or

(ii) every $\alpha \in S$ is a regular cardinal, the functions γ_α are continuous, and $S \cap \text{rng } \gamma_\alpha = \emptyset$,

then there exists an ordinal $\beta < \kappa$ such that, for every $\xi < \kappa$, the set

$$U_\xi := \{ \alpha \in S \mid \text{cf } \alpha > \beta \text{ and } \gamma_\alpha(\beta) \geq \xi \}$$

is stationary.

Proof. For a contradiction, suppose otherwise. Then we can find, for every $\beta < \kappa$, an ordinal ξ_β and a closed unbounded set C_β such that $U_{\xi_\beta} \cap C_\beta = \emptyset$, that is,

$$\gamma_\alpha(\beta) < \xi_\beta,$$

for all $\alpha \in S \cap C_\beta$ such that $\text{cf } \alpha > \beta$.

142
6. Stationary sets

In Case (i) we set \(\zeta := \sup_{\beta < \lambda} \xi_\beta \) and \(D := \cap_{\beta < \lambda} C_\beta \). Then \(\gamma_\alpha(\beta) < \zeta \), for all \(\beta < \lambda \) and \(\alpha \in S \cap D \). Choosing \(\alpha \in S \cap D \) with \(\alpha > \zeta \) it follows that \(\sup_{\beta < \lambda} \gamma_\alpha(\beta) \leq \zeta < \alpha \). A contradiction to the cofinality of \(\gamma_\alpha \).

It remains to consider Case (ii). Let \(D \) be the diagonal intersection of \((C_\beta)_{\beta < \kappa} \). Then \(\alpha \in S \cap D \) implies that \(\alpha \in S \cap C_\beta \), for all \(\beta < \alpha \). Hence,

\[
\gamma_\alpha(\beta) < \xi_\beta, \quad \text{for } \beta < \alpha.
\]

The set

\[
E := \{ \alpha \in D \mid \xi_\beta < \alpha \text{ for all } \beta < \alpha \}
\]

is closed unbounded since it can be written as the intersection of \(D \) and the diagonal intersection of the sets \(\uparrow \xi_\beta, \beta < \kappa \), which are clearly closed unbounded. Hence, it follows by Lemma 6.8 (c) that \(S \cap E \) is stationary. Let \(\delta < \epsilon \) be two elements of \(S \cap E \). Then

\[
\beta < \delta \quad \text{implies} \quad \gamma_\epsilon(\beta) < \xi_\beta < \delta,
\]

where the first inequality follows since \(\epsilon \in S \cap D \) and the second one follows since \(\delta \in E \). By continuity of \(\gamma_\epsilon \),

\[
\gamma_\epsilon(\delta) = \sup_{\beta < \delta} \gamma_\epsilon(\beta) \leq \delta.
\]

Since \(\gamma_\epsilon \) is strictly increasing, it therefore follows by Lemma \(\alpha_3.1.7 \) that \(\gamma_\epsilon(\delta) = \delta \). But \(\delta \in S \) and \(\gamma_\epsilon(\delta) \in \text{rng } \gamma_\epsilon \subseteq \kappa \setminus S \). A contradiction. \(\square \)

The first step in partitioning a stationary set into \(\kappa \) many stationary subsets consists in finding a decreasing chain of stationary subsets.

Lemma 6.14. Let \(\kappa \) be an uncountable regular cardinal. For every stationary set \(S \subseteq \kappa \), there exists a stationary subset \(U \subseteq S \) and a function \(f : U \to \kappa \) such that \(f(\alpha) < \alpha \), for all \(\alpha \in U \), and

\[
f^{-1}[\uparrow \xi] \text{ is stationary, for all } \xi < \kappa.
\]
\textbf{A4. Zermelo-Fraenkel set theory}

\textit{Proof.} Consider the function

\[g : S \setminus \{\alpha\} \to \kappa : \alpha \mapsto \begin{cases} \text{cf } \alpha & \text{if } \text{cf } \alpha < \alpha, \\ 0 & \text{if } \text{cf } \alpha = \alpha. \end{cases} \]

Then \(g(\alpha) < \alpha \), for all \(\alpha \in S \setminus \{\alpha\} \), and we can use the Theorem of Fodor to obtain a cardinal \(\lambda < \kappa \) such that \(T := g^{-1}(\lambda) \) is stationary. We distinguish two cases.

First, suppose that \(\lambda > 0 \). Note that the set \(T \) contains a limit ordinal, as the set of all limit ordinals is closed unbounded. This implies that \(\lambda \) is infinite. Therefore, for every \(\alpha \in T \), we can choose by Lemma 4.11, a cofinal, strictly increasing function \(\gamma_\alpha : \lambda \to \alpha \). By Lemma 6.13, there exists an ordinal \(\beta < \lambda \) such that, for every \(\xi < \kappa \), the set

\[U_\xi := \{ \alpha \in T \mid \gamma_\alpha(\beta) \geq \xi \} \]

is stationary. Hence, we can set \(U := T \) and define \(f : T \to \kappa \) by

\[f(\alpha) := \gamma_\alpha(\beta). \]

If \(\lambda = 0 \), the set \(T \) consists of regular cardinals and Lemma 6.12 implies that the set

\[W := \{ \alpha \in T \mid T \cap \alpha \text{ is not stationary in } \alpha \} \]

is stationary. For every \(\alpha \in W \), we fix a closed unbounded set \(C_\alpha \subseteq \alpha \) with \((T \cap \alpha) \cap C_\alpha = \emptyset \). Since \(C_\alpha \) is well-ordered, there exists an order-isomorphism \(\gamma_\alpha : \beta \to C_\alpha \), for some ordinal \(\beta \). Note that \(\beta \) cannot be smaller than \(\alpha \), because \(\gamma_\alpha \) is cofinal in \(\alpha \) and \(\alpha \) is regular. Therefore, \(\gamma_\alpha : \alpha \to C_\alpha \). Furthermore, \(\sup_{\beta < \delta} \gamma_\alpha(\beta) \in C_\alpha \), for each limit ordinal \(\delta < \alpha \), since \(C_\alpha \) is closed unbounded. Consequently, \(\sup_{\beta < \delta} \gamma_\alpha(\beta) \) is the least element of \(C_\alpha \) that is larger than every \(\gamma_\alpha(\beta) \) with \(\beta < \delta \). As this element is \(\gamma_\alpha(\delta) \), we obtain

\[\sup_{\beta < \delta} \gamma_\alpha(\beta) = \gamma_\alpha(\delta). \]
Hence, each y_α is a strictly continuous function with $W \cap \text{rng} \ y_\alpha = \emptyset$. We can therefore use Lemma 6.13 to find an ordinal $\beta < \kappa$ such that, for every $\xi < \kappa$, the set

$$U_{\xi} := \{ \alpha \in W \mid \alpha > \beta \text{ and } y_\alpha(\beta) \geq \xi \}$$

is stationary. Thus, we can set $U := W \cap \uparrow \beta$ and define $f : U \to \kappa$ by $f(\alpha) := y_\alpha(\beta)$.

Theorem 6.15 (Solovay). Let κ be an uncountable regular cardinal. Every stationary set $S \subseteq \kappa$ can be written as a disjoint union of κ stationary subsets of κ.

Proof. By Lemma 6.14, there exists a stationary subset $U \subseteq S$ and a function $f : U \to \kappa$ such that $f(\alpha) < \alpha$ and the sets $U_{\xi} := f^{-1}[\uparrow \xi]$ are stationary, for all $\xi < \kappa$. Applying the Theorem of Fodor to each restriction $f \upharpoonright U_{\xi}$, we obtain ordinals $\alpha_{\xi} < \kappa$ such that the sets $W_{\xi} := (f \upharpoonright U_{\xi})^{-1}(\alpha_{\xi})$ are stationary, for all $\xi < \kappa$. Note that $W_{\xi} \cap W_{\zeta} = \emptyset$, if $\alpha_{\xi} \neq \alpha_{\zeta}$. Furthermore, $W_{\xi} \neq \emptyset$ implies that $\alpha_{\xi} \geq \xi$. Hence, $\sup_{\xi < \kappa} \alpha_{\xi} = \kappa$ and it follows by regularity of κ that

$$\left| \{ W_{\xi} \mid \xi < \kappa \} \right| = \left| \{ \alpha_{\xi} \mid \xi < \kappa \} \right| = \kappa.$$

Thus, we have found a family of κ disjoint stationary subsets of S. Since every superset of a stationary set is also stationary, we can enlarge these subsets to obtain the desired partition of S. \qed

7. Conclusion

With the Axiom of Replacement we have introduced our final axiom. The theory consisting of the six axioms

- Extensionality
- Separation
- Infinity
- Creation
- Choice
- Replacement
is called *Zermelo-Fraenkel set theory*, ZFC for short.

We can classify these axioms into three parts. The Axioms of Extensionality and Creation specify what we mean by a set. They postulate that every set is uniquely determined by its elements and that the membership relation is well-founded. The remaining axioms speak about the existence of certain sets. Infinity and Replacement ensure that the cumulative hierarchy is long enough. There are as many stages as there are ordinals. The Axioms of Separation and Choice on the other hand make the hierarchy wide by ensuring that the power-set operation yields enough subsets. In particular, every definable subset exists and on every set there exists a well-ordering.

Finally, let us note that the usual definition of ZFC is based on a different axiomatisation where the Axiom of Creation is replaced by four other axioms and the Axiom of Infinity is stated in a slightly different way. Nevertheless, we are justified in calling the above theory ZFC since the two variants are equivalent: every model satisfying one of the axiom systems also satisfies the other one, and vice versa.
Recommended Literature

Set theory

Algebra and Category Theory

Recommended Literature

Topology and lattice theory

Model theory

General model theory

Stability theory

Symbol Index

Chapter A1

S universe of sets, 5
$a \in b$ membership, 5
$a \subseteq b$ subset, 5
HF hereditary finite sets, 7
$\bigcap A$ intersection, 11
$A \cap B$ intersection, 11
$A \setminus B$ difference, 11
accc(A) accumulation, 12
find(A) founded part, 13
$\bigcup A$ union, 21
$A \cup B$ union, 21
$\mathcal{P}(A)$ power set, 21
cut A cut of A, 22

id$_A$ identity function, 30
$S \circ R$ composition of relations, 30
g $\circ f$ composition of functions, 30
R^{-1} inverse of R, 30
$R^{-1}(a)$ inverse image, 30
$R|_C$ restriction, 30
$R \upharpoonright C$ left restriction, 31
$R[C]$ image of C, 31
$(a_i)_{i \in I}$ sequence, 37
$\Pi_i A_i$ product, 37
pr_i projection, 37
\tilde{a} sequence, 38
$\bigcup_i A_i$ disjoint union, 38
$A \cup B$ disjoint union, 38
in_i insertion map, 39
\mathcal{Q}^{op} opposite order, 40
$\downarrow X$ initial segment, 41
$\uparrow X$ final segment, 41
$\downarrow X$ initial segment, 41
$\uparrow X$ final segment, 41
$[a, b]$ closed interval, 41
(a, b) open interval, 41
$max X$ greatest element, 42
$min X$ minimal element, 42
$sup X$ supremum, 42

Chapter A2

(a_0, \ldots, a_{n-1}) tuple, 27
$A \times B$ cartesian product, 27
domf domain of f, 28
rngf range of f, 29
$f(a)$ image of a under f, 29
$f : A \rightarrow B$ function, 29
B^A set of all functions
\hspace{1cm} $f : A \rightarrow B$, 29
\[\mathsf{Em}(\Sigma) \] category of embeddings, 163
\[\mathsf{Set}_{*} \] category of pointed sets, 163
\[\mathsf{Set}^{2} \] category of pairs, 163
\[\mathcal{C}^{\text{op}} \] opposite category, 166
\[F^{\text{op}} \] opposite functor, 168
\[(F \downarrow G) \] comma category, 170
\[F \cong G \] natural isomorphism, 172
\[\text{Cong}(\mathfrak{A}) \] set of congruence relations, 176
\[\text{Cong}(\mathfrak{A}) \] congruence lattice, 176
\[\mathfrak{A}/\sim \] quotient, 180

Chapter B2

\[|x| \] length of a sequence, 189
\[x \cdot y \] concatenation, 189
\[\leq \] prefix order, 189
\[\leq_{\text{lex}} \] lexicographic order, 189
\[|v| \] level of a vertex, 192
\[\text{frk}(v) \] foundation rank, 194
\[a \sqcap b \] infimum, 197
\[a \sqcup b \] supremum, 197
\[a^{*} \] complement, 200
\[\mathcal{O}^{\text{op}} \] opposite lattice, 206
\[\text{cl}_{1}(X) \] ideal generated by \(X\), 206
\[\text{cl}_{\uparrow}(X) \] filter generated by \(X\), 206
\[\mathfrak{B}_{2} \] two-element boolean algebra, 210
\[\text{ht}(a) \] height of \(a\), 218
\[\text{rk}_{p}(a) \] partition rank, 222
\[\text{deg}_{p}(a) \] partition degree, 226

Chapter B3

\[T[\Sigma, X] \] finite \(\Sigma\)-terms, 231
\[t_{v} \] subterm at \(v\), 232
\[\text{free}(t) \] free variables, 235
\[t_{\Sigma}[\beta] \] value of \(t\), 235
\[\mathfrak{T}[\Sigma, X] \] term algebra, 236
\[t[x/s] \] substitution, 238
\[\mathsf{SigBar} \] category of signatures and variables, 239
\[\mathsf{Sig} \] category of signatures, 240
\[\mathsf{Var} \] category of variables, 240
\[\mathsf{Term} \] category of terms, 240
\[\mathfrak{A}_{\mu} \] \(\mu\)-reduct of \(\mathfrak{A}\), 241
\[\mathsf{Str}[\Sigma] \] class of \(\Sigma\)-structures, 241
\[\mathsf{Str}[\Sigma, X] \] class of all \(\Sigma\)-structures with variable assignments, 241
\[\mathsf{StrBar} \] category of structures and assignments, 241
\[\mathsf{Str} \] category of structures, 241
\[\prod_{i} \mathfrak{A}^{i} \] direct product, 243
\[[\varphi] \] set of indices, 245
\[\tilde{a} \sim_{u} \tilde{b} \] filter equivalence, 245
\[u|_{J} \] restriction of \(u\) to \(J\), 246
\[\prod_{i} \mathfrak{A}^{i}/u \] reduced product, 246
\[\mathfrak{A}^{u} \] ultrapower, 247
\[\lim D \] directed colimit, 255
\[\text{colim} D \] colimit of \(D\), 257
\[\text{lim} D \] directed limit, 260
\[f \times \mu \] componentwise composition for cocones, 262
\[G[\mu] \] image of a cocone under a functor, 265
\[\mathfrak{Z}_{n} \] partial order of an alternating path, 276
Symbol Index

- \mathcal{Z}_n^\perp: partial order of an alternating path, 276
- $f \sim g$: alternating-path equivalence, 277
- $[f]^\perp_F$: alternating-path equivalence class, 277
- $s \ast t$: componentwise composition of links, 280
- π_t: projection along a link, 281
- in_D: inclusion link, 281
- $D[t]$: image of a link under a functor, 284
- $\text{Ind}_P(C)$: inductive P-completion, 285
- $\text{Ind}_{\text{all}}(C)$: inductive completion, 285

Chapter B6

- $\text{Aut} \mathfrak{M}$: automorphism group, 390
- G/U: set of cosets, 390
- $\mathfrak{B}/\mathfrak{N}$: factor group, 392
- $\text{Sym} \Omega$: symmetric group, 393
- $\bar{g}a$: action of g on a, 394
- $G\bar{a}$: orbit of \bar{a}, 394
- $\Theta_{(X)}$: pointwise stabiliser, 395
- $\Theta_{(X)}$: setwise stabiliser, 395
- $\langle \bar{a} \mapsto \bar{b} \rangle$: basic open set of the group topology, 399

Chapter B4

- $\text{Ind}_{\kappa}(C)$: inductive (κ, λ)-completion, 295
- $\text{Ind}(C)$: inductive completion, 296
- \mathfrak{C}: loop category, 317
- $\|a\|$: cardinality in an accessible category, 333
- $\text{Sub}_K(a)$: category of K-subobjects, 341
- $\text{Sub}_\kappa(a)$: category of κ-presentable subobjects, 341

Chapter B5

- $\text{cl}(A)$: closure of A, 347
- $\text{int}(A)$: interior of A, 347
- ∂A: boundary of A, 347
- $\text{rk}_{CB}(x/A)$: Cantor-Bendixson rank, 369
- $\text{spec}(\mathcal{L})$: spectrum of \mathcal{L}, 374
- $\langle x \rangle$: basic closed set, 374
- $\text{clop}(\mathcal{E})$: algebra of clopen subsets, 378

Chapter B6

- $\text{deg} p$: degree, 403
- $\text{Ib}(\mathfrak{K})$: lattice of ideals, 404
- \mathfrak{K}/a: quotient of a ring, 406
- $\text{Ker} h$: kernel, 406
- $\text{spec}(\mathfrak{K})$: spectrum, 406
- $\bigoplus_i \mathfrak{M}_i$: direct sum, 409
- $\mathfrak{M}(l)$: direct power, 409
- $\dim \mathfrak{B}$: dimension, 413
- $\text{FF}(\mathfrak{K})$: field of fractions, 415
- $\mathfrak{R}(\bar{a})$: subfield generated by \bar{a}, 418
- $p[x]$: polynomial function, 419
- $\text{Aut}(\mathcal{L}/\mathfrak{K})$: automorphisms over K, 427
- $|a|$: absolute value, 430
Chapter c1

- **ZL[κ, X]** Zariski logic, 447
- **≈** satisfaction relation, 448
- **BL(ثلاثيات)** boolean logic, 448
- **FO_{κ,ω}[Σ, X]** infinitary first-order logic, 449
- ¬φ negation, 449
- Λφ conjunction, 449
- ∨φ disjunction, 449
- ∃xφ existential quantifier, 449
- ∀xφ universal quantifier, 449
- **FO[Σ, X]** first-order logic, 449
- Λ = φ[β] satisfaction, 450
- true true, 451
- false false, 451
- φ ∨ ψ disjunction, 451
- φ ∧ ψ conjunction, 451
- φ → ψ implication, 451
- φ ↔ ψ equivalence, 451
- free(φ) free variables, 454
- qr(φ) quantifier rank, 457
- **Mod_L(Φ)** class of models, 458
- Φ |= φ entailment, 464
- ≡ logical equivalence, 464
- φ□ closure under entailment, 464
- **Th_L(ثلاثيات)** L-theory, 465
- ≡_L L-equivalence, 466
- **DNF(φ)** disjunctive normal form, 471
- **CNF(φ)** conjunctive normal form, 471
- **NNF(φ)** negation normal form, 473
- **Logics** category of logics, 482
- **∃^xφ** cardinality quantifier, 485
- **FO_{κ,ω}(wo)** FO with well-ordering quantifier, 486
- **W** well-ordering quantifier, 486
- **Q_κ** Lindström quantifier, 486
- **SO_{κ,ω}[Σ, Ξ]** second-order logic, 487
- **MSO_{κ,ω}[Σ, Ξ]** monadic second-order logic, 487
- **Π** category of partial orders, 492
- **Łb** Lindenbaum functor, 492
- ¬φ negation, 494
- φ ∨ ψ disjunction, 494
- φ ∧ ψ conjunction, 494
- L|φ restriction to Φ, 495
- L/Φ localisation to Φ, 495
- ⊨φ consequence modulo Φ, 495
- ≡φ equivalence modulo Φ, 495

Chapter c2

- **Emb_L(Σ)** category of L-embeddings, 497
- **QF_{κ,ω}[Σ, X]** quantifier-free formulae, 498
- **∃Δ** existential closure of Δ, 498
- **∀Δ** universal closure of Δ, 498
- **∃_{κ,ω}** existential formulae, 498
- **∀_{κ,ω}** universal formulae, 498
- **∃^+_{κ,ω}** positive existential formulae, 498
- ≦Δ Δ-extension, 502
- ≤ elementary extension, 502

Symbol Index

1361
Chapter C3

$S(L)$ set of types, 531
$\langle \Phi \rangle$ types containing Φ, 531
$\text{tp}_L(\hat{a}/\mathcal{M})$ L-type of \hat{a}, 532
$S_i^L(T)$ type space for a theory, 532
$S_L^i(U)$ type space over U, 532
$\mathcal{E}(L)$ type space, 537
$f(p)$ conjugate of p, 547
$\mathcal{E}_L(\Delta)$ $\mathcal{E}(L|\Delta)$ with topology induced from $\mathcal{E}(L)$, 561
$\langle \Phi \rangle_\Delta$ closed set in $\mathcal{E}_L(\Delta)$, 561
φ_Δ restriction to Δ, 564
$\text{tp}_\Delta(\hat{a}/U)$ Δ-type of \hat{a}, 564

Chapter C4

\equiv_α α-equivalence, 581
\equiv_∞ ∞-equivalence, 581
$\text{plso}_k(\mathcal{A}, \mathcal{B})$ partial isomorphisms, 582
$\hat{a} \mapsto \hat{b}$ map $a_i \mapsto b_i$, 582
\emptyset the empty function, 582
$I_\alpha(\mathcal{A}, \mathcal{B})$ back-and-forth system, 583
$I_\infty(\mathcal{A}, \mathcal{B})$ limit of the system, 585
\equiv_α α-isomorphic, 585
\equiv_∞ ∞-isomorphic, 585
$m \equiv_k n$ equality up to k, 587
$\varphi_{\mathcal{A}, \hat{a}}$ Hintikka formula, 590

Chapter C5

$L \leq L'$ L' is as expressive as L, 617
(A) algebraic, 618
(b) boolean closed, 618
(B) positive boolean closed, 618
(c) compactness, 618
(cc) countable compactness, 618
(FOP) finite occurrence property, 618
(KP) Karp property, 618
(LSP) Löwenheim-Skolem property, 618
(REL) closed under relativisations, 618

EF$_\alpha(\mathcal{A}, \hat{a}, \mathcal{B}, \hat{b})$ Ehrenfeucht-Fraïssé game, 593
EF$_\infty(\mathcal{A}, \hat{a}, \mathcal{B})$ Ehrenfeucht-Fraïssé game, 593
$I^k_{\text{FO}}(\mathcal{A}, \mathcal{B})$ partial FO-maps of size k, 602
\leq_{iso} ∞-simulation, 603
\equiv^k_{iso} ∞-isomorphic, 603
$\mathcal{A} \equiv^0_{\text{FO}} \mathcal{B}$ $I^0_{\text{FO}}(\mathcal{A}, \mathcal{B}) : \mathcal{A} \equiv^0_{\text{iso}} \mathcal{B}$, 603
$\mathcal{A} \equiv^k_{\text{FO}} \mathcal{B}$ $I^k_{\text{FO}}(\mathcal{A}, \mathcal{B}) : \mathcal{A} \equiv^k_{\text{iso}} \mathcal{B}$, 603
$\mathcal{A} \equiv^k_{\text{iso}} \mathcal{B}$ $I^k_{\text{iso}}(\mathcal{A}, \mathcal{B}) : \mathcal{A} \equiv^k_{\text{iso}} \mathcal{B}$, 603
$\mathcal{A} \equiv^k_{\infty} \mathcal{B}$ $I^k_{\infty}(\mathcal{A}, \mathcal{B}) : \mathcal{A} \equiv^k_{\text{iso}} \mathcal{B}$, 603
$\mathcal{A} \equiv^k_{\infty} \mathcal{B}$ $I^k_{\infty}(\mathcal{A}, \mathcal{B}) : \mathcal{A} \equiv^k_{\text{iso}} \mathcal{B}$, 603
$\mathcal{G}(\mathcal{A})$ Gaifman graph, 609
Symbol Index

(sub) closed under substitutions, 618

(TUP) Tarski union property, 618

hn_κ (L) Hanf number, 622

ln_κ (L) Löwenheim number, 622

wn_κ (L) well-ordering number, 622

occ(L) occurrence number, 622

pr_ι (K) ι-projection, 640

PC_κ (L, Σ) projective L-classes, 641

L_o ≤^κ_{pc} L_1 relativised projective reduction, 645

L_o ≤_{lpc} L_1 relativised projective reduction, 645

Δ(L) interpolation closure, 653

ifp f inductive fixed point, 662

lim inf f least partial fixed point, 662

lim sup f greatest partial fixed point, 663

f_φ function defined by φ, 668

FO_{κ,N_0} (LFP) least fixed-point logic, 668

FO_{κ,N_0} (IFP) inflationary fixed-point logic, 669

FO_{κ,N_0} (PFP) partial fixed-point logic, 669

ϕ_φ stage comparison, 679

Chapter D2

(<μ)^λ \bigcup_{κ < μ} κ^λ, 727

HO[Σ, X] infitary Horn formulae, 740

SH[Σ, X] infitary strict Horn formulae, 740

H∀[Σ, X] infitary universal Horn formulae, 740

SH∀[Σ, X] infitary universal strict Horn formulae, 740

HO[Σ, X] first-order Horn formulae, 740

SH[Σ, X] first-order strict Horn formulae, 740

H∀[Σ, X] first-order universal Horn formulae, 740

SH∀[Σ, X] first-order universal strict Horn formulae, 740

⟨C; Φ⟩ presentation, 745

Prod(Κ) products, 749

Sub(Κ) substructures, 749

Iso(Κ) isomorphic copies, 749

Chapter D1

tor(Θ) torsion subgroup, 709

a/n divisor, 710

DAG theory of divisible torsion-free abelian groups, 710

ODAG theory of ordered divisible abelian groups, 710

div(Θ) divisible closure, 711

F field axioms, 714

ACF theory of algebraically closed fields, 714

RCF theory of real closed fields, 715

1363
Symbol Index

Hom(\mathcal{K}) \quad \text{weak homomorphic images, 749}
ERP(\mathcal{K}) \quad \text{embeddings into reduced products, 749}
QV(\mathcal{K}) \quad \text{quasivariety, 749}
Var(\mathcal{K}) \quad \text{variety, 749}
Gb(p) \quad \text{Galois base, 841}

Chapter D3

(f, g) \quad \text{open cell between } f \text{ and } g, 761
[f, g] \quad \text{closed cell between } f \text{ and } g, 761
B(\tilde{a}, \tilde{b}) \quad \text{box, 762}
Cn(D) \quad \text{continuous functions, 776}
dim C \quad \text{dimension, 777}

Chapter E2

dcl_L(U) \quad L\text{-definitional closure, 819}
act_L(U) \quad L\text{-algebraic closure, 819}
dcl_{\text{Aut}}(U) \quad \text{Aut-definitional closure, 821}
act_{\text{Aut}}(U) \quad \text{Aut-algebraic closure, 821}
\mathcal{M} \quad \text{the monster model, 829}
A \equiv_U B \quad \text{having the same type over } U, 830
\mathcal{M}^{\text{eq}} \quad \text{extension by imaginary elements, 831}
dcl^{\text{eq}}(U) \quad \text{definable closure in } \mathcal{M}^{\text{eq}}, 831
act^{\text{eq}}(U) \quad \text{algebraic closure in } \mathcal{M}^{\text{eq}}, 831
T^{\text{eq}} \quad \text{theory of } \mathcal{M}^{\text{eq}}, 833

Chapter E3

I_{cl}(\mathcal{A}, \mathcal{B}) \quad \text{elementary maps with closed domain and range, 877}

Chapter E4

\mathcal{p}\mathcal{Mor}_{\mathcal{K}}(a, b) \quad \text{category of partial morphisms, 898}
a \in_{\mathcal{K}} b \quad \text{forth property for objects in } \mathcal{K}, 899
a \in^{\mathcal{K}}_{\text{pres}} b \quad \text{forth property for } \kappa\text{-presentable objects, 899}
a \equiv^{\mathcal{K}}_{\text{pres}} b \quad \text{back-and-forth equivalence for } \kappa\text{-presentable objects, 899}
Sub_{\kappa}(a) \quad \kappa\text{-presentable subobjects, 910}
atp(\tilde{a}) \quad \text{atomic type, 922}
\eta_{\mathcal{A}} \quad \text{extension axiom, 922}
T[\mathcal{K}] \quad \text{extension axioms for } \mathcal{K}, 922
T_{\text{ran}}[\Sigma] \quad \text{random theory, 922}
\kappa_n(\varphi) \quad \text{number of models, 924}
Pr_{\mathcal{M}}[\mathcal{M} \models \varphi] \quad \text{density of models, 924}
Chapter E5

\[[I]^\kappa \] increasing \(\kappa \)-tuples, 929
\(\kappa \to (\mu)^\gamma \) partition theorem, 929
\(\text{pf}(\eta, \zeta) \) prefix of \(\zeta \) of length \(|\eta| \), 934
\(\mathfrak{T}_n(\kappa^{<\alpha}) \) index tree with small signature, 934
\(\mathfrak{T}_n(\kappa^{<\alpha}) \) index tree with large signature, 934
\[\langle X \rangle_n \] substructure generated in \(\mathfrak{T}_n(\kappa^{<\alpha}) \), 934
\(\text{Lvl}(\bar{\eta}) \) levels of \(\bar{\eta} \), 935
\(\approx_* \) equal atomic types in \(\mathfrak{T}_* \), 936
\(\approx_n \) equal atomic types in \(\mathfrak{T}_n \), 936
\(\approx_{n,k} \) refinement of \(\approx_n \), 936
\(\approx_{\omega,k} \) union of \(\approx_{n,k} \), 936
\(\bar{a}[i] = a_{i_0} \ldots a_{i_{n-1}} \), 945
\(\text{tp}_\Delta(\bar{a}/U) \) \(\Delta \)-type, 945
\(\text{Av}((\bar{a}^i)/U) \) average type, 947
\([\varphi(\bar{a}^i)] \) indices satisfying \(\varphi \), 956
\(\text{Av}_1((\bar{a}^i)/C) \) unary average type, 966

Chapter E7

\(\ln(\mathcal{K}) \) Löwenheim number, 999
\(\mathcal{A} \cong_{K} \mathcal{B} \) \(K \)-substructure, 1000
\(\ln(\mathcal{K}) \) Hanf number, 1007
\(\mathcal{K}_\kappa \) structures of size \(\kappa \), 1008
\(I^*_\mathcal{K}(\mathcal{A}, \mathcal{B}) \) \(\mathcal{K} \)-embeddings, 1012
\(\mathcal{A} \cong_{K} \mathcal{B} \)
\(\mathcal{I}^*_\mathcal{K}(\mathcal{A}, \mathcal{B}) : \mathcal{A} \cong_{\text{iso}} \mathcal{B} \), 1012
\(\mathcal{A} \cong_{\text{iso}} \mathcal{B} \)
\(\mathcal{I}^*_\mathcal{K}(\mathcal{A}, \mathcal{B}) : \mathcal{A} \cong_{\text{iso}} \mathcal{B} \), 1012

Chapter F1

\[\langle X \rangle_D \] span of \(X \), 1035
\(\text{dim}_{\text{cl}}(X) \) dimension, 1041
\(\text{dim}_{\text{cl}}(X/U) \) dimension over \(U \), 1041

Chapter F2

\(\text{rk}_\Delta(\varphi) \) \(\Delta \)-rank, 1077
\(\text{rk}_M^\mathcal{K}(\varphi) \) Morley rank, 1077
\(\text{deg}_M^\mathcal{K}(\varphi) \) Morley degree of \(\varphi \), 1080
\(\text{(MON)} \) Monotonicity, 1088
\(\text{(NOR)} \) Normality, 1088
\(\text{(LRF)} \) Left Reflexivity, 1088
\(\text{(LTR)} \) Left Transitivity, 1088
\(\text{(FIN)} \) Finite Character, 1089
\(\text{(SYM)} \) Symmetry, 1089
\(\text{(BMON)} \) Base Monotonicity, 1089
\(\text{(SRB)} \) Strong Right Boundedness, 1089

Chapter E6

\(\mathfrak{Emb}(\mathcal{K}) \) embeddings between structures in \(\mathcal{K} \), 969
\(p^F \) image of a partial isomorphism under \(F \), 972
\(\text{Th}_L(F) \) theory of a functor, 975
\(\mathcal{A}^a \) inverse reduct, 979
\(\mathcal{R}(\mathfrak{M}) \) relational variant of \(\mathfrak{M} \), 981

Av(\(F \)) average type, 990

1365
Symbol Index

\(\text{cl}
\) closure operation associated with \(\sqrt{\cdot}\), 1095

\(\text{INV}\) Invariance, 1101

\(\text{DEF}\) Definability, 1101

\(\text{EXT}\) Extension, 1102

\(A \overset{\text{def}}{\models} U B\) definable over, 1103

\(A \overset{\text{st}}{\models} U B\) isolated over, 1103

\(A \overset{\text{non-splitting}}{\models} U B\) non-splitting over, 1103

\(p \leq \sqrt{q}\) \(\sqrt{-}\)-free extension, 1108

\(A \overset{\text{fin-sat}}{\models} U B\) finitely satisfiable, 1109

\(\text{Av}(u/B)\) average type of \(u\), 1109

\(\text{(LLOC)}\) Left Locality, 1114

\(\text{(RLOC)}\) Right Locality, 1114

\(\text{loc}(\sqrt{\cdot})\) right locality cardinal of \(\sqrt{\cdot}\), 1114

\(\text{loc}_\omega(\sqrt{\cdot})\) finitary right locality cardinal of \(\sqrt{\cdot}\), 1114

\(\kappa^{\text{reg}}\) regular cardinal above \(\kappa\), 1114

\(\text{fc}(\sqrt{\cdot})\) length of \(\sqrt{-}\)-forking chains, 1115

\(\text{(SFIN)}\) Strong Finite Character, 1116

\(\sqrt{\cdot}\) forking relation to \(\sqrt{\cdot}\), 1118

Chapter F4

\(\text{alt}_\varphi(\bar{a}_i)_{i \in I}\) \(\varphi\)-alternation number, 1159

\(\text{rk}_\varphi(\varphi)\) alternation rank, 1159

\(\text{in}(\sim)\) intersection number, 1170

\(\bar{a} \approx_{U} \bar{b}\) indiscernible sequence starting with \(\bar{a}, \bar{b}, \ldots\), 1174

\(\bar{a} \equiv_{U} \bar{b}\) Lascar strong type equivalence, 1174

\(\text{CF}(\{\bar{a}_i\}_{i \in I})\) cofinal type, 1200

\(\text{Ev}(\{\bar{a}_i\}_{i \in I})\) eventual type, 1205

\(\text{rk}_{dp}(\bar{a}/U)\) dp-rank, 1218

Chapter F5

\(\text{(LEXT)}\) Left Extension, 1234

\(A \overset{\text{li}}{\models} U B\) combination of \(\overset{\text{li}}{\sqrt{\cdot}}\) and \(\sqrt{\cdot}\), 1235

\(A \overset{\text{strict Lascar}}{\models} U B\) strict Lascar invariance, 1235

\(\text{(WIND)}\) Weak Independence Theorem, 1258

\(\text{(IND)}\) Independence Theorem, 1259

Chapter F3

\(A \overset{\text{non-dividing}}{\models} U B\) non-dividing, 1131

\(A \overset{\text{non-forking}}{\models} U B\) non-forking, 1131

\(A \overset{\text{globally invariant}}{\models} U B\) globally invariant over, 1140

Chapter G1

\(\bar{a} \downarrow_{U} B\) unique free extension, 1280

\(\text{mult}(\sqrt{\varphi})\) \(\sqrt{-}\)-multiplicity of \(\varphi\), 1285

\(\text{mult}(\sqrt{\cdot})\) multiplicity of \(\sqrt{\cdot}\), 1285

\(\text{st}(T)\) minimal cardinal \(T\) is stable in, 1296

1366
Chapter 42

(rsh) Right Shift, 1303
lbm(✓) left base-monotonicity cardinal, 1303

\[
\begin{align*}
A[I] & \cup_{i \in I} A_i, 1312 \\
A[\prec \alpha] & \cup_{i < \alpha} A_i, 1312 \\
A[\leq \alpha] & \cup_{i \leq \alpha} A_i, 1312 \\
\end{align*}
\]

\[A \perp_U^d B\] definable orthogonality, 1335
\[A \perp_U^{\text{str}} B\] strong independence, 1338
\[\mathcal{Y}_{\kappa \lambda}\] unary signature, 1344
\[\text{Un}(\kappa, \lambda)\] class of unary structures, 1344
\[\text{Lf}(\kappa, \lambda)\] class of locally finite unary structures, 1344
Symbol Index
Index

abelian group, 389
abstract elementary class, 999
abstract independence relation, 1088
\(\kappa\)-accessible category, 333
accumulation, 12
accumulation point, 368
action, 394
acyclic, 523
addition of cardinals, 116
addition of ordinals, 89
adjoint functors, 238
affine geometry, 1041
aleph, 115
algebraic, 149, 819
algebraic class, 1000
algebraic closure, 819
algebraic closure operator, 51
algebraic diagram, 503
algebraic elements, 422
algebraic field extensions, 422
algebraic logic, 491
algebraic prime model, 698
algebraically closed, 819
algebraically closed field, 422, 714
algebraically independent, 422
almost strongly minimal theory, 1060
alternating path in a category, 276
alternating-path equivalence, 277
\(\varphi\)-alternation number, 1159
alternation rank of a formula, 1159
amalgamation class, 1009
amalgamation property, 914, 1008
amalgamation square, 657
Amalgamation Theorem, 525
antisymmetric, 40
arity, 28, 29, 149
array, 1227
array property, 1227
array-dividing, 1233
associative, 31
asynchronous product, 757
atom, 449
atom of a lattice, 218
atomic, 218
atomic diagram, 503
atomic structure, 859
atomic type, 922
atomless, 218
automorphism, 156
automorphism group, 390
average type, 947
average type of an
Ehrenfeucht-Mostowski
functor, 990
Index

average type of an indiscernible system, 954
average type of an ultrafilter, 1109
Axiom of Choice, 109, 462
Axiom of Creation, 19, 462
Axiom of Extensionality, 5, 462
Axiom of Infinity, 24, 462
Axiom of Replacement, 133, 462
Axiom of Separation, 10, 462
axiom system, 458
axiomatisable, 458
axiomatise, 458

back-and-forth property, 582, 897
back-and-forth system, 582
Baire, property of —, 367
ball, 346
√-base, 1234
base monotonicity, 1089
base of a partial morphism, 898
base projection, 898
base, closed —, 348
base, open —, 348
bases for a stratification, 1342
basic Horn formula, 740
basis, 110, 1038, 1041
beth, 127
Beth property, 652, 826
bidefinable, 889
biindiscernible family, 1225
biinterpretable, 895
bijective, 31
boolean algebra, 200, 459, 494
boolean closed, 494
boolean lattice, 200
boolean logic, 448, 466
bound variable, 454
boundary, 347, 762
κ-bounded, 602
bounded equivalence relation, 1179
bounded lattice, 197
bounded linear order, 587
bounded logic, 622
box, 762
branch, 191
branching degree, 193
canonical base, 838
canonical definition, 835
weak —, 851
canonical diagram, 341
canonical parameter, 835
weak —, 851
canonical projection from the \(P \)-completion, 313
Cantor discontinuum, 355, 538
Cantor normal form, 100
Cantor-Bendixson rank, 369, 381
cardinal, 113
cardinal addition, 116
cardinal exponentiation, 116, 127
cardinal multiplication, 116
cardinality, 113, 333
cardinality quantifier, 486
cartesian product, 27
categorical, 881, 913
category, 162
\(\delta \)-cell, 777
cell decomposition, 779
Cell Decomposition Theorem, 780
chain, 42
\(L \)-chain, 505
chain condition, 1253
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>chain condition for Morley sequences</td>
<td>1263</td>
</tr>
<tr>
<td>chain in a category</td>
<td>272</td>
</tr>
<tr>
<td>chain topology</td>
<td>354</td>
</tr>
<tr>
<td>chain-bounded formula</td>
<td>1174</td>
</tr>
<tr>
<td>Chang's reduction</td>
<td>536</td>
</tr>
<tr>
<td>character</td>
<td>105</td>
</tr>
<tr>
<td>characteristic</td>
<td>715</td>
</tr>
<tr>
<td>characteristic of a field</td>
<td>417</td>
</tr>
<tr>
<td>choice function</td>
<td>106</td>
</tr>
<tr>
<td>Choice, Axiom of —</td>
<td>109, 462</td>
</tr>
<tr>
<td>class</td>
<td>9, 54</td>
</tr>
<tr>
<td>clopen set</td>
<td>345</td>
</tr>
<tr>
<td>=-closed</td>
<td>516</td>
</tr>
<tr>
<td>closed base</td>
<td>348</td>
</tr>
<tr>
<td>closed function</td>
<td>350</td>
</tr>
<tr>
<td>closed interval</td>
<td>761</td>
</tr>
<tr>
<td>closed set</td>
<td>51, 53, 345</td>
</tr>
<tr>
<td>closed subbase</td>
<td>348</td>
</tr>
<tr>
<td>closed subset of a construction</td>
<td>875, 1313</td>
</tr>
<tr>
<td>closed unbounded set</td>
<td>135</td>
</tr>
<tr>
<td>closed under relativisations</td>
<td>618</td>
</tr>
<tr>
<td>closed under substitutions</td>
<td>618</td>
</tr>
<tr>
<td>closure operator</td>
<td>51, 110</td>
</tr>
<tr>
<td>closure ordinal</td>
<td>81</td>
</tr>
<tr>
<td>closure space</td>
<td>53</td>
</tr>
<tr>
<td>closure under reverse ultrapowers</td>
<td>739</td>
</tr>
<tr>
<td>closure, topological —</td>
<td>347</td>
</tr>
<tr>
<td>co-chain-bounded relation</td>
<td>1179</td>
</tr>
<tr>
<td>cocone</td>
<td>257</td>
</tr>
<tr>
<td>cocone functor</td>
<td>262</td>
</tr>
<tr>
<td>codomain of a partial morphism</td>
<td>898</td>
</tr>
<tr>
<td>codomain projection</td>
<td>898</td>
</tr>
<tr>
<td>coefficient</td>
<td>402</td>
</tr>
<tr>
<td>cofinal</td>
<td>124</td>
</tr>
<tr>
<td>cofinality</td>
<td>124</td>
</tr>
<tr>
<td>Coincidence Lemma</td>
<td>235</td>
</tr>
<tr>
<td>colimit</td>
<td>257</td>
</tr>
<tr>
<td>comma category</td>
<td>170</td>
</tr>
<tr>
<td>commutative</td>
<td>389</td>
</tr>
<tr>
<td>commutative ring</td>
<td>401</td>
</tr>
<tr>
<td>commuting diagram</td>
<td>164</td>
</tr>
<tr>
<td>comorphism of logics</td>
<td>482</td>
</tr>
<tr>
<td>compact</td>
<td>356, 617</td>
</tr>
<tr>
<td>compact, countably —</td>
<td>617</td>
</tr>
<tr>
<td>Compactness Theorem</td>
<td>519, 535</td>
</tr>
<tr>
<td>compactness theorem</td>
<td>724</td>
</tr>
<tr>
<td>compatible</td>
<td>477</td>
</tr>
<tr>
<td>complement</td>
<td>200</td>
</tr>
<tr>
<td>complete</td>
<td>466</td>
</tr>
<tr>
<td>complete partial order</td>
<td>43, 50, 53</td>
</tr>
<tr>
<td>complete type</td>
<td>531</td>
</tr>
<tr>
<td>completion of a diagram</td>
<td>311</td>
</tr>
<tr>
<td>(λ, κ)-completion of a diagram</td>
<td>311</td>
</tr>
<tr>
<td>(λ, κ)-completion of a partial order</td>
<td>305</td>
</tr>
<tr>
<td>composition</td>
<td>30</td>
</tr>
<tr>
<td>composition of links</td>
<td>280</td>
</tr>
<tr>
<td>concatenation</td>
<td>189</td>
</tr>
<tr>
<td>condition of filters</td>
<td>727</td>
</tr>
<tr>
<td>cone</td>
<td>261</td>
</tr>
<tr>
<td>confluence property</td>
<td>1204</td>
</tr>
<tr>
<td>confluent family of sequences</td>
<td>1204</td>
</tr>
<tr>
<td>congruence relation</td>
<td>176</td>
</tr>
<tr>
<td>conjugacy class</td>
<td>395</td>
</tr>
<tr>
<td>conjugate</td>
<td>821</td>
</tr>
<tr>
<td>conjugation</td>
<td>395</td>
</tr>
<tr>
<td>conjunction</td>
<td>449, 494</td>
</tr>
<tr>
<td>conjunctive normal form</td>
<td>471</td>
</tr>
<tr>
<td>connected category</td>
<td>276</td>
</tr>
<tr>
<td>connected, definably —</td>
<td>765</td>
</tr>
</tbody>
</table>
Index

consequence, 464, 492, 525
consistence of filters with conditions, 727
consistency over a family, 1227
consistent, 458
constant, 29, 149
constructible set, 873
\(\sqrt{\text{-constructible set, 1312}}\)
construction, 873
\(\sqrt{-\text{construction, 1312}}\)
continuous, 46, 134, 350
contradictory formulae, 632
contravariant, 168
convex equivalence relation, 1170
coset, 390
countable, 110, 115
countably compact, 617
covariant, 167
cover, 356
Creation, Axiom of —, 19, 462
cumulative hierarchy, 18
cut, 22
deciding a condition, 727
definability of independence relations, 1101
definable, 819
definable expansion, 477
definable orthogonality, 1335
definable Skolem function, 847
definable structure, 889
definable type, 574, 1103
definable with parameters, 763
definably connected, 765
defining a set, 451
definition of a type, 574
definitional closed, 819
definitional closure, 819
degree of a polynomial, 403
dense class, 1261
dense linear order, 604
\(\kappa\)-dense linear order, 604
dense order, 459
dense set, 365
dense sets in directed orders, 251
dense subcategory, 286
dependence relation, 1035
dependent, 1035
dependent set, 110
derivation, 402
diagonal functor, 258
diagonal intersection, 137
diagram, 255, 260
\(L\)-diagram, 503
Diagram Lemma, 503, 638
difference, 11
dimension, 1041
dimension function, 1042
dimension of a cell, 777
dimension of a vector space, 413
direct limit, 256
direct power, 409
direct product, 243
direct sum of modules, 409
directed, 250
directed colimit, 255
directed diagram, 255
\(\kappa\)-directed diagram, 255
directed limit, 260
discontinuum, 355
discrete linear order, 587
discrete topology, 346
disintegrated matroid, 1048
disjoint union, 38
disjunction, 449, 494
disjunctive normal form, 471
distributive, 200
dividing, 1131
dividing chain, 1143
dividing \(k \)-tree, 1150
divisible closure, 711
divisible group, 710
domain, 28, 151
domain of a partial morphism, 898
domain projection, 898
dp-rank, 1218
dual categories, 172

Ehrenfeucht-Fraïssé game, 593, 596
Ehrenfeucht-Mostowski functor, 990, 1006
Ehrenfeucht-Mostowski model, 990
element of a set, 5
elementary diagram, 503
elementary embedding, 497, 502
elementary extension, 502
elementary map, 497
elementary substructure, 502
elimination
 uniform — of imaginaries, 844
elimination of finite imaginaries, 857
elimination of imaginaries, 845
elimination set, 694
embedding, 44, 156, 498
\(\Delta \)-embedding, 497
\(\mathcal{K} \)-embedding, 999
elementary —, 497
embedding of a tree into a lattice, 224
embedding of logics, 482
embedding of permutation groups, 890

embedding, elementary —, 502
endomorphism ring, 408
entailment, 464, 492
epimorphism, 165
equivalence class, 54
equivalence formula, 830
equivalence of categories, 172
equivalence relation, 54, 459
\(L \)-equivalent, 466
\(\alpha \)-equivalent, 581, 596
equivalent categories, 172
equivalent formulae, 464
Erdős-Rado theorem, 932
Euklidean norm, 345
even, 927
exchange property, 110
existential, 498
existential closure, 703
existential quantifier, 449
existentially closed, 703
expansion, 155, 1002
expansion, definable —, 477
explicit definition, 652
exponentiation of cardinals, 116, 127
exponentiation of ordinals, 89
extension, 152, 1102
\(\Delta \)-extension, 502
extension axiom, 922
\(\sqrt{\ } \)-extension base, 1234
extension of fields, 418
extension, elementary —, 502
Extensionality, Axiom of —, 5, 462
factorisation, 180
Factorisation Lemma, 158
factorising through a cocone, 321
faithful functor, 167
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>family, 37</td>
</tr>
<tr>
<td>field, 401, 461, 502, 714</td>
</tr>
<tr>
<td>field extension, 418</td>
</tr>
<tr>
<td>field of a relation, 29</td>
</tr>
<tr>
<td>field of fractions, 415</td>
</tr>
<tr>
<td>field, real —, 430</td>
</tr>
<tr>
<td>field, real closed —, 433</td>
</tr>
<tr>
<td>filter, 205, 209, 534</td>
</tr>
<tr>
<td>(\kappa)-filtered category, 289</td>
</tr>
<tr>
<td>(\kappa)-filtered colimit, 289</td>
</tr>
<tr>
<td>(\kappa)-filtered diagram, 289</td>
</tr>
<tr>
<td>final segment, 41</td>
</tr>
<tr>
<td>(\kappa)-finitary set of partial isomorphisms, 602</td>
</tr>
<tr>
<td>finite, 115</td>
</tr>
<tr>
<td>finite character, 51, 105, 1089</td>
</tr>
<tr>
<td>strong —, 1116</td>
</tr>
<tr>
<td>finite equivalence relation, 1170</td>
</tr>
<tr>
<td>finite intersection property, 213</td>
</tr>
<tr>
<td>finite occurrence property, 617</td>
</tr>
<tr>
<td>finite, being — over a set, 780</td>
</tr>
<tr>
<td>finitely axiomatisable, 458</td>
</tr>
<tr>
<td>finitely branching, 193</td>
</tr>
<tr>
<td>finitely generated, 154</td>
</tr>
<tr>
<td>finitely presentable, 321</td>
</tr>
<tr>
<td>finitely satisfiable type, 1109</td>
</tr>
<tr>
<td>first-order interpretation, 450, 479</td>
</tr>
<tr>
<td>first-order logic, 449</td>
</tr>
<tr>
<td>fixed point, 48, 81, 134, 661</td>
</tr>
<tr>
<td>fixed-point induction, 77</td>
</tr>
<tr>
<td>fixed-point rank, 679</td>
</tr>
<tr>
<td>Fodor</td>
</tr>
<tr>
<td>(\square)-forking chain, 1115</td>
</tr>
<tr>
<td>(\square)-forking formula, 1108</td>
</tr>
<tr>
<td>forking relation, 1101</td>
</tr>
<tr>
<td>(\square)-forking type, 1108</td>
</tr>
<tr>
<td>formal power series, 402</td>
</tr>
<tr>
<td>formula, 448</td>
</tr>
<tr>
<td>forth property for partial morphisms, 899</td>
</tr>
<tr>
<td>foundation rank, 194</td>
</tr>
<tr>
<td>founded, 13</td>
</tr>
<tr>
<td>Fraïssé limit, 916</td>
</tr>
<tr>
<td>free algebra, 236</td>
</tr>
<tr>
<td>free extension of a type, 1108</td>
</tr>
<tr>
<td>(\square)-free extension of a type, 1108</td>
</tr>
<tr>
<td>free model, 745</td>
</tr>
<tr>
<td>free structures, 754</td>
</tr>
<tr>
<td>(\square)-free type, 1108</td>
</tr>
<tr>
<td>free variables, 235, 454</td>
</tr>
<tr>
<td>full functor, 167</td>
</tr>
<tr>
<td>full subcategory, 169</td>
</tr>
<tr>
<td>function, 29</td>
</tr>
<tr>
<td>functional, 29, 149</td>
</tr>
<tr>
<td>functor, 167</td>
</tr>
<tr>
<td>Gaifman graph, 609</td>
</tr>
<tr>
<td>Gaifman, Theorem of —, 615</td>
</tr>
<tr>
<td>Galois base, 838</td>
</tr>
<tr>
<td>Galois saturated structure, 1015</td>
</tr>
<tr>
<td>Galois stable, 1015</td>
</tr>
<tr>
<td>Galois type, 1001</td>
</tr>
<tr>
<td>game, 79</td>
</tr>
<tr>
<td>generalised product, 756</td>
</tr>
<tr>
<td>(\kappa)-generated, 259, 969</td>
</tr>
<tr>
<td>generated substructure, 154</td>
</tr>
<tr>
<td>generated, finitely —, 154</td>
</tr>
<tr>
<td>generating, 41</td>
</tr>
<tr>
<td>generating a sequence by a type, 1164</td>
</tr>
<tr>
<td>1374</td>
</tr>
</tbody>
</table>
generating an ideal, 404
generator, 154, 745
geometric dimension function, 1042
geometric independence relation, 1089
graph, 39
greatest element, 42
greatest fixed point, 661
greatest lower bound, 42
greatest partial fixed point, 663
group, 34, 389, 460
group action, 394
group, ordered —, 710
guard, 451

Hanf number, 622, 642, 1007
Hanf’s Theorem, 610
Hausdorff space, 355
having \(\kappa\)-directed colimits, 257
height, 192
height in a lattice, 218
Henkin property, 862
Henkin set, 862
Herbrand model, 515, 862
hereditary, 12
\(\kappa\)-hereditary, 914, 969
hereditary finite, 7
Hintikka formula, 590, 591
Hintikka set, 517, 862, 863
history, 15
hom-functor, 263
homeomorphism, 350
homogeneous, 791, 929
\(\approx\)-homogeneous, 936

\(\kappa\)-homogeneous, 608, 791
homogeneous matroid, 1048
homomorphic image, 157, 749
homomorphism, 156, 498
Homomorphism Theorem, 183
homotopic interpretations, 894
honest definition, 1163
Horn formula, 740

ideal, 205, 209, 404
idempotent link, 317
idempotent morphism, 317
identity, 163
image, 31
imaginaries
uniform elimination of —, 844
imaginaries, elimination of —, 845
imaginary elements, 830
implication, 451
implicit definition, 652
inclusion functor, 169
inclusion link, 281
inclusion morphism, 495
inconsistent, 458
\(k\)-inconsistent, 1131
increasing, 44
independence property, 956
independence relation, 1088
independence relation of a matroid, 1087
Independence Theorem, 1259
independent, 1035
\(\sqrt{\cdot}\)-independent family, 1295
independent set, 110, 1041
index map of a link, 280
index of a subgroup, 390
indiscernible sequence, 946

1375
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>indiscernible system</td>
<td>953, 1343</td>
</tr>
<tr>
<td>induced substructure</td>
<td>152</td>
</tr>
<tr>
<td>inductive</td>
<td>77</td>
</tr>
<tr>
<td>inductive completion</td>
<td>295</td>
</tr>
<tr>
<td>inductive completion of a category</td>
<td>285</td>
</tr>
<tr>
<td>inductive fixed point</td>
<td>81, 661, 662</td>
</tr>
<tr>
<td>inductively ordered</td>
<td>81, 105</td>
</tr>
<tr>
<td>infimum</td>
<td>42, 197</td>
</tr>
<tr>
<td>infinitary first-order logic</td>
<td>449</td>
</tr>
<tr>
<td>infinitary second-order logic</td>
<td>487</td>
</tr>
<tr>
<td>infinite</td>
<td>115</td>
</tr>
<tr>
<td>Infinity, Axiom of —</td>
<td>24, 462</td>
</tr>
<tr>
<td>inflationary</td>
<td>81</td>
</tr>
<tr>
<td>inflationary fixed-point logic</td>
<td>669</td>
</tr>
<tr>
<td>initial object</td>
<td>166</td>
</tr>
<tr>
<td>initial segment</td>
<td>41</td>
</tr>
<tr>
<td>injective</td>
<td>31</td>
</tr>
<tr>
<td>κ-injective structure</td>
<td>1012</td>
</tr>
<tr>
<td>inner vertex</td>
<td>191</td>
</tr>
<tr>
<td>insertion</td>
<td>39</td>
</tr>
<tr>
<td>inspired by</td>
<td>954</td>
</tr>
<tr>
<td>integral domain</td>
<td>415, 717</td>
</tr>
<tr>
<td>interior</td>
<td>347, 762</td>
</tr>
<tr>
<td>interpolant</td>
<td>657</td>
</tr>
<tr>
<td>interpolation closure</td>
<td>653</td>
</tr>
<tr>
<td>interpolation property</td>
<td>651</td>
</tr>
<tr>
<td>Δ-interpolation property</td>
<td>651</td>
</tr>
<tr>
<td>interpretation</td>
<td>448, 450, 479</td>
</tr>
<tr>
<td>intersection</td>
<td>11</td>
</tr>
<tr>
<td>intersection number</td>
<td>1170</td>
</tr>
<tr>
<td>interval</td>
<td>761</td>
</tr>
<tr>
<td>invariance</td>
<td>1101</td>
</tr>
<tr>
<td>invariant class</td>
<td>1261</td>
</tr>
<tr>
<td>invariant over a subset</td>
<td>1331</td>
</tr>
<tr>
<td>U-invariant relation</td>
<td>1179</td>
</tr>
<tr>
<td>invariant type</td>
<td>1103</td>
</tr>
<tr>
<td>inverse</td>
<td>30, 165</td>
</tr>
<tr>
<td>inverse diagram</td>
<td>260</td>
</tr>
<tr>
<td>inverse limit</td>
<td>260</td>
</tr>
<tr>
<td>inverse reduct</td>
<td>979</td>
</tr>
<tr>
<td>irreducible polynomial</td>
<td>420</td>
</tr>
<tr>
<td>irreflexive</td>
<td>40</td>
</tr>
<tr>
<td>$\sqrt{-}$-isolated</td>
<td>1303</td>
</tr>
<tr>
<td>isolated point</td>
<td>368</td>
</tr>
<tr>
<td>isolated type</td>
<td>859, 1103</td>
</tr>
<tr>
<td>isolation relation</td>
<td>1303</td>
</tr>
<tr>
<td>isomorphic</td>
<td>44</td>
</tr>
<tr>
<td>α-isomorphic</td>
<td>585, 596</td>
</tr>
<tr>
<td>isomorphic copy</td>
<td>749</td>
</tr>
<tr>
<td>isomorphism</td>
<td>44, 156, 165, 172, 498</td>
</tr>
<tr>
<td>isomorphism, partial —</td>
<td>581</td>
</tr>
<tr>
<td>joint embedding property</td>
<td>1009</td>
</tr>
<tr>
<td>κ-joint embedding property</td>
<td>914</td>
</tr>
<tr>
<td>Jönsson class</td>
<td>1009</td>
</tr>
<tr>
<td>Karp property</td>
<td>617</td>
</tr>
<tr>
<td>kernel</td>
<td>158</td>
</tr>
<tr>
<td>kernel of a ring homomorphism</td>
<td>406</td>
</tr>
<tr>
<td>label</td>
<td>231</td>
</tr>
<tr>
<td>large subsets</td>
<td>829</td>
</tr>
<tr>
<td>Lascar invariant type</td>
<td>1184</td>
</tr>
<tr>
<td>Lascar strong type</td>
<td>1174</td>
</tr>
<tr>
<td>lattice</td>
<td>197, 459, 494</td>
</tr>
<tr>
<td>leaf</td>
<td>191</td>
</tr>
<tr>
<td>least element</td>
<td>42</td>
</tr>
<tr>
<td>least fixed point</td>
<td>661</td>
</tr>
<tr>
<td>least fixed-point logic</td>
<td>668</td>
</tr>
<tr>
<td>least partial fixed point</td>
<td>662</td>
</tr>
<tr>
<td>least upper bound</td>
<td>42</td>
</tr>
<tr>
<td>left extension</td>
<td>1234</td>
</tr>
<tr>
<td>left ideal</td>
<td>404</td>
</tr>
</tbody>
</table>
left local, 1114
left reflexivity, 1088
left restriction, 31
left transitivity, 1088
left-narrow, 57
length, 189
level, 192
level embedding function, 935
levels of a tuple, 935
lexicographic order, 189, 1029
lifting functions, 659
limit, 59, 261
limit stage, 19
limiting cocone, 257
limiting cone, 261
Lindenbaum algebra, 493
Lindenbaum functor, 492
Lindström quantifier, 486
linear independence, 410
linear matroid, 1041
linear order, 40
linear representation, 691
link between diagrams, 280
literal, 449
local, 612
local character, 1113
local enumeration, 776
\(\kappa \)-local functor, 969
local independence relation, 1114
localisation morphism, 495
localisation of a logic, 495
locality, 1114
locality cardinal, 1312
locally compact, 356
locally finite matroid, 1048
locally modular matroid, 1048
logic, 448
logical system, 489
Łoś theorem, 721
Łoś-Tarski Theorem, 690
Łöwenheim number, 622, 642, 645, 999
Łöwenheim-Skolem property, 617
Łöwenheim-Skolem-Tarski Theorem, 524
lower bound, 42
lower fixed-point induction, 662
map, 29
\(\Delta \)-map, 497
map, elementary —, 497
mapping, 29
matroid, 1040
maximal element, 42
maximal ideal, 415
maximal ideal/filter, 205
maximally \(\varphi \)-alternating sequence, 1159
meagre, 366
membership relation, 5
minimal, 13, 57
minimal element, 42
minimal polynomial, 423
minimal rank and degree, 226
minimal set, 1053
model, 448
model companion, 703
model of a presentation, 745
model-complete, 703
\(\kappa \)-model-homogeneous structure, 1012
modular, 200
modular lattice, 218
modular law, 220, 221
Index

modular matroid, 1048
modularity, 1099
module, 407
monadic second-order logic, 487
monoid, 31, 191, 389
monomorphism, 165
monotone, 762
monotonicity, 1088
monster model, 829
Morley degree, 1080
Morley rank, 1077
Morley sequence, 1123
Morley-free extension of a type, 1080
morphism, 162
morphism of logics, 482
morphism of matroids, 1048
morphism of partial morphisms, 898
morphism of permutation groups, 889
multiplication of cardinals, 116
multiplication of ordinals, 89
multiplicity of a type, 1285
mutually indiscernible sequences, 1213

natural isomorphism, 172
natural transformation, 172
negation, 449, 493
negation normal form, 473
negative occurrence, 668
neighbourhood, 345
neutral element, 31
node, 191
normal subgroup, 391
normality, 1088
nowhere dense, 366

o-minimal, 764, 960
object, 162
occurrence number, 622
oligomorphic, 394, 881
omitting a type, 532
omitting types, 536
open base, 348
open cover, 356
open dense order, 459
open interval, 761
Open Mapping Theorem, 1282
open set, 345
open subbase, 349
opposite category, 166
opposite functor, 168
opposite lattice, 206
opposite order, 40
orbit, 394
order, 458
order property, 571
order topology, 353, 762
order type, 64, 945
orderable ring, 430
ordered group, 710
ordered pair, 27
ordered ring, 429
ordinal, 64
ordinal addition, 89
ordinal exponentiation, 89
ordinal multiplication, 89
ordinal, von Neumann —, 69

pair, 27
parameter equivalence, 835
parameter-definable, 763
partial fixed point, 662
partial fixed-point logic, 669
partial function, 29
partial isomorphism, 581
partial isomorphism modulo a filter, 732
partial morphism, 898
partial order, 40, 458
partial order, strict —, 40
partition, 55, 222
partition degree, 226
partition rank, 222
partitioning a relation, 780
path, 191
path, alternating — in a category, 276
Peano Axioms, 488
pinning down, 622
point, 345
polynomial, 403
polynomial function, 420
polynomial ring, 403
positive existential, 498
positive occurrence, 668
positive primitive, 740
power set, 21
predicate, 28
predicate logic, 448
prefix, 189
prefix order, 189
preforking relation, 1101
prelattice, 209
prenex normal form, 473
preorder, 208, 492
\(\kappa \)-presentable, 321
presentation, 745
preservation by a function, 497
preservation in products, 740
preservation in substructures, 500
preservation in unions of chains, 501
preserving a property, 168, 266
preserving fixed points, 659
\(\sqrt{-\kappa} \)-prime, 1320
prime field, 417
prime ideal, 209, 406
prime model, 872
prime model, algebraic, 698
primitive formula, 703
principal ideal/filter, 205
Principle of Transfinite Recursion, 75, 133
product, 27, 37, 749
product of categories, 170
product of linear orders, 86
product topology, 361
product, direct —, 243
product, generalised —, 756
product, reduced —, 246
product, subdirect —, 244
projection, 37, 640
projection along a functor, 265
projection along a link, 281
projection functor, 170
projective class, 640
projective geometry, 1047
projectively reducible, 641
projectively \(\kappa \)-saturated, 808
proper, 205
property of Baire, 367
pseudo-elementary, 641
pseudo-saturated, 811
quantifier elimination, 694, 716
quantifier rank, 457
quantifier-free, 457
quantifier-free formula, 498
quantifier-free representation, 1344
Index

quasi-dividing, 1237
quasivariety, 749
quotient, 180

Rado graph, 922
Ramsey’s theorem, 930
random graph, 922
random theory, 922
range, 29
rank, 73, 194
Δ-rank, 1077
rank, foundation –, 194
real closed field, 433, 715
real closure of a field, 433
real field, 430
realising a type, 532
reduced product, 246, 749
reduct, 155
µ-reduct, 241
refinement of a partition, 1342
reflecting a property, 168, 266
reflexive, 40
regular, 125
regular filter, 723
regular logic, 618
relation, 28
relational, 149
relational variant of a structure, 980
relativisation, 478, 618
relativised projective class, 645
relativised projectively reducible, 645
relativised quantifiers, 451
relativised reduct, 645
Replacement, Axiom of —, 133, 462
replica functor, 983
representation, 1344
restriction, 30

restriction of a filter, 246
restriction of a Galois type, 1019
restriction of a logic, 495
restriction of a type, 564
retract of a logic, 551
retraction, 165
retraction of logics, 550
reverse ultrapower, 739
right local, 1114
right shift, 1303
ring, 401, 461
ring, orderable —, 430
ring, ordered —, 429
root, 191
root of a polynomial, 420
Ryll-Nardzewski Theorem, 881

satisfaction, 448
satisfaction relation, 448, 450
satisfiable, 458
saturated, 797
κ-saturated, 672, 797
√-κ-saturated, 1320
κ-saturated, projectively —, 808
Scott height, 591
Scott sentence, 591
second-order logic, 487
section, 165
segment, 41
semantics functor, 489
semantics of first-order logic, 450
semi-strict homomorphism, 156
semilattice, 197
sentence, 454
separated formulae, 632
Separation, Axiom of —, 10, 462
sequence, 37
Index

shifting a diagram, 317
signature, 149, 151, 239, 240
simple structure, 416
simple theory, 1141
simply closed, 698
singular, 125
size of a diagram, 255
skeleton of a category, 270
skew embedding, 943
skew field, 401
Skolem axiom, 509
Skolem expansion, 1003
Skolem function, 509
definable —, 847
Skolem theory, 509
Skolemisation, 509
small subsets, 829
sort, 151
spanning, 1038
special model, 811
specification of a dividing chain, 1143
specification of a dividing k-tree, 1150
specification of a forking chain, 1143
spectrum, 374, 535, 538
spectrum of a ring, 406
spine, 985
splitting type, 1103
stabiliser, 395
stability spectrum, 1296
k-stable formula, 568
k-stable theory, 577
stably embedded set, 1162
stage, 15, 77
stage comparison relation, 679
stationary set, 138
stationary type, 1278
Stone space, 378, 535, 538
\sqrt{}-stratification, 1312
strict homomorphism, 156
strict Horn formula, 740
strict \Delta-map, 497
strict order property, 962
strict partial order, 40
strictly increasing, 44
strictly monotone, 762
strong \gamma-chain, 1021
strong \gamma-limit, 1021
strong finite character, 1116
strong limit cardinal, 812
strong right boundedness, 1089
strongly homogeneous, 791
strongly k-homogeneous, 791
strongly independent, 1338
strongly local functor, 985
strongly minimal set, 1053
strongly minimal theory, 1060, 1156
structure, 149, 151, 241
subbase, closed —, 348
subbase, open —, 349
subcategory, 169
subcover, 356
subdirect product, 244
subdirectly irreducible, 244
subfield, 417
subformula, 454
subset, 5
subspace topology, 350
subspace, closure —, 350
substitution, 238, 469, 618
substructure, 152, 749, 969
\Delta-substructure, 502
\kappa-substructure, 1000
substructure, elementary —, 502
substructure, generated —, 154
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>substructure, induced —</td>
<td>152</td>
</tr>
<tr>
<td>subterm</td>
<td>232</td>
</tr>
<tr>
<td>subtree</td>
<td>192</td>
</tr>
<tr>
<td>successor</td>
<td>59, 191</td>
</tr>
<tr>
<td>successor stage</td>
<td>19</td>
</tr>
<tr>
<td>sum of linear orders</td>
<td>85</td>
</tr>
<tr>
<td>superset</td>
<td>5</td>
</tr>
<tr>
<td>supersimple theory</td>
<td>1300</td>
</tr>
<tr>
<td>superstable theory</td>
<td>1300</td>
</tr>
<tr>
<td>supremum</td>
<td>42, 197</td>
</tr>
<tr>
<td>surjective</td>
<td>31</td>
</tr>
<tr>
<td>symbol</td>
<td>149</td>
</tr>
<tr>
<td>symmetric</td>
<td>40</td>
</tr>
<tr>
<td>symmetric group</td>
<td>393</td>
</tr>
<tr>
<td>symmetric independence relation</td>
<td>1089</td>
</tr>
<tr>
<td>syntax functor</td>
<td>489</td>
</tr>
<tr>
<td>system of bases for a stratification</td>
<td>1342</td>
</tr>
<tr>
<td>T_0-space</td>
<td>538</td>
</tr>
<tr>
<td>Tarski union property</td>
<td>618</td>
</tr>
<tr>
<td>tautology</td>
<td>458</td>
</tr>
<tr>
<td>term</td>
<td>231</td>
</tr>
<tr>
<td>term algebra</td>
<td>236</td>
</tr>
<tr>
<td>term domain</td>
<td>231</td>
</tr>
<tr>
<td>term, value of a —</td>
<td>235</td>
</tr>
<tr>
<td>term-reduced</td>
<td>470</td>
</tr>
<tr>
<td>terminal object</td>
<td>166</td>
</tr>
<tr>
<td>L-theory</td>
<td>465</td>
</tr>
<tr>
<td>theory of a functor</td>
<td>975</td>
</tr>
<tr>
<td>topological closure</td>
<td>347, 762</td>
</tr>
<tr>
<td>topological closure operator</td>
<td>51, 347</td>
</tr>
<tr>
<td>topological group</td>
<td>398</td>
</tr>
<tr>
<td>topological space</td>
<td>345</td>
</tr>
<tr>
<td>topology</td>
<td>345</td>
</tr>
<tr>
<td>topology of the type space</td>
<td>537</td>
</tr>
<tr>
<td>torsion element</td>
<td>709</td>
</tr>
<tr>
<td>torsion-free</td>
<td>709</td>
</tr>
<tr>
<td>total order</td>
<td>40</td>
</tr>
<tr>
<td>totally disconnected</td>
<td>355</td>
</tr>
<tr>
<td>totally indiscernible sequence</td>
<td>946</td>
</tr>
<tr>
<td>totally transcendental sequence</td>
<td>578</td>
</tr>
<tr>
<td>transcendence basis</td>
<td>422</td>
</tr>
<tr>
<td>transcendence degree</td>
<td>422</td>
</tr>
<tr>
<td>transcendental elements</td>
<td>422</td>
</tr>
<tr>
<td>transcendental field extensions</td>
<td>422</td>
</tr>
<tr>
<td>transfinite recursion</td>
<td>75, 133</td>
</tr>
<tr>
<td>transitive</td>
<td>12, 40</td>
</tr>
<tr>
<td>transitive action</td>
<td>394</td>
</tr>
<tr>
<td>transitive closure</td>
<td>55</td>
</tr>
<tr>
<td>transitive dependence relation</td>
<td>1035</td>
</tr>
<tr>
<td>transitivity, left —</td>
<td>1088</td>
</tr>
<tr>
<td>translation by a functor</td>
<td>265</td>
</tr>
<tr>
<td>tree, 191</td>
<td></td>
</tr>
<tr>
<td>φ-tree</td>
<td>572</td>
</tr>
<tr>
<td>tree property</td>
<td>1149</td>
</tr>
<tr>
<td>tree property of the second kind</td>
<td>1227</td>
</tr>
<tr>
<td>tree-indiscernible</td>
<td>954</td>
</tr>
<tr>
<td>trivial filter</td>
<td>205</td>
</tr>
<tr>
<td>trivial ideal</td>
<td>205</td>
</tr>
<tr>
<td>trivial topology</td>
<td>346</td>
</tr>
<tr>
<td>tuple, 28</td>
<td></td>
</tr>
<tr>
<td>Tychonoff, Theorem of —</td>
<td>363</td>
</tr>
<tr>
<td>type, 564</td>
<td></td>
</tr>
<tr>
<td>L-type</td>
<td>531</td>
</tr>
<tr>
<td>Ξ-type</td>
<td>808</td>
</tr>
<tr>
<td>α-type</td>
<td>532</td>
</tr>
<tr>
<td>\hat{s}-type</td>
<td>532</td>
</tr>
<tr>
<td>type of a function</td>
<td>151</td>
</tr>
<tr>
<td>type of a relation</td>
<td>151</td>
</tr>
<tr>
<td>type space</td>
<td>537</td>
</tr>
<tr>
<td>type topology</td>
<td>537</td>
</tr>
<tr>
<td>type, average —</td>
<td>947</td>
</tr>
</tbody>
</table>
type, average — of an indiscernible system, 954

type, complete —, 531

type, Lascar strong —, 1174

types of dense linear orders, 533

ultrafilter, 209, 534

κ-ultrahomogeneous, 910

ultrapower, 247

ultraproduct, 247, 801

unbounded class, 1007

uncountable, 115

uniform dividing chain, 1143

uniform dividing κ-tree, 1151

uniform elimination of imaginaries, 844

uniform forking chain, 1143

uniformly finite, being — over a set, 780

union, 21

union of a chain, 505, 692

union of a cocone, 297

union of a diagram, 296

unit of a ring, 415

universal, 498

κ-universal, 797

universal quantifier, 449

universal structure, 1012

universe, 149, 151

unsatisfiable, 458

unstable, 568, 578

upper bound, 42

upper fixed-point induction, 662

valid, 458

value of a term, 235

variable, 240

variable symbols, 449

variables, free —, 235, 454

variety, 749

Vaughtian pair, 1061

vector space, 407

vertex, 191

von Neumann ordinal, 69

weak γ-chain, 1021

weak γ-limit, 1021

weak canonical definition, 851

weak canonical parameter, 851

weak elimination of imaginaries, 851

weak homomorphic image, 157, 749

Weak Independence Theorem, 1258

weakly bounded independence relation, 1195

weakly regular logic, 618

well-founded, 13, 57, 81, 109

well-order, 57, 109, 133, 602

well-ordering number, 622, 642

well-ordering quantifier, 486, 487

winning strategy, 594

word construction, 976, 981

Zariski logic, 447

Zariski topology, 346

zero-dimensional, 355

zero-divisor, 415

Zero-One Law, 926

ZFC, 461

Zorn's Lemma, 110
The Roman and Fraktur alphabets

<table>
<thead>
<tr>
<th>Latin</th>
<th>Lower Case</th>
<th>Upper Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>a</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>b</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>c</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>d</td>
<td>D</td>
</tr>
<tr>
<td>E</td>
<td>e</td>
<td>E</td>
</tr>
<tr>
<td>F</td>
<td>f</td>
<td>F</td>
</tr>
<tr>
<td>G</td>
<td>g</td>
<td>G</td>
</tr>
<tr>
<td>H</td>
<td>h</td>
<td>H</td>
</tr>
<tr>
<td>I</td>
<td>i</td>
<td>I</td>
</tr>
<tr>
<td>J</td>
<td>j</td>
<td>J</td>
</tr>
<tr>
<td>K</td>
<td>k</td>
<td>K</td>
</tr>
<tr>
<td>L</td>
<td>l</td>
<td>L</td>
</tr>
<tr>
<td>M</td>
<td>m</td>
<td>M</td>
</tr>
</tbody>
</table>

The Greek alphabet

<table>
<thead>
<tr>
<th>Greek</th>
<th>English</th>
<th>English</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>alpha</td>
<td>N</td>
<td>nu</td>
</tr>
<tr>
<td>β</td>
<td>beta</td>
<td>Ξ</td>
<td>xi</td>
</tr>
<tr>
<td>γ</td>
<td>gamma</td>
<td>O</td>
<td>omicron</td>
</tr>
<tr>
<td>δ</td>
<td>delta</td>
<td>Π</td>
<td>pi</td>
</tr>
<tr>
<td>ε</td>
<td>epsilon</td>
<td>ρ</td>
<td>rho</td>
</tr>
<tr>
<td>ζ</td>
<td>zeta</td>
<td>Σ</td>
<td>sigma</td>
</tr>
<tr>
<td>η</td>
<td>eta</td>
<td>T</td>
<td>tau</td>
</tr>
<tr>
<td>θ</td>
<td>theta</td>
<td>Υ</td>
<td>upsilon</td>
</tr>
<tr>
<td>ι</td>
<td>iota</td>
<td>Φ</td>
<td>phi</td>
</tr>
<tr>
<td>κ</td>
<td>kappa</td>
<td>X</td>
<td>chi</td>
</tr>
<tr>
<td>λ</td>
<td>lambda</td>
<td>Ψ</td>
<td>psi</td>
</tr>
<tr>
<td>μ</td>
<td>mu</td>
<td>Ω</td>
<td>omega</td>
</tr>
</tbody>
</table>