Achim Blumensath
blumens@fi.muni.cz

This document was last updated 2024-04-09.
The latest version can be found at

www.fi.muni.cz/~blumens

COPYRIGHT 2024 Achim Blumensath

@ @ This work is licensed under the Creative Commons Attri-

bution 4.0 International License. To view a copy of this
license, visit http://creativecommons.org/licenses/by/4.0/.




Contents

A. Set Theory 1
A1 Basic set theory 3
1 Setsandclasses. . . ... ... .. . ... 3
2 Stagesand histories . . ... ... ... .. .. oL oL 11
3 The cumulative hierarchy . . . . .. ... ... ... ... .. 18
A2 Relations 27
1 Relationsandfunctions . . . . ... ... ... ... ....... 27
2 Productsandunions ... .... ... ... ... ... .. ... 36
3 Graphsand partialorders . . .. ... ... .. .. ... .. .. 39
4 Fixed points and closure operators . . .. ... ......... 47
A3 Ordinals 57
1 Well-orders . . . . . . .. . . e 57
2 Ordinals. . . ... ... . . . 64
3 Induction and fixed points . . . ... ... .. L L oL 74
4 Ordinal arithmetic. . . . ... ... ... ... .. ... ..... 85
A4 Zermelo-Fraenkel set theory 105
1 The AxiomofChoice . .. ... ... ... ... ... ...... 105
2 Cardinals . . . ... ... ... .. 112
3 Cardinal arithmetic . . . . ... .. ... ... . . ........ 116
4 Cofinality . . .. ... ... ... . 121
5 The Axiom of Replacement. . . . ... ... ........... 131

LOGIC, ALGEBRA & GEOMETRY 2024-04-09 — ©OACHIM BLUMENSATH V



Contents

6 Stationarysets . . . ... ... ... ... o 134
7 Conclusion . . . .... ... . ... ... 145
B. General Algebra 147
B1 Structures and homomorphisms 149
1 Structures . . . . . . . . e e 149
2 Homomorphisms . .. ... .. ... ... ... ......... 156
3 Categories . . . . ... ... 162
4 Congruences and quotients . . . ... .............. 175
B2 Trees and lattices 187
1 Trees. . . . . . o e 187
2 Lattices . . . . . . . . . e 195
3 Idealsandfilters . . ... ... .. ... ... ... .. 203
4 Primeidealsand ultrafilters . . . ... .............. 207
5 Atomic lattices and partitionrank . . . . ... ... 0oL 215
B3 Universal constructions 227
1 Termsandtermalgebras . . ... ... ... ... ... .... 227
2 Directand reduced products . . . . ... ... ... .. L. 238
3 Directed limits and colimits . . . . ... ... ... ....... 246
4 Equivalentdiagrams. . . . ... ........ ... ...... 258
5 Linksanddensefunctors . . . ... ... ... ... ....... 270
B4 Accessible categories 285
1 Filtered limits and inductive completions . . . ... ... ... 285
2 Extensionsofdiagrams . ... ... ... ... .. ... ..... 300
3 Presentableobjects . .. ... ... . ... ... ... .. ... 316
4 Accessible categories . . ... ... . L L oL 329

Vi



Contents

B5 Topology 341
1 Openandclosedsets . . ...................... 341
2 Continuous functions . . . . . . .. .. ... . . ... ... ... 346
3 Hausdorff spaces and compactness . . . ... .......... 350
4 The Producttopology . . . .. ... .. ... ... ... .. ... 357
5 Dense sets and isolated points . . . . .. ... ... .. ..... 361
6 Spectraand Stoneduality . . .. ... ... ... . oL 370
7 Stone spaces and Cantor-Bendixsonrank .. ... .. ... .. 377

B6 Classical Algebra 385
1 Groups . . . . . oo e 385
2 Groupactions . .. ... ... e 389
3Rings .. ... . 397
4 Modules. . . . ... .. . . . . 403
s Fields . . .. . . . . 410
6 Orderedfields . . ... ... ... . .. ... .. .. .. .. ... 425
C. First-Order Logic and its Extensions 441
c1 First-order logic 443
1 Infinitary first-order logic . . . ... ... . ... ... ... . 443
2 Axiomatisations . . . . . . . . .. .. ... .. 454
3 Theories. . . . . . . . . . . 460
4 Normalforms . .. ... ... ... ... . ... .. .. ..... 465
5 Translations . .. ... ... ... ... . ... ... ... . ... 472
6 Extensions of first-orderlogic . . . ... ... .......... 481
c2 Elementary substructures and embeddings 493
1 Homomorphisms and embeddings . . . .. ... ........ 493
2 Elementary embeddings . ... ............. ... .. 498
3 The Theorem of Lowenheim and Skolem . . . . . ... ... .. 504

vii



Contents

4 The Compactness Theorem . ... ................ 511
5 Amalgamation . . . .. ... ... L L o 521
c3 Types and type spaces 527
1 Types ..o 527
2 Typespaces . . . . . . ... .. 533
3 Retracts . . . . . . . . . . e 546
4 Localtypespaces . . ......... .. ... . ... . ... 557
5 Stabletheories . . ... ... ... .. .. ... ... ... . ... 562
c4 Back-and-forth equivalence 577
1 Partial isomorphisms . . . .. ... .. L L o oL 577
2 Hintikka formulae . . . . . ... ... ... .. .. . oL 586
3 Ehrenfeucht-Fraisségames . . . . . ... ... .......... 589
4 k-complete back-and-forth systems . . . . . ... ........ 598
5 The theorems of Hanfand Gaifman . . . . ... ... ...... 605
cs5 General model theory 613
1 Classitying logical systems . . . .. ................ 613
2 Hanf and Lowenheim numbers . . . .. ... ... ....... 617
3 The Theoremof Lindstrom . . . . ... ... ........... 624
4 Projectiveclasses. . . . ... ... .. L. 636
5 Interpolation . . . . ... .. ... L 646
6 Fixed-pointlogics . . ... ... ... ... .. ... .. ... 657
D. Axiomatisation and Definability 683
D1 Quantifier elimination 685
1 Preservationtheorems ... .................... 685
2 Quantifier elimination . . ... ... ... ... ......... 689
3 Existentially closed structures . . . ... ... .......... 699
4 Abeliangroups . . . . .. ... .. L 704

viil



Contents

s Fields . . . . . . . . . . . 710
D2 Products and varieties 715
1 Ultraproducts . . . ... ... ... .. 715
2 The theorem of Keislerand Shelah . . .. ... ......... 720
3 Reduced products and Horn formulae . ... .......... 734
4 Quasivarieties . . . . . . . . ... 739
5 The Theorem of Feferman and Vaught . . . ... ... ... .. 751
D3 O-minimal structures 757
1 Ordered topological structures . . . ............... 757
2 O-minimal groupsandrings . . . . ... .. ... ........ 763
3 Celldecompositions. . . . ... ... ... ... .. ... 765
E. Classical Model Theory 785
E1 Saturation 787
1 Homogeneous structures . . . ... ................ 787
2 Saturated structures . . . . . . . . ... 793
3 Projectively saturated structures . . . . ... ... ... ... .. 804
4 Pseudo-saturated structures . . ... ............... 807
E2 Definability and automorphisms 815
1 Definability in projectively saturated models . . ... ... .. 815
2 Imaginary elements and canonical parameters . ... ... .. 826
3 Galoisbases . . ... ... .. ... ... ... . 834
4 Elimination of imaginaries . . . .. ... ... .......... 840
5 Weak elimination of imaginaries . ................ 846

X



Contents

E3 Prime models 855
1 Isolatedtypes. . . . .. . ... L 855
2 The Omitting Types Theorem . . ... .............. 857
3 Prime and atomicmodels . ... ... ... ........... 865
4 Constructiblemodels . . . ... ... ...... .. ... .... 869

E4 R,-categorical theories 877
1 R,-categorical theories and automorphisms . . . . .. ... .. 877
2 Back-and-forth arguments in accessible categories . . . .. .. 893
3 Fraissélimits . . . . . . .. ... 905
4 Zero-onelaws . . ... ... ... ... 917

E5 Indiscernible sequences 925
1 Ramsey Theory . .... ... .. ... ... ... ... .... 925
2 Ramsey Theoryfortrees .. .................... 929
3 Indiscerniblesequences . . . . . ... ... ... .. .. ... 941
4 'The independence and strict order properties . . . .. ... .. 952

E6 Functors and embeddings 965
1 Localfunctors . . ... ... ... . . . . . . ... ... 965
2 Word constructions . . . . ... ... ... . . ... 972
3 Ehrenfeucht-Mostowskimodels . . . . ... ........... 981

E7 Abstract elementary classes 995
1 Abstract elementaryclasses . . ... ... ..... ... .... 995
2 Amalgamation and saturation . . . . ... ... ... ... 1004
3 Limitsofchains . . ... ... ... ... .. . . ......... 1017
4 Categoricityand stability . . . .. ... ... ... ... ... 1021
E  Independence and Forking 1029



F1 Geometries

1 Dependencerelations . . . . ... ... ........
2 Matroids and geometries . . . . ... ... ... ...
3 Modular geometries . . . .. ... ... L.
4 Strongly minimalsets . . . ... ... ... ......

5 Vaughtian pairs and the Theorem of Morley

F2 Ranks and forking

1 Morleyrankand A-rank . ... ... .........
2 Independencerelations . . . ... ...........
3 Preforking relations . . . ... ... ..........
4 Forkingrelations. ... .................

F3 Simple theories

1 Dividingand forking . ... ..............
2 Simple theories and the tree property . . . . . .. ..

F4 Theories without the independence property

1 Honestdefinitions . . . .. ... ............
2 Lascarinvarianttypes . . . . ... ... ... .....

....... 1194
....... 1206

3 \1/ -Morley sequences . . ... ............
4 Dp-rank. .. ... ... ... ..

F5 Theories without the array property

1 Thearrayproperty. . . . ...............
2 Forkingand dividing . . ... ............
3 The Independence Theorem . . ... ........

G. Geometric Model Theory

Contents

1031

...... 1031
...... 1036
...... 1042
...... 1049
...... 1057

1069

...... 1069
...... 1083
...... 1096
...... 1113

1125

...... 1125
...... 1134

1153

...... 1153
...... 1167

1219

....... 1219
....... 1228

....... 1247

1261

xi



Contents

G1 Stable theories

1 Definabletypes. . . ... ... ... .. L.
2 Forkingin stable theories . . . . . ... ..............
3 Stationarytypes . ... ... ... ... ...
4 The multiplicityofatype . . . .. ... ... ... ... ...
5 Morley sequences in stable theories . . . . . ... ... .....
6 The stability spectrum . . ... ... .. ... ... ... ..

G2 Models of stable theories

1 Isolationrelations . .. ... ... ... ... ... . .. .....
2 Constructions . . . ... ... . . ...
3 Primemodels . ... ... ... . . .. ...
4 a\t/ -constructiblemodels . . . ... ... .. L.
5 Strongly independent stratifications. . . . .. ... ... .. ..
6 Representations . .. ...... ... ... ... ... ...,

Recommended Literature

Symbol Index

Xii

1263

1263
1268
1272
1278
1285
1290

1297
1297
1306
1314
1319
1328

1337

1349
1351



Part E

Independence and Forking






F1. Geometries

1. Dependence relations

We have seen that a vector space or an algebraically closed field (of a given
characteristic) is uniquely determined by, respectively, its dimension and
its transcendence degree. In this chapter we try to generalise these two
results. We investigate first-order theories whose models are uniquely
determined by some kind of dimension. We start by introducing an
abstract notion of dimension. As for vector spaces and algebraically
closed fields, this notion is based on a closure operator. With these tools
in hand we can then prove categoricity results for certain theories. Our
first application will be Theorem 4.13, which states that two models of
the same dimension are isomorphic.

Definition 1.1. (a) A dependence relation on a set Aisasystem D C £(A)
with the property that

XeD it X, e D for some nonempty finite X, € X.

A subset X € A is D-dependent if X € D. Otherwise, it is called D-
independent.

(b) An element a € A D-depends on aset X € Aif a € X or there is an
D-independent subset I € X such that I U {a} is D-dependent. The set
of all elements D-depending on X is denoted by (X)) p.

(c) A dependence relation D on A is transitive if ({X)p)p = (X)) p»
for all X c A.

Remark. Note that, if I is D-independent then we have a € (I))p if and
only if I U {a} is D-dependent.
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F1. Geometries

Example. (a) Let BV be a K-vector space. Then
D :={X c V| Xislinearly dependent }

is a transitive dependence system on V.
(b) Let K be a field. Then

D :={ X € K| X is algebraically dependent }

is a transitive dependence system on K.
(c) Let & = (V, E) be an undirected graph. Then

D := { X ¢ E | E contains a cycle }
is a transitive dependence system on E.

Lemma 1.2. Let D be a transitive dependence relation on A. The function
¢ : X — (X)p is a finitary closure operator with the exchange property.

Proof. By definition c is finitary. To show that it is a closure operator
note that we have X ¢ ¢(X) since all elements of X D-depend on X.
As D is transitive we further have ¢(¢(X)) = ¢(X). Finally, if X ¢ Y
then every element D-depending on X also D-depends on Y. Hence,
c(X) cc(Y).

For the exchange property, suppose that b € c(Xu{a}) \ ¢(X). Then
there is a D-independent subset I ¢ X u {a} with Tu {b} € D. Let
I, :=I~{a}. Note that I' := I, u {b} is D-independent since, otherwise,
we would have b € ¢(I,) € ¢(X). Therefore, I' U {a} € D implies that
aec(I')cc(Xu{b}),asdesired. ]

Lemma 1.3. Let D be a transitive dependence relation, I a D-independent
set,and I, € I. If a € (I)p ~ (I, ) p then there exists an element b € I\ I,
such that I' :== (I~ {b}) u{a} is D-independent and b € {I')) p.

Proof. Since a € (I)p there is some D-independent subset J € I such
that J U {a} € D. Choose ] minimal. Since a ¢ (I, )p we have J ¢ I.
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1. Dependence relations

Fix some element b € J N\ [, and set J' := J\ {b} and I := I \ {b}. By
minimality of ] we have J' U {a} ¢ D. Consequently, b € (J' u{a}))p €
("0 {at).

It remains to prove that I'u{a} is D-independent. For a contradiction,
suppose that I’ U {a} € D. Then a € (I')p. Since D is transitive it
follows that b € (I' u{a})p € (I')p. Consequently, I = I' U {b} is not
D-independent. Contradiction. ]

We can characterise transitive dependence systems in terms of closure
operators with the exchange property.

Proposition 1.4. (a) If ¢ is a finitary closure operator on A with the ex-
change property, then

D:={Xc A|thereissomeac X withaec(X\ {a})}

is a transitive dependence relation with ¢(X) = (X)) p, for all X.
(b) A subset D ¢ R(A) is a transitive dependence relation if and only if
the function ¢ : X — (X)) p is a finitary closure operator with the exchange

property.

Proof. (a) To show that D is a dependence relation let X € D. We have
to find a finite subset X, € X with X, € D. By definition, there is some
element a € X with a € c(X\ {a}). Since c is finitary it follows that there
is some X, € X \ {a} with a € ¢(X,). Consequently, X, u{a} € D.

It remains to show that D is transitive and that ¢(X) = (X)) p. We start
with the latter. Let a € ¢(X) and choose a minimal subset X, € X with
a € ¢(X,). Thenthereisno b € X, with b € ¢(X,\{b}) since, otherwise,
c(X,) = c¢(Xo N {b}) and X, would not be minimal. It follows that X, is
D-independent while X, U {a} is not. Consequently, we have a € { X)) p.

Conversely, suppose that a € (X)) p. Then there is a D-independent
subset I ¢ X with Tu{a} € D. Hence, we can find an element b € Tu{a}
suchthatb e c((Tu{a})~{b}).If b = a then we have a € ¢(I) < ¢(X),
as desired. Otherwise, let I, := I \ {b}. Since I is D-independent we
have b ¢ c¢(I,). Therefore, b € c(I, U {a}) \ ¢(I,) implies that a €
c(I,u{b}) c c(X).
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F1. Geometries

Finally, note that c o ¢ = ¢ implies that D is transitive.

(b) (=) was already proved in Lemma 1.2. (<=) By (a), we only have
to show that, if D and D’ are sets such that (X))p = (X))ps, for all
X ¢ A, then we have D = D’. By symmetry, suppose that there is a
set X € D \ D'. Then there is a finite nonempty subset X, ¢ X with
X, € D\ D’. Choose X, such that its size is minimal and fix some
element a € X,. By minimality we have X, \ {a} ¢ D. This implies
that a € (X, ~ {a})p. But X, ¢ D" implies X, \ {a} ¢ D’. Therefore,
aé¢(Xo~{a})p = (X, \{a})p. A contradiction. O

We can use this proposition to translate between dependence relations
and closure operators. In the following we will use the terminology for
both interchangeably, e.g., we will speak of independent sets with respect
to a closure operator.

Using dependence relations or, equivalently, closure operators with
the exchange property, we can introduce bases and dimensions as for
vector spaces.

Definition 1.5. Let D be a dependence relation on A. A set X € A is
D-spanning if (X))p = A. A D-basis is a D-spanning set which is D-
independent.

Lemma 1.6. Let D be a transitive dependence relation on Aand X C A a
set. The following statements are equivalent:

(1) X is a maximal D-independent set.
(2) X is a minimal D-spanning set.

(3) X is a D-basis.

Proof. (1) = (2) Let X be maximal D-independent and suppose that
there is some element a € A\ (X)) p. Since X is D-independent we have
X u{a} ¢ Dand X is not maximal.

(2) = (3) Let X be minimal D-spanning. For a contradiction suppose
that X € D. Let X, € X be a minimal subset with X, € D and fix some
element a € X,. By minimality, I := X, \ {a} is D-independent. Hence,
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1. Dependence relations

a€{I)p c (X~ {a})p. By transitivity, it follows that (X \ {a})p =
(X)p = A. This contradicts the minimality of X.

(3) = (1) Every D-basis X is D-independent. If X were not max-
imal, we could find an element a € A \ X such that X u {a} were
D-independent. But this would imply that a ¢ {(X)p = A. A contradic-
tion. [

Once we have shown that all bases have the same cardinality, we obtain
a well-defined notion of dimension.

Lemma 1.7 (Exchange Lemma). Let D be a transitive dependence relation
on A. If I is D-independent and S is D-spanning then there exists a subset
So €S SwithInS, = & such that [ U S, is a D-basis.

Proof. The set F := {]J | Jis D-independentwithI € J ¢ Tu S} is
inductively ordered by C since U C € D would imply that there is a finite
subset C, € C with U C, € D. Consequently, F has a maximal element B.
By maximality, every element of S\ B D-depends on B. Hence, S € (B))p
implies that {(B)p 2 (S)p = A, and B is a D-basis. Setting S, := B\ I
yields the desired subset of S. ]

Lemma 1.8. Let D be a transitive dependence relation on A. If I, ] are
D-independent sets with ] € (I))p then |]| < |I].

Proof. Since D induces a transitive dependence relation on (I))p we
may assume that A = (I))p and that I is a D-basis.

First, suppose that ] is finite. We prove the claim by induction on
|J N I|. If ] ¢ I then there is nothing to do. Hence, suppose that there is
some element a € J \ I, and set H := I n J. Since ] is D-independent we
have a € (I))p \ {H))p. By Lemma 1.3, we can find an element b € I \ H
such that I, := (I~ {b}) u{a} is D-independent and b € (I, ))p. By
transitivity of D it follows that ] € {I)p € (I, u{b})p = (I, ))p. Since
|J N I,| < |J \ I| we can apply the induction hypothesis to conclude that
71 < 1o = 1.

It remains to consider the case that J is infinite. If I were finite, we
could choose a subset ], € J of size |J,| = |I| + 1. This would contradict
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F1. Geometries

the finite case proved above. Hence, I is also infinite. Since the operator
X — (X)) p is finitary we have

JeU{{Io)p | I, € Iis finite } .

If I, < Iis finite, we have seen above that |[Jn (I, ) p| < |I,|. Consequently,

J=U{Jn{L)p | I, < Iis finite }

implies that

I < S {0 (L)l | I, € Iisfinite } < [1]°¢ = |1]. O

Theorem 1.9. Let D be a transitive dependence relation on A.

(a) For every D-independent set I and every D-spanning set S 2 I there
exists a D-basis B with I € B C §.

(b) There exists a D-basis and all D-bases have the same cardinality
Proof. (a) follows from Lemma 1.7.
(b) The existence of a D-basis follows from (a) by setting I := @ and

S := A. The fact that two bases have the same cardinality follows from
Lemma 1.8. ]

2. Matroids and geometries

It will be convenient to work with closure operators instead of depend-
ence relations.

Definition 2.1. Let (2 be a set.

(a) A matroid is a pair (Q, cl) where cl is a finitary closure operator
on (2 with the exchange property.

(b) A matroid (Q, cl) is a geometry if it satisfies

d(@)=2 and d({a})={a}, foreveryaceQ.
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2. Matroids and geometries

(c) Let (Q, cl) be a matroid. For U, I € Q, we say that [ is independent
over U if

a¢cd(Uu(I~{a})), forallacl.

We call I independent if it is independent over the empty set.

A basis of a set X € Q is an independent set I ¢ X with cl(I) 2 X.
The dimension of X is the cardinality of any basis of X. We denote it by
dim (X). Similarly, we define a basis of X over a set U as a maximal
set I ¢ X that is independent over U. The dimension dim(X/U) of X
over U is the cardinality of any such set.

Example. Let f : A — B be a function and define
c(X):=f[f[X]], forXcA.
Then (A, ¢) forms a matroid.

Remark. With any matroid (£, cl) we can associate the lattice (fixcl, )
of all closed sets and the closure space (Q, fixcl).

Exercise 2.1. Let (2, cl) be a matroid, X ¢ Q, and let C ¢ fixcl be a
maximal chain of closed sets such that A ¢ cI(X), for all A € C. Prove
that |C| = dim(X) @ 1.

Definition 2.2. Let B be a vector space over a skew field &.

(a) The linear matroid associated with B is the matroid (V, cl) where
cl(X) := (X)) is the linear subspace spanned by X.

(b) The affine geometry associated with B is the matroid (V, cl) where

c(X) :={SoXo + "+ Sp1Xp—y | N < w, s; €S, x; € X with
Sot r+Sy, =1},
Example. Let B be a vector space and let x, y € V be linearly independ-
ent. In the linear matroid the closure of {x, y} is the plain through x, y,

and the zero vector o. In the affine geometry the closure of {x, y} is the
line through x and y.
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F1. Geometries

Remark. (a) The linear matroid is not a geometry since cl@ = {o} # @.
Furthermore, the usual dimension of a linear subspace U € V coincides
with its dimension dim(U) in the linear matroid as defined above.

(b) The affine geometry (V, cl) associated with a vector space B is
really a geometry. But note that the usual affine dimension of an affine
subspace U C V is one less than its dimension dim (U) in the affine
geometry as defined above.

The dimension function of a matroid has the following basic proper-
ties. In fact, we will show below that every function of this kind arises
from a matroid.

Definition 2.3. Let Q be a set. A function dim : (Q) x£(Q) - Cnisa
geometric dimension function if, for all sets A, B, U, V € (, the following
conditions are satisfied:

(1) dim(A/U) <[ANUJ.

(2) dim(AuU/U) =dim(A/U).

(3) AcBand U ¢ V implies dim(A/V) < dim(B/U).

(4) If, for some ordinal y, (A, )a<y is an increasing chain of sets A, C

Q, then

dim(A<,/U) = ) dim(As/UUA),

a<y

where A, := Up<a Ap-

(5) For every element a € Q with dim(a/U) = o, there is a finite
subset U, € U such that dim(a/U,) = o.

First, let us show that the dimension function of a matroid has these
properties.

Proposition 2.4. The dimension function dim associated with a matroid
(Q, cl) is a geometric dimension function.
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2. Matroids and geometries

Proof. We have to check five conditions.

(1) If I is a basis of A over U, then I € A\ U. Hence, dim(A/U) =
[ <|ANUL

(2) Every basis of Au U over U is also a basis of A over U.

(3) Every set I c A that is independent over V is also independent
over U. Hence, |I| < dim(B/U).

(4) Let I be a basis of U. We define an increasing sequence of sets
(Ja)a<y such that J, is a basis of U U A, with I ¢ J,. We proceed by
induction on « < y. Suppose that we have already defined Jg, for all
B<a. Set],:=1U Ug<a Jp- By inductive hypothesis, ], is a basis of
U u A.,. We can use Theorem 1.9 to extend J., to a basis J, of UU A,.
It follows that By := Jo \ J<4 isa basis of A, over UUA 4 and ], \ Tis
a basis of A, over U. Hence,

dimg(A<y/U) = |Joy N1 = D |Bal = Y dima(Aa/UUAL).

a<y a<y

(5) If dim(a/U) = o then a € cl(U). Since cl has finite charac-
ter, there is a finite subset U, € U such that a € cl(U,). This implies
dim(a/U,) = o. ]

Before proving that, conversely, every geometric dimension function
arises from a matroid, let us collect some immediate consequences of
the definition of a dimension function.

Lemma 2.5. Let dim : £(Q) x £(Q) — Cn be a geometric dimension
function.

(a) dim(AuB/U) =dim(A/U uB) & dim(B/U)

(b) If (ag)a<x is an enumeration of A then

dim(A/U) = > dim(as/UUA),

a<K

where Ao = {ag | B <a}.
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F1. Geometries

Proof. (a) Considering the two-element increasing sequence B € AU B,
it follows from the axioms of a geometric dimension function that

dim(A U B/U) = dim(A uB/U u B) & dim(B/U)
=dim(AuBuU (UuB) / UuB) @ dim(B/U)
= dim(A/U u B) ® dim(B/U).

(b) By (a) and the axioms of a geometric dimension function, we have

dim(A/U) = Y dim({a,} UA., [ UUAL,)

a<K

= 3 [dim(aq/U U Ace) @ dim(A<e/U U Ac,)]

a<K

= > dim(a,/XUA,) ®o0.

a<K

]

Proposition 2.6. Let dim : £(Q) x§(Q) — Cn be a geometric dimension
function. For X C Q, we define

cd(X):={aecQ|dim(a/X)=0}.
Then (Q, cl) is a matroid such that dim = dim.

Proof. First, let us show that cl is a closure operator. Note that, for every
a € X,dim(a/X) < |[{a} ~ X| = o implies that a € cl(X). Consequently,
X c cd(X).

For monotonicity, assume that X € Y and let a € cl(X). Then

dim(a/Y) <dim(a/X) =0 implies accl(Y).

It remains to show that cl(cl(X)) = X. Let a € cl(cl(X)). Then
dim(a/cl(X)) = o. Furthermore, dim(b/X) = o for each b € cl(X).
Let (by)«<x be an enumeration of cI(X) and set B., := { bg | B < « }.
Then B, = cI(X) and, by Lemma 2.5 (b), it follows that

dim(B</X) = Y dim(ba/X UBy) < Y. dim(be/X) = 0.

a<K a<K
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Consequently, Lemma 2.5 (a) implies

dim(a/X) < dim(cl(X) u{a} / X)
= dim(a/cl(X)) & dim(cl(X)/X) =o® 0,

as desired.

We have shown that cl is a closure operator. To prove that it has finite
character, suppose that a € cI(X). Then dim(a/X) = o. Hence, there is a
finite subset X, € X such that dim(a/X,) = o. This implies a € cl(X,).

It remains to check that cl has the exchange property. Suppose that
becd(Uu{a})~c(U). Then dim(b/U u{a}) = o.Since b ¢ cl(U),
we have dim(b/U) = 1. Hence,

dim(a/Uu{b}) ®1
= dim(a/Uu{b}) & dim(b/U)
= dim(ab/U)
= dim(b/Uu{a}) ®dim(a/U) = dim(a/U) <1

implies that dim(a/U u {b}) = 0. Consequently, a € cl(U u {b}).

We have shown that (Q, cl) is a matroid. To conclude the proof, we
must check that dim = dim. We proceed in two steps. First, we show
that dim(I/U) = |I| for every set I that is cl-independent over U. Let
I be such a set. By definition of cl, it follows that

dim(a/Uu (I~ {a})) =1, foreveryacel.

Set « := |I| and let (a4 ) «<x be an enumeration of I. Setting I, := { ag |
B < a } it follows from Lemma 2.5 (b) that

dim(I/U) = 3 dim(a,/U U I,)

a<K

> > dim(a,/UU (I {aa})) =x.

a<K

Therefore, dim(I/U) < |I \ U| < x implies dim(I/U) = «.
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Finally, we prove that dim(cl(X)/U) = dim(X/U), for every set X.
Let (a4 )a<x be an enumeration of cl(X) and set Ao == {ag | f < a }.
Then

dim(cl(X)/U) = dim(cl(X)/X) & dim(X/U)
= > dim(as/X U A,) © dim(X/U)

a<kK

< > dim(aq./X) ® dim(X/U)

a<kK

- 0@ dim(X/U).

To prove that dim (X/U) = dim(X/U), let I be a cl-basis of X over U.
Then dim(I/U) < dim(X/U) < dim(cl(I)/U) = dim(I/U) implies
that

dim(X/U) = |I| = dim(I/U) = dim(X/U). ]

Note that it follows from Proposition 2.6 that a dimension function is
uniquely determined by the set of all pairs A, U such that dim(A/U) = o.

Corollary2.7. Letd,d" : P(Q)x(Q) — Cn be two geometric dimension
functions. If

d(A/U)=0 if d'(A/U)=o0, forallA,UcQ,
thend = d’.

Proof. According to Proposition 2.6, we can associate with d and d’
matroids (Q, ¢) and (Q, ¢’), respectively. Since d(A/U) = o if, and only
if, d'(A/U) = o, it follows that ¢ = ¢’. Hence,

d = dim. = dim. =d’. O

3. Modular geometries

There is a general construction turning an arbitrary matroid into a geo-
metry.

1042



3. Modular geometries

Definition 3.1. Let (2, cl) be a matroid and U < Q. The localisation of
(Q,cl) at U is the matroid (Q, cl) vy = (Q(v), () where

Quuy ={d(Uu{a}) | aeQ~c(U)},
iy(X):={LeQu)|Lc(UuUX)}.
Lemma 3.2. Every localisation of a matroid is a geometry.

Exercise 3.1. Prove the preceding lemma.

Definition 3.3. Let 8 be a vector space over a skew field &. The projective
geometry associated with @ is the localisation (V,cl)(,) of the linear
matroid at the subspace {o}.

Remark. This coincides with the usual definition of a projective space:
the points are the lines L € V through the origin.

Lemma 3.4. Let (Q,cl) be a matroid, U, X ¢ Q sets, and (Qyy,cl(yu))
the localisation at U. Let

Xy ={d(Uu{x})|xeX\cl(U)}
be the image of X in Q(y).
dimcl(X/U) = dimd(U) (X(U)) .

Proof. Let I be a basis of X over U. Then I ncl(U) = @. Hence, if we
can show that

Iy ={cl(Uu{a})|acel}

is a basis of Xy, then |I()| = |I| and the claim follows.
For x € X, let L, := cl(U u {x}). To show that Iy is independent,
suppose that there is some a € I such that

La € Cl(U)(I(U) N {La})
={Le Q) |Lecd(UvUw~{L}))}-
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Since a € L, it follows that

aed(UuU(Iy~{L.})) cd(Uu(IN{a})).

Hence, I is not independent over U. A contradiction.
It remains to show that Xy € clyy(I(vy). Let Ly € X(y). Then

Uu{x}cUuXcd(Uul) implies Lyeclpy(Ivy). O

Some special properties of affine and projective geometries are worth
singling out.

Definition 3.5. Let (Q, cl) be a matroid.

(a) (Q, cl) is modular if the lattice (fix cl, €) of its closed sets is modular.
The matroid is locally modular if all of its localisations at a single point
a € () are modular.

(b) (Q, cl) is disintegrated if cl(X) = X, for all X ¢ Q.

(c) (Q, cl) is locally finite if the closure of every finite set is finite.

(d) A morphism between matroids is a continuous function between
the corresponding closure spaces.

(e) (Q, cl) is homogeneous if, for every finite set U € Q and all a, b €
QN (U), there is an isomorphism 7 : Q - Q with 7 | cI(U) = id and
n(a) = b.

We have defined modularity of a matroid in terms of the correspond-
ing lattice of closed sets. The next lemma lists some equivalent conditions
on the matroid itself.

Lemma 3.6. Let (Q, cl) be a matroid. The following statements are equi-
valent:

(1) (Q,cl) is modular.
(2) Forall finite X, Y € O, we have

dimd (X N Y) + dimd (X U Y) = dimd(X) + dimd(Y) .
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(3) For all closed sets C c Q and every pair of elements a, x € (2 with
x ecl(Cu{a}), there exists an element c € C with x € cl({a, c}).

(4) For all closed sets C, D € Q and every element x € cI(C U D), there
exist elements c € C and d € D with x € l({c,d}).

Proof. (1) = (2) We have dim(X) = dim(cl(X)) and the latter di
mension coincides with the height of cl(X) in the lattice (fix cl, €). Con-
sequently, the equation follows from the modular law (Theorem B2.5.5).

(2) = (3) If a € C, we can take ¢ := x and, if x € cl(a), we can take
an arbitrary ¢ € C. Hence, suppose that a ¢ Cucl(a) and choose a finite
set C, € C with x € cl(C, U {a}). Then (2) implies that

dim(C, ncl(a,x)) = dim(C,) + dim(a, x) — dim(C, u {a,x})
=dim(Cy) +2 - (dim(C,) +1) =1.

Hence, there is some ¢ € C, N cl(a, x). By the exchange property it
follows that x € cl(a, ¢), as desired.

(3) = (4) Since cl has finite character, there are finite sets C, ¢ C
and D, € D such that x € cl(C, U D, ). We prove the claim by induction
on |C,|. If C, = @ then x € cl(D, ) € D and we are done. Suppose that
Co = Au{a}.Since x € cl(Au D, u{a}), we can use (3) to find some
b e cl(Au D,) with x € cI({a, b}). By inductive hypothesis, there are
a’ € Aand d € D, such that b € cI({a’,d}). Hence, x € cI({a,a’,d})
and, applying (3) again, we can find some ¢ € cl({a,a’}) ¢ C with
xec({cd}).
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(4) = (1) Let A, B, C < Q be closed sets with A € B. We have to show
that cl(Au (BN C)) = Bncl(Au C). According to Lemma B2.2.6, one
inclusion holds in every lattice. For the other one, let x e Bncl(Au C).
By (4) there are elements a € A and ¢ € C with x € Bncl({a,c}). If
x € cl(a) then x € A and we are done. Hence, suppose that x ¢ cl(a). By
the exchange property, it then follows that ¢ € cl({a,x}) € cl(AUB) = B.
Hence,c € BnCand x € cl({a,c}) ccl(Au(BnC)). O

Disintegrated, projective, and affine geometries frequently appear in
model theory. The next lemma lists some of their properties.

Lemma 3.7. Disintegrated geometries and projective geometries are mod-
ular and homogeneous. Affine geometries are locally modular and homo-
geneous, but not modular if the dimension is at least 3.

Proof. To show that a disintegrated geometry (2, cl) is modular, one
only has to check that

XcY implies Xu(YnZ)=Yn(XuZz).

To show that it is homogeneous, let U € 2 and a, b € Q\ U. The bijection
h: Q — Q exchanging a and b and fixing every other element of Q is
continuous.

Suppose that (0, cl) is the projective geometry associated with a vector
space V. Modularity follows from Lemma B6.4.5. For homogeneity, let
U < Q be finite and a,b ¢ cl(U). Let (V,cl,) be the corresponding
linear matroid. For every element x € (2 there is a non-zero vector X € V
such that x = cl,(%). Fix a basis B of U := cl,({% | x € U}). Since
4, b ¢ U, there exists a linear map h : V — V fixing B and interchanging
4 and b. The function Q —  induced by h is the desired continuous
mapping.

Suppose that (Q, cl) is the affine geometry associated with a vector
space B and let a € Q. Then (Q,cl)(,) = (2,cl)(,) and the latter geo-
metry is isomorphic to the projective geometry associated with B. Since
we have just seen that such geometries are modular, it follows that (2, cl)
is locally modular.
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To show that it is not modular let u,v € V be linearly independent
vectors. Then cl(o) < cl(o, u) but

cl(cl(o) u (cl(o,u) nel(v,v +u))) = cl(cl(o0) U @)

=cl(o),
and  d(o,u)n cl(cl(o) uc(v,v+ u)) =cl(o,u) ncl(o,u,v)
=cl(o,u).
u
o) v+u

v

For homogeneity, let U € Q be finite and a, b ¢ cl(U) distinct ele-
ments. If U = @ and a and b are both non-zero, we can take some linear
map h: V — V interchanging a and b. This map is continuous.

If U =@ and a = o, we first apply a translation f that maps both
a and b to non-zero vectors. Then we can use a linear map h as above.
The composition f* o h o f is the desired continuous map.

Note that there is one case where such a translation f does not ex-
ists. If B has only two elements. Then V = {a,b} and the function
interchanging a and b is continuous.

It remains to consider the case that U # @. Fixsome x € U. By applying
a suitable translation f, we can assume that x = 0 € U. Hence, cl(U) is a
linear subspace of V. Let B be a basis of cl(U) andleth: V — V bea
linear map fixing B and interchanging a and b. Then f~ o h o f is the
desired continuous map. ]

Algebraically closed fields provide examples of geometries that are
not locally modular.

Proposition 3.8. Let & be an algebraically closed field of infinite tran-
scendence degree and let (K, cl) be the matroid where cl maps a set X € K
to its algebraic closure.
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(a) (K,cl) is homogeneous.

(b) No localisation of (K, cl) at a finite set is modular.

Proof. (a) follows by Corollary B6.5.31.

(b) We consider the localisation (K, cl)(y at a finite set U ¢ K. Let
n := dimy(U). Since K has infinite transcendence degree, there are
elements a, b, c, d that are algebraically independent over U. Set x :=

(a—c)/(b-d)and y:= a - bx, and let
A:=d(a,b,U) and B:=cd(x,y,U).

Then cl(A U B) = cl(a, b, x,U) has dimension # + 3, while A and B
both have dimension 7 + 2. To show that (K, cl) ) is not modular it is
sufficient to prove that the dimension of A N B is different from n + 1.

In fact, we claim that A n B = cl(U) and, hence, the dimension is 7.
Clearly, we have U ¢ A n B. Conversely, consider an element z € An B.
By (a), there exists an automorphism 7 € Aut K that fixes B pointwise
and maps a te c. It follows that 7(b) = n((a - y)/x) = (¢ — y)/x = d.
Consequently, z € B implies 77(z) = z,and z € A = cl(a, b, U) implies
z=mn(z) ecl(c,d, U). Thus,

zed(a,b,U)ndc(c,d,U) =cl(U). n

We conclude this section with the following characterisation of ho-
mogeneous, locally finite geometries.

Theorem 3.9 (Cherlin, Mills, Zil'ber). Let (Q, cl) be a homogeneous, loc-
ally finite geometry of infinite dimension. Then exactly one of the following
cases holds:

(1) (Q,cl) is disintegrated.
(2) (Q,cl) is isomorphic to a projective geometry over a finite field.

(3) (Q,cl) is isomorphic to an affine geometry over a finite field.
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4. Strongly minimal sets

Having introduced geometries we are interested in first-order theories
where the algebraic closure operator forms such a geometry.

Definition 4.1. Let M be a structure and S € M" an infinite M-definable
relation.

(a) We call S minimal if, for every M-definable subset X c §, either X,
or S\ X is finite. A formula ¢(x; ¢) with ¢ € M is minimal if the relation
@(%; &)™ it defines is minimal.

(b) A relation S, or a formula ¢(x;¢), is strongly minimal, if it is
minimal in every elementary extension of M.

Example. (a) Let € = (E, ~) be a structure where ~ is an equivalence
relation with infinitely many classes each of which is infinite. For every
a € E, the formula x ~ g is strongly minimal.

(b) Let & be an algebraically closed field. Every definable set X € K
is a boolean combination of solution sets of polynomials. Hence, every
such set is either finite or cofinite. Therefore, K is strongly minimal.

(c) In A = (w, <) the set w is minimal, but not strongly minimal since,
in every elementary extension B > A we can pick an element c € B\ w
such that (x < ¢)® and (x > ¢)® are both infinite.

We are mainly interested in strongly minimal relations. As the next
lemma shows, we can find such a relation by looking for a minimal
relation in an R, -saturated structure.

Lemma 4.2. Every minimal relation in an R,-saturated structure M is
strongly minimal.

Proof. Let ¢(x;¢) be a minimal formula with parameters ¢ € M. To
show that ¢ is strongly minimal we consider an elementary extension 9% >
M and a formula y(&; d) with parameters d € N. For a contradiction,
suppose that both sets

o (x; E)m N 1//(56;0?)92 and ¢(x; c’)m N 1//(32;&)9t
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are infinite. ] i
Since M is R, -saturated we can find a tuple d’ € M with tp(d’/c) =
tp(d/¢). For every n < w, we have

NE I"%[@(x%58) Aw(%:d)] A F"%[@(%;¢) A -y (%;d)]
which implies that

NE I"%[@(x%:8) Ay(x:d)] AT %[@(%58) A -y (%:d)].

It follows that all these formulae also hold in M. Consequently, both sets
@(%;0)™ Ny (x;d)™ and @(%;¢)™ \ w(&;d")™ are infinite. A contra-
diction. ]

The reason for studying strongly minimal sets is the fact that the
algebraic closure operator has the exchange property for these sets.

Lemma 4.3. Let M be a structure and S € M" a minimal set. The restric-
tion of acl to S forms a matroid.

Proof. We have already seen in Lemma E2.1.2 that acl is a finitary closure
operator. Hence, it remains to check that it has the exchange property.

Suppose that @ € acl(U u b) \ acl(U) for a, b € S. We have to show
that b ¢ acl(U u a). There exists a formula ¢(%; ) over U such that
@™ (%; b) is a finite set containing a. Set m := 9™ (%; b)| and let y($)
be the formula stating that there are exactly m tuples x € S such that
M = o(%; 7). If y™(§) is finite, M & w(b) implies that b € acl(U).
Consequently, we have a ¢ acl(U). A contradiction.

Hence, the set y™(7) is infinite. If (¢(d; 7) A w(§))™ is finite then
b < acl(U u @) and we are done. For a contradiction, suppose that
this set if infinite. Since S is minimal it follows that the complement
S -(¢(a;7) Aw(#))™ is finite. Let k < R, be its cardinality and let
9(x) be the formula stating that there are exactly k elements y € S
that do not satisfy ¢(%; 7) A w(§). If 9(x)™ is finite then 4 < acl(U).
A contradiction.
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Hence, 9(%)™ is infinite and we can choose m + 1 distinct elements
Gos ... »am € (%)™ The set

B:= lp(as7) ny(G))”

is a finite intersection of cofinite sets and, therefore, cofinite itself. In
particular, it is nonempty and we can find some element b* € B. It follows
that

ME @(a;b*), foralli<m.

Consequently, ™ (%; b*)| > m. But this implies that M & y(b*). A con-
tradiction. [

The geometry of a strongly minimal relation is closely related to its
logical properties. For instance, we shall show below that all independent
sets are totally indiscernible with the same type. But first, let us collect
some technical properties of strongly minimal relations.

Lemma 4.4. Let ¢(X;¢) be a strongly minimal formula with parameters C.
Let s be the sorts of the variables x.

(a) If d is a tuple with tp(d) = tp(¢) then ¢(%;d) is also strongly
minimal.

(b) For every set U 2 ¢, there exists a unique nonalgebraic type p €
S*(U) with ¢ € p.

Proof. (a) For every formula y(x; a) with parameters a € M, we have
to show that exactly one of

(p(x:d) Ay(%:a))" and  (p(&:d) A-y(%5a))"

is finite. Since tp(d) = tp(¢) there is an automorphism 7 of M with
n(d) =¢.Letb:=m(a). As ¢(x;¢) is strongly minimal, exactly one of

(p(%:6) Ay(%:0))" and  (p(%:¢) A -y(%: )"
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is finite. Since

(oG d) A p(550)"] = (p(550) A p(E5)"
and  7[(@(%;d) A -y (%a))"] = (p(%:¢) A -y (x:b)",

the claim follows.
(b) Let M be an R, -saturated model containing U and set

p:= { v | y a formula over U such that (¢ A y)™ is infinite } .
Since ¢ is strongly minimal, it follows that
yep it -wép, foreveryformulay overU.

Hence, p is a complete type over U containing ¢. Clearly, p is nonalgebraic
since, if there were some algebraic formula y € p, then ¢ A y were also
algebraic, in contradiction to the definition of p.

Suppose that q € $°(U) is another nonalgebraic type containing ¢. To
show that q C p, consider y € q. Then ¢ A ¥ € g and, by assumption, this
formula is nonalgebraic. By definition of p it follows that y € p. ]

Lemma 4.5. Let ¢(X) be a strongly minimal formula over a set U of
parameters. Let § be the sorts of the variables x, and let p € S*(U) be the
unique nonalgebraic type containing ¢.

(a) p is isolated if, and only if, o™ contains only finitely many tuples in
acl(U).

(b) Let V2 U and let q € S*(V) be the unique nonalgebraic extension
of p. If p is isolated, so is q.

Proof. (a) Let R := {a € ¢™ | @ c acl(U) }. For («=), suppose that
R = {ao,...,d,-,} is finite. For each i < n, we fix an algebraic for-
mula y; over U such that Ml = y;(a;). It follows that y := \/;_,[v; A ¢]
is a formula over U defining R. We claim that ¢ A -y isolates p.

Since p is nonalgebraic, we have y ¢ p. Therefore, ¢ A -y € p. Con-
versely, let g be an arbitrary complete type over U containing ¢ A —y. If
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q is nonalgebraic, it coincides with p, by Lemma 4.4 (b), and we are done.
Therefore, we may assume that q contains an algebraic formula 9. Then
each of the finitely many realisations of ¢ is in acl(U). Consequently,
q c R, which implies that y € q. A contradiction.

(=) For a contradiction, suppose that there is some y(x) € p isolat-
ing p, but R is infinite. Let I" be the set of all algebraic formulae over U.
As p is the unique nonalgebraic type in $*(U) containing ¢, the set

{or-ypu{-9]9erl;

is inconsistent. Hence, there are finitely many formula 9,,...,9,_, €T
such that

T(U) U {(p, —n90, cees ﬁ9n_1} FvY.
Since R is infinite and all 9; are algebraic, there is some element
aeRN (MU uM))c(pr-95n--A=9, )My,

But tp(a/U) # p since the former type is algebraic, while the latter one
is not. Consequently, ¥ does not isolate p. A contradiction.
(b) follows immediately from (a). H

Proposition 4.6. Let M be a structure, U € M, and suppose that S ¢ M k
a U-definable minimal relation. If a, b € 8" are finite tuples each of which
is independent over U, then

tp(a/U) = tp(b/U).

Proof. We prove the claim by induction on #. For n = o there is nothing
to do. Suppose that we have already proved the claim for n-tuples and let
dc € S"™* and bd € $"** be both independent over U. By inductive hy-
pothesis, we have tp(d/U) = tp(b/U). Let y(%, y) be a formula over U
such that

ME=w(a,c).
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Since ¢ ¢ acl(U u 4) it follows that the set S ny(d, y)™ is infinite and its
complement S \ (4, )™ is finite. Furthermore, tp(a/U) = tp(b/U)
implies that

S~ 1//(1_9,y)c'm| =[S~ w(d,y)m| <R,
Hence, d ¢ acl(U u b) implies that M = y(b, d). ]

Corollary 4.7. Let M be a structure, U € M a set of parameters, and
S € M a U-definable minimal set. Every U-independent set A C § is
totally indiscernible over U.

Proof. Let a,b € [A]". Then @ and b are U-independent and, therefore,
they have the same type over U. ]

We have seen that we can use geometric methods to study models
containing minimal sets. Let us turn to prove the existence of minimal
sets.

Lemma 4.8. Let T be a R,-stable theory over a countable signature X,
M = T infinite, (%) a formula over M, and let x < |9%| be an infinite
cardinal. There exists a formula ¢(%) over M such that o™ c 97, q)m’ > K
and, for every formula y(x) over M, we either have

|(<P A l!’)C‘m| <K or |(<p A ﬁw)m| <K.

Proof. For a contradiction, suppose that there is no such ¢. We construct
a family (¢, )ye,<w of formulae over M such that, for all w € 2<¢, we
have

m M M m m
ow 9%, o>« and @i N =2.

We start with ¢y := 9. Then go?; = 9™ and ‘go?ﬂ > x. For the inductive

step, suppose that we have already defined ¢,,. By assumption, there is a
formula v over M such that

‘(wa/\l,U)m‘ZK and |((pw/\ﬂ1//)cm‘2;<_
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We set 9,0 = ¢ AW and @, := @, A =Y.

Having defined (¢, )y, let U € M be the set of all parameters ap-
pearing in some ¢,,. Then U is countable and the family (¢, )ye,<e
is an embedding of 2<% into FO*[Zy]/T, where § are the sorts of x.
By Lemma B5.7.3, it follows that |S(U)| > R,. A contradiction to R,-
stability. ]

Corollary 4.9. Let T be a R,-stable theory over a countable signature X.
Every infinite model of T contains a minimal relation.

Proof. This follows from the preceding lemma for 9(x) := true and
K= Ro. ]

We can use minimal sets to define isomorphisms between models.

Lemma 4.10. Every elementary function f, : A — B can be extended to a
elementary function f : acl(A) — acl(rng f, ) that is bijective.

Proof. W.l.o.g. we may assume that B = rng f,. Let F be the set of all
elementary functions ¢ : C -~ Dsuchthat Ac C Cacl(A) and g A = f,.
Then (F, ¢) is inductively ordered. Hence, it has a maximal element
f: C— D. We claim that f is the desired function.

First of all, every elementary function is injective. For surjectivity,
suppose that b € acl(B) \ D. Since b € acl(D), we can use Lemma E3.1.3
to find a formula ¢(x;d) with parameters d ¢ D isolating tp(b/D).
Since tp(b/D) is algebraic, ¢ must be an algebraic formula. Fixing ¢ € C
such that f(¢) = d it follows that

flo( )" c p(xsd)™ and  |p(x;6)™| = |p(x:d)"|.

Consequently, there exists some element a € ¢(x;¢)™ \ C. Furthermore,
¢(x;¢) isolates tp(a/C). Hence, f[tp(a/C)] = tp(b/D) and we have
fu{{(a,b)} e F. This contradicts the maximality of f.

It remains to prove that C = acl(A). Suppose that there exists an
element a € acl(A) \ C. Then tp(a/C) is isolated and, as above, we can
find an element b such that f u {{a, b)} € F. Again a contradiction. []
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Corollary 4.11. Let T be a theory, ¢(x) a strongly minimal formula, and
A and B models of T. If dim(¢*) = dim(¢?), there exists a bijective
elementary map f : acl(¢*) - acl(¢®).

Proof. Fix bases I and J of, respectively, ¢* and ¢®. By assumption,
11| = |]|. Let f, : I — ] be a bijection. By Corollary 4.6, it follows that f, is
elementary. Hence, we can use Lemma 4.10 to extend f, to an elementary
map f : acl(I) - acl(J). Since acl(I) = acl(¢*) and acl(J) = acl(¢?),
this is the desired map. ]

We can apply the results on minimal sets to study theories where every
model consists of a minimal set. In fact, it is sufficient that every model
is generated by a minimal set.

Definition 4.12. Let T be a complete first-order theory.
(a) T is strongly minimal if the formula x = x is strongly minimal.
(b) T is almost strongly minimal if there exists a strongly minimal
formula ¢(x; ¢) with parameters ¢ such that tp(¢) is isolated and

acl(p™ U &) =M, for every model M of T(¢) .

Example. The theories DAG and ACF, are strongly minimal.

Theorem 4.13. Let A and B be models of an almost strongly minimal

theory T and let ¢(x;¢) be the corresponding strongly minimal formula.
Then

AxB  iff dim(¢*/c) = dim(¢®/¢c).
Proof. (=) is trivial and (<=) follows from Corollary 4.11. ]

Corollary 4.14. Every almost strongly minimal theory T is x-categorical,
forall k > |T|.

Proof. Let ¢(x;¢) be the strongly minimal formula associated with T
and let & and B be models of T of the same size |A| = |B| > |T|. Since
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tp(¢) is isolated, there are tuples @ € A and b € B realising tp(¢). Fix
bases I € A and J € B of ¢* over d and of ¢® over b, respectively. Then

dim(¢*/a) = |I| = [acl(I)| = |A| and dim(¢®/b) =---=|B|.

By Theorem 4.13, it follows that A = 5. ]

5. Vaughtian pairs and the Theorem of Morley

In this section we shall prove the Theorem of Morley which states that a
countable first-order theory T that is k-categorical, for some uncountable
cardinal «, is A-categorical, for all uncountable cardinals A. We have
already seen in Theorem E6.3.16 that such a theory is necessarily RX,-
stable. It follows that every uncountable model is saturated. Note that,
according to Lemma E1.2.17, we have |¢¥| < ®, or |¢™| = | M|, for every
saturated model M of T and every formula ¢. In fact, we will show below
that a R, -stable theory T is uncountably categorical if, and only if, this
property holds for all uncountable models M.

Definition 5.1. Let T be a first-order theory.

(a) A Vaughtian pair for T consists of two models A < B of T such
that, for some formula (%) over A, ¢% is infinite and ¢% = ¢®.

(b) The size of a Vaughtian pair (%, B) is the tuple (x, A) where «k := |A]
and A := |B.

(c) f A < B are structures, we denote by (B, A) the expansion of B
by a new unary predicate P with value A.

Example. Let A = (A, ~) where ~ is an equivalence relation on A and
let B > . Then (A, B) is a Vaughtian pair if, and only if, there is some
a € A whose equivalence class

[a].:={beB|b~a}

is infinite and contained in A.
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In the first part of this section we will study constructions of Vaughtian
pairs. The goal is Lemma 5.8 which states that a countable theory with a
Vaughtian pair cannot be k-categorical for an uncountable cardinal «.
In the second part of the section, we will then investigate minimal sets
in theories without Vaughtian pairs.

We will use the following lemma to construct new Vaughtian pairs
from a given one.

Lemma 5.2. Suppose that A € B and A" ¢ B' are structures such that
(B,A) = (B, A").

(a) A=<Bif, andonly if, A < B/,

(b) Let ¢(x, y) be a formula and a € A and a’ < A’ tuples such that
(B,A,a)=(B",A",a"). Then ¢(x, a) is a witness for (U, B) being
Vaughtian if, and only if, (%, a’) is a witness for (A',B’) being
Vaughtian.

Proof. (a) By symmetry, it is sufficient to prove one direction. For every
formula y(x), A < B implies

(B, 4) £ (V2. A Px)[y(x) < v P (0)],
where y/(P) is the relativisation of y to P. Hence, all these formulae also
hold in (B', A”). This implies that A" < B’.
(b) Suppose that ¢(x, @) witnesses that (B, A) is Vaughtian. By (a)
and the fact that
(B,A) E Ix-Px,
it follows that A" < B’. Furthermore, for every n < w,

(B,A) = F"x9(x,a) AVx[p(x,a) > A, Px;].

Hence, the tuple a’ satisfies these formulae in (', A’). Consequently,

o(%,a")¥ is infinite and (%, a")¥ = (%, a")?. O
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5. Vaughtian pairs and the Theorem of Morley

The aim of the following sequence of results is Proposition 5.7 below
which states that, given an arbitrary Vaughtian pair, we can construct a
pair of size (k, R, ), for every infinite cardinal «.

Lemmas.3. Let T be a complete first-order theory. If there is a Vaughtian
pair for T, then there are Vaughtian pairs for T of size (k, k), for every
k> |T|

Proof. Let A < B be a Vaughtian pair for T and let ¢(x) be the corres-
ponding formula with parameters @ ¢ A. Since ¢* is infinite, we can
use the Compactness Theorem to construct an elementary extension
(B,, A,) > (B, A) such that |¢*| > «. By the Theorem of Léwenheim and
Skolem, we can choose an elementary substructure (B,, A,) < (B,, A,)
with |B,| = «, |Ao| = k, and @ € A,. By Lemma 5.2, it follows that
Ay < B, is a Vaughtian pair. ]

Proposition 5.4. Let T be a countable complete first-order theory. For
every pair A, < B, of countable models of T there exist countable homo-
geneous models A < B of T such that (B,, Ao) < (B, A) and A and B
realise the same types in S<“(T).

Proof. We start by proving the following claims.

(a) For every finite subset U € A, and every type p € S<“(U), there
exists a countable extension (B, A) > (B,, A, ) such that p is realised in
Q[::QﬂA.

(b) For every finite subset U < B, and every type p € S<“(U), there
exists a countable extension (B, A) > (B,, A,) such that p is realised
in B.

(c) There exists a countable extension (B, A) > (B,, A,) such that

A := B|4 realises every type over a finite subset U € A, that is realised
in B,.

(a) We set

O=Au{9p®) |pep},
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where A is the elementary diagram of (3B,, A, ). To show that @ is satis-
fiable, we consider finitely many formulae ¢, (%), ..., ¢,-,(X) € p. Since
p is a type and, hence, finitely satisfiable in every model of T, we have
Ay = 3% Ajcn i (%), which implies that

(Bo, Ao} 3% N\ 97 ().

i<n

Consequently, @ is finitely satisfiable. Fix a countable model (B, A, a)
of @. Then (B,, A,) < (B, A) and a < A realises p.

(b) This claim follows immediately from compactness and the The-
orem of Lowenheim and Skolem.

(c) Let (py ) a<w be an enumeration of all types over a finite set U €
A, that are realised in B,. We can use (a) to construct an increasing
chain (B,, Ay ) a<w of countable models starting with (B,, A, ) such that
Ags1 = Baila,,, realises py. The union (B, A) := Ugcr (B> Ay) is the
desired extension of (B,, A, ).

To prove the proposition we construct a chain (B, Ay ) <o of count-
able models starting with (B,, A,) as follows.

(1) For indices of the form « = 3n, we use (c) to find a countable
extension (B, Agir) = (Ba, Ag) such that every type over a finite set
U c A, that is realised in B is realised in .

(2) For indices « = 31 + 1, we iterate (a) to find a countable extension
(Borr Aasr) = (Ba, Ay ) such that, for all tuples a, b € AS® with tp(a) =
tp(b) and every element ¢ € A, there is an element d € A,,, such that
tp(ac) = tp(bd).

(3) For @ = 3n + 2, we use (b), amalgamation, and the Theorem of
Lowenheim and Skolem to find an extension (By4,, Agyy) = (Ba, Ay)
such that, for all tuples 4, b € BS® with tp(a) = tp(b) and every element
¢ € B, there is an element d € By, such that tp(ac) = tp(bd).

The limit (B, A) := Ug<w (Ba> Ay) is a countable elementary exten-
sion of (B,, A, ). Furthermore, by (1), the structures U := B[, and B
realise the same typesin S<“(T'). Finally, (2) and (3) ensure that % and B
are homogeneous. [
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Proposition 5.5. Let T be a countable complete first-order theory. If there
is a Vaughtian pair for T, then there is a Vaughtian pair for T of size
(R, Ry ).

Proof. By Lemma 5.3 and Proposition 5.4, we can find a Vaughtian pair
A < B for T of size (Ro, Ry) such that A and B are homogeneous and
realise the same types. By Theorem E1.1.9, this implies that 2 ~ 5. Let
¢ be a formula over A such that ¢ is infinite and ¢ = ¢.

We construct an elementary chain (M, ) y<x, of models of T such that,
for every a < R,, we have

(Pgﬁoc = (Pgl and (Waﬂ, M“) = (%,A> .

Note that, in particular, every M, is isomorphic to .

We start with M, := B. For the successor step, suppose that we have
already defined M,, = A. We choose an elementary extension M, > M,,
such that (My., M) = (B, A). Then Vet = 9T = o,

For limit ordinals &, we set My := Ugcs M. Then ¢ = Jyes @7 =
@*. To show that M, = A it is sufficient to prove that My is homogeneous
and that it realises the same types as . For homogeneity, suppose that
d,b e M5 and c € M, are elements such that tp(@) = tp(b). Then there
is some a < § such that a, b, c € M,. As M, = A is homogeneous, there
is some d € M, S M such that tp(dc) = tp(bd).

Clearly, every type realised in 2 is realised in My > A. Conversely,
let p € S<“(T) be realised in Ms. Then there is some 4 € Mz with
tp(a) = p. Let « < & be an index such that @ € M,,. Then p is realised in
M, = A

Having defined (M, ) we set N := Uy, M. Then [N| = R, and

¢” = ¢¥. Hence, U < Nis the desired Vaughtian pair of size (R, R,). []

Lemma 5.6. Let T be a complete R,-stable theory over a countable signa-
ture. Every uncountable model M of T has a proper elementary extension
N > M such that every countable type p realised in N is already realised
in M.
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Proof. By Lemma 4.8 there exists a formula ¢(%) over M such that
|(P9)’c| > R, and we have either

((pry)™<xe or [(pn-9)%| <o,

for every formula y(x) over M. Let § be the sorts of the variables x and
set

pi={y(x) eFO°[Zn] | (¢ A )™ is uncountable }.

Note that, for v,, ..., ¥,_; € p, we have

(9 ANV =y)™] = [(9 A=p6)T U U (9 A =p) ™| < R,

1<n
which implies that A;., v; € p. Hence, (A; %)sm # & and p is finitely
satisfiable. Furthermore, by choice of ¢, we have v € p or -y € p, for
every formula y(x) over M. Therefore, p is a complete type.

Let M, > M be an elementary extension containing a finite tuple
a € M realising p. By Theorem E3.4.14, there exists a model M < R < M,
that is atomic over M U a.

To show that N has the desired property, we consider a countable
type @(§) over M that is realised by some finite tuple b € N<“. Since
N is atomic over M U 4, there exists a formula y(y, @) over M isolating
tp(b/M). Then N = (b, a) implies

(%) € _
and Vy[y(y,x) > 9(y)]ep, forall9(y)etp(b/M)2D.

Hence, the set
I={3px(5, %)} u{Vilx(7.%) > 9()] | 9(x) e @ }

is a countable subset of p. Furthermore, if a tuple @’ € M* realises I' then
we have

ME Iyx(y,a’)

1062



5. Vaughtian pairs and the Theorem of Morley

and every b’ ¢ M with M & y(b', d’) realises @. Let ¥, ¥,,... be an
enumeration of I'. By choice of p, we have

|(P<m| >R, and ‘(go A= (¥, /\---Al//n))m‘ <R,, foralln.
It follows that (¢ A = AT)™ = Uy<w (9 A = Aicy ¥i)™ is countable and

(P AAND)T™ ="\ (pA-AD™

is uncountable. Hence, there are uncountably many @’ € M* such that

Me=p(a’) A A\T(a").

As we have seen above, this implies that M contains a realisation of ®.

[

Proposition 5.7. Let T be an R,-stable, countable, complete first-order
theory. If there is a Vaughtian pair for T, then there are Vaughtian pairs
for T of size (R,, k), for every uncountable cardinal k.

Proof. By Proposition 5.5, there is a Vaughtian pair 2% < B for T of size
(Ro, ®,). Let ¢ be a formula over A such that ¢* is infinite and ¢® = ¢%.
Starting with M, := B, we construct a strictly increasing elementary
chain (M, ) «<x such that ¢ = ¢¥, for all «.

As usual, we take unions My := Uycs M, for limit ordinals §. For
the successor step, suppose that M, has already been defined. We apply
Lemma 5.6 to find a proper elementary extension M, > M, that
realises the same countable types as M,. In particular, M, does not
realise the type

{o(x)}u{x#c|ceop™}.

Therefore, g™+ = g™ = ¥,

Let N := Uger M, be the union of the chain and choose an elementary
substructure A < € < N of size |C| = x. Then A < € is the desired
Vaughtian pair of size (R,, k). ]
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We can use this proposition to show that uncountably categorical
theories do not have Vaughtian pairs.

Lemmas.8. Let T be a countable complete first-order theory with infinite
models. If T is k-categorical, for some uncountable cardinal k, then T has
no Vaughtian pairs.

Proof. For a contradiction, suppose that T is a k-categorical theory with
a Vaughtian pair. By Theorem E6.3.16, T is R,-stable. Hence, we can
use Proposition 5.7 to find a Vaughtian pair A < B of size (RX,, k). Let
¢ be a formula such that ¢ is infinite and ¢® = ¢*. By Theorem E1.2.16,
T has a saturated model € of size x. But B 2 € since we have |¢®| = « by
Lemma E1.2.17. This contradicts x-categoricity. ]

Next we study minimal formulae in theories without Vaughtian pairs.
First, we show that such a theory is graduated which, according to The-
orem D1.2.15, is equivalent to admitting elimination of the quantifier 3.

Lemmas.9. Suppose that T is a theory without Vaughtian pairs. Let M be
a model of T and ¢(%; ) a formula over M. There exists a number n < w,
such that, for all ¢ € M,

‘(p(a’c;c')m’ >n implies ‘(p(fc;c')m’ > R, .

Proof. Suppose that such a number #n does not exist. Then we can find,
for every n < w, parameters ¢, € M with

n< ‘(p(}'c;c'n)‘ <R,

Let P be a new unary predicate and let @(j) be the set of formulae
containing the following statements:

¢ P induces a proper elementary substructure;

* AiPyi;

¢ there are infinitely many tuples x such that ¢(x; y);

¢ Vx[o(%7) = Ni Pxi].
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To see that T U @( ) is satisfiable, we fix an extension % > M. Since
@(%;¢,)™ is finite, we have ¢(%;¢,)”* = @(%;¢,)™. For every finite
subset @, C @, we can therefore choose n large enough such that

(M M) = TuD,(Cn).

Let (B, A, ¢) be a model of T U @. Then U := B4 < B are models of T
and ¢(%;¢)¥ = ¢(x;¢)? is infinite. Hence, o < & is a Vaughtian pair.
A contradiction. ]

Corollary 5.10. In a theory T without Vaughtian pairs, every minimal
formula is strongly minimal.

Proof. Let M be a model of T and ¢(x) a minimal formula over M. For
a contradiction, suppose that ¢ (x) is not strongly minimal. Then we can
find an extension 9N > M and a formula y(x; ¢) with parameters ¢ € N
such that

p(2)" ny(x:0)" and  9(x)" N y(%:8)”

are both infinite. By Lemma 5.9 there exists a number n < w such that,
for all models 2 and all a € A,

|(p(x)g[ N 1//(92;&)9[| >n implies |q)(x)9[ N 1//(92;&)9[‘ >Ry,
and |(p(x)g[ \ 1//()2;&)9[| >n implies |g0(x)9[ \ 1//(92;&)9[‘ >R, .
By minimality of ¢, it follows that

W= V3 {|p ()™ 0 ()™ < nv |p(2)™ N y( ) < n].
Since M < N, the same formula also holds in N. A contradiction. [

Corollary s5.11. Let T be a countable, complete, R,-stable theory without
Vaughtian pairs and let M, be the prime model of T. There exists a strongly
minimal formula ¢(x) over M,,.

Proof. We use Corollary 4.9 to find a minimal formula ¢(x) over M,.
By Corollary 5.10, this formula is strongly minimal. ]
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Lemma 5.12. Let T be a theory without Vaughtian pairs, B a model of T,
and let ¢(x;¢) be a strongly minimal formula with parameters ¢ € B.
(a) If A < B is a proper elementary substructure with ¢ C A, then
A - B
P co.
(b) dim(¢®) = [B.
(c) If T is R,-stable then B is prime over (,oQS U C.

Proof. (a) Y < B implies ¢ € ¢®. Furthermore, if 9* = ¢, then % < B
would be a Vaughtian pair.

(b) Let I be a basis of ¢®. If |I| < |B| then we can use the Theorem
of Léwenheim and Skolem to find an elementary substructure 2% < 3
of size |A| = |I| with T U ¢ € A. It follows that ¢® ¢ acl(I) ¢ A. Hence,
¢® = ¢ in contradiction to (a).

(c) Since T is R, -stable there exists, according to Theorem E3.4.14 a
unique prime model M over ¢® U ¢. Wl.o.g. we may assume that M < B.
Since ¢® U ¢ € M ¢ B it follows by (a) that M = B, as desired. ]

Lemmas.13. Let T be a countable, complete first-order theory with infinite
models. Suppose that there exists a strongly minimal formula ¢ (x; ¢) such
that

o tp(¢) is isolated,
o every model M of T(¢) is prime over 9™ U ¢,

o no model M of T(¢) has a proper elementary substructure A < M
such that ™ c A.

Then
dim(¢*/¢) = dim(9®/¢) implies A=B,
for all models A, B of T(¢).

Proof. Set S := ¢(%;¢)% and " := ¢(&;¢)>. Since dim(S) = dim(S")
we can use Corollary 4.1 to find an elementary bijection h, : S - §'. As
A and B are models of T(¢), we can extend h, to an elementary map
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h,:Suc — S uc. Because Y is prime over S U ¢, we can extend this
map h, to an elementary map h : A - B. We claim that h is surjective
and, therefore, the desired isomorphism.

For a contradiction, suppose otherwise. Then we obtain a proper
elementary substructure B, := f[U] < B with S’ u ¢ =rngh, € B,. But
B is prime over S "U¢. A contradiction. ]

Theorem 5.14 (Morley). Let T be a countable, complete first-order theory
with infinite models. The following statements are equivalent:

(1) T is k-categorical, for some uncountable cardinal .

(2) T is k-categorical, for every uncountable cardinal «.

(3) T is Ry-stable and it has no Vaughtian pairs.

(4) There exists a strongly minimal formula ¢(x; ¢) such that

¢ tp(¢) is isolated,
o every model M of T(¢) is prime over o™ U ¢,

+ 1o model M of T(¢) has a proper elementary substructure
A < M such that ™ c A.

Proof. (2) = (1) is trivial.

(1) = (3) follows by Theorem £6.3.16 and Lemma 5.8.

(3) = (4) Let T be an R, -stable theory without Vaughtian pairs. By
Theorem E3.4.14, T has a prime model M,. We can use Corollary 5.11 to
find a strongly minimal formula ¢ (x; ¢) with parameters ¢ € M. Since
prime models are atomic, the type of ¢ € M, is isolated. The remaining
two claims of (4) follow by Lemma 5.12 (a) and (c), respectively.

(4) = (2) Let x be an uncountable cardinal. To show that T is -
categorical, we consider two models 9 and B of size «. Since tp(¢) is
isolated there are tuples @ € A and b C B realising tp(¢). Thus, (2, @)
and (3B, b) are models of T'(¢). Set S := ¢(%;a)% and S’ := o(%; b)>.

Since U and B have no proper elementary substructures containing,
respectively, S U d and S’ U b, it follows by the Theorem of Léwenheim
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and Skolem that
dim(S) = |A| = |B| = dim(S').

Consequently, we can use Lemma 5.13 to show that 2 = &B.
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1. Morley rank and A-rank

We have seen that each model of an uncountably categorical theory is
governed by a strongly minimal set and that we can define a geometry
on such a set. Unfortunately, for most theories we cannot find actual
geometries. But there is a large class of theories where we have some-
thing slightly weaker. In this chapter we study the kind of combinatorial
structure that will serve as our substitute for a geometry.

We start by defining certain ranks that provide a weak notion of dimen-
sion. Guided by the observation that, for a strongly-minimal formula ¢
over a model M, the Cantor-Bendixson rank of the set {¢) in & (M) is
equal to 1, we take alook at the Cantor-Bendixson rank of type spaces. Let
us first describe how to compute the Cantor-Bendixson rank in &, (U)
by using the equality of Cantor-Bendixson rank and partition rank.

Lemma 1.1. Let A be a set of formulae, U a set of parameters, and let
A7, be the set of all finite boolean combinations of formulae of the form
vw(x;¢) withy(x;9) e Aand ¢ c U.

For an arbitrary formula ¢ over U and an ordinal « > o, we have

rkCB((‘P)@(U)) 2

if, and only if, for all ordinals B < «, there are formulae y; € A7, for i < w,
such that

rkCB(((p A Wi>6A(U)) >p, foreveryi,
and 'yl =g, foralli+k.
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Proof. Note that, by definition of €, (U) and Lemma c3.3.5,
S4(U) = &4 (FO[Zy, X]/T(U))
= &4+ (FO[Zy, X]/T(U)) = &4+ (U),

where A™ is the set of all finite boolean combinations of formulae in A.
Therefore, we may w.l.o.g. work in &4+ (U). Set C = (¢)g,, (v) and
let ¢ be the subspace of &5+ (U) induced by C. According to Corol-
lary B5.7.10, we have

rkcs ((@)e, . (v)) = tkp(C/clop(S¢)) .
Furthermore,
rkp(C/clop(S¢)) > a

if, and only if, for all 8 < «, there are clopen sets D; € clop(&¢), for
i < w, such that

tkp(D;/clop(S¢c)) > and D;nDy=g, fori+k.

Hence, it is sufficient to show that this latter condition is equivalent to
the existence of formulae y; € A7}, for i < w, such that

rkCB((go A 1/’i>6A(U)) >, foreveryi,
and vyl =g, forall i # k.

(<) Given formulae y;, we set D; := (¢ A y;)e,, (u)- By Corollaries
B5.7.10 and Bs.7.13, it follows that

rkes((¢ A ¥i)e,. (1)) = tkp(D;/clop(D;))
=rkp(D;/clop(S¢)) > B,

as desired.
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(=) By Lemma Bs.7.11, the clopen sets D; are of the form

D; = Cn(¥i)e,. (v) = (9 A ¥ile,. ()

for formulae y/ € A7;. Setting

yi=yi A N\ vk

k<i

we obtain formulae y; € Aj; such that
vioyl=0, forizk.
Furthermore, D; N Dy = &, for k < i, implies that

D;=Di~ (Do U--UDisy) = (9 AVide,. () -

The claim follows since, by Corollaries Bs.7.10 and B5.7.13,

rkes((¢ A ¥i)e,. (1)) = tkp(D;/clop(D;))
= rkp(D,-/clop(@c)) > /_)) . []

When using the Cantor-Bendixson rank to define the dimension of a
definable relation, we have first to choose a set A of formulae and a set U
of parameters to know which type space &, (U) to consider. Let us take
a look at what happens to the Cantor-Bendixson rank when we change
these two sets. First of all, the dependence is monotone: if we enlarge
the set of formulae or the set of parameters, the rank either increases, or
it stays the same.

Lemma 1.2. Let A, T be sets of formulae, U, V sets of parameters, and
O a set of formulae over U. Then

rkCB(<®>®A(U)) < rkCB(<®>®Aur(UuV)) :

Proof. Let A7, be the sets of all formulae of the form y(x;¢) or —y/(x;¢)
with y € Aand ¢ ¢ U, and let AT, be the corresponding set of formulae
for AuT and U u V. The statement follows from Lemma Bs.7.14 since

S(i) " P)es(v)] = (Plesur(vuv) >

where i : A, — AL, is the inclusion map. ]
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If the set of parameters is an R,-saturated model, the Cantor-Bendix-
son rank does not change anymore.

Lemma 1.3. Let A be a set of formulae and ¢(%; y) a single formula. If
A and B are R, -saturated structures with (U, a) = (B, b), then

tken ((9(% @))e, (4)) = then ((9(%: ) )eu(s) ) -
Proof. By symmetry it is sufficient to prove that
rkCB(((p(fc; d))@A(A)) >«
implies
tkep ({9 (%5 0))e,(5)) > @.

We proceed by induction on «. For « = o there is nothing to do. Since
the limit step follows immediately from the inductive hypothesis, we
may therefore assume that o = f + 1. If

rkes ((9(%:@))e,(a)) 2 B+1,

we can use Lemma 1.1 to find formulae y, (%;¢") € A}, for n < w, with
¢" € A such that

rkep({9(%38) A Ya(56"))e,a)) 2 B>
and AE [y, (%:¢") Ay, (x;¢")], form+n.

Since o c;g B, we can inductively find tuples d" ¢ B, for n < w, such
that

(A, ac®...c") =(B,bd°...d"), foralln<w.
This implies that

B E ~[Yu(%d™) Ay, (%:d")], formzn.
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By inductive hypothesis, we furthermore have

rkes ((@(%:0) Ayu(%:d"))e,(8y) 2 B, foralln.

Consequently, Lemma 1.1 implies that

rkCB((QD()_C;l;))@A(B))Zﬁﬂ-l. []

It follows that there is a limit of the Cantor-Bendixson rank for in-
creasing sets of parameters. This limit is called the A-rank of the theory.

Definition 1.4. (a) Let A be a set of formulae and ¢ (&; ¢) an FO-formula
with parameters ¢ € M. The A-rank of ¢ is

rka(¢(%5¢)) = rken ((9(%6))e, (m)) »

where M < M is an arbitrary R,-saturated model with ¢ € M.
(b) Let $ be a tuple of sorts and let ¢(x;¢) be an FO-formula with
parameters ¢ C M. The Morley rank of ¢ is

rkfv[(SD(fC;é)) i=1ka(@(%5¢)),

where A is the set of all first-order formulae y(%; ) where the variables x
have sorts s.
(c) For a set of formulae @(x) (possibly with parameters) we define

ks (@) :=min{rky(¢) | PE¢@},

rky (@) := min { 1k}, (¢) | P = ¢ }.
For a € M and U ¢ M, we set

rka(a/U) =1k, (tp(a/U)),

rky (d/U) == rky (tp(a/U)) .

Remark. (a) Note that, by Lemmas 1.2 and 1.3, the definitions of rk, (¢)
and rky;(¢) do not depend on the choice of M. According to The-
orem C3.4.5 (b), they also do not depend on what we consider the free vari-
ables of the formula ¢. But note that, by Lemma 1.2, we have rky;(¢) <
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rky; (), for § € . This inequality can be strict. An example is given by
the formula x = x with respect to the theory of infinite structures with
empty signature. Then rky,; (x = x) = [3].

(b) If p is a complete type over an R, -saturated model M, it follows by
Theorem B5.7.8 and Corollary Bs.7.9 that

I‘kA(p) = I'kCB(p/@A (M)) .

Example. Consider the theory T of structures of the form (A, ~), where
~ is an equivalence relation on A with infinitely many classes, all of which
are infinite. For a € M and a model M < M, we have

o ifaeM,
rky(a/M) =41 ifa¢ Manda ~ b forsomebe M,

2 otherwise.

Exercise 1.1. Show that rk;,(¢) = 1, for every strongly minimal formula

¢(%).

Exercise 1.2. Let T be the theory of structures of the form (A, ~), where
~ is an equivalence relation on A with infinitely many classes, all of
which are infinite. Determine the possible values of rky; (ab/ M), for two
elements a, b € M and a model M < M.

Let us collect some basic properties of the A-rank of a formula.

Lemma 1.5. Let T be a theory and ¢, y formulae.
(@) Tu{e}E yimpliesrky(¢) < tka(y).
(b) rka(¢ Vv y) =max{rks(¢),rks(v)}.

(¢) If A contains the formula x = y, thentk, (@) = o if, and only if, ¢ is
algebraic and consistent with T.

Proof. (a) follows from Lemma B2.5.10, (b) from Lemma B2.5.11, and (c)
follows immediately from the definition. ]

1074



1. Morley rank and A-rank

Exercise 1.3. Show that rks (¢ A ¥) < min {rks(¢), rka(y)}, and that
this inequality may be strict.

Lemma 1.6. Let d, b € M be tuples and U, V ¢ M sets of parameters.
(a) rka(a/U) < rkaur(a/U).
(b) rka(a/U) >rka(a/UuU V).
(c) There exists a finite subset U, € U with rky(a/U) =rka(a/U,).

Proof. (a) follows immediately from Lemma 1.2.
(b) By definition of the A-rank of a type, we have

rka(a/U) = min {rka(¢) [ ¢ € tp(a/U) }
>min{rks(¢)|petp(a/UUV)}
= rkA(d/Uu V) .

(c) Fix a formula ¢ € tp(a/U) such that rky(¢) = rka(a/U). Let
U, € U be the finite set of parameters from ¢. Then ¢ € tp(a/U,)
implies

tka(a/U,) <tka(@) =1ka(a/U) <tka(a/U,),
where the last inequality holds by (b). ]

For theories where it is defined, the Morley rank is usually better be-
haved than the A-rank. Let us collect some of its properties, in particular
with respect to strongly minimal sets. First of all note that, using the
equivalence of the Morley rank of a formula and its partition rank, we
can define a notion of degree.

Definition 1.7. The Morley degree degfv[ (¢) of a formula ¢ is the max-
imal number m < w such that there are formulae vy, ..., ¥,,_, of rank
rky () = rky (¢) such that ) Ny} = @, for i # k. If such a number m
does not exist, we set degfvl(go) i= oo,
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Remark. It follows by Lemma B2.5.16 that
rky (@) < oo implies deg;,(¢) < 0.

Exercise 1.4. Show that a formula ¢(x) is strongly minimal if, and only
if, rky (¢) = 1and deg;, (¢) = 1.

For types there is a related notion of degree: the number of free exten-
sions.

Definition 1.8. Let p € g be (partial) types with free variables of sort s.
We say that q is a Morley-free extension of p if tky;(q) = rky(p).

Lemma 1.9. Let p be a (partial) type over U and suppose that U C V.
(a) p has a Morley-free extension q € S°(V)).

(b) Ifrky,(p) < oo, then p has only finitely many Morley-free extensions
in S*(V).

Proof. Choose an R, -saturated model M containing V.
(a) First suppose that « := rky;(p) < co. According to Lemma Bs.5.15,
the closed set (p)es () contains some type t with

rkCB(t/ﬁs_(M)) = rkCB((p>@s(M)) = .
Set q :=t|y. Then p € q C t implies
o = rkyg (p) > kg (9) 2 rky (1) = rkep (1/S°(M)) = a.

Consequently, q is the desired extension of p.
It remains to consider the case where rky(p) = co. Then

rkep ((P)es(ar)) = 00

implies that there is some t € (p)gs(ary With rkcp(t/&°(M)) = oo. As
above, it follows that q := t|y is the desired Morley-free extension of p
over V.
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(b) Let a := rkfv[(p). By (a), every type q € (p)es(v) of rank « has
an extension t € (p)gs(ar) of the same rank. These extensions are obvi-
ously distinct, for different types q. The claim follows since, according to
Lemma B5.5.15, the set (p)es(ar) contains only finitely many types t with

rkCB(r/65§(A4)) = . ]

Corollary 1.10. For every formula ¢(X) over a set U, there exists some
a € ™ with tky(a/U) = rky; (@), where § are the sorts of X.

Proof. By Lemma 1.9, there exists a type q € S°(U) with {¢} ¢ g and
rky(q) = rky(¢@). Every tuple a realising q has the desired properties.
[

The following lemmas show that the notion of Morley rank generalises
the dimension of a strongly minimal set. We start by showing that the
Morley rank increases with the length of a tuple and that elements in the
algebraic closure do not increase the rank.

Lemma 1.11. Let T be a first-order theory and let (%, ¥) be a formula
with free variables X and y of sorts § and t, respectively. Then

ki (379) < rky ().
Proof. We prove by induction on « that
ki (379) > a implies 1k} (¢) > «.

For « = o, it is sufficient to note that the consistency of 3y¢ implies the
one of ¢. Hence, suppose that rky,(3y¢) > «, for some a > 0, and let
B < a. By Lemma 1.1, there are formulae yy (%), for k < w, such that

rky (39 Ayr) > B and vny)=g, foralli+k.

Note that, if T = —3ytrue, then 3y¢ is inconsistent with T. Hence,
rky(379) = —1 < rky;(¢) and we are done. Consequently, we may
assume that T & 3y true. We therefore have

F79(x, 7) Aye(%) =3[ @(%, ) Ayi(x)]  modulo T.
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It follows by inductive hypothesis that
B < iy (359 Ayie) = rkyy (35(9 A ) < k(9 A i)
Since this holds for every 3, it follows by Lemma 1.1 that rky (¢) > . [

Lemma 1.12. Let a € M* and b € M be finite tuples and U € M a set of
parameters.

(a) rtky(a/U) < rky(ab/U).
(b) rka(a/acl(U)) =rka(a/U).
(c) rtkm(ac/U) =rky(a/U), forallceac(Uua).
Proof. (a) Let a := rky(ab/U). By definition, there is a formula ¢ (x, y)

over U such that M & ¢(a, b) and rkj;(¢) = rky(ab/U). Then 3j¢ €
tp(a/U) implies, by Lemma 1.1, that

tkn(a/U) < tky (359) < 1k, (9) < 1k3) (9) = rk (ab/U),

as desired.

(b) It follows by Lemma 1.6 that rky(a/acl(U)) < tky(a/U). For a
contradiction, suppose that this inequality is strict. Then there is some
formula ¢(x;¢) € tp(a/acl(U)) such that rky (@ (x;¢)) < rky(a/U).
Since ¢ is algebraic over U, we know by Lemma E3.1.3 that tp(¢/U) is
isolated. Let y(7) be a formula over U isolating this type and set

9(x) = 3yle(x:7) Aw(D)].
Then 9(x) € tp(a/U) implies, by Lemmas 1.5 and 1.1, that
rky(a/U) < 1k, (9) <tk (@ A ) < 1k3y () < tky(a/U) .

A contradiction.

(c) We have just seen in (a) that rky(ac/U) > rky(a/U). For the
converse inequality, we prove by induction on « that, for elements ¢ €
acl(Uua),

rky(ac/U) >« implies  rky(a/U) > «.
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For a = o, note that rky(a/U) > o since tp(a/U) is satisfiable. For
limit ordinals «, the claim follows immediately by the inductive hypo-
thesis. For the successor step, let

rky(ac/U) > a +1

and, for a contradiction, suppose that rky(a/U) < a. Fix a formula
¢(x) e tp(a/U) over U with minimal rank. Since ¢ € acl(a/U), there is
a formula y(%, y) over U such that y(a, y) is a finite set containing c.
Let m := |x(d, y)™]| and set

9(x,y) = (%) A x (%, ) A= yx(%,y)

Since 9 € tp(ac/U) we have rkys (9) > rky(ac/U) > a + 1, where u is
the sort of c. By Lemma 1.1, there are formulae v, for n < w, such that
rkyf (9 A yy,) > aand Y Nyt = @, for i # k. Set

Nn=3y(OAvy,) and nr:=/Ani, forlcow.

iel
First, let us show that rk;,(#7,) > «. By Lemma 1.10, there exists a

tuple I;c{ e (9 A y,)™ such that rky (bd/U) = rk3f (9 A v,,). Then
d € acl(b) and, by inductive hypothesis,

rky (bd/U) =tk (9 Awy,) >« implies  rky(b/U) > .

Since 77, € tp(b/U), it follows that rky (77,) > a.

Furthermore, for every set I € w of size |I| > m, the formula #; is
unsatisfiable since Ml & #;(b) implies that there are elements d; € M, for
i € I, such that M = 9;(b, d;). But, since |9(b, y)|™ < m there must be
indices i < k in I such that d; = dx. Hence, bd,; satisfies Vi A Yk, which
contradicts our choice of the formulae y,,, n < w.

In particular, rky, (#7;) = -1 < &, for large enough sets I. The set

F:= {I Cw | rki, (#77) > a and there is no J o I with
tky (7) > o }
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is infinite, since every I € F is finite and, for each n < w, there is some
I € F with n € I. Fix countably many distinct sets I,,, I, - - € F and set

En = np, A\ 1,

i<n
By definition of F, i # k implies I; ¢ Ix. Therefore, I; U I ¢ F and
rkag (171, A1) = tkyy (o) < &, fori# k.
By Lemma 1.5, this implies that
tky (71, A Ve 111) = thiy (Ve (11, A 11,)) < @t
Since rky(77,) = &, it therefore follows that
rkag (&) =ty (11, A = Viei 711,) 2 .

Note that &; = 3y9 = ¢ implies rky; (9AE;) > rky, (&) > a. As &M =
@, for i # k, it therefore follows by Lemma 1.1 that

a <1k (¢) = rky(a/U) < a.
A contradiction. []

Corollary 1.13. Let ¢(x) and y(y) be formulae with parameters and let
$ and t by the sorts of, respectively, x and . If there exists a parameter-
definable surjective function f : o™ — y™ such that f=(b) is finite, for
every b € y™, then

k(@) = ki (v).

Proof. Let U ¢ M be a set of parameters such that ¢ and y are over U
and f is definable over U. By assumption, every a € ¢™ is algebraic over
Uu{f(a)}.Since f(a) is algebraic over U U 4, it follows by Lemma 1.12
that

rkp(a/U) = rkm(af(a)/U) = tkm(f(a)/U).
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We can use Corollary 1.10 to find tuples a € ¢™ and b € y* with

rkn(a/U) =1kl (¢) and  tkn(b/U) = tkly(v).

Then v € tp(f(a)/U) implies

rkig (v) >tk (f(@)/U) = rkni (a/U) = ki ().

Conversely, by surjectivity of f, there is some ¢ € f7*(b). Therefore,

kS, (9) >tk (¢/U) =tk (b/U) =tk (v) . ]

Finally, we are able to show that, in a strongly minimal set, the Morley
rank of a finite tuple coincides with its dimension.

Theorem 1.14. Let ¢(x) be a strongly minimal formula over U.
rky(a/U) = dim,q(a/U), for all finite tuples a € ™.

Proof. Let a, € a be an acl-basis of a over U. Then |a,| = dim,q(a/U)
and it follows by Lemma 1.12 that

rkM(d/U) = rkM(c'zo/U) .

Hence, it is sufficient to prove that rky(a,/U) = |a,|. W.l.o.g. we may
assume that g, = 4, i.e., a is independent over U. We prove the claim by
induction on m := |d|. Let § be the sorts of a.

First, suppose that m = 1,1.e.,d@ = a, and § = s,. Astp(a,/U) contains
the strongly minimal formula ¢(x), we have rky (a,/U) < rky;(¢) = 1.
Conversely, a, ¢ acl(U) implies that tp(a,/U) is non-algebraic. Hence,
for every formula y(x) € tp(a,/U), the set y™ is infinite and, therefore,
kg (v) > 1.

For the inductive step, suppose that m > 1. We start by showing that
rky (a/U) > m. Note that [acl(A)| < |T|, for every countable set A, while
|™| = [MI| > | T|. Therefore, dim, (¢™) > R, and we can fix a countably
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infinite set I = { b} | n < w, i <m} € ¢" that is independent over U.
Setting b" := (bZ,..., bl _ ), it follows by Proposition F1.4.6 that

tp(b"/U) = tp(a/U), foreveryn<w.
Let I, := { b} | n < w }. Lemma F1.3.4 (a) implies that
dim,q (6" /U U1,) = dim,q(b" /U U {bl}) =m —1.
By inductive hypothesis it therefore follows that
rky (0" JUUI,) = m —1.

Let 9(x) € tp(a/U) be a formula with rk},(9) = rky(a/U) and set
Wn(%) = xo = b". Then 9 Ay, € tp(b" /U U I,,) implies that

ki (9 Ay, > thy (B"/UUI) > m —1.
Since Yy Ny} = @, for i # k, it follows by Lemma 1.1 that
kv (a/U) = ki (9) > ki (9 A y,) > m —1.

It remains to prove that rky(a/U) < m. Let M be an R, -saturated
model containing U. According to Proposition F1.4.6, every tuple ¢ that
is independent over M has the same type over U as a. Replacing a by ¢
we may therefore w.l.o.g. assume that g is independent over M. Fix a for-
mula 9 € tp(a/U) such that rk3;(9) = rky(@/U). For a contradiction,
suppose that rky, (9) > m. Then, by Lemma 1.1, there are formulae y;,
i < w, such that rky;(9 A y;) > mand M Ny} = @, for i # k. By
Lemma 1.3 and the definition of Morley rank, we can choose the formu-
lae over M. Since the sets ¢! are disjoint, there is some index i such
that a ¢ y". Consequently, there exists a formula y := y; over M such
that —y € tp(a/M) and rk, (v) > rk3; (9 A ) > .

By Corollary 1.10, there exists a tuple b € y™ with rky(b/M ) =
rky (v). Since tp(b/M) # tp(a/M), Proposition F1.4.6 implies that b is
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not independent over M. Let b, € b be an acl-basis of b over M. By
Lemma 1.12 and inductive hypothesis, it follows that

m < xikiy (v) = ki (b/M) = rii, (bo /M)
= dim,q (bo /M) = |bo| < m,

a contradiction. ]

2. Independence relations

Besides closure operators and dimensions, a matroid can also be charac-
terised in terms of a so-called independence relation. This characterisation
is the easiest to generalise to the geometry-like configurations appearing
in model theory. In this section we introduce independence relations and
show that they give an alternative characterisation of matroids. In the
next section, we then present the generalisation used in model theory.

Definition 2.1. Let cl be a closure operator on the set 2. The independ-

ence relation C\l/ associated with cl is the ternary relation between sets
A, B, U c  that is defined by

A C\I/U B :iff everysetI C B thatisindependent over U

is also independent over U U A .
Example. Let B be a vector space, A, B, U € V subspaces with U € A, B,
and let cl be the closure operator mapping a set X € V to the subspace
(X ) spanned by X. Then
AYyB iff AnB=U.

In the abstract, the properties of an independence relation C\l/ are
given by the following axioms.
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Definition 2.2. Let 2 be a set and let A \/ v B be a ternary relation on
subsets A, B, U € Q.

(a) \/ is an abstract independence relation if it satisfies the following
conditions:

(MON) Monotonicity. If A, € A and B, € B then
A\/yB implies Ay \/u Bo.
(NOR) Normality.
A\/uB implies AuU \/y BUU.
(LRF) Left Reflexivity.
A /4B, forallA,BCQ.
(LTR) Left Transitivity. If A, € A, € A, then
A, \/Al B and A, \/Ao B implies A, \/Ao B.

(FIN) Finite Character.

A\/UB iff AO\/UB for all finite A, C A.

(b) A geometric independence relation is an abstract independence
relation / that satisfies the following additional conditions:

(sym) Symmetry.
A\/uB implies B \/yA.

(BMON) Base Monotonicity.

A\/yBuC implies A +/y,cBUC.
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(srB) Strong Right Boundedness. Let y be an ordinal and let (U, )4<, be
a strictly increasing chain of subsets U, € Q. If A >/Ua Ugss, for
all < y, then |y| < |A|.

(c) We call an abstract independence relation symmetric, base mono-
tone, or strongly right bounded if it satisfies the corresponding axiom.
Frequently, we will use the symbol | to denote symmetric independence
relations.

Example. (a) Let Q be a set. For A, B, U € Q, we set
AYuB :iff AcU.

{’/ is an abstract independence relation on () that satisfies (BMoN) and
(SrB), but not (sym). Moreover, it is minimal in the sense that {’/ c \/ ,

for every abstract independence relation \/ on Q.
(b) Let Q be a set. For A, B, U ¢ (2, define

Al B :if AnBcU.

Then |° is a geometric independence relation. It is minimal in the sense
that |° C |, for every symmetric independence relation on (. Note that
1°= C\l/, where cl : X — X is the trivial closure operator on Q.

(c) Let & = (V, E) be an undirected graph. For A, B, U € V, we define

AP B :iff  every path connecting an element of A to

an element of B contains an element of U.

Then | *°P is an abstract independence relation that is symmetric and
base monotone.

As most axioms are immediate we only check left transitivity. Suppose,
for a contradiction, that A, J,Zelp Band A, lfff B,but A, &f:f B. Then
there exists a path 7 from some vertex a, € A, to some b € B such
that 77 does not contain an element of A,. Since A, J,Zelp B, this path
contains a vertex a, € A,. Let 71’ be the subpath of 7 connecting g, to b.
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Since A, Lfff B, this subpath contains a vertex of A,. Hence, so does 7.
A contradiction.
(d) Let X = (X, d) be a metric space. For A, B, U ¢ X, we define

Al%B :iff forallae Aandb e B thereissomece U
such that d(a,b) =d(a,c) +d(c,b).

Again, | is a symmetric abstract independence relation.

Note that, for (undirected) trees, this definition generalises that in (c).
Given a tree T, we define the distance between two vertices u,v € T
as the length of the unique path between u and v. The independence
relation | ¢ corresponding to this metric coincides with |**P from (c)
since the equation d(u, v) = d(u, w) + d(w,v) implies that w is a vertex
on the path from u to v.

Exercise 2.1. Given an abstract independence relation \/, we define the
relation

AYuB :iff  A/uys, B, forallB,cB.

Prove that 1\3/ is a base monotone abstract independence relation.

Let us collect some immediate consequences of the axioms of an
abstract independence relation. In proofs we will usually use the axioms
(MON), (NOR), and (LREF) tacitly, while all uses of other axioms will be
explicit. The first two lemmas contain versions of the left transitivity
axiom that are frequently more convenient to use. The third lemma
presents an infinite version of left transitivity.

Lemma 2.3. Let+/ be an abstract independence relation.
A/uwecB and C+JuB implies AuC +\/y B.

Proof. By (NOR), we have AuU U C \/ch Band CuU \/U B. By
(LTR) it follows that Au U u C \/ u B. I
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Lemma 2.4. Let+/ be a base monotone abstract independence relation.
A\/uBUC and C\/uB implies AuC\/yB.

Proof. By (BMON), A \/U Bu C implies A \/ch BuC. Since C \/U B,
it follows by Lemma 2.3 and monotonicity that Au C \/ v B. ]

Lemma 2.5. Let/ be an abstract independence relation.

(@) If (A}) s is an increasing chain of sets with A; \/U B, foralliel,
then UieI Ai \/U B.

(b) If y is an ordinal and (Ay)a<, an increasing chain of sets with
A, \/UUUMAI- B, forall a <y, then U<, A \/U B.

Proof. (a) By (rIN) it is sufficient to show that C \/ u B, for all finite
C € U;er A;. Hence, let C € U;r A; be finite. As (A;);es is increasing,
there exists an index i € I such that C ¢ A;. Consequently, A; \/ v B
implies that C \/ v B.

(b) We prove the claim by induction on y. For y = o, we have @ \/ v B
by (LrE). For the inductive step, suppose that U;., A; \/ v B, for all
a < y. By (a) it follows that U<, Uica A; \/U B. If y is a limit ordinal,

then Uy<y Uica Ai = Ua<y Aq and we are done. Hence, suppose that
y = B+ 1. Then

Ag Vuul,a B and  |JA; Vu B
i<f

implies, by Lemma 2.3, that A \/U B. ]

We will show that geometric independence relations are precisely
those associated with a matroid. The easy direction is to show that every
matroid induces a geometric independence relation. As a first step, let
us see which axioms hold if we do not assume the exchange property.
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Lemma 2.6. The independence relation C\l/ associated with a finitary

closure operator cl on Q is an abstract independence relation.

Proof. We have to check five axioms.

(MmoN) Suppose that A C\I/U Bandlet A, € A and B, € B. To show
that A, C\I/U B,, consider a subset I € B, that is independent over U.

Since A C\I/U B, I is also independent over U U A. In particular, it is
independent over U U A,,.

(NOR) Suppose that A C\I/U B. To show that AuU C\I/U BuU, consider
aset I € Bu U that is independent over U. Then I € B and A il/U B
implies that I is independent over U U A.

(LRE) Trivially, if I € B is independent over A, then it is independent
over A.

(LTR) Suppose that A, C\I/Al Band A, C\I/Ao B,for A, € A, € A,.
If I is independent over A,, it is independent over A, and, hence, also
over A,.

(FIN) Suppose that A §/;, B. We have to find a finite set A, € A such
that A, §/, B. By assumption, there is a set I C B that is independent

over U, but not over U U A. Hence, there is some element b € I such that

becd(UuAu (I~ {b})). We choose a finite subset A, C A such that
becd(UuA,u(IN{b})).Since I is independent over U, but not over
U U A,, it follows that A, /%, B. O

To show that, for a matroid ((Q, cl), the relation C\l/ is a geometric
independence relation, we start with a technical lemma.

Lemma 2.7. Let (Q, cl) be a matroid and let I, ] € Q be sets that are both
independent over U. If I is independent over U U ], then ] is independent
over UU L.

Proof. Suppose that ] is not independent over U U I. Then there is some
b € ] such that

bed(UuTu(J~{b))~d(Uu(~ {b})).
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By the exchange property, there is some a € I such that
aecd(Uu(I~{a})u]).
Consequently, I is not independent over U U J. O

Proposition 2.8. The relation C\l/ associated with a matroid (Q,cl) is a
geometric independence relation.

Proof. We have already seen in Lemma 2.6 that c\l/ is an abstract in-
dependence relation. Hence, it remains to check the following three
axioms.

(sym) Suppose that A C\I/U B. To show that B ‘il/U A, consider a
set I € A that is independent over U. Let ] be a basis of B over U. By
assumption, ] is independent over U U A. Hence, it follows by Lemma 2.7
that I is independent over U U ] and, therefore, over U U B.

(BMON) Since we have already shown (sym), it is sufficient to prove that
AuC C\I/U B implies Au C C\I/ch B. Thus, suppose that Au C C\I/U B.
If I ¢ Bis independent over U U C, it is also independent over U and,
hence, over Uu Au C.

(skB) Let (Uy)a<y be a strictly increasing sequence with A %a Ugt1>
for all @ < y. By induction on &, we construct a decreasing chain (I ) <y
of subsets I, € A such that I, is a basis of A over U,. We start with an
arbitrary basis I, of A over U,. For the inductive step, suppose that we
have already defined I for all # < a. For I, we choose a maximal subset
of Mp<a Ip that is independent over Us,,.

Since A %a Uy+: we can find a set | € U, that is independent
over Uy, but not over U, U A. By Lemma 2.7 it follows that I, is not
independent over U, U ] € U,,,. Therefore, each inclusion I, 2 I, is
strict. It follows that |y| < |I,| < |A]. O

Our next aim is to show that every geometric independence relation
arises from a matroid. As motivation for the definition below, let us
explain how one can recover the closure operation cl from the independ-

ence relation C\l/ associated with it.
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Lemma2.9. Let C\l/ be the independence relation associated with a closure
operator cl on Q and let a € Q and A, B, U c Q.

(a) aec(U) iff a C\I/Ua
iff a C\I/UUcB forall B,Cc Q.
(b) Accd(UuB) iff B YuC = A/uC forallCcQ.

Proof. (a) First, suppose that a € cl(U). We claim that a °\1/ch B, for
all B, C ¢ Q. Fix Band C and let I ¢ B be independent over U u C. Then
Iis independent over cl(Uu C) and, therefore, over Uu{a} c cl(UuC).

Ifa C\l/UUc B, for all B, C, then, trivially, a C\I/U a.

Hence, it remains to show that a C\I/U a implies a € cl(U). Suppose
that a {/u a. Since the set {a} is not independent over U u {a}, it
follows that {a} is not independent over U. Hence, a € cl(U).

(b) (=) Suppose that A ¢ cl(U u B) and B {/y; C. To show that
A C\I/U C, consider a set I C C that is independent over U. Then I is also
independent over U U B and, hence, over cl(U U B). In particular, I is
independent over U U A < cl(U u B).

(<) Suppose that A ¢ cl(UuUB) and fix an element a € A\ cl(UuUB).
Then B C\I/U a since @ and {a} are both independent over U and inde-
pendent over U U B. But A §//, a since {a} is independent over U, but
not over U U A. ]

We use the characterisation in (a) to associate a closure operator with
an arbitrary abstract independence relation /.

Definition 2.10. Let\/ be an abstract independence relation on the set Q.
For U ¢ 2, we define

,(U):={aecQ]|a Vuuc Bforall B,Cc Q}.

Let us start by proving that this definition results in a closure operator.
The main technical argument is contained in the following lemma.
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Lemma 2.11. Let+/ be an abstract independence relation on the set Q.
Acd,(U) iff A\/uuB forallB,CcQ.

Proof. (<) Letae A. Thena \/ vuc B, for all sets B, C. Consequently,
acc, (U).

(=) By (rIn), it is sufficient to prove the claim for finite sets A. We
proceed by induction on |A|. For A = @ and arbitrary sets B,C ¢ (Q,

UuC \/ vuc B implies that @ \/ vuc B, as desired.
Hence, suppose that A = A, U {a} and that we have already shown

that A, \/ch B, for all sets B,C. Given B,C ¢ (, it follows that
A, \/chu{a} B and a \/ch B which, by Lemma 2.3, implies that

A, u{al \/uuce B. O]

Corollary 2.12. Let\/ be an abstract independence relation on the set (.

cl,(U) \/ch B, forallB,C,Uc Q.

Proposition 2.13. Let+/ be an abstract independence relation on the set Q.
Then cl , is a closure operator on Q.

Proof. To show that U < ¢l ,(U), consider a € U and B, C ¢ . Then
UuC \/ch B implies a \/ch B. Hence, a ¢ cl\/(U).

For monotonicity, let U € V and suppose that a \/ vuc B, for all
B,C < Q. Given B,C c Q, we have a \/quuc B. Hence, cl\/(U) c

c (V).
Vv
To show thatcl ,(cl ,(U)) = cl ,(U), fix an element a € c] (cl (U))
and sets B, C € Q. Then

a Ve (U)ud  (vuc) B-

Since we have already shown that cl , is monotone, we have c1¢( U) c
cl\/( U u C) and it follows that a \/ o (vuc) B. Furthermore, according
to Corollary 2.12, cl\/( UuC) \/ vuc B. By Lemma 2.3 and monotonicity,
it therefore follows that a \/ vuc B. Hence, a € cl (U). O
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For symmetric independence relations we have the following desirable
relationship to the associated closure operator.

Lemma 2.14. Let | be an abstract independence relation on the set (2
satisfying (sym) and (BMON).

AluB iff  d(A) La,(v)cy(B), forallA,B,UcCQ.

Proof. (<) By Corollary 2.12, we have cl| (U) Ly cl; (B). Therefore,
cly (A) La, (uy cl (B) implies clj (A) Ly cly (B), by Lemma 2.3. Hence,
the claim follows by (MoON).

(=) Suppose that A |y B. Then Au U |y B. We have shown
in Corollary 2.12 that cl;| (AU U) [auu B. Using (LTR) we see that
clj (AuU) Ly B. By symmetry, it follows in exactly the same way that
clj](AuU) Ly cl (BuU). Hence, we can use (BMON) and (MON) to
show that ¢l (A) L, (uy cly (B). O

Ifan abstract independence relation/ is induced by a closure operator,
we obtain this operator back if we form cl ,.

Lemma 2.15. cl =l <l for every finitary closure operator cl.

Proof. By definition of cl </ and Lemma 2.9,

ace clc\l/(U) iff a C\I/UU(; B for all sets B, C
iff aec(U). []

Remark. Note that, in general, the dual statement does not hold: there
are distinct independence relations inducing the same closure operator.

For a geometric independence relation |, we not only obtain a closure
operator, but even a matroid. Again, we begin with two technical lemmas.

Lemma 2.16. Let | be a geometric independence relation. Then

afdyB iff aecd (UuB)~d(U).
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Proof. (<) Suppose that a € cl; (U u B) and a [y B. We have to
show that a € ¢l (U). Hence, let C,D < Q be arbitrary sets. Then
a luup CuD anda |y Bimplies, by Lemma 2.3 and symmetry, that
a Ly Cu D. Consequently, we have a | y,¢ D by (BMON).

(=) Suppose that a ¢y B. Then a ¢ cl; (U). For a contradiction,
assume that there are sets C, D such that a & y g c D. Then (MON)
implies

afyUuBUC and adyogoc UUBUCUD.
By (srB), it follows that 2 < |[{a}| = 1. A contradiction. O

Lemma 2.17. Let | be a geometric independence relation on Q. For all
a € Q and B C Q, there exists a finite set B, € B such that a | g, B.

Proof. We prove the claim by induction on « := |B|. For ¥ < ®,, we
have a |5 B by (LrRF) and symmetry. Hence, suppose that ¥ > R,. Let
(by)a<x be an enumeration of B and set B, := {b; | i < a }, for « < «.
If a | 5 B, we are done. Otherwise, let « be the minimal ordinal such
that a ¢ 5 B,. By Lemma 2.16, it follows that a € cl| (B, ). Consequently,
a |, B. Note that a < x since a |4 Bg for all § < x would imply, by
Lemma 2.5 and symmetry, that a | 5 B. Hence |B,| = |a| < k, and we can
apply the inductive hypothesis to find a finite set U € B, with a |y B,.
Consequently, it follows by (LTR) and symmetry that a |y B. ]

Proposition 2.18. If | is a geometric independence relation on the set (2,
then (Q, cl| ) is a matroid.

Proof. We have already seen in Proposition 2.13 that cl; is a closure
operator. Hence, it remains to check that it has finite character and the
exchange property.

For finite character, suppose that a € cl; (U). By Lemma 2.17 we can
find a finite set U, € U such that a |y, U. For all sets B, C it follows by
a Ly BuC, Lemma 2.3, and (sym) that a |y, Bu C. Hence, (BMON)
implies a | y,uc B and we have a € cl| (U,).
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It remains to check the exchange property. Suppose that
bec (Uu{a})~c (U).

By Lemma 2.16, it follows that b  ;; a. By symmetry, we have a § ; b
and we can use Lemma 2.16 again to conclude that

aecl (Uu{b})~c (V). (]

The next lemma, together with Lemma 2.15, shows that the operation

cl— C\l/ is a bijective function from the class of all matroids to the class of
all geometric independence relations. Its inverse is given by the function

J, = CI\L.
Lemma 2.19. If | is a geometric independence relation then Cl\i/ =]

Proof. (2) Suppose that A/, B. We have to show that A ¥y B. By
assumption, there exists a set I C B that is cl| -independent over U, but
not over U U A. Fix an element b € I such that b € cl | (UU AuI,)
where I, := I~ {b}.Since b ¢ cl; (Uu,), it follows by Lemma 2.16 that
b & uu1, A. By monotonicity, this implies that B & y,;, A. Hence, we can
use symmetry and (BMoON) to deduce that A & ;; B.

(S) By (rIN) and symmetry; it is sufficient to show that A d\i/U B
implies A |y B, for all finite sets A, B. Furthermore, we may assume by
Lemmas 2.14 and 2.15 that A and B are cl| -independent over U. Hence,
suppose that A d\i/U B for finite sets A and B that are cl| -independent
over U. We prove by induction on |B| that B |y A. If B = &, then
U Ly Aimplies @ |y A. Hence, suppose that B = B, U {b} and that we
have already shown that B, |y A. Since B is cl| -independent over U,
it is also cl| -independent over U U A. Hence, b ¢ ¢l (UuU AU B,) and
Lemma 2.16 implies that b | yp, A. Together with B, |y A it follows
by Lemma 2.3 that B, U {b} Ly A. ]

We conclude this section with a characterisation of modularity in
terms of the independence relation C\l/
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Proposition 2.20. A matroid (Q, cl) is modular if, and only if,
A g cl(A)ncl(B) B, fOT’ allA,Bc Q.

Proof. (=) Suppose that (Q, cl) is modular and let A, B € . We have

to show that A C\l/d( A)ncl(B) B. By Lemmas 2.14 and 2.15, we may assume
that A and B are closed sets. Hence, let A and B be closed and I ¢ B
independent over AN B. Let I, € I be a basis of I over A and set C,, :=
cl(I,) and C := cl(I). We have to show that I, = I. Note that

cAd(CouA)=c(l,buA)=cd(IuA)=cl(CUA).
By Lemma B2.2.9, it follows that
C=cd(Cou(CnA))=c(l,u(CnA)).

Hence, I, is a basis of C over C n A. Since I 2 I, is independent over
C n A, it follows that I = I, and I is independent over A.

(<) Suppose that A C\I/CI(A)OCI(B) B, for all A, B ¢ Q. To show that
(Q, cl) is modular it is sufficient, by Lemma B2.2.9, to prove that

cd(AuC)=c(BuC) implies cl(Au(BnC)) =B,

for all closed sets A, B, C € Q with A € B. Hence, fix closed sets A, B, C €
Qwith Ac Band cl(Au C) = cl(Bu C). Choose a maximal set I ¢ A
that is independent over C. Then cl(Iu C) = cl(AuC) = cl(Bu C) and
I is a basis of BuU C over C. We claim that B ¢ cI(Iu (Bn C)). Suppose
otherwise. Then there is some element b € B\ cl(Iu(BnC)). Since b €
Bccl(IuC)andb ¢ cI(Iu(BnC)), it follows that Tu{b} is independent
over B n C, but not over C. Hence, C %mc B. A contradiction.
We have shown that B ¢ cl(Iu (Bn C)). It follows that

Bcd(Iu(BnC))cdcd(Au(BnC))<cB,

as desired. []
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Corollary 2.21. Let (Q, cl) be a modular matroid. Then
AYyB iff d(AuU)nd(BuU)=d(U).
Proof. (<) According to Proposition 2.20, we have
AuU § cl(AuU)nel(Buy) BU U
Ifcd(AuU)nc(BuU) =c(U), then
AUU §/qyBuU implies A §/u B,

by Lemma 2.14.
(=) Suppose that A C\I/U B. By Lemma 2.14, it follows that

Ad(AUU) Vaw) d(BuU).
For a contradiction, suppose that there is some element
ce(cdd(AuU)ncd(Bul))\c(U).

Then {c} is independent over cl(U), but not over cl(A u U). Hence,
cd(AuU) %I(U) cl(Bu U). A contradiction. ]

3. Preforking relations

We would like to define an independence relation using A-rank or Mor-
ley rank as our notion of dimension. In general, the resulting relation
will not be a geometric independence relation but something slightly
weaker, called a forking relation. In this section, we introduce the abstract
framework for forking relations and we will present several examples
of such relations. To simplify notation, we will frequently omit union
symbols and just write AB instead of A U B.

1096



3. Preforking relations

Definition 3.1. Let T be a complete first-order theory and suppose that

A \/ v B is a ternary relation that is defined on the class of all small
subsets A, B, U ¢ M.

(a) The relation / is a preforking relation for T if it is an abstract inde-
pendence relation that satisfies (BMON) and the following two axioms:

(1nv) Invariance. ABU =4 A’B'U’ implies that
A\uB if A uB.

(DEF) Definability. If A ,/{; B, there are finite tuples @ ¢ A and bcB
and a formula ¢(x,x") € tp(ab/U) such that

@'/, b, foralld’ eoq(x, b)M.

(b) The relation \/ is a forking relation if it is a preforking relation that
satisfies the following additional axiom:

(exT) Extension. If A \/ u B, and B, € B, then there is some A" with
A'=yp, A and A \/uB,.

We are mostly interested in symmetric forking relations since many
properties of geometric independence relations can be generalised to
them. Unfortunately, there are first-order theories were no nontrivial
symmetric forking relations exist. On the other hand there are always
several natural preforking relations and below we will see that every
preforking relation can be used to define a corresponding forking relation,
although not necessarily a symmetric one.

Remark. The intersection of an arbitrary family of preforking relations
is again a preforking relation. It follows that the class of all preforking
relations on a structure M forms a complete partial order.

Examples

Before proceeding let us collect several examples. We start with a trivial
one.
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Example. The trivial relation / with A \/ v B, forall sets A,B, U, isa
symmetric forking relation.

Exercise 3.1. Prove that the relation
AlyB :if AnBcU
is a symmetric preforking relation.

More interesting are the following three examples. The second one
has historically been used to develop stability theory.

Definition 3.2. For a, A, B, U ¢ M, we define

A a\t/U B :iff foreveryfiniteac A,
tp(a/UB) is isolated by a formula over U.

a d\f/U B :iff tp(a/UB) is definable over U.

AYuB  :iff b=y b = b=y, b, forallb,b cB.

Ifa {/ u B, we say that the type tp(a/UB) is invariant over U. Otherwise,
it splits over U.

Lemma 3.3.
(@ e Ve

(b) a\t/ is an abstract independence relation that satisfies (INV) and
(BMON).

(c) d\f/ is an abstract independence relation that satisfies (INV) and
(BMON).

(d) {/ is a preforking relation.

Proof. (a) Suppose that A “‘\t/U B and let a be an enumeration of A. To
show that A d\f/U B, consider a formula ¢ (%;b) € tp(a/UB). Let d,, C a
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be the finite tuple of elements mentioned in ¢. By assumption, there is a
formula y(x) over U isolating tp(a,/UB). It follows that

0(y) = Vx[y(x) = ¢(%:7)]

is a ¢-definition of tp(a/UB).

For the second inclusion, suppose that A d\f/U B.Let b,b’ c Bbe
tuples with b zua b'. We have to show that b #y b’. Fix a formula
¢(x; a, ¢) with parameters a € A and ¢ ¢ U such that

M e ¢o(b;d,é) A-p(b';a,¢).

By assumption, tp(a/UB) has a ¢-definition §(x) over U. It follows that
M & §(b) A -8(b"). Consequently, b £y b'.

(b) (1nv) and (FIN) follow immediately from the definition.

(MON) Suppose that A a\t/U Bandlet A, € A, B, € B.Fora c A,
we know that tp(a/UB) is isolated by a formula over U. Hence, so is
tp(a/UB,).

(NOR) Suppose that A a‘\t/U B. Let a € AU U be finite. Then a =
a'ucfora’ € Aand ¢ € U. Furthermore, tp(a’/UB) is isolated by a
formula ¢(x) over U and tp(¢/UB) is isolated by the formula % = ¢.
Consequently, tp(a’c/UB) is isolated by w(x, %") := (%) A %" = C.

(LrE) If a C A is finite then tp(a/AB) is isolated by the formula x = a.
Hence, A "‘\t/A B.

(LTR) Suppose that A, a\t/Al Band A, a\t/Ao BforA, C A, CA,. Let
a C A, be finite. Then tp(a/A,B) is isolated by a formula ¢ (x; ¢) with
parameters ¢ € A,. Furthermore, tp(¢/A,B) is isolated by a formula
v(x) over A,. By Lemma E3.15, it follows that tp(ac/A,B) is isolated
by the formula ¢(x;z) A w(2). Therefore, tp(a/A,B) is isolated by the
formula 3z[(x;2) A w(2)].

(BMON) Suppose that A a\t/U BC. For every a € A, tp(a/UBC) is
isolated by a formula over U and, hence, by a formula over U u C.
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(c) (1nv) follows immediately from the definition.

(MoN) Suppose that a d\f/U B.If a, € a and B, C B then
tp(a,/UB,) € tp(a/UB)
and every ¢-definition of the latter type is also a ¢-definition of the

former one.

(NOR) Suppose that tp(a/B¢) is definable over ¢. To find the desired
¢(x, x'; y)-definition of tp(ac/Bc) over ¢, let y(, 7’5 ¢) bea (X 3, y)-
definition of tp(a/B¢) over ¢. For b ¢ B u ¢ it follows that

ME ¢(a,éb)  iff  Mey(b,e).

Hence, (7, ¢; ¢) is a ¢-definition of tp(ac/B) over ¢.
(LRE) Note that ¢(a; 7) is a ¢(x; y)-definition of tp(a/B u a). Hence,
tp(a/Ba) is definable over a.

(LTR) Suppose that a,a,4, d\f/do,il B and a,a, d\f/do B. For every
formula ¢(%,, X,, X,; ¥), there exist

¢ a @-definition v(j; d,, a,) of tp(d,a,a,/Basa,) over d,a,, and
¢ ay(y; %o, X, )-definition 9(j; d, ) of tp(d,a,/Ba,) over d,.

For b ¢ Bu a,, we have

M E ¢(do, 4y, d530)  iff  MEy(b;do, a,)
if MeE 9(b;a,).

Hence, 9 is a ¢-definition of tp(a,a,d,/Ba,) over d,.

(BMON) Clearly, every ¢-definition of tp(a/UBC) over U is also a
¢-definition of tp(a/UBC) over U u C.

(FIN) Since each formula ¢(x) € tp(a/UB) contains only finitely
many variables from £, it follows that tp(a/UB) is definable over U if,
and only if, tp(a,/UB) is definable over U, for all finite a, < a.

(d) (1nv) follows immediately from the definition.
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(MoN) Suppose that A {/y; Band let A, € Aand B, € B. For b, b’ ¢
B, it follows that

b=y b implies b=y b’ implies b=y, b'.

Hence, A, {/ U

(NOR) Suppose that A \/ v B.If b,b’ € BU U are tuples such that
b =y b, then there are tuples b,, b’ € Band ¢ € U such that b = b, U ¢
and b’ = b, u ¢. Tt follows that

b=y b implies b, =y b
implies b, =ya b

implies by =yu b,¢ implies b=ys b'.

Consequently, AU {/ v BU.
(LRF) Since, trivially, b=, b implies b=, b, wehave A {/ 4 B, for
all sets A and B.

] gLTR) Suppose that A, {/Al Band A, i/Ao B,for A, € A, € A,. For
b, b’ c B it follows that

b=, b implies b=, b implies b=4, b.
as desired.

(BMON) Suppose that A \/ v BC. Let b, b’ € B U C be tuples such that
b #yac b'. We claim that b #y¢ b'. There exists a formula ¢(%; d, ¢, d)
with parameters @ € A, ¢ € C, and d ¢ U such that

M e ¢o(b;a,é,d) A-@(bsa,é,d).

Consequently, b¢ £ya _1_9’5. Since A {/U BC it follows that bé £y b'¢. As
¢ € C this means that b #y¢ b’, as desired.

(DEF) Suppose that A §/; B. Then there exist tuples b,b’ c B such
that b =y b’ and b #ya b’. Fix a formula ¢(%, y) over U and a tuple
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a C A such that
M e ¢(d,b) A-g(a,b").
For every tuple a’ ¢ M it follows that
Mk ¢(a',b) A-¢(a’,b") implies a’ 3/, bb'. O
Let us mention that, in general, d\f/ and a\t/ are no preforking relations.

Example. (a) The relation d\f/ is not definable. As a counterexample,
consider the theory T of dense linear orders. Note that T has quantifier
elimination. Let a € R \ Q be an irrational number. Then tp(a/Q)
is not definable over Q. Consider a formula ¢(x;b) € tp(a/Q) with
rational parameters b, < --- < b,_,. By enlarging the tuple b we may
assume that there is some index i such that b; < a < b;,,. It follows that
(R,<) &= @(a’;b), forall a’ € (b, bjy,). But for a’ € (b;, biy,) N Q the
type tp(a’/Q) is definable over Q. This contradicts (DEF).

(b) The relation a\t/ is not definable. As a counterexample, consider the
theory T of the structure (R, s) where s(x) = x + 1. Note that tp(a/b) is
isolated if, and only if, a = b+ k, for some k € Z. In particular tp(% /o) is
not isolated. Using an Ehrenfeucht-Fraissé argument, one can show that,
for every formula ¢(x; y) with (R, s) £ ¢(%;0), there exists a number
a € R such that (R,s) = ¢(b;0), for all b > a. But, for b € N, the type
tp(b/o) is isolated by the formula x = s° (o).

Let us take a look at the closure operators associated with these rela-
tions. In each case, we obtain the definable closure.

Lemma 3.4. cl df/ = cl ay = clg/ =ddl
Proof. Note that a\t/ c d\f/ = i/ implies cla\t/ cd df/ & df/‘ Hence, we

only need to prove that dcl € cl ay and cl ¢/ dcl.

For the first inclusion, note that every formula defining a over U
isolates tp(a/UBC). Hence, a € dcl(U) implies a a\t/Uc B, for all B, C.
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For the second inclusion, consider an element a ¢ dcl(U). By The-
orem E2.1.6, there exists an automorphism 7 € My with 7(a) # a. Set-
ting a’ := 7(a) it follows that a =y a’ and a #y, a’. Hence, a 3/, aa’

anda¢cl§/(U). []

We conclude this section with the remark that, for forking relations,
the definition of the closure operator cl , can be simplified.

Lemma 3.5. If\/ is a forking relation, then

a\/Ua implies a\/UcB forall B, C.

Proof. Suppose that a \/ v a and let B, C be arbitrary sets. By (xT),
there exists an element a’ =7, a with a’ \/ u BC. It follows that a’ = a.
Therefore, (BMON) implies a \/ uc B. ]

Finitely satisfiable types

Let us take a look at some consequences of the definability axiom (DEF).
First, note that, by invariance, we can extend every preforking relation
from subsets of M to types.

Definition 3.6. Let/ be a preforking relation and B, U € M.
(a) A partial type @(x) over B+/-forks over U if

c'z)/UB, for all G € @M.

Similarly, we say that a single formula ¢(x) over B/-forks over U, if
the type {9} does.

(b) A type p over B is+/-free over U if it does not\/-fork over U.

(c) For complete types p € S°(U) and q € S°(UB), we say that g is a
\/ -free extension of p if

pcq and qisy/-freeover U.

We denote this fact by p < V/ q.
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Remark. (a) By (INV), we have a \/ v B if, and only if, tp(a/UB) is
\/ -free over U.

(b) By (DEF), a complete type p+/-forks over U if, and only if, some
formula ¢(x) € p/-forks over U.

Lemma 3.7. Let/ be a preforking relation. The set
F\S/(A/U) i={peS(A)|pis\/-free over U}

is a closed subset of S°(A).
Proof. Let

@ := { =¢ | ¢ a formula over A that./-forks over U }.

Then @ C p, for every p € Ff/(A/U), while (DEF) implies that @ ¢ p, for
every type p that/-forks over U. Hence,

Fj/(A/U) = (D)es(a) - ]

Let us treat in more detail one important forking relation that is con-
nected with the definability axiom. It is based on the notion of a finitely
satisfiable type.

Definition 3.8. A type p is finitely satisfiable in a set U if, for every
formula @(x;¢) € p, there is some tuple a € U with M = ¢(a;¢). We
write

a Y/uB :iff  tp(a/U U B) is finitely satisfiable in U .

Example. Let T be the theory of dense linear orders. For a single element

a € M and sets U, B ¢ M, we have a ‘{/U B if, and only if, at least one of
the following conditions is satisfied:

e acU,or

¢ flanU # @and, forevery b € fan(UUB), thereis some ¢ € fanU
with ¢ < b, or
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¢ JanU # @and, forevery b € Jlan(UUB), thereis some c € JlanU
with ¢ > b.

We shall prove that ‘{/ is the least preforking relation and that it is,
in fact, a forking relation. Before doing so, let us give an alternative
characterisation of finitely satisfiable types in terms of ultrafilters. (The

letter ‘v’ in ‘{/ stands for ‘ultrafilter’.)

Definition 3.9. Let T be a theory over the signature X, let U, B ¢ M be
sets, and u an ultrafilter over U*, for some tuple s of sorts. The average
type of u over B is the set

Av(u/B) :={ ¢(x) e FO°[Z5] | U° n p(2)M e uj.

Lemma 3.10. Let T be a complete first-order theory and u an ultrafilter
over U*. Then Av(u/B) is a complete type over B that is finitely satisfiable
in U.

Proof. We start by showing that Av(u/B) is a type. For a contradiction,
suppose that T'U Av(u1/B) is unsatisfiable. Then there exist a finite subset
@ c Av(u/B) such that T = - A @. By definition of Av(u/B),

UsnoMeu, forallped.
As ultrafilters are closed under finite intersections, it follows that
U n(A®)Meu.

In particular, (A @)™ # @. Hence, T = 3xA @. A contradiction.
Moreover, Av(u/B) is complete since, for every formula ¢(x) over B,

¢(x) € Av(u/B)

—

if  USne(x)™eu
iff U~ ()M ¢u
iff Usn-g(x)M¢u
iff  —¢(x) ¢ Av(u/B).
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Finally, to show that Av(u/B) is finitely satisfiable in U, note that
¢(x) € Av(u/B) implies U°* n (p(fc_)M € u. In particular, this set is not
empty. Hence, there is some a € U*® satisfying ¢(x). O

Lemma 3.11. A type p € S°(B) is finitely satisfiable in U if, and only if,
p = Av(u/B), for some ultrafilter u over U°.

Proof. (<) follows by Lemma 3.10. For (=), suppose that p is finitely
satisfiable in U. We start by showing that the set

o = { U no(x)" [p(x)ep}.
has the finite intersection property. Let
Usngo()M, ..., U N, (x)"eu,, forge,...,pn€p.

Since p is closed under conjunction, it follows that o, A--- A @, € p. As
p is finitely satisfiable in U,

(U ngo())" n---n (U ngu ()™
= U n (go(X) /\---/\(pn()'c))M +J,

as desired.
By Corollary B2.4.10, there exists an ultrafilter u 2 u, over U°. Since,
for every formula ¢ over B,

Unp(@)eu if Unex)eu,,
it follows that
Av(u/B) ={¢(x) | U ngp(x)" eu}
={p() | U no()" cus } = {9(x) [ pep} =0,
as desired. O]

Using this characterisation of finite satisfiable types, we can prove that
‘{/ is a forking relation.
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Proposition 3.12. ‘{/ is a forking relation.

Proof. (1nv) follows immediately from the definition.

(moN) If tp(a,a,/UB) is finitely satisfiable in U and B, S B, then
tp(ao,/UB,) is finitely satisfiable in U.

(Nor) If tp(a/cB) is finitely satisfiable in ¢ then so is tp(ac/¢B).

(LrE) Clearly, tp(a/Ba) is finitely satisfiable in a.

(LTR) Suppose that tp(d,d,d,/d.4d,B) is finitely satisfiable in d,a,
and tp(d,d,/d, B) is finitely satisfiable in d,. f Ml = ¢(do, 41, d,, b), for
b C a,B, there exists a tuple a,, € d,a, such that M = ¢(a,, a,, a,,b).
Suppose that a, = a,a, with a; € a, and a, € a,. Then there are

I =/

tuples ¢,, ¢! € d, with M £ ¢(do, ¢,, @, ¢!, b). Hence, tp(d,d,d,/d,B)
is finitely satisfiable in d,.

(BMON) Obviously, if tp(a/UBC) is finitely satisfiable in U, it is also
finitely satisfiable in U u C.

(DEF) Suppose that tp(@/UB) is not finitely satisfiable in U. Then
there is some formula ¢(x; b) € tp(a/UB) such that M # ¢(a’; b), for
all a’ ¢ U. It follows that tp(a’/Ub) is not finitely satisfiable in U, for
every tuple a’ that satisfies ¢(x; ).

(ExT) Suppose that the type p := tp(a/UB, ) is finitely satisfiable in U
and let B, 2 B,. According to Lemma 3.11 there exists an ultrafilter u
such that p = Av(u/UB,). Let a’ be a realisation of Av(u/UB,). Then
tp(a’/UB,) = Av(u/UB,) = pand tp(a’/UB,) = Av(u/UB,) is finitely
satisfiable in U. ]

Our next aim is to show that ‘{/ is the least preforking relation.
Theorem 3.13 (Adler). ‘{/ c \/ , for every preforking relation \/ .

Proof. For a contradiction, suppose that A ‘{/U Bbut A y/;; B. By (DEF),
there are a formula ¢(x, y) over U and tuples @ € A and b € B such that
Mk ¢(a,b) and

a’ )/U b, foralla eqp(x,b)".
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Since tp(a/BU) is finitely satisfiable in U, there is some tuple ¢ € U
with M = ¢(¢, b). Consequently, ¢ v/, b which, by (MoN), implies that
U y/;; B. A contradiction to (LRF). O]

As a corollary we obtain the following result which, in the terminology

introduced below, states that the relation ‘{/ is left local. Below we will
extend this result to all preforking relations.

Lemma 3.14. Let T be a complete first-order theory. For all a,B € V|,
there is a set U < a of size |U| < |T| @ |B| such that tp(a/UB) is finitely
satisfiable in U.

Proof. We construct an increasing sequence U, € U, C ... of sets U, C
awith |U,| < |T|®|B| as follows. We start with U, := @&. For the inductive
step suppose that we have already constructed U, € a. For every formula
¢(x%;b) € tp(a/BU,), let ¢, < a be the elements of @ that are mentioned
in ¢(x). Note that ¢, is finite. Let U,., be the set obtained from U, by
adding all these tuples ¢,,. Then |U,4,| < |T| @ |B|@|U,| <|T| & |B|.
Setting U := U, <, U, it follows that tp(a/UB) is finitely satisfiable
in U. Furthermore, |[U| < |T| @ |B. O

Let us conclude this section with a remark about sets where L{/ is right
reflexive.

Lemma 3.15. Let T be a complete first-order theory. A subset M € M is
the universe of a model of T if, and only if, A ‘{/M M, for all sets A.

Proof. (=) Let M < M be amodel of T and a € M a tuple. To show that
a Y/ M, consider a formula (%) € tp(a@/M). Then Ml = 3¢ implies
M = Ix¢. Hence, there is some ¢ € M with M = ¢(¢).

(<) Suppose that A ‘{/M M for all sets A. We prove that M satisfies
the Tarski-Vaught Test. Let ¢(x) be a formula over M such that M &
Jx¢(x). We fix an element a € M with M £ ¢(a). Since a ‘{/M M,
there is some element ¢ € M with M £ ¢(c). By Theorem c2.2.5, it
follows that M < M. Consequently, M is a model of T. ]
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Local character and forking sequences

In the remainder of this section we study preforking relations with a
property called local character. In the next section, we will prove that
having local character is equivalent to being symmetric.

Definition 3.16. A ternary relation / has local character if it satisfies
the following two axioms:

(LLoc) Left Locality. There exists some cardinal x such that, for all sets
A and B, there is a subset A, € A of size |A,| < k¥ @ |B|" with

A \/a, B.

(RLOC) Right Locality. There exists a cardinal x such that, for all sets
A and B, there is a subset B, € B of size |B,| < k @ |A|* with

A \/3, B.

If \/ is right local, we denote by loc(y/) the least cardinal « such that
\/ satisfies the condition in (rRLoC). Similarly, loc, (/) the least cardinal x
such that/ satisfies the above condition for finite sets A. If/ is not right
local, we set loc(y/) := oo and loc, (/) := oo.

We start by proving that every preforking relation is left local.

Proposition 3.17. Let T be a complete first-order theory and let\/ be a
preforking relation. For all sets A, B € M, there exists a subset A, € A of
size |Ao| < |T| ® |B| such that

A/a, B.

Proof. Let A and B be sets. By Lemma 3.14, there is a set A, € A of size
|Ao| <|T| @ |B| such that A ‘{/Ao B. By Theorem 3.13, this implies that
A \/a, B. (]

Corollary 3.18. Let T be a complete first-order theory and let | a symmet-
ric preforking relation. Thenloc(|) <|T|*.

The two parameters loc,(y/) and loc(y/) are nearly the same. They
can only differ if the first one is a singular cardinal.
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Definition 3.19. For a cardinal x, we denote by "¢ the minimal regular
cardinal with x™# > , that is,

reg . K if x is regular,
k" if k is singular.

Lemma 3.20. Let+/ be an abstract independence relation that satisfies
(BMON) and (rRLOC). Then

loco(v/) <loc(y/) <loc, (v/)™ 8.

Proof. The lower bound follows immediately from the definitions. For
the upper bound, let x := loc,(y/)"® and consider sets A, B ¢ M. We

have to find a set U € A of size |U| < k @ |A|" with A \/U B.
For every finite set A, € A, we choose a set U(A,) S B of size
|U(A,)| <loce(v/) < « such that

Ao \/U(Ao) B.
Setting U := U{ U(A,) | Ao C A finite } it follows by (BMON) that

A, \/U B, forall finite A, CA.

By (FIN), this implies A \/ v B. Since the cardinal x @ |A|" is regular, we
furthermore have

Vs 3 (U0l <xal4l.
A,CA finite []

We can characterise preforking relations with local character in terms
of so-called forking chains.

Definition 3.21. Let+/ be a preforking relation.
(a) Let A,U ¢ M be sets. A sequence of finite sets (By)a<y is a+/-
forking chain for A over U if

A >/UB[<a] By, foreverya<vy,
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where we have set B[<a] := Ug.4 Bg. The ordinal y is the length of the
chain.

(b) We denote by fc(y/) the least cardinal x such that no finite set A
has a /-forking chain over & of length . If such a cardinal does not
exist, we set fc(/) := oo.

In the theorem below we show that the cardinal fc(/) is closely related
to the parameter loc(y/). As we will apply these results in a later chapter
to relations that are not preforking relations, we state them in a slightly
more general setting.

Definition 3.22. A ternary relation \/ has strong finite character if it
satisfies the following axiom:

(sFIN) Strong Finite Character.
A \/UB iff A, \/U B, forall finite A, € Aand B, € B.

Remark. Note that every preforking relation has strong finite character
since (SFIN) follows from (FIN) and (DEE).

The following lemma contains the key argument of the translation
between fc(y/) and loc(y/).
Lemma 3.23. Let+/ be an abstract independence relation that satisfies

(BMON) and (SFIN), let k be an infinite cardinal and A € M.

(a) If there exists some set B such that A \/{; B, for all U ¢ B of size
\U| < , then there is a~/-forking chain for A over & of length «.

(b) If k is regular and every set B has a subset U C B of size |U| < k with
A \/ u B, then there is no \/-forking chain for A over & of length «.

Proof. (a) We construct the desired \/-forking chain (B, ) 4<x by induc-
tion on «. Suppose that we have already defined B,, for all @ < 3. Then

IB[<B]| < R, <&, for f< w),
and |B[<B]| <R, ®|B| <k, forw<P<xk.
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In both cases it follows that A /g[ <B] B. Hence, we can use (SFIN) to
find a finite set Bg € B with A >/B[</3] Bg.

(b) Let (By )<« a sequence of finite sets of length x. By assumption,
there exists a set U € B[<x] of size |U| < k such that

A \/U B[<K].

As « is regular, there is some index « < x with U € B[<«]. By (BMON)
and (MoN) it follows that

A B[<a] Ba -
Consequently, (By )<« is no+/-forking chain for A over &. ]

Proposition 3.24. Let+/ be an abstract independence relation satisfying
(BMON) and (SFIN). Then

loco (/) < fe(v/) <locy(v/)'°8.

Proof. For the lower bound, consider a finite set A and an arbitrary set B.

If there were no set U C B of size |U| < fc(y/) with A \/ u B, we could
use Lemma 3.23 (a) to construct a+/-forking chain for A over & of length

fc(v/). A contradiction.
For the upper bound, consider a finite set A. Then Lemma 3.23 (b) im-
plies that there is no \/-forking chain for A over @ of length loc, (1/)"®.
L]

Theorem 3.25. For a preforking relation/, the following statements are
equivalent:

(1) \/ has local character.

(2) +/ is right local.

(3) For every set A, there exists a cardinal k such that there is no /-
forking chain for A over & of length x.
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(4) There exists a cardinal x such that, for every finite set A, there is no
\/ -forking chain for A over & of length «.

Proof. (1) < (2) < (4) follow by Propositions 3.17 and 3.24, respectively.
(2) = (3) Given a set A, it follows by Lemma 3.23 (b) that there is no
\/ -forking chain for A over & of length « := loc(y/)" @ |A|".
(3) = (4) For every type p € $°“(@), fix a tuple 4, realising p. By (3),
there are cardinals x, such that there are no \/-forking chains for a,
over & of length «,. We claim that the cardinal

k:=sup{ky|peS“(D)}

has the desired properties. Let a be a finite tuple and (B ) o<« @ Sequence
of finite sets of length «. Then a =4 a,, for p := tp(a), and there exists an
automorphism 7 with 7(a) = a,. Since k > «,, there is an index a < &
such that

dy \/ﬂ[B[<oc]] 7[Bq].

By invariance, it follows that a \/ B[<a] Ba- Hence, (By)a<x is not a
\/ -forking chain for a over &. ]

4. Forking relations

In this section we consider the special properties of forking relations
that follow form the extension axiom. We start by presenting a canonical
way to turn every preforking relation into a forking relation.

Definition 4.1. Let \/ be a preforking relation. We define a relation i/
by

A {/U B :iff  for every set C ¢ M there is some set A" ¢ M
with A" =y5 Aand A’ \/U BC.
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Remark. Note that {/ c \/ . Furthermore, by Proposition 4.5 below it will
follow that {/ = \/ if, and only if, \/ is a forking relation. Consequently,

the operation \/ > §/ is a so-called kernel operator, the dual of a closure
operator:

Ve, W=V ad Veeh = Ve

Before proving that (‘/ is a forking relation, we present two alternative
definitions. The first one characterises such relations in terms of global

types.
Definition 4.2. A global type is a complete type over M.

Proposition 4.3. Let+/ be a preforking relation and a, U, B € M. Then

i Y/uB iff tp(a/UB) can be extended to a global type
that is+/-free over U .

Proof. (<) Letp 2 tp(a/UB) be a global type that is \/-free over U.
To show that a {/ v B, consider a set C ¢ M. Choosing some tuple
a' realising p | UBC, we have @’ =yp a and a’ \/U BC.

(=) Suppose that a {/ v B and set

@(x) :=tp(a/UB) u{-¢(x) | ¢ a formula over M that
/-forks over U } .

We start by proving that @ is satisfiable. Let @, € @ be finite. Then

Do = {y(x), =90 (X5C0)5 ..., =@n(X5Cn) } 5
for some v € tp(a/UB) and formulae ¢;(x;¢;) that \/-fork over U.
Since a {‘/U B, there exists a tuple a’ =yp a such that a’ \/U Bé, ...cCy.
Then a’ satisfies @,.
Hence, @ is satisfiable and there exists a global type p 2 @. We claim
that p is \/-free over U. For a contradiction, suppose that p = ¢(x), for

some formula ¢ that/-forks over U. Then —¢ € @ C p. A contradiction.
[
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The second characterisation considers forking relations in terms of
types and formulae. The key here is that the formulae y; below might
have parameters that do not appear in @.

Lemma 4.4. Let+/ be a preforking relation. A partial type © {/ ~forks
over U if, and only if, for some n < w, there are formulae vy, ..., ¥,
with parameters such that

O(x) = \/ vi(x) andeachy;/-forks over U.
i<n
Proof. (<) Fix a tuple @ € ®" and let B be a set such that @ is a partial
type over B. For a contradiction, suppose that a {‘/ v B. We choose a
set C containing the parameters of every formula y;. By definition of {‘/ ,

there is some tuple a’ =yp a such that a’ \/U BC. Since @ E V; y;, we
have Ml = y;(a’), for some i < n. As y; /-forks over U, it follows that
a' y/; BC. A contradiction.

(=) Suppose that @ {“/ -forks over U and let B be some set such that

O is a partial type over B. By definition of {“/ , there exists, for every tuple
a € M some set C; such that

6_1, )/U BC@ N for all 6_1, =UB a.

By (DEF), we can find a formula y; (%, ba, ¢; ) with parameters b; € B
and ¢; ¢ C; such that

M & ya(a, ba,é;) and (%, ba,és)/-forks over U .
Consequently, the set
@(32) U { ﬁl//d(ﬁz', I_ﬂd,éd) | ace @M}

is inconsistent. By compactness, we can therefore find finitely many
tuples ao, ..., d,—; such that

(%) = \/ va, (% ba,»Ca,)

i<n

and each formula v, (%, bs,, ¢4, ) \/-forks over U. ]
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Next we prove that the operations \/ > {“/ turns every preforking
relation into a forking relation.

Proposition 4.5. If \/ is a preforking relation then {‘/ is a forking relation.

Proof. (1nv) follows easily from the definition.

(MON) Suppose that A A, {/U B and let B, ¢ B. To show that
A, {*/ u B, let C ¢ M. By definition of {“/ , there are sets A and A
with A’ A" =y Ao A, and AL A’ \/u BC. This implies that A’ =y, A,
and A’ \/u BC.

(NOR) Suppose that A {*/U B. To show that AU {“/U BU, let C ¢ M.
There is some set A’ such that A’ =5 Aand A’ \/ v BCU. It follows by
(NOR) that A'U \/ v BCU. Since A’U =y AU the claim follows.

(LrF) For all sets A, B, C € M, we have A \/A BC. Hence, A {“/A B.

(LTR) Suppose that A, VAI Band A, VAO BforA, c A, c A, To
show that A, {*/A0 Blet C c M. There exists a set A’ with A} =4 5 A,
and A’ \/a, BC. Let A’, be some set such that A’A’, =, 5 A,A,. By
(inv) it follows that A’) f/ A B. Therefore, there exists a set A7 with
A7 =4 A} and A \/A/1 BC. By (LTR) it follows that A” /4, BC, as
desired.

(BMON) Suppose that A {/U BC. To show that A {L/UC BC,let D ¢ M.
There is a set A’ with A’ =ypc A such that A’ \/ v BCD. By (BMON) it
follows that A’ \/ vc BCD.

(exT) Suppose that A {*/ v B and let a be an enumeration of A. By
Proposition 4.3, there exists some global type p 2 tp(a/UB) that is
\/-free over U. Given a set C € M, we choose some tuple a’ realising

p | UBC. Then a’ =yp a and tp(a’/UBC) = p | UBC has the global
extension p, which is \/-free over U. Hence, Proposition 4.3 implies that

a’' /v BC.

(DEF) Suppose that a 3/, B. Then there is a set C € M such that
a' y/;; BC for all tuples @’ =yp a. Let @ be the set of all formulae
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¢(x) € tp(a/UBC) that/-fork over U. Since \/ is definable, it follows
by choice of C that the set

tp(a/UB)u{-¢p|pec @}

is inconsistent. Hence, there is some formula y(%; b) € tp(d/UB) such
that

(b)) =\ .

We claim that M = y(a'; b) implies @’ 3/ b. Suppose otherwise. Then

=1l _

there exists a tuple a” such that a” =;;; @’ and @” /v BC. But there is
some formula ¢ € @ with M = ¢(a"). By definition of @ this implies
that a” y/;, BC. A contradiction. W

Lemma 4.6. cl, = cl 3/ for every preforking relation /.

Proof. Note that §/ c \/ implies cl v cl . Conversely, suppose that
a¢cl §L/(U). Then there are sets B and C such that a 3/ B. Hence, we

can find a set D such that a’ /- BD, for all a’ =y¢p a. In particular,
we have a y/;c BD, which implies that a ¢ cl (U). H

Exercise 4.1. Lety/ be a preforking relation. Prove that, if {*/ is right
local, then so is /.

To check whether a forking relation is contained in another one, we
can frequently use the following lemma.

Lemma 4.7. Let {’/ be a relation satisfying (EXT) and let \1/ be a relation
satisfying (INv) and (MoN). If, for all sets B and U, there exists some set C
such that

A{’/UBC implies A\I/UBC, for all sets A,

then {)/9\1/
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F2. Ranks and forking

Proof. Suppose that A ‘\3/ v B. By assumption, we can find a set C such
that

A {’/U BC implies A \I/U BC, forallsetsA.

By (EXT), there is some set A" =yp A such that A’ Y/ BC. By choice
of C, it follows that A’ \/y BC. Consequently, (MoN) and (INV) imply
that A/ B. (]

Morley sequences

The aim of this section is to introduce the notion of a basis for an arbitrary
forking relation. Since, in general, forking relations are not symmetric,
these bases are ordered. To simplify notation we write a[<k], for a se-
quence (d;);er, to denote the set U; ¢ a;.

Definition 4.8. Let+/ be a preforking relation and p € S*(U U B) a type.
(a) A \/-Morley sequence for p over U is an indiscernible sequence
(@i )ier over U U B such that every a; realises p and

a; \Ju al<i], foralliel,

We call (a;);c; a+/-Morley sequence over U if it is a \/-Morley sequence
for tp(a;/U) over U.

(b) A reverse/-Morley sequence for p over U is an indiscernible se-
quence (a;);e; over U U B such that every a; realises p and

a[<i] \/u a;, foralliel,

Remark. If (a;);er is a+/-Morley sequence for p over U, then it follows
by (FIN), Lemma 2.4, and induction, that

a[L] /v a[l,], foralll,,I, € IwithI, <1,.

For symmetric preforking relations, we obtain the following stronger
result.

1118



4. Forking relations

Lemma 4.9. Let | be a symmetric preforking relation and (a;) s a se-
quence such that

a; Ly a[<i], foralliel,
Then
a[K] Lu a[L], foralldisjoint K,L<1.

Proof. By (FIN), it is sufficient to prove the claim for finite sets K and L.
We do so by induction on |K U L|. If both sets are empty, the claim follows
by (NOR). Otherwise, let k := max (K U L). By (sym), we may assume
without loss of generality that k € K. Set K, := K \ {k}. By inductive
hypothesis, we have

a[K.] Lu a[L].
Furthermore,
ar Lu a[<k] implies ay Ly a[K,]a[L].
Consequently, it follows by Lemma 2.4 that
axa[Ko] Lu a[L]. 0
We can use the extension axiom to construct Morley sequences.

Proposition 4.10. Let+/ be a forking relation. If a \/ v B then thereis a
\/ -Morley sequence (G, ),<w for tp(a/UB) over U.

Proof. Set A :=|T|®|U|®|B|®|a|®R, andlet k > 1,,. First, we construct
a sequence (Cy )q<x Of tuples realising tp(a/UB) such that

o \Vu Bé[<a], foralla<x.

By induction, suppose that we have already defined ¢g, for all 8 < a.
Since a \/ v B, we can use (ExT) to find a tuple ¢, =yp a such that

Cu /v Bé[<a].
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F2. Ranks and forking

Having constructed (¢4 ) o<x> we use Theorem Es.3.7 to find an indis-
cernible sequence (d, )<, over U U B such that, for every n < w, there
are indices a, < -+ < a,,_, < k¥ with

ao e d?’l—l EUB C_ao e C_“n—l .

By (1nv) and (MmoN) it follows that a, \/U Ba[<n]. Hence, (a,)n<e is
the desired \/-Morley sequence. ]

Corollary 4.11. Let | be a symmetric forking relation. For every tuple a,
every set U, and every linear order I, there exists a | -Morley sequence

(@i)ier fortp(a/U) over U.

Proof. As | is symmetric, we have a |y U. Therefore, we can use Pro-
position 4.10 to find a | -Morley sequence (¢, )<, for tp(a/U) over U.
By compactness and (FIN), it follows that there also exists a | -Morley
sequence (d;);er for tp(a/U) over U that is indexed by I. O

Lemma 4.12. Let+/ be a forking relation and let p be a type over U U B.
If there exists a~/-Morley sequence (¢, ) n<w for p over U, then there exists
a reverse~/-Morley sequence (ay) n<w for p over U.

Proof. Let (¢, )un<w be a\/-Morley sequence for p over U. By compact-
ness, there exists a sequence (d, )<, such that

do...dnEUBén...C_o, foralli’l<a).

By definition of a Morley sequence we have
C_n \/U Eo..-c_n_lo

Hence (1nv) implies that

a; \JU Giss...dn, foralli<n<ow.

Repeatedly applying Lemma 2.4 it follows that

Ao ...0p— \/Udn, foreveryn < w. ]
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4. Forking relations

The following lemma can be used in some cases to construct a reverse
\/-Morley sequence out of an indiscernible sequence.

Lemma 4.13. Let+/ be a preforking relation and let 1, ] be linear orders
such that I has no maximal element. If (a;)ic14; is indiscernible over U
then (a;) jej is a reverse/-Morley sequence over U U a[I].

Proof. Clearly, (@;)jes is indiscernible over U u a[I]. To show that it is
a reverse \/-Morley sequence over U U a[I], it is sufficient, by (FIN), to
prove that

aj, a]kl\/Ua dj,, foralljo,<---<jrin], k<w.

Hence, consider indices j, < --- < ji in J. By indiscernibility and the fact
that I has no maximal element, we can find, for every finite set I, C I,
indices iy < --- < ix_, in I such that

Ajo + - Ajy_, Ajp =Ua[l,] Fig -+ Big_, Ajy -

It follows that tp(a;, ...a;_,/U u a[I] u d;,) is finitely satisfiable in
U u a[I]. Consequently,

- u - . . - - -
Ajo .-G, \/Uud[[] aj, implies aj ...a;,, \/Uud[l] dj,
as desired. []

For preforking relations that are contained in the splitting relation {/ ,
we no not need to check for indiscernibility when proving that a given
sequence is a Morley sequence.

Lemma 4.14. Let o = (a;)iey and § = (b;)ier be two sequences and
U € M a set of parameters.

(a) Ifb; =yaj<i) a; and b; /v al<ilb[<i), forall i € I, then a =y .

(b) If a; =ya[<i) ai and a; \/U a[<i], forall i < jin I, then a is
indiscernible over U.
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Proof. (a) We prove by induction on n < w that
a[i] =y b[1], forallie[I]".

For n = o, the claim is trivial. For the inductive step, suppose that we
have already proved it for n and consider a tuple of indices 7 € [I]"*".
Setting i’ := i, ...i,_, we have

a[i'] =y b[i'] and b; /v a[i']b[i’],
which implies that a[i'] =y; b[i']. Since b;, =ya[<i,] di,» it follows
that
v b[i']b; .

In

a[i')a; =u a[i']b;,

(b) We have to prove that
ali] =y alj], foralli,je[I]", n<w.

Hence, let 7, j € [I]". First, we consider the case where is < jj, for all
s < n. Then we have

- _ - - S - - - -
dj, Zva,...a,_, i, and aj, \/U Aig oo Gy Ajy oo Gj_, >

for all s < n. Consequently, it follows by (a) that a[7] =y a[j].
For the general case, let 7, j € [I]" be arbitrary. We set

kg == max {i;, jj}, fors<mn.

Then k ¢ [1]" and it follows by the special case considered above that
ali] =y alk] =v alj]. [

As an application of Morley sequences we show that, for forking rela-
tions, right locality and symmetry are equivalent. One direction is based
on the following two lemmas.
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4. Forking relations

Lemma 4.15. Let+/-be a right local forking relation, B, U < M sets, and
let k > loc(\/) @ |B|" be a regular cardinal. For every reverse/-Morley
sequence (a;) <, over U, there exists an index a < k such that

Ba[<f] \/u ag, foralla<B<xk.

Proof. By (RLOC), there exists a set U, € U U a[<k] of size
|U,| <loc(y/) @ |B|" <
such that

B \/u, Ua[<x].

SetI:={i<x|a;nU,#@}. Then|I| < k and, by regularity of «, there
exists an index & < « that is larger than every element of I. For a < 8 < k,
it follows by (BMON) and monotonicity that B \/ va[<p] p-Since (d;)i<x
is a reverse \/-Morley sequence, we furthermore have a[<f] \/ u dg. By
Lemma 2.3, it follows that Ba[<f3] \/U ag. O

Lemma 4.16. Let+/ be a right local preforking relation. If there exists a
reverse \/-Morley sequence (d,)<w for tp(a/BU) over U then B \/U a.

Proof. Setx := |B|" @loc(\/)* and let (a, )<, be a reverse \/-Morley
sequence. By compactness, we can extend (d, )<, to an indiscernible
sequence (a;);<x over Bu U of length «. By (FIN) and (1NV) it follows
that

a[<a] \/U a,, foralla<xk.

Hence, (a;)i<x is a reverse \/-Morley sequence. By Lemma 4.15, there
is some index a < k¥ with B \/U as. As a, =yp a, we can use (INV) to
conclude that B \/ U a. ]

Theorem 4.17 (Adler). A forking relation/ is right local if, and only if, it
is symmetric.
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F2. Ranks and forking

Proof. (<) follows by Corollary 3.18.

(=) Ifa \/U B, we can use Proposition 4.10 and Lemma 4.12 to
construct a reverse y/-Morley sequence of tp(a/UB) over U. Therefore,
it follows by Lemma 4.16 that B \/ U a. ]
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F3. Simple theories

1. Dividing and forking
In this section we introduce the central forking relation of model theory,
which is simply called forking.

Definition 1.1. Let T be a first-order theory, U a set of parameters, and
k < w.

(a) We say that a set @ of formulae over U is k-inconsistent (with
respect to T) if T(U) u @, is inconsistent, for every subset @, € @ of
size |@,| > k.

(b) A formula ¢(x;¢) with parameters ¢ k-divides over U if there
exists a sequence (¢, )<, such that

e ¢, =y forall m < w,and
o theset { 9(%;¢,) | n < w} is k-inconsistent.

We say that ¢ (x; ¢) divides over U if it k-divides over U, for some k < w.
(c) A set @ of formulae divides over U if T(M) u @ £ ¢, for some
formula ¢ that divides over U. We define

i /uB :iff  tp(a/UB) does not divide over U.

(d) A set @ of formulae forks over U if there are finitely many formulae
900) e q)n—l SuCh that

TMM)UDE @, V-V,
and each ¢; divides over U. We define

a \f/U B :iff  tp(a/UB) does not fork over U.
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F3. Simple theories

Example. (a) Consider the structure (Q, <) and let b < ¢ be rational
numbers. The formula ¢(x;b,¢) := b < x A x < ¢ divides over the
set U := {a € Q| a < b} since we can choose numbers b, and c,
such that b < b, < ¢, < b; < ¢, < ....Then b, c, =y bc and the set
{b,<xAx<c,|n<w} is2-inconsistent.

(b) We consider the tree (A<“, <) where A is an infinite set. Fix a
vertex u, € A%, an element a € A, and set u := uya. The formula
¢(x;u) = u < x divides over the set U := {v € A“ | u, # v } since,
fixing distinct elements b, € A, for n < w, we can set ¢, := ub,,. Then
cp =y uand {c, < x| n < w} is 2-inconsistent.

Remark. Note that, if a formula ¢ divides over U and y E ¢, then y also
divides over U. It follows that a formula ¢ divides over U if, and only if,
the set {¢} divides over U. Furthermore, if a set @ divides over U, then
there exists a finite subset @, € @ such that the formula A @, divides
over U. In particular, a complete type p divides over U if, and only if,
some formula ¢ € p divides over U. The same holds for forking.

Below we will prove that {1/ is a preforking relation and \f/ the associ-
ated forking relation. Before doing so, let us give an alternative charac-
terisation of dividing in terms of indiscernible sequences.

Lemma 1.2. Let ¢(%; y) be a formula and ¢, U € M. The following state-
ments are equivalent:

(1) ¢(x;¢) divides over U.

(2) There exists an indiscernible sequence (¢, )<, over U such that
Co = Cand the set { (x;¢,) | n < w } is k-inconsistent, for some
k < w.

(3) There exists an indiscernible sequence (¢, )n<o over U such that
Co = C and the set

T(Un<o €n) Uip(x:60) [ n<w}

is inconsistent.
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Proof. (2) = (1) and (2) = (3) are trivial.
(3) = (2) Let (¢,,) n<w be an indiscernible sequence over U with ¢, = ¢
such that

T(Un<w C-n) U { (P(-;C, En) | n< a)}
is inconsistent. Then there exists a finite subset I € w such that

T(Unel C-n) U{(P()-C; En) | ne I}

is inconsistent. Let n, < --- < ng_, be an enumeration of I. For every
k-tuple of indices i, < -+ < ix_y, ¢[1] =y ¢[n] implies that

T(Ciy - Cix ) ULQ(%: i )5 95365, ) }

is inconsistent. Hence, { ¢(%;¢,) | n < w } is k-inconsistent.

(1) = (2) Suppose that ¢(x;¢) divides over U. Then there exists a
sequence (¢, )n<e such that ¢, =y ¢ and { @(%;¢,) | n < w} is k-
inconsistent, for some k. By Proposition E5.3.6, there exists an indiscern-
ible sequence (d, ) <, over U with

AV((cn)n/U) € Av((dn)n/U).

In particular, tp(¢/U) ¢ Av((d,),/U) and
-3Z[@(Z3%6) A A @(Z3%k-1)] € AV((d,)n/U).

Consequently, d, =y ¢ and the set { ¢(%;d,,) | n < w } is k-inconsistent.
Fixing an automorphism 7 € AutMy with 7(d,) = ¢, we obtain a
sequence (7(d,))n<eo With the desired properties. ]

Exercise 1.1. Prove that a formula ¢(x;¢) divides over a set U if, and
only if, it divides over some model M 2 U. (Hint. Use Lemma E5.3.11.)

Lemma 1.3. The following statements are equivalent:

1) a Yyb
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(2) For every infinite indiscernible sequence (b;)icr over U with b =
b;, for some i, there exists a tuple &' =3 a such that (b;);er is
indiscernible over U U a'.

(3) For every indiscernible sequence (l_ﬂn)nw over U with b = b, there
is some a' =;; a such that

b =var by, forallm,n< w.

Proof. (2) = (3) is trivial.

(3) = (1) Suppose that a % b. By Lemma 1.2, we can find a formula
@(%;¢) € tp(@/Ub) and an indiscernible sequence (&, )<, over U such
that ¢, =y ¢ and { ¢(%;¢,) | n < w } is k-inconsistent, for some k <
. By adding and permuting free variables of ¢, we may assume that
¢n = b,d where d ¢ U and b, =y b, for all n. Finally, applying an
automorphism of M|, we may assume that b, = b.

To show that (3) fails, consider a tuple a’ =;; a. Then

M E ¢(a’; Bod) ,

but the k-inconsistency of { ¢(%;b,d) | n < w } implies that there is
some n < k with

M # ¢(a';b,d).

Consequently, b, ua bo. ]
) (1} = (3) Consider an indiscernible sequence (b,,),<, over U with
b = b, and suppose that there is no such tuple a’. Then the set

tp(a/Ub) U { p(%:b:) < 9(%:b;) |
i,j < wand ¢(x;y) aformula over U }

is inconsistent. This set is equivalent to the union

U p(x,b,), where p(x,%"):=tp(ab/U).

n<w
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By compactness, we can therefore find a finite subset @ C p and indices
Ne < -+ < Nk, < w such that

TU (%, by, )U---UD(, by, )
is inconsistent. Setting ¢ := A @ it follows by indiscernibility that
T -3%[p(%,b;,) A A o(%b; )],

for every increasing tuple i, < --- < ix_,. Hence, { ¢(%,b,) | n < w} is
k-inconsistent and ¢ divides over U. Consequently, a ¥/, b.

(3) = (2) Let (b;) ie; be an infinite indiscernible sequence over U with
b;, = b, for some i, € I. Setting

Y= {y(x;b[1]) < w(x;b[k]) | v a formula over U and
ord(i) = ord(k) },

it is sufficient to prove that tp(a/Ub) U ¥ is satisfiable.

Fix a dense linear order J 2 I without end points. Using Lemma E5.3.9,
we can extend (b; )i to an indiscernible sequence (b;);c; over U. By (3)
and compactness, there exists a tuple a’ =;;; a such that

bi =vua’ I_?j, for all l,]E]

To show that tp(a/Ub) U ¥ is satisfiable, let ¥, € ¥ be finite and let
I, € I be the finite set of all indices i such that ¥, contains the con-
stants b;. By the Theorem of Ramsey, there exist an order embedding
ho : I, — J such that the sequence (l_yh(i))ie 1, is indiscernible over Uua’
with respect to the formulae in ¥,. We extend h,, : I, — ] to an order em-
bedding h : I, U {i, } — J. There exists an automorphism 7 € Aut My
mapping by,(;y to b;, for i € I, U {i,}. Then the tuple (a’) satisfies
Uier,u(i,) tP(@/Ub;) U ¥,. In particular, it satisfies tp(a/Ub) U ¥,. [

Remark. Comparing the statement in (2) above with Lemma E5.3.11, we

see that, when a {1/ u B, we can choose a’ =yg a while, in general, we
only find @’ =y a.
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Example. (a) Consider the structure (Q, <) andlet b < a < ¢ be elements.

Then bc {1/ g abuta % bc. In particular, Q/ is not symmetric.
We have already seen above that ¢(x;b,¢) := b < x A x < ¢ divides
over |b and, hence, also over the empty set. Consequently, a % be. To

show that bc {i/ o a, let (a;)i<, be an indiscernible sequence over @.
Choose elements b’ and ¢’ such that b’ < a < ¢’ and b’ < a; < ¢/, for
all i < w. Then b'c’ =, bc and (a;) <, is indiscernible over {b’, ¢’}. By
Lemma 1.3, it follows that bc {1/ o a.

(b) Let (A, ~) be a structure where ~ is an equivalence relation with
infinitely many classes all of which are infinite. Fix elements a, b € A and
aset U C A. Then

a {l/Ub iff {a}n{b}c U and,

a + b or thereis some c € Uwith b ~ c.

Let us show next that {1/ is a preforking relation, that \f/ is the corres-
ponding forking relation, and that acl is the closure operator associated
with them.

Proposition 1.4. {i/ is a preforking relation.

Proof. Throughout the proof we will tacitly make use of the character-
isation of {l/ from Lemma 1.3.

(1nv) follows immediately from the definition.

(MmoN) Suppose that a,a, {1/ v B and let B, € B. For a contradiction,
suppose that d, 4, Bo. Then we can find a formula ¢ € tp(d,/UB,)
that divides over U. Hence, ¢ € tp(do,d,/UB) implies that d,d, ¥/, B.
A contradiction.

(NOR) Suppose that a {1/5 b. To show that a¢ {1/5 bé,let (byén)pew be
an indiscernible sequence over ¢ with b.¢, = bé. Then ¢, = ¢, for all n.
Since a {1/ ¢ b, thereis atuple @’ =;; a such that (b,,) <, is indiscernible
over a'¢. Hence, (b,,¢) <, is also indiscernible over a’¢. As a'¢ =;; ac,
the claim follows.
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(LrE) Let a, b be tuples. To show that a {1/ ; b it is sufficient to note
that every indiscernible sequence (b, )<, over a is also indiscernible
over au a.

(LTR) Suppose that d,a,a, {i/aoal b and a,a, {1/@0_1_9. Let (b)) n<w be
an infinite indiscernible sequence over a, such that b, = b. We have to
find tuples

Y Y
(10 (11 (12 :a‘ob aoalaz
such that (b,,) <, is indiscernible over 4’ a" a”’. Since a,a, /4, b, there
n w ol do

are tuples d,a; =; j do4d, such that (bn)n<w is indiscernible over a_ a..
Let a, be a tuple such that

such that (b,,) <, is indiscernible over a”a" a’’. Since

= _ = d == _ = = =
ao - ao an a a 61 dob 610611(12

the claim follows.

(BMON) Suppose that g \/ bd. To show that a \/Cd b, let (b ) n<w
be a sequence of indiscernibles over éd with b, = b. Then (b ) p<w
is indiscernible over ¢. Consequently, there is some tuple a’ =.;; a
such that (b,d) <, is indiscernible over a’¢. It follows that (b,,) <, is

indiscernible over a’cd.

(DEF) Suppose that @ 3/, B. Then there exists a formula ¢(x; b) €
tp(a/UB) that divides over U. For every a’ € ¢(%;b)" it follows that
tp(a’/Ub) divides over U. N

Before proving that \f/ is the forking relation associated with {i/ , let
us show that forking satisfies the axiom (EXT) even for incomplete types.
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Lemma 1.5. A partial type @ over U U C forks over U if, and only if, every
complete type p € (@) forks over U,

Proof. Clearly, if @ forks over U, then so does every type containing .
Conversely, suppose that every p € (@) forks over U. For each p € (D),
we fix a formula ¢, € p that forks over U. By compactness,

(@)={p|pe(®)}c U (¢

pe( @)

implies that there are finitely many types p,, ..., p,—, € (@) such that

(@) < (@p,)U---U(pp,.,)-

Consequently, @ E ¢, Vv ---V ¢,  and @ forks over U. ]

Proposition 1.6. \f/ =*( {1/ )

Proof. (S) To prove that \/ ¢ *({/), note that {/ ¢ {/ and that the
operation \/ > {L/ is monotone. Therefore, it is sufficient to prove that

=*({/), i.e, that {/ satisfies (ExT). Hence, suppose that @ \/y; B and
let C be an arbitrary set. By Lemma 1.5, there exists a complete type p
over U U B U C that contains tp(a/UB) and that does not fork over U.
Fix a realisation a’ of p. Then @’ =y a and a’ \f/U BC.

(2) Suppose that a ,//; B. Then we can find finitely many formulae
$o(%5¢0)5 > Qn_y(X; ¢y, ) that each divide over U and such that

tp(a/UB) E @o(X;C0) V-V @y (%5 Cn-y) -

For every tuple a’ =y a, there is some i < n such that Ml = ¢;(a’; ¢;).
Consequently,

a’ dUBéo...c'n_l, foralla’ =yp a.

Hence, a *( {1/ ) B does not hold. ]
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Corollary 1.7. \f/ is a forking relation.

Lemma 1.8. Cl\f/ = clg/ = acl

Proof. By Lemma F2.4.6, it is sufficient to prove that cl y = acl.

For one inclusion, let a ¢ acl(U). Then there exists an indiscernible
sequence (a, )<, over U with a, = a and a; # ay, for i # k. Since a is
the only element realising tp(a/Ua) and (a, ), is not indiscernible over
U u {a} it follows by Lemma 1.3 that a {/, a.

Conversely, suppose that there are sets B, C such that a %c B. By
Lemma 1.2, we can find a formula ¢(x;¢) € tp(a/UCB) and an indis-
cernible sequence (¢, )<, such that ¢, = ¢ and { ¢(x;¢,) | n < @}
is k-inconsistent, for some k. For every n < w, fix an element a, such
that a,¢, =y ac. Since M £ ¢(a,;¢,) and { ¢(x;¢,) | n < w } is k-
inconsistent, there exists an infinite subset I € w such that a; # a;, for dis-
tinct i, j € I. As each a,, satisfies tp(a/U) it follows that a ¢ acl(U). []

At first sight, the definition of {1/ might seem rather ad-hoc. The

following result indicates that {i/ plays a rather distinguished role: it
is the largest preforking relation that is contained in every symmetric
forking relation.

Theorem 1.9. {1/ C L, for every symmetric forking relation |.

Proof. Suppose that a {1/ u b. Since | is symmetric, (LRF) implies that
B Lu U. Therefore, we can use Proposition F2.4.10 and Lemma F2.4.12
to construct a reverse | -Morley sequence (b, )<, for tp(b/U) over U.
By (1NV) we may assume that b, = b. Since @ ‘\1/ v b there is a tuple
' =y a such that (b,,) <, is indiscernible over Ua’. Hence, (b,,) n<
is a reverse | -Morley sequence for tp(b/U) over Ud'. Since | is right
local, it follows by Lemma F2.4.16 that a’ | ¢ b. By invariance we obtain

alyub. [

Remark. In the next section we will show that there are theories where
{1/ is symmetric and a forking relation. For such theories, {1/ is the largest
preforking relation that is contained in every symmetric forking relation.
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To conclude this section we compare {1/ and \f/ with the preforking
relations introduced in Section F2.3. First, let us introduce the forking

relation associated with the splitting relation {/ :
Definition 1.10. 1/ := *(3/).
Lemma 1.11. \1/ S {1/

Proof. Suppose that a \1/ v B. To show that a {1/ v B, consider a formula
¢(x;¢) € tp(a/UB) and let (¢,,) <o be a sequence such that ¢, =y ¢,
for all n. We have to show that the set { ¢(x;¢,) | n < @} is not k-
inconsistent for any k.

There is a tuple @’ =yp a such that

6_1, i/U BC_[<CU] .
Hence, ¢(%;¢) € tp(a’/UB¢[<w]) implies that
¢(x;¢,) etp(a’/UBC[<w]), foralln.

Consequently, a’ satisfies { 9(¥%;¢,) | n < w} and this set is not k-
inconsistent. [

Proposition 1.12. ‘{/ c {/ c \f/ c {1/

Proof. The inclusions ‘{/ c \1/ C {1/ follow from Theorem F2.3.13 and the
preceding lemma, respectively. Since the operation \/ > {*/ is monotone

and idempotent, we further have \‘/ = *(\‘/ )< *( {1/ ) = \f/ : ]

2. Simple theories and the tree property

The aim of this section is to characterise those theories where the rela-
tion \f/ is symmetric. In the same way as stable theories are characterised
by the absence of the order property, we will present a combinatorial

property causing \f/ to be non-symmetric.
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Definition 2.1. A first-order theory T is simple if \f/ is symmetric. For

simple theories we will write If and |4 instead of \f/ and {i/ . In later
chapters, where |* will be the only forking relation under consideration,
we will frequently drop the superscript and just write | .

Before giving a combinatorial characterisation of simple theories, let
us note some special properties of the relation [f in such theories. It
follows from Theorem 1.9 that, for complete types in simple theories,
forking and dividing is the same. According to the next lemma this is
also true for partial types.

Lemma 2.2. Let T be a simple theory, ®(x; ) a set of formulae over U,
and ¢ € M. The following statements are equivalent:

(1) @©(x;¢) forks over U.
(2) @(x;¢) divides over U.

(3) For every |'-Morley sequence (4 ) n<w for tp(é/U) over U, the set
Uico @(%;5¢,) is inconsistent.

Proof. (2) = (1) follows immediately from the definition of forking.

(3) = (2) Let (¢y)n<w be a J,f—Morley sequence for tp(¢/U) over U.
Applying a U-automorphism we can ensure that ¢, = ¢. By assumption,
Un<o ©(%;¢,) is inconsistent. Using compactness, we obtain a finite
subset @, € @ such that U,,., @, (x;¢,) is inconsistent. Set ¢ := A D,.
By Lemma 1.2, it follows that ¢(x;¢) divides over U. Since @(x;¢) =
¢(x;¢), so does O(x;¢).

(1) = (3) Suppose that (,) <, is a |f-Morley sequence for tp(¢/U)
over U such that the set U, ., @(%;¢,) is consistent. Fix a regular car-
dinal « > loc( ') @ |%|". By compactness, there exists a |['-Morley se-
quence (¢;) <« for tp(¢/U) over U such that U;., @(x;¢;) is consistent.
Let a be a tuple satisfying this set. By Lemma F2.4.15, we can find an
index a < x such that

ac[<a] Iy o .
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Consequently, @(x; ¢, ) does not fork over U. By (1NV), the same holds
for @(x;¢). ]

Next, we present an improved version of Lemma 1.3.

Proposition 2.3 (Kim). Let T be a simple theory. The following statements
are equivalent.

(1) alyb
(2) alyb
(3) For every infinite |f- Morley sequence (b;)icr for tp(b/U) over U

there exists a tuple a' =y a such that (b;)ies is a [*-Morley se-
quence over U U a'.

(4) For some f-Morley sequence (b; )i<w for tp(b/U) over U there
exists a tuple a' =y a such that (b;)i<, is a ['-Morley sequence
overUua'.

Proof. (1) < (2) has already been shown in Lemma 2.2 and (1) = (3) is
a special case of Lemma 1.3.

(3) = (4) is trivial since we have seen in Corollary r2.4.11 that, for
symmetric forking relations, Morley sequences always exist.

(4) = (2) Let (b;) i<, be a [f-Morley sequence for tp(b/U) over Uua’,
for some @’ =; a. Set p(x,x") := tp(ab/U). Then a’ realises p(%, b).
Hence, ' is a realisation of U;, p(%, b;) and it follows by Lemma 2.2
that p(%, b) does not fork over U. O

Right locality

Note that, if the relation \f/ is right local, then \f/ c {1/ implies that ‘\1/ is
also right local. (This is also a consequence of Lemma 2.2.) In this section

we will prove that the converse is also true: if {1/ is right local, then so
is \f/ . Recall the notion of a /-forking chain introduced in Section F2.3.

Definition 2.4. (a) We call {1/ -forking chains and \f/ -forking chains
dividing chains and forking chains, respectively.
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(b) A specification of a dividing chain (by )<y for @ over U is a se-
quence (@q; ko )a<y of pairs consisting of a formula ¢, (%; y,) and a
natural number k, such that, for all « < y,

Mk @qo(d;by) and @ (%;by) ke-divides over U U b[<a].

Similarly, a specification of a forking chain (ba)a<y for a over U is
a sequence (@q, Vo, kg, ma)a<y, where Pq is a formula, m, a natural
number, ¥, an m,-tuple of formulae, and k, is an m-tuple of natural
numbers such that, for all o < y,

M ¢q(a; l-?a)
and there are tuples do, ..., c?ma_l such that
Pa (32; Boc) = l/’oc,o(-’-ca do) VeV wtx,ma—l("z’ d_mzx_l)

and each v, ; (%, d;) kq,;-divides over U U b[<a].
(c) A dividing chain is uniform if it has a specification (@4, ko )a<y
where

¢« =¢p and kg =kp, foralla,f<y.

Similarly, we say that a forking chain is uniform if it has a specification
(‘POD 1/_/06) koca moc>(x<y Where

Pa =@Qp, Mg=mpg, Ya,i=VYgpi, k(x,i = kﬂ,i >
forall o, f < yand i < m,.

Note that, according to Theorem F2.3.25, {1/ is not right local if, and
only if, there are arbitrarily long dividing chains. The same holds for
\f/ and forking chains. Our aim is therefore to show that, if a theory
has arbitrarily long forking chains, then there are also arbitrarily long
dividing chains. We start with the observation that any subsequence of a
forking chain is again a forking chain. As a consequence we can use the
Pigeon Hole Principle to construct uniform forking chains.
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Lemma 2.5. Let y be an ordinal and I C y.

(@) If (ba)a<y isa dividing chain for a over U with the specification
(Pas>ka)a<y then (by)qer is a dividing chain for a over U with
specification (@, ko) aer-

(b) If(l_y(x)oKy is a forking chain for a over U with the specification
(P> Var kKas Mo ) acy, then (ba)ad is a forking chain for a over U
with specification (Qo, Vo, ko, Mg ) ael-

Proof. (a) Fix « € I and set B := U{ bg | B € I, B < a}. It is sufficient
to show that ¢, (%;b,) k4-divides over U U B. This follows from the
definition of dividing and the fact that ¢, (%; b, ) k,-divides over the
superset U U b[<a] 2 U U B.

(b) follows analogously. ]

Corollary 2.6. Let x > |T| be a cardinal. If there exists a forking chain
for a over U of length «, then there also exists a uniform forking chain
for a over U of length «.

Proof. Let (by)o<x bea forking chain for a over U with specification
(@os Wa> ka» My Yacx. Since there are at most |T| < x formulae over @,
there exist a subset I C « of size |I| = «, formulae ¢, ¥, and numbers m, k
such that

(P(x:(Pa my =m, I/Ja,i:V/ia koc,i:ki)

for all @ < x and i < m. By Lemma 2.5, the subsequence (b, )qcr is a
uniform forking chain for g over U. ]

The key property of dividing which allows us to turn forking chains
into dividing chains is contained in the following lemma.

Lemma 2.7. Suppose that the formula go(fc;_l_a) k-divides over a set U. For
every set C € M, there is some tuple b’ =y b such that ¢(x;b") k-divides
over U U C.
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Proof. By Lemma 1.2, there exists an indiscernible sequence (b, ),<w
over U such that b, = b and the set { ¢(%; b, ) | n < w } is k-inconsistent.
Using Lemma Es.3.11, we can find a set C’ =y C such that (b, )<, is
indiscernible over U U C'. Let € Aut My be an automorphism with
n[C'] = C, and set b, := n(b,). Then (b)), is indiscernible over
U u C and the set { go(x b') | n< w} is k-inconsistent. By Lemma 1.2,
it follows that ¢(%;b’) k-divides over U u C. Since b, =y b, = b, the
claim follows. [

Corollary 2.8. Let (b;);<, be a dividing chain for a over U with finite
length. For every set C ¢ M, there exist tuples

bl =y aby...b,,

such that (b})i< is a dividing chain for @’ over U U C with the same
specification as (b;) i<y.

Proof. Let (@;, k;)i<n be a specification of (b;);.,. We prove the claim
by induction on n. For n = o, there is nothing to do. Hence, suppose
that n > 0. We can use Lemma 2.7 to find a tuple b’ =y b, such that
@o(%;b) ko-divides over U U C. Let 77 € Aut My be an automorphism
with 7(b,) = b.. Then (7(b;))o<i<n is a dividing chain for 7(a) over
U u b’. Applying the inductive hypothesis to it, we obtain tuples

a'by...b,_, =y w(a)n(b,)...7w(byy)

such that (1_9;)0<i<n is a dividing chain for @’ over U u C U b’. Since

a'blb ... b _ =y n(a)bin(b,)...a(b,_,) =y a@bob,...b,_,,
it follows that (b%);<, is the desired dividing chain for @’ over UUC. []

In order to turn a forking chain into a dividing chain, we iterate the
following construction.
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Lemma 2.9. Let (b;);<, be a dividing chain for G over U u C with a finite
length n and with the specification (@Q;, k;)i<n. If

tp(a/UC) & 90(92;30) VoV 9m_1(5c;c?m_l),

where each 9;(%; d i) lj-divides over U, then there exist an index j < m

and a tuple d' =y d; such that d,by,....b,_,isa dividing chain for a
over U with specification

<‘9j’ lj)> <§00> ko}) s (ﬁon—l’ kn—1>-

Proof. We prove the claim by induction on n. For n = o, pick an index j
such that M & 9;(d;d;). Then d; is a dividing chain for a over U with
specification (9, [;). Hence, suppose that # > o. By Corollary 2.8, there
exist tuples

such that (bf )i<n is a dividing chain for @’ over UuCud, ... d,_,. Since

a' =yc a, there is some index j < m such that
-/ 3
M E 19]'(61 ;dj) .

It follows that d;, b,,...,b),_, is a dividing chain for a’ over U with
specification

<9j> lj)’ (Posko)s s {@nss kns) .
Fix a tuple d’ such that
d&i,I;O ce l_ﬂn_l =yu d,d]I; ce

Then d’, by, ..., b,_, is the desired dividing chain. ]

Corollary 2.10. Let (b;)i<n be a uniform forking chain for a over U with
specification (@, ¥, k, m)i<y. There exists a function g : [n] — [m] and a
dividing chain (b%) <, for a over U with specification

(Vg(o)> kg(o) s+ - > {Wg(n-1)> Kg(n-1))-
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Proof. We prove the claim by induction on n. For n = o, there is nothing
to do. Hence, suppose that n > o. Applying the inductive hypothesis to
the subchain (b;)o<i<, We obtain a dividing chain (b})<i<n for a over
U u b, with specification

(Vo) kg())s - - -5 (Wg(n-r)s Kg(n-r))-
Since Ml = ¢(d; b, ) and
90(92; I;O) F 1po(k;d_o) VeV me—l()_Q dm—1) 5

for suitable c_zo, .. ,_dm_l, we can use Lemma 2.9 to find an index j < m
and a tuple b =y d; such that (b}) ., is a dividing chain for d over U
with specification

(Wi ki) (Vo) kg )+ - (Wg(nr)> Kg(na))- L]

Starting from a sufficiently long forking chain, we have constructed
arbitrarily long finite dividing chains. According to the next lemma, this
is sufficient to obtain dividing chains of every ordinal length.

Lemma 2.11. Let ¢ be a formula and k < w a number. If, for each n < w,
there exists a uniform dividing chain for a over U of length n with specific-
ation (@, k) i<, then, for every ordinal y, we can find a uniform dividing
chain for a over U of length y with specification (¢, k) a<y.

Proof. Let y be an ordinal. We define the following set of formulae with
variables x, y%, z¥, fora < y and i < w.

O:={p(%5%)|a<y}
Gl i i) e (S, |
v a formula over U, i,n < w, and
Bo< i <Pua<a<y}
U{-3x[p(x25) A np(528 )]
A<y, o< <iry<w}.
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Note that, if 4, b%, and ¢%, for a < y and i < n, satisfy @, then

Ci Zubl<a] b°

and the set { ¢(%;¢%) | i < w} is k-inconsistent. Hence, the formula
¢(x;b) k-divides over Ub[<a]. Consequently, (b%) 4« is a dividing
chain for a over U with specification (¢, k) a<y.

It therefore remains to show that @ is satisfiable. Let @, € ® be finite
and let I C y be the finite set of indices & such that @, contains some
of the variables y* or z{, for i < w. Choose a uniform dividing chain
(b;)i<n for a over U of length n := |I|. We can satisfy @, by interpreting &
by @, * by the corresponding b;, and z% by tuples witnessing the fact
that ¢(%; b;) k-divides over U U b[<i]. By the Compactness Theorem,
it follows that @ is satisfiable. ]

Combining the results of this section, we have proved that, if \f/ is not
right local, then neither is {1/ .

Theorem 2.12. Let T be a complete first-order theory. The following state-
ments are equivalent:

(1) {1/ is right local.
(2) \f/ is right local.
(3) There is no dividing chain of length |T|".

Proof. (2) = (1) If \f/ is right local, then T is simple. Hence, it follows
by Lemma 2.2 that {1/ = \f/ . In particular, {1/ is right local.

(1) = (3) If there are arbitrarily long dividing chains, it follows by
Theorem F2.3.25 that {1/ is not right local.

(3) = (2) Suppose that \f/ is not right local and set ¥ := |T|". By
Theorem F2.3.25, there exists a forking chain of length « for a suitable
tuple a over the empty set @. Using Corollary 2.6 we obtain a uniform
forking chain of the same length. Let (¢, ¥, k, m) 4, be its specification.
According to Corollary 2.10, there exists, for every n < w, a dividing
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chain of length # with specification (9;, I;);<,,, where 9; € 7 and [; € k,
for every i < n.

By the Pigeon Hole Principle and Lemma 2.5, we can find a formula 9 €
 and a number [ € k such that, for every n < w, there exists a uniform
dividing chain of length n with specification (9, I);<,. Consequently,
it follows from Lemma 2.11 that there exist arbitrarily long dividing
chains. ]

The tree property

The following combinatorial property characterises simple theories in
the same way as the order property characterises stable theories.

Definition 2.13. Let T be a first-order theory. A formula ¢(%; y) has
the tree property if there exists a family (¢, ) yew<e of parameters and a
number k < w such that

o for every B € w®, the set { p(x;¢,) | # < B } is consistent and
o for every n € w<, the set { (X;¢,;) | i < w } is k-inconsistent.

Exercise 2.1. Prove that, in the theory of dense linear orders, the formula
(X3 Yo, ¥1) i= Yo < X A X < ¥, has the tree property.

Before proving that a theory is simple if, and only if, no formula has
the tree property, let us note that the tree property implies the order

property.
Lemma 2.14. Every formula with the tree property has the order property.

Proof. Let (Cy)yew<e be a family witnessing the tree property of the
formula ¢(%; 7). For every f € w®, we choose a tuple dg satisfying
{9(x5¢,) | n < B }. To prove that ¢ has the order property it is sufficient
to find indices 7, < 77, < ... in @< and a sequence (f,) < in W* such
that 77,, < 8, and

ME ¢(ag;cy,) iff i<k,
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We proceed by induction on n, starting with 7, := () and an arbitrary
Bo € w®. For the inductive step, suppose that 7, and f3, are already
defined. The k-inconsistency of { ¢(X;¢,,i) | i < w } implies that, for
each m < n, there are only finitely many i < w such that

M e (/)(G-l[gm;(fﬂni) .
Hence, there is some i < w such that
M E -¢(ag,;¢y,i), forallm<n.

We set 1,4+, := 1,1, for such an index i, and we choose some f3,,;, € w®
such that 7,4, < B+:. Then 11, < B4, implies that

Mk ¢(ag,,,;Cy, ), forallm<n+i. O

To show that simple theories are exactly those where no formula has
the tree property, we introduce a generalised form of the tree property.

Definition 2.15. Let « be a cardinal, y an ordinal, (¢« )<y a sequence
of formulae, and (k4 )<y a sequence of numbers.

(a) A family (¢,)yexsr of tuples ¢, € M is a dividing k-tree with spe-
cification (@a> ka)a<y if

o foreach € «7, the set { ¢4 (X; Cgy(a+1)) | @ <y} is consistent,
o foreach € k=7, the set { ¢|,|(%;Cya) | @ < & } is k) -inconsistent.

We call y the height of the dividing «-tree.
(b) A dividing k-tree (¢, ) yexsr With specification (@a, ko) a<y is uni-

form it
9o =¢p and ky,=kg, foralla,f<y.

Remark. Note that a formula ¢(x; 7) has the tree property if, and only
if, there exists a uniform dividing w-tree of height w with specification
(¢, k) n<w, for some k < w.
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Lemma 2.16. Let k > |T| be a cardinal. If there exists a dividing w-tree of
height «, then there also exists an uniform dividing w-tree of height w.

Proof. Let (b, )eo< be adividing w-tree of height x and let (@4, kq ) o<k
be its specification. Since k > |T|, there exist a subset I € « of size |I| = «,
a formula ¢., and a number k, < w such that

¢oa =@ and ky=k., forallael.

Choose a strictly increasing map h : w — I. We inductively define an
embedding g : ¢ — w** as follows. We start with g({)) := (). If
¢g(n) is already defined, we choose some { € w** with g(#) < { and
I{| = h(|n|), and we set g(#i) := (i, for i < w.

We claim that the family (b 2(n) ) yew=e is @ uniform dividing w-tree

of height w. By construction, the set { ¢.(%;by(yn)) | 1 < @} is ks~
inconsistent, for every 5 € w<“. Furthermore, for each § € w“, we can
choose some ' € w* with

B >g(fla), forala<w,

and we see that

{0(Ebgen) [ 1< B} {pa(Ebpi(an) @<y}
is consistent. []

The following lemma contains the main technical argument we use to
relate the tree property to dividing.

Lemma 2.17. The following statements are equivalent:
(1) There exists a dividing w-tree of height y.
(2) There exists a dividing chain of length y.

Proof. (1) = (2) Set k := (2|T|®|V|)+. If there is a dividing w-tree, we can
use the Compactness Theorem to construct a dividing x-tree (b, ) yex=r.
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Let (¢a, ka)a<y be its specification. We define an embedding h : =V —
k=7 as follows. We start with h({()) := (). If |5 is a limit ordinal, we set

h(n) =sup{h({)|{<n}.

For the successor step, we proceed as follows. Suppose that the value
of h(#) is already defined. Let § be the sorts of b,o. As [S*(U¢<, be)| < &
there exists a subset I € x of size |I| = k such that

bﬂi EU(sn B( bﬂk , fOI‘ all i, k el.

We fix a bijection g : k — I and we set h(#ni) := h(n)g(i).

Having defined the embedding h, we fix some f3 € x*“ and we set
Co 1= I;h(m(“ﬂ)), for a < y. We claim that the sequence (Ca)q<y is a
dividing chain for some a over & with specification (¢« ko) a<y-

Set B/ :=sup { h(B | «) | « < y } and choose some tuple a satisfying

{@a(%:bp1(as)) [ <y}
Then
{pa(Zca) la <y} ={@ua(®br(prany) @<y}
={@a(Zbgar) la <y},
implies that
ME ¢q(aséy), foralla<y.

It therefore remains to show that ¢, (x; ¢y ) k,-divides over ¢[<a]. Let
a, = l_yh(([;ra)n), for n < w. Then a, =¢[<4) l_oh(m(aﬂ)) = C4 and the set
{9a(x;a,) | n < w}is ky-inconsistent.

(2) = (1) Given a dividing chain (¢4 )4<, for @ over U with specific-
ation (@q, ka)a<y> We construct a dividing w-tree (b, ) eo=r With the
additional property that, for every # € w=?,

(Byi(as)) sl =2 (€a)adiy|
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If 7 = () or if || is a limit ordinal, we can choose an arbitrary tuple b,,
since the definition of a dividing w-tree places no constraint on such
tuples. Hence, it remains to consider the successor step. Suppose that
b, has already been defined and set « := ||. Since

(I;nr(i+1))i<¢x =z (Ci)i<a -

there exists some b’ such that
(byi(i))i<ab’ =g (€i)icala -

Since ¢4 (X;¢y) ky-divides over U U ¢[<a], we can find a sequence
(¢]) n<w such that 5;_5U5[<oc] Co and { o (%5¢)) | n < w }1s kq-incon-
sistent. By choice of b’, we can therefore find a sequence (b7,) <, such
that

b, b’

n Ui Enf(i+1)

and { ¢, (%;0),) | n < w} is ky-inconsistent. We set b,; = b’, for i < w.

To see that the family (b, ) co=r constructed in this way is a dividing
w-tree, note that, for each B € w?, (by1(a+1))a<y =z (Ca)a<y implies that
the set { 9o (%5 bgy(as1)) | @ <y} is consistent. O

Using these two lemmas, we obtain the following characterisation of
simple theories.

Theorem 2.18. Let T be a complete first-order theory. The following state-
ments are equivalent:

(1) T is simple.

(2) {1/ is right local.

(3) No formula has the tree property.

(4) There is no dividing chain of length | T|*.

(5) For some cardinal k, there is no dividing chain of length «.
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Proof. (4) = (5) is trivial and (1) < (2) < (4) was already shown in
Theorem 2.12.

(5) = (3) Suppose that there exists a formula ¢(x; y) with the tree
property. Fix a family (¢, )yeo<e and a number k < w witnessing this
fact.

For every cardinal x, we will construct a dividing chain of length «.
Given «, we use compactness to find a family (b, ) yep<x such that

o for every B € ", theset { ¢(x;b,) | 7 < B} is consistent and
o forevery 1 € w**, the set { p(%;b,;) | i < w } is k-inconsistent.

In particular, (Z’n)ﬂew“‘ is a uniform dividing w-tree of height x. Hence,
we can use Lemma 2.17 to obtain a dividing chain of length x. A contra-
diction.

(3) = (4) Suppose that there exists a dividing chain of length % := |T|".
We will show that some formula has the tree property. By Lemma 2.17,
there exists a dividing w-tree (b, ) eo<= of height x. Hence, we can use
Lemma 2.16 to obtain a uniform dividing w-tree (b} ) yeo<v of height w.
Let (@, k) 1<, be its specification. Then the formula ¢ has the tree prop-
erty. A contradiction. ]

Corollary 2.19. Every stable theory is simple.
Proof. This follows by Theorem 2.18 and Lemma 2.14. ]
Corollary 2.20. A theory T is simple if, and only if, T®Y is simple.

Proof. Clearly, if ¢ has the tree property with respect to T, it also has
the tree property with respect to T°4. Conversely, if ¢ has the tree prop-
erty with respect to T°Y we can use Proposition E2.2.10 to construct a
formula ¢’ that has the tree property with respect to T. ]

Finally, we show that no simple theory has the strict order property.
Consequently, all simple theories that are not stable have the independ-
ence property.

Proposition 2.21. No simple theory has the strict order property.
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Proof. Suppose that the formula ¢(%; ) has the strict order property.
We will show that the formula

Y(%; JoJn) = ~9(%; 30 ) A (%5 71)

has the tree property. By compactness, there exists a sequence (¢;);ecq
such that

o(x;e)M c (x5 6™, foralli<k.

We define two functions A, p : @w** — Q such that A(%) < p(), for
all 7. We proceed by induction on 5 € w<“ starting with A({)) = o
and p(()) :==1. If A(57) < p(#n) are already defined, we choose a strictly
increasing sequence A(#) < z, <z, < --- < p(x) and we set A(#i) := z;
and p(7i) := 244, for i < w.

Having defined A and p, we set b, := Cr(n)Cp(n)> for n € @=“. To show
that this family witnesses the tree property of y, note that

Y& 0y)" = p(E5E,0)" N 9(Fs i)™
Hence,
y(EHb)" (b)), forn<(,
( M ry(x;b,)" =@, for incomparable 1 and (.
Consequently, the set { y(%;b,;) | i < w } is 2-inconsistent, for every 7.
Furthermore, for every § € w“, we can use compactness and the fact that

y(%;b, )M # @, for all 1, to show that { y(x;b,) | < B} is satisfiable.
]

Strongly minimal theories

We conclude this section by considering the example of strongly min-
imal theories. Note that such theories are stable and, hence, simple. We

will show that, for strongly minimal theories, the relations \f/ and ac\l/
coincide. One of the inclusions holds in general.
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1
Lemma 2.22. If \/ is a forking relation, then \/ c C‘\//.

1
Proof. Suppose that A \/ v B. To show that A C‘\//U B, consider a set
I ¢ B that is not cl -independent over U U A. We have to show that I is
not cl ,-independent over U. There exists an element b € I such that b €
cl (UAI,) where I, := I \ {b}. Consequently, b \/UAIO B. By (BMON),
A \/ v B implies A \/ v1, B. Hence, it follows by Lemma F2.2.3 that

Ab \/ v1, B. In particular, we have b \/ u1, b which, by Lemma £2.3.5,
implies that b € cl (UI,). Therefore, I is not cl ,-independent over U.

]
The converse is given by the following lemma.

Lemma 2.23. Let T be a simple theory and S a U-definable strongly
minimal set. Then

A /v B implies A 'y B, forallA,B,UCS.

Proof. Recall that we have shown in Lemma F1.4.3 that (S, acl) forms a
matroid. By (DEF), it is sufficient to prove the claim for finite sets A and B.

Hence, suppose that A and B are finite sets with A ac\l/U B. We choose
bases I € A and J € B of, respectively, A over U and B over U, and

enumerations @ of  and b of J. Then a@ */y b. Since b is independent

over U, it follows that it is also independent over U U a. Hence, ab is
independent over U.

To show that a J,fU b, let (l_yn)nw be an indiscernible sequence over U
with b, = b. Note that the union b[<w] is independent over U. We
choose a tuple @’ < S such that |a’| = |a| and a’ is independent over
U U b[<w]. According to Proposition F1.4.6, we have @’ =; 4. Since
b[<w] is independent over U U &', it follows by the same proposition
that the sequence (l_on),Kw is indiscernible over U U a’. By Lemma 1.3,
it follows that a {1/ v b. Since T is simple, this implies that @ |7, b.
Hence, we can use Lemma F2.2.14 to show that acl(aU) [f; acl(bU). By
monotonicity, it follows that A |7, B. O
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Corollary 2.24. For a strongly minimal theory T, we have ac\l/ = [F= 4
In particular, T is simple and || is a geometric independence relation.

Proof. First, note that, according to Lemma F1.4.3, (M acl) is a matroid.

Hence, it follows from Proposition F2.2.8 that ac\l/ is a geometric in-
dependence relation. We have seen in Corollary F1.4.14 that a strongly
minimal theory T is k-categorical, for every x > |T|. Consequently, it
follows by Theorem E6.3.16 that T is stable. Using Corollary 2.19, we see

that T is simple. Therefore, the equality ac\l/ = |f = |4 follows the two
preceding lemmas. [

Exercise 2.2. Prove that, in an arbitrary theory, ac\l/ satisfies (INV) and
(DEF).
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F4. 'Theories without the independence
property

1. Honest definitions

Alternation numbers

We have seen in Proposition E5.4.2 that the independence property can
be characterised by counting the number of segments of sets of the
form [¢(a;)];ier for an indiscernible sequence (a;);e;. In this section
we will use this characterisation to derive various properties of theories
without the independence property. We start by setting up the required
combinatorial machinery.

Definition 1.1. Let ¢ (%) be a formula over M.
(a) The ¢-alternation number alt, () of a sequence & = (d;) ez is the
maximal number 7 < w such that there are indices k € [I]"** with

M e ¢(ax,) <> -¢(ax,,, ), foralli<n.

If this maximum does not exist, we set alt, (&) := oco.
(b) The alternation rank of ¢ is

rkai (@) := max{ alt, () ‘ « an indiscernible sequence in M } :

If this maximum does not exist, we set rk,j;(¢) := co.
(c) A sequence « = (d;)es is maximally @-alternating over U if it is
indiscernible over U and

alt, (o) = alty (aff) < oo,
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F4. Theories without the independence property

for every extension «f8 of « that is still indiscernible over U.

Using these notions, we can characterise the independence property
as follows.

Proposition 1.2. Let ¢(X; y) be a formula without parameters and let
U c M. The following statements are equivalent.

(1) ¢(x;y) does not have the independence property.
(2) rka(@(x;¢)) < oo, forall ¢ € M.

(3) There exists some number n < w such that
tkat(@(%;¢)) <n, forall¢ c M.

(4) alty(z,6)(a) < oo, for every indiscernible sequence a over U and
every tuple ¢ € ML

(5) Let ¢ € M. Every indiscernible sequence o over U has an exten-
sion af3 that is maximally ¢(X; ¢)-alternating over U.

Proof. (3) = (2) is trivial.

(2) = (5) Suppose that rk,;;(¢(%;¢)) < co and let a be an indiscern-
ible sequence over U. We construct a maximally ¢(x; ¢)-alternating
extension of a by induction on the difference

rka1e (@(%;5¢)) — alty(z;6) () -

If « is already maximally ¢(%;¢)-alternating, there is nothing to do.
Hence, suppose otherwise. Then we can find some extension af that is
indiscernible over U such that alt, ;) («f8) > alt,(;¢) (). By inductive
hypothesis, this sequence has an extension «fy that is maximally ¢ (x; ¢)-
alternating over U.

(5) = (4) Let aff be a maximally ¢(; ¢)-alternating extension of «
over U. Then alt,(z;6) () < alty(z,6)(af) < oco.

(4) = (1) Suppose that ¢(&; y) has the independence property. By
Proposition Es.4.2, there exists an indiscernible sequence « = (d,) <o
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1. Honest definitions

and a tuple ¢ such that
Mk ¢(a,;¢c) iff  niseven.

Hence, alt, (4,6 (a) = oo.

(1) = (3) Suppose that, for every number #n < w, there exists some
tuple ¢ € M such that rkyy (¢(%;¢)) > n. We claim that ¢ has the inde-
pendence property. Let ¥ be a set of formulae stating that the sequence
(Xi)i<w is indiscernible and set

O:=VYu{e(x59) | i<w}u{-9(x49)|i<w}.
We will show that @ is satisﬁ_able. Then there exists an indiscernible
sequence (d;);<, and a tuple b such that

Mk ¢(a;;b) iff  iiseven,

and it follows by Proposition Es.4.2 that ¢ has the independence property.

Thus, let @, € @ be finite. Then there exists a number #n < w such that
all variables occurring in @, are among X, ..., X,,_,. By assumption,
we can find a tuple ¢ and an indiscernible sequence « = (d;);¢r such that

alt(p(;c;c')(a) >2an.
We choose indices 1 € [I]*"** such that
M & ¢(am,;¢) < —9(am,;¢), foralli<oan.

Depending on whether or not M & ¢(a,,,; ¢), it follows that either the
sequence (@, )o<i<an OF the sequence (d,,, )1<i<an+: satisfies @, together
with the tuple ¢. []

Below we will frequently make use of the following consequence of
this characterisation.

Corollary 1.3. Let T be a theory without the independence property and
let A be a finite set of formulae over M. Every indiscernible sequence o
over U has an extension af that is maximally @-alternating over U, for
all € A.
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F4. Theories without the independence property

Proof. Let « be indiscernible over U. We construct the desired exten-
sion by induction on |A|. If A = &, we can take the sequence « itself.
Hence, we may assume that there is some formula ¢ € A. Suppose that
¢(x%) = @o(x;¢) where ¢ € M and ¢, (&; ) is a formula without para-
meters. As ¢, (X; y) does not have the independence property, it follows
by Proposition 1.2 that o has a maximally ¢-alternating extension «f3.
By inductive hypothesis, this sequence has an extension a8y that is max-
imally y-alternating, for every y € A\ {¢}. Since alt,, (a3) < alt,(afy),
this extension is also maximally ¢-alternating. Hence, afy is the desired
extension of «. [

Honest definitions

Stable theories have the property that every set A ¢ M is self-contained
as far as definable relations are concerned, that is, all parameter-defin-
able relations R ¢ A are definable with parameters from A itself. In this
section, we will prove that theories without the independence property
have a similar, but weaker property: the parameters are not necessarily
in the set A, but in some elementary extension. We start by taking a look
at the stable case.

Definition 1.4. A set A ¢ M is stably embedded if, for every parameter-
definable relation R ¢ M, there is a formula ¢(x) over A such that

RNA =" nAT,
Proposition 1.5. In a stable theory, every set A ¢ M is stably embedded.

Proof. Let y(x;¢) be a formula with parameters ¢ € M. As T is stable,
it follows by Theorem c3.5.17 that the type tp(¢/A) is definable over A.
Consequently, there exists a formula 8, () over A such that

MEéy,(a) iff Mewy(ac).

This implies that y(x; &)™ n A = 8, (x)™ n AS. ]
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1. Honest definitions

For theories with the independence property, we need to consider
elementary extensions of the given structure to find the desired paramet-
ers. Alternatively, we can also use the following finitary version of stable
embeddedness.

Definition 1.6. An honest definition of a relation R ¢ M* over a set U is
a formula ¢(x; y) without parameters such that, for every finite U, ¢ U,
there is some tuple ¢ ¢ U with

RAUSco(x)MnU cRNU.

Example. The set Q of rationals is not stably embedded in (R, <). For
instance, for the parameter-definable relation (o, \/2), there is no for-
mula ¢(x) over Q with

9" NQ=(0,v/2)nQ.

But (0, \/2) does have an honest definition over Q. For every finite subset
A c (0,+/2), we have

(0,v2)NAC(x;a,b)*nQc (0,v/2)nQ,

where ¢(x;¥,z) := y < x Ax < z and a and b are, respectively, the

minimal and the maximal element of A.

Below we will prove that these two weaker version of stable embed-
dedness are equivalent and that they hold in theories without the in-
dependence property. The key argument is contained in the following
lemma.

Lemma 1.7. Let k > |T| be a cardinal and let (M, C) < (M, C,) be
structures where the former one has size |M| < « and the latter one is

k-saturated. For all sets A, B € M, of size |A|,|B| < k with A \/c B, there
exists some A’ € C, such that A’ =g A.

Proof. Let a = (a;);<) be an enumeration of A and let C € M be a set
such that (M, C) > (M,, C, ). Set

®(%) == Th({M, C)) Utp(a/B) U { Px; | i <A},
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F4. Theories without the independence property

where the type tp(a/B) is taken with respect to the structure M and P is

the predicate symbol of (M, C) corresponding to the set C. If ®(x) is

satisfiable, it follows by x-saturation of (M., C, ) that there is some tuple

a' ¢ M, with (M,, C,) = @(a’). By definition of @, this implies that

a’' ¢ C, and a’ =g a. Hence, it remains to prove that @ is satisfiable.
Let @, € @ be finite. Then

Do (%) =y A (%) A Njer Pxi

for suitable formulae y € Th({M, C)), ¢(x) € tp(a/B), and some finite

set I € A. Since a ‘{/c B, we can find some tuple @’ ¢ C ¢ C, with
M = ¢(a’). Consequently,

<9)2+, C+> = 1///\ go((i') A /\ieI Pa: ,
and a’ satisfies @, (x). []

A second technical ingredient we need in the proof below is the notion
of a type generating a sequence.

Definition 1.8. Let p be a type. A sequence (a;);cs is generated by p
over U if a; realises p | Ua[<i], forall i € I.

Exercise 1.1. Prove that, for every type p € $°(M) and every small index
set I, there is some sequence (a;);c; generated by p.

When using a suitable type, the generated sequence is automatically a
Morley sequence.

Lemma 1.9. Let+/ be a preforking relation and p a global type that is+/-
free over U. Every sequence generated by p over a set U U C is a/-Morley
sequence for p | UC over U.

The existence of honest definitions turns out to being equivalent to
not having the independence property.

Theorem 1.10. Let ¢(x) be a formula over Ml and let § be the sorts of x.
The following statements are equivalent:
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(1) rkac(¢) < oo,
(2) For every set C C M, there is a honest definition of o™ over C.

(3) For every model M containing the parameters of ¢, every set C € M
of parameters, and every (|T| ® |M|)*-saturated elementary exten-
sion (M, C.) > (M, C), there exists a formula ¢, (k) over C.
such that

p()MNC co,()MnC co(x)nC.

Proof. (3) = (2) Fix a model M containing the parameters of ¢, a set
C < M, and a (|T| ® |M|)*-saturated elementary extension (M., C,) >
(M, C). By (3), there is some formula ¢, (&; ¢) with parameters ¢ ¢ C,
such that

p(MNC co ()M NC co)MnCE.

We claim that ¢, (%; ) is a honest definition of ¢™ over C. Let C, ¢ C
be finite. Then

(M, Co)E N [9+(a;¢) < 9(a)]

A (VXN Pxi) @ (%56) = 9(x)] .

Consequently,

(M, C) = (35- A Pyi)| A Lo+(67) < 9(a)]

aeC$
A (YR Px) [+ (% 7) ~ 9(2)]],
and there is some tuple ¢’ € C such that
oM N Cco ()M nC co™n .

(2) = (1) For a contradiction, suppose that rk,;;(¢(x)) = oo but
@™ has honest definitions over all sets C € M. By compactness there
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F4. Theories without the independence property

exists an indiscernible sequence a = (d, )<, such that alt,(a) = co.
Omitting some elements of & we may assume that

ME¢(a,) iff niseven.

Let y(%; 7) be an honest definition of ¢™ over the set C := @[<w] and
let C, := a[<2k + 2] where k := |y|. By assumption, there is some tuple
¢ € C such that

oM N Ccy(x;e)MnC conCE.

Fix some tuple j € [w]* such that ¢ € a[j]. Then there is some index
i < 2k + 1 such that

ord(ij) = ord((i +1)j).
Consequently,

M e y(ai;¢) < y(ain;c).
If i is even, then

y(%)MnC e implies  d;,.¢ v (% ¢)",
while oM N C cy(x)" nC* implies a; e y(x;¢6)™.

A contradiction. In the case where i is odd, we can show in the same
way that a; ¢ y(%;¢)™ and a;,, € y(x;¢)M.

(1) = (3) Let F ¢ S°(M,) be the set of all types over M, that are
finitely satisfiable in C and let F, := F n (¢) be the subset of those types
containing ¢. As rk,;:(¢) < oo, we can choose, for every type p € F, a
sequence &, € C, that is generated by p over C and such that alt,z) (a;)
is maximal (among all such sequences in C,.).

Let @’ ¢ C, be a tuple realising p | Ca,, for some p € F. We claim that

MEg(a") if @(x)ep.
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1. Honest definitions

By Lemma 1.7, there is some a” € C3 realising p | Ma,a’. Then the
sequence aya’a’ is generated by p over C and our choice of a, implies
that

alt, (apa’a’) = alty (ay) .
As ¢ is over M, it follows by choice of @’ that
MEg(a") if Mee(a”) iff ¢(x)ep,

as desired.
For types p € F,, the claim we have just proved implies that

Th((Mu, C))up | Cay U {Px,,...,Px,_,} E ¢(X),

where ¥ = X, ...x,-;, C is a set such that (M, C) > (M,,C,), and
P is the predicate symbol corresponding to C. Therefore, we can use
compactness to find a formula 9,(x) € p I Ca, such that

Th((Mp, C)) u {9y(%), Pxo,..., Pxp_y } = @(%).

Note that 9, € p implies p € (9,). Hence,

Fyc U (9).

peF,

By Lemma F2.3.7, F is a closed set. Hence, so is F, = F n (¢(%)). As
closed sets in Hausdorff spaces are compact, it follows that there exists a
finite subset F, € F, such that

Fyc (J(9).

peF,
We claim that
o (%) =\ 9
peF,
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is the desired formula.

Consider a tuple @ € C* with M £ ¢(a). Then p = tp(a/M,) is
trivially finitely satisfiable in C. Hence, p € F, and we have 9, € p, for
some q € F,. This implies that ¢, (x) € p. Consequently,

e C co.(MnC co ()M C.

For the second inclusion, let @ € C5 be a tuple with M & 9,(a), for
some p € F,. Then we have M &= ¢(a), by choice of 9,. Hence,

o ()M C cop)nCi. O

As a corollary, we obtain the following weak variant of stable embed-
dedness for theories without the independence property.

Corollary 1.11. For every model M, every set C € M, and every formula

@(x) over M with tky(¢) < oo, there exists an elementary extension
(M,, Cy) = (M, C) and a formula ¢ (x) over C, such that

p()MnC =, ()N,
Another convenient consequence of Theorem 1.10 is contained in the

proposition below. Again we isolate the main argument in a lemma.

Lemma 1.12. Let T be a theory without the independence property and
x an infinite cardinal. Let M be a model of T of size [M| < x, B S M a set,
and (M., B;.) > (M, B) a k-saturated elementary extension. For every set
C € M, there exists a set U € B, of size |U| < |T| @ |C| such that

b=y b’ implies b=cb', forallb,b'cB.

Proof. For every formula ¢(x) over C, we use Theorem 1.10 to find a
formula ¢, over B, such that

o(2)" N B € . (%) 1 (B.) € p(2)" 1 (B,)".

Let U ¢ B, be a set of size |U| < |T| @ |C| containing the parameters of
each of these formulae ¢ .

1162



1. Honest definitions

To show that U has the desired properties, consider tuples b,b' c B
with b =y b'. For every formula ¢(x) over C and every finite set I of
indices, it follows that

MI:gD(B\I) iff M|:¢+(B|1)
iff M|:¢+(B|§) iff Mlz(p(l_9|}).

Consequently, b =¢ b’ H

Proposition 1.13. Let T be a theory without the independence property,
M a model of T, and B € M. Then there exists an elementary extension
(M, B;) > (M, B) such that, for every set A € M, there exists a set

U € B, of size |U| < |T| @ |A| with A {/U B,.

Proof. We iterate the preceding lemma. Let (M., B ) be the union of an
elementary chain (M,,, B, ) u<, starting with (M, B, ) := (M, B) where
each (M., Bys) = (M,,, B,)is (|T|®|M,|)*-saturated. We inductively
constructa sequence (Uy, ) <, Of sets U, € B,, of size |U,| < |T|®|A| as
follows. Suppose that we have already defined U,,...,U,_, € B, € M,,.
By Lemma 1.12, there exists some set U, € By, of size

U, <|T|®|Al®|Us|®- & |U,_| = |T| @ |A|

such that

b=y b implies b=a,u,u..ou, b, forallb,b’cB,.

Set U := U, <, Uy, and let b, b’ € B, be finite tuples with b =y b'. Then
|U| < |T| @ |A| and there is some k < w such that b, b’ € By. It follows
that

b EAUUOU"'UU,,_I B, 5 fOI‘ au n Z k .

Consequently, b =4y _1_9’ , as desired. ]
For infinite tuples b, b’ € B, with b =y b/, it therefore follows that

by =y b'|; implies b|; =y b'|;, for all finite sets I.

Consequently, b=,y b ]
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Convex equivalence relations

As an application we study the structure of indiscernible sequences in
theories without the independence property.

Definition 1.14. Let 3 = (I, <) be a linear order and ~ an equivalence
relation on I.
(a) ~ is convex if

i~j implies i~k foralli<k<j.

(b) ~ is finite if it has only finitely many classes.

(c) The intersection number in(~) of a convex equivalence relation ~
is the least cardinal x such that ~ can be written as an intersection of
finite convex equivalence relations.

(d) For tuples 1, j € I"*, we set

i~j :iff ord(i)=ord(j) and i;~j, foralls.

(e) For a subset C C I and tuples 1, j C I, we define

i=¢j it  3,ic=°S3,j¢  where ¢ is an enumeration of C.

Let us note that the relation ={. is convex and that its definition for
tuples is consistent with the notation introduced in (d) above.

Lemma 1.15. =2 is a convex equivalence relation with in(=g) < |C| that
satisfies

i=¢j it  ord(i) =ord(j) and is=( js foralls.
Proof. For the bound on the intersection number, note that

=2 = CDCE‘{’C} )

The other claims are straightforward. ]
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The statement of the preceding lemma has a weak converse: every
convex equivalence relation can be obtained as a coarsening of a relation
of the form =.

Lemma 1.16. Let ~ be a convex equivalence relation on a linear order I
and ] a complete linear order containing 1. Then there exists a set C C ] of
size |C| < in(~) @ R, such that the restriction of =2 to I refines ~.

Proof. Setx :=in(~) ® R, and let F be a set of finite convex equivalence
relations of size |F| < « such that ~ = N F. We set

C := {inf E | E an »~-class for some ~ € F }

U {supE | E an ~-class for some~ € F },

where we take the infima and suprema in the ordering J. Then |C| <
|F| ® R, < «k and the restriction of =, to I refines ~. ]

Theorem 1.17. Let T be a theory without the independence property and
a = (@') 1 an indiscernible sequence over U. For every set C € M, there
exist a linear order ] 2 1, an indiscernible sequence a,. = (@) jej over U
with oy | I = a, and a subset K C ] of size |K| < |T| & |C| such that

i=yj implies ali]=yc alj], foralli,je[J]™".

Proof. Let M be a model containing U U C U a. Suppose that the se-
quence « consists of y-tuples a' = (a} )<y and set

P=Uu{all|iel, k<y},
E:={({ap,a;)|iel, k,I<y},

Fi={(al,al)|i,jel, k<y},
R:={{a},al)|i<jinl, k,I<y}.

Fix an |M|*-saturated elementary extension

<9:R+,P+, U+>E+>F+)R+) z (m,P, UaEaF)R)-
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Using the relations E,, F,, and R,, we see that there are a linear order
I, 2 I, an ordinal y, > y, and a family (b} )jer, k<, of elements such
that

e P.=U,u{b,|iel,, k<y,},
e bi=a,, foriclandk<y,

o the sequence (b');es, consisting of b’ := (b )k<,,, i € I, is indis-
cernible over U,.

By Lemma 1.12, we can find a set W ¢ P, of size |W| < |T| @ |C| such
that

a=wa implies a=ca’, forallg,a’ cP.
We claim that the sequence a’ := (b'[,);er, and the set

Ke={iel, |b'nW=zg}

have the desired properties. Consider tuples 7, j € [I, ]~ with 7 =} j
and let k be an enumeration of K. Since (b");¢s, is indiscernible over U,
it follows that

i=] = S3.,ik=°3,,5k = b[ik] =y b[jk].
Fix an enumeration ¢ of U. Since a[i], a[j], ¢ € P, it follows by choice
of W that

a[i]¢ =w a[j]¢ implies a[i]¢ =c a[j]c.
Hence, a[7] =yc a[j] and the claim follows. (]

Corollary 1.18. Let T be a theory without the independence property and
o = (a') e an indiscernible sequence over U. For every set C € M, there
exists a convex equivalence relation ~ on I with in(~) < |T| @ |C| such
that

i~j implies ali]=uc alj].
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Proof. Let a’ = (a’)jej and K ¢ J be the sequence and the set obtained
from Theorem 1.17. We claim that the restriction ~ of =% to I has the
desired properties. By Lemma 1.15, ~ is convex and

in(~) <|K|<|T|®|C|.
Consider tuples 7, j € I with 7 ~ j. Then
ord(i) =ord(j) and i~ j; foralls,

and it follows by Lemma 1.15 that 7 =% j. By choice of a’ and K, this
implies that a[i] =yc a[J]. O

Corollary 1.19. Let T be a theory without the independence property, « =
(a@')er an indiscernible sequence over U, and C € M a set of parameters.
Ifcf I > |T|@®|C|, then there exists an index k € I such that the subsequence
(a;)isk is indiscernible over U U C U a[<k].

Proof. Leta’ = (@') ey and K < ] be the sequence and the set obtained
from Theorem 1.17. Since cf I > |K|, there exists some index k € J\ K that
is greater than all elements of K. This index has the desired properties.

[

2. Lascar invariant types

As forking is less well-behaved in non-simple theories, we need addi-
tional tools to investigate theories without the independence properties.

Lascar strong types

We start by studying the question of when two tuples 4, b can appear as
elements of the same indiscernible sequence.

Definition 2.1. For two tuples d and b, we write

a %15 b :iff  there is some indiscernible sequence (¢, )n<w

over U such that é, = @aand é, = b.
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We denote the transitive closure of ~IS by =I5 If @ =5 b, we say that
a and b have the same Lascar strong type over U.

Remark. Clearly, a =% b implies a =y b.

Example. 1fb € acl(Ua), then a ~ biffa = b.

Exercise 2.1. Prove that ~% is reflexive and symmetric, but in general
not transitive.

Let us start by giving an alternative characterisation of the relation ~%

in terms of formulae that are chain-bounded.

Definition 2.2. A formula ¢(%, y) where x and j have the same sorts is
chain-bounded if there exists a number n < w such that

ME -3x,--3%, N\ @(%i, %k).

o<i<k<n

Remark. Let ¢(%, y) be a formula where x and y both have sorts 5. By
compactness, it follows that the formula ¢ is not chain-bounded if, and
only if, for every strict linear order (I, <), there exist a homomorphism
(I, <) > (M, ¢™).

Example. If (%, 7) € FE*(U), then - x(, y) is chain-bounded.

Lemma 2.3. The following statements are equivalent:
(1) a~sb
(2) a wlcs b, for all finite C C U.
(3) a mlj\} b, for some model M 2 U.
(4) For every set C, there exists some set C' =y C such that a mlgc, b.
(5) M e -¢(a,b), forevery chain-bounded formula ¢ over U.
(6) Uo<ickew P(Xis Xi) is satisfiable, where p(%, %') := tp(ab/U).
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Proof. (4) = (3) Fix an arbitrary model M containing U. By (4), there
is some M’ =y M such that a ~%, b.

(3) = (1) = (2) If (¢;) i<w is an indiscernible sequence over a model
M 2 U with ¢, = dand ¢, = b, then (¢;) i< is also indiscernible over U.

Similarly, if (¢;)i<, is indiscernible over U, it is also indiscernible
over every subset C € U.

(2) = (5) Consider a chain-bounded formula ¢(%, ) over U. Fix a
finite set C € U such that ¢ is over C. Since a ~{ b, there exists an
indiscernible sequence (&, )<, over C such that ¢, = @ and ¢, = b. If
M & ¢(d, b), then ¢ would not be chain-bounded since indiscernibility
would imply that

ME ¢(¢;,¢r), foralli<k<w.

Therefore, M £ —¢(a, b).

(5) = (6) Suppose that Uy<;ck<o P(X;, Xk ) is inconsistent. By com-
pactness, there exists a number # < w and a finite subset @ € p such that
Uo<icken @(Xi, X ) is inconsistent. Setting ¢(x, x") := A @ we have

ME -3%03%,, N\ @(xi, %k)-
o<i<k<n

Hence, ¢ is chain-bounded formula, and ¢ € p implies M # —¢(d, b).

(6) = (4) Let (¢n)n<w be a sequence satisfying Uo<i<k<w P(Xi5 Xk ).
By Proposition E5.3.6, there exists an indiscernible sequence (d,) <
over U with

AV((¢0)n<w/U) € AV((d1) n<w/U) .

Since p(%o,%,) S AV((é,)n/U), the sequence (d, )<, also satisfies
Uosi<k<w P(%i> X1 ). In particular, dod, =y ab and there exists an auto-
morphism 7 € Aut My such that 7(d,) = @ and 7(d,) = b. We can use
Lemma E5.3.11 to find a set C’' =y C such that (7(d,)) <o is indiscerni-
ble over U u C'. It follows that a mlgc, b. ]

Our next goal is to show that, for a model M, the relation =%, coincides
with =,;. We start with a technical lemma.
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Lemma 2.4. If (%, ) and y(x, y) are chain-bounded, then so is ¢ v y.

Proof. Suppose that ¢ v y is not chain-bounded. Then there exists a
sequence (Cy, )n<e such that

ME (pvy)(éi,cx), foralli<k<w.

By the Theorem of Ramsey, we can find an infinite subset I € w such
that

ME ¢(¢;,¢k), foralli<kinlI,
or MEwy(é,cx), foralli<kinl.

In the first case, ¢ is not chain-bounded; in the second case, v is not
chain-bounded. H

Proposition 2.5. For a model M, the following statements are equivalent:
(1) a IA‘} b

(2) a=y b

(3) a mlj\} c NIAS,I b, for some ¢ .

(4) There exist tuples Co, Cy, . . . such that the sequences d, Co, €1, Cas - . -
and b, ¢y, ¢,, C,, ... are both indiscernible over M.

(5) M & 3j[-¢(a, 7) A -¢(b,7)], for every chain-bounded for-
mula ¢(x, y) over M.

Proof. (3) = (1) is trivial.
(1) = (2) By definition of Eﬁ\s,p there are tuples ¢, . .., ¢, such that

A=Con o nS Cu=b.

P

For each k < n, there is an indiscernible sequence (d¥) i<y over M with
dc’,‘ = Cx and dlk = (k.- Consequently, Cx =y Cx+, and the claim follows.
(2) = (4) Suppose that a =), b. By Lemma F2.3.15, we have a ‘{/M M.

As ‘{/ is a forking relation, the type tp(a/M) has some ‘{/—free exten-
sion p € §*(M). We construct a sequence f3 = () <o by inductively
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choosing a tuple ¢, realising p } Maa'é[<n]. Since {/ € {/, the type
p is invariant over M and the sequences « := a8 and ' := a’f both sat-
isty the conditions of Lemma F2.4.14 (b). Hence, they are indiscernible
over M.

(4) = (3) Suppose that a, ¢,, ¢, ¢,,... and b, ¢, ¢y Gy, ... are indis-
cernible sequences over M. Then

= JAs = N G
any Co and by o,

and the claim follows by symmetry of mlS
(2) = (5) Suppose that a =, b. Let ¢(%, y) be a chain-bounded
formula over M and let n be the minimal number such that

ME -3%,--3%, N\ @(%i, xk).

o<i<k<n
Then
ME I%o3%my N\ (%0 Xk) -
o<i<k<n
As the same formula holds in M, there are tuples ¢, ..., ¢,—, in M such
that

M= A\ (G ér).

o<i<k<n

By choice of n, there is an index k < n such that Ml # ¢(a, ¢x). Since
a =p b we also have M # ¢(b, ¢ ). Consequently,

M & -¢(d, éx) A -@(b, k) .
(5) = (3) Set

(j) ={-¢(a,7) n-9(b,j) | p(x, 7) a chain-bounded

formula over M } )
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If there is a tuple ¢ satisfying @, then it follows from Lemma 2.3 that

= s = o Is =
a~y ¢ and bwyC.

Hence, it remains to show that T(M) u @ is satisfiable. Let @, € @
be finite. Then there are chain-bounded formulae ¢, ..., ¢,_, over M
such that

Do = {-¢i(a, ) A=¢i(b,7) |i<n}.

By Lemma 2.4 the disjunction y := ¢, v---V @,,_, is also chain-bounded.
Therefore, (5) implies that there is some tuple ¢ with

M & -y(a,é) A -y(b,¢).

Consequently, ¢ satisfies T(M) u @,. By compactness, it follows that
T(M) u @ is satisfiable. ]

Finally we provide several characterisations of the relation =!$ for ar-
bitrary sets U. One of them is in terms of bounded equivalence relations,
where boundedness is an analog to the notion of chain-boundedness,
but for the complement of the relation.

Definition 2.6. Let R ¢ M* x M be a relation.
(a) R is U-invariant if

abz=y a'b’ implies (d,b)eR < (a’,b')eR.

(b) R is co-chain-bounded if there exists a small cardinal x such that,
for every sequence & = (a;);<, in M, there are indices i < j with
(ai,dj) € R. A co-chain-bounded equivalence relation is simply called
bounded.

Before concentrating on equivalence relations, let us first give several
characterisations of co-chain-boundedness for arbitrary relations.

Proposition 2.7. Let R € M*xM* be a U-invariant relation. The following
statements are equivalent.
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(1) R is co-chain-bounded.
(2) ~cR

(3) For every indiscernible sequence (d,) <, over U with a, € M, we
have (d;,d;) € R, foralli < j < w.

Proof. (2) = (3) Let (@, ) »<w be an indiscernible sequence over U. For
every pair of indices i < j < w, we obtain an indiscernible sequence
di>@j,@jiy, .. over U, which witnesses that 4; %15 d;. By (2), this implies
that (d;,d;) € R.

(3) = (2) Let a mlf} b. By definition, there exists an indiscernible
sequence (¢, )y over U with ¢, = d@ and ¢, = b. Hence, it follows by (3)
that (¢,, ¢,) € R.

(1) = (3) Let R be co-chain-bounded and let x be the corresponding
cardinal. For a contradiction, suppose that there exists an indiscernible
sequence & = (dn ) n<e Suchthat (d;, a;) ¢ R, for somei < j. We extend o
to an indiscernible sequence (a;);<, of length k. By U-invariance, it
follows that (d;,d;) ¢ R, for all i < j < «. This contradicts our choice
of k.

(3) = (1) Suppose that R is not co-chain-bounded. Then there exists
a sequence (a;) ;< of length x := 3)+ where A := LI TI®IUIBI gych that

(ai,a;) ¢R, foralli<j<xk.

We can use Theorem Es.3.7 to find an indiscernible sequence (l_on)n«u
over U such that, for every i € [w]<“, there is some j € [x]*“ with

b[i] =v alj].
By U-invariance, it follows that (b;,b;) ¢ R, for all i < j < w. This
contradicts (3). ]

For equivalence relations, we obtain the following characterisation.

Proposition 2.8. Let ~ be a U-invariant equivalence relation on M. The
following statements are equivalent:
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(1) ~is bounded.
(2) =~ has at most
(3) =5 cw

(4) For every indiscernible sequence (d, )<, over U with a, € M, we
have a; ~ aj, for all i, j < w.

HITIeUI®L] ]gsses.

(5) For every model M containing U,
az=y b implies aw~b, foralla,beM,

Proof. (2) = (1) is trivial, and the equivalence (1) < (4) has already
been proved in Proposition 2.7. The equivalence (1) < (3) also follows by
Proposition 2.7 since ~ is an equivalence relation and =% is the transitive
closure of ~$. Consequently, we have

Is ~ ., : s~

(4) = (5) Suppose that a = b. By Proposition 2.5 (4), we can find a
sequence y = (&, ) n<o such that @y and by are both indiscernible over M.
By (4), this implies that a ~ ¢, ~ b.

(5) = (2) Fix a model M containing U of size |M| < |T| @ |U|. Then
=y C ~ implies that ~ has at most as many classes as =);. The latter
number is |S¥(M)] < 2l TI®IMIL] - ,|TIelUlels] O]

Corollary 2.9. Let U € M.

(a) %15 is the finest relation that is co-chain-bounded and U-invariant.

(b) 515 is the finest equivalence relation that is bounded and U-invari-
ant.

Over arbitrary sets U, we can characterise the relation =% as follows.

Proposition 2.10. Let d,b € M and U ¢ M. The following statements
are equivalent:

(1) a=b
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(2) a =~ b, for every equivalence relation ~ on M that is bounded and
U-invariant.

(3) Thereare tuplesc,, ..., C, and models M, . .., M,_, 2 U, for some
n < w, such that

d = EO EMO 51 EMI U EMn—z En_l EM"—I C-n = b *

(4) There are models M, ..., M,_, 2 U, for some n < w, and auto-
morphisms m; € Aut My, such that

b= (mp_yo-o0m)(a).

Proof. (3) < (4) follows from the fact that ¢; =, ¢4, if, and only if,
there exists some automorphism 7z; € Aut My, with ¢4, = 7(¢;).

(1) = (2) follows by Proposition 2.8 (3).

(2) = (3) Let ~* be the transitive closure of the relation

i~d :iff é=pd, for some model M containing U .

This relation is clearly U-invariant. Furthermore, it is bounded since it
satisfies property (4) of Proposition 2.8. By (2), it follows that a ~* b.
(3) = (1) By Proposition 2.5, there are tuples d;, for i < n, such that

- Is 3 _ls
Ci ®pM,; di ~pp Cigr

1

According to Lemma 2.3 this implies that
G; ~g di A iy, foralli<nm.
_Is =

Hence, a = ¢, = ¢n = b. []

Two tuples are said to have the same strong type over a set U if they
are elementarily equivalent over acl*d(U). The next result shows that
having the same Lascar strong type implies having the same strong type.

Corollary 2.11. a 515 b implies a Zaclea(U) b.
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Proof. Suppose that @ =5 b. We can use Proposition 2.10 to find tuples

Co>...,Cn and models M., ..., M,,_, 2 U such that

6_1 = 50 EM0 ¢t EMn_1 C_n = b.
This implies that
a=Co =M :Mffil Cy = b.

Since acl*!(U) ¢ M;Y, for all i, it follows that

= Co =acl®4(U) """ Facl®(U) Cn = I; [

Qi

We conclude our investigation of Lascar strong types by two technical
results. The first one shows that the relation ~1 satisfies a restricted form

of the back-and-forth property.

Lemma 2.12. Ifa ~S band ¢ {1/ va b, there exists a tuple d such that
ac ~% bd.

Proof. Let (a;);<, be an indiscernible sequence over U with a, = a and
d, = b. Since the subsequence (d;)o<i< is indiscernible over U U 4 and
¢ {1/(]5, b, we can use Lemma F3.1.3 to find an element ¢’ =y4p € such that
(@;)o<i<w is indiscernible over Uaé’. Applying an Udb-automorphism
mapping ¢’ to ¢, we obtain an indiscernible sequence (a’)o<i<e OVer
Uac such that

(d;)o<i<w =Uab (di)o<i<w .

Replacing a; by a}, for o < i < w, we may therefore assume that the
sequence (d;)o<i<e is indiscernible over Uac.

For every i < w, we choose an automorphism 7; € AutMy such
that 71;(d,) = d,.;, for all n, and we set ¢; := 7;(¢). Since (a;)o<i<w 1S
indiscernible over Uagc, it follows that

cab=y caa, =y ¢;a;a,4;, foralli<wando<n<w.
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By Proposition Es.3.6, there exists an indiscernible sequence (¢a’)i<q
over U such that

AV((€iai)ico/U) € AV((E4;)icw/U)-

In particular, we have

-/ =/ _ = = = _ __I_?
c;a;a,.; =vu Cididuyy+; =y €Av.

Let 0 be an U-automorphism such that ¢(¢;,) = ¢, o(d,) = 4, and
o(a)) = b. The tuple d := o(¢}) has the desired properties. ]

The second observation contains a strengthening of the extension
axiom.

Lemma 2.13. Let+/ be a forking relation and suppose that a \/ v U. For

every set B, there exists a tuple a’ ~ a such that @' \/y B.

Proof. Since a \/ v U, we can use Proposition F2.4.10 to construct a
V/ -Morley sequence (a, )<, for tp(a/U) over U. Applying a suitable
automorphism we may assume that d, = . Since @[>0] \/u do., there ex-
ists a sequence o’ =y, a[>o] such that o \/U Ba,. Let o = (a})o<i<w-
As a,a’ is indiscernible over U, we have a, mlg a.. Since a. \/ u B, the
claim follows. L]

Lascar invariance

To study theories without the independence property, we introduce

variants of the relations {/ and \‘/ that are based on Lascar strong types
instead of elementary equivalence.

Definition 2.14. For A, B, U ¢ M we define
AYuB :iff bug b = b, b forallb,b’ cB,
A 1\S/UB -iff b= b = b=ys b’ forallb, b’ c B,
AV B dff A*(Y)y B.
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If @ /vy B, we say that tp(a/UB) is Lascar invariant over U.

Note that i/ c 1\5/ c {1/ . Unfortunately, the relation l\s/ is not a
preforking relation since it fails transitivity. But {1/ is. Hence, in order to
show that {/ is a forking relation, we will prove below that {/ = *(%/).

Exercise 2.2. Prove that 1\5‘/ satisfies all axioms of a preforking relation
except for (LTR).

Before turning to 1\‘/ , we take a look at the relation {1/ .

Lemma 2.15. {1/ is a preforking relation.

Proof. (1nv) follows immediately from the definition.
_ (mon) Suppose that A %/U Bandlet A, € A and B, € B. For tuples
b,b’ € B, ¢ B, we have

bag b = b, b = b, b

(BMON) Suppose that A {1/ v BC and let b, b’ ¢ B. Fixing an enumera-
tion ¢ of C, we have

7 s / = s 77= I N 7 s !
brage b = bingb'c = benpgab'c = brjey, b

(NOR) Suppose that A \/ v B. To show that AU \/ v BU, consider
tuples b,b’ c Uu Bwith b~ b'. Reordering b and b’, we may assume
that b = b,¢ and b’ = b’ ¢ for bo, b’ c Band ¢ ¢ U. Consequently,

bo wi bLE = by~ bl = by~ bl = boc g, bl
(LrF) To show that A {1/ 4 B, let b, b’ c B. Since, trivially,
b~ b implies b~Y b,

the claim follows.

1178



2. Lascar invariant types

(LTR) Suppose that A, S/Al Band A, S/AO Bfor A, c A, c A,.To
show that A, {1/ A, B, consider two tuples b, b’ c B. Then
b~ j b = bab P b = bw j b
(FIN) Suppose that A, {1/ v B, for all finite A, € A. To show that
A {/u B, consider two tuples b, b’ ¢ B. Then
b~y b implies b, b, forallfinite A, CA.

By Lemma 2.3, it follows that b ~I$, 0. o
(DEF) Suppose that a y//; B. Then there are tuples b, b’ € B such that

brg b’ and b, b .

By Lemma 2.3, there exists some formula ¢(x, y5Z) over U such that
@(x, y;a) is chain-bounded and M & ¢(b, b’; a). Let n be the minimal
number such that

ME -3%0-3%,, N\ (%, %k a) s

o<i<k<n

and set

v(z) = (b, b';2) A-Fxo 3%, N\ (%, %43 2).
o<i<k<n
If @’ is a tuple satisfying y(x), then ¢ (%, y;a’) is chain-bounded and it
follows by Lemma 2.3 that b aBU 4 b’. Hence, a’ v, B. ]

There is also a characterisation of {1/ in terms of indiscernible se-
quences, which is obtained by simply replacing the relation ~% by its
definition.

Lemma 2.16. A \/ u B if, and only if, for every indiscernible sequence
(b )i<w over U with b, b, € B, we canﬁnd some indiscernible sequence

(b )icw Over U U A with b’ = by and b’ = b,.
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Proof. (<) To show that A \/ u B, consider two tuples b, b’ € B with
b ~% b’. Then there is some indiscernible sequence (¢;);<, over U
W1th i, = band ¢, = b'. By assumptlon we can find an indiscernible
sequence (¢;)i<, over U U A with ¢; = ¢, and ¢ = ¢,. This implies that
b=c¢l NILsqucl—b’

(=) Suppose that A \/ v B and let (b ),<w be an indiscernible se-

quence over U with b,, b, € B. Then b, ~ b,, which implies that
bo &%, b,. Consequently, there is some 1ndlscern1ble sequence (b)) ;<
over U U A with b’ b, and b’ b,. ]

Before proving that 1\1/ is a forking relation, we collect several different
characterisations of this relation. We start with the following one.

Lemma 2.17. A 1\i/U B if, and only if, for every finite set of indiscernible
sequences Q, ..., &,—, over U, there exists a set A" =yp A such that
each «; is indiscernible over U U A’.

Proof. (=) Suppose that A l\i/U Band let o, ..., a,_, be indiscernible
over U. W.l.o.g. we may assume that each «; is indexed by a dense order I;.

By definition of 1\‘/ , there exists a set A" =yp A such that

1 1s
A UB“o...an_l.

We claim that each sequence «; is indiscernible over U u A’. Suppose
that a; = (é}) jer;- By Lemma E5.3.12, it is sufficient to prove that

a'[k] =yar @'[1], forallk,le[I;]" such that k = isv and
| =atvwiths<t.
Given #, v, s, t, we fix a strictly increasing function g : w — I; such that
glo)=s, g()=t, and g(j)<v, foralj<w.
The sequence (a'[ig(j)7]) <o witnesses that

a'lasv] ~S a'[atv].
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Therefore, A’ ¥/u Ba, . .. a,_, implies that a’[isv] =yar a'[at?].
(<) Let a, B, and U be sets such that, for all indiscernible sequences
®o, - .., &y, Over U, there is some tuple @’ =yp a such that each «; is

indiscernible over U U a’. To show that a l\‘/ v B, consider some set

C < M. We have to find some tuple @’ =y @ such that &’ ¥/y BC. To
do so, it is sufficient to prove that the set

®(%) = tp(d/UB)
u{(%b) < ¢(xb)]|b,b cUBC, b=5b"}

is satisfiable. Hence, consider a finite subset @,  ®@. Then there are
formulae ¢ (%; Jo), . . .» @n(X; 7 ) and parameters by, by, ..., by, b, €

U u Bu C such that b; = b/, forall i < n,and

@, Stp(a/UB) U{gi(%;b;) < ¢;(x;b%) |i<n}.

: : =i s o s xi : =i _ 7.
For each i < n, we fix a finite sequence ¢, ~; -+ ~; Con(iy With &g = b

and éin(i) = b’ and, for every j < m(i), we choose an indiscernible
sequence [3’; over U starting with the tuples c; and c; +,- By assumption,

there exists a tuple a’ =yp a such that every ﬁ; is indiscernible over
U u a’. This implies that

-i Is =i
Cji®uar Cja -

Hence, b; 515 a 1_7;, which implies that b; =y 4 1_9; . Consequently, a’ real-
ises D,. ]

It follows that 1\‘/ is the coarsest forking relation that preserves indis-
cernibility.

Proposition 2.18. Let+/ be a forking relation. Then/ < 1\1/ if, and only

if, whenever f3 is an indiscernible sequence over some set U and A \/ u B
then f3 is indiscernible over U U A.
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Proof. (=) Suppose thaty/ C 1\1/ and that A \/ u B, for some indiscerni-

ble sequence f3 over U. Then A 1\‘/ v 3 and we can use Lemma 2.17 to find
aset A’ =y A such that § is indiscernible over UUA’. Since A’ =y Ap,
it follows that 8 is also indiscernible over U U A.

(<) To show that/ 1\1/ , suppose that A \/ u B. We use the char-

acterisation of Lemma 2.17 to prove that A l\‘/ u B. Hence, consider

indiscernible sequences «,, ..., a,_; over U. By (EXT), there exists a set
A’ =yp A such that

A’ \/UBoco...(xn_l.

By assumption, A’ \/ v «; implies that «; is indiscernible over U U A’.

[

We also need the following technical lemma about the splitting rela-
tion {/ :

Lemma 2.19. Let a {/ u M where WM is a k-saturated model and U ¢ M
a set of size |U| < k. For every set C, there exists a unique extension of

tp(a/M) over M U C that is 3/-free over U.

Proof. For uniqueness, suppose that there are two extension p and p’
of tp(a/M) over C 2 M that are both {/-free over U. Fix realisations
b and b’ of these two types and consider a finite tuple ¢ € C. Since M is
x-saturated, we can find some tuple d € M with d =y ¢. Then

B{/UC, I;,{/UC, and EEUd_

implies ¢ =5 d and ¢ =;, d . Furthermore,

b=y a=y b’ implies b=;0b .

Consequently,

bé ybd=ybé.

v bd
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Hence, b =y;: b, for_all finite ccC which implies that b =yc b'.
Consequently, p = tp(b/C) = tp(b"/C) =p'.
It remains to prove the existence of a {/ -free extension. As M is «-

saturated, it realises every type over U. Hence, there exists a function
g: C*Y > M<“ such that

g(é)=y¢, forallceC™.
We claim that

pi={(x:¢) | ¢(%7) aformula, ¢ € C**, Mk ¢(a;g(¢)) }

is the desired type.
Let us start by showing that the set p is satisfiable. Consider finitely
many formulae ¢,(%;¢5),...,9,(%;¢,) € pand set ¢ := ¢, ...¢, and

d:=g(C,)...g(éy). By definition of p, we have

M 9o(a;8(¢0)) A=A 9u(a;8(¢n))-
By x " -saturation of I, there exists a tuple b € M with b =y ¢. Then

g(&)=yé=yb and a {/U M implies g(¢)=ya b.
Choosing some tuple @’ such that b =y a'¢, it follows that

ag(¢) =y abz=yd
Suppose that g(¢) = d,, ... d,. Then

ME¢;(a;¢(¢;)) and a {/U M implies Mk ¢;(d;d;).
By choice of d’, it follows that

M E @o(a'sco) A Apu(a’scn).

Thus, a’ is the desired tuple satisfying every ¢;(x;¢;).

1183



F4. Theories without the independence property

Furthermore, note that p is a complete type over C since, for every
formula ¢(x; ¢) with parameters ¢ ¢ C, we have

p(x;¢)ep iff Mk g(asg(¢))
iff Mg -p(a;g(c)) iff -(x;¢)¢ép.

To see that p is {/ -free over U, consider two tuples ¢, ¢’ € C such that
¢ =y ¢’. Then

g(¢)=vc=p =y g(d’) and a {/U M

implies that ¢g(¢) =y; g(¢’). For a formula ¢(&; y) over U, it follows
that
p(x;¢)ep it Mk ¢(a;¢(¢))
iff Meg(asg(e)) iff o(x:c)ep. O
Proposition 2.20. Let a, U € M and let M be a model containing U that

is (|T| ® |U|)*-saturated and strongly (|T| & |U|)"-homogeneous. The
following statements are equivalent:

(1) a Vv M.

(2) a ¥/v M.

(3) @ Yu M.

(4) b= b = b=ls. b forallfiniteb, b’ c M.
(5) a {/N M, for all models X < M containing U.
(6) For all models N < M containing U, we have

b NI;,:>I?EU5,I_?,, fOT'alll;,l_?,EM.

(7) tp(a/M) is invariant under all automorphisms of M that fix some
model N < M containing U.
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(8) Every indiscernible sequence (1_9,-),-<w over U that is contained in M
is also indiscernible over U U a.

(9) For every indiscernible sequence (B,-)Kw over U with by, b, € M,
we can find some indiscernible sequence (b});<, over U U a with
b = b, and b = b,.

(10) 1:90 =ua by, for every indiscernible sequence (l_o,-)kw over U with
by, b, € M.

S

Proof. Setk :=|T|® |U]|.

(3) < (9) was already proved in Lemma 2.16.

(3) = (4) Consider two finite tuples b, b’ ¢ M with b 515 b'. By
definition of =, there are tuples ¢, ..., ¢, such that é, = b, &, = b’
and ¢; mlg Ci+1> forall i < n. As M is k™ -saturated, we may assume that
Co»- .., Cp are contained in M. By (3), it follows that ¢; mllsm Ciyq, forall
i < n. This implies that b =i b’.

(4) = (7) Let m € Aut My, for some model N < M containing U. For
every finite b € M, it follows by Proposition 2.5 that

b=y n(b)

Consequently, for every formula ¢(x; ),
p(x:b) etp(a/M) iff  ¢(%7(b)) etp(a/M).

(7) = (2) Let b, b’ S M be tuples with b 515 b’. First, we consider
the case where b and b’ are finite. By Proposition 2.10, there are tuples
Co»...,Cn, and models Ny, ..., N,,_, 2 U such that

a= ¢ =N, y =N, """ =N,_, Cn—r =Np_, Cp = b.

Replacing each model N; by a suitable elementary substructure, we
can ensure that [N;| = k. By x*-saturation of M, we may therefore
assume that N; € M. Hence, x"-homogeneity of M implies that there
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are automorphisms 77; € AutMy, with 7;(¢;) = ;1. By (7) it follows
that ¢; =y,4 Ciy,. Consequently, b =y; b'.
For infinite tuples b, b’ € M, it follows that

bzlé b’

= bly=ys b'|;, for all finite sets of indices I

= l_? =Ua I_?/ .

Consequently, a l\s/ u M.
(2) = (5) Let N < M be a model containing U and consider two

tuples b, b’ ¢ M with b =y b’. Let ¢ be an enumeration of N. By (2) and

Proposition 2.5, it follows that

b=nb'

I
S S S
(Y] (Y] (Y]
[T
ce 25 Z
S S
ar o

S
(Y]
[
c
AN
(Y]

= b=x; D .

R R

S
11
c
N
(oY}
S
~

(5) = (6) is trivial.

(6) = (10) Let (Bi)i<w be an indiscernible sequence over U such
that b,, b, M. We fix an arbitrary model Rt < M of size |N| = «
containing U. By Lemma E5.3.11, there is some model N' =y N such that
(bi)i<o is indiscernible over N’. In particular, we have b, =y b,. By
k" -saturation of M, we can find some set N ¢ M with N” =; ; N'.
Hence, b, =y b, and (6) implies that bo =ua by.

(10) = (8) Let (b;)<, be an indiscernible sequence over U that is
contained in M. To show that (b; )i, is indiscernible over U U d, we
will prove that

b[i] =ya b[k], foralli,ke[w]", n<w.

It is sufficient to consider the case where 7 < k. Hence, let i < k be
elements of [w]". Fix some increasing sequence [, < I, < ... in [w]"
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with [, = 7and [, = k. We set ¢; = b[I;]. Then (¢j) j<w is indiscernible
over U and it follows by (10) that b[7] = ¢, =ys ¢, = b[k].

(8) = (9) Let (fo”)nq‘, be an indiscernible sequence over U such that
b°,b* ¢ M. We first consider the special case where the tuples b" are
finite. Since M is x*-saturated, it contains some sequence (b} );<, with
b'[w] =yj.5 b[w]. Then b = bo, b, = b, and it follows by (8) that
(b})i<w is indiscernible over U U a.

For the general case, let @((x" ), <, ) be a set of formulae stating that
the sequence (%"),<, is indiscernible over U U a and that x° = b°
and &' = b'. We have to show that @ is satisfiable. Thus, consider a
finite subset @, € @. Then there is a finite set I of indices such that
the formulae in @, only contain variables x" with i € I. Applying the
special case we have proved above to the sequence (b |1) n<w> We obtain
an indiscernible sequence (') <, over U U d with b’ = b° and b’ = b*.
This sequence satisfies @,,.

(1) = (2) follows since 1\1/ = *(1\3/) c 1\5/

(5) = (1) Fix some set C € M. We have to show that there is some
tuple @’ = a@ with @' /y MC. Let R < M be a model containing U of

size |N| = k. Then a {/ N M and we can use Lemma 2.19 to find some
tuple ay =p a such that ay {/N MC and tp(ay/MC) is the unique
{/-free extension of tp(a/M). Furthermore, if we are given two such

models N, N" < M, we can find some model N* < M containing N U N’
of size [IN*| = k. Then

iy V/n+ MC, ane 35+ MC, and  ay =y an

and it follows by uniqueness that day =p/¢ dns. Consequently, choosing

a’ := ay,, for an arbitrary model 9¢,, we have

a'=ya and a4’ /y MC, forallmodelsUCNcM

of size [N| = «.

_ We claim that 4’ /v MC. Consider two tuples b, b’ € MC with
b ~% b’. By Lemma 2.3, there is some model N 2 U with b =y b’. We
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can choose N of size [N| = x and, by k" -saturation of M, we may assume
that N ¢ M. Consequently,

a' /n MC implies b=yaz b,
as desired. ]
Corollary 2.21. 1\‘/ = *(/) is a forking relation.

Proof. We have seen in Lemma 2.15 that {1/ is a preforking relation.
Consequently, * ({1/ ) is a forking relation and it remains to prove that it
coincides with 1\1/ . The inclusion 1\5/ c {1/ follows immediately from the

respective definitions. Consequently, 1\1/ = *(l\s/) c *({1/ ). Conversely,
by the implication (3) = (1) of Proposition 2.20, we have

A (), M implies A V/y M,
for sufficiently saturated models M. According to Lemma F2.4.7, this
implies that * (/) ¢ {/. ]

Corollary 2.22. {/E 1\5/ c {1/ and \i/g l\i/E \f/

Proof. The first two inclusions follow immediately from the respective
definitions. For the thrid one, it follows that

i * %1 li
V="(Nerh=V.

For the last inclusion, it is sufficient to prove that
AWy M implies A Y/y M,

for every sufficiently saturated model M, since Lemma F2.4.7 then implies

that ¥/ = *({/) c*({/) = /.
Hence, suppose that A 1\‘/ v M where Misa (|T|®|U|)*-saturated and
strongly (|T| @ |U|)*-homogeneous model containing U. By finite char-

acter it is sufficient to show that A ‘\1/ u B, for every finite subset B ¢ M.
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Hence, let B € M be finite, and consider an indiscernible sequence
(b})i<w over U where b, is an enumeration of B. By (|T| @ |U|)"-sat-
uration of M, we can find an indiscernible sequence (I_ai)i<w over U
such that b[w] € M and b[w] =Ui b'[w]. By Proposition 2.20 (8), this
sequence is indiscernible over U U A. Let A’ be some set such that

Ab[w] =y AV [w].

Then (b; )i<w 18 indiscernible over U U A and it follows by Lemma F3.1.3

that A %/U lj)g []
It the remainder of this section we compare the relations 1\1/ and \f/ :

Definition 2.23. We call an independence relation \/ weakly bounded if,
there exists a function f : Cn — Cn such that

mult\/(p) <f(|T|e|U]), forallpesS<“(U).

In this case we also say that+/ is weakly bounded by f.

We can characterise 1\‘/ as the coarsest weakly bounded forking rela-
tion.

Proposition 2.24.
(a) Y/ is weakly bounded by f(x) = 22"
(b) \/ c l\‘/ , for every weakly bounded forking relation \/.

Proof. (a) Fixatypep e S°“(U) and some set C 2 U. We have to show

that p has at most  := 22 li/-free extensions over C. For g € $<“(C),
let g, be the function mapping a formula ¢(%; y) over U to the set

g(9) ={ [0l | 9(x:0) €q ).

We claim that g, = g,» implies q = q'.
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For the proof, suppose that g, = g, and let ¢(&; b) € q. Then [1_9]515 €
gy = g implies that there is some tuple b’ =15 b with ¢(%;b") € ¢’. Fixa
tuple a’ realising q’. Then a’ 1\S/U C and

b=l b implies M o(a’sh) < o(a’sh).

Consequently, ¢(%; b) € ¢', as desired.

To conclude the proof, let N 2 U be a model of size | T| @ |U|. Note
that the number of = y-classes of finite tuples is at most [S<¢(N)| = 2/V.
By Proposition 2.5, it follows that there are also at most that many =-
equivalence classes of finite tuples. Hence, there are at most 2" =k
functions of the form g,. It follows that there are at most x 1\1/ -free
extensions of p over C.

(b) For a contradiction, suppose that there is a weakly bounded forking

relation / with \/ ¢ 1\1/ . Then there are a, B, U € M such that

d\/UB and d%B.

Let f : Cn — Cn be the function bounding\/ andlet M 2 Uu Bbe a
model that is (| T| @ |U|)*-saturated and strongly (|T| @ |U|)"-homoge-

neous. By (EXT), we can find some tuple a’ =y a with a’ \/U M. By
(MON), we have a’ i M. Hence, we can use Proposition 2.20 (10) to
find an indiscernible sequence (b; )i, over U with b,, b, € M such that
b, #uar b,. Fix some formula ¢(%; ) such that

M E —¢(a'; l_)o) Ao(as 1_71) )
Let I € w be an infinite set of indices such that
ME ¢(a';b;) <> o(a’sby) forallikel,

and let (¢;) jej be an extension of (b;);c1u(0,1y of size |J| > f(|T| & |U])
that is indiscernible over U and such that the order ] is strongly R,-
homogeneous. Fix a tuple a” =y a’ with a” \/U M¢[]]. For every
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j € J, fix an order automorphism ¢; : J — J such that 0;(0) = j and let
n; € Aut My be an automorphism with

j(Ck) = Co k> forallke].

Setting d; := mj(a") it follows by invariance that

i \JuclJ] and ajZyey ar, forj#k.

Hence, mult\/(tp(d/U)) > |J| > f(|T| @|U|). A contradiction. O

Corollary 2.25. Let T be a complete first-order theory. The following
statements are equivalent.

W -V
(2) \f/ is weakly bounded.

(3) If B is an indiscernible sequence over some set U and A \f/ u P, then
B is indiscernible over U U A.

Proof. (1) = (2) follows by Proposition 2.24 (a).

(2) = (1) The inclusion 1\‘/ c \f/ follows by Corollary 2.22, while
\f/ c 1\‘/ follows by Proposition 2.24 (b).

(1) = (3) follows by Proposition 2.18.

(3) = (1) The inclusion 1\1/ c \f/ follows by Corollary 2.22, while
\f/ c 1\1/ follows by Proposition 2.18. ]

Theorem 2.26. If a theory T does not have the independence property,
then 1\1/ = \f/ .

Proof. The inclusion 1\‘/ c \f/ was proved in Corollary 2.22. For the
converse, it is sufficient, by Lemma F2.4.7, to prove that

av/y M implies a Wy M,
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for all models M that are (| T|®|U|)*-saturated and strongly (| T|®|U|)*-
homogeneous.

Hence, let a \/ u M. We check condition (10) of Proposition 2.20.
Let (b;);<, be an indiscernible sequence over U with by, b, € M. Then

a \/ v M implies that a \/ u bob,. By Lemma F3.1.3, there exists a tuple
a’ _Ub p, @ such that the sequence (bzl 2,+1),<w is indiscernible over
U u a'. For a contradiction, suppose that b, #ys b,. Then by £ya b,
and there is some formula ¢(x) over U U a’ such that

M = gD(i?o) AN —mp(i?l) .
By indiscernibility of (5,;b,i+,)i<e over U U @', it follows that
ME o(b;) iff iiseven.

Hence, Proposition Es5.4.2 implies that T has the independence property.
A contradiction. [

Proposition 2.27. A simple theory T does not have the independence
property if, and only if, 1\1/ = \f/

Proof. (=) follows by Theorem 2.26.
(<=) Suppose that T is a simple theory with the independence prop-

erty. We have to show that 1\‘/ * \f/ . We can use Proposition E5.4.2
to find an indiscernible sequence (d, )n<, and a formula ¢(x; b) with
parameters b € M such that

Mk ¢(d,;b) iff  niseven.

Using Proposition Es5.3.6 we fix an indiscernible sequence (d;,d; ) n<w+w
over b with

AV((d;d;,)n<w+w/l_7) 2 AV((dzn d2n+1)n<w/l-7)-

Note that this implies that the interleaved sequence a., a., a.,al’,... is
indiscernible. In particular, we have

al &5 a" where U:=d'[<w]d"[<w].
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Let A := @'[<w + 0]@"[<w + w]. Indiscernibility implies that A {/y b.
Since ‘{/ c \f/ , it follows that A \f/ v b and, by symmetry, b \f/ v A. But

-/ /2 . -7 s =1
a, ¥ a, implies a, #; a,.

Hence, b ¢/, A, which implies that b 1}/, A. Consequently, \f/ * 1\1/ . O

Theorem 2.28. Let T be a complete first-order theory. The following state-
ments are equivalent:

(1) T is stable.

(2) T issimple and it does not have the independence property.
(3) T issimple and Y/ = /.
(4) W/ is symmetric.

(5) 1\‘/ is right local.

Proof. (2) < (3) was already proved in Proposition 2.27.

(1) = (2) If T is stable, it is simple by Corollary F3.2.19 and it does not
have the independence property by Proposition Es.4.11.

(2) = (1) Let T be a simple theory without the independence property.
We have shown in Proposition F3.2.21 that T also does not have the strict
order property. Consequently, it follows by Proposition E5.4.11 that T is
stable.

(3) = (4) If T is simple, \f/ is symmetric. Hence, so is 1\‘/ = \f/ .

(4) = (5) Since l\‘/ is a forking relation, this implication follows by
Theorem F2.4.17.

(5) = (3) If 1\‘/ is right local, so is \f/ D 1\‘/ . Consequently, T is simple.
Furthermore, Theorem F2.4.17 implies that 1\‘/ is symmetric. Therefore,
it follows by Theorem F3.1.9 that \f/ c {1/ c 1\1/ : H
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3. \1/ -Morley sequences

In this section we study \1/ -Morley sequences in theories without the
independence property.

Cofinal types

We start by noting that finiteness of the alternation number can be used
to define a kind of ‘limit type’ of a sequences.

Definition 3.1. The cofinal type of a sequence a = (a; )iy is the set
CF(a) := { o(x) | ¢ a formula over M such that
[9(a:)]ier is cofinal in I } .

Lemma 3.2. Let T be a theory without the independence property and
let a be an indiscernible sequence. Then CF(a) is a complete type over M
which is finitely satisfiable in .

Proof. Suppose that « = (a;);er. For completeness, consider a formula
¢(x) over M. Since alt,, («) < oo, there exists some index k € I such that

ME ¢(a;) < ¢(aj), foralli,j>k.
Consequently,
¢ e CF(a) iff MeEg(ay) iff -¢¢CF(a).

To show that CF(«) is consistent, consider finitely many formulae
@os>---» ¢n € CF(a). There exists some index k € I such that

ME ¢j(a;), foralli>kandallj<n.
In particular,
M E go(ar) A A@u(ag).

Hence, {¢o, ..., ¢, } is satisfiable. As the tuple satisfying this set belongs
to a, it further follows that CF(«) is finitely satisfiable in a. ]
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Cofinal types can be used to construct \1/ -Morley sequences as follows.

Lemma 3.3. Let T be a theory without the independence property and
o« = (a;) i1 an indiscernible sequence over U where the order I has no first
element. Let a°P := (a;);cror be the sequence with reverse ordering and let
B = (b}) ey be generated by CF(a°P) over UCa.

(a) Bisa \‘/ -Morley sequence over UCa.

(b) Ba is indiscernible over U.

Proof. We start by proving that, for every formula ¢ over UCa and every
tuple j € [J]", there are arbitrarily small indices 7 € [I]" such that

M = ¢(b[j]) < ¢(ali]).

We proceed by induction on n. For n = o there is nothing to do. Hence,
suppose that we have proved the claim already for n < w and that

M= @(b[j], 1),
where j € [J]" and I € ] are indices with j < 1. Since b; realises the type

CF(a®P) | UCab[<!], we have ¢(b[j],%) € CF(a°?). Consequently,
there are arbitrarily small k € I such that

M= p(b[]] ax) .-
By inductive hypothesis, we can find arbitrarily small 7 < k such that
M & ¢(a[1],ax) .
Having proved the claim, it follows by Corollary Es.4.3 that

M & ¢(b[j]) <> ¢(b[j']), for all formulae ¢ over UCa and
all indices 7,7 € [J]".
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Hence, 3 is indiscernible over UC«. As « is indiscernible over U, it
further follows that

M= p(b[j], alk]) < ¢(a[i], a[k]),

for all formulae ¢ over U and all indices 7 € [I]", ke [I]™, e[J]" with
i < k. This implies that B« is indiscernible over U.
To show that S is a \1/ -Morley sequence, it remains to prove that

bj \/UC(x [<j], forallje].

We have shown in Lemma 3.2 that CF(«°P) is a global type that is finitely
satisfiable in «. In particular, it is invariant over UCa. Hence, the type
CF(a°P) | UCab[<j] realised by b; has a global extension CF(a°P) that
is invariant over UCa. [

As a concluding remark let us note that being generated by a type p
only depends on the average type of the sequence.

Lemma 3.4. Let a = (a;)ie; and B = (a;)jej be infinite indiscernible
sequences over U and p € S*(Uaf3) a type that is invariant over U.
(a) If a is generated by p over U and Av(a/U) = Av(B/U), then f3 is
also generated by p over U.

(b) If « and B are generated by p over U, then Av(a/U) = Av(B/U).

Proof. (a) Let ¢(%; y) be a formula over U such that M o(bj; I_a[l_c]),
for some k < jin J. Let li be a tuple in I with the same order type as kj.
Then Av(a/U) = Av(B/U) implies that Ml = ¢(a;; a[! [1). Consequently,
@(x;a[l]) e pt Ua[<i]. Since a[I] =y b[k], it follows by invariance of p

that ¢(x; b[k]) € p.
(b) We prove by induction on # that

a[i] =y b[j], forallie[I]"and e []]".

For n = o, there is nothing to do. Hence, suppose that we have proved
the claim already for tuples of length n and consider tuples i € [I]"** and
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jel[J]". Seti’ =iy ...ipyand j = jo ... ja—y and let o(Xo,...,X,)
be a formula over U. By inductive hypothesis and invariance of p, it
follows that

M ¢(a[i'],a;,) iff  @(a[i'],x)ep
it @(b[j'],%)€p
ifft  Meo(b[j'],bj,). O]

The confluence property

Our next aim is to prove a combinatorial characterisation of \‘/ -Morley
sequences in terms of the so-called confluence property.

Definition 3.5. Let U be a set of parameters.

(a) Let « = (ak)kex be a family of indiscernible sequences aj =
(%) ie1, over U. We say that « is confluent over U if there exists some
tuple ¢ such that, for every k € K, the extended sequence ay ¢ is still
indiscernible over U.

(b) A complete type @((X;)i<w) over U has the confluence property
if every family & = (o )kex of indiscernible sequences ay = (cii.‘),-e I
over U with

Av(ax/U) =@, forallkeK,

is confluent over U.
(c) We say that a sequence a = (a;);c has the confluence property
over a set U if it is indiscernible over U and Av(a/U ) has the confluence

property.
We start by showing how to find sequences with the confluence prop-
erty.

Lemma 3.6. Every infinite sequence a = (a; ) ;ej such that
dj =ya[<i] @ and a; Yval<i], foralli<jinlI,

has the confluence property over U.

1197



F4. Theories without the independence property

Proof. Indiscernibility follows by Lemma F2.4.14. For the confluence
property of Av(a/U), we choose a (|T| @ |U|)*-saturated model M of T
containing U and we use Proposition E5.3.6 to find an indiscernible
sequence a’ = (a),) <, over U of length w with Av(a’/U) = Av(a/U).
By invariance of {/ , we have

a, /v a'[<n], foralln<w.

Since \1/ is a forking relation, we can choose, by induction on #n < w,
tuples

bu =var[<n] 4, suchthat b, \i/U Ma'[<n]b[<n].

By Lemma F2.4.14, we have (b,) <o =v (@) n<w- Hence, B = (b)) e
is an indiscernible sequence over U with

AV(B/U) = Av(a’/U) = Av(a/U).

To show that this average type has the confluence property over U,
consider a family of indiscernible sequences fx = (b¥);cy,, for k € K,

over U with Av(Bx/U) = Av(B/U). Since b {/U M, it follows by
Lemma 2.19 that there is some tuple ¢ =), b, such that

¢ Yuv MBU | B

keK

We claim that every sequence f ¢ is indiscernible over U. Note that
¢ {/ u Pr- By Lemma F2.4.14, it is therefore sufficient to prove that

€ =Upk[<i] b¥, foralliel.

According to Lemma 2.19, tp(b¥/M) has a unique {/ -free extension
over M U b*[<i]. Consequently,

¢ Y/ m b*[<i], bF 3/ y b¥[<i], and E=p by =y D

implies that ¢ = Mbk[<i] bﬁ-‘. []
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In particular, every {/ -Morley sequence has the confluence property.
The converse statement also holds. The proof is split into several steps.
We start by showing that every sequence « with the confluence property
is generated by some invariant type. This type is the so-called eventual
type of «.

Definition 3.7. The eventual type of a sequence « = (4d;);¢s is the set

Ev(a/U) :={ ¢(%) | ¢(x) € CF(apB) for some maximally

p-alternating extension «f3 of & over U } .

Example. We consider the theory of open dense linear orders. By quan-
tifier-elimination, every strictly increasing sequence « = (a;);e; in M
is indiscernible. Furthermore, such a sequence « is maximally (x > ¢)-
alternating, for ¢ € Mj, if a; > ¢, for some i € I. It follows that the eventual
type Ev(a/@) contains all formulae of the form x > ¢ with ¢ € M.

Lemma 3.8. Let ¢(x) be a formula over M and o = (a;) i1 an infinite
indiscernible sequence over U.

(a) If a is maximally ¢-alternating over U, then
¢(x) e CF(a) iff (k)€ CF(apf),

for every extension a3 of « that is indiscernible over U.

(b) If a has the confluence property over U, then
¢(x) e CF(af) iff ¢@(x) e CF(ay).
for all maximally @-alternating extensions of3 and ay of a.

Proof. (a) Set n := alt, () and let k € [I]"** be a sequence of indices
such that

M & ¢(ay,) < —¢(ag,,), foralli<n.
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F4. Theories without the independence property

Then
¢(x) e CF(a) iff Mk ¢(ag,).

For a contradiction, suppose that there is an extension af3 = (d;)jer+s
that is indiscernible over U such that

¢(x) e CF(a/M) iff ¢(x) ¢ CF(af/M).
Then there is some index j € ] such that
ME ¢(a;) < -¢(ax,) -

Consequently, the tuple kj € [I + J]"** witnesses that alt,(afB) > n.
Hence, « is not maximally g-alternating. A contradiction.

(b) As aff and ay have the same average type over U as « and this
type has the confluence property, we can find some tuple ¢ such that
af3¢ and ayc are indiscernible over U. Since «f8 and «ay are maximally
@-alternating, it follows by (a) that

¢p(x) e CE(af) it ¢@(x) e CF(afc)

iff Mk ¢(¢)
iff  @(x) e CF(ay?)
iff  ¢(x)eCF(ay). N

Lemma 3.9. Let T be a theory without the independence property and let
« = (a;) i1 be an infinite sequence with the confluence property over U.

(a) p:=Ev(a/U) is a complete type over M.
(b) v is invariant over U.
(c) «ais generated by p over U.

Proof. (a) Let ¢(X) be a formula over M. By Corollary 1.3 there exists a
maximally ¢-alternating extension a8 of a. Then af is also maximally

1200



3. \‘/ -Morley sequences

—@-alternating and it follows by Lemma 3.8 (b) that

o(x) eEv(a/U) iff ¢@(x) € CF(af)
iff  —¢(x) ¢ CF(apf)
iff -@(x)¢Ev(a/U).

Hence, it remains to prove that Ev(a/U) is satisfiable. Consider fi-
nitely many formulae ¢,(%),...,¢,(x) € Ev(a/U). By Corollary 1.3
there exists an extension a3 of « that is maximally ¢;-alternating over U,
for all i < n. Suppose that 8 = (b;) ;. Then

¢i(x) e Ev(a/U) implies ¢;(x)e CF(af), foralli<n,
and there exists some index k € J such that

Mk ¢;(b;), forallj>kandi<n.

This implies that Ml = @, (bx) A -+ A @, (by). Hence, {@o, ..., ¢, } is
satisfiable.

(b) Consider tuples b =y b’ and a formula ¢(%; 7) over U. To show
that

@(%;b) e Ev(a/U) iff  ¢(x;0") e Ev(a/U)
we use Corollary 1.3 to find an extension af of « that is maximally
¢ (x; b)-alternating and maximally ¢ (x; b")-alternating over U. Choose
a sequence '’ such that

afbz=y oa'f'b.
Then o’ B’ is maximally ¢(&; b’)-alternating. As the type Av(afB/U) =

Av(a’B’/U) has the confluence property over U, there is some tuple ¢
such that «f3¢ and a'f’¢ are both indiscernible over U. It follows by
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Lemma 3.8 (a) that

@(x%;b) e Ev(a/U) iff  ¢@(x;b) € CF(ap)
iff  @(x;b") € CF(a’B’)
iff  @(x;b") e CF(a'B'¢)
if Mk o(Gb)
iff  @(x;0") € CF(af3c)
iff  @(x;b") € CF(ap)
iff  @(x;b") e Ev(a/U).
(c) To show that ay realises the type p | Ua[<k], we consider a formula
@(X; 0>+ -+>Pn-1) over U and atuple i € [I]" of indices with 7 < k. Fixa
maximally ¢(x; a[7])-alternating extension af3 of & over U and let ¢ be

a tuple such that a5¢ is indiscernible over U. Then Lemma 3.8 implies
that

o(x;ali]) ep t Ua[<k] it ¢@(x;a[i]) € CF(ap)
it  @(x;a[i]) € CF(afc)
it Mk (cali])
iff Mk o(agali]),
where the last step follows by indiscernibility. ]

Combining the above results, we obtain the following characterisation
of \1/ -Morley sequences in theories without the independence property.

Theorem 3.10. Let T be a theory without the independence property,
« = (a;)ie an infinite sequence, and p a type. The following statements
are equivalent:

(1) aisa \i/-Morley sequence for p | U over U and p = Ev(a/U).
(2) « has the confluence property over U and p = Ev(a/U).
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3. \‘/ -Morley sequences

(3) v is a global type that is invariant over U and « is generated by p
over U.

Proof. The implication (1) = (2) follows by Lemma 3.6, and (2) = (3)
was already proved in Lemma 3.9.
(3) = (1) For i < jin I, we have

tp(a;/Ua[<i]) =p | Ud[<i] = tp(a;/Ud[<i]).

Furthermore, tp(a;/Ua[<i]) extends to p, a complete type over M that
is invariant over U. Consequently, we have a; \1/ v a[<i] and it follows
by Lemma F2.4.14 that « is indiscernible over U.

We have shown that « is a {/ -Morley sequence for p | U over U. It
therefore remains to prove that p = Ev(a/U). Let ¢(x;¢) € Ev(a/U)
be a formula with parameters ¢ € M. Then ¢(x;¢) € CF(af3), for some
maximally ¢(%; ¢)-alternating extension af3 of a over U. Let b be a tuple
realising p | Uaf3c. Applying Lemma 3.4 to the sequences « and a3,
it follows that af is generated by p over U. By choice of b, so is af3b.
Consequently, Lemma F2.4.14 implies that the sequence af3b is indis-
cernible over U. As a3 is maximally ¢ (x; ¢)-alternating, we therefore
have ¢(%; ¢) € CF(afBb), which implies that M = ¢(b; ¢). By choice of b,
it follows that ¢(x;¢) e p  Uafi¢ S p. O

Corollary 3.11. Let o and f3 be infinite {/ -Morley sequences over U. The
following statements are equivalent:

(1) Av(a/U) = Av(B/U)
(2) Ev(a/U) = Ev(B/U)

(3) There is some complete type p over M that is invariant over U such
that a and [3 are both generated by p.

Proof. (2) = (3) By Theorem 3.10, both sequences are generated by the
type Ev(a/U) = Ev(3/U), which is complete and invariant over U.

(3) = (2) If @ and 8 are both generated by p, it follows by Theorem 3.10
that Ev(a/U) =p = Ev(B/U).
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(1) = (3) By Theorem 3.10, « is generated by p := Ev(a/U). Hence,
Lemma 3.4 implies that so is f3.
(3) = (1) follows by Lemma 3.4. ]

As a consequence we can derive the following bound on the number
of invariant global types.

Proposition 3.12. Let T be a theory without the independence property
and let M be a model of T. There exists a bijection between types p €
S<“(M) that are invariant over M and average types Av(a /M) of infinite

\i/ -Morley sequences o over M.

Proof. We map a typep € S<“ (M) that is invariant over M to the average
type
O, = Av(a/M),

where « is any infinite sequence generated by p over M. According to The-
orem 3.10, the resulting sequence is a {/ -Morley sequence. Furthermore,
if « and 8 are both generated by p over M, it follows by Corollary 3.11
that Av(a/M) = Av(f3/M). Consequently, @, does not depend on the
choice of a.

The inverse of the function p — @, maps an average type @ of an
infinite \1/ -Morley sequence a over M to the type pp := Ev(a/M). Again
it follows by Corollary 3.11 that the type pgy does not depend on the choice
of .

It remains to prove that the functions p = @, and @ — pg are inverse
to each other. Let p € S<“ (M) be a type that is invariant over M and let
« be an infinite sequence that is generated by p over M. Then it follows
by Theorem 3.10 that pp, = Ev(a/M) =p.

Conversely, consider an average type @ of some infinite {/ -Morley
sequence « and let pp := Ev(a/M). By Theorem 3.10, « is generated
by p, which implies that @,, = Av(a/M) = . ]

As an application, we derive the following characterisation of theories
without the independence property.
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Theorem 3.13. Let T be a complete first-order theory. The following state-
ments are equivalent:

(1) T does not have the independence property.
(2) \f/ is weakly bounded by f(x) = 2*.

(3) There is some cardinal k > |T| such that, for every typep € S<“(M)

where M is a model of size |M| = «, there are less than 2*° 1{/-free
extensions of p over any given set C 2 M.

(4) Foreveryx >|T|, every set U of size |U| = , every typep € S<“(U),

and every set C, there are at most 2" 1{/-free extensions of p over
UuC.

Proof. (4) = (3) is trivial.

(2) = (4) Let k > |T| and let U be a set of size |U| = k. Consider a
type p € S<“(U) and some set C € M. Let (q;);<) be an enumeration
of all l{/—free extensions of p over U u C. Since ‘{/ c \f/ , it follows that
each q; isalso a \f/ -free extension of p. By (2), there are at most 2! TIelUl
such extensions. Hence, A < 2!T1®IUl = 5%

(1) = (2) Let U,C < M be sets and let (p;);<) be an enumeration
without repetitions of all types over U u C that do not fork over U. We
have to show that A < 2/T1®IUl_ Let M be a model of T containing U
of size |M| < |T| @ |U| and let N be a model containing M U C that is
(|T|®|U|)* -saturated and strongly (|T|®|U|) " -homogeneous. By (exT),
we can fix, for every i < A, some type q; 2 p; over N that does not fork
over U. Note that p; # py implies that q; # q, for i # k. Since T does not
have the independence property, it follows by Theorem 2.26 that \f/ = 1\1/ :
Hence, each q; is 1\1/ -free over U and, thus, also over M. Consequently,
we can use Proposition 2.20 to show that q; is {/ -free over M. Note that
there are at most 2! T1®IM| = 5| TI®IUl ayerage types Av(a/M) of {/-Morley
sequences « over M. By Corollary 3.11, this means that there also are at
most that many eventual type Ev(a/M) of such sequences «. Therefore
we can use Theorem 3.10 to show that there are at most that many types

over N that are {/ -free over M. This implies that A < 2/T®IVl,

1205



F4. Theories without the independence property

(3) = (1) Suppose that there is some formula ¢(%; y) with the inde-
pendence property. Then there are families (a;);<, and (b;)sc, such
that

ME o(a;, b)) iff ies.

Let M be a model of T of size |[M| = « that contains « and 3. We have
seen in Theorem B2.4.13 that there are 2> ultrafilters over the set A :=
{a; | i <« }.For every ultrafilter u over A, set

Py := Av(u/MC) .

By Lemma F2.3.10, p, is a ‘{/—free extension of p, | M. Furthermore, if
u # p are distinct ultrafilters, we can fix some set B € u \ v and an index
s € w such that

ME @(aib,) iff a;eB.

Consequently, ¢(x; l_os) € Py \ Py, which implies that p, # p,. It follows
that there are at least 2>~ types over M U C that are l{/-free over M. []

4. Dp-rank

Mutually indiscernible sequences

We can characterise theories without the independence property also in
terms of a rank that is based on mutually indiscernible sequences.

Definition 4.1. A family (o )k of sequences is mutually indiscernible
over a set U if each sequence ay is indiscernible over U u a[K \ {k}].

Before giving the definition of the dp-rank, we collect some technical
properties of mutually indiscernible sequences. Let us start with ways to
construct such families. The first observation is trivial.
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Lemma 4.2. Let a := (a;) ;1 be an indiscernible sequence over U and let
~ be a convex equivalence relation on I. The family (&|g)gey). is mutually
indiscernible over U.

Lemma 4.3. Let (ak)k<y be a family of sequences and U a set of paramet-

ers. If (Bk ) k<y is a family such that each By is an indiscernible sequence
over Ua[>k]B[<k] with

Av(Br/Ua[>k]B[<k]) 2 Av(ax/Ua[>k]B[<k]),
then (Bx)k<y is mutually indiscernible over U.

Proof. Suppose that ay = (a¥);c;, and Bx = (b%) e, for k < y. To show
that (B ) k<, is mutually indiscernible over U, we fix some index k < y
and we prove by induction on k < [ < y that f is indiscernible over
Ua[>1]B[1I ~ {k}]. The result then follows for I = y.

For I = k + 1, the claim holds by choice of 8. For the inductive step,
suppose that we have already shown that f is indiscernible over the set
Ua[>I]B[II ~ {k}]. To show that it is also indiscernible over

Ua[2(1+1)]B[L(L+1) N {k}],
consider a formula ¢(%o, ..., %,_,; ¢, d) with parameters
ccp' and dcUa[>(1+1)]B[L~ {k}].
We have to show that
M e @(b*[i];é,d) < o(b*[j];¢6,d), foralli,je[Ji]"

W.l.o.g. we may assume that ¢ = b'[5], for some § € [J;]™. Fix indices
i,7 € [Jx]". By inductive hypothesis, the sequence 3 is indiscernible
over Ua[>1]B[{I ~ {k}]. Therefore, we have

M e p(b*[i];a'[].d) < ~p(b*[j]:a'[i].d),
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for all and all £ € [I;]™. This implies that the formula
p(b*[i]: 2, d) < p(b*[j):%.d)
belongs to
Av(a;/Ua[>1]B[<I]) € Av(B;/Ua[>1]B[<I]).
Consequently,
Mk ¢(b*[]:6'[5).d) < ¢(b*[j]:b'[5].d). O
Let us note the following property of sequences ‘diagonally crossing’
a family of mutually indiscernible sequences.
Lemma 4.4. Let « = (ak)kex be a family of mutually indiscernible se-
quences oy = () ey, over U.
(a) (ds(k))keK =Uu (dlg(k))keK > fOT’ all 71> ( € erK Ik .

(b) If the index set K is ordered and the sequence o = (ox ) kex is indis-
cernible over U, then each sequence of the form (d”; ( k))ké K with

N € [1kex Ik is also indiscernible over U.

Proof. (a) We prove by induction on #n < w that

_ko 'kn—l — _ -ko -kn_1 T n
Dy(ko) " Fnkusy) “URLKNE] F(ig) " F (k) for all k € [K]".

For n = o, there is nothing to do. For the inductive step, suppose that
we have proved the claim already for n and let k € [K]"*". By mutual
indiscernibility, we have

-k, — 7kn
@) ZUalintia)] A, -

Therefore, it follows by inductive hypothesis that

‘ko _kn—l ‘kn = - ‘ko ‘kn—l ‘kn
Ayko) " ko) B (k) SULRNE] B (ko) B (kny) (k)
k 'kn—l 'kn

U(X[K\]_C] a-c(()ko) tte a((kn—l)a((kn) )
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(b) Note that indiscernibility of « implies that all index orders I are
isomorphic. Hence, we may w.l.o.g. assume that I; = I, for some fixed
order I. Fix an element i € I. Indiscernibility of « over U implies that
the restriction (c'lf.‘) kek is also indiscernible over U. By (a) it follows that
so is every sequence of the form (dz(k) Ykex With 1 € IX, O

We obtain the following generalisation of Lemma E5.3.11.

Corollary 4.5. Suppose that (et ) kex is a family of mutually indiscernible
sequences over U. For every set C, there exists a set C' =y C such that
(k) ke is mutually indiscernible over U u C'.

Proof. Suppose that K = « is a cardinal and let a; = (a¥);es,. By in-
duction on k < x, we use Proposition E5.3.6 to choose an indiscernible
sequence B = (b¥);c;, over U u Cu a[>k]p[<k] such that

Av(Bi/Ua[>k]B[<k]) 2 Av(ax/Ua[>k]B[<k]).

Then it follows by Lemma 4.3 that the family (S ) xex is mutually indis-
cernible over U U C. As each «y is indiscernible over U U a[K \ {k}],
we have

Av(Bx/Ua[K ~{k}]) = Av(ar/Ua[K ~ {k}]).

This implies that

(/—;k)keK =U (“k)keK-

Therefore, there exists an automorphism 7 € AutMy mapping one
family to the other one. Consequently, () kex is mutually indiscernible
over U u n[C]. ]

Corollary 4.6. Let « = (ax)rex be a family of mutually indiscernible
sequences ay = (a%) e, over U. For every family of linear orders J; 2 Iy,
k € K, there exist sequences ) = (d;c)jejk extending o such that the

family (&) ) kex is mutually indiscernible over U.
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Proof. As in the preceding corollary, we choose by induction on k an
indiscernible sequence fx = (b%);e;, over U U a[>k]B[<k] such that

AV(Br/Ual>k]B[<k]) 2 Av(ax/Ua[>k]B[<k]) .

Then it follows by Lemma 4.3 that the family (S ) xex is mutually indis-
cernible over U. As each ay is indiscernible over U U a[ K \ {k}], we
have

AV(Brlr /Ua[K N {k}]) = Av(ar/Ua[K ~ {k}]).

Consequently, there exists an automorphism 7 € Aut My mapping each
Bkl to ak. The family (7(Bx))kek is the desired extension of a. O]

Proposition 4.7. Let T be a theory without the independence property
and let (ay ) kex be a family of mutually indiscernible sequences over U.
For every set C, there exists a subset K, € K of size |K,| < |T| @ |C| such
that (ax ) kex~x, is mutually indiscernible over U U C.

Proof. Suppose that ay = (@¥);c;, where each a* = (a i<y 18 @ Y-
tuple. Let M be a model containing U and all sequences (xk, and define

PZ:UU{a;{j|kEK iEIk j<yk}
E = {(aj 11’ i)

F:={(af i], ,.,)

R:= { aj j>a '|kEK i<iinly, ]<yk}

, 1€k, j,j <yk}
keK, i, i €l, ]]<yk}

Fix an |M|"-saturated elementary extension
(M,, P, Uy, Es, Fy, Ry = (M, P, U, E, F, R).

Using the relations E,, F,, and R, we see that there are a set K, 2 K,
linear orders I}, ordinals y;, and a family

(b5

1J)keK; iely, j<yf

of elements such that, setting b* := (bf.‘)j)jw; and fy = (l_yf)ielz, we
have
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* P+:U+Uﬁ|:K+:|,

o If 2 Ix, yi 2 yk, and b ; = af

ij>
o the family (S )kek, is mutually indiscernible over U, .

fOI‘kEK, iEIk,j<yk,

By Lemma 1.12, we can find a set W € P, of size |W| < |T| & |C| such
that

a=wa implies a=ca’, foralla,a’ cP.

We choose a set K, € K of size |K,| < |W| < |T| @ |C| such that W ¢
B[K,]- We claim that the family (o )kexx, is mutually indiscernible
over UU C. Fix k € K := K~ K, and let 7, j € [ I} ]™. We have to show
that

dk[i] =UCa[K'~{k}] dk[]] .

Letd c Uua[K'~ {k}] be finite. Since the sequence fy is indiscernible
over Uu B[K ~ {k}] 2 dB[K,], we have

b*[1] = J8[K.] b*[j], which implies that a*[7]d =y a*[j]d.
By choice of W, it follows that *[7]d =¢ a*[j]d. We have shown that

a*[i] =¢; a*[j], forallfinited c Uua[K' \ {k}].
Consequently, a*[7] =ycarxr (k1] °[J]- ]
Dp-rank

After these preparations we can introduce the dp-rank.

Definition 4.8. Let @(x) be a set of formulae over Ml and U € M a set
of parameters.

(a) The dp-rank rkaqp, (@/U) of @ over U is the least cardinal « such
that, for every tuple b realising @ and every family («;);<, of infinite
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mutually indiscernible sequences over U, there is some index i < k such
that «; is indiscernible over Ub. If such a cardinal does not exist, we set
rkqp (@/U) := oo.

(b) For a tuple a ¢ M, we set

rkap(a/U) := rkqp (tp(a/U)/U).
Remark. Note that rke, (®/U) = o if, and only if, @ is inconsistent.

Example. Let us consider the theory of (Q, <). By quantifier-elimin-
ation it follows that a family « = (ay)kex of sequences is mutually
indiscernible over a set U if, and only if, all tuples in «ay have the same
order type over the set U u a[ K \ {k}].

Consider a partial type @(x) with n free variables x. We claim that

rkqp (/D) <n+1.

Let b be an n-tuple realising @ and « = (& ) k<p+, a family of infinite mu-
tually indiscernible sequences. For simplicity, let us assume that each ay
is a sequence of singletons. For i # j, it follows that either «; < «; or
o; < a;. Furthermore, for every i < n, there is at most one index k such
that o contains both elements below and above b;. Therefore, we can
find some index k < n + 1 such that

ap<b; or b;j<ap, foralli<mn.

This implies that a, is indiscernible over b.
We start by stating some basic monotonicity properties of the dp-rank.
Lemma 4.9. Let @ be a partial type over U. Then

rkqp (@/U) = rkqp (@/UC), forevery set C.

Proof. Let k := rkqp(®/U) and consider a tuple b realising @ and a
family (a ) k<, of infinite mutually indiscernible sequences over U U C.
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Suppose that aj = (d5);c;, and let ¢ be an enumeration of C. Setting
a = (dfc')ie I,» we obtain a family (&} )x<« of infinite mutually indis-
cernible sequences over U. By choice of «, there exists some index k < x
such that «}, is indiscernible over Uub. Consequently, ay is indiscernible
over U U bé. Hence, 1kq, (@/UC) < «.

For the converse inequality, let A < x. Then there exists a tuple b real-
ising @ and a family (a ) k<) of infinite mutually indiscernible sequences
over U such that no a is indiscernible over Uub. By Corollary 4.5, there
exists an automorphism 7 € Aut My such that the family (7(a))r<a
is mutually indiscernible over U u C. It follows that the tuple 77(b) real-
ises @ and no sequence 7(ay ) is indiscernible over Uu Cu rr(b). Hence,
rkgp (®/UC) > L. ]

Corollary 4.10.
(a) @c ¥ implies r1kap(P/U) >1kyp(¥/U).
(b) UcV implies r1kap(a/U) >rkgp(a/V).

Proof. (a) follows immediately from the definition. For (b), note that
Lemma 4.9 and (a) implies that

rkap (a/U) = thap (tp(a/U)/V) > rkap(a/V). 0

The next proposition collects several alternative characterisations of
the dp-rank.

Proposition 4.11. Let ®(x) be a partial type over U and k > o a cardinal.
The following statements are equivalent:

(1) rkap(@/U) <x

(2) For every tuple b realising @ and every family (o ) xex of infinite
mutually indiscernible sequences over U, there is a set K, € K of
size |K,| < k such that, for every k € K\ Ko, all elements of oy have
the same type over Ub.
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(3) For every tuple b realising @ and every family (ay ) ke of infinite
mutually indiscernible sequences over U, there is a set K, € K
of size |K,| < « such that the subfamily (ak)rex<x, is mutually
indiscernible over Ub,

Proof. (3) = (2) is trivial.

(2) = (1) Suppose that there exist a tuple b realising ®(x) and a fam-
ily (k) k<x of infinite mutually indiscernible sequences ay = (cii.‘),-e I
over U such that no « is indiscernible over Ub. By Corollary 4.6, we
may assume that every index order Iy is dense. For each k < «, there are
indices 7, j € [I;]*“ such that

a*[i] #yp a“[]].

k

Using Lemma Es.3.12 we obtain indices i* < s* < t¥ < ¥ in I} such that

ak[a* sk v*) £ a [ t* k]

It follows that the family (&} ) k<, with af = (a*[1a*¥*]) s cpe viol-
ates (2).

(1) = (3) First, we consider the case where « is infinite. Suppose
that there exist a tuple b realising ® and a family (& )ex of infinite
mutually indiscernible sequences over U such that, for every K, € K
of size |K,| < «, the subfamily (a )rexk, is not mutually indiscernible
over U U b. By induction on i < k, we choose an index k; € K and a
finite subset s; € K as follows. Suppose that we have already defined
kjand sj, for all j < i. Set S := k[<i] u s[<i]. Then |S| < x and, by
assumption, we can find an index k; € K \ § such that the sequence ay,
is not indiscernible over U U b U a[K \ (S U {k;})]. Therefore, we can
find a finite subset s; € K \ (S U {k;}) such that «, is not indiscernible
over Uu b U afs;].

Having defined (k;)i<x and (s;)i<x, we set

C:= U (X[S,‘] .

i<k

1214
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Then the family (ak, )<, is mutually indiscernible over U U C, but no
sequence ay, is indiscernible over U U C u b. Consequently, it follows
by Lemma 4.9 that rke, (®/U) = rkep(®/UC) > «.

It remains to consider the case where k = n +1 is finite. Let (ax ) k<) be
a family of infinite mutually indiscernible sequences over U and let b be
a tuple realising @. We construct the desired subset K, € A by induction
on A.

If A < n, we can take K, := A. Hence, supposethat A = n+m +1< w
and that we have already proved the claim for families of size n + m.
Extending the sequences «y if necessary, we may assume that they do
not have a last element. By induction on k < A, we choose a sequence S
indexed by Z such that the sequence °F with the reversed ordering is
generated by the type pi := CF(ay) over Uba[<A]B[<k]. By Lemma 3.3,
the family (a )k<x with &} := a S is mutually indiscernible over U.
As (ak)k<y is mutually indiscernible over UB[<A] and

rkap (@/UB[<A]) = 1kap(@/U) <n+1< 4,

we can find an index k, < A such that e, is indiscernible over UB[<A]b.
Furthermore, since (& ) ke« {k,} is mutually indiscernible over Uay,,
we can use the inductive hypothesis to find a set H € A \ {k,} of size
|H| < nsuch that (&} ) kea« (mu{k,}) is mutually indiscernible over Uy, b.
If the sequence «y, is indiscernible over Uba[A \ (H u {k,})], then
(ax ) ker~n is mutually indiscernible over Ub and we are done.

For a contradiction, suppose otherwise. Then there is some finite set
C c Uba[A~ (H u {ko})] such that a, is not indiscernible over C.
Let ¢, be an enumeration of C N & and set C, := Cn (U u b). Since
(& ) kea(HU{k,}) is mutually indiscernible over Ubay., , we can find, for
every k € A\ (Hu {ko}), a tuple di < Bx such that

di SUbag, a* [AN(HU{k,ko })] Ck -

It follows that e is not indiscernible over C, U Uy di € UbB[<A]. This
contradicts our choice of k,.
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It remains to consider the case where A is an infinite cardinal. For
every ordinal y < A, we can use the inductive hypothesis to find a set
H, < y of size |[H,| < n such that the family (ax)kc).p, is mutually
indiscernible over Ub. We will construct finite sets K,,...,K,_, € A
and indices so,...,5,-; < A as follows. Suppose that we have already
chosen K, ...,K;_, and s, ..., s;_, such that

{S0>...>8i-1} € H,, for arbitrarily large y.

If the family (&x)ker{so,....s;,} is mutually indiscernible over Ub, we
are done. Otherwise, there exists a finite set K; € A \ {s,,...,s;_, } such
that (a)kex, is not mutually indiscernible over Ub. By choice of the
sets H,, we have K; n H,, # &, for all y < A. As the set K; is finite, there
is therefore some index s; € K; such that

{S0>...»8i—1,8i} € Hy, forarbitrarilylarge y.

Having constructed s, . .., s,—, as above, it follows that there are arbit-
rarily large y such that Hy = {s,,...,s,— }. Hence, there are arbitrarily
large y < A such that the family (o )epys.,....s,,} i mutually indis-
cernible over Ub. This implies that (k) ker«{s,,...,s,_,} iS also mutually
indiscernible over Ub. []

We can use this characterisation to give a straightforward proof that
the dp-rank is sub-additive.

Proposition 4.12. rkq,(ab/U) @1 < rkap(d/U) & rkqp(b/Ua).
Proof. Let « := rkqp(@/U) and A := rkg, (b/Ua). To show that

rkgp(ab/U)@1<k @A,

consider a tuple a’b’ =y @b and a family (o )kex of infinite mutually
indiscernible sequences over U. According to Proposition 4.1 (3), it is
sufficient to find a subset K’ € K of size |[K'| @ 1 < x @ A such that
(k) kex~x’ is mutually indiscernible over Ua’b’.
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Note that invariance implies that rkq, (b'/Ua’) = rkqe,(b/Ua). We
use the characterisation in Proposition 4.11 (3) two times: first, to find
a subset K, ¢ K of size |K,| < « such that (a)kex xk, is mutually
indiscernible over U U a’; and then, to find a subset K; € K \ K, of
size |K,| < A such that (etx ) kex~ (k,uk,) is mutually indiscernible over

Uua'b’. Since |[K, UK,|®1< k@ A, the claim follows. ]

The dp-rank is well-behaved in theories without the independence
properties. In particular, it always exists.

Theorem 4.13. Let T be a complete first-order theory. The following state-
ments are equivalent:

(1) T does not have the independence property.

(2) rkap (@/U) < |T|" @ |x|*, for every partial type O (k) with vari-
ables x and every set U.

(3) rkap(@/U) < oo, for every partial type @(x) and every set U.

Proof. (1) = (2) Let b be a tuple realising @ and (ak )k« a family of
infinite mutually indiscernible sequences over U of size k := |T|" & |x|*.
By Proposition 4.7, there exists a set K, C « of size |K,| < |T| @ |b| <
such that the family (g ) kexx, is mutually indiscernible over U u b. Fix
k € k ~ K, # @. Then «ay, is indiscernible over U U b.

(2) = (3) is trivial.

(3) = (1) Let k be an infinite cardinal and let I := w x k, ordered
lexicographically. Suppose that there exists a formula ¢(x; y) with the
independence property. By compactness, there exists a tuple b and an
indiscernible sequence (a;);c; such that

ME go(a;b) iff ief{o}xx.

By Lemma 4.2, the sequences «; := (d; k) ) k<« are mutually indiscerni-
ble over @&, but none of them is indiscernible over b. This implies that

rkap (/D) > k. O
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Fs. 'Theories without the array

property

1. 'The array property

In this chapter we consider a property of formulae that generalises both
the tree property and the independence property. It is based on families
of tuples with a two-dimensional index set.

Definition 1.1. Let y,§ be ordinals and & = (d;j)i<y,j<s a family of
tuples.

(a) The i-th row of « is the sequence a' := (d;;) j<s, its j-th column is
a;j = (dij)i<y> and its diagonal is (di; ) i<min {y,6} -

(b) ForI € yand ] c §, we set

6_1[1,]] = U Ez,-j .

icl, jeJ

(c) « is biindiscernible over a set U if the sequence (a');<, of rows
and the sequence («;) j<s of columns are both indiscernible over U. We
call « strongly indiscernible over U if, in addition, the sequence («a');<,
of rows is mutually indiscernible over U.

We start with presenting two methods to construct strongly indiscern-
ible families.

Lemma 1.2. Let & = (dij)i<y,j<s be a family such that the sequence
of rows (') i<y is both mutually indiscernible over U and indiscernible
over U. Then « is strongly indiscernible.
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F5. Theories without the array property

Proof. It remains to prove that the sequence of columns («;) j<s is indis-
cernible over U. Fix indices [ € [y]™ and 7, j € [ §]". We claim that

all;i] =y a[l;j].

l

Let s < m. Since a* is indiscernible over U U a[y \ {Is}; 8], we have

d[lS; Z-] EU(i[y\{ls};é‘] d[lsa]] >
which implies that

[Io...Ii_sila[lsi]alle ... Lnos ]
=y ally... L yila[ls7)a[ L .o Ines 7]

Q.

By transitivity, it follows that a[[; 1] =y a[l; ). O
The next remark generalises Lemma F4.4.2.

Lemma 1.3. Let = (b;)i<sy be an indiscernible sequence over U and

define

a=(aij)icpjcs by aiji=boisj-
Then « is strongly indiscernible over U.
Proof. Note that the i-th row

o = (aij)j<o = (bsisj)i<s
is indiscernible over

Uub[<8i]ub[>8(i+1)]=Uul .

l#i
By Lemma 1.2, it is therefore sufficient to show that the sequence of rows
(a’)i<y isindiscernible over U. Fix indices 7, j € [y]™ and I € [§]". Then

(1-78is+l¢)s<m,t<n =Uu (l;éjs+lt )s<m,t<n

implies that a[i;1] =y a[j; 1]. ]
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Using two-dimensional families we can introduce the array property,
which generalises the independence property and the tree property.

Definition 1.4. Let ¢(%; 7) be a formula and k < w.

(a) We say that ¢(&; j) is consistent over a family B = (b;) ;e of tuples
if the set { p(%;b;) | i € 1} is consistent. Similarly, we say that ¢ is
inconsistent or k-inconsistent over f3, it the above set is, respectively,
inconsistent or k-inconsistent.

(b) A k-array for ¢ is a family & = (d;;)i,j<o of tuples such that

¢ ¢ is k-inconsistent over each row a’ = (di;) j<w» i < w, and

¢ for every function 7 : w - w, ¢ is consistent over the sequence
(@in(i))i<w-
(c) We say that ¢ has the array property, or the tree property of the

second kind, if, for some k < w, there exists a k-array for ¢. A theory T
has the array property if some formula does.

Let us first note that we can choose a k-array always to be strongly
indiscernible.

Lemma 1.5. A formula ¢(X;y) has a k-array if, and only if, it has a
strongly indiscernible k-array.

Proof. (<) is trivial. For (=), suppose that the formula ¢ has a k-array
a = (ij)i,j<o With rows (a');<,. By induction on i, we use Propos-
ition E5.3.6 to choose an indiscernible sequence ' = (b;;)j<o Over
a[>i]B[<i] such that

Av(B'[a[>i]p[<i]) 2 Av(a' [a[>i]B[<i]).

According to Lemma F4.4.3, the family ( [)’i ) i<w 1s mutually indiscernible.
Furthermore, the k-inconsistency of { ¢(%;d;;) | j < w } implies the
k-inconsistency of { ¢(%;b;;) | j< w }.

To show that all sets of the form { ¢ (%; b;,(i)) | i < @ } are consistent,
it is sufficient by compactness to prove that, for every n < w and every
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F5. Theories without the array property

1 : [n] - w, there exists some tuple ¢ with

Me A o( I;in(i)) :

i<n

To do so, we prove by induction on m < n, that, for every function
1 : [n] - w, there is some tuple ¢ with

ME N @(Gbiyiy) A N 9(Eaiy) -

i<m m<i<n

For m = o, the existence of ¢ follows by choice of the a; ;. For the inductive
step, suppose that, for every # : [n] - w, we have already found a tuple ¢
such that

M E l//17(5; dmn(m)) >

where

Yy (%:7) = N\ 0(Zsbiyiy)) A@(BI)A N (G aigey) -

i<m m<i<n

For a given j < w, we consider the function #’ : [n] - w with '(m) := j
and #'(i) := y(i), for i # m. Then v,/ = y,, and the inductive hypothesis
implies that

M E 3xy, (%;4mj), foreveryj<w.
Hence,

xy, (%5 7) € Av(ap/a[>m]B[<m]) € Av(B/a[>m]B[<m]).
Consequently, there is some tuple ¢ such that

M &= 1/1,7(5; l_ﬂmﬂ(m)) .

We have shown that the family B = ()<, has all of the desired
properties except possibly for biindiscernibility. To conclude the proof,
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we can use Proposition Es5.3.6 to choose an indiscernible sequence ' =
(B"")i<w such that

Av(B' /@) 2 Av(B/D) .
By Lemma 1.2, it follows that 3’ is strongly indiscernible. ]

Next we show that the class of theories without the array property
generalises both the simple theories and those without the independence
property. We start by proving this implication for formulae.

Proposition 1.6. Every formula with the array property has the tree prop-
erty and the independence property.

Proof. Suppose that ¢ has a k-array (a;;):,j<w. We start by showing that
¢ has the tree property. We set

¢(y=doo and &y =dpy, ,, forwew”, n>o.

Then the family (¢, )yew<w is a witness for the tree property of ¢ since

¢ for every 51 € w*, the set
{o(én) [w=<n}
={0(%3d00) } U{ @(% d(n1)q(m) | n < w0}

is consistent and

o for every w € w<“ of length n := |w|, the set

{op(xscwi) [i<w}={o(®a0m))|i<w}
is k-inconsistent.

It remains to check the independence property. By Lemma 1.5, we may
assume that « is strongly indiscernible. Let m be the maximal number
such that, for some infinite subset I C w, there exists a tuple ¢ with

ME ¢(caij), forallielandj<m.
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As ¢ is k-inconsistent over every column, we have m < k. Furthermore,
it follows by maximality of m that there exists an infinite subset J C I
such that

ME -¢(¢aim), forallie].
Choose a strictly increasing function g : w — J and define 7 : w - w by
, o ifiiseven,
1) = {m if i is odd.
It follows that
M ¢(Gageiyyiy) iff  iiseven.

Since, according to Lemma F4.4.4, the sequence (ég(,-),?(,»))kw is indis-
cernible, it follows by Proposition Es.4.2 that ¢ has the independence
property. []

Thus, theories without the array property generalise both simple the-
ories and theories without the independence property.

Corollary 1.7. Let T be a complete first-order theory with the array prop-
erty. Then T is not simple and it has the independence property.

Our next goal is an alternative characterisation of the array property.

Definition 1.8. Let a = (d;;)i<y, j<s be a family of tuples.

(a) The transpose of ais a” := (dji)i<s,j<y-

(b) The column k-condensation of « is the family a(k) = (dgj)iq,,j«;
with

aj;=alk = i;j] where kxi:=(ki,ki+1,...ki+k-1).
For i € [y]", we similarly set

kxii=(k*iy)...(k*i,_).
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(c) For a formula ¢(x; 7), we set
¢ (o 3im) = N\ 9(%570)
i<
Remark. Note that a formula ¢ is consistent over a column «; if, and
(k)

only if, 9(¥) is consistent over the condensed column « j

Lemma 1.9. Let & = (d;j)i<y,j<s be a family of tuples and k < w.
(a) If « is biindiscernible over U, then so are a” and a(¥).
(b) If a is strongly indiscernible over U, then so is a‘¥).
Proof. (a) Clearly, if « is biindiscernible over U, so is . To see that

the column k-condensation a(*) = (b; j)i<y.j<s is also biindiscernible
over U, note that, for all tuples of indices 1, j, I,

alk » I;1] =y a[k #

I;7] implies b[I;
and alkx*5;1] =y a[k*jl i

] implies b[3;
(b) Suppose that « is strongly indiscernible over U. It follows by (a) that
the column k-condensation B := a(*) = (b;;);<,,<s is biindiscernible

over U. To prove that the family ()<, of rows is mutually indiscernible
over U, consider indices 7, j € []" and set

B :=Uub[y~{1};8].
Then B; =Uualy~ k * ;8] and

alk * I;i] =yp, a[k + I;j] implies b[l;1] =y, b[1;]].
Hence, 8’ is indiscernible over U U B;. O

Lemma 1.10. Let T be a theory without the array property, (X;7) a
formula, and a = (a;;j)i,j<o a biindiscernible family.

(a) Suppose that « is strongly indiscernible. If ¢ is consistent over the
o-th column oy = (Ajo) i<, it is consistent over all of a.
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(b) If ¢ is consistent over the diago_nal (@ii)i<w Of &, the formula (p(k) is
consistent over the diagonal (b;;) <. of the column k-condensation
‘x(k) (bz])1]<w

Proof. (a) By compactness, it is sufficient to prove that, for every k < w,
¢ is consistent over (d;;j)i<k,j<w- FiX k < w. By Lemma 1.9, the column

k-condensation a(®) = (1_91 j)i,j<w is also strongly indiscernible. Further-
more, as ¢ is consistent over (d;,)i<e and d[w; o] = b[w; o], it follows
that (p(k) is consistent over (blo )i<w- By Lemma F4.4.4, this implies that
¢(¥) is consistent over (b;, n(i))i<w> for every n: w — w. As ¢(F) does
not have the array property, there therefore exists some i < w such
that %) is consistent over (b;; j) j<w- By indiscernibility, it follows that
it is also consistent over (b, j)j<w- This implies that ¢ is consistent over
(@ij)i<k,j<w- ,

(b) We can use Corollary Es.3.10 to extend the sequence («');<, of
rows to an indiscernible sequence (&');<,: of length w?. Suppose that
o = (dij)j<w and set C;j = dyivj,i. By mutual indiscernibility of (a');,
we have

(€ij)isj<w = (wivji)ij<o = (Gwitjo)i,j<w -

Furthermore, according to Lemma 1.3, the latter family is strongly indis-
cernible. Hence, so is (¢i;);, j<o. Furthermore, by biindiscernibility of «,
we have

(Cio)icw = (Awii)icw = (Gii)i<w -

Consequently, the consistency of ¢ over (a;; )<, implies the consistency
of ¢ over (¢;o)i<qw- It therefore follows by (a) that ¢ is consistent over
(¢ij)i,j<w- Finally, by biindiscernibility of &, we have

(Cij)icw,j<k = (Bwitji)icw,j<k = (Gkitji)icw,j<k -

Consequently, ¢ is consistent over (dg; i )i<w, j<k»> which implies that
(p(k) is consistent over (b;;) ;<. ]
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Proposition 1.11. A theory T does not have the array property if, and
only if, for every biindiscernible family « = (@ij)i,j<w the consistency of a
formula ¢(x; y) over the diagonal (a;;) <, implies the consistency of ¢
over .

Proof. (<=) Suppose that some formula ¢ has a k-array. By Lemma 1.5,
we can choose this k-array to be biindiscernible. It follows that ¢ is
consistent over the diagonal of «, but not over « itself.

(=) Suppose that T does not have the array property and let « be a
biindiscernible family such that ¢ is consistent over the diagonal of «. By
compactness, it is sufficient to prove that, for every k < w, ¢ is consistent
over (d;j)i j<k- By Lemma 1.10, ¢(F) is consistent over the diagonal
of a(®) . Since 8 := (a(¥))T has the same diagonal, it follows by another
application of Lemma 1.10 that (¢(¥))(¥) is consistent over the diagonal
of B = (b;;)i,j<w- In particular, (p(F))(*) (%;b,,) is consistent. Since
boo = (dij)i,j<k the claim follows. ]

As an application, let us show that, in theories without the array prop-
erty, we can characterise dividing in the following way.

Definition 1.12. A formula ¢(%;b) array-divides over a set U if there
exists a biindiscernible family 8 = (b; j)i,j<w over U such that boo = b
and ¢ is inconsistent over .

Lemma 1.13. Every formula that divides over U also array-divides over U.

Proof. Suppose that ¢(%;b) divides over U. Then there exists an in-
discernible sequence 8 = (b;);<, over U such that b, = b and ¢ is
k-inconsistent over 8. By Corollary Es.3.10, we can extend f to an indis-
cernible sequence 8 = (b;)i<e» over U of length w?. Set « := (dij)i,j<w
with a;; := byi;;. By Lemma 1.3, it follows that « is biindiscernible
over U. Furthermore, d,, = b and ¢ is inconsistent over a. Hence,
¢(%; b) array-divides over U. O

Corollary 1.14. Let T be a theory without the array property. A formula
¢(x; b) divides over U if, and only if, it array-divides over U.
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Proof. We have proved the implication (=) already in Lemma 1.13. For
(<), suppose that ¢(&; b) does not divide over U. To show that it does
not array-divide over U, consider a biindiscernible family 3 = (bi})i,j<o
over U such that by, = b. Since the diagonal (b;;);<, is indiscernible
over U, the fact that ¢(&; b, ) does not divide over U implies that ¢ is
consistent over (l_7,~,- )i<w- By Proposition 1.11, it follows that ¢ is consistent

over . [

2. Forking and dividing

Extension bases

Our first question regarding theories without the array property is over
which base sets forking and dividing coincide. For this to be the case, the
forking relation should have all the properties of the dividing relation.
Therefore, we start by collecting some of them.

Definition 2.1. Let {’/ and \1/ be preforking relations and U ¢ M. We say
that {’/ -forking implies \1/ -forking over U if every formula that {’/ -forks

over U also \1/ -forks over U. Similarly, we say that {’/ and \1/ coincide
over U if we have implications in both directions.

Definition 2.2. Let\/ be an independence relation and U € M a set.
(a) We say that / has left extension over a set U if it satisfies the
following axiom:

(LEXT) Left Extension. If A, \/ v Band A, € A, then there is some B’
with

B,EUAOB and Al \/UB,.

(b) Uisa./-baseif A \/U U, for all A ¢ ML
(c) U is a\/-extension base if U is a/-base and / has left extension
over U.
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Let us first note that \/-bases do exist.

Lemma23. (a) Every set is a\/-base if\/ is one of the relations ¥/,
yor 8/
(b) ‘{/ has left extension over every set.

(c) Every modelis a l{/—extension base.

(d) Every model is a~/-base for all preforking relations /.

Proof. (a) It follows immediately form the definition that A {/ v U, for
all sets A and U. As we have seen in Corollary F4.2.22 that {/ c l\s/ it

follows that A l\s/ v U as well. For {1/ , the claim follows immediately
from the characterisation in Lemma F3.1.3.
(b) Suppose that A L\‘/U b and let C ¢ M. We have to show that there

is some tuple b’ =y4 b with AC ‘{/U b’. In other words, we have to show
that the set

D (%) := tp(b/UA)
U{@(x;¢) | ¢ c UAC and ¢(x; 7) a formula over U
such that M £ ¢(b;d) foralld c U}

is satisfiable. For a contradiction, suppose that @ is inconsistent. Then we
can find a formula y(x; a) € tp(b/UA), finitely many formulae ¢; (x; ;)
over U, and parameters ¢; € UAC such that

y(%;d) B \/ —9i(%:¢;) and M @;(b;d) foralldc U.

i<n

W.l.o.g. we may assume that the parameters ¢; are all of the form ¢; = ac,
for some tuple ¢ € UAC that is disjoint from a. Hence,

y(x:a) =\ -9i(%;4,¢)

i<n
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and it follows by the Coincidence Lemma that

v(x;9)EVZV —9i(%59,2).

i<n

Since A L\‘/U_ b, there is some tuple a’ ¢ U such that M = y(b; a’). Fix
some tuple d € U. Then it follows by the above implication that

M &= \/ ﬂ(Pi(l-?;dl,CZ) .

i<n

Hence, there is some index i with M £ —¢;(b;d’,d). As @'d c U, this
contradicts our choice of ¢;.

(c) We have already seen in Lemma F2.3.15 that each model is a ‘{/-
base. Hence, the claim follows by (b).

(d) It follows by (c) that every model M is a l{/—base. Furthermore,
we have shown in Theorem F2.3.13 that ‘{/ c /. Hence, M is also a

/ -base. ]

The reason we are interested in extension bases is the following result.

Lemma 2.4. If forking equals dividing over U, then U is a \f/ -extension
base.

Proof. As forking equals dividing over U, it is sufficient to show that
Uisa {1/ -extension base. We have already shown in Lemma 2.3 that U is
a {1/ -base. It therefore remains to show that {1/ has left extension over U.

Suppose that a {1/ v bandlet ¢ € M. To find some tuple b’ =y5 b with
ac Q/U b', wesetp := tp(b/Ud) and

O(x) :=p(x) u{-¢(x,a,¢) | (b, 7,2) divides over U } .
Clearly, every tuple b’ realising @ (%) has the desired properties. Hence,

it remains to prove that @ is consistent.
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2. Forking and dividing

For a contradiction, suppose otherwise. Then
pEVei(%,4,0),
i<n

where each formula ¢, (b, j, z) divides over U. In particular, the disjunc-
tion
¥(b:5.2) =V 9i(b, 3, 2)
1<n

forks over U. By assumption, this implies that y also divides over U.
Thus, there exists an indiscernible sequence 8 = (b; )<, over U such that
bo = band {y(b;,y,2) | i < w} is k-inconsistent, for some k < w. By
Lemma E5.3.11, we can find a sequence 3 =;; 8 such that ' = (b)) i<
is indiscernible over Ua. As p is a type over Ua, it follows that

tp(b}/Ua) = tp(b./Ua) =tp(b/Ua) =p, forali<w.

This implies that M y(b', a,¢), for all i. Thus, the tuple ¢a satisfies
the set { y(b}, 7,z) | i < w }, which is k-inconsistent by choice of f'.
A contradiction. ]

Quasi-dividing and the Broom Lemma

Before attacking the questions of when forking and dividing coincide,
we take a look at a weakening of dividing called quasi-dividing.

Definition 2.5. A formula ¢(x; b) quasi-divides over a set U if there are
tuples by, ..., b,—,, for some n < w, such that

bi=yb and {@(&;b;)|i<n} isinconsistent.
Lemma 2.6. Dividing implies quasi-dividing.

Proof. Suppose that ¢(%;b) divides over U. Then there is a sequence
(b;)ico such that b; =y band { ¢(%;b;) | i < w } is k-inconsistent, for
some k < w. Consequently, the tuples b, ..., by_, show that ¢(&;b)
quasi-divides over U. ]
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We start with a technical lemma that, given a forking relation with left
extension, constructs something like a Morley sequence for the inverse
relation.

Lemma 2.7. Let+/ be a forking relation with left extension over a set U,
B = (bn)n<w an indiscernible sequence over U U C, and a a tuple such
that

C \/U af and b, \Ju ab[<n], forallo<n<w.
For every number k < w, there exists a sequence o = (a; )<k such that

do = a and, for all i < k,

aib; =yc ab, and Cax_,bi_,...ainbin \/U aib;.

Proof. We prove the claim by induction on k. For k = o, there is nothing
to do. For the inductive step, suppose that we have already found a
sequence &’ = (a});<x of length k. We will construct one of length k + 1.
Let 0 € AutMyc be an automorphism such that o(b,,) = b,.,, for all
n < w. Note that C \/U ab, ...by and b; \/U ab,...b;_, implies, by
Lemma F2.2.4 and induction on i < k, that

Chy. b ivn /v @bo.. b,

For i = k, we obtain
Chy... by /v dbs.

By (LEXT), we can therefore find tuples a’b’ =UChy...b, db, such that
Cby...byo(a,.,)...o(al) /v a'b'.

Let 77 € AutMcp, . 5 be an automorphism with 77(a’b") = ab, and set

do:=a and ajy,:=n(o(a;)), fori<k.
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Then invariance implies that

Cby...biay...a, \/u ab,.

We claim that the sequence « := (a; )<k, obtained in this way has the
desired properties.

Clearly, we have d, = a. Furthermore, since 7(b;) = b; for o < i < k,
we have

disibiy = 1(0(a}))biy, =uc 0(a})o(b;) =uc aib; =yc ab, .

For the last condition, note that, for i < k,

Cak 1bk 1 z+1 bi \/U
:>(jﬂ(0(dk—1bk—l z+1bVH)) V/U n(a(a b ))
= Cagby...dis2biss \/U Aipibis, .

Furthermore, we have already seen above that

Caxby ...a,b, \/u dobs . ]

The following result is our main technical lemma. Note that, in the
case where y = false, it states that a formula that forks in a particular
way also quasi-divides.

Lemma 2.8 (Broom Lemma). Let+/ C 1\‘/ be a forking relation with left
extension over some set U. Suppose that

9(x;a) Fy(%:0) vV 9i(%:b")

i<n
and there are indiscernible sequences f3; = (1_9"-) j<w over U such that

o bl =b' nd{(p(xb)|]<w}1sk1nconszstentf0revery1<n
o b \/Uﬁ[<i]b [<j], foralli<nando<j<w,
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e C \/Uﬁ[<1’l].

Then there exist a number m < w and tuples da, . .., dpm-, S M such that

N\ 9(x;a;)Ew(x;¢) and a;=ya, foralli<m.

i<m

Proof. We prove the claim by induction on n. For n = o, there is nothing
to do. For the inductive step, suppose that we have already shown the
claim for n. We aim to prove it for n +1. According to Proposition F4.2.18,
¢ \/ u Po - - B, implies that each sequence f3; is indiscernible over U U ¢.
Consequently, we can use Lemma 2.7 with a := 3, ... 3,—, and 8 := 8,
to construct a sequence & = («; );<x such that

* :/30---/3;1—1>
¢ a;b! =y; aoby, foralli<k,
o Coy bt bt Ny b, foralli<k.

For each j < k, we choose an automorphism 7; € Aut My; such that
mj(aobg) = ajb?. Then

(x;mi(a)) rw(xsé)v \V ei(m(bY)).

i<n+i

Consequently,

N\ 9(xsmi(a)) e

j<k

A& vV oi(Em(6) v ou(sm(5") |-

Jj<k i<n
This implies that
'/\kS()-C; mi(a)) A ﬂ[w(ic;c') Vv \/ -\/k(Pi(;C; ﬂj(l;i))]
J< 1<n J<
=\ on(%5m(0")
j<
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2. Forking and dividing

Since { ¢, (&; b?) | j < w} is k-inconsistent and 7;(b") = 1_97, it follows
that the formula

N9 mi(a)) A=[y(EE) vV V gi(Em(5)]

j<k i<n j<k
1s inconsistent. Hence,

N 9(xmi(a) Ey(xe) vV V ei(xm(b)).

j<k i<n j<k
For s < k, set

y(%58%) = y(%0) vV ei(Em(bh)).

i<ns<j<k
By induction on s, we will find tuples d,, ..., d,—, such that

N\ 9(x;a;) Eys(%;¢°) and a;=ya, forali<m.

i<m

Then the statement of the lemma will follow for s = k. For s = o0, we can
take the tuples 77;(a) from above. For the inductive step, suppose that

N 9(x;a;) E ys(%;¢°) where a;=ya.

i<m

Note that

Yo (%) =y (:67) v V 0i (%5 ﬂS(l;i))

i<n
and the sequences 7(f3;) satisfy

o (b)) = m(b') and { ¢, (%; ns(l_aj.)) | j < w} is k-inconsistent,
for every i < n,

. ﬂs(E;) \/U m(B[<i])ms(b'[<j]), foralli<nandj< w.
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Furthermore, b°...b"* € B, ... B, = &, implies
T[j(bo) ce ﬂj(bn_l) c 71’]'(060) = ;.
Consequently, we have ¢*** C ¢ak_, ... as, and

Coy v Ogyy \/U as implies ¢ \/U ms(B[<n]) .

Therefore, we can use the inductive hypothesis on # to obtain a number
m’ < w and tuples 4;j, for i < m and j < m’, such that a;; =y d; =y a
and

A\ N\ (x5 dij) Fven(HE).

j<m’ i<m []

Remark. Note that we do not require that b /u B[<i]. This will be
essential in the applications below.

Recall that the Lemma of Kim states that, in a simple theory, every

\f/ -Morley sequence is a witness for dividing. The next result contains a
similar statement for certain \/-Morley sequences.

Lemma 2.9. Let+/ C {1/ be a forking relation, U a/-extension base, and
@(%; ) a formula without the array property. For every tuple b such that
¢(&;b) divides over U, there exists a model M containing U and a global
type p extending tp(b/M) such that p is\/-free over U and every sequence
generated by p over M witnesses that ¢(%; b) divides over U.

Proof. Since ¢(%;b) divides over U, there exists a number k < w and an
indiscernible sequence f3 = (l_9,~),~<w over U such that b, = b and the set
{@(%;b;) | i< w}is k-inconsistent. Let R be a (|T| ® |U|)*-saturated
and strongly (|T| @ |U|)*-homogeneous model containing U. We can
use Lemma E5.3.9 to extend f3 to an indiscernible sequence 8’ = (b; )<

over U of length 1 := (2/TI®IN)Y* Ag g’ \/U U, we find a sequence
B = (b'")c) such that B =y B’ and " \/u N.

As there are at most 2/ TI®INl < } types over N, there exists an infinite
subset I € A such that every tuple b’ with i € I has the same type over N.
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Let q, be this type and let M < N be some model containing U of size

|M| < |T| ®|U|. Choose a strictly increasing function g : w — I and set
& = (bg(i))kw-
Let q be the type of a over N. Since f” \/y N and+/ ¢ ¥/, it follows

that g, and q are 1\1/ -free over U. By Proposition F4.2.20 (5), this implies
that they are {/ -free over M. By saturation of N, there exists a sequence
(«0;)i<e in N that is generated by q over M. By Lemma F2.4.14, (&;) <4
is indiscernible over M. Suppose that «; = (a},) <e-

Leti, j,k < w.Asqis {/ -free over M it follows by transitivity that

a[>k] 3/ m af<k].
Since a* and d;‘ both realise q, | Ma[<k], we furthermore have

“k _ -k
a; =Ma[<k] 4; -

Consequently, a[>k] i/ Ma[<k] @k implies that

-k _ -k
a; =Ma[<k]a[>k] aj .

As in Lemma F4.4.4, it follows that
(d]:/(k))k<w =M (d]cg)k«u > for all H:w-—w.

By Proposition F2.4.3, 4, has some global extension ¢, that is/-free
over U. Fix a tuple b’ realising q, | M. Then b’ =y b and there exists an
automorphism 7 € Aut My with 7(b") = b. Applying 7 to g, we obtain
a global type p extending tp(b/n[M]) that is+/-free over U. We claim
that this type p and the model M’ := [ M ] have the desired properties.

As q, is\/-free over U, so is p. By base monotony it follows that p is\/-
free over M. Hence, consider a sequence (¢;) <, generated by p over M.
As each tuple ¢; realisesp | U = q, } U, we have é; =y b. Set d; := m7*(¢;).
Then the sequence (d;);<, is generated by q, over M. Since so is the
sequence (' );<y, it follows by Lemma F2.4.14 that

(di)icw =u (dé)kw .
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Note that a; =5 « implies that { ¢(%;d.) | n < w } is k-inconsistent.
If the set { o(x%;a.) | i < w} were consistent, the family (d;)i, i<
would form a k-array. Since the formula ¢ does not have the array prop-
erty, the set { ¢(%;a.) | i < w } is therefore inconsistent. By indiscern-
ibility, it follows that it is /-inconsistent, for some /. Hence, so is the
set { 9(%;d;) | i < w} and, applying the automorphism 7, also the set
{p(5:6) i<} 0

Using these lemmas we can derive the first step of our proof that
forking equals dividing over certain sets.

Lemma 2.10. Let T be a theory without the array property and/ C 1\1/ a
forking relation. Then forking implies quasi-dividing over every \/-exten-
sion base U.

Proof. Consider a formula ¢(x; a) that forks over U. By Lemma F2.4.4,
there are formulae v;(%; b;) that divide over U such that ¢(%;d) E
Vien Wi(%; b;). By Lemma 2.9, there are models M; and global types p;,
for i < n, such that p; extends tp(b;/M), p; is/-free over U, and every
sequence generated by p; over M witnesses that y; (%; b; ) divides over U.
For i < n, we choose a sequence f3; = (b;) j<w generated by p; as follows.

We start with bl = b;, which realises p; I M. For j > o, we choose a
tuple b;- realising p; | MB[<i]b'[<]]. It follows that

o bl = b; and the set { ¢;(x; b;) | j < w} is k;-inconsistent, for
every i < n,

* bl Vu B[<i]bi[<j], foralli<nando< j<w,
e J \/Uﬁ[<l’l].

By Lemma 2.8, we can therefore find tuples a; =y 4, for i < m, such that

o(%;a) = false v \/ v;(%;b;) implies /\ ¢(%;4;) & false.

i<n i<m

Consequently, ¢(x; a) quasi-divides over U. O
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Strict Lascar invariance

Above we have found a criterion for the fact that forking implies quasi-
dividing over a given set. It remains to find conditions showing that
quasi-dividing implies dividing. To do so, we introduce the following

combination of the relations 1\‘/ and \f/ )

Definition 2.11. For sets A, B, U € M, we define
AYWuB :if AY/yB and B/y A,
AVYyB iff A*(Y),B.

Lemma 2.12. d Sl\i/ v B if, and only if, tp(a/UB) has a global extension p
that is Lascar-invariant over U and such that

BC/y a', forallC <M and all & realisingp | UBC.

Proof. (<) Let p be an extension of tp(a/UB) as above. To show that
a*( ﬂ\‘/)U B, we fix some set C € M. Let a’ be a tuple realising p | UBC.
Then a’ =yp a and, by choice of p, we have a 1\i/U BC and BC \f/U a.
This implies that a ﬂ\i/U BC.

(=) Leta *( f1\1/)U B. By Proposition F2.4.3, tp(a/UB) has a global
extension p that is ﬂ\i/-free over U. As ﬂ\l/ c 1\1/ , it is also Lascar invariant
over U. For the second condition, suppose that C € M and let 4’ be a

realisation of p | UBC. Then a’ ﬂ\i/U BC implies BC \f/U a’. ]
Lemma 2.13. The relation ﬂ\‘/ satisfies (INV), (MON), (NOR), and (FIN).

Proof. (1nv) follows from invariance of l\‘/ and \f/ .

(MON) Suppose that A ﬂ\i/U Bandlet A, € A and B, € B. Then
A l\i/U B and B \f/U A and it follows that A, l\i/U B, and B, \f/U A,.
Hence, A, ﬂ\i/U B,.

(NOR) Suppose that A ﬂ\i/U B. Then A l\i/U B and B \f/U A and it
follows that AU 1\‘/ v BU and BU \f/ v AU. Hence, AU ﬂ\i/U BU.
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(FIN) Suppose that A, ﬂ\i/U B, for all finite A, € A. Then A, l\i/U B
and B \f/ u Ay, for all finite A, € A. This implies that A 1\‘/ v B and

B \f/U A. Hence, A ﬂ\i/U B. L]

Corollary 2.14. The relation Sl\i/ satisfies (INV), (MON), (NOR), (FIN), and
(EXT).

Proof. A closer look at the proof of Proposition F2.4.5 reveals that, to
establish the axioms (INV), (MON), (NOR), (FIN), and (EXT) for the rela-
tion {*/ , we only need to assume that / satisfies (INV), (MON), (NOR),

and (FIN). L]

The reason we are interested in the relation Sl\i/ is the following variant
of the Lemma of Kim for theories with the array property.

Lemma 2.15. Let T be a theory without the array property, ¢(X; b) a
formula that divides over U, and (by,) n<. a sequence such that

by=ub and b, N/ybl<n], foralln<w.

Then { 9(%;b,) | n < w} is inconsistent.

Proof. Applying a suitable automorphism, we may assume that b, = b.
Since the formula ¢(x; b) divides over U, there exists an indiscernible
sequence & = (d;)i<e such that a, = band {¢(x;a;) | i < w} is k-
inconsistent, for some k < w. By induction on n < w, we construct a
family («;) j<n of sequences ; = (@) i<, such that

o each «; is indiscernible over Ua[<j]bs, ... byoy,

¢ aj =y a,and o‘z{; = Ej.

For n = 1, we can take the sequence «, := a. For the inductive step,
suppose we have already constructed a family (a7) <, of size n. Since

l_?n Sl\i/U lj)[<7’l] ’
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we can use (EXT) to find a family (&)<, such that

o« [<n] =ypreny «'[<n] and by Ny o

Since b, =y b, there is some indiscernible sequence a) =y o starting
with b,. Note that b, ¥/ a[<n] implies that oc <n] \/ v by. By
Lemma F3.1.3, we can therefore find a sequence «/ Ub, a;, such that
a;) is indiscernible over a’’[<n]. We claim that the famlly ((x:’ )i<n+1 has
the desired properties.

Let i < n. By construction the sequence «; is indiscernible over
Ua”[<i]bj, ... b,_,. Furthermore, we have b, {‘/U a''[<n], which
implies that

T i "
by \/Uoc”[<i][),-+1...l3n_1 &; -

By Proposition F4.2.18, it therefore follows that ' is also indiscernible
over Ua"'[<i]biy, ... b,_,b,. Finally, the sequence «, is indiscernible
over Ua''[<n] by construction.

Having constructed sequences («;) j<, of length #, for every n < w, it
follows by compactness that there also exists an infinite family («;) j<
with the same properties.

To conclude the proof suppose, towards a contradiction, that the
set { (x;b,) | n < w} is consistent. For  : w - wand n < w, a
straightforward induction on i shows that

-0 -n—-1 — -0 n —1 -n—i -n-—1
aﬂ(o) “e arl(n_l) =U ar’(o) . (n i l)a e dg

This implies that
(ayiy)i<o =u (38)icw = (bi)ica -

Consequently, { ¢(x; d;(i)) | i < w} is consistent, for every 11 : w - w.
Furthermore, a; =y a implies that { ¢(%;a}) | n < w } is k-inconsistent,

for some k. Consequently, the family (df )i,j<w forms a k-array for ¢.
A contradiction. [
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We obtain our first result for forking equalling dividing over SI\i/ -bases.

Proposition 2.16. Let T be a theory without the array property and U a
SI\i/ -base. Then forking equals dividing over U.

Proof. Suppose that ¢(x;a) forks over U. Then there exist formulae
1//l(x b;) that divide over U such that ¢(%;d) £ V,c, vi(%;b;). Set

:= b, ...b,_, and let p := tp(¢/U). Since ¢ \/U U there exists a
global type q extending p that is ﬂ\/ free over U. Let M be a model
containing U and let y = (¢;)i<, be a sequence generated by q over M.
Note that, by Proposition F4.2.20 (5), q is {/ -free over M. Hence, it
follows by Lemma F2.4.14, that y is a Sl\i/ -Morley sequence. Suppose
that ¢; = a'b....b!_ . We claim that the set { ¢(%;ad") | i < w} is
inconsistent. Since y is indiscernible and a' =y 4, this implies that
¢(x; a) divides over U.

For a contradiction, suppose that there exists a tuple d realising the
above set. Then there exists a function g : w — [n] such that

Mlzwg(l)(d_, I;‘lg(l)), for alli< w .

Choose an infinite subset I € w and an index k < n such that g(i) = k,
for all i € I. It follows that { y4(x;b;) | i < w} is consistent. This
contradicts Lemma 2.15 ]

It remains to prove that./-extension bases are also 31\1/ -bases. We start
with a technical lemma.

Lemma 2.17. Let+/ be a forking relation and U a~/-base such that forking
implies quasi-dividing over U.

(a) Every typep over U has a global extension q that is\/-free over U
and such that

C \f/U a, forallCcMandalla realisingq | UC.
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(b) Every typep over U has a global extension q that is \f/ -free over U
and such that

C \/U a, forall CcMandallarealisingq !t UC.
Proof. (a) Fix a tuple a realising p and set

O(z) = p(2) U{-@(%:b) | b <M, ¢(a; y) \/-forks over U }
u{-y(x;b)|bcM, w(x;b)+/-forks over U }.

By (DEF), every global type containing @ has the desired properties.
Hence, it remains to show that @ is satisfiable.

For a contradiction, suppose otherwise. Then there exist formulae
¢;(%;9:), 1 < m,and v;(%;2;), i < n, and corresponding parameters
bDos... by, bl, ..., b _ such that

pEV @i(&0i) vV vi(%b6)),
each ¢;(a; ) \f/—forks over U, and each y;(%; b") \/-forks over U. As

the disjunction V., 9;(8; ;) also \/-forks over U, we may assume
that m = 1.

Since forking implies quasi-dividing over U, there are parameters
do,...,Aak—, such that a; =y a and the set { ¢,(a;;y) | i < k } is incon-
sistent. Set ¢ := d, ... dg_, and t(X,, ..., Xk, ) := tp(¢/U). Then

t1 % E @o(X3b0) v \ vi(%):b7).

i<n
Hence,
tE /\[(po(fc], l-?o) V \/ 1//1(.72'], l-?i):l .
j<k i<n
Consequently,
tE = A ¢o(Xj:b,) impliesthat t=\/\/ yi(x;;b}).
j<k j<k i<n
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Since U is a \/-base, we have ¢ \/ v U. Hence, there is some tuple
¢ =y ésuchthat & \/y bl ...b,_ . Asé& = ¢ .. . Ci_, realises 1, there
are indices j < k and i < n such that Ml = y;(¢’; b}). But this implies
that ¢’ v/, b’. A contradiction.

(b) The proof is similar to the one above. Fix a tuple a realising p and
set

O(x) == p(2)u{ -(%;b) | b M, ¢(&;b) \/-forks over U }
u{-y(%;b) | bcM, w(a;y)/-forks over U} .
Suppose that @ is inconsistent. Then we can find formulae ¢;(x; y;),

i < m,and y;(X;Z;), i < n, and parameters b,, ..., by, bL,..., b _,
such that

pE ‘\/ 9i(%:b;) v \/ yi(%:b)),

each ¢;(%;b;) \f/-forks over U, and each y;(a; z;) \/-forks over U. As
above, we may assume that m = 1.

Since forking implies quasi-dividing over U, there are parameters
Cos -+ +»Ck—y such that ¢; =y b, and the set { ¢, (%; ¢;) | j <k} isincon-
sistent. Choose tuples d;; such that

Ejd_jo . d_j(n—l) =y BOI;:) . 1_7,

n—1?

for j< k.

Since the type p is over U, it follows by invariance that

pE@o(X;¢)) Vv \/ l//i(ﬁz;dji), forall j< k.
i<n
As above, this implies that
peE\ Vvi(sd).

j<k i<n

Set d := (dj,-)]-<k,i<n. As U is a /-base, we have d \/U U. Con-
sequently, there is some tuple d’ =y d such that

d \Jua.
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Since a realises p, there are indices j < k and i < n such that
But this implies that d ii ¥/ a. A contradiction. O

Corollary 2.18. Let T be a theory without the array property and U a
l\i/ -base such that forking implies quasi-dividing over U. Then U is a

Sl\i/ -base.

Proof. Fix a tuple a € M. We can use Lemma 2.17 to find a global ex-

tension q of tp(a/U) that is {/-free over U and such that C \/; @', for
all sets C € M and all tuples a’ realising q | UC. By Lemma 2.12, this

implies that a /¢ U. [

Corollary 2.19. Let T be a theory without the array property and~/ < 1\1/
a forking relation. Every \/-extension base is a Sl\i/ -base.

Proof. Let U be a\/-extension base. We have proved in Lemma 2.10 that
forking implies quasi-dividing over U. Furthermore, since/ C 1\1/ and

U is ay/-base, it is also a 1\‘/ -base. Consequently, the claim follows by
Corollary 2.18. ]

Proposition 2.20. Let T be a theory without the array property. Then
forking equals dividing over every set that is a/-extension base, for some

forking relation\/ € 1\‘/

Proof. By Corollary 2.19, every /-extension base is a Sl\i/ -base. Hence,
the claim follows by Proposition 2.16. ]

Corollary 2.21. Let T be a theory without the array property. Then forking
equals dividing over every model M.

Proof. We have seen in Lemma 2.3 (c) that every model is a ‘{/—extension
base. Consequently, the claim follows by Proposition 2.20. ]
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Combining the above results we obtain the following characterisation
of those sets over which forking equals dividing.

Theorem 2.22 (Chernikov, Kaplan). Let T be a theory without the array
property and U € M be a set. The following statements are equivalent.

(1) Forking equals dividing over U.
(2) Uisa/-base.
(3) \f/ has left extension over U.

Proof. The implications (1) = (2) and (1) = (3) follow by Lemma 2.4.
Conversely, suppose that (2) or (3) holds. Let ¢(%; b) be a formula that
forks over U. To show that ¢(&; b) also divides over U, we fix a model I
containing U.

If (2) holds, we have M \f/ v U which, by (exT), implies that there is
some model M’ =y M with M’ \f/U b.

If (3) holds, we have U \f/ u b which, by (LEXT), implies that there is
some model M' =y M with M’ \f/U b.

Thus, in both cases we have found a model M" such that M’ \f/ u b.
We claim that ¢(x; b) also forks over M'. Since forking equals dividing
over models, it then follows that ¢ (x; b) divides over M'. In particular,
it divides over U. )

To prove the claim suppose, for a contradiction, that ¢(x;b) does

not fork over M’. Then we have a \f/ w b, for every tuple a satisfying

¢(%;b). By (LTR), this implies that aM’ /v b, which contradicts the
fact that ¢(&; b) forks over U. O

Corollary 2.23. Let T be a theory without the array property.
(a) AsetUisa Sl\i/—base if, and only if, it is a 1\i/—base.
(b) Forking equals dividing over every 1\‘/ -base.

Proof. (b) Let U be a l\i/—base. Since 1\‘/ c \f/, it is also a \f/—base. By
Theorem 2.22, it follows that forking equals dividing over U.
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3. The Independence Theorem

(a) The implication (=) follows by the inclusion SI\i/ c 1\‘/ . For (<),
let Ubea 1\1/ -base. By (b), forking equals dividing over U. Since dividing
implies quasi-dividing, it follows that forking implies quasi-dividing
over U. By Corollary 2.18, it follows that U is a Sl\i/ -base. ]

3. The Independence Theorem

The Independence Theorem contains a characterisation of simple theor-
ies in terms of a certain property of the forking relation. A weaker version
of this property also holds for theories without the array property. In
this section we will present the weak version, use it to derive the strong
one, and show that the latter characterises simple theories.

The chain condition

Before turning to the Independence Theorem itself, we first consider a
closely related property called the chain condition.

Definition 3.1. A preforking relation / satisfies the chain condition over
aset U ¢ M if, for every indiscernible sequence (1_71-)1-E rover U and every
set of formulae @(%; 7) such that, for some i, € I, the set ®(x; b;_) does
not./-fork over U, the union U;; @(%; b;) also does not/-fork over U.

The chain condition can be characterised is several equivalent ways.
The following list is somewhat parallel to the characterisation of dividing
in Lemma F3.1.3.

Proposition 3.2. Let+/ be a forking relation and U € M a set of paramet-
ers. The following statements are equivalent.

(1) \/ satisfies the chain condition over U.

(2) If a formula ¢(%;b) does not \/-fork over U and b 7 b, then
(%) A @(x;b") also does not\/-fork over U.
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F5. Theories without the array property

(3) For every cardinal A, there exists a cardinal x such that, for every
partial type p over U and every family (q;) < of partial types of
size |q;| < A such that no p U q; \/-forks over U, there are indices
i < jsuch that pug; U q; does not~/-fork over U.

(4) For every indiscernible sequence B = (b;)i<, over U and every
tuple a \/ u bo, there exists a sequence ' =ub, B such that B’ is
indiscernible over Ua and a \/U B

Proof. (2) = (3) By Corollary ¥4.2.9, there exists a cardinal « such that,
for every sequence (b )i<x of tuples of size |b;| < A, there are indices
i < jsuch that b; ~% b;. Increasing «, if necessary, we may ensure that
k is larger than the number of sets of formulae of size less than A. We
claim that this cardinal « has the desired properties.

Let p and (q;) ;< be types as above. Then there exists a subset I € x of

size |I| = x, a set @(x; y) of formulae (without parameters), and tuples
b; € M} such that

qi(%) = O(%;b;), foralliel.

By choice of «, we can find indices i < j in I such that b; ~{ b;. We
claim that the type

PUQG; UQj =p(%) UD(x3b;) U D(%;b;)

does not+/-fork over U.
For a contradiction, suppose otherwise. By compactness, we can then
find finite sets ¥, € p and @, € @ such that

Yo (%) U @o(%3b;) U @o(%3b;) /-forks over U.
Setting
9(%:7) = \ Yo(2) AN\ Oo(%7),

it follows that the formula ¢ (x; b;) A ¢(x;b;)/-forks over U. On the
other hand, p U q; F ¢(%; b;) implies that (p(x b;) does not \/-fork
over U. As b; w 15 b this contradicts (2).
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3. The Independence Theorem

(3) = (1) Let « be the cardinal from (3) associated with A := |D|*.
Extending the sequence (b;);c; we may assume that |I| > k. For w ¢ I,
set

D, = J O(x5 ;).
1ew

By compactness, it is sufficient to show that there is no finite subset
w ¢ I such that @, \/-forks over U. We proceed by induction on |w/|. For
w = {i}, the claim holds since b; =y b;, and @(x; b;_ ) does not \/-fork
over U. Hence, suppose that n := |w| > 1. Let F := [I]""". By inductive
hypothesis, no set @ with s € F /-forks over U. Hence, we can use (3)
to find indices s # ¢ € F such that ®; U @, does not /-fork over U.
Choosing sets u, v € F such that ord(uv) = ord(st) and w C u U v, it
follows by indiscernibility that ®@,, € @, U @, does not+/-fork over U.

(1) = (4) Set p(%, %) = tp(db,/U). We extend f to an indiscernible
sequence B = (b;) <y over U of length y > Jj+ where A := 2| TI@IUI@[b,]
By the chain condition, the union U;., p(X, b;) does not/-fork over U.
Hence, there exists a tuple a’ realising U,<, (%, b;) such that a’ Vu B
Then @’ =y;, a and we can find a sequence B’ = (b});<, such that
a'B =yp, ap’. By Theorem E5.3.7 and choice of y, there exists an in-
discernible sequence B’ = (b!'),<, over Udb, such that, for every
ie[w]?, there is some j € [y]*“ with

b"[] =y, b'[]]-

By finite character, @ v/ b, implies that @ /i bof". By choice of B”
we can find, for every n < w, some tuple j € [y]" such that

boby ... b,_ =pap. bob'[j] =us, boblj] =us, boby-.. by .

This implies that b, =;_ . Hence, the sequence B’ := b, " has the
desired properties.

(4) = (2) Suppose that (2) does not hold. Then we can find a for-
mula ¢(%; ) and an indiscernible sequence 8 = (b;)i<, over U such
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F5. Theories without the array property

that the formula ¢(%; b,) does not /-fork over U, but the conjunc-
tion @(%;b,) A ¢(%;b,) does. We choose a tuple a € ¢(&; b, )™ with
a \/ u bo. For every sequence B’ = (b});<o =y;, B that is indiscerni-
ble over Ua, we then have M £ ¢(a; b’), for all i. As the conjunction
@(%; b)) A o(x;b;) \/-forks over U, it follows that a ,/; ', for each

such sequence f’. Therefore, (4) fails as well. ]

As several of the characterisations of the chain condition are similar
to characterisations of the dividing relation, we obtain the following
implication.

Lemma 3.3. If a preforking relation/ satisfies the chain condition over a
set U then

a \/UB implies a S/Ul_a

Proof. Suppose that a \/ u b. To show that a \/ u b, we use condition (3)
from Lemma £3.1.3. Hence, let (b, )<, be an indiscernible sequence
over U with b, = b. Setting ®(%,%’) = tp(ab/U), it follows by the
chain condition that there exists a tuple a’ realising U,,.,, ?(x, b, ) with

a' \/u b. In particular, we have

a'=y; a and b; =ya br, foralli,k< w. ]

As a first application of the chain condition, let us show that array-
dividing equals dividing. Once we have shown that in theories without
the array property {1/ satisfies the chain condition, the following result
will generalise Corollary 1.14.

Proposition 3.4. Suppose that {1/ satisfies the chain condition over a set U.
A formula divides over U if, and only if, it array-divides over U.

Proof. (=) was already proved in Lemma 1.13. For (<), suppose that
¢(x;b) does not divide over U. To show that it also does not array-
divide over U, we consider a family 8 = (b;);,j<. that is biindiscernible
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3. The Independence Theorem

over U with b,, = b. We apply the chain condition to the sequence
B° = (bio)i<w to show that the set { ¢(%;b;o) | i <  } does not divide
over U. Applying the chain condition again, this time to the sequence
(B")i<w of rows, it follows that the set { ¢(%;b;;) | i,j < w } does not
divide over U. In particular, this set is consistent. ]

Finally, we show that, in theories without the array property, \f/ satis-
fies the chain condition. We start by proving this implication over models

before generalising it to arbitrary \f/ -bases.

Lemma 3.5. Let T be a theory without the array property and let M be a
model of T. Then \f/ satisfies the chain condition over M.

Proof. We check condition (2) of Proposition 3.2. Let b NIAS,I b’ be tuples
and ¢(%; 7) a formula such that the conjunction ¢(&; b) A ¢(%; b") forks
over M. We have to show that ¢(%; b) also forks over M. Set « := 1)+
where A := 2/TI®Ml Since b ! b, there exists an indiscernible se-
quence 8’ = (b))« over M of length « such that b, = b and b’ = b'.
We have seen in Lemma 2.3 that M is a l\‘/—extension base. By Corol-
lary 2.19 this implies that M is a Sl\i/ -base. Furthermore, we have shown
in Corollary 2.14 that Sl\i/ satisfies the extension axiom. Hence, we have

B /s M and there exists a global type p 2 tp(B/M) that is *\/-free
over M. Let B = (B")i<o be a sequence generated by p over M where
B' = (bi;) i<w- By indiscernibility of f° and the fact that forking equals
dividing over M, it follows for all pairs j # j’ of indices that the formula
@(%;b0;) A @(%;bo;r) divides over M. By choice of  and Lemma 2.15,
this implies that the set

{@(x:bi)) Ap(x3bij) |i<w}

is inconsistent. We can use Theorem Es.3.7 to find an indiscernible se-
quence & = (a’);, over M such that, for every 7 € [w]<“, there is some
je [x]°¢ with a[i] =p B[]]. It follows that the family « is biindiscern-
ible over M and the formula ¢ is inconsistent over a. Consequently,
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¢(%; boo) array-divides over M. According to Corollary 1.14 and The-
orem 2.22, this implies that ¢ (X; b, ) also divides and forks over M. []

Theorem 3.6. In a theory without the array property, \f/ satisfies the chain
condition over every \f/ -base.

Proof. Let U be a \f/-base, ¢(x;y) a formula, and 8 = (b;)i<e an in-
discernible sequence over U such that ¢(x;b,) does not fork over U.
Fix a model M containing U. Then M \f/ v U and it follows by (EXT)
that there exists a model M’ =y M such that M’ \/; . According

to Theorem 2.22, we have M’ {i/ v PB. By Lemma F2.2.4, it therefore
follows that a formula over f8 divides over U if, and only if, it divides
over M’. In particular, ¢(X; b, ) does not divide over M’. By Lemma 3.5,
the formula ¢(%;b,) A ¢(%; b,) does not divide over M’. Hence, it also
does not divide over U. The claim follows since forking equals dividing
over U. ]

Corollary 3.7. In a theory without the array property, {1/ satisfies the
chain condition over every \f/ -base.

Proof. Let U bea \f/ -base. According to Theorem 2.22, forking equals
dividing over U. Consequently, {l/ has the chain condition over U if, and
only if, \f/ does. Hence, the claim follows by the preceding theorem. []

The Independence Theorem

There are two versions of the Independence Theorem: a weak one that
holds in all theories without the array property, and a strong one that
characterises simple theories.

Definition 3.8. (a) A preforking relation / satisfies the Weak Independ-
ence Theorem over a set U € M if it has the following property:
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3. The Independence Theorem

(wiNp) If d, b, b’, ¢ € M are tuples satisfying
¢\Juab, a~/ubb', and b=S¥,
then there exists a tuple ¢’ such that
& \Juab', & =ysé, and b =y be.

(b) A preforking relation / satisfies the Independence Theorem over a
set U ¢ M if it has the following property:

(i~p) If 4, b, A, B € M are tuples such that

dEUI-?, (i\/UA, I_?\/UB, and A\/UB,

then there exists a tuple ¢ such that
C-EUAa-, C-EUBZ;, and C-\/UAB

We say that / satisfies the Independence Theorem for a class C ¢
(M), if it satisfies the theorem over every U € C.

Remark. The statement of the second axiom becomes clearer when we
rephrase it in terms of types. Then it reads:

Let p, q,t be types over, respectively, U, U U A, and U U B.

If g and t are \/-free extensions of p and A \/ u B,thenqut
is also a /-free extension of p.

We start by proving that the weak version holds in all theories without
the array property.

Theorem 3.9. For a forking relation \/, the chain condition over a set U
implies the Weak Independence Theorem over U.

Proof. Suppose that/ satisfies the chain condition over U and let

é\uab, a+/ubb', and b=5b.
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We first consider the case where b le b By Lemma 3.3, we have

a \/ bb' and, hence, a \/ Ub b'. Therefore, we can use Lemma F4.2.12
to find a tuple @’ such that ab ~% a’b’. Thus, there exists an indiscernible
sequence (d;b;)ice over U with dobod,b, = aba'b’. Since we have

¢ \/ U dob,, it follows by Proposition 3.2 (4) that there is a tuple ¢’ =, Gobe
¢ such that ¢’ \/U d[w]b[w] and (a;b;);<, is indiscernible over U¢'.
This implies that

& \Juab', & =uysé, and b'& =y bé =y bé.

It remains to prove the general case. Fix a sequence bo & -~ b,
such that b, = b and b,, = b’. By (ExT), there is a tuple @’ =3/ a such

that @’ \/u b, . .. b,. Choosing tuples b, ..., b’, with

..b; =Ubiy 6_1,1_90...1_9,1
it follows that b’ = b, b’ = b’,
b~ wS b and a\/ubl...b.

By the special case we have proved above, we can inductively find tuples
Co»>...,Cn such that ¢, = ¢,

- -7/ - _ - /= _ 7l =
i uabl,,, Cim=zvaéi, and b, éy, =y blé;.
The tuple ¢’ := ¢, has the desired properties. ]

By Theorem 3.6, we can conclude that, in theories without the array
property, \f/ satisfies the chain condition and, thus, the Weak Independ-
ence Theorem over \f/ -bases.

Corollary 3.10 (Weak Independence Theorem; Ben Yaacov, Chernikov).
In a theory T without the array property, \f/ satisfies the Weak Independ-
ence Theorem over every \f/ -base.
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Let us turn to the strong version of the Independence Theorem. Our
goal is to show that it characterises || in simple theories: a symmetric
forking relation | satisfies the Independence Theorem if, and only if,
L = If and the theory in question is simple. We start by proving that
forking satisfies (IND) in simple theories.

Theorem 3.11 (Independence Theorem). In a simple first-order theory
1F satisfies the Independence Theorem for the class of all models.

Proof. Let M be a model and suppose that

a=yb, allyA, bl B, and Al B.

Asin simple theories every setisa |’-base, wehave a [f,;, M A. Therefore,
we can use Lemma F4.2.13 to find a tuple @’ =p4 a such that a’ fM N
Ba,b. Then it follows by transitivity that

a 4 Bb and a 'y A implies &’ [',, ABb,
a’ J,fM AB and B J,fM A implies Ba’ J,fM A,
a [yBb and b [y B implies a'b |5, B.

Furthermore, @’ =) @ =)y b, which implies that &’ Ek} b. Hence, we can
apply Corollary 3.10 to the statement A |f,, Ba’ to find a set A’ such that

A", Bb, A'=ypA, and DA = d'A.
Let ¢ be a tuple such that A’Bb =; ABC. Then
Al'yéB and ¢ [, B implies AB[f, ¢.
Furthermore, we have
CA=y bA'=y d’A=y aA and cB=y bB. ]

It remains to prove that forking is the only symmetric forking relations
satisfying the Independence Theorem.
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Definition 3.12. A class C ¢ (M) of small sets is invariant if
C=yzC' implies CeC <« C'eC.
We call C dense if, for every set A C M, there is some C € C with A ¢ C.

Example. Every class containing all models is dense. In particular, the

class of all ‘{/-extension bases and the class of all \f/ -bases are invariant
and dense.

We start with a lemma constructing a Morley sequence. The proof
follows the lines of the proofs of Lemmas F2.4.13 and F2.4.15.

Lemma 3.13. Let | be a right local forking relation, let C ¢ £(M) be

invariant and dense, and let (a,) n<, be an indiscernible sequence over U.
There exists a set C € C containing U and a type p € S*(C) extend-

ingtp(ao/U) such that (a,)n<e is a | -Morley sequence for p over C.

Proof. Let x := loc(l)* @ |a,|". We can use Lemma E5.3.9 to extend
(an)n<w to an indiscernible sequence (a, )q<x over U. We construct an
increasing chain (C, )< of sets C, € C such that, for every a < x,

Uual<a]cC, and (4a;)s<i<x is indiscernible over C, .

For the inductive step, suppose that C; has already been defined for
all i < a. As C is dense, we can choose some set C' € C containing
Vy = Uua[<a]ulU;, C;. Since the sequence (d;) q<i<x is indiscernible
over V,, we can apply Lemma E5.3.11 to obtain a set C, =y, C’ such that
(@i)a<i<x is indiscernible over V, U C,. By invariance, it follows that
C, €C.

After having constructed the sequence (Cy)q<x, We can find a set
W € Uger Cy of size [W| <loc(]) @ |ao|" < « such that

dK\LW UCoc-

a<kK

1256



3. The Independence Theorem

Since « is regular, there exists an index y < x such that W ¢ C,. By
(MoON) and (BMON), it follows that

dK i(b LJ di-

y<i<k
By (1nv), we therefore have

ao Le, U ai, forally<a<xk.
y<i<a

Hence, (d«)y<a<x is @ L-Morley sequence for tp(a./C,) over C,. Fix
an automorphism 7 € Aut My such that [ @y, 4] = dy, forall n < w.

By invariance, it follows that (a, )<« is a | -Morley sequence for p :=
tp(nla]/n[Cy]) over C = n[C,]. O]

The main argument is contained in a technical lemma which states
that the Independence Theorem implies the following weaker variant of
the chain condition.

Definition 3.14. A preforking relation / satisfies the chain condition
for Morley sequences over a set U € M if, for every/-Morley sequence
(b;)ie; over U and every set of formulae @(%; y) such that, for some
i, € I, the set @(&; b;_ ) does not+/-fork over U, the union U;¢; O(%; b;)
also does not /-fork over U.

Lemma 3.15. Let+/ be a forking relation satisfying the Independence
Theorem over a set U. Then / satisfies the chain condition for Morley
sequence over U.

Proof. Let (by)new be a+/-Morley sequence over U and let @(x; y) be
a set such that @(x; b, ) does not/-fork over U. We fix a tuple a with

a \/U b, and we set p(%, X') := tp(ab,/U). We have to show that there

exists a tuple ¢ realising U .., P(X, by, ) such that ¢ \/U b[<w].
To do so, we construct a sequence (¢, )<, such that

Ch \/U b[<n] and ¢, realises | Jp(x, b;).

i<n
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We start with ¢, := 4. Then &, realises p(%, b ) and ¢, \/U b,. For the
inductive step, suppose that ¢, has already been defined. Let a’ be a
realisation of p(%, b,,,,). Then

i'zynr @ U bpe> @ U b[<n],
and b4, \/U b[<n],

which, by the Independence Theorem, implies that there is a tuple ¢,,,
such that

- _ -/ - _ - - 7 I
Cn+1 =Ub,,, > Cn+1 =Ub[<n] Cn> and C,4,y \/U b[gn]bnﬂ .

It follows that ¢,,,, realises the types tp(@'/Ubps,) = p(%,bys,) and
tp(¢n/Ub[<n]) 2 Uicy p(%, bi).
In particular, note that ¢,+; =y¢, €x- Hence, having constructed

the sequence (¢, ) ,<w, We can use the Compactness Theorem to find a
tuple ¢ such that

C

Ub[<n] n» foralln<w.

Consequently, ¢ realises U, <, p(X, b,). Furthermore, (INv) and (DEF)
implies that ¢ \/U b[<w]. ]

For symmetric forking relations, we can strengthen Lemma 3.3 as
follows.

Theorem 3.16. If a symmetric forking relation | satisfies the chain condi-
tion for Morley sequences for a class C that is invariant and dense, then

L=Y.

Proof. We have shown in Theorem F3.1.9 that Q/ c |, for every sym-
metric forking relation. Conversely, suppose that d |y b. To show that
a {i/U b, set p(%,x") := tp(ab/U) and let (b,) <, by an indiscernible
sequence over U with b, = b. By Lemma F3.1.3 (3), it is sufficient to show
that there is a tuple realising U, <, p(%, b, ). As | is right local, we can
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use Lemma 3.13 to find a set C € C containing U such that (b, )<, isa
L-Morley sequence over C. Since a |y b,, there is some a’ =yp, @ such
that @’ |y Cb,. Set v’ (%, x") = tp(@'b,/C). By the chain condition for
Morley sequences, the union U, <, »' (%, b, ) does not | -fork over C. In
particular, it is consistent. Hence, it follows that there is a tuple realising

U p(xb,) c U (,04). 0
n<w n<w
We obtain the following characterisation of simple theories.
Theorem 3.17. Let T be a complete first-order theory. The following state-
ments are equivalent.
(1) T is simple.

(2) There exists a symmetric forking relation | satisfying the Independ-
ence Theorem for the class of all models.

(3) There exists a symmetric forking relation | satisfying the chain
condition for Morley sequences for the class of all models.

(4) There exists a symmetric forking relation | satisfying the chain
condition for the class of all models.

Proof. (4) = (3) is trivial; (3) = (1) follows by Theorem 3.16; (1) = (4) by
Lemma 3.5; (1) = (2) was already proved in Theorem 3.11; and (2) = (3)
follows by Lemma 3.15. ]

As an application we consider the theory of the random graph.
Proposition 3.18. The theory of the random graph is simple.
Proof. By Theorem 3.16, it is sufficient to prove that the relation

ALl%B iff ANBcU

is a symmetric forking relation satisfying the Independence Theorem.
L° obviously satisfies the axioms (INV), (MON), (NOR), (LRF), (BMON),
and (sym).
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F5. Theories without the array property

(LTR) Suppose that A, ijl B and A, J,jo B where A, € A, € A,.
Then A,nBc A, and A, n B c A,. Hence,

A,NBCA NnBCcA,,

which implies that A, J,jo B.

(DEF) Suppose that A 4 7; B. Then there is some element b € AnB\ U.
For every element a € (x = b)M it follows that a £ ¢ b.

(ExT) Suppose that a |7, B, and let B, ¢ B,. Using the extension
axioms, we can find a tuple a’ such that

atp(a’/UB,) = atp(a/UB,) and (a’'~U)nB,=0.

By ultrahomogeneity, there exists an automorphism 7 € Aut Myp, map-
ping a to a’. Hence, @’ =yp, aand a’ | Y, B,.

(1IND) We prove that | © satisfies the Independence Theorem for the
class of all subsets of M. Suppose that

azyb, alyA, blyB, and ALY B.

Replacing A and B by, respectively, A \ U and B \ U, we may assume
that AnU=gand BnU = @. Let

d=anU, a:=a~U, and b :=b\U.

Note that @’ N (Uu A) = g and b’ n (U U B) = @. Since U, A, B are
disjoint, we can use the extension axioms to find a tuple ¢’ disjoint from
U u AU B such that

atp(¢'/UA) = atp(a@’'/UA) and atp(¢’/UB) = atp(b’/UB).
It follows that

&'d=ypa'd, é'd=ypb'd, and &'d |9 AB. O
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chain condition for Morley sequences,
1257

chain in a category, 267

chain topology, 350

chain-bounded formula, 1168

Chang’s reduction, 532

character, 105

characteristic, 710

characteristic of a field, 413

choice function, 106

Choice, Axiom of —, 109, 458

class, 9, 54

clopen set, 341

=-closed, 512

closed base, 344

closed function, 346

closed interval, 757

closed set, 51, 53, 341

closed subbase, 344

closed subset of a construction, 871,
1307

closed unbounded set, 135

closed under relativisations, 614

closed under substitutions, 614

closure operator, 51, 110

closure ordinal, 81

closure space, 53

closure under reverse ultrapowers, 734

closure, topological —, 343

co-chain-bounded relation, 1172

cocone, 253

cocone functor, 258

codomain of a partial morphism, 894

codomain projection, 894

coeflicient, 398

cofinal, 123

cofinality, 123

Index

Coincidence Lemma, 231

colimit, 253

comma category, 170

commutative, 385

commutative ring, 397

commuting diagram, 164

comorphism of logics, 478

compact, 352, 613

compact, countably —, 613

Compactness Theorem, 515, 531

compactness theorem, 718

compatible, 473

complement, 198

complete, 462

k-complete, 598

complete partial order, 43, 50, 53

complete type, 527

completion of a diagram, 306

(A, k)-completion of a diagram, 307

(A, x)-completion of a partial order,
300

composition, 30

composition of links, 275

concatenation, 187

condition of filters, 721

cone, 257

confluence property, 1197

confluent family of sequences, 1197

congruence relation, 176

conjugacy class, 391

conjugate, 817

conjugation, 391

conjunction, 445, 490

conjunctive normal form, 467

connected category, 271

connected, definably —, 761

consequence, 460, 488, 521
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consistence of filters with conditions,
721

consistency over a family, 1221

consistent, 454

constant, 29, 149

constructible set, 869

\/-constructible set, 1306

construction, 869

\/-construction, 1306

continuous, 46, 133, 346

contradictory formulae, 627

contravariant, 168

convex equivalence relation, 1164

coset, 386

countable, 110, 115

countably compact, 613

covariant, 167

cover, 352

Creation, Axiom of —, 19, 458

cumulative hierarchy, 18

cut, 22

deciding a condition, 721
definability of independence relations,
1097
definable, 815
definable expansion, 473
definable orthogonality, 1329
definable Skolem function, 842
definable structure, 885
definable type, 570, 1098
definable with parameters, 759
definably connected, 761
defining a set, 447
definition of a type, 570
definitional closed, 815
definitional closure, 815

1366

degree of a polynomial, 399
dense class, 1256

dense linear order, 600
k-dense linear order, 600
dense order, 454

dense set, 361

dense sets in directed orders, 246
dense subcategory, 281
dependence relation, 1031
dependent, 1031

dependent set, 110
derivation, 398

diagonal functor, 253
diagonal intersection, 137
diagram, 251, 256
L-diagram, 499

Diagram Lemma, 499, 634
difference, 11

dimension, 1037
dimension function, 1038
dimension of a cell, 773
dimension of a vector space, 409
direct limit, 252

direct power, 405

direct product, 239

direct sum of modules, 405
directed, 246

directed colimit, 251
directed diagram, 251
k-directed diagram, 251
directed limit, 256
discontinuum, 351

discrete linear order, 583
discrete topology, 342
disintegrated matroid, 1044
disjoint union, 38
disjunction, 445, 490



disjunctive normal form, 467
distributive, 198

dividing, 1125

dividing chain, 1136

dividing x-tree, 1144
divisible closure, 706
divisible group, 705

domain, 28, 151

domain of a partial morphism, 894
domain projection, 894
dp-rank, 1211

dual categories, 172

Ehrenfeucht-Fraissé game, 589, 592
Ehrenfeucht-Mostowski functor, 986,
1002

Ehrenfeucht-Mostowski model, 986
element of a set, 5
elementary diagram, 499
elementary embedding, 493, 498
elementary extension, 498
elementary map, 493
elementary substructure, 498
elimination

uniform — of imaginaries, 840
elimination of finite imaginaries, 853
elimination of imaginaries, 841
elimination set, 690
embedding, 44, 156, 494
A-embedding, 493
KC-embedding, 995
elementary —, 493
embedding of a tree into a lattice, 222
embedding of logics, 478
embedding of permutation groups,

886

embedding, elementary —, 498

Index

endomorphism ring, 404
entailment, 460, 488
epimorphism, 165
equivalence class, 54
equivalence formula, 826
equivalence of categories, 172
equivalence relation, 54, 455
L-equivalent, 462
a-equivalent, 577, 592
equivalent categories, 172
equivalent formulae, 460
Erdds-Rado theorem, 928
Euklidean norm, 341

even, 922

exchange property, 110
existential, 494

existential closure, 699
existential quantifier, 445
existentially closed, 699
expansion, 155, 998
expansion, definable —, 473
explicit definition, 648
exponentiation of cardinals, 116, 126
exponentiation of ordinals, 89
extension, 152, 1097
A-extension, 498

extension axiom, 918
\/-extension base, 1228
extension of fields, 414
extension, elementary —, 498
Extensionality, Axiom of —, 5, 458

factorisation, 180

Factorisation Lemma, 158
factorising through a cocone, 317
faithful functor, 167

family, 37
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field, 397, 457, 498, 710 /-forking formula, 1103
field extension, 414 forking relation, 1097
field of a relation, 29 / -forking type, 1103
field of fractions, 411 formal power series, 398
field, real —, 426 formula, 444
field, real closed —, 429 forth property for partial morphisms,
filter, 203, 207, 530 895
k-filtered category, 285 foundation rank, 192
k-filtered colimit, 285 founded, 13
k-filtered diagram, 285 Fraissé limit, 912
final segment, 41 free algebra, 232
k-finitary set of partial isomorphisms, free extension of a type, 1103
598 \/-free extension of a type, 1103
finite, 115 free model, 739
finite character, 51, 105, 1084 free structures, 749
strong —, 1111 \/-free type, 1103
finite equivalence relation, 1164 free variables, 231, 450
finite intersection property, 211 full functor, 167
finite occurrence property, 613 full subcategory, 169
finite, being — over a set, 775 function, 29
finitely axiomatisable, 454 functional, 29, 149
finitely branching, 191 functor, 167
finitely generated, 154
finitely presentable, 317 Gaifman graph, 605
finitely satisfiable type, 1104 Gaifman, Theorem of —, 611
first-order interpretation, 446, 475 Galois base, 834
first-order logic, 445 Galois saturated structure, 1011
fixed point, 48, 81, 133, 657 Galois stable, 1011
fixed-point induction, 77 Galois type, 997
fixed-point rank, 675 game, 79
Fodor generalised product, 751
Theorem of —, 139 k-generated, 255, 965
follow, 460 generated substructure, 153
forcing, 721 generated, finitely —, 154
forgetful functor, 168, 234 generating, 41
forking chain, 1136 generating a sequence by a type, 1158
\/-forking chain, 1110 generating an ideal, 400
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generator, 154, 739

geometric dimension function, 1038
geometric independence relation, 1084
geometry, 1036

global type, 1114

graduated theory, 698, 783

graph, 39

greatest element, 42

greatest fixed point, 657

greatest lower bound, 42

greatest partial fixed point, 658
group, 34, 385, 456

group action, 390

group, ordered —, 705

guard, 447

Hanf number, 618, 637, 1003
Hanf’s Theorem, 606
Hausdorftf space, 351

having x-directed colimits, 253
height, 190

height in a lattice, 215
Henkin property, 858
Henkin set, 858

Herbrand model, 511, 858
hereditary, 12

k-hereditary, 910, 965
hereditary finite, 7

Hintikka formula, 586, 587
Hintikka set, 513, 858, 859
history, 15

hom-functor, 258
homeomorphism, 346
homogeneous, 787, 925
~-homogeneous, 931
k-homogeneous, 604, 787
homogeneous matroid, 1044

Index

homomorphic image, 156, 744
homomorphism, 156, 494
Homomorphism Theorem, 183
homotopic interpretations, 890
honest definition, 1157

Horn formula, 735

ideal, 203, 207, 400
idempotent link, 313
idempotent morphism, 313
identity, 163
image, 31
imaginaries

uniform elimination of —, 840
imaginaries, elimination of —, 841
imaginary elements, 826
implication, 447
implicit definition, 647
inclusion functor, 169
inclusion link, 276
inclusion morphism, 491
inconsistent, 454
k-inconsistent, 1125
increasing, 44
independence property, 952
independence relation, 1084
independence relation of a matroid,

1083

Independence Theorem, 1253
independent, 1031
V/ -independent family, 1289
independent set, 110, 1037
index map of a link, 275
index of a subgroup, 386
indiscernible sequence, 941
indiscernible system, 949, 1337
induced substructure, 152
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inductive, 77 inverse limit, 256

inductive completion, 291 inverse reduct, 975

inductive completion of a category, irreducible polynomial, 416
280 irreflexive, 40

inductive fixed point, 81, 657, 658 /-isolated, 1297

inductively ordered, 81, 105 isolated point, 364

infimum, 42, 195 isolated type, 855, 1098

infinitary first-order logic, 445 isolation relation, 1297

infinitary second-order logic, 483 isomorphic, 44

infinite, 115 a-isomorphic, 581, 592

Infinity, Axiom of —, 24, 458 isomorphic copy, 744

inflationary, 81 isomorphism, 44, 156, 165, 172, 494

inflationary fixed-point logic, 664 isomorphism, partial —, 577

initial object, 166

initial segment, 41 joint embedding property, 1005

injective, 31 k-joint embedding property, 910

k-injective structure, 1008 Jonsson class, 1005

inner vertex, 189

insertion, 39 Karp property, 613

inspired by, 950 kernel, 157

integral domain, 411, 713 kernel of a ring homomorphism, 402

interior, 343, 758

interpolant, 653 label, 227

interpolation closure, 648 large subsets, 825

interpolation property, 646 Lascar invariant type, 1178

A-interpolation property, 646 Lascar strong type, 1168

interpretation, 444, 446, 475 lattice, 195, 455, 490

intersection, 11 leaf, 189

intersection number, 1164 least element, 42

interval, 757 least fixed point, 657

invariance, 1097 least fixed-point logic, 664

invariant class, 1256 least partial fixed point, 658

invariant over a subset, 1325 least upper bound, 42

U-invariant relation, 1172 left extension, 1228

invariant type, 1098 left ideal, 400

inverse, 30, 165 left local, 1109

inverse diagram, 256 left reflexivity, 1084
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left restriction, 31

left transitivity, 1084
left-narrow, 57

length, 187

level, 190

level embedding function, 931
levels of a tuple, 931
lexicographic order, 187, 1024
lifting functions, 655

limit, 59, 257

limit stage, 19

limiting cocone, 253

limiting cone, 257
Lindenbaum algebra, 489
Lindenbaum functor, 488
Lindstrom quantifier, 482
linear independence, 406
linear matroid, 1037

linear order, 40

linear representation, 687
link between diagrams, 275
literal, 445

local, 608

local character, 1109

local enumeration, 772
k-local functor, 965

local independence relation, 1109
localisation morphism, 491
localisation of a logic, 491
locality, 1109

locality cardinal, 1306

locally compact, 352

locally finite matroid, 1044
locally modular matroid, 1044
logic, 444

logical system, 485

Lo§ theorem, 715

Index

Lo$-Tarski Theorem, 686

Lowenheim number, 618, 637, 641, 995

Lowenheim-Skolem property, 613

Lowenheim-Skolem-Tarski Theorem,
520

lower bound, 42

lower fixed-point induction, 658

map, 29

A-map, 493

map, elementary —, 493

mapping, 29

matroid, 1036

maximal element, 42

maximal ideal, 411

maximal ideal/filter, 203

maximally ¢-alternating sequence,
1153

meagre, 362

membership relation, 5

minimal, 13, 57

minimal element, 42

minimal polynomial, 419

minimal rank and degree, 224

minimal set, 1049

model, 444

model companion, 699

model of a presentation, 739

model-complete, 699

x-model-homogeneous structure,
1008

modular, 198

modular lattice, 216

modular law, 218

modular matroid, 1044

modularity, 1094

module, 403
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monadic second-order logic, 483 omitting a type, 528
monoid, 31, 189, 385 omitting types, 532
monomorphism, 165 open base, 344
monotone, 758 open cover, 352
monotonicity, 1084 open dense order, 455
monster model, 825 open interval, 757
Morley degree, 1075 Open Mapping Theorem, 1276
Morley rank, 1073 open set, 341

Morley sequence, 1118 open subbase, 345
Morley-free extension of a type, 1076 ~ opposite category, 166
morphism, 162 opposite functor, 168
morphism of logics, 478 opposite lattice, 204
morphism of matroids, 1044 opposite order, 40

morphism of partial morphisms, 894  orbit, 390
morphism of permutation groups, 885 order, 454

multiplication of cardinals, 116 order property, 567
multiplication of ordinals, 89 order topology, 349, 758
multiplicity of a type, 1279 order type, 64, 941
mutually indiscernible sequences, orderable ring, 426
1206 ordered group, 705
ordered pair, 27
natural isomorphism, 172 ordered ring, 425
natural transformation, 172 ordinal, 64
negation, 445, 489 ordinal addition, 89
negation normal form, 469 ordinal exponentiation, 89
negative occurrence, 664 ordinal multiplication, 89
neighbourhood, 341 ordinal, von Neumann —, 69
neutral element, 31
node, 189 pair, 27
normal subgroup, 387 parameter equivalence, 831
normality, 1084 parameter-definable, 759
nowhere dense, 362 partial fixed point, 658
partial fixed-point logic, 664
o-minimal, 760, 956 partial function, 29
object, 162 partial isomorphism, 577
occurrence number, 618 partial isomorphism modulo a filter,
oligomorphic, 390, 877 727
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partial morphism, 894

partial order, 40, 454

partial order, strict —, 40
partition, 55, 220

partition degree, 224

partition rank, 220
partitioning a relation, 775
path, 189

path, alternating — in a category, 271
Peano Axioms, 484

pinning down, 618

point, 341

polynomial, 399

polynomial function, 416
polynomial ring, 399

positive existential, 494
positive occurrence, 664
positive primitive, 735

power set, 21

predicate, 28

predicate logic, 444

prefix, 187

prefix order, 187

preforking relation, 1097
prelattice, 207

prenex normal form, 469
preorder, 206, 488
k-presentable, 317
presentation, 739

preservation by a function, 493
preservation in products, 734
preservation in substructures, 496
preservation in unions of chains, 497
preserving a property, 168, 262
preserving fixed points, 655
\/-K-prime, 1314

prime field, 413

Index

prime ideal, 207, 402
prime model, 868
prime model, algebraic, 694
primitive formula, 699
principal ideal/filter, 203
Principle of Transfinite Recursion, 75,
133
product, 27, 37, 744
product of categories, 170
product of linear orders, 86
product topology, 357
product, direct —, 239
product, generalised —, 751
product, reduced —, 242
product, subdirect —, 240
projection, 37, 636
projection along a functor, 260
projection along a link, 276
projection functor, 170
projective class, 636
projective geometry, 1043
projectively reducible, 637
projectively x-saturated, 804
proper, 203
property of Baire, 363
pseudo-elementary, 636
pseudo-saturated, 807

quantifier elimination, 690, 711
quantifier rank, 452
quantifier-free, 453

quantifier-free formula, 494
quantifier-free representation, 1338
quasi-dividing, 1231

quasivariety, 743

quotient, 179
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Rado graph, 918

Ramsey’s theorem, 926

random graph, 918

random theory, 918

range, 29

rank, 73, 192

A-rank, 1073

rank, foundation -, 192

real closed field, 429, 710

real closure of a field, 429

real field, 426

realising a type, 528

reduced product, 242, 744
reduct, 155

p-reduct, 237

refinement of a partition, 1336
reflecting a property, 168, 262
reflexive, 40

regular, 125

regular filter, 717

regular logic, 614

relation, 28

relational, 149

relational variant of a structure, 976
relativisation, 474, 614
relativised projective class, 640
relativised projectively reducible, 641
relativised quantifiers, 447
relativised reduct, 640
Replacement, Axiom of —, 132, 458
replica functor, 979
representation, 1338

restriction, 30

restriction of a filter, 242
restriction of a Galois type, 1015
restriction of a logic, 491
restriction of a type, 560
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retract of a logic, 547
retraction, 165

retraction of logics, 546
reverse ultrapower, 734
right local, 1109

right shift, 1297

ring, 397, 457

ring, orderable —, 426
ring, ordered —, 425
root, 189

root of a polynomial, 416
Ryll-Nardzewski Theorem, 877

satisfaction, 444

satisfaction relation, 444, 446
satisfiable, 454

saturated, 793

k-saturated, 667, 793
\/-Kk-saturated, 1314

k-saturated, projectively —, 804
Scott height, 587

Scott sentence, 587
second-order logic, 483

section, 165

segment, 41

semantics functor, 485
semantics of first-order logic, 446
semi-strict homomorphism, 156
semilattice, 195

sentence, 450

separated formulae, 627
Separation, Axiom of —, 10, 458
sequence, 37

shifting a diagram, 313
signature, 149, 151, 235, 236
simple structure, 412

simple theory, 1135



simply closed, 694

singular, 125

size of a diagram, 251

skeleton of a category, 265
skew embedding, 938

skew field, 397

Skolem axiom, 505

Skolem expansion, 999
Skolem function, 505
definable —, 842

Skolem theory, 505
Skolemisation, 505

small subsets, 825

sort, 151

spanning, 1034

special model, 8oy
specification of a dividing chain, 1137
specification of a dividing x-tree, 1144
specification of a forking chain, 1137
spectrum, 370, 531, 534
spectrum of a ring, 402

spine, 981

splitting type, 1098

stabiliser, 391

stability spectrum, 1290
k-stable formula, 564

k-stable theory, 573

stably embedded set, 1156
stage, 15, 77

stage comparison relation, 675
stationary set, 138

stationary type, 1272

Stone space, 374, 531, 534
\/-stratification, 1306

strict homomorphism, 156
strict Horn formula, 735

strict A-map, 493

Index

strict order property, 958
strict partial order, 40

strictly increasing, 44

strictly monotone, 758

strong y-chain, 1017

strong y-limit, 1017

strong finite character, 1111
strong limit cardinal, 808
strong right boundedness, 1085
strongly homogeneous, 787
strongly x-homogeneous, 787
strongly independent, 1332
strongly local functor, 981
strongly minimal set, 1049
strongly minimal theory, 1056, 1149
structure, 149, 151, 237
subbase, closed —, 344
subbase, open —, 345
subcategory, 169

subcover, 352

subdirect product, 240
subdirectly irreducible, 240
subfield, 413

subformula, 450

subset, 5

subspace topology, 346
subspace, closure —, 346
substitution, 234, 465, 614
substructure, 152, 744, 965
A-substructure, 498
KC-substructure, 996
substructure, elementary —, 498
substructure, generated —, 153
substructure, induced —, 152
subterm, 228

subtree, 190

Successor, 59, 189
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successor stage, 19

sum of linear orders, 85

superset, 5

supersimple theory, 1294

superstable theory, 1294

supremum, 42, 195

surjective, 31

symbol, 149

symmetric, 40

symmetric group, 389

symmetric independence relation,
1084

syntax functor, 485

system of bases for a stratification,

1336

T,-space, 534

Tarski union property, 614
tautology, 454

term, 227

term algebra, 232

term domain, 227

term, value of a —, 231
term-reduced, 466
terminal object, 166
L-theory, 461

theory of a functor, 971
topological closure, 343, 758
topological closure operator, 51, 343
topological group, 394
topological space, 341
topology, 341

topology of the type space, 533
torsion element, 704
torsion-free, 705

total order, 40

totally disconnected, 351

1376

totally indiscernible sequence, 942

totally transcendental theory, 574

transcendence basis, 418

transcendence degree, 418

transcendental elements, 418

transcendental field extensions, 418

transfinite recursion, 75, 133

transitive, 12, 40

transitive action, 390

transitive closure, 55

transitive dependence relation, 1031

transitivity, left —, 1084

translation by a functor, 260

tree, 189

@-tree, 568

tree property, 1143

tree property of the second kind, 1221

tree-indiscernible, 950

trivial filter, 203

trivial ideal, 203

trivial topology, 342

tuple, 28

Tychonoft, Theorem of —, 359

type, 560

L-type, 527

E-type, 804

a-type, 528

s-type, 528

type of a function, 151

type of a relation, 151

type space, 533

type topology, 533

type, average —, 943

type, average — of an indiscernible
system, 949

type, complete —, 527

type, Lascar strong —, 1168



types of dense linear orders, 529

ultrafilter, 207, 530

k-ultrahomogeneous, 906

ultrapower, 243

ultraproduct, 243, 797

unbounded class, 1003

uncountable, 115

uniform dividing chain, 1137

uniform dividing x-tree, 1144

uniform elimination of imaginaries,
840

uniform forking chain, 1137

uniformly finite, being — over a set,
776

union, 21

union of a chain, 501, 688

union of a cocone, 293

union of a diagram, 292

unit of a ring, 411

universal, 494

k-universal, 793

universal quantifier, 445

universal structure, 1008

universe, 149, 151

unsatisfiable, 454

unstable, 564, 574

upper bound, 42

upper fixed-point induction, 658

valid, 454
value of a term, 231
variable, 236

Index

variable symbols, 445
variables, free —, 231, 450
variety, 743

Vaughtian pair, 1057
vector space, 403

vertex, 189

von Neumann ordinal, 69

weak y-chain, 1017

weak y-limit, 1017

weak canonical definition, 847

weak canonical parameter, 846

weak elimination of imaginaries, 847

weak homomorphic image, 156, 744

Weak Independence Theorem, 1252

weakly bounded independence
relation, 1189

weakly regular logic, 614

well-founded, 13, 57, 81, 109

well-order, 57, 109, 132, 598

well-ordering number, 618, 637

well-ordering quantifier, 482, 483

winning strategy, 590

word construction, 972, 977

Zariski logic, 443
Zariski topology, 342
zero-dimensional, 351
zero-divisor, 411
Zero-One Law, 922
ZFC, 457

Zorn’s Lemma, 110
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