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b1. Structures and homomorphisms

1. Structures

We have seen how to define graphs and partial orders in set theory. By
a straightforward generalisation, we obtain other such structures like
groups, fields, or vector spaces. A graph is a set equipped with one binary
relation. In general, we allow arbitrary many relations and functions
of arbitrary arities. To keep track of which relations and functions are
present in a given structure we assign a name to each of them. These
names are called symbols, the set of all symbols is called a signature.

Definition 1.1. A signature Σ is a set of relation symbols and function
symbols each of which has a fixed (finite) arity. We call Σ relational if it
contains only relation symbols and it is functional or algebraic if all of
its elements are function symbols. A function symbol of arity 0 is also
called a constant symbol.

Definition 1.2. Let Σ be a signature. A Σ-structure A consists of

◆ a set A called the universe of A,

◆ an n-ary relation RA ⊆ An , for each relation symbol R ∈ Σ of
arity n, and

◆ an n-ary function f A ∶ An → A, for each function symbol f ∈ Σ
of arity n.

Formally, we can define a structure to be a pair ⟨A, σ⟩ where A is the
universe and σ a function ξ ↦ ξA mapping each symbol ξ ∈ Σ to the
relation or function it denotes. But usually, in particular if the signature
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b1. Structures and homomorphisms

is finite, we will write structures simply as tuples

A = ⟨A, RA
0 , RA

1 , . . . , f A
0 , f A

1 , . . . ⟩ .

Wewill denote structures by fraktur letters A,B,C,. . . and their universes
by the corresponding roman letters A, B, C,. . . .

Example. (a) A group G can be seen as structure ⟨G , ⋅ ⟩where the binary
function ⋅ ∶ G × G → G denotes the group multiplication. Another
possibility would be to take the richer structure ⟨G , ⋅ , −1 , e⟩ where e is
the unit of G and −1 ∶ G → G the inverse.

(b) Similarly, a field K corresponds to a structure ⟨K ,+, ⋅ , 0, 1⟩ with
two binary functions and two constants.

The above definition of a structure is still not quite general enough. For
instance, vector spaces fit only with some acrobatics into this framework.

Example. When we want to model a K-vector space V as a structure
we face the problem of which set should be taken for the universe. One
possibility is to define the structure ⟨V ,+, (λa)a∈K⟩ where the universe
just consists of the vectors and, for each field element a ∈ K, we add a
function λa ∶ V → V ∶ v ↦ av for scalar multiplication with a. This
formalism is mainly suited if one is interested in K-vector spaces for a
fixed field K.

Another way of encoding vector spaces that treats K and V equally is
to choose the structure ⟨V ∪K ,V ,K ,A, M⟩ where the universe consists
of the union of K and V , we have two unary predicates V and K that
can be used to determine which elements are vectors and which are
field elements, and there are two ternary relations A ⊆ V × V × V and
M ⊆ K × V × V for vector addition and scalar multiplication. Note that
we cannot use functions in this case since those would have to be defined
for all elements of (V ∪ K) × (V ∪ K).

To make such codings unnecessary we extend the definition to allow
structures that contain elements of different sorts like vectors and scalars.

150

1. Structures

Definition 1.3. Let S be a set and suppose that, for each s ∈ S, we are
given some set As such that As andAt are disjoint, for s ≠ t. The elements
of S will be called sorts.

(a) For s̄ ⊆ S, we write As̄ ∶= ∏i As i .
(b) The type of an n-ary relation R ⊆ As̄ is the sequence s̄ ∈ Sn .
(c) The type of an n-ary function f ∶ As̄ → At is the pair ⟨s̄, t⟩ ∈ Sn × S

which we will write more suggestively as s̄ → t.
(d) If A = ⊍s∈S As and B = ⊍s∈S Bs are sets that are partitioned into

sorts, we denote by BA the set of all functions f ∶ A → B such that
f [As] ⊆ Bs , for all s ∈ S.

(e) An S-sorted signature Σ is a set of relation symbols and function
symbols to each of which is assigned some type.

Definition 1.4. Let Σ be an S-sorted signature. A Σ-structure A consists
of ◆ a family of sets As , for s ∈ S,

◆ a relation RA ⊆ As̄ for each relation symbol R ∈ Σ of type s̄, and
◆ a function f A ∶ As̄ → At for every function symbol f ∈ Σ of

type s̄ → t.
We call As the domain of sort s. The disjoint union A ∶= ⊍s∈S As of all
domains is the universe of A.

Example. We can model a K-vector space V as {s, v}-sorted structure

⟨K ,V ,+, ⋅ , 0V , 0K , 1K⟩
where◆ + ∶ V × V → V of type vv → v is the addition of vectors,

◆ ⋅ ∶ K × V → V of type sv → v is scalar multiplication, and
◆ 0V ∈ V and 0K , 1K ∈ K are constants of type v, s, and s, respectively.

We could also add field addition and multiplication.

Lemma 1.5. Let Σ be a signature and κ ≥ ℵ0. Up to isomorphism there
are at most 2κ⊕∣Σ∣ different Σ-structures A of size ∣A∣ = κ.
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Proof. For every n, there are at most 2κn = 2κ n-ary relations R ⊆ An

and at most κκn = 2κ n-ary functions f ∶ An → A. Hence, the number of
different Σ-structures is at most (2κ)∣Σ∣ = 2κ⊕∣Σ∣. ◻

Many results in algebra and logic try to shed light on the ‘internal
structure’ of some given Σ-structureA. A typical result of this kind could,
for instance, state that every structure in a given class is built up from
smaller structures in a certain way. In the remainder of this section we
look at a given structure and try to find all structures that are contained
in it.

Definition 1.6. Let Σ be an S-sorted signature andA andB Σ-structures.
(a) We write A ⊆ B if

As ⊆ Bs , for each sort s ∈ S ,

RA = RB ∩ An , for every n-ary relation symbol R ∈ Σ ,
and f A = f B ∩ An+1 , for every n-ary function symbol f ∈ Σ .

If A ⊆ B then we say that A is a substructure of B and that B is an
extension of A. The set of all substructures of A is denoted by Sub(A),
and we set

Sub(A) ∶= ⟨Sub(A), ⊆⟩ .

(b) Let X ⊆ A. If there is a substructure B ⊆ A with universe B = X
then we say that X induces the substructure B. We denote this substruc-
ture by A∣X .

Example. N = ⟨N,+, 0⟩ is a substructure of Z = ⟨Z,+, 0⟩.
Remark. (a) Note that the preceding example shows that if G = ⟨G , ⋅ ⟩ is
a group and H ⊆ G a substructure then H is not necessarily a subgroup
of G. If, on the other hand, we consider groups with the richer signature⟨G , ⋅ , −1 , e⟩ then every substructure is also a subgroup.

(b) If the signature is relational then every set induces a substructure.
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(c) Since a substructure is uniquely determined by its universe we
will not always distinguish between substructures and the sets inducing
them.

What substructures does a given structure A have?

Lemma 1.7. Let A be a Σ-structure. A set X ⊆ A induces a substructure
of A if and only if X is closed under all functions of A, that is, we have

f A(ā) ∈ X , for every n-ary function f ∈ Σ and all ā ∈ Xn .

Proof. Suppose that X induces the substructure A0 ⊆ A. For f ∈ Σ and
ā ∈ Xn = An

0 it follows that

f A(ā) = f A0(ā) ∈ A0 = X .

Conversely, if X is closed under functions then we can define the desired
substructure A0 by setting

RA0 ∶= RA ∩ Xn , for every n-ary relation R ∈ Σ ,

f A0 ∶= f A ∩ Xn+1 , for every n-ary function f ∈ Σ . ◻
Lemma 1.8. Let A be a Σ-structure and Z ⊆ ℘(A). If every element of Z
induces a substructure of A then so does ⋂ Z.

Proof. Let f ∈ Σ be an n-ary relation symbol and ā ∈ (⋂ Z)n . Since
every element X ∈ Z induces a substructure of A it follows that ā ⊆ X
implies f A(ā) ∈ X. Hence, f A(ā) ∈ ⋂ Z. By Lemma 1.7, it follows that⋂ Z induces a substructure. ◻

Since the family of substructures is closed under intersection we can
use Lemma a2.4.8 to characterise Sub(A) via a closure operator.

Definition 1.9. Let A be a Σ-structure.
(a) The substructure of A generated by a set X ⊆ A is ⟪X⟫A ∶= A∣Z

where

Z ∶= ⋂{B ∣ B ⊇ X induces a substructure of A} .
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(b) If⟪X⟫A = A thenwe say that X generates A andwe call the elements
of X generators of A. If A is generated by a finite set then we call A finitely
generated.

Example. (a) The structure N = ⟨N,+, 0⟩ is finitely generated by {1}.
(b) Let Z = ⟨Z,+,−⟩ be the additive group of the integers. The set

X ∶= {5} generates the substructure

A ∶= ⟪X⟫Z = ⟨A,+,−⟩ with A = { 5k ∣ k ∈ Z} .

Note that X does not induce A since A ⊃ X.
If we consider the structure Z′ = ⟨Z,+⟩ without negation then X gen-

erates the substructure

B ∶= ⟪X⟫Z′ = ⟨B,+⟩ with B = { 5k ∣ k ∈ Z, k > 0} .

(c) Let V = ⟨V ,+, (λa)a∈K⟩ be a vector space encoded as untyped
structure. If X ⊆ V then ⟪X⟫V is the subspace spanned by X. If, instead,
we encode V as two-sorted structure

V = ⟨K ,V ,+V , ⋅V ,+K , ⋅K , 0V , 0K , 1K⟩ ,
where +V is vector addition, ⋅V scalar multiplication, and +K and ⋅K the
field operations, then ⟪X⟫V just consists of all linear combinations

λ0v0 + ⋅ ⋅ ⋅ + λn−1vn−1

where v0 , . . . , vn−1 ∈ X and λ0 , . . . , λn−1 ∈ N.

Lemma 1.10. Let A be a Σ-structure. The function c ∶ X ↦ ⟪X⟫A is a
closure operator on A with finite character.

Proof. It follows from Lemma a2.4.8 that c is a closure operator. It re-
mains to prove that it has finite character. Let

Z ∶= ⋃{⟪X0⟫A ∣ X0 ⊆ X is finite} .
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To prove that c(X) = Z it is sufficient to show that Z induces a substruc-
ture of A. We use Lemma 1.7. Let f be an n-ary function symbol and
ā ∈ Zn . Then there exists a finite set X0 ⊆ X with ā ⊆ ⟪X0⟫A. Since⟪X0⟫A induces a substructure of A it follows that

f A(ā) ∈ ⟪X0⟫A ⊆ Z . ◻
Corollary 1.11. Let A be a structure.

(a) Sub(A) forms a complete partial order.

(b) If Z ⊆ Sub(A) then ⋂ Z ∈ Sub(A).
(c) If C ⊆ Sub(A) is a chain then ⋃C ∈ Sub(A).
So far, we have considered structures obtained by removing elements

from a given structure. Instead, we can also remove relations or functions.

Definition 1.12. (a) Let Σ and Σ+ be signatures with Σ ⊆ Σ+, and let
A be a Σ+-structure. The Σ-reduct A∣Σ of A is the Σ-structure B with the
same universe as A where ξB = ξA, for all symbols ξ ∈ Σ. If B = A∣Σ we
call A an expansion of B.

(b) Let Σ be an S-sorted signature, T ⊆ S, and A a Σ-structure. Let
Γ ⊆ Σ be the T sorted signature consisting of all elements of Σ whose type
only contains sort from T . By A∣T we denote the Γ-structure obtained
from A by removing all domains As with s ∈ S ∖ T and all relations and
function from Σ ∖ Γ.

Example. ⟨G , ⋅ ⟩ is a reduct of ⟨G , ⋅ , −1 , e⟩. In general, a Σ-structure has
2∣Σ∣ reducts.

Remark. If A ⊆ B then A∣Σ ⊆ B∣Σ .

Remark. Let S ⊆ T be sets of sorts. Every S-sorted signature Σ is also
T-sorted. Similarly, every S-sorted structure A can be turned into a T-
sorted structure by setting At ∶= ∅, for t ∈ T ∖ S. In the following we will
not distinguish between an S-sorted structure A and the corresponding
T-sorted one obtained in that way.
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2. Homomorphisms
Similarly to graphs and partial orders we can compare two structures
by defining a map between them. The notions of an increasing func-
tion and an isomorphism can be extended in a straightforward way to
arbitrary structures. Since now we have several relations we need the
symbols of the signature in order to knowwhich relation of one structure
corresponds to a given relation of the other structure.

In the following, given ā ∈ An and h ∶ A → B we will abbreviate⟨h(a0), . . . , h(an−1)⟩ by h(ā).
Definition 2.1. Let A and B be Σ-structures.

(a) Amapping h ∶ A→ B is a homomorphism if it satisfies the following
conditions:

◆ h(As) ⊆ Bs , for every sort s .

◆ If ā ∈ RA then h(ā) ∈ RB , for all ā ⊆ A and every R ∈ Σ .

◆ h( f A(ā)) = f B(h(ā)) , for all ā ⊆ A and every f ∈ Σ .

(b) A homomorphism h ∶ A→ B is strict if it further satisfies

◆ ā ∈ RA iff h(ā) ∈ RB , for all ā ⊆ A and every R ∈ Σ .

(c) A homomorphism h ∶ A→ B is semi-strict if, whenever h(ā) ∈ RB

then there is some ā′ ∈ RA with h(ā′) = h(ā).
(d) An embedding is an injective strict homomorphism and an iso-

morphism is a bijective strict homomorphism.WewriteA ≅ B to indicate
that there exists an isomorphism A→ B. Finally, an isomorphism A→ A
is called an automorphism of A.

(e) If there exists a surjective homomorphism A → B, B is called a
weak homomorphic image of A. It is a homomorphic image of A if the
homomorphism is semi-strict.

Example. (a) Let A and B be partial orders. A function f ∶ A→ B is a
homomorphism if and only if it is increasing, and f is a strict homo-
morphism if and only if it is strictly increasing.
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(b) The function ⟨ω,+⟩ → ⟨ω, ⋅ ⟩ with n ↦ 2n is an embedding.
(c) The function ⟨ω,+⟩ → ⟨[5],+⟩ with n ↦ n mod 5 is a strict homo-

morphism.
(d) If K = ⟨K ,+, ⋅⟩ is a field andK[x] = ⟨K[x],+, ⋅⟩ the corresponding

ring of polynomials then we have a homomorphism

f ∶ K[x] → K ∶ p(x) ↦ p(0)
mapping a polynomial to its value at x = 0.

Remark. A homomorphism h ∶ A→ B is strict if and only if

h−1[RB] = RA , for every relation R .

Similarly, h is semi-strict if and only if

h[RA] = RB , for every relation R .

Exercise 2.1. Let N = ⟨ω, ⋅ ⟩. Construct an automorphism f ∶ N → N
with f (2) = 3.

Lemma 2.2. If g ∶ A → B and h ∶ B → C are isomorphisms then so are
the functions g−1 ∶ B→ A and h ○ g ∶ A→ C.

Lemma 2.3. Every injective semi-strict homomorphism h ∶ A → B is
strict.

Proof. Suppose that h(ā) ∈ RB. Then there is some tuple ā′ ∈ RA with
h(ā′) = h(ā). Since h is injective, it follows that ā′ = ā and, hence,
ā ∈ RA. ◻
Definition 2.4. Let f ∶ A → B be a function. The kernel of f is the
relation

ker f ∶= { ⟨a, b⟩ ∈ A2 ∣ f (a) = f (b) } .

Remark. The kernel of a function is obviously an equivalence relation.
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Lemma 2.5 (Factorisation Lemma). Let f ∶ A → B, g ∶ B → C, and
h ∶ A→ C be functions.

A rng f

C

A B

C

f

h
φ

ψ

h
g

(a) There exists at most one function φ ∶ rng f → C with h = φ ○ f .

(b) If g is injective then there exists at most one function ψ ∶ A → B
with h = g ○ ψ.

(c) There exists a function φ ∶ rng f → C with h = φ ○ f if and only if
ker f ⊆ ker h.

(d) There exists a function ψ ∶ A → B with h = g ○ ψ if and only if
rng h ⊆ rng g.

Proof. (a) If φ, φ′ ∶ rng f → C are functions such that φ ○ f = g = φ′ ○ f
then, since f ∶ A→ rng f is surjective, it follows by Lemma a2.1.10 that
φ = φ′.

(b) If ψ,ψ′ ∶ A → B are functions such that g ○ ψ = h = g ○ ψ′ then,
since g ∶ B → C is injective, it follows by Lemma a2.1.10 that ψ = ψ′.

(c) (⇒) If ⟨a, a′⟩ ∈ ker f then we have

h(a) = φ( f (a)) = φ( f (a′)) = h(a′) ,
which implies that ⟨a, a′⟩ ∈ ker h.(⇐) For b ∈ rng f , select an arbitrary element a ∈ f −1(b) and set
φ(b) ∶= g(a). We claim that φ ○ f = g. Let a ∈ A and set b ∶= f (a).
By definition of φ, we have φ(b) = g(a′), for some element a′ ∈ A
with f (a′) = b. Hence, ⟨a, a′⟩ ∈ ker f ⊆ ker g , which implies that
g(a) = g(a′). Consequently, we have

φ( f (a)) = φ(b) = g(a′) = g(a) .
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(d) (⇒) If c ∈ rng h then there is some element a ∈ Awith c = h(a)
and g(ψ(a)) = h(a) = c implies that c ∈ rng g.(⇐) For a ∈ A, we have h(a) ∈ rng h ⊆ rng g. Hence, we can select
some element b ∈ g−1(h(a)) and we set ψ(a) ∶= b. Then g(ψ(a)) =
g(b) = h(a). ◻
Lemma 2.6. Let g ∶ A→ B and h ∶ B→ C be functions.

A B

C

g

hh ○ g

(a) Suppose that g is a surjective semi-strict homomorphism.

(i) If h ○ g is a homomorphism then so is h.
(ii) If h ○ g is a semi-strict homomorphism then so is h.

(iii) If h ○ g is a strict homomorphism then so is h.

(b) Suppose that h is an injective semi-strict homomorphism.

(i) If h ○ g is a homomorphism then so is g.
(ii) If h ○ g is a semi-strict homomorphism then so is g.

(iii) If h ○ g is a strict homomorphism then so is g.

Proof. (a) (i) Let b̄ ∈ Bn and a i ∈ g−1(b i), for i < n. For an n-ary
function symbol f , we have

f C(h(b̄)) = f C(h(g(ā))) = (h ○ g)( f A(ā))
= h( f B(g(ā))) = h( f B(b̄)) .

If R is an n-ary relation symbol with b̄ ∈ RB then, since g is semi-strict,
we can find elements a i ∈ g−1(b i) such that ā ∈ RA. This implies that
h(b̄) = (h ○ g)(ā) ∈ RC.

(ii) For every relation R, we have h[RB] = h[g[RA]] = RC.
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(iii) Since g is surjective we have g[g−1[X]] = X, for every X ⊆ B. It
follows that

h−1[RC] = g[g−1[h−1[RC]]] = g[RA] = RB .

(b) (i) Let ā ∈ An and f an n-ary function symbol. Then we have

h(g( f A(ā)) = f C((h ○ g)(ā)) = h( f B(g(ā))) .

Since h is injective it follows that g( f A(ā)) = f B(g(ā)).
If R is an n-ary relation symbol with ā ∈ RA then we have (h ○ g)(ā) ∈

RC and, since h is semi-strict, there is some tuple b̄ ∈ RB with h(b̄) =
h(g(ā)). Since h is injective it follows that g(ā) = b̄ ∈ RB.

(ii) Since h is injective we have h−1[h[X]] = X, for every X ⊆ B.
Furthermore, injective semi-strict homomorphisms are strict. Therefore,
we have

g[RA] = h−1[h[g[RA]]] = h−1[RC] = RB .

(iii) As in (ii) we have

g−1[RB] = g−1[h−1[h[RB]]] = (h ○ g)−1[RC] = RA . ◻
Corollary 2.7. If g ∶ A→ B and h ∶ A→ C are surjective semi-strict ho-
momorphisms with ker g = ker h then there exists a unique isomorphism
φ ∶ B→ C with h = φ ○ g.

A B

C

g

h
ψ φ

Proof. ByLemmas 2.5 and 2.6 there exist unique semi-strict homomorph-
isms

φ ∶ B→ C and ψ ∶ C → B
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such that h = φ ○ g and g = ψ ○ h. In the same way, ker g = ker g
implies that there exists a unique homomorphism η ∶ B→ B with with
g = η ○ g. Since id and ψ ○ φ both satisfy this equation it follows that
ψ ○ φ = id. In the same way we obtain φ ○ ψ = id. Consequently, φ is an
isomorphism. ◻
We can use a homomorphism h ∶ A → B to compare the family of

substructures of A to that of B.

Lemma 2.8. Let A and B be Σ-structures and h ∶ A→ B a homomorph-
ism.

(a) If A0 ⊆ A then h[A0] induces a substructure of B.
(b) If B0 ⊆ B then h−1[B0] induces a substructure of A.
(c) If X ⊆ A then h[⟪X⟫A] = ⟪h[X]⟫B.

Proof. (a)We have to show that B0 ∶= h[A0] is closed under all functions
of B. Let f ∈ Σ be n-ary and b0 , . . . , bn−1 ∈ B0. There exist elements
a0 , . . . , an−1 ∈ A0 such that b i = h(a i), for i < n. Since A0 is closed
under f we have f A(ā) ∈ A0, which implies that

f B(b0 , . . . , bn−1) = f B(ha0 , . . . , han−1)= h( f A(a0 , . . . , an−1)) ∈ B0 .

(b) Set A0 ∶= h−1[B0]. By (a) and Corollary 1.11, we know that the
sets C ∶= rng h and B1 ∶= B0 ∩ C induce substructures of B. Note that
we have A0 = h−1[B1]. Let f ∈ Σ be n-ary and a0 , . . . , an−1 ∈ A0. Then
h(a i) ∈ B1 implies f B(h(a0), . . . , h(an−1)) ∈ B1. Since

h( f A(a0 , . . . , an−1)) = f B(ha0 , . . . , han−1) ∈ B1

it follows that f A(ā) ∈ h−1[B1] = A0.
(c) By (a) we know that h[⟪X⟫A] induces a substructure of B con-

taining h[X]. Hence,

⟪h[X]⟫B ⊆ h[⟪X⟫A] .
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Conversely, set Y ∶= ⟪h[X]⟫B. By (b), h−1[Y] induces a substructure
of A with X ⊆ h−1[Y]. Consequently, we have ⟪X⟫A ⊆ h−1[Y], which
implies that

h[⟪X⟫A] ⊆ h[h−1[Y]] = Y = ⟪h[X]⟫B . ◻
Corollary 2.9. Let A and B be Σ-structures. If h ∶ A → B is a homo-
morphism then rng h induces a substructure of B.

Definition 2.10. Let h ∶ A→ B be a homomorphism between Σ-struc-
tures A and B. For a substructure A0 ⊆ A, we denote by h(A0) the
substructure of B induced by h[A0].
3. Categories

Many algebraic properties can be expressed in terms of homomorphisms
between structures. Category theory provides a general framework for
doing so.

Definition 3.1. A category C consists of

◆ a class Cobj of objects,

◆ for each pair of objects a, b ∈ Cobj, a set C(a, b) of morphisms
from a to b, and

◆ for all a, b, $ ∈ Cobj, an operation

○ ∶ C(b, $) × C(a, b) → C(a, $) ,
such that the following conditions are satisfied:

(1) If f ∈ C($, d), g ∈ C(b, $), h ∈ C(a, b) then

f ○ (g ○ h) = ( f ○ g) ○ h .
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(2) For every a ∈ Cobj, there is a morphism ida ∈ C(a, a) such that

ida ○ f = f , for all f ∈ C(b, a) ,
f ○ ida = f , for all f ∈ C(a, b) .

We call ida the identity morphism of a.

If the category is understood we will write f ∶ a → b to indicate
that f ∈ C(a, b). By Cmor we denote the class of all morphisms of C,
irrespective of their end-points. Instead of a ∈ Cobj, we also simply write
a ∈ C.

Example. (a) The category Set consists of all sets where

Set(A, B) ∶= BA

and ○ is the usual composition of functions.
(b) Hom(Σ) is the category of all Σ-structures whereHom(Σ)(A,B) is

the set of homomorphisms A→ B. Similarly, we can form the category
Homs(Σ) of all Σ-structures where themorphisms are strict homomorph-
isms, and the category Emb(Σ) of embeddings.

(c) Grp is the subcategory of Hom( ⋅ , −1 , e) consisting of all groups.
(d) In the category Set∗ of pointed sets the objects are pairs ⟨A, a⟩

where A is a set and a ∈ A. A morphism f ∶ ⟨A, a⟩ → ⟨B, b⟩ is a function
f ∶ A→ B such that f (a) = b.

(e) Similarly, in the category Set2 the objects are pairs ⟨A,A0⟩ of
sets with A0 ⊆ A and a morphism f ∶ ⟨A,A0⟩ → ⟨B, B0⟩ is a function
f ∶ A→ B such that f [A0] ⊆ B0.

(f) We have categories Top and Top2 of topological spaces and pairs of
such spaces where the morphisms are continuous functions.

(g) We can consider every partial order A = ⟨A, ≤⟩ as a category where
the objects are the elements of A and the morphisms are

A(a, b) ∶= ⎧⎪⎪⎨⎪⎪⎩
{⟨a, b⟩} if a ≤ b ,∅ otherwise .
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Almost all statements in category theory involve equations of the form
f ○ g = h ○ k. When there are many of them a graphical presentation
comes handy. Usually, we will use diagrams of the form

a b $

d e

e

f

g

h i

k

We say that such a diagram commutes if, for every pair of paths starting
at the same object and ending at the same one, the equation

fm ○ ⋅ ⋅ ⋅ ○ f0 = gn ○ ⋅ ⋅ ⋅ ○ g0

holds, where f0 , . . . , fm and g0 , . . . , gn are the respective labels along the
two paths. For example, the above diagram commutes if the following
equations hold:

h ○ e = f , i ○ g = k ○ h , i ○ g ○ e = k ○ f .

(The last one is actually redundant.)

Lemma 3.2. Let C be a category. For each object a ∈ Cobj, there is a unique
identity morphism ida ∈ C(a, a).
Proof. If ida and id′a are identity morphisms of a then

ida = ida ○ id′a = id′a . ◻
Although the morphisms of a category need not to be functions we

can generalise many concepts from functions to arbitrary categories. For
instance, we can use the characterisation of Lemma a2.1.10 to generalise
the notion of injectivity and surjectivity.
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Definition 3.3. (a) A morphism f ∶ a→ b is a monomorphism if, for all
morphisms g and h,

f ○ g = f ○ h implies g = h .

And f is an epimorphism if

g ○ f = h ○ f implies g = h .

(b) If f ∶ a→ b and g ∶ b→ a are morphisms with g ○ f = ida, we call
g a left inverse of f and f a right inverse of g. In this situation we also say
that f is a section and g is a retraction. An inverse of f is a morphism g
that is both a left and a right inverse of f . If f ∶ a→ b has an inverse, we
denote it by f −1 ∶ b→ a and we call f an isomorphism between a and b.

Example. In many categories where the morphisms are actual functions,
monomorphisms correspond to injective functions and epimorphisms
correspond to surjective functions. For instance, in Set and in Hom(Σ)
this is the case. But there are also examples where monomorphisms
are not injective or epimorphisms are not surjective. For instance, in
the category of all rings the inclusion homomorphism h ∶ Z→ Q is an
epimorphism since a homomorphism f ∶ Q→ R is uniquely determined
by its restriction f ↾Z. Similarly, in the category of all Hausdorff spaces
with continuous maps as morphisms a morphism f ∶ X → Y is an
epimorphism if, and only if, its image rng f is dense in Y .

Lemma 3.4. (a) Every section is a monomorphism.

(b) Every retraction an epimorphism.

(c) Every epimorphism with a left inverse is an isomorphism.

(d) Every monomorphism with a right inverse is an isomorphism.

(e) If a morphism f has a left inverse g and a right inverse h then f is
an isomorphism and g = h.

Proof. (a) and (b) are left as an exercise.
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(c) Let f ∶ a→ b be an epimorphism with left inverse g ∶ b→ a. Then
g ○ f = ida implies that f ○ g ○ f = f = idb ○ f . As f is an epimorphism,
this implies that f ○ g = idb. Hence, g is an inverse of f .

(d) follows in the same way as (c).
(e) We have g = g ○ idb = g ○ ( f ○ h) = (g ○ f ) ○ h = ida ○ h = h. ◻

Exercise 3.1. Let f ∶ a→ b and g ∶ b→ $ be morphisms. Show that

(a) if f and g are monomorphisms then so is g ○ f ;

(b) if f and g are epimorphisms then so is g ○ f .

Most statements of category theory also hold if every morphism is
reversed. To avoid duplicating proofs we introduce the notion of the
opposite of a category.

Definition 3.5. Let C be a category. The opposite of C is the category Cop

with the same objects as C. For each morphism f ∶ a→ b of C there exists
the morphism f op ∶ b→ a in Cop. The composition of such morphisms
is defined by

gop ○ f op ∶= ( f ○ g)op .

Definition 3.6. An object a ∈ C is initial if, for every b ∈ C, there exists
a unique morphism a → b. Similarly, we call a terminal if there exist
unique morphisms b→ a, for all b ∈ C.

Example. (a) Set contains one initial object ∅, while every singleton{x} is terminal.
(b) The trivial group {e} is both initial and terminal in Grp.

The importance of initial and terminal objects stems from the fact
that, up to isomorphism, they are unique.

Lemma 3.7. Let C be a category. All initial objects of C are isomorphic
and all terminal objects are isomorphic.
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Proof. Note that a terminal object in C is an initial object in Cop. There-
fore, it is sufficient to prove the claim for initial objects. Suppose that
a and b are initial objects in C. Then there exist unique morphisms
f ∶ a → b and g ∶ b → a. Let h ∶= g ○ f . Then h ∶ a → a and h is the only
morphism a→ a since a is initial. It follows that h = ida. By a symmetric
argument, it follows that f ○ g = idb. Consequently, g is an inverse of f
and f is an isomorphism. ◻

To compare two categories we need the notion of a ‘homomorphism’
between categories.

Definition 3.8. (a) A (covariant) functor F from a category C to a cat-
egoryD consists of two functions

Fobj ∶ Cobj → Dobj and Fmor ∶ Cmor → Dmor

such that the following conditions are satisfied:
◆ Fmor maps each morphism f ∶ a→ b in C to a morphism

Fmor( f ) ∶ Fobj(a) → Fobj(b) inD .

◆ Fmor(ida) = idFobj(a) , for all a ∈ Cobj.

◆ Fmor(g ○ f ) = Fmor(g) ○ Fmor( f ) , for all f ∶ a→ b and
g ∶ b→ $ in Cmor.

Usually we will omit the superscripts and just write F instead of Fobj and
Fmor.

(b) A functor F ∶ C → D is called faithful if, for every pair a, b ∈ C, the
induced map

F ∶ C(a, b) → D(F(a), F(b))
is injective. Similarly, F ∶ C → D is called full if, for every pair a, b ∈ C,
the induced map

F ∶ C(a, b) → D(F(a), F(b))
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is surjective.
(c) A contravariant functor form C toD is a covariant functor fromCop toD.
(d) The opposite of a functor F ∶ C → D is the functor Fop ∶ Cop → Dop

with

Fop(a) ∶= F(a) , for a ∈ Cobj ,
Fop( f op) ∶= F( f )op , for f ∈ Cmor .

Example. (a) For a signature Σ, the forgetful functor F ∶ Hom(Σ) → Set
maps every structure A to its universe A and every homomorphism
h ∶ A → B to the corresponding function h ∶ A → B between the
universes. This functor is faithful, but in general not full.

(b) Let G ∶ Set → Hom(∅) be the functor mapping a set X to the
structure ⟨X⟩ over the empty signature. This functor is full and faithful.
The forgetful functor F ∶ Hom(∅) → Set is an inverse of G. It follows
that the categories Set and Hom(∅) are isomorphic.

Definition 3.9. Let F ∶ C → D be a functor and let P be a property of
objects or morphisms.

(a) We say that F preserves P if, whenever x is an object or morphism
with property P, then F(x) also has this property.

(b) We say that F reflects P if, whenever x is an object or morphism
such that F(x) has property P, x also has this property.

Lemma 3.10. (a) Every functor preserves sections, retractions, and iso-
morphisms.

(b) Faithful functors reflect monomorphisms and epimorphisms.
(c) Full and faithful functors reflect sections, retractions, and isomorph-

isms.

Proof. Let F ∶ C → D be a functor.
(a) Let f ∶ a→ b and g ∶ b→ a be morphisms of C such that g ○ f = ida.

Then

F(g) ○ F( f ) = F(g ○ f ) = F(ida) = idF(a) .
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Hence, F(g) is a left inverse of F( f ) and F( f ) is a right inverse of F(g).
(b) Suppose that F is faithful and let f ∶ a → b be a morphism such

that F( f ) is a monomorphism. To show that f is also a monomorphism,
consider morphisms g , h ∶ $→ a with f ○ g = f ○ h. Then

F( f ) ○ F(g) = F( f ○ g) = F( f ○ h) = F( f ) ○ F(h) .

Since F( f ) is a monomorphism, it follows that F(g) = F(h). Because
F is faithful, this implies that g = h.

In the same way it follows that F reflects epimorphisms.
(c) Suppose that F is faithful and full and let F( f ) ∶ F(a) → F(b) be

a section with left inverse g ∶ F(b) → F(a). As F is full, there exists a
morphism g0 ∶ b→ a with F(g0) = g. Hence,

F(ida) = idF(a) = F(g0) ○ F( f ) = F(g0 ○ f ).
Since F is faithful, this implies that g0 ○ f = ida. Consequently, f is a
section. The cases where f is a retraction or an isomorphism follow in
the same way. ◻

Let us briefly present some operations on categories.

Definition 3.11. Let C andD be categories.
(a) C is a subcategory ofD if

◆ Cobj ⊆ Dobj and Cmor ⊆ Dmor,

◆ the identity morphisms of C are the identity morphisms ofD,
◆ the composition g ○ h of two morphisms of C gives the same result

in both categories.

A subcategory C ⊆ D is full if

C(a, b) = D(a, b) , for all a, b ∈ Cobj .

The inclusion functor I ∶ C → D from a subcategory C to D maps each
object and morphism of C to itself.
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(b) The product of C andD is the category C ×D where

(C × D)obj ∶= Cobj ×Dobj ,

and (C × D)(⟨a0 , a1⟩, ⟨b0 , b1⟩) ∶= C(a0 , b0) × D(a1 , b1) ,
for objects ⟨a0 , a1⟩, ⟨b0 , b1⟩ ∈ C × D. The composition of morphisms is
defined componentwise:

⟨ f0 , f1⟩ ○ ⟨g0 , g1⟩ ∶= ⟨ f0 ○ g0 , f1 ○ g1⟩ .

With each product C ×D are associated two projection functors

P0 ∶ C × D → C and P1 ∶ C × D → D ,

where Pi maps an object ⟨a0 , a1⟩ to ai and a morphism ⟨ f0 , f1⟩ to f i .
(c) Given an object a ∈ D and a functor F ∶ C → D, we define the

comma category (a ↓ F) whose objects are all pairs ⟨ f , b⟩ consisting
of an object b ∈ C and a morphism f ∶ a → F(b) of D. A morphism
h ∶ ⟨ f , b⟩ → ⟨ f ′ , $⟩ from f ∶ a → F(b) to f ′ ∶ a → F($) is a morphism
h ∶ b→ $ of C such that

f ′ = F(h) ○ f .

F(b)

F($)
a F(h)

f

f ′

Similarly, we can define the comma category (F ↓ a) consisting of all
pairs ⟨b, f ⟩ consisting of an object b ∈ C and a morphism f ∶ F(b) → a
of D, where a morphism h ∶ ⟨b, f ⟩ → ⟨$, f ′⟩ consists of a morphism
h ∈ Cmor such that f = f ′ ○ F(h).

F(b)

F($)
aF(h)

f

f ′
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More generally, given two functors F ∶ I → D and G ∶ J → D, we
define the comma category (F ↓ G) of all triples ⟨a, f , b⟩ where a ∈ I ,
b ∈ J , and f ∶ F(a) → G(b). A morphism φ ∶ ⟨a, f , b⟩ → ⟨a′ , f ′ , b′⟩
from f ∶ F(a) → G(b) to f ′ ∶ F(a′) → G(b′) consists of a pair φ = ⟨g , h⟩
of morphisms g ∶ a→ a′ and h ∶ b→ b′ such that

F(h) ○ f = f ′ ○ F(g) .

F(a) F(b)

F(a′) F(b′)
F(g) F(h)

f

f ′

To simplify notation, we will usually just write f ∶ F(a) → G(b) for an
object ⟨a, f , b⟩.
Example. Consider the identity functor I ∶ Emb(Σ) → Emb(Σ). For
A ∈ Emb(Σ), the comma category (I ↓ A) consists of all embeddings
C → A of a substructure into A.

Remark. The general definition of a comma category (F ↓G) covers the
special cases (a ↓ F) and (F ↓ a) by using the functor G ∶ [1] → D from
the single object category [1] toD which maps the unique object of [1]
to a.

Exercise 3.2. Prove that the product C ×D of two categories is universal
in the sense that, given any category E and two functors F ∶ E → C and
G ∶ E → D, there exists a functor H ∶ E → C × D such that F = P0 ○ H
and G = P1 ○H. (For sets we have proved a corresponding statement in
Lemma a2.2.2).

To compare two functors we define the notion of a ‘homomorphism
between functors’. In particular, we want to define when two functors
are ‘basically the same’.
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Definition 3.12. (a) Let F and G be two functors from C toD. A natural
transformation from F to G is a family η = (ηa)a∈Cobj of morphisms

ηa ∈ D(F(a),G(a)) , for a ∈ Cobj ,

such that, for every morphism f ∶ a→ b of C, the diagram

F(a) F(b)

G(a) G(b)

F( f )

ηa ηb

G( f )
commutes. If each ηa is an isomorphism we call the transformation a
natural isomorphism. In this case we write η ∶ F ≅ G.

(b) A functor F ∶ C → D is an equivalence between the categoriesC and D if there exist a functor G ∶ D → C and natural isomorphisms
η ∶ idD ≅ F ○G and ρ ∶ G ○F ≅ idC , where id denotes the identity functor.
In this case we call C andD equivalent. If C is equivalent toDop, we say
that the categories C andD are dual.

Example. Let V be a finite dimensional K-vector space. The dual V∨
of V consists of all linear maps V → K. V∨ is again a K-vector space
and we have (V∨)∨ ≅ V . For every linear map h ∶ V →W , we obtain a
linear map h∨ ∶W∨ → V∨ by setting h∨(λ) ∶= λ ○ h. Consequently, the
mapping F ∶ V ↦ V∨ forms a contravariant functor from the category
of all finite dimensional K-vector spaces into itself. Furthermore, the
family of isomorphisms πV ∶ (V∨)∨ → V forms a natural isomorphism
between F ○ F and the identity functor. Hence, we can say that ‘up to
isomorphism’ F = F−1.

Lemma 3.13. An equivalence F ∶ C → D preserves and reflects mono-
morphisms, epimorphisms, initial objects, and terminal objects.

Exercise 3.3. Prove the preceding lemma.
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The next theorem provides an alternative characterisation of equi-
valences between categories. It also contains an important relationship
between the two natural isomorphisms η and ρ associated with an equi-
valence.

Theorem 3.14. Let F ∶ C → D be a functor. The following statements are
equivalent:

(1) F is an equivalence.

(2) F is full and faithful, and every object ofD is isomorphic to one in
rng Fobj.

(3) There exist a functor G ∶ D → C and two natural isomorphisms
η ∶ idD ≅ F ○G and ρ ∶ G ○ F ≅ idC satisfying

F(ρa) = η−1
F(a) and G(ηb) = ρ−1

G(b) .

Proof. (3)⇒ (1) is trivial.
(1) ⇒ (2) Suppose that there exist a functor G ∶ D → C and two

natural isomorphisms η ∶ idD ≅ F ○G and ρ ∶ G ○F ≅ idC with the above
properties. For every object b ∈ D, we have the isomorphism

ηb ∶ b ≅ F(G(b)) ∈ rng Fobj .

To show that F is faithful, let f , f ′ ∶ a→ b be morphisms with F( f ) =
F( f ′). Then

f = f ○ ρa ○ ρ−1
a = ρb ○G(F( f )) ○ ρ−1

a= ρb ○G(F( f ′)) ○ ρ−1
a = f ′ ○ ρa ○ ρ−1

a = f ′ .

In the same way, it follows that G is faithful.
It remains to show that F is full. Let f ∶ F(a) → F(b) be a morphism

ofD. Setting

g ∶= ρb ○G( f ) ○ ρ−1
a ,
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we have

ρb ○G( f ) ○ ρ−1
a = g = g ○ ρa ○ ρ−1

a = ρb ○G(F(g)) ○ ρ−1
a .

As ρb and ρa are isomorphisms, this implies that G( f ) = G(F(g)).
We have shown above that G is faithful. Consequently, it follows that
f = F(g) ∈ rng Fmor.

(2) ⇒ (3) By (2), we can choose, for every b ∈ Dobj, some object
G(b) ∈ C and an isomorphism ηb ∶ b ≅ F(G(b)). This defines the object
part of the functor G.

It remains to define the morphism part Gmor. Since F is full and
faithful, it induces bijections

ψa,b ∶= F ↾ C(a, b) ∶ C(a, b) → D(F(a), F(b)) , for a, b ∈ C .

For a morphism f ∶ a→ b ofD, we set

G( f ) ∶= ψ−1
G(a),G(b)(ηb ○ f ○ η−1

a ) .

Since F(g ○ f ) = F(g) ○ F( f ), we have

ψ−1
a,$(g ○ f ) = ψ−1

b,$(g) ○ ψ−1
a,b( f ) ,

for f ∶ F(a) → F(b) and g ∶ F(b) → F($). Consequently,

G(g ○ f ) = ψ−1
G(a),G($)(η$ ○ g ○ f ○ η−1

a )= ψ−1
G(a),G($)(η$ ○ g ○ η−1

b ○ ηb ○ f ○ η−1
a )= ψ−1

G(b),G($)(η$ ○ g ○ η−1
b ) ○ ψ−1

G(a),G(b)(ηb ○ f ○ η−1
a )= G(g) ○G( f ) ,

and G is a functor.
We have choosen each morphism ηa to be an isomorphism. Hence,

to show that η is a natural isomorphism, it is sufficient to prove that

F(G( f )) ○ ηa = ηb ○ f , for all f ∶ a→ b inDmor .
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For a morphism f ∶ a→ b, we have

F(G( f )) ○ ηa = F(ψ−1
G(a),G(b)(ηb ○ f ○ η−1

a )) ○ ηa= ηb ○ f ○ η−1
a ○ ηa= ηb ○ f ,

as desired.
To conclude the proof, we define

ρa ∶= ψ−1
G(F(a)),a(η−1

F(a)) , for a ∈ C .

Then ρ ∶= (ρa)a∈C is a natural transformation since, for f ∶ a→ b in C,
ρb ○G(F( f ))= ψ−1

G(F(b)),b(η−1
F(b)) ○ ψ−1

G(F(a)),G(F(b))(ηF(b) ○ F( f ) ○ η−1
F(a))= ψ−1

G(F(a)),b(η−1
F(b) ○ ηF(b) ○ F( f ) ○ η−1

F(a))= ψ−1
a,b(F( f )) ○ ψ−1

G(F(a)),a(η−1
F(a))= f ○ ρ−1

a .

Furthermore, each component ρa is an ismorphism since F(ρa) = η−1
F(a)

is an isomorphism and the functor F is full and faithful. Finally, note
that

G(ηb) = ψ−1
G(b),G(F(G(b)))(ηF(G(b)) ○ ηb ○ η−1

b )= ψ−1
G(b),G(F(G(b)))(ηF(G(b)))

= (ψ−1
G(F(G(b))),G(b)(η−1

F(G(b))))−1 = ρ−1
G(b) . ◻

4. Congruences and quotients
Sometimes we do not want to distinguish between certain elements of a
structure. In these situations we can use congruences to obtain a more
abstract view of the given structure.
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Definition 4.1. Let A be a Σ-structure.
(a) An equivalence relation ∼ on the universe A is a weak congruence

relation if it satisfies the following properties:
◆ If a ∼ b then there is some sort s such that a, b ∈ As .
◆ If f ∈ Σ is an n-ary function and a0 ∼ b0,. . . , an−1 ∼ bn−1 then

f A(a0 , . . . , an−1) ∼ f A(b0 , . . . , bn−1) .

(b) A (strong) congruence relation is a weak congruence relation ∼
with the additional property that

◆ if R ∈ Σ is an n-ary relation and a0 ∼ b0,. . . , an−1 ∼ bn−1 then

⟨a0 , . . . , an−1⟩ ∈ RA iff ⟨b0 , . . . , bn−1⟩ ∈ RA .

(c) We denote the set of all congruence relations of A by Cong(A),
and we set

Cong(A) ∶= ⟨Cong(A), ⊆⟩ .

Similarly, Congw(A) is the set of all weak congruences and

Congw(A) ∶= ⟨Congw(A), ⊆⟩
is the corresponding partial order.

Example. (a) If A = ⟨A, ≤⟩ is a linear order then Cong(A) = {id} while
Congw(A) contains all equivalence relations over A.

(b) Let V = ⟨V ,+, (λa)a⟩ be a vector space. If ∼ is a congruence of V
then [0]∼ forms a linear subspace of V. Conversely, if U ⊆ V is a linear
subspace then the relation

a ∼ b : iff a − b ∈ U

is a congruence of V with [0]∼ = U . It follows that the map ∼ ↦ [0]∼ is
an isomorphism between Cong(V) and the class of all linear subspaces
of V ordered by inclusion.
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(c) Let Z = ⟨Z,+⟩ and D = ⟨N, ⊑⟩ where

x ⊑ y : iff y ∣ x
is the reverse divisibility order. We claim that Cong(Z) ≅ D. For k ∈ N,
set

x ∼k y : iff x − y = kz for some z ∈ Z .

We show that Cong(Z) = {∼k ∣ k ∈ N}. Since

∼k ⊆ ∼m iff m ∣ k

it then follows that the function ∼k ↦ k is the desired isomorphism.
Clearly, every relation ∼k is a congruence of Z. Conversely, let ≈ be

a congruence of Z. If ≈ ≠ ∼0 then there are numbers x < y with x ≈ y.
Since −x ≈ −x it follows that

0 = x + −x ≈ y + −x > 0 .

Let k be the minimal number such that k > 0 and 0 ≈ k. We claim
that ≈ = ∼k . Since 0 ≈ k we have 0 ≈ kz, for all z ∈ Z. Hence, ∼k ⊆ ≈.
Conversely, if x ≈ y then we have seen that ∣y − x∣ ≈ 0. Suppose that

∣y − x∣ ≡ m (mod k) , for 0 ≤ m < k .

Since 0 ≈ k it follows that m ≈ 0. By choice of k, we have m = 0. Hence,
x ∼k y.

Before turning to quotients let us take a closer look at the structure of
Cong(A).
Lemma 4.2. Cong(A) is an initial segment of Congw(A).
Proof. Let ≈ ∈ Cong(A) and ∼ ∈ Congw(A) with ∼ ⊆ ≈. Let R be an n-
ary relation symbol of A. If a0 ∼ b0 , . . . , an−1 ∼ bn−1 then ∼ ⊆ ≈ implies
a i ≈ b i , for all i. Hence, we have

ā ∈ RA iff b̄ ∈ RA .

Consequently, ∼ ∈ Cong(A). ◻
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Lemma 4.3. Let A be a Σ-structure and X ⊆ Congw(A) nonempty. Set

E− ∶= ⋂X and E+ ∶= TC(⋃X) .

(a) E− and E+ are weak congruence relations on A.
(b) If X ⊆ Cong(A) then we have E− , E+ ∈ Cong(A).

Proof. We have already seen in Corollary a2.4.17 that E− and E+ are
equivalence relations. It remains to prove that they are (weak) congru-
ences.

Suppose that ⟨a i , b i⟩ ∈ E−, for i < n, and fix some F ∈ X. Let f be an
n-ary function. Since ⟨a i , b i⟩ ∈ F it follows that

⟨ f (ā), f (b̄)⟩ ∈ F .

Hence, ⟨ f (ā), f (b̄)⟩ ∈ ⋂X.
For (b), we also have to consider n-ary relations R. Fix a congruence

F ∈ X ⊆ Cong(A). Then ⟨a i , b i⟩ ∈ F implies

⟨a0 , . . . , an−1⟩ ∈ R iff ⟨b0 , . . . , bn−1⟩ ∈ R .

The proof for E+ is slightly more involved. Suppose that ⟨a i , b i⟩ ∈ E+,
for i < n. For every i < n, there is a sequence c i

0 , . . . , c i
l i
, with l i < ω,

such that

c i
0 = a i , c i

l i
= b i , and ⟨c i

j , c
i
j+1⟩ ∈ ⋃X , for all j < l i .

Let f be an n-ary function. For every i < n and all j < l i , we have

⟨ f (b0 , . . . , b i−1 , c i
j , a i+1 , . . . , an−1),

f (b0 , . . . , b i−1 , c i
j+1 , a i+1 , . . . , an−1)⟩ ∈ ⋃X .

This implies that

⟨ f (b0 , . . . , b i−1 , a i , a i+1 , . . . , an−1),
f (b0 , . . . , b i−1 , b i , a i+1 , . . . , an−1)⟩ ∈ TC(⋃X) ,
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and, by induction, it follows that

⟨ f (ā), f (b0 , a1 , a2 , . . . , an−1)⟩ ∈ E+ ,⟨ f (ā), f (b0 , b1 , a2 , . . . , an−1)⟩ ∈ E+ ,
. . .

⟨ f (ā), f (b0 , . . . , bn−2 , an−1)⟩ ∈ E+ ,⟨ f (ā), f (b0 , . . . , bn−2 , bn−1)⟩ ∈ E+ .

Similarly, if R is an n-ary relation then we have, for all i < n and j < l i ,

⟨b0 , . . . , b i−1 , c i
j , a i+1 , . . . , an−1⟩ ∈ R

iff ⟨b0 , . . . , b i−1 , c i
j+1 , a i+1 , . . . , an−1⟩ ∈ R ,

and it follows that

⟨b0 , . . . , b i−1 , a i , a i+1 , . . . , an−1⟩ ∈ R
iff ⟨b0 , . . . , b i−1 , b i , a i+1 , . . . , an−1⟩ ∈ R .

As above we can conclude that ā ∈ R iff b̄ ∈ R . ◻
Theorem 4.4. Let A be a structure. Congw(A) andCong(A) form complete
partial orders where, for every nonempty set X, we have

inf X = ⋂X and sup X = TC(⋃X) .

Proof. We have seen in Corollary a2.4.17 that the partial order of equi-
valence relations on A is complete. Consequently, the claim follows from
Lemma 4.3 and Corollary a2.3.11. ◻

Every weak congruence defines an abstraction operation on structures.

Definition 4.5. Let A be a Σ-structure and ∼ a weak congruence of A.
(a) The quotient A/∼ of A is the Σ-structure where the domain of sort s

is As/∼, for each n-ary relation symbol R ∈ Σ, we have the relation

RA/∼ ∶= { ⟨[a0]∼ , . . . , [an−1]∼⟩ ∣ ⟨a0 , . . . , an−1⟩ ∈ RA } ,
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A A/∼

and, for every n-ary function symbol f ∈ Σ, the function

f A/∼([a0]∼ , . . . , [an−1]∼) ∶= [ f A(a0 , . . . , an−1)]∼ .

We also say that we obtain A/∼ from A by factorisation by ∼.
(b) The function π ∶ A→ A/∼with π(a) ∶= [a]∼ is called the canonical

projection.

Remark. The structure A/∼ is well-defined since, by definition, if we
have a0 ∼ b0,. . . , an−1 ∼ bn−1 then

f A(a0 , . . . , an−1) ∼ f A(b0 , . . . , bn−1) ,
which implies that

[ f A(a0 , . . . , an−1)]∼ = [ f A(b0 , . . . , bn−1)]∼ .

Example. On = ⟨Wo, ≤⟩/≅ and ord ∶ ⟨Wo, ≤⟩ → On is a homomorphism.

There is a strong connection between congruence relations and ho-
momorphisms.

Lemma 4.6. Let A be a Σ-structure, ∼ a weak congruence on A, and
π ∶ A→ A/∼ the canonical projection.

(a) π is a surjective semi-strict homomorphism with ker π = ∼.

(b) If ∼ is a congruence then π is a surjective strict homomorphism.
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Proof. (a) π is surjective since

A/∼ = { [a]∼ ∣ a ∈ A} = { π(a) ∣ a ∈ A} = rng π .

It is a homomorphism since, for all n-ary functions symbols f ∈ Σ, we
have

π f A(a0 , . . . , an−1) = [ f A(a0 , . . . , an−1)]∼
= f A/∼([a0]∼ , . . . , [an−1]∼)
= f A/∼(πa0 , . . . , πan−1) ,

and, for each n-ary relation symbols R ∈ Σ,

⟨a0 , . . . , an−1⟩ ∈ RA ⇒ ⟨[a0]∼ , . . . , [an−1]∼⟩ ∈ RA/∼
⇒ ⟨πa0 , . . . , πan−1⟩ ∈ RA/∼ .

To show that π is semi-strict let ⟨[a0], . . . , [an−1]⟩ ∈ RA/∼. By definition
of A/∼ there are elements b i ∼ a i , i < n, with b̄ ∈ RA. This implies that
π(b̄) = π(ā).

(b) We have already seen in (a) that π is a surjective homomorphism.
It is strict since, for each n-ary relation symbols R ∈ Σ, we have

⟨a0 , . . . , an−1⟩ ∈ RA iff ⟨[a0]∼ , . . . , [an−1]∼⟩ ∈ RA/∼
iff ⟨πa0 , . . . , πan−1⟩ ∈ RA/∼ . ◻

Lemma 4.7. Let h ∶ A→ B be a function.
(a) If h is a homomorphism then ker h is a weak congruence of A.
(b) If h is a strict homomorphism then ker h is a congruence.

Proof. (a) ker h is an equivalence relation since = is reflexive, symmetric,
and transitive. Furthermore, h(a) = h(b) implies that a and b are of the
same sort. Suppose that ⟨a0 , b0⟩,. . . , ⟨an−1 , bn−1⟩ ∈ ker h. If f ∈ Σ is an
n-ary function symbol then

h( f A(ā)) = f B(h(ā)) = f B(h(b̄)) = h( f A(b̄))
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implies that ⟨ f A(ā), f A(b̄)⟩ ∈ ker h.
(b) If R ∈ Σ is an n-ary relation symbol then we have

ā ∈ RA iff h(ā) ∈ RB iff h(b̄) ∈ RB iff b̄ ∈ RA . ◻
Corollary 4.8. Let A be a Σ-structure and ∼ ⊆ A× A a binary relation.

(a) ∼ is a weak congruence relation if and only if there exists a homo-
morphism h ∶ A→ B such that ∼ = ker h.

(b) ∼ is a congruence relation if and only if there exists a strict homo-
morphism h ∶ A→ B such that ∼ = ker h.

(c) Let B be a Σ-structure. There exists a weak congruence ∼ such that
B ≅ A/∼ if and only if B is a homomorphic image of A.

Proof. We prove all three claims simultaneously. The direction (⇐)
follows immediately from Lemma 4.7. For (⇒) we can take B ∶= A/∼
and h ∶ a ↦ [a]∼, by Lemma 4.6. ◻
Definition 4.9. Let h ∶ A → B be a homomorphism and ∼ a weak
congruence on B. We set

h−1(∼) ∶= { ⟨a, b⟩ ∈ A× A ∣ h(a) ∼ h(b) } .

Lemma 4.10. Let h ∶ A→ B be a homomorphism and ∼ a weak congru-
ence on B.

(a) h−1(∼) is a weak congruence on A.
(b) If h is strict and ∼ ∈ Cong(B) then h−1(∼) ∈ Cong(A).

Proof. If π ∶ B→ B/∼ is the canonical projection then we have

h−1(∼) = ker(π ○ h) .

Hence, the claims follow from Lemma 4.7. ◻
Theorem 4.11. (a) There exists a contravariant functor

F ∶ Hom(Σ) → Hom(⊆) ∶ A↦ Congw(A)

182

4. Congruences and quotients

with F( f ) ∶ ∼ ↦ f −1(∼), for homomorphisms f ∶ A→ B.
(b) There exists a contravariant functor

G ∶ Homs(Σ) → Hom(⊆) ∶ A↦ Cong(A)
with G( f ) ∶ ∼ ↦ f −1(∼), for strict homomorphisms f ∶ A→ B.

Proof. (a) If f ∶ A→ B is a homomorphism and ∼ ⊆ ≈ are weak congru-
ences of B then we have

F( f )(∼) = f −1(∼) ⊆ f −1(≈) = F( f )(≈) .

Hence, F( f ) is a homomorphism. Furthermore, we have

F(idA)(∼) = ∼ , for all ∼ ∈ Congw(A) ,
which implies that F(idA) = idCongw(A). Finally, if f ∶ A → B and g ∶
B→ C are homomorphisms then we have

F(g ○ f )(∼) = (g ○ f )−1(∼)= f −1(g−1(∼)) = (F( f ) ○ F(g))(∼) .

(b) is shown in exactly the same way replacing ‘homomorphism’ by
‘strict homomorphism’ and ‘weak congruence’ by ‘congruence’. ◻
Theorem 4.12 (Homomorphism Theorem). For every semi-strict homo-
morphism h ∶ A→ B, there exists a unique isomorphism

φ ∶ A/ker h → h(A)
such that the following diagram commutes.

A B

A/ker h h(A)

h

π h ⊆
ψ

φ
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Proof. Let π ∶ A→ A/ker h be the canonical projection. The existence of
φ ∶ A/ker h → h(A) follows immediately from Corollary 2.7 since both
homomorphisms π and h ∶ A→ h(A) are semi-strict and surjective and
we have ker π = ker h. ◻
Corollary 4.13. Every strict homomorphism h ∶ A→ B can be factorised
as h = φ ○ π where π is a surjective strict homomorphism and φ is an
injective strict homomorphism.

Example. Let h ∶ G → H be a homomorphism between groups. Let
N ∶= ker h be the (normal subgroup corresponding to the) kernel of h.
Then there exists a homomorphism φ ∶ G/N → H such that h = φ ○ π
where π ∶ G→ G/N is the canonical projection.

Corollary 4.14. Let A and B be structures.
(a) There exists a surjective strict homomorphism A→ B if and only if

B ≅ A/∼, for some congruence relation ∼.
(b) There exists a strict homomorphism A→ B if and only if there is a

substructure B0 ⊆ B and a congruence relation ∼ on A such that
B0 ≅ A/∼.

We conclude this section with an investigation of the relationship
between quotients A/∼ and A/≈ of the same structures.
Remark. For weak congruences ∼ ⊆ ≈, we have [a]∼ ⊆ [a]≈. Hence,
every ≈-class is partitioned by ∼ into one or several ∼-classes.

Definition 4.15. For weak congruences ∼ ⊆ ≈ on A we define

≈/∼ ∶= { ⟨[a]∼ , [b]∼⟩ ∈ A/∼ × A/∼ ∣ a ≈ b } .

Remark. If ∼ ⊆ ≈ are weak congruences on A then ∼ is also a weak
congruence of ⟨A, ≈⟩ and we have

⟨A, ≈⟩/∼ = ⟨A/∼, ≈/∼⟩ .

Furthermore, if ∼ is a congruence on A then ∼ is also a congruence of⟨A, ≈⟩.
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A

A/∼

A/≈

π∼

π≈

φ

Lemma 4.16. Let ∼ ⊆ ≈ be weak congruences on A and let π∼ ∶ A→ A/∼
and π≈ ∶ A→ A/≈ be the corresponding canonical projections.
We have ≈/∼ = ker φ where φ ∶ A/∼ → A/≈ is the unique semi-strict

homomorphism with π≈ = φ ○ π∼.

Proof. Since ker π∼ = ∼ ⊆ ≈ = ker π≈ it follows by Lemmas 2.5 and 2.6
that there exists a unique semi-strict homomorphism φ ∶ A/∼ → A/≈
with π≈ = φ ○ π∼. For [a]∼ , [b]∼ ∈ A/∼, we have

φ[a]∼ = φ[b]∼ iff (φ ○ π∼)(a) = (φ ○ π∼)(b)
iff π≈(a) = π≈(b)
iff a ≈ b
iff [a]∼ ≈/∼ [b]∼ . ◻

Corollary 4.17. Let ∼ ⊆ ≈ be weak congruences on A.

(a) ≈/∼ is a weak congruence on A/∼.

(b) If ≈ is a congruence then so is ≈/∼.

Proof. (a) follows immediately from Lemma 4.16. For (b) note that, if≈ is a congruence then π≈ is strict and it follows by Lemma 2.6 that φ is
a strict homomorphism. ◻
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Theorem 4.18. Let ∼ ⊆ ≈ be weak congruences on A. There exists an
isomorphism

(A/∼)/(≈/∼) ≅ A/≈ .

Proof. According to Lemma 4.16 there exists a semi-strict homomorph-
ism φ ∶ A/∼ → A/≈ with ker φ = ≈/∼. By the Homomorphism Theorem,
it follows that there exists an isomorphism

ψ ∶ (A/∼)/(≈/∼) → A/≈ . ◻
Example. Let N ⊆ U ⊆ G be normal subgroups of G. Then N is also a
normal subgroup of U and we have

G/U ≅ (G/N)/(U/N) .

Theorem 4.19. Let A be a structure and ∼ ∈ Cong(A). The function

h ∶ ⇑∼ → Cong(A/∼) with h(≈) ∶= ≈/∼
defines an isomorphism between Cong(A/∼) and the final segment ⇑∼
of Cong(A).
Proof. Let ρ, σ ∈ ⇑∼. It follows immediately from the definition that we
have

ρ/∼ ⊆ σ/∼ iff ρ ⊆ σ .

Therefore, h is a strict homomorphism.
It remains to show that it is bijective. Suppose that ρ ≠ σ . By symmetry,

we may assume that there is some pair ⟨a, b⟩ ∈ ρ ∖ σ . It follows that

⟨[a]∼ , [b]∼⟩ ∈ ρ/∼ = h(ρ) and ⟨[a]∼ , [b]∼⟩ ∉ σ/∼ = h(σ) .

Hence, we have h(ρ) ≠ h(σ) and h is injective. For surjectivity, let
ρ ∈ Cong(A/∼) and define

σ ∶= { ⟨a, b⟩ ∈ A× A ∣ ⟨[a]∼ , [b]∼⟩ ∈ ρ } .

Then we have h(σ) = ρ. ◻
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1. Trees
Recall that, for an ordinal α, we denote by A<α the set of all sequences
f ∶ β → Awith β < α. To simplify notation we will write finite sequences
ā = ⟨a0 , . . . , an⟩ without braces and commas as ā = a0 . . . an . We can
equip A<α with the following operations.

Definition 1.1. Let x , y ∈ A<α .
(a) The length of x is the ordinal ∣x∣ ∶= dom x.
(b) The concatenation x ⋅ y of x and y is the sequence z ∶ ∣x∣ + ∣y∣ → A

with

zβ ∶= ⎧⎪⎪⎨⎪⎪⎩
xβ if β < ∣x∣ ,
yγ if β = ∣x∣ + γ .

Usually, we omit the dot and simply write xy instead of x ⋅ y. For sets
X ,Y ⊆ A<α , we introduce the usual abbreviations

XY ∶= { xy ∣ x ∈ X , y ∈ Y } and xY ∶= { xy ∣ y ∈ Y } .

(c) The prefix order ⪯ on A<α is defined by

x ⪯ y : iff ∣x∣ ≤ ∣y∣ and y ↾ ∣x∣ = x .

If x ⪯ y then x is called a prefix of y.
(d) If we are given a linear order ⊑ on A then we can define the lexico-

graphic order ≤lex on A<α by
x ≤lex y : iff x ⪯ y or there are z ∈ A<α and a ⊏ b ∈ A

such that za ⪯ x and zb ⪯ y .
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⟨⟩
0 1

00 01 10 11

000 001 010 011 100 101 110 111

Figure 1.. ⟨2<4 , ⪯⟩
Example. (a) If x = a0 . . . am−1 and y = b0 . . . bn−1 then

xy = a0 . . . am−1b0 . . . bn−1 .

In particular, x ⪯ xy.
(b) We have x ⋅ ⟨⟩ = x = ⟨⟩ ⋅ x, for all x ∈ A<α .
(c) The prefix order ⟨2<4 , ⪯⟩ is depicted in Figure 1, while the lexico-

graphic ordering ⟨2<4 , ≤lex⟩ is
⟨⟩ <  <  <  <  <  <  < <  <  <  <  <  <  <  .

This order corresponds to a so-called ‘pre-order’ or ‘depth-first’ traversal
of the tree ⟨2<4 , ⪯⟩.
Exercise 1.1. Prove that x ⪯ y iff there exists some z such that y = xz.

Note that, if x , y ∈ A<α then xy ∈ A<α2, but it might be the case that
xy ∉ A<α . Since dom xy = dom x + dom y we can use Lemma a3.4.25 to
obtain a characterisation of all ordinals α such that A<α is closed under
concatenation.

Lemma 1.2. Let α ∈ On. The set A<α is closed under concatenation if and
only if α = 0 or α = ω(η), for some η.
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Remark. It follows that, for every α, the structure ⟨A<ω(α), ⋅ , ⟨⟩⟩ forms a
monoid.

Trees play a prominent role in mathematics and computer science.
Firstly, they have many pleasant algebraic and algorithmic properties,
and secondly, many processes and structures can be modelled as a tree.
For instance, consider an inductive fixed-point iteration that, starting
with some basic elements, combines them in every step to form new
elements. Every element is built up from one or several other elements
that, in turn, consist of even more primitive elements, and so on until a
basic element is reached. To model such hierarchical dependencies we
will frequently use families (av)v∈T indexed by a tree T .

Definition 1.3. (a) A tree is a partial order T = ⟨T , ≤⟩ such that
◆ the set ↓v is well-ordered, for every v ∈ T , and
◆ each pair u, v ∈ T has a greatest lower bound u ⊓ v ∶= inf {u, v}.

(b) The elements of a tree are usually called nodes or vertices. A max-
imal element of a tree is called a leaf, all other elements of T are inner
vertices, and the least element is the root.

(c) A vertex v is a successor of the vertex u if u < v and there is no
vertex w with u < w < v.

(d) A chain C ⊆ T is a path if u, v ∈ C implies that w ∈ C, for all
u ≤ w ≤ v. A maximal path is called a branch.

Remark. (a) Note that every tree is a well-founded partial order.
(b) By convention, we will usually depict trees upside down with the

root at the top.
The partial order ⟨2<4 , ⪯⟩ in Figure 1 is a tree. In fact, the prefix order ⪯

always forms a tree and we will see below that every tree can be obtained
in this way.

Lemma 1.4. ⟨A<α , ⪯⟩ is a tree, for all A and α.

The only thing preventing a tree from being a complete partial order
is the lack of a greatest element.
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Lemma 1.5. Let T = ⟨T , ≤⟩ be a tree. If X ⊆ T is nonempty then there are
elements a, b ∈ X with inf X = a ⊓ b. In particular, X has an infimum.

Proof. Fix some element a ∈ X. The set

Y ∶= { a ⊓ x ∣ x ∈ X }
is a nonempty subset of ⇓a. Hence, it has a least element c ∈ Y . This
element is a lower bound of X since we have

c ≤ a ⊓ x ≤ x , for every x ∈ X .

Fix some element b ∈ X with c = a ⊓ b. If d is another lower bound of X
then d ≤ a and d ≤ b implies d ≤ a ⊓ b = c. Consequently, we have
c = a ⊓ b = inf X. ◻
Definition 1.6. Let T = ⟨T , ≤⟩ be a tree and v ∈ T a vertex.

(a) The subtree of T rooted at v is the substructure Tv ∶= T∣⇑v induced
by ⇑v.

(b) The level of a vertex v is the ordinal

∣v∣ ∶= ord ⟨↓v , ≤⟩ .

The height of T is the least ordinal greater than all levels

sup{ ∣v∣ + 1 ∣ v ∈ T } .

Example. Let T = ⟨A<α , ⪯⟩. The level of v ∈ A<α is the length of v. (That
is the reason why we denote both by ∣v∣.) It follows that the height of T
is α.

Lemma 1.7. For every tree T = ⟨T , ≤⟩ of height α, there exists an initial
segment X ⊆ ∣T ∣<α such that T ≅ ⟨X , ⪯⟩.
Proof. For β ∈ On, define Tβ ∶= { v ∈ T ∣ ∣v∣ < β }. Let α be the minimal
ordinal such that Tα = T and set κ ∶= ∣T ∣. To prove the claim it is
sufficient to define an embedding h ∶ T → κ<α such that X ∶= rng h
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forms an initial segment. By induction on β, we construct an increasing
sequence h1 ⊆ h2 ⊆ . . . of embeddings hβ ∶ Tβ → κ<β . The desired
function h ∶ T → κ<α will be obtained as the limit h ∶= ⋃β<α hβ .

Let v be the root of T . Since v is the only vertex of length 0 we can set

h1 ∶ {v} → {⟨⟩} ∶ v ↦ ⟨⟩ .

For the inductive step, suppose that hγ is already defined for all γ < β.
If β is a limit ordinal then we can set hβ ∶= ⋃γ<β hγ . Therefore, suppose
that β = γ + 1 is a successor. For every vertex v ∈ T of length ∣v∣ < γ,
we set hβ(v) ∶= hγ(v). It remains to consider the case that ∣v∣ = γ. First,
suppose that γ = η + 1 is a successor. For each vertex u ∈ T of length∣u∣ = η, we fix an injective function gu ∶ Su → κ from the set Su of
successors of u into κ. If ∣v∣ = γ then v ∈ Su , for some u, and we can set

hβ(v) ∶= hγ(u) ⋅ ⟨gu(v)⟩ .

Finally, suppose that γ is a limit ordinal. We set hβ(v) ∶= x where x ∶
γ → κ<γ+1 is the sequence with

xη ∶= hγ(u) , for the vertex u ≤ v with ∣u∣ = η . ◻
We conclude this section with an investigation of the connection

between trees and fixed-point inductions. First, we characterise those
trees that contain an infinite path. Then we show that those without can
be generated bottom-up in a recursive way.

Definition 1.8. The branching degree of a tree T is the minimal cardinal κ
such that there exists an embedding of T into κ<α , for some ordinal α.
We say that T is finitely branching if every vertex v ∈ T has only finitely
many successors.

Example. The branching degree of ⟨A<α , ⪯⟩ is ∣A∣.
Remark. (a) Note that there are finitely branching trees of branching
degree ℵ0. For instance, the tree ⟨T , ⪯⟩ with

T ∶= { ā ∈ ℵ<ω
0 ∣ an ≤ n for n < ω } ,
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is finitely branching. Every vertex ā of length ∣ā∣ = n has n+ 1 successors.
(b) The branching degree of a tree T is at most ∣T ∣, by the above lemma.

Lemma 1.9 (Kőnig). Every infinite tree that is finitely branching contains
an infinite branch.

Proof. By induction, we construct an infinite branch v0 < v1 < . . . such
that ⇑vn is infinite, for all n. Let v0 be the root of T. By assumption,⇑v0 = T is infinite. For the inductive step, suppose that we have already
defined the path v0 < ⋅ ⋅ ⋅ < vn such that ⇑vn is infinite. Since vn has only
finitely many successors u0 , . . . , uk and

⇑vn = {vn} ∪ ⇑u0 ∪ ⋅ ⋅ ⋅ ∪ ⇑uk ,

there must be at least one successor u i such that ⇑u i is infinite. We set
vn+1 ∶= u i . ◻

If we compute a set X as the inductive fixed point of some operation
then we can associate with the elements of X a rank that measures at
which stage of the induction the element entered the fixed point.

Definition 1.10. Let f ∶ ℘(A) → ℘(A) be a function that is inductive
over ∅ and let F ∶ On → ℘(A) be the corresponding fixed-point in-
duction. We associate with every element a ∈ A a rank as follows. For
elements a ∈ F(∞), we define the rank of a as the ordinal α such that
a ∈ F(α + 1) ∖ F(α). For a ∉ F(∞), we set the rank of a to ∞.

Example. The power-set operation ℘ ∶ S → S is inductive over ∅. The
corresponding notion of rank coincides with the rank ρ(a) introduced
in Definition a3.2.24.

Let us define a rank for trees.

Definition 1.11. Let T = ⟨T , ≤⟩ be a tree. The foundation rank frk(v)
of a vertex v ∈ T is the rank corresponding to the fixed-point operator
f ∶ ℘(T) → ℘(T) with

f (X) ∶= { v ∈ T ∣ ↑v ⊆ X } .

The rank frk(T) of T is the rank of its root.
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Remark. We have frk(v) = 0 if and only if v is a leaf of T .
In the course of this book we will introduce several ranks. Since it

is cumbersome to define them in terms of fixed-point operations we
will usually give more informal definitions. For a given ordinal α, we
will just specify all elements a such that a ∉ F(α). For instance, for the
foundation rank the definition would have the following format:◆ frk(v) ≥ 0, for all v ∈ T .◆ For successor ordinals, we have frk(v) ≥ α + 1 if and only if there

is some u ≻ v with frk(u) ≥ α.◆ If δ is a limit ordinal then frk(v) ≥ δ iff frk(v) ≥ α, for all α < δ.

Example. (a) The tree
5

2 4

0 1 3

0

1

0 0

1 2

0 1

00

has foundation rank 5.
(b) For every ordinal α, we can construct a tree Tα of foundation

rank α. T0 consists just of a single vertex. If α > 0 then we can construct
Tα by taking the disjoint union of all Tβ , β < α, and adding a new vertex
as the root:

Tα+1

. . .T0 T1 Tα

Lemma 1.12. Let T be a tree and u, v ∈ T. If u < v then we have

frk(u) > frk(v) or frk(u) = frk(v) = ∞ .
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Lemma 1.13. Let T be a tree and v ∈ T.

(a) frk(v) = sup{ frk(u) + 1 ∣ u is a successor of v } .

(b) We have frk(v) = ∞ if and only if ⇑v contains an infinite path.

Proof. (a) Let F be the fixed point induction used to define frk(v). If u is
a successor of v then u ∈ F(frk(u) + 1) ∖ F(frk(u)) and u ∈ ↑v implies
that v ∉ F(frk(u) + 1). Hence, frk(v) ≥ frk(u) + 1. For the converse,
suppose that frk(v) > α, i.e., v ∉ F(α + 1). There exists some vertex
w > v with w ∉ F(α). Let u be the successor of v such that v < u ≤ w. If
u < w then, by definition of F(α+ 1), it follows that u ∉ F(α+ 1) ⊇ F(α).
Otherwise, we have u = w ∉ F(α). Consequently, for every α < frk(v),
there exists some successor u with frk(u) ≥ α.

(b) If frk(v) = ∞ then (a) implies that there is some successor u of v
with frk(u) = ∞. Hence, we can inductively construct an infinite path
v = v0 < v1 < . . . such that frk(vn) = ∞, for all n.
Conversely, if v0 < v1 < . . . is an infinite path then it follows by

induction on α that vn ∉ F(α), for all n. Therefore, we have frk(vn) =∞. ◻
Corollary 1.14. Let T = ⟨T , ≤⟩. We have frk(T) < ∞ if and only if the
partial order Top ∶= ⟨T , ≥⟩ is well-founded.

Lemma 1.15. Let T ⊆ κ<α . If frk(T) < ∞ then frk(T) < κ+.

Proof. Suppose, for a contradiction that κ+ ≤ frk(T) < ∞. By the pre-
ceding corollary, we know that the inverse ordering ≥ is well-founded.
Hence, there exists a maximal vertex v ∈ T such that frk(v) ≥ κ+. Let
S be the set of successors of v. By maximality and Lemma 1.13, it follows
that

κ+ = frk(v) = sup{ frk(u) + 1 ∣ u ∈ S } ,
where frk(u) < κ+. Hence, κ+ is the supremum of a set of ∣S∣ < κ+
ordinals each of which is less then κ+. This contradicts the fact that every
successor cardinal is regular. ◻
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2. Lattices
Lattices are partial orders that, although not necessarily complete, enjoy
a certain weak completeness property. Instead of requiring that every
subset has a supremum and an infimum we only do so for all finite sets.

Definition 2.1. (a) A partial order L = ⟨L, ⊑⟩ is a lower semilattice if
every pair a, b ∈ L has a greatest lower bound inf {a, b}. Analogously
we call L an upper semilattice if every pair a, b ∈ L has a least upper
bound sup{a, b}.

(b) A lattice is a structure L = ⟨L,⊔,⊓, ⊑⟩ where ⊑ is a partial order
and

a ⊓ b = inf {a, b} and a ⊔ b = sup{a, b} , for a, b ∈ L .

A lattice L is bounded if it has a least element � and a greatest element ⊺.

Remark. (a) If ⟨L, ⊑⟩ is both an upper and a lower semilattice then there
exists a unique expansion ⟨L,⊓,⊔, ⊑⟩ to a lattice. Informally wewill there-
fore also call the order ⟨L, ⊑⟩ a lattice. But note that by a homomorphism
between lattices we always mean a homomorphism with respect to the
full signature.

Similarly, we will also call structures of the form ⟨L,⊓, ⊑⟩ with

a ⊓ b = inf {a, b}
a lower semilattice, and structures ⟨L,⊔, ⊑⟩ with

a ⊔ b = sup{a, b}
an upper semilattice.

(b) All complete partial orders and all linear orders are lattices.

Example. (a) The divisibility order ⟨N, ∣ ⟩ is a lattice where m ⊓ n is the
greatest common divisor of m and n and m ⊔ n is their least common
multiple.
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(b) Cong(A) and Sub(A) are lattices.
(c) Let A be a structure and S the family of all finitely generated

substructures of A. Then ⟨S , ⊆⟩ is a lattice.

Exercise 2.1. (a) Let L be a lattice and a, b ∈ L. Prove that the interval[a, b] induces a sublattice.
(b) Prove that every substructure of a lattice is a lattice.

The ordering ⊑ is actually redundant since it can be defined with the
help of ⊓ or ⊔.

Lemma 2.2. Let L = ⟨L,⊓,⊔, ⊑⟩ be a lattice.

(a) For a, b ∈ L, we have

a ⊑ b iff a ⊓ b = a iff a ⊔ b = b .

(b) If b ⊑ c then

a ⊓ b ⊑ a ⊓ c and a ⊔ b ⊑ a ⊔ c .

Proof. (a) is trivial. For (b), we have

a ⊓ b = a ⊓ (b ⊓ c) = (a ⊓ a) ⊓ (b ⊓ c) = (a ⊓ b) ⊓ (a ⊓ c),
by (a). Again by (a), it follows that a ⊓ b ⊑ a ⊓ c. The other inequality is
proved in the same way. ◻
Lemma 2.3. A structure L = ⟨L,⊓, ⊑⟩ is a lower semilattice if and only if,
for all a, b, c ∈ L, we have

a ⊑ b iff a ⊓ b = a ,
a ⊓ a = a , (idempotence)
a ⊓ b = b ⊓ a , (commutativity)

a ⊓ (b ⊓ c) = (a ⊓ b) ⊓ c . (associativity)
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Proof. (⇒) If L is a lower semilattice then the above conditions follow
immediately from the definition of the infimum.(⇐) Suppose that L satisfies the above conditions. First we show that⊑ is a partial order. It is reflexive since a ⊓ a = a implies that a ⊑ a. For
antisymmetry, note that a ⊑ b and b ⊑ a implies that

a = a ⊓ b = b ⊓ a = b .

Finally, for transitivity suppose that a ⊑ b and b ⊑ c. Then we have
a ⊓ b = a and b ⊓ c = b. It follows that

a ⊓ c = (a ⊓ b) ⊓ c = a ⊓ (b ⊓ c) = a ⊓ b = a .

Hence, we have a ⊑ c.
It remains to prove that a ⊓ b = inf {a, b}. We have

(a ⊓ b) ⊓ b = a ⊓ (b ⊓ b) = a ⊓ b ,

which implies that a⊓b ⊑ b. Similarly, we obtain a⊓b ⊑ a. Consequently,
a ⊓ b is a lower bound of {a, b}. Furthermore, if c is some element with
c ⊑ a and c ⊑ b then we have c ⊓ a = c and c ⊓ b = c and it follows that

c ⊓ (a ⊓ b) = (c ⊓ a) ⊓ b = c ⊓ b = c .

Hence, c ⊑ a ⊓ b and a ⊓ b is the greatest lower bound of {a, b}. ◻
As an immediate consequence we obtain the following characterisa-

tion of lattices.

Lemma 2.4. A structure L = ⟨L,⊓,⊔, ⊑⟩ is a lattice if and only if, for all
a, b, c ∈ L, we have

a ⊑ b iff a ⊓ b = a
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and a ⊓ a = a a ⊔ a = a (idempotence)

a ⊓ b = b ⊓ a a ⊔ b = b ⊔ a (commutativity)

a ⊓ (a ⊔ b) = a a ⊔ (a ⊓ b) = a (absorption)

a ⊓ (b ⊓ c) = (a ⊓ b) ⊓ c (associativity)
a ⊔ (b ⊔ c) = (a ⊔ b) ⊔ c

We conclude this section with a look at three important subclasses of
lattices.

Definition 2.5. Let L = ⟨L,⊓,⊔, ⊑⟩ be a lattice.
(a) L is modular if, for all a, b, c ∈ L, we have that

a ⊑ b implies a ⊔ (b ⊓ c) = b ⊓ (a ⊔ c) .

(b) L is distributive if, for all a, b, c ∈ L, we have

a ⊓ (b ⊔ c) = (a ⊓ b) ⊔ (a ⊓ c)
and a ⊔ (b ⊓ c) = (a ⊔ b) ⊓ (a ⊔ c) .

(c) L is boolean if it is distributive, bounded, and, for every a ∈ L there
is some element a∗ ∈ L such that

a ⊓ a∗ = � and a ⊔ a∗ = ⊺ .

The element a∗ is called the complement of a. If L is a boolean lattice
then we call the structure ⟨L,⊓,⊔, ∗⟩ a boolean algebra.

Example. For every set A, ⟨℘(A),∩,∪, ∗⟩ forms a boolean algebra with
X∗ ∶= A∖ X.

Remark. Note that every sublattice of a power-set lattice ⟨℘(A), ⊆⟩ is
distributive.

Exercise 2.2. Prove that every sublattice of a distributive lattice is dis-
tributive and that every sublattice of a modular lattice is modular.
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b ⊔ c
b a ⊔ c

b ⊓ (a ⊔ c)
c

a ⊔ (b ⊓ c)
a

b ⊓ c
a ⊓ c

Figure 2.. The general situation

To better understand the modularity condition we have shown in
Figure 2 the corresponding situation in an arbitrary lattice. (Some of the
depicted elements might coincide.)

Lemma 2.6. If a ⊑ b then we have

a ⊑ a ⊔ (b ⊓ c) ⊑ b ⊓ (a ⊔ c) ⊑ b .

Proof. The first and the last inequality follow immediately from the
definition of ⊔ and ⊓. For the remaining inequality, note that

a ⊑ b and b ⊓ c ⊑ b implies a ⊔ (b ⊓ c) ⊑ b ,
and a ⊑ a ⊔ c and b ⊓ c ⊑ c ⊑ a ⊔ c implies a ⊔ (b ⊓ c) ⊑ a ⊔ c .◻

In general the distributive laws also hold only in one direction.

Lemma 2.7. In every lattice L, we have

a ⊓ (b ⊔ c) ⊒ (a ⊓ b) ⊔ (a ⊓ c)
and a ⊔ (b ⊓ c) ⊑ (a ⊔ b) ⊓ (a ⊔ c) ,
for all a, b, c ∈ L.

Lemma 2.8. Every distributive lattice is modular.

Proof. a ⊑ b implies a ⊔ b = b. Consequently, we have

a ⊔ (b ⊓ c) = (a ⊔ b) ⊓ (a ⊔ c) = b ⊓ (a ⊔ c) . ◻
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Lemma 2.9. A lattice L is modular if, and only if,

a ⊑ b and a ⊔ c = b ⊔ c implies a ⊔ (b ⊓ c) = b .

Proof. (⇒) If a ⊑ b and a ⊔ c = b ⊔ c, modularity implies that

b = b ⊓ (b ⊔ c) = b ⊓ (a ⊔ c) = a ⊔ (b ⊓ c) .

(⇐) Suppose that a ⊑ b. To show that

a ⊔ (b ⊓ c) = b ⊓ (a ⊔ c)
we consider the element x ∶= b ⊓ (a ⊔ c). Note that a ⊑ x ⊑ a ⊔ c implies
a ⊔ c = x ⊔ c. By assumption, it therefore follows that

a ⊔ (x ⊓ c) = x .

Furthermore, by Lemma 2.6 we have

b ⊓ c ⊑ a ⊔ (b ⊓ c) ⊑ x ⊑ b ,
which implies that x ⊓ c = b ⊓ c. Hence,

a ⊔ (b ⊓ c) = a ⊔ (x ⊓ c) = x . ◻
Distributive and modular lattices can be characterised in terms of

forbidden configurations.

Definition 2.10. Let M5 and N5 be the following lattices:

M5 : N5 :
⊺

a b c

�

⊺
b

a
c

�
Theorem 2.11. Let L be a lattice.

(a) L is modular iff there exists no embedding N5 → L.
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(b) L is distributive iff there exists neither an embedding M5 → L nor
an embedding N5 → L.

Proof. (a) (⇒) Suppose that h ∶ N5 → L is an embedding. Then h(a) ⊑
h(b) but

h(a) ⊔ (h(b) ⊓ h(c)) = h(a) ⊔ h(�) = h(a)≠ h(b) = h(b) ⊓ h(⊺)= h(b) ⊓ (h(a) ⊔ h(c)) .

Hence, L is not modular.(⇐) Suppose that L is not modular. Then there exist elements x , y, z ∈
L, such that x ⊑ y but x ⊔ (y ⊓ z) ≠ y ⊓ (x ⊔ z). Set

a ∶= x ⊔ (y ⊓ z) , d ∶= b ⊔ z ,
b ∶= y ⊓ (x ⊔ z) , e ∶= a ⊓ z .

We claim that the inclusion map {a, b, z, d , e} → L is the desired em-
bedding.

Note that x ⊑ y and x ⊑ x ⊔ z implies

a = x ⊔ (y ⊓ z) ⊑ x ⊔ (y ⊓ (x ⊔ z)) = y ⊓ (x ⊔ z) = b .

Hence, we have e ⊑ a ⊏ b ⊑ d and e ⊑ z ⊑ d. It remains to prove that
a ⋢ z ⋢ b. If a ⊑ z then we have

z = a ⊔ z = (x ⊔ (y ⊓ z)) ⊔ z = x ⊔ ((y ⊓ z) ⊔ z) = x ⊔ z

which implies that

a ⊏ b = y ⊓ (x ⊔ z) = y ⊓ z ⊑ x ⊔ (y ⊓ z) = a .

A contradiction. The assumption that z ⊑ b leads to a similar contradic-
tion.

(b) By (a) it is sufficient to prove that a modular lattice L is distributive
if and only if there is no embedding M5 → L.
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(⇒) Suppose that h ∶ M5 → L is an embedding. Then we have

h(a) ⊔ (h(b) ⊓ h(c)) = h(a) ⊔ h(�) = h(a)≠ h(⊺) = h(⊺) ⊓ h(⊺)= (h(a) ⊔ h(b)) ⊓ (h(a) ⊔ h(c)) .

Hence, L is not distributive.(⇐) Suppose that L is not distributive. Then we can find elements
x , y, z ∈ L such that

x ⊔ (y ⊓ z) ⊏ (x ⊔ y) ⊓ (x ⊔ z) .

Set

d ∶= (x ⊓ y) ⊔ (x ⊓ z) ⊔ (y ⊓ z) , a ∶= (x ⊓ e) ⊔ d ,
e ∶= (x ⊔ y) ⊓ (x ⊔ z) ⊓ (y ⊔ z) , b ∶= (y ⊓ e) ⊔ d ,

c ∶= (z ⊓ e) ⊔ d .

By definition we have d ⊑ a, b, c ⊑ e. We claim that {a, b, c, d , e} induce
a copy of M5. By absorption, we have

x ⊔ d = x ⊔ x ⊔ (y ⊓ z) = x ⊔ (y ⊓ z) .

On the other hand, since L is modular and x ⊑ (x ⊔ y)⊓ (x ⊔ z) we have

x ⊔ e = x ⊔ [(x ⊔ y) ⊓ (x ⊔ z) ⊓ (y ⊔ z)]= [(x ⊔ y) ⊓ (x ⊔ z)] ⊓ [x ⊔ (y ⊔ z)]= (x ⊔ y) ⊓ (x ⊔ z) .

Hence, x ⊔ d ⊏ x ⊔ e which implies that d ⊏ e. It remains to prove that

a ⊓ b = a ⊓ c = b ⊓ c = d ,
and a ⊔ b = a ⊔ c = b ⊔ c = e .
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By symmetry and duality, we only need to show that a⊓ b = d. Applying
the absorption law twice we have

(a ⊓ b) ⊓ d = ((x ⊓ e) ⊔ d) ⊓ ((y ⊓ e) ⊔ d) ⊓ d= ((x ⊓ e) ⊔ d) ⊓ d = d .

Finally, note that the elements a, b, c are distinct since a = b would imply
that d = a ⊓ b = a = a ⊔ b = e. ◻
3. Ideals and filters
The notions of a normal subgroup or an ideal of a ring can be generalised
to lattices.

Definition 3.1. Let L = ⟨L,⊓,⊔, ⊑⟩ be a lattice.
(a) A nonempty initial segment a ⊆ L is an ideal if a, b ∈ a implies

a ⊔ b ∈ a. Similarly, we call a nonempty final segment u ⊆ L a filter if
a, b ∈ u implies a ⊓ b ∈ u.

(b) An ideal or filter is proper if it is a proper subset of L. A proper
ideal or filter a is maximal if there exists no proper ideal or filter b such
that a ⊂ b ⊂ L. Ideals of the form ⇓a, for some a ∈ L, and filters of the
form ⇑a are called principal.

Example. (a) In every bounded lattice we have the trivial ideal {�} and
the trivial filter {⊺}.

(b) Consider ⟨℘(A), ⊆⟩. We can define an ideal a and a filter u by

a ∶= {X ⊆ A ∣ X is finite} ,
u ∶= {X ⊆ A ∣ A∖ X is finite} .

They are proper if and only if A is infinite.
(c) Let K be a field and consider the lattice of all polynomials over K

with leading coefficient 1 ordered by the inverse divisibility relation

p ⊑ q : iff q ∣ p .
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We have � = 0 and ⊺ = 1. p ⊓ q is the least common multiple of p and q
and p ⊔ q is their greatest common divisor. For every subset A ⊆ K, we
obtain the ideal

I(A) ∶= { p ∈ K[x] ∣ p(a) = 0 for all a ∈ A} .

Remark. To every lattice L = ⟨L,⊓,⊔, ⊑⟩ we can associate the opposite
lattice Lop = ⟨L,⊔,⊓, ⊒⟩ where the order is reversed. Obviously, this
functions maps filters of L to ideals of Lop and ideals of L to filters.
Therefore, we will state and prove many results only in one version,
either for filters or for ideals. The other half can be obtained by duality.

Ideal and filters can be characterised in terms of a suitable closure
operator.

Definition 3.2. Let L be a lattice and X ⊆ L. We define

cl↓(X) ∶= { b ∈ L ∣ b ⊑ a0 ⊔ ⋅ ⋅ ⋅ ⊔ an for some a0 , . . . , an ∈ X , n < ω },
cl↑(X) ∶= { b ∈ L ∣ b ⊒ a0 ⊓ ⋅ ⋅ ⋅ ⊓ an for some a0 , . . . , an ∈ X , n < ω }.

Lemma 3.3. Let L be a lattice.
(a) If L is bounded then cl↓ and cl↑ are closure operators on L with finite

character.
(b) A nonempty set X ⊆ L is an ideal if and only if it is cl↓-closed.
(c) A nonempty set X ⊆ L is a filter if and only if it is cl↑-closed.

Corollary 3.4. The set of all ideals of a bounded lattice L forms a complete
partial order. It is closed under arbitrary intersections and under unions
of chains.

Corollary 3.5. Let L be a lattice. If a is a proper ideal and u a proper filter
with a ∩ u = ∅ then the set

I ∶= { b ∣ b a proper ideal with a ⊆ b and b ∩ u = ∅}
contains a maximal element.
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Proof. We show that I is inductively ordered. Then it contains amaximal
element by Zorn’s Lemma. Let C ⊆ I be a chain. Then $ ∶= ⋃C is an
ideal. Since a ∩ u = ∅, for all a ∈ I , we have $ ∩ u = ∅. In particular, $ is
proper. Consequently, $ ∈ I . ◻
Lemma 3.6. Let L be a lattice. The following statements are equivalent:

(1) Every ideal of L is principal.
(2) Every strictly increasing sequence a0 ⊂ a1 ⊂ . . . of ideals of L is

finite.
(3) The inverse subset relation is a well-order on the set of all ideals of L.

Proof. Clearly, (2) is equivalent to (3). Let us prove that (2) implies (1).
Suppose that there exists an ideal a that is not principal. We select a
sequence (an)n<ω of elements of a as follows. Let a0 ∈ a be arbitrary. If
a0 , . . . , an ∈ a have already been chosen then, since a is not principal,
we can find an element an+1 ∈ a ∖ ⇓(a0 ⊔ ⋅ ⋅ ⋅ ⊔ an) ≠ ∅. This way we
obtain an infinite strictly increasing sequence of ideals

⇓a0 ⊂ ⇓(a0 ⊔ a1) ⊂ ⋅ ⋅ ⋅ ⊂ ⇓(a0 ⊔ ⋅ ⋅ ⋅ ⊔ an) ⊂ . . . ,

as desired.
It remains to prove the converse. Suppose that a0 ⊂ a1 ⊂ . . . is an

infinite strictly increasing sequence of ideals. Their union b ∶= ⋃n an is
again an ideal. We claim that b is not principal. Suppose otherwise. Then
b = ⇓b, for some b ∈ b. Since b = ⋃n an there is some index n such that
b ∈ an . It follows that b = ⇓b ⊆ an ⊂ an+1 ⊆ b. Contradiction. ◻

Ideals and filters in lattices play the same role with regard to homo-
morphisms and congruences as normal subgroups in group theory or
ideals in ring theory. The main difference is that, since the lattice oper-
ations are not invertible, there might be several congruences inducing
the same ideal.

Lemma 3.7. Let h ∶ L→ K be a homomorphism between lattices and let
a ⊆ K be an ideal of K. If h−1[a] is nonempty then it is an ideal of L.
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Proof. Suppose that a ∈ h−1[a] and b ⊑ a. Since h is a homomorphism
it follows that h(b) ⊑ h(a) ∈ a. Consequently, we have h(b) ∈ a and
b ∈ h−1[a].

Similarly, if a, b ∈ h−1[a] then h(a), h(b) ∈ a implies that h(a ⊔ b) =
h(a) ⊔ h(b) ∈ a. Hence, we have a ⊔ b ∈ h−1[a]. ◻
Corollary 3.8. Let h ∶ L → K be a surjective homomorphism between
lattices where K is bounded.

(a) h−1(�) is an ideal.
(b) h−1(⊺) is a filter.

Corollary 3.9. Let L be a bounded lattice. If ∼ is a congruence of L then[�]∼ is an ideal and [⊺]∼ is a filter.

There are important cases where we would like to apply lattice theory
but which do not fall under the above definition of a lattice because the
underlying ‘order’ ⊑ fails to be a partial order. A prominent example is
given by rings like ⟨Z, ∣ ⟩ and ⟨R[x], ∣ ⟩where the divisibility relation ∣
is not antisymmetric. In the ring of integers, for instance, we have

1 ∣ −1 and −1 ∣ 1 .

Definition 3.10. A graph ⟨V , E⟩ is a preorder if E is reflexive and transit-
ive.

Example. If R is a ring then the divisibility relation

x ∣ y : iff y = axb , for some a, b ∈ R

forms a preorder on R.

Every preorder has a quotient that is a partial order.

Lemma 3.11. Let P = ⟨P, ⪯⟩ be a preorder and define

x ∼ y : iff x ⪯ y and y ⪯ x .

∼ is a congruence on P and the quotient ⟨P, ⪯⟩/∼ is a partial order.
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Proof. By definition, ∼ is symmetric. And since ⪯ is a preorder it follows
that ∼ is reflexive and transitive. Therefore, ∼ is an equivalence relation.
Suppose that x ∼ x′ and y ∼ y′. If x ⪯ y then x′ ⪯ x ⪯ y ⪯ y′ implies
x′ ⪯ y′. Hence, ∼ is a congruence.

It is easy to see that P/∼ is a preorder. It remains to show that it is also
antisymmetric. Let [x]∼ , [y]∼ ∈ P/∼ with [x]∼ ⪯ [y]∼ and [y]∼ ⪯ [x]∼.
Then x ⪯ y and y ⪯ x implies x ∼ y. Hence, [x]∼ = [y]∼. ◻

We can generalise many concepts of lattice theory to preorders.

Definition 3.12. (a) A prelattice is a preorder ⟨L, ⪯⟩ such that the corres-
ponding partial order ⟨L, ⪯⟩/∼ is a lattice.

(b) Let L be a prelattice and π ∶ L→ L/∼ the canonical projection to
the corresponding lattice. An ideal of L is a set of the form π−1[a] where
a is an ideal of L/∼. Similarly, if u is a filter of L/∼ then we call the set
π−1[u] a filter of L. In the same way we can generalise other notions to
prelattices, like proper and principal ideals.

Example. Let ⟨R,+,−, ⋅, 0, 1⟩ be a commutative factorial ring. The divis-
ibility order ⟨R, ∣ ⟩ is a prelattice and a subset I ⊆ R is a ring-theoretic
ideal if, and only if, it is a filter of ⟨R, ∣ ⟩.
4. Prime ideals and ultrafilters

Definition 4.1. A proper ideal a is a prime ideal if

x ⊓ y ∈ a implies x ∈ a or y ∈ a .

Similarly, we call a proper filter u an ultrafilter if

x ⊔ y ∈ u implies x ∈ u or y ∈ u .

In the special case that the lattice in question is the power-set algebra⟨℘(X),∪,∩, ⊆⟩ we call u an ultrafilter on X.
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Example. (a) Let N ∶= ⟨N, ∣ ⟩. A filter u ⊆ N is an ultrafilter if, and only
if, either u = {0} or there exists a prime number p such that

u = { kp ∣ k ∈ N} .

(b) Let F = ⟨F , ⊆⟩ where

F ∶= {X ⊆ ω ∣ X or ω ∖ X is finite} .

Then F is a lattice and we have the following ultrafilters:

un ∶= ⇑{n} , for n < ω ,
u∞ ∶= {X ⊆ ω ∣ ω ∖ X is finite} .

Lemma 4.2. A set X ⊆ L is a prime ideal if, and only if, its complement
L ∖ X is an ultrafilter.

Proof. By duality it is sufficient to prove one direction. Let a ⊆ L be a
prime ideal. We claim that u ∶= L ∖ a is an ultrafilter. Since a is proper
and nonempty so is u. If a ⊑ b then b ∈ a implies a ∈ a. Consequently,
a ∈ u implies b ∈ u and u is a final segment. If a ⊓ b ∈ a then we have
a ∈ a or b ∈ a since a is prime. Thus, a, b ∈ u implies a ⊓ b ∈ u and u is a
filter. Finally, a, b ∈ a implies a ⊔ b ∈ a. Hence, if a ⊔ b ∈ u then we have
a ∈ u or b ∈ u. ◻

Prime ideals can be characterised in terms of homomorphisms.

Definition 4.3. Let B2 denote the lattice with universe [2] and ordering
0 ≤ 1. And B2×2 is the lattice with universe [2] × [2] and ordering

⟨i , k⟩ ≤ ⟨ j, l⟩ : iff i ≤ j and k ≤ l .

Remark. B2 and B2×2 are boolean lattices.

Lemma 4.4. Let h ∶ L→ B2 be a surjective lattice homomorphism.

(a) h−1(0) is a prime ideal.
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(b) h−1(1) is an ultrafilter.

Proof. Let a ∶= h−1(0). We have already seen in Lemma 3.8 that a is an
ideal. To show that it is prime suppose that a⊓b ∈ a. Then h(a)⊓h(b) =
h(a ⊓ b) = 0 implies that h(a) = 0 or h(b) = 0. Hence, a ∈ a or
b ∈ a. ◻
Lemma 4.5. Let L be a lattice, a a prime ideal, and u an ultrafilter with
a ∩ u = ∅.

(a) There exists a homomorphism h ∶ L→ B2 with h−1(0) = a.
(b) There exists a homomorphism h ∶ L→ B2 with h−1(1) = u.
(c) There exists a homomorphism h ∶ L → B2×2 with h−1(⟨0, 0⟩) = a

and h−1(⟨1, 1⟩) = u.

Proof. (a) We claim that the function

h(x) ∶= ⎧⎪⎪⎨⎪⎪⎩
0 if x ∈ a ,
1 if x ∉ a .

is the desired homomorphism. By definition we have a = h−1(0). There-
fore, we only need to check that h is indeed a homomorphism.

If x , y ∉ a then we have x ⊓ y ∉ a since a is prime. It follows that

h(x ⊓ y) = 1 = 1 ⊓ 1 = h(x) ⊓ h(y) .

Otherwise, we may assume, by symmetry, that x ∈ a. Since x ⊓ y ⊑ x we
have x ⊓ y ∈ a and

h(x ⊓ y) = 0 = 0 ⊓ h(y) = h(x) ⊓ h(x) .

The claim that h(x⊔ y) = h(x)⊔h(y) is shown analogously. If x , y ∈ a
then x ⊔ y ∈ a and we have h(x ⊔ y) = 0 = h(x) ⊔ h(y). Otherwise, by
symmetry, we may assume that x ∉ a. Hence, x ⊔ y ∉ a which implies
that h(x ⊔ y) = 1 = h(x) ⊔ h(y).

(b) follows from (a) by duality.
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(c) Let h0 , h1 ∶ L→ B2 be the homomorphisms from (a) and (b) with
h−1
0 (0) = a and h−1

1 (1) = u. We define

h(x) ∶= ⟨h0(x), h1(x)⟩ .

Since a ∩ u = ∅ it follows that h−1(⟨0, 0⟩) = a and h−1(⟨1, 1⟩) = u.
Furthermore, h is a homomorphism since

h(x) ⊔ h(y) = ⟨h0(x), h1(x)⟩ ⊔ ⟨h0(y), h1(y)⟩= ⟨h0(x) ⊔ h0(y), h1(x) ⊔ h1(y)⟩ = h(x ⊔ y) ,
and similarly for ⊓. ◻
Corollary 4.6. Let L be a lattice. A subset X ⊆ L is a prime ideal if and
only if X = h−1(0) for some surjective homomorphism h ∶ L→ B2.

The prime ideals in distributive and boolean lattices are especially
well-behaved. We will show that for these lattices every maximal ideal is
prime and that, for boolean lattices, the converse also holds. Note that
in general there may be non-prime maximal ideals. For instance, the
lattice M5 has three maximal ideals none of which is prime.

Theorem 4.7. Let L be a distributive lattice, a an ideal, and u a filter with
a∩ u = ∅. There exists a maximal ideal b ⊇ a with b∩ u = ∅ and this ideal
is prime.

Proof. The existence of b was already proved in Corollary 3.5. It remains
to show that it is prime. Suppose otherwise. Then there are elements
x , y ∈ L ∖ b with x ⊓ y ∈ b. By maximality of b, it follows that

cl↓(b ∪ {x}) ∩ u ≠ ∅ and cl↓(b ∪ {y}) ∩ u ≠ ∅ .

Therefore, there are elements a, b ∈ b with a ⊔ x ∈ u and b ⊔ y ∈ u.
Consequently,

z ∶= (a ⊔ x) ⊓ (b ⊔ y) ∈ u .
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On the other hand, by distributivity we have

z = (a ⊓ b)´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶∈b
⊔(a ⊓ y)´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶∈b

⊔(x ⊓ b)´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶∈b
⊔(x ⊓ y)´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶∈b

.

Thus, z ∈ b ∩ u ≠ ∅. Contradiction. ◻
Corollary 4.8. Every maximal ideal in a distributive lattice is prime.

As a consequence of Theorem 4.7 we obtain a simple condition for
the existence of ultrafilters containing given elements.

Definition 4.9. A set X ⊆ L has the finite intersection property if

⊓X0 ≠ � , for all finite X0 ⊆ X .

If L has no least element then every subset has the finite intersection
property.

Corollary 4.10. Let L be a bounded distributive lattice and X ⊆ L. There
exists an ultrafilter u ⊇ X if, and only if, X has the finite intersection
property.

Proof. X has the finite intersection property if and only if � ∉ cl↑(X).
By (the dual of) Theorem 4.7, � ∉ cl↑(X) implies that there exists an
ultrafilter u ⊇ cl↑(X). ◻

In boolean lattices the structure of the prime ideals is especially simple.

Theorem 4.11. Let B be a boolean lattice and a ⊆ B an ideal. The following
statements are equivalent:

(1) a is maximal.

(2) a is prime.

(3) For every x ∈ B, we have either x ∈ a or x∗ ∈ a.
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Proof. (1)⇒ (2) was shown in Corollary 4.8.
(2)⇒ (3) We have x ⊓ x∗ = � ∈ a. Since a is a prime ideal it follows

that x ∈ a or x∗ ∈ a. Clearly, we cannot have both since, otherwise,⊺ = x ⊔ x∗ ∈ a and a would not be proper.
(3)⇒ (1) Let b ⊃ a be an ideal. We have to show that b is nonproper.

Fix some x ∈ b∖ a. By assumption, x∗ ∈ a ⊆ b. Hence, ⊺ = x ⊔ x∗ ∈ b and
b = B is nonproper. ◻
Corollary 4.12. A bounded distributive lattice L is boolean if, and only if,
there are no prime ideals a, b with a ⊂ b.

Proof. (⇒) By Theorem 4.11, every prime ideal is maximal.(⇐)We have to show that every element a ∈ L has a complement a∗.
Suppose that some element a has none. The sets

u ∶= { b ∈ L ∣ a ⊔ b = ⊺} ,
v ∶= { b ∈ L ∣ b ⊒ a ⊓ d for some d ∈ u}

are filters. If � ∈ v then � = a⊓ d for some d with a⊔ d = ⊺, and d would
be a complement of a. Consequently, v is proper. By Theorem 4.7 it
follows that there exists a prime ideal a with a ∩ v = ∅. The ideal

b ∶= { b ∈ L ∣ b ⊑ a ⊔ c for some c ∈ a}
is proper since ⊺ = a ⊔ c, for some c ∈ a would imply that c ∈ a ∩ u ≠∅. Choose some prime ideal $ ⊇ b. Since b ⊃ a we have found two
comparable prime ideals a ⊂ $. Contradiction. ◻

Let us compute the number of ultrafilters in a boolean lattice of the
form ⟨℘(A), ⊆⟩.
Theorem 4.13. For every infinite set A there are 22∣A∣ ultrafilters on A.

Proof. Set κ ∶= ∣A∣. As every ultrafilter is a subset of ℘(A), there are at
most ∣℘(℘(A))∣ = 22κ

ultrafilters on A. Thus, we only need to prove a
lower bound.
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We call a family F ⊆ ℘(A) independent if every non-trivial finite
boolean combination of sets in F has cardinality ∣A∣, that is, for all pair-
wise distinct sets X0 , . . . , Xm−1 ,Y0 , . . . ,Yn−1 ∈ F, m, n < ω, we have

∣X0 ∩ ⋅ ⋅ ⋅ ∩ Xm−1 ∩ (A∖ Y0) ∩ ⋅ ⋅ ⋅ ∩ (A∖ Yn−1)∣ = ∣A∣ .
We will prove below that there exists an independent family F ⊆ ℘(A)

of size ∣F∣ = 2κ . Using such a family F we can construct 22κ
ultrafilters as

follows. For each subset K ⊆ F, set

SK ∶= K ∪ {A∖ X ∣ X ∈ F ∖ K } .

Note that SK ⊆ F has the finite intersection property since F is independ-
ent. Therefore, we can use Corollary 4.10 to extend SK to an ultrafilter
uK ⊇ SK .

Since ∣℘(F)∣ = 2∣F∣ = 22κ
, it remains to prove that uK ≠ uL for K ≠ L.

Thus, let K ≠ L. By symmetry, we may assume that there is some set
X ∈ K ∖ L. Then X ∈ SK ⊆ uK and A ∖ X ∈ SL ⊆ uL . Consequently,
uK ≠ uL .

It remains to construct the desired family F ⊆ ℘(A). Let W be the
set of all pairs ⟨B,H⟩ where B ⊆ A is finite and H is a finite set of finite
subsets of A. Then ∣W ∣ = ∣A∣<ℵ0 ⊗ (∣A∣<ℵ0)<ℵ0 = ∣A∣ and there exists
a bijection φ ∶ W → A. It is sufficient to find an independent family
F ⊆ ℘(W) of size 2κ since we can apply φ to F to obtain the desired
subsets of ℘(A). For s ⊆ A, let

Ps ∶= { ⟨B,H⟩ ∈W ∣ B ∩ s ∈ H } .

We claim that

F ∶= { Ps ∣ s ⊆ A}
is the desired independent family.

To show that it has size 2κ , consider distinct subsets s, t ⊆ A. By
symmetry we may assume that s ⊈ t. Fixing some element a ∈ s ∖ t, it
follows that

⟨{a}, {{a}}⟩ ∈ Ps ∖ Pt , which implies that Ps ≠ Pt .

213



b2. Trees and lattices

To show that F is independent, let s0 , . . . , sm−1 , t0 , . . . , tn−1 ⊆ A be
pairwise distinct. For every pair ⟨i , k⟩ ∈ [m] × [n], we fix some element

a i k ∈ (s i ∖ tk) ∪ (tk ∖ s i) .

Let Q be the set of all finite subsets of A that contain all chosen ele-
ments a i k , for i < m, k < n. By choice of a i k we have

B ∩ s i ≠ B ∩ tk , for all B ∈ Q .

Setting HB ∶= {B ∩ s i ∣ i < m } this implies that

⟨B,HB⟩ ∈ Ps i and ⟨B,HB⟩ ∉ Ptk , for all i < m and k < n .

Consequently,

⟨B,HB⟩ ∈ Ps0 ∩ ⋅ ⋅ ⋅ ∩ Psm−1 ∩ (W ∖ Pt0) ∩ ⋅ ⋅ ⋅ ∩ (W ∖ Ptn−1) ,
for all B ∈ Q. This implies that

∣Ps0 ∩ ⋅ ⋅ ⋅ ∩ Psm−1 ∩ (W ∖ Pt0) ∩ ⋅ ⋅ ⋅ ∩ (W ∖ Ptn−1)∣≥ ∣Q∣ = κ = ∣W ∣ . ◻
Exercise 4.1. How many ultrafilters are there on a finite set A?

We conclude this section with a result stating that ultrafilters of a
subalgebra have several extensions to ultrafilters of the whole algebra.

Proposition 4.14. Let A ⊆ B be boolean algebras. If, for every ultrafilter u
of A, there exists a unique ultrafilter v of B with u ⊆ v, then A = B.

Proof. Let A ⊆ B be boolean algebras such that every ultrafilter of A can
be extended to a unique ultrafilter of B. Consider some element b ∈ B.
In order to show that b ∈ A, we prove the following statements.

(1) For every ultrafilter v of B with A∩ ⇑b ⊆ v, the set (v ∩ A) ∪ {b}
has the finite intersection property.
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(2) There is no ultrafilter v of B containing A∩ ⇑b and b∗.

(3) There is some element a ∈ A∩ ⇑b with a ⊑ b.

Note that the proposition follows from (3) since a ∈ ⇑b implies b ⊑ a.
Hence, b = a ∈ A. It remains to prove the claims.

(1) For a contradiction, suppose that there is some ultrafilter v such
that A∩ ⇑b ⊆ v, but (v ∩ A) ∪ {b} does not have the finite intersection
property. Since v∩A is closed under the infimum operation ⊓, it follows
that there is some element a ∈ v ∩ A such that a ⊓ b = �. Hence, b ⊑ a∗,
which implies that a∗ ∈ A∩ ⇑b ⊆ v and � = a ⊓ a∗ ∈ v. A contradiction.

(2) For a contradiction, suppose that there is some ultrafilter v of B
with (A ∩ ⇑b) ∪ {b∗} ⊆ v. By (1) and Corollary 4.10, there is some
ultrafilter v′ containing (v ∩ A) ∪ {b}. By assumption, v′ ∩ A = v ∩ A
implies v′ = v. But b ∈ v′ while b∗ ∈ v. A contradiction.

(3) According to (2) there is no ultrafilter containing (A∩⇑b) ∪ {b∗}.
By Corollary 4.10, it follows that this set does not have the finite inter-
section property. Since A∩ ⇑b is closed under the infimum operation ⊓,
we can therefore find an element a ∈ A ∩ ⇑b such that a ⊓ b∗ = �.
Consequently, a ⊑ b. ◻
5. Atomic lattices and partition rank
In this section we take a closer look at those elements of a lattice that are
near to the bottom. The distance of an element from � can be measured
in different ways. A simple but coarse measure is the height of an element.

Definition 5.1. Let L be a lattice.
(a) The height of an element a ∈ L is

ht(a) ∶= sup{ ∣C∣ ∣ C ⊆ ↓a is a chain} .

Elements of height 1 are called atoms.
(b) L is atomless if it has no atoms. It is atomic if ⇓a contains an atom,

for every element a ≠ �.
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Example. Let V be a vector space and let L be the set of all linear sub-
spaces of V. Note that L consists of all fixed points of the closure operator
mapping a set X ⊆ V to the subspace spanned by X. Hence, L forms a
complete lattice where U ⊓W = U ∩W and U ⊔W = U ⊕W is the
subspace spanned by U ∪W . This lattice is atomic. The height of an
element U ∈ L coincides with its dimension.

The notion of height is mainly meaningful for modular lattices where
it is well-behaved, at least for elements of finite height.

Lemma 5.2. Let L be a modular lattice and a, b ∈ L. The function

φ ∶ [a ⊓ b, b] → [a, a ⊔ b] ∶ x ↦ a ⊔ x

is strictly increasing and surjective. Its inverse is given by the function

φ ∶ [a, a ⊔ b] → [a ⊓ b, b] ∶ x ↦ b ⊓ x .

a ⊔ b

ba

a ⊓ b

a ⊔ x

x

ψ
φ

Proof. Clearly, φ and ψ are increasing and we have rng φ ⊆ ⇑a and
rng ψ ⊆ ⇓b. Furthermore, x ⊑ b ⊑ a⊔b implies that φ(x) = a⊔x ⊑ a⊔b.
Hence, rng φ ⊆ ⇓(a ⊔ b). Similarly, it follows that rng ψ ⊆ ⇑(a ⊓ b).

It remains to show that ψ is the inverse of φ. Note that if L is modular
then so is Lop. It is therefore sufficient to prove that φ ○ ψ = id, the
equation ψ○φ = id then follows by duality. For a ⊑ x ⊑ a⊔b, modularity
implies that

φ(ψ(x)) = a ⊔ (b ⊓ x) = x ⊓ (a ⊔ b) = x ,
as desired. ◻
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a

cn−1 bm−1

dcn−2 bm−2

c1 b1

�

C

Figure 3.. Proof of Lemma 5.3

Lemma 5.3. Let L be a modular lattice and a ∈ L an element of height
n < ℵ0. Every maximal chain in ⇓a has size n + 1.

Proof. We prove by induction on n that, if b0 ⊏ ⋅ ⋅ ⋅ ⊏ bm is a maximal
chain with bm = a, then m = n. Since a has height n, there exists a chain
c0 ⊏ ⋅ ⋅ ⋅ ⊏ cn of size n + 1 with c0 = � and cn = a. If bm−1 = cn−1 then
the claim follows by inductive hypothesis. Suppose that bm−1 ≠ cn−1.
Set d ∶= bm−1 ⊓ cn−1 and let C ⊆ ⇓d be a maximal chain. Then ∣C∣ =
ht(d) + 1 < ht(cn−1) + 1 = n.
By Lemma 5.2, there is no element x with d ⊏ x ⊏ cn−1 because,

otherwise, we would have cn−1 ⊏ cn−1 ⊔ x ⊏ cn in contradiction to the
minimality of n. Consequently, C ∪ {cn−1} is a maximal chain in ⇓cn−1
and, by inductive hypothesis, it follows that ∣C∣ + 1 = n.

Similarly, there is no element x with d ⊏ x ⊏ bm−1. Hence, C∪{bm−1}
is a maximal chain in ⇓bm−1 and we have ∣C∣ + 1 = m. It follows that
m = ∣C∣ + 1 = n, as desired. ◻
Example. For infinite heights the lemma fails. Consider the real interval
I ∶= [0, 1] and its subset K ∶= I ∩Q. We order the product L ∶= I × K
by (a, b) ≤ (c, d) iff a ≤ b and c ≤ d. Then L is a modular lattice with
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maximal chains

C ∶= ({0} × K) ∪ (I × {1}) and C′ ∶= { (x , x) ∣ x ∈ K } .

But ∣C∣ = 2ℵ0 while ∣C′∣ = ℵ0.

Lemma 5.4. Let L be a modular lattice and a ⊑ b elements of finite height.
The size of a maximal chain C ⊆ [a, b] is ht(b) − ht(a) + 1.

Proof. Every chain in C ⊆ [a, b] can be extended to a chain in ⇓b
of size ∣C∣ + ht(a). Therefore, the size of such chains is bounded by
ht(b) − ht(a) + 1. Conversely, fix maximal chains C′ ⊆ [a, b] and
C′′ ⊆ [�, a]. Then C′ ∪C′′ is also maximal. By Lemma 5.3, it follows that∣C′∪C′′∣ = ht(b)+ 1. Since ∣C′′∣ = ht(a)+ 1 and C′∩C′′ = {a} it follows
that ∣C′∣ = ht(b) − ht(a) + 1. ◻
Theorem 5.5. Let L be a modular lattice. If a, b ∈ L are elements with
ht(a ⊔ b) < ℵ0 then

ht(a) + ht(b) = ht(a ⊔ b) + ht(a ⊓ b) .

Proof. Set I0 ∶= [a ⊓ b, a] and I1 ∶= [b, a ⊔ b]. The partial orders J0 ∶=⟨I0 , ⊑⟩ and J1 ∶= ⟨I1 , ⊑⟩ are modular lattices and, by Lemma 5.2, there
exists an isomorphism φ ∶ J0 → J1. By Lemma 5.4, the height of the top
element of J0 is ht(a) − ht(a ⊓ b) + 1 and the height of the top element
of J1 is ht(a ⊔ b) − ht(b) + 1. Since J0 ≅ J1 it follows that

ht(a) − ht(a ⊓ b) + 1 = ht(a ⊔ b) − ht(b) + 1 . ◻
Remark. The above equation is called the modular law. It can be used
to characterise modular lattices. If L is a lattice where every element
has finite height then L is modular if and only if every pair a, b ∈ L of
elements satisfies the modular law.

Example. For the subspace lattice of a vector space, we obtain the well-
known dimension formula:

dim U + dimW = dim(U ∩W) + dim(U ⊕W) .
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For boolean algebras the structure of the elements of finite height is
especially simple.

Lemma 5.6. Let B be a boolean algebra. If b ⊏ c are elements of finite
height then there exists an atom a ∈ ⇓c ∖ ⇓b.

Proof. Let b′ ∶= c ⊓ b∗. Since c has finite height there exists a finite chain
C ⊆ ⇓b′ of maximal size. This chain contains an atom a. Note that a ⊑ b
would imply a ⊑ b⊓b′ = �which is impossible since a is an atom. Hence,
a ∈ ⇓c ∖ ⇓b. ◻
Lemma 5.7. Let B be a boolean algebra and a ∈ B an element of height
n < ℵ0. Then there are exactly n atoms in ⇓a.

Proof. By Lemma 5.6, if c0 ⊏ ⋅ ⋅ ⋅ ⊏ cn is a chain of length n + 1 with
cn = a then there are at least n atoms below cn . Conversely, suppose
that b0 , . . . , bn−1 ∈ ⇓a are atoms. Set c0 ∶= � and c i+1 ∶= c i ⊔ b i . Then
c0 ⊏ ⋅ ⋅ ⋅ ⊏ cn forms a chain of length n+1 in ⇓a. Consequently, the height
of a is at least n. ◻
Corollary 5.8. Let B be a boolean algebra. Every element a ∈ B with
finite height is the supremum of finitely many atoms.

Proof. Let P be the set of all atoms in ⇓a. It is sufficient to show that
a = sup P. Suppose otherwise. Then c ∶= sup P ⊏ a. By Lemma 5.6, there
exists an atom b ∈ ⇓a ∖ ⇓c. By definition of P, it follows that b ∈ P. But
b ⋢ c = sup P. Contradiction. ◻
Example. The previous lemma cannot be generalised to infinite heights.
Let A be an uncountable set and define

F ∶= {X ⊆ A ∣ X or A∖ X is finite} .

Then ⟨F , ⊑⟩ is a boolean algebra and we have

ht(X) = ⎧⎪⎪⎨⎪⎪⎩
∣X∣ if X is finite ,ℵ0 otherwise .
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But every infinite set X ∈ F is uncountable. Hence, there are uncountably
many atoms below X.

Let us introduce a second measure of the distance between an element
and � that allows a finer classification of elements of infinite height.
Basically, instead of considering all chains in ⇓a we only look at strictly
decreasing sequences.

Definition 5.9. Let L be a lattice with least element �.
(a) A partition of an element a ∈ L is a set P ⊆ ⇓a with � ∉ P such that

p ⊓ q = �, for all p, q ∈ P with p ≠ q.
(b) The partition rank of an element a ∈ L is defined as follows:◆ rkP(a) = −1 iff a = � .
◆ rkP(a) ≥ 0 iff a ≠ � .
◆ rkP(a) ≥ α + 1 iff there exists an infinite partition P of a such that

rkP(p) ≥ α, for all p ∈ P.
◆ For limit ordinals δ, we set rkP(a) ≥ δ iff rkP(a) ≥ α, for all α < δ.

Exercise 5.1. Let B be a boolean algebra and a ∈ B an element of height
0 < ht(a) < ℵ0. Show that rkP(a) = 1.

Lemma 5.10. a ⊑ b implies rkP(a) ≤ rkP(b).
Lemma 5.11. If L is a distributive lattice then

rkP(a ⊔ b) = max {rkP(a), rkP(b)} .

Proof. By the preceding lemma, we have rkP(a⊔b) ≥ rkP(a), rkP(b). It
remains to show that rkP(a ⊔ b) ≥ α implies rkP(a) ≥ α or rkP(b) ≥ α.
We proceed by induction on α.

If α = −1 then a ⊔ b = � implies a = � and b = �. For limit ordinals α,
there is nothing to do. Suppose that rkP(a⊔ b) ≥ α + 1. Then there exists
an infinite partition P of a ⊔ b such that rkP(p) ≥ α, for all p ∈ P. For
p ∈ P, set ap ∶= a ⊓ p and bp ∶= b ⊓ p. Then

ap ⊔ bp = (a ⊓ p) ⊔ (b ⊓ p) = (a ⊔ b) ⊓ p = p .
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By inductive hypothesis, we know that

rkP(ap ⊔ bp) = rkP(p) ≥ α
implies that rkP(ap) ≥ α or rkP(bp) ≥ α. Set

Pa ∶= { p ∈ P ∣ rkP(ap) ≥ α }
and Pb ∶= { p ∈ P ∣ rkP(bp) ≥ α } .

Then Pa ∪ Pb = P and at least one of the sets is infinite. By symmetry, let
us assume that Pa is infinite. Then Pa is an infinite partition of a with
rkP(q) ≥ α, for all q ∈ Pa . Consequently, rkP(a) ≥ α + 1. ◻
Lemma 5.12. Let h ∶ A → B be an injective homomorphism between
boolean algebras. Then

rkP(a) ≤ rkP(h(a)) , for all a ∈ A .

Proof. If A ⊆ B then it follows immediately from the definition that
the rank of an element a ∈ A in A is less than or equal to its rank in B.
Therefore, it is sufficient to prove that every injective homomorphism
between boolean algebras is an embedding.

Suppose that h(a) ≤ h(b). Then � = h(a)⊓h(b)∗ = h(a⊓b∗). Since
h is injective it follows that a ⊓ b∗ = �. Hence, a ≤ b. ◻
As usual for ranks defined by inductive fixed points the maximal

non-infinite rank is bounded by the cardinality of the underlying set.

Lemma 5.13. Let L be a lattice. rkP(a) ≥ ∣L∣+ implies that rkP(a) = ∞.

Proof. Let κ ∶= ∣L∣ and set Xα ∶= { a ∈ L ∣ rkP(a) ≥ α }. Then Xα ⊇ Xβ ,
for α ≤ β. Consequently, there is some α < κ+ such that Xα = Xα+1. This
implies that Xα = Xκ+ = X∞. ◻

The next lemma shows that it is possible to split elements of infinite
rank into an arbitrary number of elements whose rank is again infinite.
This will be useful to prove the existence of many different ultrafilters in
Corollary b5.7.4 below.
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Definition 5.14. Let L be a lattice with least element �, and let κ be
a cardinal and α an ordinal. An embedding of the tree κ<α is a family(aw)w∈κ<α of elements aw ∈ L such that

� ⊏ aw ⊏ au for all u ≺ w ,
au ⊓ aw = � for all u,w with u ⪯̸ w and w ⪯̸ u .

(Note that the ordering is reversed.)

Lemma 5.15. Let L be a lattice and a ∈ L. The following statements are
equivalent:

(1) rkP(a) = ∞.

(2) There exists an embedding (bw)w∈2<ω of 2<ω into L with b⟨⟩ = a.

(3) There exists an embedding (bw)w∈ℵ<ω
0

of ℵ<ω
0 into L with b⟨⟩ = a.

Proof. (3) ⇒ (2) is trivial.(1) ⇒ (3) Let κ ∶= ∣L∣+. We construct the family (bw)w by induction
on w such that rkP(bw) = ∞. We start with b⟨⟩ = a. If bw has been
defined then rkP(bw) ≥ κ + 1 implies that there exists an infinite parti-
tion P of bw with rkP(p) ≥ κ, for all p ∈ P. By Lemma 5.13, it follows that
rkP(p) = ∞, for each p ∈ P. Select distinct elements bwk ∈ P, for k < ω.
Then we have bwk ⊓ bwn = � for k ≠ n and rkP(bw i) = ∞, as desired.(2) ⇒ (1) Let (bw)w be an embedding of 2<ω into L with b⟨⟩ = a. By
induction on α, we prove that rkP(bw) ≥ α, for all w. Since bw0 ⊏ bw
we have bw ≠ � and rkP(bw) ≥ 0. For limit ordinals, the claim follows
immediately from the inductive hypothesis. Hence, it remains to consider
the successor step. Suppose that rkP(bw) ≥ α, for all w. The set { bw0n 1 ∣
n < ω } is an infinite partition of bw where each element has rank at
least α. Therefore, rkP(bw) ≥ α + 1. ◻

In contrast to the preceding result, it turns out that we can split ele-
ments of non-infinite rank only a finite number of times into elements
of the same rank.
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Lemma 5.16. Let B be a boolean algebra. For every element a ∈ B with
rkP(a) < ∞, there exists a finite partition P of a such that

a = sup P and rkP(p) = rkP(a) , for all p ∈ P .

Furthermore, if Q is any other partition of a with

rkP(q) = rkP(a) , for all q ∈ Q ,

then ∣Q∣ ≤ ∣P∣.
Proof. Let α ∶= rkP(a). To find P we construct a tree T ⊆ 2<ω and
elements bw ∈ B, for w ∈ T , with rkP(bw) = α as follows. We start with
b⟨⟩ ∶= a. If bw is already defined and there is some element c ∈ B such
that rkP(bw ⊓ c) = α and rkP(bw ⊓ c∗) = α, then we addw0 andw1 to T
and we set bw0 ∶= bw ⊓ c and bw1 ∶= bw ⊓ c∗. Otherwise, w becomes a
leaf of T .
We claim that any such tree T is finite. For a contradiction, suppose

there exists an infinite tree T as above. Since T is binary it contains an
infinite path β ∈ 2ω , by Lemma 1.9. Let wn ∶= β ↾ n be the prefix of β
of length n. For n < ω, set cn ∶= bwn ⊓ b∗wn+1

. Then we have cn ⊑ a and
rkP(cn) = α. Furthermore, bwn ⊑ bwk+1 , for k < n, implies that

ck ⊓ cn = bwk ⊓ b∗wk+1
⊓ bwn ⊓ b∗wn+1

= � .

Consequently, rkP(a) ≥ α. Contradiction.
Let T be a tree as above and let P ⊆ T be the set of its leaves. Set

m ∶= ∣P∣ and let p0 , . . . , pm−1 be an enumeration of P. Then rkP(pn) = α,
pk ⊓ pn = �, for k ≠ n, and a = p0 ⊔ ⋅ ⋅ ⋅ ⊔ pm−1.

Let Q be another partition of a with rkP(q) = α, for q ∈ Q. We claim
that n ≤ m. By construction of P, there exists, for every p ∈ P, at most
one q ∈ Q with rkP(p ⊓ q) = α. Hence, if n > m then we can find some
element q ∈ Q such that rkP(p ⊓ q) < α, for all p ∈ P. But

q = (q ⊓ p0) ⊔ ⋅ ⋅ ⋅ ⊔ (q ⊓ pn−1)
implies, by Lemma 5.11, that rkP(q) < α. Contradiction. ◻
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Definition 5.17. Let B be a boolean algebra.
(a) Let a ∈ B be an element with rkP(a) < ∞. The partition de-

gree degP(a) of a is the maximal cardinality of a partition P of a with
rkP(p) = rkP(a), for all p ∈ P. If rkP(a) = ∞ then we set degP(a) ∶= ∞.

(b) Let u be an ultrafilter of B. The partition rank of u is

rkP(u) ∶= min{ rkP(a) ∣ a ∈ u} ,
and its partition degree is

degP(u) ∶= min{degP(a) ∣ a ∈ u with rkP(a) = rkP(u) } .

We say that an element a ∈ u has minimal rank and degree if

rkP(a) = rkP(u) and degP(a) = degP(u) .

Example. Let A be a set and F ∶= ⟨F , ⊆⟩ where

F ∶= {X ⊆ A ∣ X or A∖ X is finite} .

For X ∈ F, we have

rkP(X) = ⎧⎪⎪⎨⎪⎪⎩
0 if X is finite ,
1 otherwise .

and

degP(X) =
⎧⎪⎪⎨⎪⎪⎩
∣X∣ if X is finite ,
1 otherwise .

For the ultrafilters

ua ∶= ⇑{a} and u∞ ∶= {X ⊆ A ∣ A∖ X is finite} ,
we have

rkP(ua) = 0 degP(ua) = 1 ,
rkP(u∞) = 1 degP(u∞) = 1 .
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Remark. If P is a maximal partition of a with rkP(p) = rkP(a), for
all p ∈ P, then it follows that degP(p) = 1, for every p ∈ P. For a proof,
suppose that p is an element with degP(p) > 1. Then there is a partition Q
of p with ∣Q∣ > 1 and we could enlarge P by replacing p by Q.

Lemma 5.18. Let B be a boolean algebra and 0 < n < ℵ0. An element
a ∈ B has height n if, and only if, rkP(a) = 0 and degP(a) = n.

Proof. If rkP(a) = 0 then ⇓a contains only finitely many atoms since,
otherwise, these would form an infinite partition of a. Hence, a has finite
height.

Conversely, if rkP(a) > 0 then there exists an infinite partition P of a
such that rkP(p) ≥ 0, for all p ∈ P. For every p ∈ P, there is some atom
in ⇓p. Since ⇓p ∩ ⇓q = {�}, for p ≠ q in P, it follows that there are
infinitely many atoms below a. By Lemma 5.7, it follows that ht(a) ≥ ℵ0.
Consequently, we have rkP(a) = 0 if and only if 0 < ht(a) < ℵ0. It

remains to prove that degP(a) = ht(a), for such elements a. We proceed
by induction on n ∶= ht(a). If a is an atom then we have degP(a) = 1
since {a} and ∅ are the only partitions of a. For the inductive step,
suppose that n > 1. Let P be the set of atoms in ⇓a. Then ∣P∣ = n and
a = sup P. Furthermore, by inductive hypothesis,

P = { b ∈ ⇓a ∣ degP(b) = 1} .

Let Q be a partition of a such that ∣Q∣ = degP(a) and rkP(q) = 0, for all
q ∈ Q. By maximality of ∣Q∣ it follows that degP(q) = 1, for q ∈ Q. Hence,
Q ⊆ P, which implies that Q = P and degP(a) = ∣P∣ = n. ◻
Lemma 5.19. If u is an ultrafilter with rkP(u) < ∞ then degP(u) = 1 .

Proof. Let a ∈ u be an element of minimal rank and degree and let P be
a maximal partition of a such that a = sup P and rkP(p) = rkP(a), for
all p ∈ P. Since u is an ultrafilter and P is finite, it follows that sup P ∈ u
implies that p ∈ u, for some p ∈ P. Bymaximality of P we have degP(p) =
1. This implies that degP(u) = 1. ◻
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Lemma 5.20. rkP(a ⊓ c) = rkP(a) = rkP(a ⊓ c∗) < ∞ implies that
degP(a ⊓ c) < degP(a).
Exercise 5.2. Prove the preceding lemma.

Every ultrafilter of non-infinite partition rank can be characterised by
any of its elements of minimal rank and degree.

Proposition 5.21. Let B be a boolean algebra and u, v distinct ultrafilters
of B with rkP(u), rkP(v) < ∞. If a ∈ u and b ∈ v are elements of minimal
rank and degree then a ≠ b.

Proof. Since u ≠ v there is some element c ∈ u∖v. It follows that a⊓ c ∈ u
and

rkP(a ⊓ c) ≤ rkP(a) = rkP(u) .

Since a is of minimal rank we therefore have

rkP(a ⊓ c) = rkP(a) .

Analogously, we can conclude that

rkP(b ⊓ c∗) = rkP(b) .

If a = b then it would follow that

rkP(a ⊓ c) = rkP(a) = rkP(a ⊓ c∗) .

This implies that degP(a ⊓ c) < degP(a) in contradiction to the minim-
ality of a. ◻

In particular, the number of such ultrafilters is bounded by the size of
the boolean algebra.

Corollary 5.22. Let B be a boolean algebra. There are at most ∣B∣ ultrafil-
ters u ⊆ B with rkP(u) < ∞.

Proof. For every ultrafilter u ⊆ B, choose an element au ∈ u of minimal
rank and degree. By Proposition 5.21, it follows that au ≠ av, for u ≠ v.
Consequently, there are at most ∣B∣ such ultrafilters. ◻
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1. Terms and term algebras
We can compose the operations of a structure to build new operations. In
the same way as the signature provides names for the basic operations we
can associate a name with each of these derived operation. A canonical
way of doing so is to name each operation by a description of how it is
build up from the given operations. These canonical names are called
terms.

Definition 1.1. (a) A term domain is an initial segment T ⊆ κ<ω such
that, if α < β < κ then xβ ∈ T implies xα ∈ T . In particular, every term
domain forms a tree.

(b) A term is a function t ∶ T → Λ where T is a term domain and
Λ a set of function symbols. The domain of t is the set dom t ∶= T . If
t(v) = λ then we say that v is labelled by λ.

(c) Let Σ be a signature and X a set of variables. We denote the set of
all function symbols of Σ by Σfun. A Σ-term is a term t ∶ T → Σfun ∪ X
satisfying the following properties:

◆ All inner vertices v ∈ dom t are labelled by elements of Σfun.
◆ If the function symbol t(v) = f ∈ Σfun is of type s0 . . . sn−1 → s′

then v has exactly n successors u0 , . . . , un−1 and, for all i < n,
either t(u i) ∈ Xs i is a variable of type s i or t(u i) = g ∈ Σfun is a
function symbol of type r̄ → s i , for some r̄.

The set of all finite Σ-terms with variables from X is denoted by T[Σ, X].
By Ts[Σ, X] we denote the subset of all terms t ∈ T[Σ, X] whose root is
labelled by a function symbol of type r̄ → s, for some r̄.

logic, algebra & geometry 2024-04-09 — ©achim blumensath 227



b3. Universal constructions

⟨⟩
0 1

00 01 10 11

000 001 010 011 100 101

00000001 0110 0111

+
+ −

⋅ ⋅ ⋅ 8

⋅ x 3 ⋅ 6 x

x x x x

Figure 1.. Domain and labelling of t.

Remark. The difference between a general term and a Σ-term is that the
symbols of the former need not to have an arity. In particular, a Σ-term is
always finitely branching since, by definition, all symbols in a signature
have finite arity.

Example. The polynomial

((x ⋅ x) ⋅ x + 3 ⋅ (x ⋅ x)) + (6 ⋅ x − 8)
corresponds to a Σ-term t ∶ T → Σ where Σ = {⋅ ,+,−, 3, 6, 8}. (Note that
we need to include the coefficients as constant symbols.) The domain T
of t and its labelling are shown in Figure 1.

Definition 1.2. Let t be a term and v ∈ dom t. By tv we denote the term
with domain

dom tv ∶= { x ∣ vx ∈ dom t }
and labelling

tv(x) ∶= t(vx) .

A subterm of t is a term of the form tv , for some v ∈ dom t.

Terms as defined above are cumbersome to write down. Therefore, we
represent terms t ∈ T[Σ, X] by sequences y(t) ∈ (Σ ∪ X)<ω .
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Definition 1.3. We define the function y ∶ T[Σ, X] → (Σ ∪ X)<ω by

y(t) ∶= t(x0)⋯t(xn)
where x0 <lex ⋯ <lex xn is an enumeration of dom t in lexicographic
order.

Remark. Equivalently, we can define y(t) recursively as follows. If the
root ⟨⟩ of t has exactly n successors ⟨0⟩, . . . , ⟨n − 1⟩ then we set

y(t) ∶= t(⟨⟩) ⋅ y(t⟨0⟩) ⋅ ⋯ ⋅ y(t⟨n−1⟩) .

Example. If t is the term
f

g h

x h c

y

then y(t) = fgxhyhc.

The next lemma shows that it is save to identify t and y(t). Below we
will therefore not distinguish between the tree t and the sequence y(t)
encoding it, and we will use whatever formalism is the most convenient
one at the time.

Lemma 1.4. The function y is injective.

Proof. Let s and t be terms and u and v arbitrary sequences. We prove
by induction on ∣y(s)∣ that

y(s)u = y(t)v implies s = t and u = v .

For the special case that u = ⟨⟩ = v it follows that y is injective.
Let f ∶= s(⟨⟩) and g ∶= t(⟨⟩) be the function symbols at the roots of

s and t, respectively. Then y(s) = f x and y(t) = gz, for some sequences
x and z. Since

f xu = y(s)u = y(t)v = gzv
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it follows that f = g. Let n be the arity of f . If n = 0 then x = ⟨⟩ and
z = ⟨⟩ and we have f u = f v which implies u = v. Otherwise, let s i ∶= s⟨i⟩
and t i ∶= t⟨i⟩ be the subterms of s and t rooted at the successors of the
root. By definition, we have

y(s) = f y(s0)⋯y(sn−1) and y(t) = f y(t0)⋯y(tn−1) .

Hence, y(s)u = y(t)v implies

y(s0)⋯y(sn−1)u = y(t0)⋯y(tn−1)v .

Since ∣y(s0)∣ < ∣y(s)∣we can apply the inductive hypothesis and it follows
that

s0 = t0 and y(s1)⋯y(sn−1)u = y(t1)⋯y(tn−1)v .

Applying the inductive hypothesis n− 1 more times we can conclude that

s1 = t1 , . . . , sn−1 = tn−1 and u = v . ◻
We can use the function y to obtain a simple upper bound on the

number of finite Σ-terms.

Lemma 1.5. ∣T[Σ, X]∣ ≤ ∣Σ∣ ⊕ ∣X∣ ⊕ ℵ0.

Proof. Since y ∶ T[Σ, X] → (Σ ∪ X)<ω is injective we have

∣T[Σ, X]∣ ≤ ∣(Σ ∪ X)<ω ∣ = ∣Σ ∪ X∣ ⊕ ℵ0 = ∣Σ∣ ⊕ ∣X∣ ⊕ ℵ0 ,

by Lemma a4.4.31. ◻
Remark. Note that, for finite terms t ∈ T[Σ, X], we can perform proofs
and definitions by induction on ∣dom(t)∣. Usually such proofs proceed
in two steps. First, we show the desired property for all terms consisting
of a single variable. Then we prove, for every n-ary function symbol,
that, if the terms t0 , . . . , tn−1 have the desired property then so does
f t0 . . . tn−1.
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We have introduced terms as names for derived operations, but we
have yet to define which operation a term denotes.

Definition 1.6. Let t ∈ T[Σ, X] be a Σ-term.
(a) The set of free variables of t is

free(t) ∶= rng t ∩ X .

(b) Let A be a Σ-structure, t ∈ T[Σ, X] a Σ-term, and β ∶ X0 → A a
function with domain free(t) ⊆ X0 ⊆ X. The value tA[β] of t in A is
defined inductively by the following rules.

◆ If t = x ∈ X is a variable then tA[β] ∶= β(x).
◆ If t = f t0 . . . tn−1 with f ∈ Σ then

tA[β] ∶= f A(tA
0 [β], . . . , tA

n−1[β]) .

Example. Consider the ring of integers Z = ⟨Z,+, ⋅ ⟩ and let t be the
term

+
⋅ x

y x

If β ∶ X → Z maps x ↦ 3 and y ↦ 5 then tZ[β] = 18.

A trivial induction on the size of a term t shows that its value tA[β]
depends only on those variables that appear in t.

Lemma 1.7 (Coincidence Lemma). Let t ∈ T[Σ, X] be a Σ-term and A a
Σ-structure. If β, γ ∶ X → A are variable assignments with

β ↾ free(t) = γ ↾ free(t)
then tA[β] = tA[γ].
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Remark. We write t(x0 , . . . , xn−1) to indicate that

free(t) ⊆ {x0 , . . . , xn−1} .

For such a term, we set

tA(a0 , . . . , an−1) ∶= tA[β]
where β ∶ X → A is any function with β(x i) = a i . By the Coincidence
Lemma, this is well-defined.

The function symbols of Σ operate in a natural way on Σ-terms. A
function symbol f ∈ Σ of type s0 . . . sn−1 → r maps terms t0 , . . . , tn−1 of
sort s0 , . . . , sn−1, respectively, to the term f t0 . . . tn−1.

Definition 1.8. For an S-sorted signature Σ and a set of variables X, the
term algebra T[Σ, X] is the S-sorted Σ-structure defined as follows.◆ The domain of sort s ∈ S is Ts[Σ, X].◆ For each n-ary function symbol f ∈ Σ, we have the function

f T[Σ ,X] with

f T[Σ ,X](t0 , . . . , tn−1) ∶= f t0 . . . tn−1 .

◆ For each relation symbol R ∈ Σ, we have RT[Σ ,X] ∶= ∅.

Example. If T = T[Σ, X] is a term algebra and β ∶ X → X the identity
function then tT[β] = t, for all t ∈ T[Σ, X].

The term algebra T = T[Σ, X] is also called the free algebra over X
since the only equations sT = tT that hold in T are the trivial ones of the
form t = t. This fact is used in the following lemma which states that
T is a universal object in the category of all Σ-structures.

Theorem 1.9. Let A be a Σ-structure and β ∶ X → Aan arbitrary function.
There exists a unique homomorphism

h ∶ T[Σ, X] → A with h ↾ X = β .

The range of h is the set rng h = ⟪rng β⟫A.
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Proof. We define h(t) ∶= tA[β]. For x ∈ X, it follows that

h(x) = xA[β] = β(x) .

We claim that h is a homomorphism. Since all relations of T[Σ, X] are
empty we only need to verify that h commutes with functions. Let f ∈ Σ
be an n-ary function symbol and t0 , . . . , tn−1 ∈ T[Σ, X]. We have

h( f t0 . . . tn−1) = ( f t0 . . . tn−1)A[β]= f A(tA
0 [β], . . . , tA

n−1[β])= f A(h(t0), . . . , h(tn−1)) ,
as desired.

Suppose that g ∶ T[Σ, X] → A is a homomorphism with g ↾ X = β. By
induction on t ∈ T[Σ, X], we prove that g(t) = h(t). If x ∈ X then, by
assumption, g(x) = β(x) = h(x). For the inductive step, let f ∈ Σ be an
n-ary function symbol and t0 , . . . , tn−1 ∈ T[Σ, X]. We have

g( f t0 . . . tn−1) = f A(g(t0), . . . , g(tn−1))= f A(h(t0), . . . , h(tn−1)) = h( f t0 . . . tn−1) .

Consequently, g = h.
It remains to prove that rng h = ⟪rng β⟫A. By Lemma b1.2.9, rng h in-

duces a substructure of A. Since rng β ⊆ rng h it follows that ⟪rng β⟫A ⊆
rng h.

To show that rng h ⊆ B ∶= ⟪rng β⟫A we prove, by induction on t ∈
T[Σ, X], that h(t) ∈ B. For x ∈ X, we have h(x) = β(x) ∈ rng β ⊆ B. Let
f ∈ Σ be an n-ary function symbol and t0 , . . . , tn−1 ∈ T[Σ, X]. Setting
a i ∶= h(t i), for i < n, it follows that

h( f t0 . . . tn−1) = f A(h(t0), . . . , h(tn−1)) = f A(a0 , . . . , an−1) .

By inductive hypothesis, we know that a0 , . . . , an−1 ∈ B. Since B is closed
under all functions of A we have f A(a0 , . . . , an−1) ∈ B, as desired. ◻
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Remark. We can rephrase the theorem in the following way: For every
S-sorted signature Σ and each Σ-structure A, there exists a bijection

Homs(Σ)(T[Σ, X],A) → SetS(X ,A) ∶ h ↦ h ↾ X ,

where SetS is the category of S-sorted sets. In category theoretical terms
this means that the term-algebra functor

SetS → Homs(Σ) ∶ X ↦ T[Σ, X]
and the forgetful functor

Homs(Σ) → SetS ∶ A↦ A

form an adjunction.

Corollary 1.10. Let A be a Σ-structure and X ⊆ A a subset. We have⟪X⟫A = rng h where h is the unique homomorphism h ∶ T[Σ, X] → A
with h ↾ X = idX .

Corollary 1.11. If A is a Σ-structure and X ⊆ A then

∣⟪X⟫A∣ ≤ ∣T[Σ, X]∣ ≤ ∣X∣ ⊕ ∣Σ∣ ⊕ ℵ0 .

If s and t are terms and x a free variable of s then we can construct
the term s[x/t] by replacing every occurrence of x by the term t.

Definition 1.12. (a) Let Σ be an S-sorted signature and t ∈ T[Σ, X] a
term. If, for all i < n, x i ∈ Xs i is a variable of sort s i and t i ∈ Ts i [Σ, X] a
term of the same sort then we define the substitution

t[x0/t0 , . . . , xn−1/tn−1] ∶= tT[Σ ,X][β]
where β ∶ X → T[Σ, X] is the function with β(x i) ∶= t i , for i < n, and
β(x) ∶= x, for all other variables x ∈ X.

(b) Similarly, if β ∶ A → B is some function and a and b elements,
then we denote by β[a/b] the function A∪ {a} → B ∪ {b} with

β[a/b](x) ∶= ⎧⎪⎪⎨⎪⎪⎩
b if x = a ,
β(x) otherwise .

234

1. Terms and term algebras

The next lemma states the trivial fact that, when computing the value
of a term s[x/t] it does not matter whether we substitute t for x first and
then evaluate the whole term, or whether we compute the value of t first
and then evaluate s with the corresponding value for x. For instance, if
s = x + y and t = y + y then s[x/t] = (y + y) + y and the lemma claims
that s[x/t](1) = (1 + 1) + 1 = 3 coincides with s(2, 1) = 2 + 1 = 3.

Lemma 1.13 (Substitution Lemma). Let s, t ∈ T[Σ, X] be terms, x ∈ X a
variable, A a Σ-structure, and β ∶ X → A function. We have

(s[x/t])A[β] = sA[β′] where β′ ∶= β[x/tA[β]] .

Proof. We prove the claim by induction on the term s. If s = x then

(x[x/t])A[β] = tA[β] = β′(x) = xA[β′] .

If s = y ≠ x then

(y[x/t])A[β] = yA[β] = β(y) = β′(y) = yA[β′] .

Finally, if s = f s0 . . . sn−1 then we have by inductive hypothesis

( f s0 . . . sn−1)[x/t]A[β] = f A(s0[x/t]A[β], . . . , sn−1[x/t]A[β])= f A(sA
0 [β′], . . . , sA

n−1[β′])= ( f s0 . . . sn−1)A[β′] . ◻
The operations T[Σ, X] and T[Σ, X] assigning to a signature Σ and a

set X of variables, respectively, the set of terms and the term algebra can
be seen as functors between suitable categories.

Definition 1.14. (a) Let SigVar be the category consisting of all triples⟨S , Σ, X⟩ where S is a set of sorts, Σ an S-sorted signature, and X an
S-sorted set of variables. The morphisms

⟨χ, φ,ψ⟩ ∶ ⟨S , Σ, X⟩ → ⟨T , Γ ,Y⟩
are triples of functions χ ∶ S → T , φ ∶ Σ → Γ, and ψ ∶ X → Y with the
following properties:
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◆ A relation symbol R ∈ Σ of type s0 . . . sn−1 is mapped to a relation
symbol φ(R) ∈ Γ of type χ(s0) . . . χ(sn−1).◆ A function symbol f ∈ Σ of type s0 . . . sn−1 → t is mapped to a
function symbol φ( f ) ∈ Γ of type χ(s0) . . . χ(sn−1) → χ(t).◆ A variable x ∈ X of type s is mapped to a variable ψ(x) ∈ Y of
type χ(s).

Since the set of sorts S is determined by the signature Σ we will usually
omit it from ⟨S , Σ, X⟩ and just write ⟨Σ, X⟩.

(b) We define two subcategories of SigVar. The category Sig consists
of all triples ⟨S , Σ, X⟩ ∈ SigVarwith X = ∅ and the categoryVar consists
of all ⟨S , Σ, X⟩ ∈ SigVar with Σ = ∅.

(c) A morphism α = ⟨χ, φ,ψ⟩ ∈ SigVar(⟨Σ, X⟩, ⟨Γ ,Y⟩) induces the
map

T[α] ∶ T[Σ, X] → T[Γ ,Y]
which assigns to a term t ∈ Ts[Σ, X] the term T[α](t) ∈ Tχ(s)[Γ ,Y]
with

T[α](t)(x) ∶= ⎧⎪⎪⎨⎪⎪⎩
φ(t(x)) if t(x) ∈ Σ ,
ψ(t(x)) if t(x) ∈ X .

Let Term denote the category with objects T[Σ, X], for all Σ, X, and
morphisms

Term(T[Σ, X], T[Γ ,Y]) ∶= {T[α] ∣ α ∈ SigVar(⟨Σ, X⟩, ⟨Γ ,Y⟩) } .

Example. Let Σ ∶= {○, −1 , e} be the signature of multiplicative groups
and Γ ∶= {+,−, 0} the signature of additive groups. Since there exists an
isomorphism Σ → Γ in Sig these signatures are interchangeable.

Remark. It follows immediately from the definition of Term that the
operation

⟨Σ, X⟩ ↦ T[Σ, X] and α ↦ T[α]
forms a functor T ∶ SigVar→ Term.
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We can also define corresponding categories of structures.

Definition 1.15. (a) Let µ = ⟨χ, φ⟩ ∶ ⟨S , Σ⟩ → ⟨T , Γ⟩ be a morphism
of Sig. The µ-reduct A∣µ of a Γ-structure A is the Σ-structure B where
the domain of sort s ∈ S is Bs ∶= Aχ(s) and the relations and functions
are defined by

ξB ∶= φ(ξ)A , for ξ ∈ Γ .

(b) For a signature Σ, we denote by Str[Σ] the class of all Σ-structures
and by Str[Σ, X] the class of all pairs ⟨A, β⟩ where A is a Σ-structure and
β ∶ X → A a variable assignment.
Every morphism µ = ⟨χ, φ,ψ⟩ ∶ ⟨T , Γ ,Y⟩ → ⟨S , Σ, X⟩ of SigVar

induces a function

Str[µ] ∶ Str[Σ, X] → Str[Γ ,Y] ∶ ⟨A, β⟩ ↦ ⟨A∣µ , β ○ ψ⟩ .

(c) In the category StrVar the objects are the classes Str[Σ, X] and the
morphisms are all mappings Str[Σ, X] → Str[Γ ,Y] induced by a morph-
ism ⟨Γ ,Y⟩ → ⟨Σ, X⟩ of SigVar. As above we define the subcategory Str
where the objects are those classes Str[Σ, X] with X = ∅.

(d) The canonical functor Str ∶ SigVar → StrVar maps a pair ⟨Σ, X⟩
to the class Str[Σ, X] and a morphism ⟨Σ, X⟩ → ⟨Γ ,Y⟩ to the function
Str[Γ ,Y] → Str[Σ, X] it induces. By abuse of notation we denote the
corresponding functor Str ∶ Sig → Str by the same symbol. Note that
Str is contravariant.

Remark. Suppose that Σ ⊆ Γ and let A be a Γ-structure. If µ ∶ Σ → Γ is
inclusion map then A∣µ = A∣Σ is the ordinary Σ-reduct of A.

The next lemma relates the structures A and Str[µ](A). It follows
immediately from the respective definitions.

Lemma 1.16. Let µ ∶ ⟨Σ, X⟩ → ⟨Γ ,Y⟩ be a morphism of SigVar. For all
interpretations ⟨A, β⟩ ∈ Str[Γ ,Y] and terms t ∈ T[Σ, X], we have

(T[µ](t))A[β] = tB[γ] where ⟨B, γ⟩ = Str[µ](A, β) .
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T[Σ, X] T[Γ ,Y]

B A

T[µ]

Example. Let Σ = {○, −1 , e} and Γ = {+,−, 0} be signatures of groups
and X = {x} and Y = {y} sets of variables. Consider the morphism

µ = ⟨id, φ,ψ⟩ ∶ ⟨Σ, X⟩ → ⟨Γ ,Y⟩
with φ(○) = + , φ(−1) = − , φ(e) = 0 , and ψ(x) = y .

Let Z = ⟨Z,+,−, 0⟩ be the additive group of the integers and β ∶ y ↦ 3 a
variable assignment. Then Str[µ]⟨Z, β⟩ = ⟨Z′ , γ⟩ where Z′ = ⟨Z, ○, −1 , e⟩
and γ ∶ x ↦ 3. For the term t(x) = x ○ e ○ x−1 the lemma states that

tZ′[γ] = (x ○ e ○ x−1)Z′[γ] = 3 + 0 − 3 = 0
equals

(T[µ](t))Z[β] = (y + 0 + (−y))Z[β] = 3 + 0 − 3 = 0 .

2. Direct and reduced products
Products are a common construction in algebra since many important
classes, such as groups and rings, are closed under products. In this
section we will introduce products of arbitrary structures and prove
some of their basic properties.

Below we will frequently deal with tuples of sequences of the form

ā = ⟨(a i
0)i∈I , . . . , (a i

n−1)i∈I⟩ ∈ (AI)n .

To simplify notation we define

ā i ∶= ⟨a i
0 , . . . , a i

n−1⟩ ∈ An and āk ∶= (a i
k)i∈I ∈ AI .
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Definition 2.1. Let (Ai)i∈I be a sequence of Σ-structures.
(a) Their direct product is the Σ-structure

B ∶= ∏
i∈I Ai ,

where the domain of sort s is Bs ∶= ∏i∈I Ai
s , for every n-ary relation

R ∈ Σ, we have

RB = { ā ∈ Bn ∣ ā i ∈ RAi
for all i ∈ I } ,

and, for each function f ∈ Σ,

f B(ā) ∶= ( f Ai (ā i))i∈I .

If Ai = A, for all i ∈ I, we usually write AI instead of∏i∈I A.
(b) Recall that the k-th projection is the function

prk ∶ ∏
i∈I Ai → Ak ∶ (a i)i∈I ↦ ak .

Example. (a) Let U = ⟨U ,+, (λa)a∈K⟩ be a K-vector space of dimen-
sion 1. Every K-vector space V = ⟨V ,+, (λa)a⟩ of dimension n < ω is
isomorphic to Un .

(b) Let B2 = ⟨[2],⊔,⊓, 0, 1, ∗ , ≤⟩ be the two-element boolean algebra
and A = ⟨℘(X),∪,∩,∅, X , ∗ , ⊆⟩ the power-set algebra of a set X. Then
A ≅ ∏i∈X B2 = BX

2 .

Analogously to products of sets we can characterise products of struc-
tures as terminal objects in a suitable category.

Lemma 2.2. Let prk ∶ ∏i∈I Ai → Ak be a projection.

(a) prk is a surjective homomorphism.

(b) prk is semi-strict if and only if, for every relation symbol R, the set{ i ∈ I ∣ RAi = ∅} contains k or it equals either ∅ or I.
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Lemma 2.3. Let (Ai)i∈I be a sequence of Σ-structures. For every struc-
ture B and all homomorphisms hk ∶ B→ Ak , k ∈ I, there exists a unique
homomorphism φ ∶ B→∏i∈I Ai with hk = prk ○ φ, for all k.

Exercise 2.1. Prove the preceding lemmas.

Exercise 2.2. Prove that the direct product of groups is again a group
and that the direct product of rings is a ring.

Given a class K of structures that is closed under products one can
try to classifyK by isolating a subclassK0 ⊆ K such that every structure
inK can be expressed as product of elements ofK0. The classification
of finitely generated abelian groups is of this kind. IfK is furthermore
closed under substructures thenwe can also try to find a subclassK1 such
that every structure in K is the substructure of a product of elements
ofK1. For instance, everyK-vector space of dimension κ is a substructure
of Kκ . This motivates an investigation of substructures of products.

Definition 2.4. Let (Ai)i∈I be a sequence of Σ-structures.
(a) A Σ-structure B is a subdirect product of (Ai)i if there exists an

embedding g ∶ B→∏i∈I Ai such that prk○g is surjective and semi-strict,
for all k ∈ I.

(b) A structure B is subdirectly irreducible if, for every sequence (Ai)i
of which B is a subdirect product, there exists an index k with B ≅ Ak .

Lemma 2.5. Let B be a subdirect product of (Ai)i∈I and g ∶ B→∏i Ai

the corresponding embedding. If s, t ∈ T[Σ, X] are terms, β ∶ X → B a
variable assignment, and β i ∶= pri ○ g ○ β then we have

sB[β] = tB[β] iff sAi [β i] = tAi [β i] , for all i ∈ I .

Proof. The lemma follows immediately if we can show that

g(tB[β]) = (tAi [β i])i .

We proceed by induction on the size of t. For t = x ∈ X, we have

g(xB[β]) = g(β(x)) = (β i(x))i .
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If t = f s0 . . . sn−1 then

g(( f s0 . . . sn−1)B[β]) = g( f B(sB
0 [β], . . . , sB

n−1[β]))
= f∏i Ai(g(sB

0 [β]), . . . , g(sB
n−1[β]))

= f∏i Ai((sAi

0 [β i])i , . . . , (sAi

n−1[β i])i)
= ( f Ai (sAi

0 [β i], . . . , sAi

n−1[β i]))i= (( f s0 . . . sn−1)Ai [β i])i . ◻
An important special case of a subdirect product are reduced products

which are obtained from a product by factorising over a filter. To define
what we mean by ‘factorising over a filter’ we need some preliminaries.

Definition 2.6. Let (Ai)i∈I be a sequence of Σ-structures and u ⊆ ℘(I)
a filter. Let S be the set of sorts of Σ and set

B ∶= ⋃
s∈S
w∈u

Bw
s where Bw

s ∶= ∏
i∈w A

i
s .

For ā, b̄ ∈ Bw0
s0 × ⋅ ⋅ ⋅ × Bwn−1

sn−1 , we define

⟦ā i = b̄ i⟧i ∶= { i ∈ w0 ∩ ⋅ ⋅ ⋅ ∩wn−1 ∣ ā i = b̄ i } ,
⟦ā i ∈ R⟧i ∶= { i ∈ w0 ∩ ⋅ ⋅ ⋅ ∩wn−1 ∣ ā i ∈ RAi } ,

and ā ∼u b̄ : iff ⟦ā i = b̄ i⟧i ∈ u .

We denote the ∼u-class of a tuple ā ∈ B by [ā]u.

Lemma 2.7. Let (Ai)i∈I be a sequence of Σ-structures and u ⊆ ℘(I) a
filter.

(a) ∼u is an equivalence relation.

(b) ā ∼u b̄ implies ⟦ā i ∈ R⟧i ∈ u iff ⟦b̄ i ∈ R⟧i ∈ u .

(c) ā ∼u b̄ implies f B(ā) ∼u f B(b̄) .
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Proof. (a) We have (a i)i∈I ∼u (a i)i∈I since I ∈ u. Furthermore, since = is
symmetric it follows that so is ∼u. Finally, suppose that

(a i)i∈I ∼u (b i)i∈I and (b i)i∈I ∼u (c i)i∈I .

Since ⟦(a i)i = (c i)i⟧i ⊇ ⟦(a i)i = (b i)i⟧i ∩ ⟦(b i)i = (c i)i⟧i ∈ u

it follows that (a i)i∈I ∼u (c i)i∈I .
(b) We have ⟦ā i = b̄ i⟧i ∈ u and, by symmetry, we may assume that⟦ā i ∈ R⟧i ∈ u. Hence, ⟦b̄ i ∈ R⟧i ⊇ ⟦ā i ∈ R⟧i ∩ ⟦ā i = b̄ i⟧i ∈ u and it

follows that ⟦b̄ i ∈ R⟧i ∈ u.
(c) follows immediately from ⟦ f (ā i) = f (b̄ i)⟧i ⊇ ⟦ā i = b̄ i⟧i ∈ u. ◻

Definition 2.8. Let u be a filter over I and J ⊆ I. The restriction of u to J
is the set

u∣J ∶= { s ∩ J ∣ s ∈ u} .

Lemma 2.9. Let u be a filter over I and S ∈ u.
(a) u∣S is a filter over S.
(b) If u is an ultrafilter then so is u∣S .

Definition 2.10. Let (Ai)i∈I be a sequence of Σ-structures and u ⊆ ℘(I)
a filter.

(a) The reduced product of (Ai)i∈I over u is the structure

B ∶= ∏
i∈I Ai/u

defined as follows. For each sort s, let

Is ∶= { i ∈ I ∣ Ai
s ≠ ∅} .

The domain of sort s is

Bs ∶= ⎧⎪⎪⎨⎪⎪⎩
(∏i∈Is

Ai
s)/∼u∣Is

if Is ∈ u ,∅ otherwise .
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For every n-ary relation R ∈ Σ, we have

RB ∶= { [ā]u ∈ Bn ∣ ⟦ā i ∈ R⟧i ∈ u} ,
and, for each function f ∈ Σ,

f B([ā]u) ∶= [(b i)i]u where b i ∶= f Ai (ā i) .

(b) If u is an ultrafilter then∏i∈I Ai/u is also called an ultraproduct.
In the special case that Ai = A, for all i, we call∏i∈I A/u the ultrapower
of A over u and we simply write Au.

Remark. Note that∏i∈I Ai/u is well-defined by Lemma 2.7.

Lemma 2.11. Let B = ∏i∈I Ai/u. If s, t ∈ T[Σ, X] are terms, β ∶ X → B a
variable assignment, and β i ∶= pri ○ β then we have

sB[β] = tB[β] iff { i ∈ I ∣ sAi [β i] = tAi [β i] } ∈ u .

Proof. By induction on t one can show that tB[β] = [(tAi [β i])i]u. Con-
sequently, the claim follows by definition of ∼u. ◻
Exercise 2.3. Prove that an ultraproduct of linear orders is again a linear
order and that an ultraproduct of fields is a field.

Lemma 2.12. Let A be a Σ-structure and u a proper filter. There exists an
embedding h ∶ A→ Au.

Proof. Suppose that u is a filter over I. We denote by ā= the constant
sequence (ā i)i with ā i ∶= ā, for all i. We claim that h ∶ a ↦ [a=]u is the
desired embedding.

h is injective since, if a ≠ b then ⟦(a=)i = (b=)i⟧i = ∅ ∉ u, which
implies that h(a) ≠ h(b). If R ∈ Σ is an n-ary relation then we have

⟦(ā=)i ∈ R⟧i = ⎧⎪⎪⎨⎪⎪⎩
I ∈ u if ā ∈ RA ,∅ ∉ u if ā ∉ RA .
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Therefore, we have ā ∈ RA iff h(ā) ∈ RAu

. Finally, if f ∈ Σ is an n-ary
function then we have

f Au(h(ā)) = f Au([ā=]u) = [ f AI(ā=)]
u= [( f A(ā))=]

u
= h( f A(ā)) .

It follows that h is the desired injective strict homomorphism. ◻
Example. Let R = ⟨R,+,−, ⋅ , 0, 1, ≤⟩ be the ordered field of real numbers
and u a non-principal ultrafilter on ω. The ultrapower Ru is again an
ordered field with R ⊆ Ru. Let (a i)i<ω ∈ Rω , be the sequence with
a i = i, and let a ∶= [(a i)i]u be its ∼u-class. It follows that a > x, for
every real number x ∈ R. Hence, Ru contains an infinite number a.
The element a−1 is positive but smaller than every positive real number.
Thus, we have constructed an extension of R containing infinite and
infinitesimal elements.

In the definition of a reduced product we have neglected those factors
with empty domains. This choice is motivated by the following obser-
vation which is an immediate consequence of Lemma ?? below. For
simplicity, we only treat the case that all domains are nonempty.

Lemma 2.13. Let (Ai)i∈I be a family of Σ-structures whose domains are
all nonempty and let u be a filter over I. For every J ∈ u, we have

∏
i∈I Ai/u ≅∏

j∈J A j/u∣J .

Proof. To simplify notation set v ∶= u∣J and define

AI ∶= ∏i∈I Ai , AI/u ∶= ∏i∈I Ai/u ,
and AJ ∶= ∏ j∈J A j , AJ/v ∶= ∏ j∈J A j/v .

For sequences (ā i)i∈I set ā ↾ J ∶= (ā j) j∈J . Let

φ ∶ AI → AI/u ∶ (a i)i ↦ [(a i)i]u
ψ ∶ AJ → AJ/v ∶ (a j) j ↦ [(a j) j]v
π ∶ AI → A j ∶ ā ↦ ā ↾ J
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AI AJ

AI/u AJ/v

π

φ ψ

η

be the canonical homomorphisms. For sequences (a i)i∈I and (b i)i∈I ,
we have

⟨(a i)i , (b i)i⟩ ∈ ker φ iff ⟦a i = b i⟧i ∈ u

iff ⟦a i = b i⟧i ∩ J ∈ v

iff ⟨(a i)i∈I , (b i)i∈I⟩ ∈ ker(ψ ○ π) .

By the Factorisation Lemma, it follows that there exists a unique bijection
η ∶ φ(AI) → (ψ ○ π)(AI) with ψ ○ π = η ○ φ, i.e.,

η([ā]u) = [ā ↾ J]v .

It remains to prove that this function is an isomorphism. (Note that, if
φ and ψ are semi-strict then we can apply Corollary b1.2.7.)

For a function symbol f , we have

η( f AI/u([ā]u)) = η([ f AI(ā)]u)
= [ f AJ(ā ↾ J)]

v= f AJ/v([ā ↾ J]v) = f AJ/v(η([ā]u)) ,
and, for a relation symbol R, we have

[ā]u ∈ RAI/u iff ⟦ā i ∈ R⟧i ∈ u

iff ⟦ā i ∈ R⟧i ∩ J ∈ u

iff η([ā]u) = [ā ↾ J]v ∈ RAJ/v . ◻
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Corollary 2.14. Let (Ai)i∈I be a family of Σ-structures. If u = ⇑J is a
principal filter over I then

∏
i∈I Ai/u ≅∏

j∈J A j .

In particular, if J = { j} then∏i∈I Ai/u ≅ A j .

3. Directed limits and colimits
With each structureAwe can associate the family of its finitely generated
substructures, ordered by inclusion. Conversely, given such a partially
ordered family of structures, we can try to assemble them into a single
structure. This leads to the notion of a directed colimit. Not every family
of structures arises from a superstructure A. Before introducing directed
colimits, we therefore isolate the key property of those families that do.

Definition 3.1. Let κ be a cardinal. We call a partial order J = ⟨I, ≤⟩
κ-directed if every subset X ⊆ I of size ∣X∣ < κ has an upper bound. For
κ = ℵ0, we simply speak of directed sets.

Example. (a) Every ideal is directed.
(b) An infinite cardinal κ is regular if, and only if, the linear order⟨κ, ≤⟩ is κ-directed.
(c) Let A be a set, κ a regular cardinal, and F ∶= {X ⊆ A ∣ ∣X∣ < κ }.

The order ⟨F , ⊆⟩ is κ-directed.
(d) Let A be a Σ-structure and S the class of all substructures of A

that are generated by a set of size less than κ. If κ is regular, the order(S , ⊆) is κ-directed.

Let us show that, if we partition a directed set into finitely many parts,
at least one of them is again directed.

Definition 3.2. Let ⟨I, ≤⟩ be a directed partial order. A subset D ⊆ I is
dense if ⇑i ∩ D ≠ ∅, for all i ∈ I.

246

3. Directed limits and colimits

Lemma 3.3. Let ⟨I, ≤⟩ be a κ-directed partial order. If D ⊆ I is dense then⟨D, ≤⟩ is κ-directed.

Proof. Let X ⊆ D be a set of size ∣X∣ < κ. Since I is κ-directed, it contains
an upper bound l of X. As D is dense we can find an element m ∈ ⇑l ∩D.
Hence, D contains an upper bound m of X. ◻

If we partition a κ-directed set into less than κ pieces, one of them is
dense and, hence, κ-directed.

Proposition 3.4. Let ⟨I, ≤⟩ be a κ-directed partial order. If (Jα)α<λ is a
family of subsets Jα ⊆ I of size λ < κ such that ⋃α<λ Jα = I, then at least
one set Jα is dense.

Proof. For i ∈ I, set

A i ∶= { α < λ ∣ ⇑i ∩ Jα ≠ ∅} ,
U i ∶= { α < λ ∣ α ∈ A l , for all l ≥ i } .

Clearly, if there is some index α < λ such that α ∈ U i , for every i, then
the set Jα is dense in I.

To find such an index we first prove that U i ≠ ∅, for all i. For a
contradiction, suppose that there is some i ∈ I with U i = ∅. Then we
can find, for every α < λ, an element lα ≥ i such that ⇑lα ∩ Jα = ∅.
Let m be an upper bound of { lα ∣ α < λ } in I. Then m ∉ Jα , for all α.
A contradiction.

To conclude the proof it is sufficient to show that U i = U j , for all
i , j ∈ I. Fix some l ≥ i , j. Then we have

U i = ⋂
m∈⇑i

Am ⊆ ⋂
m∈⇑l

Am = U l .

Conversely, suppose that there were an element α ∈ U l ∖U i . Then we
could find some m ≥ i such that ⇑m ∩ Jα = ∅. For s ≥ m, l , this would
imply that α ∉ As ⊇ U l . A contradiction. Hence, we have U i = U l = U j ,
as desired. ◻
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Directed sets can be regarded as generalisations of chains. Surprisingly
in many cases it suffices to consider chains even if the use of a directed
set might be more convenient. Before giving examples, let us present
two technical results. The first one allows us to extend an arbitrary set to
a directed one. In Section b4.4 below we will generalise this lemma to
κ-directed sets, where the situation is more complicated.

Lemma 3.5. Let ⟨I, ≤⟩ be a directed partial order. For every X ⊆ I there
exists a directed subset D ⊆ I with X ⊆ D and ∣D∣ ≤ ∣X∣ ⊕ ℵ0.

Proof. Set

F ∶= { s ⊆ X ∣ s ≠ ∅ finite} .

For every s ∈ F, we choose elements as ∈ I, by induction on ∣s∣, as follows.
Let

us ∶= s ∪ { av ∣ v ⊂ s } .

If us has a greatest element b then we set as ∶= b. Otherwise, since us is
finite and I is directed we can find an element as ∈ I with us ⊆ ⇓as .
After having defined the elements as we can set

D ∶= X ∪ { as ∣ s ∈ F } . ◻
Proposition 3.6. Let J be an infinite directed set of cardinality κ ∶= ∣I∣.
There exists a chain (Hα)α<κ of directed subsets Hα ⊆ I of size ∣Hα ∣ < κ
such that I = ⋃α<κ Hα .

Proof. Fix an enumeration (iα)α<κ of I. We define Hα by induction on α.
Set H0 ∶= ∅ and Hδ ∶= ⋃α<δ Hα , for limit ordinals δ. For the successor
step, we use Lemma 3.5 to choose a directed set Hα+1 ⊇ Hα ∪ {iα} of
size ∣Hα+1∣ ≤ ∣Hα ∣ ⊕ ℵ0.

Each set Hα is directed. Furthermore, iα ∈ Hα+1 implies⋃α Hα = I. It
remains to show that ∣Hα ∣ < κ. By induction on α, we prove the stronger
claim that ∣Hα ∣ ≤ ∣α∣, for every infinite ordinal α.
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For α = ω, we have

∣Hω ∣ = sup{ ∣Hn ∣ ∣ n < ω } ≤ ℵ0 .

Analogously, for limit ordinals δ,

∣Hδ ∣ = sup{ ∣Hα ∣ ∣ α < δ } ≤ ∣δ∣ .
Finally, we have ∣Hα+1∣ ≤ ∣Hα ∣⊕ℵ0 ≤ ∣α∣⊕ℵ0 = ∣α+1∣ , for ω ≤ α < κ. ◻

We will give several examples of how to use Proposition 3.6 to replace
directed sets by chains.

Proposition 3.7. Let ⟨A, ≤⟩ be a partial order. The following statements
are equivalent:

(1) A is inductively ordered.
(2) Every nonempty directed set I ⊆ A has a supremum.

Proof. The direction (2)⇒ (1) is trivial since every chain is directed. We
prove the converse by induction on κ ∶= ∣I∣. Since every finite directed set
has a greatest element we may assume that I is infinite. Let (Hα)α be the
sequence of directed sets from Proposition 3.6. By inductive hypothesis,
the suprema aα ∶= sup Hα exist. Since (aα)α<κ is a chain it follows that
sup I = supα aα exists as well. ◻
Lemma 3.8. Let c be a closure operator on A. The following statements
are equivalent:

(1) c has finite character.
(2) c(⋃C) = ⋃C, for every chain C ⊆ fix c.
(3) c(⋃ I) = ⋃ I, for every directed set I ⊆ fix c.

Proof. (1)⇒ (2) was proved in Lemma a2.4.6.
(2)⇒ (3) We prove the claim by induction on κ ∶= ∣I∣. If I is finite then⋃ I = X, for some X ∈ I, and we are done. Hence, wemay assume that I is

infinite. Let (Hα)α be the sequence of directed sets from Proposition 3.6.
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By inductive hypothesis, we know that Xα ∶= ⋃Hα ∈ fix c. Since (Xα)α<κ
is a chain it follows that ⋃ I = ⋃α Xα ∈ fix c, as desired.

(3)⇒ (1) Let X ⊆ A and set I ∶= { c(X0) ∣ X0 ⊆ X is finite}. We have
to show that c(X) = ⋃ I. For one direction, note that X0 ⊆ X implies
that c(X0) ⊆ c(X). Consequently, we have ⋃ I ⊆ c(X).

For the converse, note that I is directed since c(X0), c(X1) ∈ I implies
that c(X0 ∪ X1) ∈ I and we have c(X i) ⊆ c(X0 ∪ X1). By (3), it follows
that ⋃ I ∈ fix c. Therefore,

X = ⋃{X0 ∣ X0 ⊆ X is finite}⊆ ⋃{ c(X0) ∣ X0 ⊆ X is finite} = ⋃ I

implies that c(X) ⊆ c(⋃ I) = ⋃ I. ◻
Lemma 3.9. Let f ∶ A→ B a function between partial orders where A is
complete. The following statements are equivalent:

(1) f is continuous.
(2) sup f [I] = f (sup I), for every directed set I ⊆ A.

Proof. Again the direction (2)⇒ (1) is trivial. We prove the converse
by induction on κ ∶= ∣I∣. Since every finite directed set has a greatest
element we may assume that I is infinite. Let (Hα)α be the sequence of
directed sets from Proposition 3.6. The set

C ∶= { sup Hα ∣ α < κ }
is a chain with supC = sup I. Since f is continuous it follows that

sup f [I] = sup f [C] = f (supC) = f (sup I) . ◻
Having defined directed sets, we can introduce directed colimits. The

systems we want to map to their colimit consist of a directed partial order
of Σ-structures where each inclusion is labelled by a homomorphism spe-
cifying how the smaller structure is included in the larger one. Although
we will mainly be interested in Σ-structures, we give the definition in a
general category-theoretic setting.
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Definition 3.10. Let I be a small category and C an arbitrary category. A
diagram over I is a functor D ∶ I → C. If I is a κ-directed partial order,
we call D a κ-directed diagram. The size of D is the cardinal ∣Imor∣.
Remark. In the case where the index category I is a partial order, a
diagramD ∶ I → C consists of objects D(i) ∈ C, for i ∈ I, andmorphisms

D(i , k) ∶ D(i) → D(k) , for i ≤ k ,

such that

D(i , i) = idD(i) and D(k, l) ○ D(i , k) = D(i , l) ,
for all i ≤ k ≤ l .

Before giving the general category-theoretic definition of a κ-directed
colimit, let us present the special case of Σ-structures.

Definition 3.11. Let D ∶ J→ Hom(Σ) be a directed diagram. The directed
colimit of D is the Σ-structure

limÐ→D

where the domain of sort s is the set (∑i D(i)s)/∼ obtained from the
disjoint union of the domains D(i)s by factorising by the relation

⟨i , a⟩ ∼ ⟨ j, b⟩ : iff D(i , k)(a) = D( j, k)(b)
for some k ≥ i , j .

That is, we identify a ∈ D(i) and b ∈ D( j) iff they are mapped to the
same element in some D(k).
We denote by [i , a] the ∼-class of ⟨i , a⟩. The relations and functions

are defined by

R ∶= { ⟨[i , a0], . . . , [i , an−1]⟩ ∣ ⟨a0 , . . . , an−1⟩ ∈ RD(i) } ,
and f ([i , a0], . . . , [i , an−1]) ∶= [i , f D(i)(a0 , . . . , an−1)] .

(Note that is it sufficient to consider elements [i0 , a0], . . . , [in−1 , an−1]
where i0 = ⋅ ⋅ ⋅ = in−1.)
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Remark. Directed colimits are also called direct limits in the literature.
We will not use this term to avoid confusion with directed limits, which
we will introduce below.

Example. Let Z ∶= ⟨Z,+⟩ be the group of integers.
(a) We define a directed diagram D ∶ ω → Hom(+) by D(n) ∶= Z, for

all n, and

D(k, n) ∶ Z→ Z ∶ z ↦ 2n−kz , for k ≤ n .

Its colimit is the structure limÐ→D = ⟨Q2 ,+⟩ where

Q2 ∶= {m/2k ∣ m ∈ Z , k ∈ N}
is the set of dyadic numbers.

(b) If, instead, we use the homomorphisms

D(k, n) ∶ Z→ Z ∶ z ↦ n!
k!
z , for k ≤ n ,

then the colimit limÐ→D = ⟨Q,+⟩ is the group of rationals.

Remark. If the directed set J has a greatest element k, then we have
limÐ→D ≅ D(k).
Exercise 3.1. Let D ∶ J→ Hom(Σ) be a directed diagram and S ⊆ I dense.
Prove that

limÐ→D ≅ limÐ→(D ↾ S) ,
where D ↾ S ∶ J∣S → Hom(Σ) is the restriction of D to S.

Directed colimits can also be characterised in category-theoretical
terms via so-called limiting cocones. We use this property to define
directed colimits in an arbitrary category.
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Definition 3.12. Let D ∶ I → C be a diagram.
(a) A cocone from D to an object a ∈ C is a family µ = (µi)i∈Iobj of

morphisms µi ∶ D(i) → a such that

µk ○ D( f ) = µi ,

for all f ∶ i→ k in Imor.

D(i)
D(k)
D(l)

a

D( f )

D( f ′)

µi

µk

µl

(b) A cocone λ from D to a is limiting if, for every cocone µ from D
to some object b, there exists a unique morphism h ∶ a→ b with

µi = h ○ λi , for all i ∈ I .

D(i)

D(k)
a bD( f )

λi

λk

µi

µk

h

(Thus, limiting cocones are precisely the initial objects in the category
of all cocones of D.)

(c) An object a ∈ C is a colimit of D if there exists a limiting cocone
from D to a. We denote the colimit of D by limÐ→D.

(d) We say that a category C has κ-directed colimits if all κ-directed
diagrams D ∶ J→ C have a colimit.

Example. Let L be a partial order and D ∶ I → L a diagram.

(a) There exists a cocone from D to an element a ∈ L if, and only if,
a is an upper bound of rngD.

(b) An element a ∈ L is a colimit of D if, and only if, a = sup rngD.

Remark. (a) Equivalently, we could define a cocone from D to a to be a
natural transformation µ from D to the diagonal functor ∆(a) ∶ I → C
with
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∆(a)(i) = a , for all i ∈ Iobj ,
and ∆(a)( f ) = ida , for all f ∈ Imor .

D(i)
D(k)
D(l)

a

a

a

D( f )

D( f ′)

hi

hk

hl

ida

ida

(b) Not that, by the uniqueness of h in the definition of a limiting
cocone, colimits are unique up to isomorphism. As limiting cocones are
initial objects in the category of all cocones, this also follows directly
from Lemma b1.3.7.

According to the next lemma, the colimit limÐ→D of a directed diagram
D ∶ J→ Hom(Σ) of Σ-structures coincides with the category-theoretical
notion of a colimit.

Lemma 3.13. Every κ-directed diagram D ∶ J→ Hom(Σ) has a limiting
cocone λ from D to limÐ→D.

Proof. Let A ∶= limÐ→D and [i , a] be the ∼-class of ⟨i , a⟩. We claim that
the functions

λ i ∶ D(i) → A ∶ a ↦ [i , a] , for i ∈ I ,

form a limiting cocone. Let a ∈ D(i) and j ≥ i. By definition, we have⟨ j,D(i , j)(a)⟩ ∼ ⟨i , a⟩. Hence,

λ i(a) = [i , a] = [ j,D(i , j)(a)] = λ j(D(i , j)(a)) ,
and (λ i)i∈I is a cocone.

To show that it is limiting, suppose that µ is a cocone from D to B.
We define the desired homomorphism h ∶ A→ B by

h[i , a] ∶= µ i(a) .
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h is obviously the unique function such that h ○ λ i = µ i . Therefore, it
remains to show that h is well-defined. Suppose that ⟨i , a⟩ ∼ ⟨ j, b⟩. Then
there is some k ≥ i , j with D(i , k)(a) = D( j, k)(b). Hence, we have

h[i , a] = µ i(a) = (µk ○ D(i , k))(a)= (µk ○ D( j, k))(b) = µ j(b) = h[ j, b] . ◻
Corollary 3.14. Hom(Σ) has κ-directed colimits, for all infinite cardinals κ.

Exercise 3.2. Prove that the functions λ i and h defined in the proof
above are homomorphisms.

Let us give several applications of the notion of a directed colimit.

Definition 3.15. Let A be a structure and κ a cardinal. A substructure
A0 ⊆ A is κ-generated if A0 = ⟪X⟫A, for some set X of size ∣X∣ < κ.

Proposition 3.16. Let κ be a regular cardinal. Every structure A is the
κ-directed colimit of its κ-generated substructures.

Proof. Let I ∶= {⟪X⟫A ∣ ∣X∣ < κ } be the set of all κ-generated substruc-
tures of A. If (⟪X i⟫A)i≤α ∈ Iα , for α < κ, then ⟪⋃i X i⟫A ∈ I since κ is
regular. Consequently, ⟨I, ⊆⟩ is κ-directed.

For C ∈ I, set D(C) ∶= C and let D(B,C) ∶ B→ C, for B ⊆ C in I, be
the inclusion map. Then

A ≅ limÐ→D . ◻
Lemma 3.17. Every reduced product∏i∈I Ai/u is the directed colimit of
products∏i∈s Ai with s ∈ u.

Proof. For s ∈ u, set D(s) ∶= ∏i∈s Ai . We order u by inverse inclusion.
For s ⊇ t in u, let

D(s, t) ∶ D(s) → D(t) ∶ (a i)i∈s ↦ (a i)i∈t
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by the canonical projection. We claim that

limÐ→D ≅∏
i∈I Ai/u .

Note that, if (a i)i∈I ∈ ∏i∈I Ai and s, t ∈ u then we have

[s, (a i)i∈s] = [t, (a i)i∈s]
since (a i)i∈s∩t = (a i)i∈s∩t and s ∩ t ∈ u. Consequently, we can define a
function φ ∶ ∏i Ai/u→ limÐ→D by

φ([(a i)i]u) ∶= [s, (a i)i∈s] , for some/all s ∈ u .

It is easy to check that φ is the desired isomorphism. ◻
The dual notion to a directed colimit is a directed limit.

Definition 3.18. Let J be a directed partial order.
(a) An inverse diagram over J is a functor D ∶ Jop → C.
(b) The directed limit of an inverse diagram D ∶ Jop → Hom(Σ) is the

Σ-structure

lim←ÐD ∶= (∏i Ai)∣U
obtained from the product of the Ai by restriction to the set

U ∶= { (a i)i ∈ ∏i Ai ∣ a i = D(i , j)(a j) for all i ≤ j } .

Remark. Directed limits are also called inverse limits.

Example. (a) Let D ∶ J→ Hom(Σ) be a chain. If we reverse the order of
the index set I, this chain becomes an inverse diagram whose limit is
isomorphic to the intersection of the D(i), that is,

lim←ÐD ≅ D(k)∣C
where C ∶= ⋂i D(i) and k ∈ I is arbitrary.

(b) Let K be a field and D(n) ∶= K[x]/(xn), for n < ω, the ring of
polynomials over K of degree less than n. The directed limit lim←ÐD ≅
K[[x]] is isomorphic to the ring of formal power series over K.
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As above we can characterise inverse limits in category-theoretical
terms.

Definition 3.19. Let D ∶ Iop → C be an inverse diagram.
(a) A cone from an object a ∈ C to D is a family µ = (µi)i∈Iobj of

morphisms µi ∶ a→ D(i) such that

D( f ) ○ µk = µi ,

for all f ∶ i→ k in Imor.

D(i)
D(k)
D(l)

a

D( f )

D( f ′)

µi

µk

µl

(b) A cone λ to a is limiting if, for every cone µ from some object b
to D, there exists a unique morphism h ∶ b→ a with

µi = λi ○ h , for all i ∈ I .

D(i)

D(k)
ab D( f )

λi

λk

µi

µk

h

(Thus, limiting cones are precisely the terminal objects in the category
of all cones of D.)

(c) An object a ∈ C is a limit of D if there exists a limiting cone from a
to D.

Lemma 3.20. Every κ-directed inverse diagram D ∶ Jop → Hom(Σ) has a
limiting cone from lim←ÐD to D.

Exercise 3.3. Prove Lemma 3.20.

Exercise 3.4. Let I be a category where the only morphisms are the
identity morphisms. Show that the limit of a diagram D ∶ I → Hom(Σ)
is isomorphic to the direct product

∏
i∈I D(i) .
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4. Equivalent diagrams

In this section we study the question of when two diagrams have the
same colimit. Our aim is, given a diagram D ∶ I → C to find a diagram
E ∶ J → C with the same colimit where the index category J is simpler
in one way or another. We start by developing methods to prove that
two diagrams have the same colimit. These methods are based on the
notion of a cocone functor.

Definition 4.1. Let C be a category.
(a) Let µ be a cocone fromD ∶ I → C to some object a. For amorphism

f ∶ a→ b, we define

f ∗ µ ∶= ( f ○ µi)i∈I .

(b) The cocone functor Cone(D,−) ∶ C → Set associated with a dia-
gram D ∶ I → C maps

◆ objects a to the set Cone(D, a) of all cocones from D to a, and

◆ morphisms f ∶ a→ b to the function

Cone(D, f ) ∶ Cone(D, a) → Cone(D, b) ∶ µ ↦ f ∗ µ .

(c) The covariant hom-functor associated with an object a ∈ C is the
functor

C(a,−) ∶ C → Set

mapping an object b ∈ C to the set C(a, b) of all morphisms from a to b
and mapping a morphism f ∶ b→ $ to the function

C(a, f ) ∶ C(a, b) → C(a, $) ∶ g ↦ f ○ g .

Given a functor F ∶ C → D and an object b ∈ D, we will abbreviateD(b,−) ○ F byD(b, F−).
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Remark. In this terminology a limiting cocone of D is an element λ ∈
Cone(D, a) such that, for every µ ∈ Cone(D, b), there exists a unique
morphism f ∶ a→ b with µ = f ∗ λ.
We start with a characterisation of limiting cocones in terms of the

cocone functor.

Lemma 4.2. Let D ∶ I → C be a diagram. A cocone λ ∈ Cone(D, a) is
limiting if, and only if, the family η = (ηb)b∈C of morphisms defined by

ηb ∶ C(a, b) → Cone(D, b) ∶ f ↦ f ∗ λ

is a natural isomorphism η ∶ C(a,−) ≅ Cone(D,−).
Proof. (⇐) Suppose that η is a natural isomorphism. To show that λ is
limiting, consider a cocone µ ∈ Cone(D, b). Setting h ∶= η−1

b (µ), we
obtain the desired equation

µ = ηb(h) = h ∗ λ .

To conclude the proof, let h′ ∶ a → b be a second morphism with
µ = h′ ∗ λ. Then ηb(h′) = µ = ηb(h) implies, by injectivity of ηb, that
h′ = h.(⇒)We start by showing that η is a natural transformation. Let f ∶
a→ b and g ∶ b→ $ be morphisms. Then

ηb(C(a, g)( f )) = ηb(g ○ f )= (g ○ f ) ∗ λ= g ∗ ( f ∗ λ) = Cone(D, g)(ηb( f )) .

Now, suppose that λ is limiting. We claim that ηb is bijective. For
surjectivity, let µ ∈ Cone(D, b). As λ is limiting, there exists a unique
morphism h ∶ a→ b such that µ = h ∗ λ. Hence, µ = ηb(h) ∈ rng ηb.

For injectivity, let f , f ′ ∶ a → b be morphisms with ηb( f ) = ηb( f ′).
We set µ ∶= ηb( f ). Since λ is limiting, there exists a unique morphism
h ∶ a→ b such that µ = h ∗ λ. As

f ∗ λ = ηb( f ) = µ = ηb( f ′) = f ′ ∗ λ ,
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it follows by uniqueness of h that f = h = f ′. ◻
The following lemma is our main tool to prove that two diagrams have

the same colimit.

Lemma 4.3. Let D ∶ I → C and E ∶ J → C be diagrams. Every natural
isomorphism η ∶ Cone(D,−) ≅ Cone(E ,−)maps limiting cocones of D
to limiting cocones of E.

Proof. Let λ ∈ Cone(D, a) be a limiting cocone of D. Then ηa(λ) ∈
Cone(E , a) is a cocone from E to a. It remains to prove that it is limiting.
Given an arbitrary cocone µ ∈ Cone(E , b), the preimage η−1

b (µ) is a
cocone from D to b. As λ is limiting, there exists a unique morphism
h ∶ a→ b such that

η−1
b (µ) = h ∗ λ = Cone(D, h)(λ) .

Applying ηb to this equation, we obtain

µ = ηb(Cone(D, h)(λ)) = Cone(E , h)(ηa(λ)) = h ∗ ηa(λ) ,
as desired. Furthermore, if h′ ∶ a → b is another morphism satisfying
µ = h′ ∗ ηa(λ), then

η−1
b (µ) = η−1

b (Cone(E , h′)(ηa(λ))) = Cone(D, h′)(λ) = h′ ∗ λ ,

and it follows by uniqueness of h that h′ = h. ◻
Below we will frequently simplify a diagram D ∶ I → C by finding a

functor F ∶ J → I such that D○F has the same colimit as D and the index
category J is simpler than I . To study the colimit of such a composition
D ○ F, we introduce two natural transformations πD ,F and τD ,F .

Definition 4.4. Let D ∶ I → C be a diagram.
(a) The projection πD ,F along a functor F ∶ J → I is the function

mapping a cocone µ of D to the family (µF(j))j∈J .
(b) The translation τG ,D by a functor G ∶ C → D is the function

mapping a cocone µ of D to the family G[µ] ∶= (G(µi))i∈I .
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Lemma 4.5. Let D ∶ I → C be a diagram.
(a) The projection along a functor F ∶ J → I is a natural transforma-

tion

πD ,F ∶ Cone(D,−) → Cone(D ○ F ,−) .

(b) The translation by a functor G ∶ C → D is a natural transformation

τG ,D ∶ Cone(D,−) → Cone(G ○ D,G−) .

(c) For diagrams F ∶ J → I and G ∶ K → J ,
πD ,F○G = πD○F ,G ○ πD ,F .

Proof. (a) Given a cocone µ from D to a, the image πD ,F(µ) is clearly a
cocone from D ○ F to a. Hence, it remains to prove that πD ,F is natural.
Let f ∶ a→ b be a morphism of C and µ ∈ Cone(D, a) a cocone. Then

πD ,F(Cone(D, f )(µ)) = πD ,F(( f ○ µi)i∈I)= ( f ○ µF(j))j∈J= Cone(D ○ F , f )(πD ,F(µ)) .

(b) Given a cocone µ from D to a, the image τG ,D(µ) is clearly a
cocone from G ○ D to G(a). Hence, it remains to prove that τG ,D is
natural. Let f ∶ a→ b be a morphism of C and µ ∈ Cone(D, a) a cocone.
Then

τG ,D(Cone(D, f )(µ)) = τG ,D(( f ○ µi)i∈I)= (G( f ) ○G(µi))i∈I= G( f ) ∗G[µ]= Cone(G ○ D,G( f ))(τG ,D(µ)) .

(c) For µ ∈ Cone(D, a), we have

πD○F ,G(πD ,F(µ)) = πD○F ,G((µF(i))i∈I)= (µF(G(k)))k∈K = πD ,F○G(µ) . ◻
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We extend the terminology of Definition b1.3.9 as follows.

Definition 4.6. Let F ∶ C → D be a functor and let P be a class of
diagrams.

(a) We say that F preserves P-colimits if, whenever λ is a limiting
cocone of a diagram D ∈ P , then F[λ] is a limiting cocone of F ○ D.

(b) We say that F reflects P-colimits if, whenever λ is a cocone of a
diagram D ∈ P such that F[λ] is limiting, then λ is also limiting.

(c) Analogously, we define when F preserves or reflects P-limits.

Lemma 4.7. Let F ∶ C → D be full and faithful.
(a) For every diagram D ∶ I → C,

τF ,D ∶ Cone(D,−) → Cone(F ○ D, F−)
is a natural isomorphism.

(b) F reflects all limits and colimits.

Proof. (a) For injectivity, suppose that µ, µ′ ∈ Cone(D, a) are cocones
with F[µ] = F[µ′]. As F is faithful, F(µi) = F(µ′i ) implies that µi = µ′i ,
for all i ∈ I .

For surjectivity, let µ ∈ Cone(F ○ D, F(a)). As F is full, we can find
morphisms λi ∶ D(i) → a, for every i ∈ I , such that F(λi) = µi. Then
F[λ] = µ where λ ∶= (λi)i∈I . Hence, it remains to prove that λ is a cocone
of D. Let f ∶ i→ j be a morphism of I . Then

F(λj ○ D( f )) = F(λj) ○ F(D( f )) = µj ○ F(D( f )) = µi = F(λi)
implies, by faithfulness of F, that λj ○ D( f ) = λi.

(b) Let D ∶ I → C be a diagram and λ ∈ Cone(D, a) a cocone such
that F[λ] is limiting. Let

η ∶ D(F(a),−) ≅ Cone(F ○ D,−) ∶ f ↦ f ∗ F[λ]
be the natural isomorphism of Lemma 4.2. As F is full and faithful, the
natural transformation

ζ ∶ C(a,−) → D(F(a), F−) ∶ f ↦ F( f )
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is also a natural isomorphism. By (a), it follows that the composition

τ−1
F ,D ○ η ○ ζ ∶ C(a,−) → Cone(D,−)

is a natural isomorphism that maps a morphism f ∶ a→ b to

(τ−1
F ,D ○ η ○ ζ)( f ) = (τ−1

F ,D ○ η)(F( f ))= τ−1
F ,D(F( f ) ∗ F[λ])= τ−1
F ,D(F[ f ∗ λ]) = f ∗ λ .

Consequently, it follows by Lemma 4.2 that λ is limiting. ◻
Equivalences and skeletons
As a first application we show that isomorphic and equivalent diagrams
have the same colimit.

Lemma 4.8. Every natural isomorphism η ∶ D ≅ E between two diagrams
D, E ∶ I → J , induces a natural isomorphism

ζ ∶ Cone(D,−) ≅ Cone(E ,−) ∶ µ ↦ (µi ○ η−1
i )i∈I .

Proof. We define ζ and its inverse ξ by

ζ(µ) ∶= (µi ○ η−1
i )i∈I , for µ ∈ Cone(D, a) ,

ξ(µ) ∶= (µi ○ ηi)i∈I , for µ ∈ Cone(E , a) .

To show that ζ and ξ are well-defined, let µ ∈ Cone(D, a) and let
f ∶ i→ j be a morphism of I . Then

ζ(µ)j ○ E( f ) = µj ○ η−1
j ○ E( f )

= µj ○ D( f ) ○ η−1
i = µi ○ η−1

i = ζ(µ)i .

Hence, ζ(µ) is a cocone of E. In the same way, one can check that

ξ(µ)j ○ D( f ) = ξ(µ)i , for µ ∈ Cone(E , a) and f ∶ i→ j .
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Furthermore, ζ is a natural transformation since, for µ ∈ Cone(D, a)
and f ∶ a→ b,

ζ(Cone(D, f )(µ)) = ζ(( f ○ µi)i∈I)= ( f ○ µi ○ η−1
i )i∈I= Cone(E , f )((µi ○ η−1

i )i∈I)= Cone(E , f )(ζ(µ)) .

Finally, note that

ξ(ζ(µ)) = ξ((µi ○ η−1
i )i∈I) = (µi ○ η−1

i ○ ηi)i∈I = µ ,

and, similarly, ζ(ξ(µ)) = µ. ◻
Proposition 4.9. Let F ∶ I → J be an equivalence between two small
categories I and J and let D ∶ J → C be a diagram. The projection

πD ,F ∶ Cone(D,−) → Cone(D ○ F ,−)
along F is a natural isomorphism.

Proof. By Theorem b1.3.14, there exist a functor G ∶ J → I and natural
isomorphisms ρ ∶ G ○ F ≅ idI and η ∶ idJ ≅ F ○G such that

F(ρi) = η−1
F(i) and G(ηj) = ρ−1

G(j) .
It follows that D[η−1] is a natural isomorphism D ○ F ○G ≅ D which, by
Lemma 4.8, induces a natural isomorphism

ζ ∶ Cone(D ○ F ○G ,−) → Cone(D,−) ∶ µ ↦ (µj ○ D(ηj))j∈J .

We claim that ζ ○ πD○F ,G is an inverse of πD ,F .

Cone(D,−) Cone(D ○ F ,−)

Cone(D ○ F ○G ,−)

πD ,F

πD○F ,Gζ
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For µ ∈ Cone(D, a), µF(G(j)) ○ D(ηj) = µj implies that

(ζ ○ πD○F ,G ○ πD ,F)(µ) = (ζ ○ πD○F ,G)((µF(i))i∈I)= ζ((µF(G(j)))j∈J )= (µF(G(j)) ○ D(ηj))j∈J = (µj)j∈J .

Similarly, let µ ∈ Cone(D ○ F , a). Then µi ○D(F(ρi)) = µG(F(i)) implies
that

(πD ,F ○ ζ ○ πD○F ,G)(µ) = (πD ,F ○ ζ)((µG(j))j∈J )= πD ,F((µG(j) ○ D(ηj))j∈J )= (µG(F(i)) ○ D(ηF(i)))i∈I= (µG(F(i)) ○ D(F(ρi)−1))
i∈I= (µi)i∈I . ◻

Corollary 4.10. Let F ∶ I → J be an equivalence between two small
categories I and J . Then

limÐ→(D ○ F) = limÐ→D , for every diagram D ∶ J → C .

As an application of this corollary, we show how to get rid of iso-
morphic copies in the index category of a diagram.

Definition 4.11. A skeleton of a category C is a full subcategory C0 ⊆ C
such that◆ every object of C is isomorphic to some object of C0,◆ no two objects of C0 are isomorphic.

Example. A skeleton of Set is given by the full subcategory induced by
the class Cn of all cardinals.

We will prove in the next two lemmas that skeletons are unique up
to isomorphism, and that they are equivalent to the original category.
Consequently, given a diagram D ∶ I → C, we can replace the index
category I by its skeleton without changing the colimit.
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Lemma 4.12. If C0 and C1 are skeletons of C, there exists an isomorphismC0 ≅ C1.

Proof. We define functors Fi ∶ Ci → C1−i , for i < 2, as follows. For
a ∈ Ci , let a(1−i) be the unique element of C1−i isomorphic to a. We fix
isomorphisms π0

a ∶ a→ a(1), for a ∈ Cobj
0 , and we set π1

a ∶= (π0
a(0))−1. We

define

F i(a) ∶= a(1−i) , for a ∈ Cobj
i ,

F i( f ) ∶= π i
b ○ f ○ (π i

a)−1 , for f ∶ a→ b in Cmor
i .

We claim that F 1−i ○ F i = id. For a ∈ Cobj
i , we have

F 1−i(F i(a)) = F 1−i(a(1−i)) = (a(1−i))(i) = a .

For f ∶ a→ b in Cmor
i , we have

F 1−i(F i( f )) = F 1−i(π i
b ○ f ○ (π i

a)−1)
= π1−i

b(1−i) ○ π i
b ○ f ○ (π i

a)−1 ○ (π1−i
a(1−i))−1

= (π i
b)−1 ○ π i

b ○ f ○ (π i
a)−1 ○ π i

a= f . ◻
Lemma 4.13. Every skeleton C0 of a category C is equivalent to C.

Proof. Let I ∶ C0 → C be the inclusion functor. We define a functor
Q ∶ C → C0 as follows. For each a ∈ Cobj, let a! be the unique element
of C0 isomorphic to a and let πa ∶ a→ a! be an isomorphism. We set

Q(a) ∶= a! , for a ∈ Cobj ,
Q( f ) ∶= πb ○ f ○ π−1

a , for f ∶ a→ b in Cmor .

We claim that the families η ∶= (πa)a∈C0 and ρ ∶= (πa)a∈C are natural
isomorphisms η ∶ Q ○ I ≅ id and ρ ∶ I ○ Q ≅ id. Since each component
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of η and ρ is an isomorphism, it is sufficient to prove that η and ρ are
natural transformations. For η, let f ∶ a→ b be a morphism of C0. Then

Q(I( f )) ○ ηa = πb ○ f ○ π−1
a ○ πa = ηa ○ f .

For ρ, let f ∶ a→ b be a morphism of C. Then

I(Q( f )) ○ ρa = πb ○ f ○ π−1
a ○ πa = ρa ○ f . ◻

By Corollary 4.10, we obtain the following result.

Corollary 4.14. Let I0 ⊆ I be a skeleton of I and F ∶ I0 → I the inclusion
functor. Then

limÐ→D = limÐ→(D ○ F) , for every diagram D ∶ I → C .

Chains
As a second application we show how to reduce directed diagrams to
diagrams where the index category is a linear order.

Definition 4.15. A diagram D ∶ I → C is a chain if I is a linear order.

Proposition 4.16. Let C be a category with directed colimits, D ∶ J→ C a
directed diagram, and set κ ∶= ∣I∣. There exists a chain C ∶ κ → C such that

limÐ→C = limÐ→D

and, for every α < κ,

C(α) = limÐ→(D ↾Hα) , for some directed subset Hα ⊆ I of

size ∣Hα ∣ < ∣I∣ .
Proof. By Proposition 3.6, there exists a chain (Hα)α<κ of directed sub-
sets Hα ⊆ I of size ∣Hα ∣ < κ such that I = ⋃α<κ Hα . For α < β < κ, let
λα be a limiting cocone of D ↾Hα and let

πα ∶ Cone(D,−) → Cone(D ↾Hα ,−) ,
πα ,β ∶ Cone(D ↾Hβ ,−) → Cone(D ↾Hα ,−) ,
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be the projections along the inclusion functors Hα → I and Hα → Hβ ,
respectively. We define Cobj by

C(α) ∶= limÐ→(D ↾Hα) , for α < κ .

To define Cmor, let α < β. Since λα is limiting and πα ,β(λβ) is a cocone
of D ↾Hα , there exists a unique morphism

C(α, β) ∶ limÐ→(D ↾Hα) → limÐ→(D ↾Hβ) ,
such that

πα ,β(λβ) = C(α, β) ∗ λα .

To prove that C is the desired chain, it is sufficient, by Lemma 4.3, to
find a natural isomorphism

η ∶ Cone(D,−) ≅ Cone(C ,−) .

By Lemma 4.2, there are natural isomorphisms

τα ∶ Cone(D ↾Hα ,−) ≅ C(C(α),−) , for α < κ ,

such that

µ = τα(µ) ∗ λα , for cocones µ of D ↾Hα ,
f = τα( f ∗ λα) , for all f ∶ C(α) → a .

For a cocone µ of D, we set

η(µ) ∶= (τα(πα(µ)))α<κ .

First, let us show that η(µ) is indeed a cocone of C. For indices α < β,
Lemma 4.5 (c) implies that

τα(πα(µ)) = τα(πα ,β(πβ(µ)))
= τα(πα ,β(τβ(πβ(µ)) ∗ λβ))
= τα(τβ(πβ(µ)) ∗ πα ,β(λβ))
= τα((τβ(πβ(µ)) ○ C(α, β)) ∗ λα)
= τβ(πβ(µ)) ○ C(α, β) .
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Hence, (τα(πα(µ)))α<κ is a cocone from C to a.
To see that η is a natural transformation, let µ ∈ Cone(D, a) and

f ∶ a→ b. Then

ηb(Cone(D, f )(µ)) = (τα(πα( f ∗ µ)))α<κ= (τα( f ∗ πα(µ)))α<κ= (C(C(α), f )(τα(πα(µ))))α<κ= f ∗ (τα(πα(µ)))α<κ= Cone(C , f )(ηa(µ)) .

It remains to show that η is a natural isomorphism. We define an
inverse ζ of η as follows. Given µ ∈ Cone(D, a) and i ∈ I, we set

(ζ(µ))i ∶= µα ○ λα
i , for some α < κ such that i ∈ Hα .

First, we have to show that the value of ζ(µ) does not depend on the
choice of the ordinals α. For i ∈ Hα and α < β,

πα ,β(λβ) = C(α, β) ∗ λα

implies that

µα ○ λα
i = µβ ○ C(α, β) ○ λα

i = µβ ○ λβ
i .

To show that ζ is an inverse of η, we fix, for every i ∈ I, some ordinal
α i < κ with i ∈ Hα i . For µ ∈ Cone(D, a), it follows that

ζ(η(µ)) = ζ((τα(πα(µ)))α<κ)= (τα i (πα i (µ)) ○ λα i
i )i∈I= ((τα i (πα i (µ)) ∗ λα i )i)i∈I= (πα i (µ)i)i∈I= (µ i)i∈I .
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Conversely, for µ ∈ Cone(C , a), we have

η(ζ(µ)) = η((µα i ○ λα i
i )i∈I)= (τβ(πβ((µα i ○ λα i

i )i∈I)))β<κ= (τβ((µα i ○ λα i
i )i∈Hβ))β<κ

= (τβ((µβ ○ λβ
i )i∈Hβ))β<κ= (τβ(µβ ∗ λβ))β<κ = (µβ)β<κ . ◻

Proposition 4.17. Let C be a category with directed colimits. A classK ⊆ C
is closed under arbitrary directed colimits if, and only if, it is closed under
colimits of chains.

Proof. (⇒) is trivial since every chain is directed. For (⇐), suppose thatK is closed under colimits of chains. Let D ∶ I → C be a directed diagram
such that D(i) ∈ K, for all i. We prove by induction on ∣I∣ that limÐ→D ∈ K.
If I is finite then limÐ→D = D(k) ∈ K, for some k. Hence, we may suppose
that I is infinite. Let C ∶ κ → C be the chain from Proposition 4.16. By
inductive hypothesis, it follows that C(α) ∈ K, for every α < κ. Since
C is a chain, it follows limÐ→D = limÐ→C ∈ K. ◻
5. Links and dense functors
There is a large class of cases where the projection πD ,F along a functor F
is a natural isomorphism. As we have seen, this implies that D ○ F has
the same colimit as D.

Alternating paths

Before introducing this class of functors, we develop several technical res-
ults to compare two functors. We start with the notion of an alternating
path.
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Definition 5.1. Let C be a category.
(a) For n < ω, we denote by Zn = ⟨Zn , ≤⟩ the partial order on the

elements

Zn ∶= {0∨ , . . . , n∨ , 0∧ , . . . , (n − 1)∧}
that is defined by

x < y : iff x = i∨ and y = k∧ for k ≤ i ≤ k + 1 .

1∨ 2∨ . . . (n − 1)∨ n∨0∨
1∧ 2∧ . . . (n − 1)∧0∧

And we write Z�n for the extension of Zn by a bottom element.

�
1∨ 2∨ . . . (n − 1)∨ n∨0∨

1∧ 2∧ . . . (n − 1)∧0∧

(b) A alternating path from a ∈ C to b ∈ C is a diagram P ∶ Zn → C, for
some n, such that P(0∨) = a and P(n∨) = b.

(c) We say that C is connected if, for every pair of objects a, b ∈ C, there
exists an alternating path from a to b.

Remark. We will frequently be interested in alternating paths in comma
categories (a ↓ F). In this case, an alternating path P ∶ Zn → (a ↓ F) from
f ∶ a→ F(i) to g ∶ a→ F(k) corresponds to a diagram P� ∶ Z�n → C with
P�(�, 0∨) = f and P�(�, n∨) = g.

a

F(i) F(k)
f g

Definition 5.2. Let F ∶ I → C a functor.
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(a) For two morphisms f , g ∈ (a ↓ F), we write

f ⩕F g : iff (a ↓ F) contains an alternating path
from f to g.

If f ⩕F g, we call f and g alternating-path equivalent, or a.p.-equivalent
for short. We denote the a.p.-equivalence class of f by [ f ]⩕F .

(b) For families f = ( f i)i∈I and g = (g i)i∈I of morphisms, we set

f ⩕F g : iff f i ⩕F g i for all i ∈ I .

Again, we denote the a.p.-equivalence class of f by [ f ]⩕F .

The following lemma collects the basic properties of the relation ⩕F .

Lemma 5.3. Let F ∶ I → C be a functor and f , g ∈ (a ↓ F).
(a) ⩕F is an equivalence relation.
(b) For every morphism h ∶ b→ a,

f ⩕F g implies f ○ h ⩕F g ○ h .

(c) For all functors D ∶ C → D,
f ⩕F g implies D( f ) ⩕D○F D(g) .

(d) For all functors G ∶ J → I and morphisms h, h′ ∈ Imor,

F(h) ○ f ⩕F○G F(h′) ○ g implies f ⩕F g .

Proof. (a) ⩕F is reflexive since, for every morphism f ∶ a→ F(i), there
is an alternating path P ∶ Z0 → (a ↓ F) of length 0 with P(0∨) = f . For
symmetry, note that, if there is an alternating path from f to g, we can
reverse it to obtain one from g to f . For transitivity, suppose that f ⩕F g
and g ⩕F h. Then we can find alternating paths P ∶ Zm → (a ↓ F) and
Q ∶ Zn → (a↓F) from f to g and from g to h, respectively. Concatenating
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these paths, we obtain the desired alternating path Zm+n → (a↓F) from f
to h.

(b) Let P ∶ Zn → (a ↓ F) be an alternating path from f to g. We obtain
an alternating path Q ∶ Zn → (b ↓ F) from f ○ h to g ○ h by setting

Q(x) ∶= P(x) ○ h and Q(x , y) ∶= P(x , y) , for x , y ∈ Zn .

(c) If P ∶ Zn → (a ↓ F) is an alternating path from f to g, then D ○ P ∶
Zn → (D(a) ↓ D ○ F) is an alternating path from D( f ) to D(g).

(d) Let P ∶ Zn → (a ↓ F ○G) be an alternating path from F(h) ○ f to
F(h′) ○ g. We can define an alternating path Q ∶ Zn → (a ↓ F) from f
to g by

Q(x) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f if x = 0∨ ,
g if x = n∨ ,
P(x) otherwise .

Q(i∨ , k∧) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

G(P(0∨ , 0∧)) ○ h if (i , k) = (0, 0) ,
G(P(n∨ , (n − 1)∧)) ○ h′ if (i , k) = (n, n − 1) ,
G(P(i∨ , k∧)) otherwise .

a

F(i)

F(j)

F(G(k0))

F(G(k2))

F(G(k1))
F(G(l0))

F(G(l1))

f

g

P(1∨)

F(h)

F(h′)

F(G(P(0∨ , 0∧)))

F(G(P(1∨ , 0∧)))
F(G(P(1∨ , 1∧)))

F(G(P(2∨ , 1∧)))

◻
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The main reason why we are interested in alternating paths is the next
lemma.

Lemma 5.4. Let D ∶ I → C be a diagram and f ∶ a→ D(i), g ∶ a→ D(j)
morphisms. Then

f ⩕D g implies µi ○ f = µj ○ g , for all cocones µ of D .

Proof. Let P ∶ Zn → (a↓D) be an alternating path from f to g. We prove
the claim by induction on its length n.

For n = 0, we have f = g and there is nothing to do. If n > 1, we can
use the inductive hypothesis twice to obtain

µi ○ f = µk ○ P(1∨) = µj ○ g ,

where k ∈ I is the index such that P(1∨) ∶ a→ D(k).
Hence, it remains to prove the case where n = 1. Let h ∶ i → k and

h′ ∶ j→ k be morphisms of I such that

P(0∨ , 0∧) = D(h) and P(1∨ , 0∧) = D(h′) .

It follows that

µi ○ f = µi ○ P(0∨) = µk ○ D(h) ○ P(0∨)= µk ○ D(h′) ○ P(1∨) = µj ○ P(1∨) = µj ○ g .

a

D(j)

D(i)

D(k) b

g

f

D(h′)
D(h)

µj

µi

µk

◻

274

5. Links and dense functors

Links
The second technical notion we introduce is that of a link, which gener-
alises the notion of a natural transformation.

Definition 5.5. Let D ∶ I → C and E ∶ J → C be diagrams. A link
from D to E is a family t = (ti)i∈Iobj of morphisms

ti ∶ D(i) → E(θ(i)) , for some function θ ∶ Iobj → J obj ,

satisfying

ti ⩕E tj ○ D( f ) ,
for all f ∶ i→ j in I . D(i) E(θ(i))

D(j) E(θ(j))
D( f )

ti

tj

We call θ the index map of the link.

Example. (a) Every natural transformation η ∶ D → E is a link from D
to E with index map θ(i) ∶= i.

(b) Every cocone µ ∈ Cone(D, a) is a link from D to the singleton
functor [1] → C mapping the unique object 0 ∈ [1] to a. The index map is
θ(i) ∶= 0. Alternatively, we can regard µ as a link from D to the identity
functor idC ∶ C → C with index map θ(i) ∶= a.

(c) Every morphism f ∶ a → b can be regarded as a link from the
functor [1] → C ∶ 0↦ a to the functor [1] → C ∶ 0↦ b.

We extend the componentwise composition operation ∗ and the pro-
jection transformation from cocones to links as follows.

Definition 5.6. Let D ∶ I → C, E ∶ J → C, and F ∶ K → C be diagrams,
s a link from E to F, t a link from D to E.

(a) The composition of s and t is the family

s ∗ t ∶= (sθ(i) ○ ti)i∈I ,
where θ is the index map of t.
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(b) The projection along t is the function πt mapping a cocone µ of E
to µ ∗ t.

(c) The inclusion link associated with D is the family

inD ∶= (idD(i))i∈I .

Lemma 5.7. Let D ∶ I → C, E ∶ J → C, and F ∶ K → C be diagrams,
s, s′ links from E to F, and t, t′ links from D to E.

(a) s ∗ t is a link from D to F.

(b) If s ⩕E s′ and t ⩕F t′, then s ∗ t ⩕F s′ ∗ t′.
(c) For morphisms f ∶ a→ D(i) and g ∶ a→ D(j),

f ⩕D g implies ti ○ f ⩕E tj ○ g .

(d) The inclusion link inE associated with E is a link from E to the
identity functor idC ∶ C → C such that

inE ∗ t = t and s ∗ inE = s .

Proof. We start with (c), which generalises Lemma 5.4. Choose an al-
ternating path P ∶ Zn → (a ↓ D) from f to g, and suppose that

P(k∨ , k∧) = hk ∶ mk → nk

and P((k + 1)∨ , k∧) = h′k ∶ mk+1 → nk .

As t is a link, we have

tmk ⩕E tnk ○ D(hk) and tmk+1 ⩕E tnk ○ D(h′k) ,
which implies that

tmk ○ P(k∨) ⩕E tnk ○ D(hk) ○ P(k∨)= tnk ○ D(h′k) ○ P((k + 1)∨) ⩕E tmk+1 ○ P((k + 1)∨) .
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a

D(mk)

D(mk+1)
D(nk)

E(θ(mk))

E(θ(mk+1))
E(θ(nk))

P(k∨)

P((k + 1)∨)

D(hk)
D(h′k)

tmk

tmk+1

tnk

Consequently, it follows by transitivity that

ti ○ f = tm0 ○ P(0∨) ⩕E tmn ○ P(n∨) = tj ○ g .

(a) Let f ∶ i→ j be a morphism of I . Since t is a link, we have

ti ⩕E tj ○ D( f ) ,
which, by (c), implies that

sθ(i) ○ ti ⩕F sθ(j) ○ tj ○ D( f ) .

Hence, s ∗ t is a link from D to F.
(b) Let θ and θ′ be the index maps of t and t′, respectively. For every

i ∈ I , it follows by (c) that

ti ⩕E t′i implies sθ(i) ○ ti ⩕E sθ′(i) ○ t′i .

Furthermore,

sθ′(i) ⩕F s′θ′(i) implies sθ′(i) ○ t′i ⩕F s′θ′(i) ○ t′i .

By transitivity, it follows that

sθ(i) ○ ti ⩕F s′θ′(i) ○ t′i .

(d) For every morphism f ∶ i→ j of I , we have

E( f ) ○ idE(i) = E( f ) = idE(j) ○ idE(j) ○ E( f ) .
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Hence, the morphisms E( f ) and idE(j) form an alternating path from
idE(i) to idE(j) ○ E( f ) in (E(i) ↓ idC). Furthermore,

inE ∗ t = (idE(θ(i)) ○ ti)i∈I = (ti)i∈I = t
and s ∗ inE = (sj ○ idE(j))j∈J = (sj)j∈J = s . ◻

The concept of a link being quite weak, we cannot prove many state-
ments about links in general. Their main property is the fact that they
allow us to transfer cocones of E to cocones of D. In light of Lemma 5.9
below, the following lemma is a generalisation of Lemma 4.5 (a).

Lemma 5.8. Let t be a link from D ∶ I → C to E ∶ J → C.
(a) The projection πt along t is a natural transformation

πt ∶ Cone(E ,−) → Cone(D,−) .

(b) s ⩕E t implies πs = πt , for every link s from D to E.
(c) πinE = id and πt∗s = πs ○ πt , for every link s from some diagram F

to D.

Proof. (a) We start by showing that πt maps cocones of E to cocones
of D. Let θ be the index map of t, µ ∈ Cone(E , a), and let g ∶ i→ j be a
morphism of I . As t is a link, we have

ti ⩕E tj ○ D(g) ,
which, by Lemma 5.4, implies that

µθ(i) ○ ti = µθ(j) ○ tj ○ D(g) .

Hence, πt(µ) = µ ∗ t is a cocone of D.
To show that πt is a natural transformation, let µ ∈ Cone(E , a) and

f ∶ a→ b. Then

πt(Cone(E , f )(µ)) = ( f ∗ µ) ∗ t= f ∗ (µ ∗ t) = Cone(D, f )(πt(µ)) .
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(b) Let ρ and θ be the index maps of, respectively, s and t. Consider a
cocone µ ∈ Cone(E , a) and an index i ∈ I . Since si ⩕E ti, it follows by
Lemma 5.4 that

µρ(i) ○ si = µθ(i) ○ ti .

Hence, πs(µ) = µ ∗ s = µ ∗ t = πt(µ).
(c) For every cocone µ of E,

πinE (µ) = µ ∗ inE = µ ,
and πt∗s(µ) = µ ∗ t ∗ s = πs(πt(µ)) . ◻

Let us also make a remark about the behaviour of links when com-
posed with a functor.

Lemma 5.9. Let D ∶ I → C be a diagram and t a link from F ∶ J → I to
G ∶ K → I .

(a) D[t] ∶= (D(tj))j∈J is a link from D ○ F to D ○G.
(b) πD ,F = πD[t] ○ πD ,G .

Cone(D,−)

Cone(D ○ F ,−) Cone(D ○G ,−)
πD ,F πD ,G

πD[t]
(c) πD ,F = πD[inF].

Proof. (a) Let g ∶ i→ j be a morphism of J . As t is a link, we have

tj ○ F(g) ⩕G ti ,

which, by Lemma 5.3 (c), implies that

D(tj) ○ D(F(g)) ⩕D○G D(ti) .

Hence, D[t] is a link from D ○ F to D ○G.
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(b) Let µ ∈ Cone(D, a). Then

πD[t](πD ,G(µ)) = πD[t]((µG(k))k∈K)= (µG(θ(j)) ○ D(tj))j∈J= (µF(j))j∈J = πD ,F(µ) ,
where the third step follows from the fact that µ is a cocone of D.

(c) For a cocone µ of D,

πD[inF](µ) = µ ∗ D[inF]= (µF(j) ○ D(idF(j)))j∈J = (µF(j))j∈J = πD ,F(µ) . ◻
We have seen in Lemma 5.7 that a.p-equivalence of links is a con-

gruence with respect to composition. Consequently, we can define a
category of a.p.-equivalence classes of links between diagrams.

Definition 5.10. Let C be a category and P a class of small categories.
The inductive P-completion of C is the category IndP(C) whose objects
are all diagrams D ∶ I → C with I ∈ P . A morphism D → E between
two diagrams D and E is an a.p.-equivalence class [t]⩕E of a link t from D
to E. We write Indall(C) if P is the class of all small categories.

Let us conclude this section with the following remarks.

Proposition 5.11. Two diagrams D ∶ I → C and E ∶ J → C that are
isomorphic in Indall(C) have the same colimits.

Proof. Let [s]⩕E ∶ D → E be an isomorphism with inverse [t]⩕D ∶ E → D.
By Lemma 5.8,

t ∗ s ⩕D inD implies πs ○ πt= πt∗s = πinD = id ,
and s ∗ t ⩕E inE implies πt ○ πs= πs∗t = πinE = id .

Hence, πs ∶ Cone(E ,−) → Cone(D,−) is a natural isomorphism and
the claim follows by Lemma 4.3. ◻

280

5. Links and dense functors

The following exercise presents an alternative, more abstract definition
of the morphisms of Indall(C).
Exercise 5.1. Let D ∶ I → C and E ∶ J → C be diagrams.

(a) Prove that, for every object a ∈ C, there exists a bijection between
limÐ→C(a, E−) and the set

{ [ f ]⩕E ∣ f ∶ a→ E(j) for some j ∈ J } .

(b) Prove that there exists a bijection

Indall(C)(D, E) → lim←ÐD
limÐ→E

C(D−, E−) ,
where lim←ÐD

limÐ→E
C(D−, E−) denotes the limit of the functor

a↦ limÐ→C(D(a), E−) .

Dense functors

After these preliminaries, we can define the class of functors preserving
colimits that we mentioned above.

Definition 5.12. Let C be a category. A functor F ∶ I → C is dense if, for
every object a ∈ C, the comma category (a ↓ F) is (d1) non-empty and
(d2) connected.

Lemma 5.13. Let F ∶ I → J and G ∶ J → C be dense functors. Then
G ○ F is also dense.

We can characterise dense functors in terms of links.

Lemma 5.14. Let F ∶ I → C be a diagram into a small category C and let
inF be the inclusion link associated with F. Then F is dense if, and only if,
the morphism [inF]⩕idC ∶ F → idC of Indall(C) has a left inverse.
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Proof. (⇒) Let F be dense. We use (d1) to select, for each a ∈ C, a
morphism ta ∶ a→ F(θ(a)) ∈ (a ↓ F). We claim that t ∶= (ta)a∈C is a link
such that [t]⩕F ○ [inF]⩕idC = id.

To check that t is a link, let f ∶ a→ b be a morphism of C. Then we can
use (d2) to find the desired alternating path from ta ∈ (a ↓ F) to tb ○ f ∈(a↓F). To show that t is a left inverse of inF , let i ∈ I . By (d2), there exists
an alternating path from tF(i) to idF(i). Hence, tF(i) ○ idF(i) ⩕F idF(i).(⇐) Let [t]⩕F be a left inverse of [inF]⩕idC . Then the morphisms ta ∈(a↓F)witness (d1). To check (d2), consider two morphisms f ∶ a→ F(i)
and g ∶ a→ F(k). Since [t]⩕F ○ [inF]⩕idC = id, we have

tF(i) = tF(i) ○ idF(i) ⩕F idF(i) ,
tF(k) = tF(k) ○ idF(k) ⩕F idF(k) ,

which implies that

tF(i) ○ f ⩕F idF(i) ○ f = f ,
tF(k) ○ g ⩕F idF(k) ○ g = g .

As t is a link from idC to F, it follows that

f ⩕F tF(i) ○ f ⩕F ta ⩕F tF(k) ○ g ⩕F g . ◻
Let us finally prove that the projection along a dense functor preserves

colimits.

Proposition 5.15. Let C be a category and D ∶ I → C a diagram. The
projection

πD ,F ∶ Cone(D,−) → Cone(D ○ F ,−)
along a dense functor F ∶ S → I is a natural isomorphism.

Proof. We have already seen in Lemma 4.5 (a) that πD ,F is a natural
transformation. To show that it is a natural isomorphism, we construct
an inverse of πD ,F .
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By Lemma 5.14, [inF]⩕idI ∶ F → idI has a left inverse [t]⩕F ∶ idI → F.
According to Lemma 5.9, its image D[t] under D is a link from D to
D ○ F satisfying

πD[t] ○ πD ,F = πD ,id = id .

Hence, πD[t] is a left inverse of πD ,F . To show that it is also a right inverse,
note that, by choice of t as left inverse to inF , we have

tF(i) = tF(i) ○ idF(i) ⩕F idF(i) ,
which implies, by Lemma 5.3 (c), that

D(tF(i)) ⩕D○F D(idF(i)) .

For µ ∈ Cone(D ○ F , a), it therefore follows by Lemma 5.4 that

πD ,F(πD[t](µ)) = πD ,F((µθ(i) ○ D(ti))i∈I)= (µθ(F(i)) ○ D(tF(i)))i∈S= (µi ○ D(idF(i)))i∈S= µ . ◻
Corollary 5.16. Let D ∶ I → C be a diagram with a colimit. If F ∶ J → I
is dense, then limÐ→(D ○ F) = limÐ→D.
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1. Filtered limits and inductive completions
Recall that every partial order can be considered as a category where
there is at most onemorphismbetween any two objects. Using this corres-
pondence, we can generalise the notion of being κ-directed from partial
orders to arbitrary categories where there may be several morphisms
between two objects.

Definition 1.1. (a) A category C is κ-filtered if
(f1) for every set X ⊆ Cobj of size ∣X∣ < κ, there exist an object b ∈ C

and morphisms a→ b, for each a ∈ X ;
(f2) for every pair of objects a, b ∈ C and every set X ⊆ C(a, b) of size∣X∣ < κ, there exist an object $ ∈ C and a morphism g ∶ b→ $ such

that

g ○ f = g ○ f ′ , for all f , f ′ ∈ X .

For κ = ℵ0, we call C simply filtered.
(b) A κ-filtered diagram is a diagram D ∶ I → C where the index

category I is κ-filtered. The colimit of such a diagram is called a κ-filtered
colimit.

Conditions (f1) and (f2) state that certain diagrams have a cocone.
It turns out that both conditions together imply that every sufficiently
small diagram has a cocone.

Lemma 1.2. A category C is κ-filtered if, and only if, there is a cocone for
every diagram D ∶ I → C of size less than κ.
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Proof. (⇐) is obvious. For (⇒), let D ∶ I → C be a diagram of size less
than κ. By (f1), there exist an object a and morphisms gi ∶ D(i) → a, for
i ∈ I . By (f2), we can find, for every morphism f ∶ i→ k of I , an object
b f ∈ C and a morphism h f ∶ a→ b f such that

h f ○ gi = h f ○ gk ○ D( f ) .

By (f1), there exist an object $ ∈ C and morphisms k f ∶ b f → $, for
f ∈ Imor. By (f2), we can find an object d ∈ C and a morphism e ∶ $→ d
such that

e ○ k f ○ h f = e ○ k f ′ ○ h f ′ , for all f , f ′ ∈ Imor .

D(i)

D(k)

D(j)

a

a

a

b f

b f ′

$

$

dgi

D( f )

D( f ′)

gk

gj

h f

h f ′

h f

h f ′

k f

k f ′

e

e

Set φ ∶= e ○ k f ○h f , for an arbitrary f ∈ Imor. Then φ∗ g is the desired
cocone since, for every f ∶ i→ k in Imor,

φ ○ gk ○ D( f ) = e ○ k f ○ h f ○ gk ○ D( f )= e ○ k f ○ h f ○ gi= φ ○ gi . ◻
It follows that a.p.-equivalence is especially simple for filtered dia-

grams.

Corollary 1.3. Let D ∶ I → C be a filtered diagram and f ∶ a→ D(i) and
g ∶ a→ D(j)morphisms. Then

f ⩕D g iff there are h ∶ i→ k and h′ ∶ j→ k in I such that
D(h) ○ f = D(h′) ○ g .
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Proof. (⇐) If D(h) ○ f = D(h′) ○ g then h and h′ form an alternating
path P ∶ Z1 → (a ↓ D) of length 1 from f to g.(⇒) Fix an alternating path P ∶ Zn → (a ↓ D) from f to g and let
Q ∶ (a ↓ D) → I be the projection defined by

Q(g) ∶= k , for objects g ∶ a→ D(k) ,
Q(h) ∶= h , for morphisms h ∶ g → g′ .

Then Q○P ∶ Zn → I is an alternating path in I and Lemma 1.2 provides a
cocone µ from Q○P to some object m ∈ I . By Lemma b3.4.5 (b), it follows
that D[µ] is a cocone from D ○Q ○ P to D(m). Since all morphisms of P
are in the range of D ○ Q ○ P, it follows that P factorises as P = I ○ P0,
where P0 ∶ Zn → (a ↓ D ○ Q ○ P) is an alternating path from f to g and
I ∶ (a↓D ○ Q ○ P) → (a↓D) is the inclusion functor. Hence, f ⩕D○Q○P g
and, applying Lemma b3.5.4 to the diagram D ○ Q ○ P, we obtain

D(µ0) ○ f = D(µn) ○ g . ◻
When considering κ-filtered categories, we will frequently restrict our

attention to the case where κ is regular. This practice is justified by the
following lemma.

Lemma 1.4. Let κ be a singular cardinal. Every κ-filtered category C is
κ+-filtered.

Proof. Let C be κ-filtered. To show that it is κ+-filtered, we have to check
two conditions.

(f1) Let X ⊆ Cobj be a set of size ∣X∣ ≤ κ. As κ is singular, we can
write X as a union ⋃α<λ Xα of λ < κ sets of size ∣Xα ∣ < κ. Since C is
κ-filtered, it follows that, for every α < λ, there exist an object aα ∈ C and
morphisms f αb ∶ b→ aα , for b ∈ Xα . Similarly, we can find an object $ ∈ C
and morphisms gα ∶ aα → $, for α < λ. For each b ∈ X, fix an ordinal
α(b) such that b ∈ Xα(b). It follows that the family

gα(b) ○ f α(b)b ∶ b→ $ , for b ∈ X ,
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witnesses (f1).
(f2) Let X ⊆ C(a, b) be a set of size ∣X∣ ≤ κ. We write X as the union⋃α<λ Xα of an increasing sequence (Xα)α<λ of λ < κ sets of size ∣Xα ∣ < κ.

Since C is κ-filtered, it follows that, for every α < λ, there exist an object
$α ∈ C and a morphism gα ∶ b→ $α such that

gα ○ f = gα ○ f ′ , for all f , f ′ ∈ Xα .

By Lemma 1.2, we can find an object d and morphisms hα ∶ $α → d and
h′ ∶ b→ d such that

hα ○ gα = h′ , for all α < λ .

We claim that h′ is the desired morphism. Let f , f ′ ∈ X. Then f ∈ Xα
and f ′ ∈ Xβ , for some α, β < λ. Setting γ ∶= max {α, β}, it follows that
f , f ′ ∈ Xγ and

h′ ○ f = hγ ○ gγ ○ f = hγ ○ gγ ○ f ′ = h′ ○ f ′ . ◻
Reducing filtered to directed colimits

We will show below that every κ-filtered colimit can also be obtained
as colimit of a κ-directed diagram. Hence, in terms of colimits this
generalisation does not provide more expressive power. We start with
some technical lemmas.

Lemma 1.5. Let I and J be κ-filtered categories.

(a) I × J is κ-filtered.

(b) The projection functor P ∶ I × J → I is dense.

Proof. (a) (f1) Let ⟨ai , bi⟩i<γ be a family of objects of size γ < κ. SinceI and J are κ-filtered, we can find objects $ ∈ I and d ∈ J and morph-
isms f i ∶ ai → $ and g i ∶ bi → d, for i < γ. Consequently, we obtain
morphisms ⟨ f i , g i⟩ ∶ ⟨ai , bi⟩ → ⟨$, d⟩, for i < γ.
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(f2) Consider a family of morphisms

⟨ f i , g i⟩ ∶ ⟨a, b⟩ → ⟨$, d⟩ , i < γ ,

of size γ < κ. Since I and J are κ-filtered, we can find morphisms
h ∶ $→ e in I and k ∶ d→ f in J such that

h ○ f i = h ○ f j and k ○ g i = k ○ g j , for all i , j < γ .

Consequently,

⟨h, k⟩ ○ ⟨ f i , g i⟩ = ⟨h, k⟩ ○ ⟨ f j , g j⟩ , for all i , j < γ .

(b) (d1) We can use (f1) with X = ∅ to find some object b ∈ J . It
follows that, for every a ∈ I , we have a morphism ida ∶ a→ P(⟨a, b⟩).

(d2) Let f ∶ a → P(⟨b, $⟩) and f ′ ∶ a → P(⟨b′ , $′⟩) be morphisms
of I . By Lemma 1.2, there exist morphisms g ∶ b → d, g′ ∶ b′ → d, and
g′′ ∶ a→ d such that g ○ f = g′′ = g′ ○ f ′. AsJ is κ-filtered, there exist an
object e ∈ J and morphisms h ∶ $→ e and h′ ∶ $′ → e. Consequently, we
obtain morphisms ⟨g , h⟩ ∶ ⟨b, $⟩ → ⟨d, e⟩ and ⟨g′ , h′⟩ ∶ ⟨b′ , $′⟩ → ⟨d, e⟩
such that

P(⟨g , h⟩) ○ f = P(⟨g′ , h′⟩) ○ f ′ .

These two morphisms form an alternating path from f to f ′. ◻
Lemma 1.6. Let I be a κ-filtered category and K a κ-directed partial order
without maximal elements. Every subcategoryA ⊆ I × K with ∣Amor∣ < κ
can be extended to a subcategory A ⊆ A+ ⊆ I × K such that ∣Amor+ ∣ < κ
and A+ has a unique terminal object.

Proof. Let A ⊆ I × K be a subcategory with less than κ morphisms.
According to Lemma 1.5, the product I×K is κ-filtered. Therefore, we can
use Lemma 1.2 to find a cocone µ from the inclusion functorA → I ×K
to some object ⟨b, k⟩ ∈ I × K. Since K has no maximal element, there
exists some l ∈ K with l > k. Let h ∶= ⟨idb , h′⟩ ∶ ⟨b, k⟩ → ⟨b, l⟩ be the
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morphisms whose second component is the uniquemorphism h′ ∶ k → l
of K. LetA+ be the category obtained fromA by adding the object ⟨b, l⟩,
the identity morphism id⟨b, l⟩, and the morphisms

h ○ µ⟨a, i⟩ ∶ ⟨a, i⟩ → ⟨b, l⟩ , for all ⟨a, i⟩ ∈ A .

(Note that these morphisms are closed under composition since h ∗ µ is
a cocone.) Then ⟨b, l⟩ is the unique terminal object ofA+. ◻
Theorem 1.7. Let κ be a regular cardinal. For every small κ-filtered cat-
egory C, there exist a dense κ-directed diagram D ∶ J→ C.

Proof. Set J ∶= C × κ and let P ∶ J → C be the projection functor. By
Lemma 1.5, J is κ-filtered and P is dense. It is therefore sufficient to find
a dense κ-directed diagram D ∶ J→ J . Then the composition P ○ D is
the desired dense κ-directed diagram.
As index set we use the partial order J ∶= ⟨I , ⊆⟩ where I is the set

of all subcategories A ⊆ J with ∣Amor∣ < κ such that A has a unique
terminal object. To show that J is κ-directed, consider a set X ⊆ I of size∣X∣ < κ. LetA be the subcategory of J generated by the morphisms in

⋃B∈XBmor .

Since κ is regular,A still has less than κ morphisms. By Lemma 1.6, there
exists a subcategoryA ⊆ A+ ⊆ J with a unique terminal object. Hence,A+ ∈ I is an upper bound of X.

Let D ∶ J → J be the functor mapping a subcategory A ∈ J to its
terminal object andmapping a pairA ⊆ B of subcategories to the unique
morphism from the terminal object ofA to the terminal object of B. We
claim that D is dense in J .

For (d1), let $ ∈ J . The subcategory A of J consisting just of the
object $ and its identity morphism has a unique terminal object. Hence,A ∈ J and D(A) = $. Consequently, the identity morphism id$ ∶ $ →
D(A) has the desired properties.
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For (d2), let f ∶ $→ D(A0) and f ′ ∶ $→ D(A1) be morphisms of J .
LetB be a subcategory ofJ of size ∣Bmor∣ < κ containing f , f ′ and every
morphism of Amor

0 ∪ Amor
1 . By Lemma 1.6, there exists a subcategoryB+ ∈ I containing B. Since D(B+) is a terminal object, B+ contains

unique morphisms

h ∶ $→ D(B+) ,
g ∶ D(A0) → D(B+) ,

g′ ∶ D(A1) → D(B+) .
$

D(A0)

D(A1)

D(B+)
f

f ′
h

g

g′

By uniqueness, it follows that g ○ f = h = g′ ○ f ′. Hence, g and g′ from
an alternating path from f to f ′ ◻
Corollary 1.8. Let κ be a regular cardinal. For every κ-filtered diagram
D ∶ I → C with a colimit, there exists a κ-directed diagram F ∶ K → I
such that limÐ→(D ○ F) = limÐ→D.

Corollary 1.9. Let κ be a regular cardinal. A functor F ∶ C → D preserves
κ-filtered colimits if, and only if, it preserves κ-directed ones.

Inductive completions

There is a general way to construct the closure of a category under κ-
filtered colimits.

Definition 1.10. Let C be a category, κ an infinite cardinal, and λ either
an infinite cardinal or λ = ∞.

(a) The inductive (κ, λ)-completion of C is the category

Indλ
κ(C) ∶= IndP λ

κ
(C) ,
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where P λ
κ is the class of all small κ-filtered categories of size less than λ.

For κ = ℵ0 and λ = ∞, we drop the indices and simply write Ind(C).
(b) Let P be a class of small categories containing the singleton cat-

egory [1]. The inclusion functor I ∶ C → IndP(C) sends an object a ∈ C to
the singleton diagram Ca ∶ [1] → C ∶ 0↦ a and a morphism f ∶ a→ b to
the link t = (t i)i∈[1] from Ca to Cb that consists of the morphism t0 ∶= f .

We will show below that Indλ
κ(C) is the closure of C under κ-filtered

colimits of size less than λ. We start by determining the colimit of a
κ-filtered diagram D ∶ I → Indλ

κ(C). This colimit consists of a large
diagram U that is built up from the diagrams D(i), for i ∈ I .

Definition 1.11. Let D ∶ I → Indλ
κ(C) be a diagram and, for i ∈ I , letK(i) be the index category of the diagram D(i) ∶ K(i) → C.

(a) A union of D is a diagram U ∶ J → C of the following form. For
each morphism f ∶ i → j of I , fix a link t( f ) from D(i) to D(j) such
that D( f ) = [t( f )]⩕D(j). Let S be the subcategory of C generated by all
morphisms in

⋃
i∈Iobj

rngD(i)mor ∪ ⋃
f ∈Imor

t( f ) .

The index category J has the objects

J obj ∶= ⊍
i∈Iobj

K(i)obj = { ⟨i, k⟩ ∣ i ∈ I , k ∈ K(i) } ,
and the morphisms

J (⟨i, k⟩, ⟨j, l⟩) ∶= S(D(i)(k),D(j)(l)) .

The functor U ∶ J → C is defined by

U(⟨i, k⟩) ∶= D(i)(k) , for ⟨i, k⟩ ∈ J obj ,
U( f ) ∶= f , for f ∈ J mor .
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(b) Let µ be a cocone from D to some object E ∈ Indλ
κ(C) and, for

i ∈ I , let ti = (ti
k)k∈K(i) be a link such that µi = [ti]⩕E . The union of µ is

the a.p.-equivalence class [t]⩕E of the family

t ∶= (ti
k)⟨i,k⟩∈J .

Remark. Note that, due to the choice of the links t( f ), a diagram D
might have several unions. It will follow from Proposition 1.13 below that
they are all isomorphic.

To prove that the union of a diagram is its colimit, we start with a
lemma collecting several technical properties of the union operation.

Lemma 1.12. Let U ∶ J → C be a union of the diagram D ∶ I → Indλ
κ(C),

and let E ∈ Indλ
κ(C).

(a) Every cocone µ ∈ Cone(D, E) has a unique union.
(b) The union [u]⩕E of µ ∈ Cone(D, E) is a morphism [u]⩕E ∶ U → E

of Indall(C).
(c) The function ηE ∶ Cone(D, E) → Indall(C)(U , E) that maps a

cocone to its union is bijective.
(d) For i ∈ I , the inclusion link inD(i) is a link from D(i) to U.

Proof. Let K(i) be the index category of D(i) and, for f ∈ Imor, let
t( f ) be the representative of D( f ) used to construct the union U .

(a) We have to show that the union of µ is independent of the choice
of the links. For each i ∈ I , suppose that ui and w i are a.p.-equivalent
links from D(i) to E such that

[ui]⩕E = µi = [w i]⩕E .

Then [ui
k]⩕E = [w i

k]⩕E , for all ⟨i, k⟩ ∈ J , which implies that the corres-
ponding links u = (ui

k)⟨i,k⟩∈J and w = (w i
k)⟨i,k⟩∈J are a.p.-equivalent and

induce the same value [u]⩕E = [w]⩕E .
(b) Let µ ∈ Cone(D, E) be a cocone where µi = [ui]⩕E , and let [u]⩕E be

the union of µ. We have to show that u is a link from U to E. As every
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morphism of J is a finite composition of morphisms of the form t( f )k
and D(i)(g), it is sufficient to prove the equivalence

uj
l ○U(h) ⩕E ui

k

for morphisms h ∶ ⟨i, k⟩ → ⟨j, l⟩ of this form.
For h = D(i)(g) with g ∶ k → l inK(i), note that ui is a link from D(i)

to E. Hence,

ui
l ○ D(i)(g) ⩕E ui

k .

For h = t( f )k with f ∶ i → j in I and k ∈ K(i), the fact that µ is a
cocone of D implies that [uj]⩕E ○ [t( f )]⩕D(j) = [ui]⩕E . Hence,

uj
θ(k) ○ t( f )k ⩕E ui

k ,

where θ is the index map of t( f ).
(c) We have seen in (b) that ηE maps cocones from D to E to morph-

isms in Indall(C)(U , E). Hence, it remains to prove that ηE is bijective.
For injectivity, consider two cocones µ, µ′ ∈ Cone(D, E) such that

ηE(µ) = ηE(µ′). Fix links ui, w i, and t = (ti,k)⟨i,k⟩∈J such that

µi = [ui]⩕E , µ′i = [w i]⩕E , and ηE(µ) = [t]⩕E .

Then [ui
k]⩕E = [t⟨i,k⟩]⩕E = [w i

k]⩕E for all indices i, k. Consequently,

µi = [ui]⩕E = [w i]⩕E = µ′i , for all i ∈ I ,
which implies that µ = µ′.

For surjectivity, let s = (si,k)⟨i,k⟩∈J be a link from U to E. For i ∈ I , we
set si ∶= (si,k)k∈K(i) and µ ∶= ([si]⩕E )i∈I . As ηE(µ) = [s]⩕E it is sufficient
to prove that µ is a cocone from D to E.
We start by showing that each family si is a link from D(i) to E. Let

g ∶ k → l be a morphism of K(i). As s is a link from U to E, we have
sj,l ○ D(i)(g) ⩕E si,k, as desired.
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It remains to show that µ is a cocone. Let f ∶ i→ j be a morphism of I
and let θ be the index map of t( f ). Since s is a link from U to E,

sj,θ(k) ○U(t( f )k) ⩕E si,k , for every k ∈ K(i) .

Consequently,

µj ○ D( f ) = [sj]⩕E ○ [t( f )]⩕D(j) = [si]⩕E = µi .

(d) Consider a morphism g ∶ k → l ofK(i) and set f ∶= D(i)(g). Then
f ∶ ⟨i, k⟩ → ⟨i, l⟩ in J and

U(id⟨i,l⟩) ○ idD(i)(l) ○ D(i)(g) = f = U( f ) = U( f ) ○ idD(i)(k) .

Hence, id⟨i,l⟩ and f form an alternating path from idD(i)(l) ○ D(i)(g) to
idD(i)(k) in (D(i)(k) ↓U). ◻

After these preparations we can prove that a union is a colimit.

Proposition 1.13. Let C be a category, κ, λ regular cardinals (or λ = ∞),
and let D ∶ I → Indλ

κ(C) be a κ-filtered diagram of size less than λ with
union U.

(a) U ∈ Indλ
κ(C).

(b) U = limÐ→D and a limiting cocone µ = (µi)i∈I from D to U is given
by

µi = [inD(i)]⩕U ∶ D(i) → U .

Proof. Let K(i) be the index category of D(i) and, for f ∈ Imor, let
t( f ) be the representative of D( f ) used to construct the union U .

(a) Since λ is regular, we have

∣J mor∣ ≤ ∑
i∈I ∣K(i)mor∣ < λ .

Hence, it remains to prove that U is κ-filtered.
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(f1) Let X ⊆ Iobj be a set of size ∣X∣ < κ. Since I is κ-filtered, there
exist an object m ∈ I and, for every ⟨i, k⟩ ∈ X, a morphism fi ∶ i→ m in I .
Let θ i be the index map of t( fi). SinceK(m) is κ-filtered, it contains an
object n ∈ K(m) and morphisms gi,k ∶ θ i(k) → n, for every ⟨i, k⟩ ∈ X. The
desired family of morphisms of J is given by

hi,k ∶= D(m)(gi,k) ○ t( fi)k , for ⟨i, k⟩ ∈ X .

(f2) Let X ⊆ J (⟨i, k⟩, ⟨j, l⟩) be a set of size ∣X∣ < κ. For each morphism
f ∈ X, we choose a factorisation

f = h f
0 ○ ⋅ ⋅ ⋅ ○ h f

n f ,

where each factor h f
i is of the form D(m)(g), for some m ∈ Iobj and

g ∈ K(i)mor, or of the form t( f )m, for some f ∈ Imor. Let J0 ⊆ J be
the minimal subcategory of J that contains all these morphisms h f

i , for
f ∈ X and i ≤ n f , and such that the restriction U0 ∶= U ↾J0 is a union of
some restriction D↾I0, for some I0 ⊆ I . Let F ∶ I0 → I be the inclusion
functor. Note that ∣X∣ < κ implies

∣Imor
0 ∣ < κ and ∣J mor

0 ∣ < κ .

As I is κ-filtered, we can use Lemma 1.2 to find a cocone µ0 from F
to some object m ∈ I . Set µ ∶= D[µ0] and let [u]⩕D(m) be the union of µ.
By Lemma 1.12 (b), u is a link from U0 to D(m). Hence,

u⟨j,l⟩ ○ f ⩕D(m) u⟨i,k⟩ , for every f ∈ X .

Let ρ be the index map of u. As D(m) is κ-filtered, we can use Corol-
lary 1.3 to find morphisms

h f ∶ ρ(⟨j, l⟩) → n f and h′f ∶ ρ(⟨i, k⟩) → n f

such that

D(m)(h f ) ○ u⟨j,l⟩ ○ f = D(m)(h′f ) ○ u⟨i,k⟩ .
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According to Lemma 1.2, we can find an object n ∈ K(m) andmorphisms
g f ∶ n f → n, for f ∈ X, such that

g f ○ h f = g f ′ ○ h f ′ and g f ○ h′f = g f ′ ○ h′f ′ ,
for all f , f ′ ∈ X. Hence, φ ∶= D(m)(g f ○ h f ) ○ u⟨j,l⟩ (which does not
depend on f ) is a morphism such that

φ ○ f = D(m)(g f ○ h f ) ○ u⟨j,l⟩ ○ f= D(m)(g f ○ h′f ) ○ u⟨i,k⟩= D(m)(g f ′ ○ h′f ′) ○ u⟨i,k⟩= D(m)(g f ′ ○ h f ′) ○ u⟨j,l⟩ ○ f ′ = φ ○ f ′ ,
for all f , f ′ ∈ X.

(b) To see that µ is the desired limiting cocone, we have to check
several properties. We have already seen in Lemma 1.12 (d) that each
component µi is a morphism D(i) → U .

Next, we prove that µ is a cocone of D. Let f ∶ i → j be a morphism
of I and let θ be the index map of t( f ). Then

U(t( f )k) ○ idD(i)(k) = t( f )k = U(id⟨j,θ(k)⟩) ○ idD(j)(θ(k)) ○ t( f )k .

Hence, t( f )k and id⟨j,θ(k)⟩ form an alternating path from idD(i)(k) to
idD(j)(θ(k)) ○ t( f )k in (D(i)(k) ↓U). This implies that

µj ○ D( f ) = [inD(j)]⩕U ○ [t( f )]⩕D(j)= [inD(j) ∗ t( f )]⩕U = [inD(i)]⩕U = µi .

It remains to show that µ is limiting. Let µ′ ∈ Cone(D, E) be a cocone
where µ′i = [w i]⩕E , and let [w]⩕E be the union of µ′. We have seen in
Lemma 1.12 (b) that [w]⩕E is a morphism U → E. Furthermore,

[w]⩕E ∗ µ = ([w i]⩕E ○ [inD(i)]⩕U )i∈I = ([w i]⩕E )i∈I = (µ′i )i∈I = µ′ .

Hence, the function [w]⩕E ↦ [w]⩕E ∗ µ is an inverse to the bijective
function of Lemma 1.12 (c). By Lemma b3.4.2 it follows that µ is limiting.◻
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It turns out that Indλ
κ(C) is the closure of C under κ-filtered colimits

of size less than λ, i.e., it is the smallest category containing C that is
closed under such colimits. We begin the proof with a technical lemma
summarising properties of the inclusion functor C → IndP(C).
Lemma 1.14. Let C be a category, P a class of small categories containing
the singleton category [1], and be I ∶ C → IndP(C) be the inclusion functor.

(a) I is well-defined.
(b) For links s and t from D ∈ IndP(C) to I(a),

[s]⩕I(a) = [t]⩕I(a) ∶ D → I(a) implies s = t .

(c) I is full and faithful.
(d) For every D ∈ IndP(C), the inclusion [inD]⩕U ∶ D → U is an

isomorphism, where U is the union of I ○ D.
(e) For every D ∈ IndP(C) and every object a ∈ C, I induces an iso-

morphism

Cone(D, a) → IndP(C)(D, I(a)) ∶ µ ↦ I[µ] .

(f) A family t is a link from a diagram D ∶ I → C to I(a) if, and only if,
t is a cocone from D to a.

Proof. To keep notation simple, we will not distinguish below between
a morphism f ∶ a → b of C and the link t = (t i)i∈[1] from I(a) to I(b)
whose only component is t0 = f .

(a) Clearly, I(a) ∈ Indλ
κ(C), for every object a ∈ C. Furthermore, if

f ∶ a→ b is a morphism of C, then the family I( f ) consisting just of f is
a link from I(a) to I(b) since it only has to satisfy the trivial requirement
that f ○ I(ida) ⩕I(b) f .

(b) Let i ∈ I . Since [s]⩕I(a) = [t]⩕I(a), the comma category (D(i) ↓ I(a))
contains an alternating path from si to ti. As ida is the only morphism
of I(a), this alternating path consists only of identity morphisms. Con-
sequently, si = ti.
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(c) To show that I is full, let [ f ]⩕I(b) ∶ I(a) → I(b) be a morphism of
Indλ

κ(C). Then f = ( f i)i∈[0] consists just of one morphism f0 ∶ a → b
and I( f0) = [ f ]⩕I(b).

To prove that I is faithful, suppose that I( f ) = I(g) for morphisms
f , g ∶ a→ b. Then [ f ]⩕I(b) = [g]⩕I(b) and (b) implies that f = g.

(d) Let D ∶ I → C be an object of IndP(C) and let U ∶ J → C be
the union of I ○ D. Note that J obj = Iobj × [1]. Since [inD]⩕U ∶ D → U
only consists of identity morphisms idD(i) ∶ D(i) → U(⟨i, 0⟩), it has an
inverse [t]⩕D ∶ U → D where

t⟨i,0⟩ ∶= idD(i) ∶ U(⟨i, 0⟩) → D(i) , for ⟨i, 0⟩ ∈ J .

Furthermore, as both families only consist of identity morphisms, it is
straightforward to check that they are links.

(e) By (d), D is the union of I ○ D. Hence, the morphism

Cone(D, a) → IndP(C)(D, I(a)) ∶ µ ↦ I[µ]
can be written as composition of the natural isomorphisms

τI ,D ∶ Cone(D, a) → Cone(I ○ D, I(a)) ∶ µ ↦ I[µ]
and ηI(a) ∶ Cone(I ○ D, I(a)) → Indall(C)(D, I(a)) ,
where ηI(a) is the morphism from Lemma 1.12 (c).

(f) (⇐) Let t be a cocone from D to a. For every morphism f ∶ i→ j
of I , we have tj ○ D( f ) = ti, which implies that tj ○ D( f ) ⩕I(a) ti.(⇒) Let t be a link from D to I(a). By (e), there is a unique cocone
µ ∈ Cone(D, a) such that I[µ] = [t]⩕I(a). Hence, (b) implies that µ = t.
In particular, t ∈ Cone(D, a). ◻
Theorem 1.15. Let C be a category, κ, λ regular cardinals (or λ = ∞), and
I ∶ C → Indλ

κ(C) the inclusion functor.

(a) Every κ-filtered diagram D ∶ I → Indλ
κ(C) of size less than λ has a

colimit in Indλ
κ(C).

299



b4. Accessible categories

(b) For every object a ∈ Indλ
κ(C), there exists a κ-filtered diagram D ∶I → C of size less than λ such that a = limÐ→(I ○ D).

Proof. (a) follows immediately from Proposition 1.13.
(b) Let D ∈ Indλ

κ(C). By Lemma 1.14 (e), D is isomorphic to the union
of I○D. Consequently, it follows by Proposition 1.13 that D ≅ limÐ→(I ○ D).◻
Exercise 1.1. Prove the following universal property of Indλ

κ(C) : for
every functor F ∶ C → D into a categoryD that has κ-directed colimits
of size less than λ, there exists a unique functor G ∶ Indλ

κ(C) → D such
that G preserves κ-filtered colimits of size less than λ and F factorises as
F = G ○ I, where I ∶ C → Indλ

κ(C) is the inclusion functor.

Remark. For every κ-filtered diagram D ∶ I → C of size less than λ, the
inductive completion Indλ

κ(C) has a colimit: the diagram D itself. But
note that, if D already has a colimit a in C, the corresponding object I(a)
of Indλ

κ(C) will in general not be a colimit. In fact, a limiting cocone λ
from D to a induces a morphism [λ]⩕I(a) ∶ D → I(a) in Indλ

κ(C), but
there is no reason why this morphism should be an isomorphism.

2. Extensions of diagrams
In this section we consider ways to extend a diagram D ∶ I → C to a
diagram D+ ∶ I+ → C with a larger index category. For instance, given a
κ-directed diagram and a cardinal λ ≥ κ, we would like to construct a
λ-directed diagram with the same colimit.

Completions of directed orders
We start by transforming κ-directed partial orders into λ-directed ones.

Definition 2.1. Let J be a partial order and κ, λ infinite cardinals or
λ = ∞. The (κ, λ)-completion of J is the partial order J+ ∶= ⟨I+ , ⊆⟩
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where

I+ ∶= { ⇓S ∣ S ⊆ I is κ-directed and ∣S∣ < λ } .

Our hope is that, using a generalisation of Lemma b3.3.5, we can
prove that the (κ, λ)-completion of a κ-directed partial order is λ-direc-
ted. Unfortunately, this is not true in general. In only holds for certain
cardinals κ and λ.

Before characterising such cardinals, we compare the (κ, λ)-comple-
tion of a κ-directed partial order J to its inductive completion. It turns
out that these two categories are equivalent. Before presenting the proof,
let us note that the inductive completion of a preorder is again a preorder.

Lemma 2.2. Let κ and λ be infinite cardinals or λ = ∞. If J is a preorder,
then so is Indλ

κ(J).
Proof. We have to prove that between any two objects D ∶ J → J and
E ∶ K → J of Indλ

κ(J), there is at most one morphism. Consider two
links s and t from D to E. We claim that s ⩕E t. Let ρ and θ be the index
maps of, respectively, s and t and let j ∈ J . As E is κ-filtered, there exist
an index k ∈ K and morphisms g ∶ ρ(j) → k and h ∶ θ(j) → k. It follows
that E(g)○ sj and E(h)○ tj are both morphisms from D(j) to E(k). Since
J is a preorder, this implies that E(g) ○ sj = E(h) ○ tj. Consequently,
g and h form an alternating path from sj to tj in (D(j) ↓ E). This implies
that sj ⩕E tj. ◻
Proposition 2.3. Let J be a partial order and let κ, λ be infinite cardinals
or λ = ∞. The (κ, λ)-completion J+ of J is equivalent to Indλ

κ(J).
Proof. It is sufficient to prove that the function

h ∶ Indλ
κ(J) → J+ ∶ D ↦ ⇓ rngDobj

is a surjective strict homomorphism. Then h induces a full and faithful
functor Indλ

κ(J) → J+. Since, trivially, every object of J+ is isomorphic

301



b4. Accessible categories

to some object in the image of this functor, it follows by Theorem b1.3.14
that the functor is an equivalence.

Let D ∶ J → J and E ∶ K → J be diagrams in Indλ
κ(J). To see that h is

a homomorphism, suppose that there exists a morphism [t]⩕E ∶ D → E.
Let θ be the index map of t. Then the morphisms tj ∶ D(j) → E(θ(j))
witness that D(j) ≤ E(θ(j)), for all j ∈ J . This implies that

rngDobj ⊆ ⇓ rng Eobj .

Hence, h(D) ⊆ h(E).
For strictness, suppose that h(D) ⊆ h(E). Then rngDobj ⊆ ⇓ rng Eobj

implies that, for every index j ∈ J , we can find some index θ(j) ∈ K
such that D(j) ≤ E(θ(j)). Setting

tj ∶= ⟨D(j), E(θ(j))⟩ , for j ∈ J ,

we obtain a link from D to E with index map θ.
It remains to prove that h is surjective. Let S ∈ I+. Then S = ⇓S0, for a

κ-directed set S0 ⊆ I of size ∣S0∣ < λ. Let D ∶ J ↾ S0 → J be the inclusion
functor. Then D ∈ Indλ

κ(J) and h(D) = ⇓S0 = S. ◻
If the (κ, λ)-completion is equivalent to the inductive completion,

why did we introduce it? The reason is that we would like to extend a
κ-directed diagram D ∶ J → C to a λ-directed one D+ ∶ J+ → C. We
cannot take the category Indλ

κ(J) as index category J+ since it is not
small. Instead, we can use the skeleton of Indλ

κ(J), which is small and
isomorphic to the (κ, λ)-completion of J.

Before doing so, we sill have to characterise the cardinals κ, λ such that
the (κ, λ)-completion is λ-directed. This is achieved by the following
relation.

Definition 2.4. For infinite cardinals κ, λ, we write κ ⊴ λ if κ ≤ λ and,
for every set X of size ∣X∣ < λ, there exists a set D ⊆ ℘κ(X) of size ∣D∣ < λ
that is dense in the partial order ⟨℘κ(X), ⊆⟩, where

℘κ(X) ∶= { S ⊆ X ∣ ∣S∣ < κ } .
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Exercise 2.1. Let κ be a regular cardinal. Prove that a set D ⊆ ℘κ(X) is
dense if, and only if, ⟨D, ⊆⟩ is κ-directed and ⋃D = X.

The next lemma summarises the basic properties of the relation ⊴.

Lemma 2.5. Let Cnℵ0 be the class of all infinite cardinals.
(a) ⊴ is a partial order on Cnℵ0 .
(b) κ ⊲ κ+, for every regular cardinal κ.
(c) If κ < λ are cardinals such that µ<κ < λ, for all µ < λ, then κ ⊲ λ.
(d) κ ⊲ (2<λ)+ for all cardinals κ ≤ λ.
(e) The partial order ⟨Cnℵ0 , ⊴⟩ is κ-directed for every cardinal κ.

Proof. (a) The relation ⊴ is antisymmetric since, by definition, κ ⊴ λ
implies κ ≤ λ. For reflexivity, let X be a set of size ∣X∣ < κ. Then X ∈℘κ(X) and the set D ∶= {X} is dense. It remains to prove transitivity.
Suppose that κ ⊴ λ ⊴ µ. If λ = µ, we are done. Hence, suppose that λ ⊲ µ.
To show that κ ⊴ µ, let X be a set of size ∣X∣ < µ. Since λ ⊲ µ, there exists
a dense set D ⊆ ℘λ(X) of size ∣D∣ < µ. Since κ ⊴ λ, we can choose, for
every Y ∈ D, a dense set EY ⊆ ℘κ(Y) of size ∣EY ∣ < λ. Set

F ∶= ⋃
Y∈D EY .

Then ∣F∣ ≤ ∑Y∈D ∣EY ∣ ≤ λ ⊗ ∣D∣ < µ. Hence, it remains to prove that F is
dense. Let U ∈ ℘κ(X). Then U ∈ ℘λ(X) and there is some Y ∈ D with
U ⊆ Y . Therefore, we can find a set Z ∈ EY ⊆ F with U ⊆ Z.

(b) Let X be a set of size ∣X∣ < κ+. Choose an injective map f ∶ X → κ.
We claim that the set

D ∶= { f −1[↓α] ∣ α < κ }
is dense in ℘κ(X). First, note that ∣ f −1[↓α]∣ ≤ ∣α∣ < κ, for each α < κ.
Hence, D ⊆ ℘κ(X).

Given Y ∈ ℘κ(X), set γ ∶= sup f [Y]. Since ∣ f [Y]∣ < κ and κ is regular,
it follows that γ < κ. Hence, Y ⊆ f −1[↓(γ + 1)] ∈ D.
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(c) Let X be a set of size µ ∶= ∣X∣ < λ. Then ∣℘κ(X)∣ = µ<κ < λ. Hence,
D ∶= ℘κ(X) is a dense set of size less than λ.

(d) Let κ ≤ λ and set µ ∶= (2<λ)+. Then

(<µ)<κ = (2<λ)<κ = sup{ (2λ0)κ0 ∣ κ0 < κ, λ0 < λ }
= sup{ 2λ0⊗κ0 ∣ κ0 < κ, λ0 < λ } ≤ 2<λ < µ .

Hence, (c) implies that κ ⊲ µ.
(e) Let X be a set of cardinals. We set µ ∶= sup X and λ ∶= (2<µ)+.

By (d), it follows that κ ⊲ λ, for every κ ≤ µ. Hence, λ is an upper bound
of X. ◻
Exercise 2.2. Prove that ℵ0 ⊴ λ, for all infinite cardinals λ.

Example. To show that the relation ⊴ is non-trivial, we prove that ℵ1 ⋪ℵω+1 by showing that there is no dense set D ⊆ ℘ℵ1(ℵω) of size ∣D∣ ≤ ℵω .
For a contradiction, suppose that D is such a dense set. Fix a surjective
function f ∶ ℵω → D. Since

⋃ f [↓ℵn] ≤ ℵn ⊗ ℵ0 = ℵn < ℵn+1 ,

we can pick, for every n < ω, an element zn ∈ ℵn+1 ∖ ⋃ f [↓ℵn]. Set
Z ∶= { zn ∣ n < ω }. Then Z ∈ ℘ℵ1(ℵω) and, as D is dense, there exists a
set Y ∈ D with Z ⊆ Y . Since f is surjective, there is some y ∈ ℵω with
f (y) = Y . Fix an index n < ω with y ∈ ℵn . Then

zn ∈ ℵn+1 ∖⋃ f [↓ℵn] ⊇ ℵn+1 ∖ Y

implies that Z ⊈ Y . A contradiction.

For regular cardinals we can characterise the relation ⊴ in several
different equivalent ways. One of them solves our question regarding
the (κ, λ)-completion. Further characterisations will be given in The-
orem 4.9 below.

Theorem 2.6. Let κ ≤ λ be regular cardinals. The following statements
are equivalent:

304

2. Extensions of diagrams

(1) κ ⊴ λ
(2) For each κ-directed set J, every subset X ⊆ I of size ∣X∣ < λ is

contained in a κ-directed subset H ⊆ I of size ∣H∣ < λ.
(3) The (κ, λ)-completion of a κ-directed partial order is λ-directed.

(4) Indλ
κ(J) is λ-directed, for every κ-directed partial order J.

Proof. (1)⇒ (2) Let I be a κ-directed partial order and let X ⊆ I be a set
of size ∣X∣ < λ. If λ = κ, the set X has an upper bound c ∈ I and X∪{c} is
the desired κ-directed set containing X. Therefore, we may assume that
λ > κ. For the construction of H, we consider the following operation
B ∶ ℘λ(I) → ℘λ(I). Given U ∈ ℘λ(I), we define B(U) ∈ ℘λ(I) as
follows. Choose a dense set D ⊆ ℘κ(U) of size ∣U ∣ < λ and, for every
Z ∈ D, fix an upper bound kZ ∈ I of Z ⊆ I. We set

B(U) ∶= U ∪ { kZ ∣ Z ∈ D } .

Then U ⊆ B(U) and ∣B(U)∣ ≤ ∣U ∣ ⊕ ∣D∣ < λ.
Using this operation, we define an increasing sequence (Hα(U))α≤κ

of sets by

H0(U) ∶= U ,
Hα+1(U) ∶= B(Hα(U)) ,

Hδ(U) ∶= ⋃
α<δ Hα(U) , for limit ordinals δ .

By induction on α, it follows that ∣Hα(U)∣ < λ, for α ≤ κ and ∣U ∣ < λ.
We claim that Hκ(S) is the desired κ-directed set containing S. Let U ⊆
Hκ(S) be a set of size ∣U ∣ < κ. Since κ is regular, there is some ordinal α
such that U ⊆ Hα(S). Consequently, Hα+1(S) ⊆ Hκ(S) contains an
upper bound of U .

(2) ⇒ (3) Let J+ be the (κ, λ)-completion of a κ-directed partial
order J and let X ⊆ I+ be a set of size ∣X∣ < λ. By definition of I+, there
exists a family X0 of κ-directed subsets s ⊆ I of size ∣s∣ < λ such that
X = {⇓s ∣ s ∈ X0 }. Set S ∶= ⋃X0. Since λ is regular, we have ∣S∣ < λ.
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By (2), we can find a κ-directed set H ⊆ I such that S ⊆ H and ∣H∣ < λ.
For each s ∈ X0, s ⊆ H implies that ⇓s ⊆ ⇓H. Hence, ⇓H ∈ I+ is an upper
bound of X.

(3)⇔ (4) Let J be a κ-directed partial order and let J+ be its (κ, λ)-
completion. We have seen in Proposition 2.3 that the categories Indλ

κ(J)
and J+ are equivalent. Hence, the former is λ-directed if, and only if, the
latter is λ-directed.

(4)⇒ (1) Let X be a set of size ∣X∣ < λ. Note that, since κ is regular,
we have ⋃ Z ∈ ℘κ(X), for every subset Z ⊆ ℘κ(X) of size ∣Z∣ < κ. Con-
sequently, ⟨℘κ(X), ⊆⟩ is κ-directed. By (4), it follows that Indλ

κ(℘κ(X))
is λ-directed. Therefore, the preorder Indλ

κ(℘κ(X)) contains an up-
per bound D ∶ I → ℘κ(X) of the set { I({x}) ∣ x ∈ X }, where
I ∶ ℘κ(X) → Indλ

κ(℘κ(X)) is the inclusion functor. For x ∈ X, let θx be
the index map of the link from I({x}) to D. Then {x} ⊆ D(θx(0)), for
all x ∈ X.
We claim that rngDobj is a dense subset of ℘κ(X). Let Y ∈ ℘κ(X).

Since D is κ-filtered, there exist an index k ∈ I and morphisms fy ∶
θ y(0) → k, for y ∈ Y . Consequently,

{y} ⊆ D(θ y(0)) ⊆ D(k) implies Y ⊆ D(k) ∈ rngDobj . ◻
Extensions of directed diagrams
Having found a λ-directed completion J+ of a given κ-directed partial
order J, we can use it to extend κ-directed diagrams D ∶ J → C to a
λ-directed diagram D+ ∶ J+ → C. This construction is defined via a
detour through the inductive completion Indλ

κ(C). We construct two
diagrams J+ → Indλ

κ(C) and Indλ
κ(C) → C whose composition is the

extension J+ → C we are looking for. Let us start with the first diagram.

Definition 2.7. (a) Let D ∶ I → C be a diagram and F ⊆ ℘(Iobj). The
F-completion of D is the diagram

D+ ∶ ⟨F , ⊆⟩ → Indall(C)
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defined by

D+(S) ∶= D ↾ S , for objects S ∈ F ,
D+(S , T) ∶= [inD↾S]⩕D↾T , for pairs S ⊆ T .

(b) Let J be a partial order, D ∶ J → C a diagram, and κ, λ cardinals
or λ = ∞. The (κ, λ)-completion of D is the I+-completion D+ ∶ J+ →
Indall(C) of D, where J+ is the (κ, λ)-completion of J.

For well-behaved sets F, the F-completion preserves the colimit.

Lemma 2.8. Let F ⊆ ℘(Iobj) be a directed set with ⋃ F = Iobj and let
D+ be the F-completion of D ∶ I → C. Then limÐ→D+ ≅ D.

Proof. Let U ∶ J → C be the union of D+ where, for each pair S ⊆ T ,
we have chosen the representative uS ,T ∶= inD↾S of the equivalence class
D+(S , T) = [uS ,T]⩕D↾T . By Proposition 1.13 it is sufficient to show that
U ≅ D. For ⟨S , i⟩ ∈ J = ⊍S∈F S, set

s⟨S ,i⟩ ∶= idD(i) ∶ U(⟨S , i⟩) → D(i) .

For every i ∈ I , choose a set θ(i) ∈ F with i ∈ θ(i) and set

ti ∶= idD(i) ∶ D(i) → U(⟨θ(i), i⟩) .

We claim that s ∶= (s⟨S ,i⟩)⟨S ,i⟩∈J and t ∶= (ti)i∈I are links from, respect-
ively, U to D and D to U such that [s]⩕D ∶ U → D is an inverse of[t]⩕U ∶ D → U .
We start by showing that s and t are a links. For t, let f ∶ i → j be a

morphism of I and choose a set S ∈ F with i, j ∈ S. Then

uθ(j),S
j ○ tj ○ D( f ) = idD(j) ○ idD(j) ○ D( f )= D( f ) ○ idD(i) ○ idD(i)

= U(D( f )) ○ uθ(i),S
i ○ ti .
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Hence, uθ(j),S
j and D( f )○uθ(i),S

i form an alternating path from tj○D( f )
to ti in (D(i) ↓U).

For s, note that J is generated by morphisms of the form D( f ) and
uS ,T

i , for f ∈ Imor, S ⊆ T , and i ∈ Iobj. Hence, it is sufficient to check
that

s⟨T ,j⟩ ○U(h) ⩕D s⟨S ,i⟩ for such morphisms h .

For h = uS ,T
i , we have

s⟨T ,i⟩ ○U(uS ,T
i ) = idD(i) ○ idD(i) = idD(i) = s⟨S ,i⟩ .

For h = D( f ) with f ∶ i→ j in I ,
D(idj) ○ s⟨S ,j⟩ ○U(D( f )) = D(idj) ○ idD(j) ○ D( f )= D( f ) ○ idD(i)= D( f ) ○ s⟨S ,i⟩

implies that s⟨S ,j⟩ ○U(D( f )) ⩕D s⟨S ,i⟩.
It remains to prove that [s]⩕D is an inverse of [t]⩕U . Since

s ∗ t = (s⟨θ(i),i⟩ ○ ti)i∈I = (idD(i))i∈I ,
s is a left inverse of t. To show that it is also a right inverse, let ⟨S , i⟩ ∈ J
and fix a set T ∈ F with θ(i) ∪ S ⊆ T . Then

U(uθ(i),T
i ) ○ (t ∗ s)⟨S ,i⟩ = idD(i) ○ ti ○ s⟨S ,i⟩= idD(i) ○ idD(i) ○ idD(i)= U(idD(i)) ○ idU(⟨S ,i⟩)

implies that (t ∗ s)⟨S ,i⟩ ⩕U idU(⟨S ,i⟩). ◻
The second step of the construction uses the following functor to go

back to the category C.
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Definition 2.9. Let C be a category with P-colimits. Fixing, for every
diagram D ∈ IndP(C), a limiting cocone λD ∈ Cone(D, aD) of D, we
define the canonical projection functor

Q ∶ IndP(C) → C
as follows. Qobj maps diagrams D ∈ IndP(C) to their colimit aD . For
morphisms [t]⩕E ∶ D → E, we choose for Qmor([t]⩕E ) the unique morph-
ism φ ∶ aD → aE such that

λE ∗ t = φ ○ λD .

Lemma 2.10. Let P be a class of small categories containing the singleton
category [1], C a category with P-colimits, and let Q ∶ IndP(C) → C be
the canonical projection functor.

(a) Q is well-defined.
(b) Q preserves colimits.

Proof. Let (λD)D be the family of limiting cocones used to define Q and
let (aD)D be the corresponding colimits.

(a) Clearly, the object part Qobj is well-defined. Hence, it remains to
check the morphism part Qmor. First note that, for a link t from D to E,
we have shown in Lemma b3.5.8 that λE ∗ t is a cocone of D. As λD is
limiting, there therefore exists a unique morphism φ such that

λE ∗ t = φ ○ λD .

It remains to show that this morphism φ does not depend on the choice
of the representative t. Suppose that s ⩕E t. Then

λE ∗ s ⩕I(a) λE ∗ t

and it follows by Lemma 1.14 (b) that λE ∗ s = λE ∗ t.
(b) Let λ∗ be a limiting cocone from D ∶ I → IndP(C) to E. By

Lemma b3.4.5, Q[λ∗] is a cocone from Q ○ D to Q(E) = aE . Hence, it
remains to show that Q[λ∗] is limiting.
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Let µ ∈ Cone(Q ○D, b) be a cocone. We have to find a unique morph-
ism φ ∶ aE → b such that µ = φ ∗ Q[λ∗]. For i ∈ I , set

νi ∶= [µi ∗ λD(i)]⩕I(b) .

We claim that ν ∶= (νi)i∈I is a cocone from D to I(b).
Let f ∶ i → j be a morphism of I and suppose that D( f ) = [t]⩕D(j).

Note that, by definition of Q,

λD(j) ∗ t = Q(D( f )) ∗ λD(i) .
Since µ is a cocone of Q ○ D, it follows that

νj ○ D( f ) = [µj ∗ λD(j)]⩕I(b) ○ D( f )
= [µj ∗ λD(j) ∗ t]⩕I(b)
= [µj ∗ Q(D( f )) ∗ λD(i)]⩕I(b)
= [µi ∗ λD(i)]⩕I(b) = νi ,

as desired.
As ν is a cocone ofD and λ∗ is limiting, there exists a uniquemorphism[t]⩕I(b) ∶ E → I(b) such that

ν = [t]⩕I(b) ∗ λ∗ .

By Lemma 1.14 (f) it follows that t is a cocone from E to b. As λE is
limiting, there exists a unique morphism φ ∶ aE → b such that t = φ ∗ λE .
Suppose that λ∗i = [si]⩕E . Then

Q(λ∗i ) ∗ λD(i) = λE ∗ si

implies that

[Q(λ∗i ) ∗ λD(i)]⩕I(aE) = [λE]⩕I(aE) ∗ λ∗i .
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For every i ∈ I , it follows that

[φ ∗ Q(λ∗i ) ∗ λD(i)]⩕I(b) = [φ ∗ λE]⩕I(b) ∗ λ∗i
= [t]⩕I(b) ∗ λ∗i = νi = [µi ∗ λD(i)]⩕I(b) .

Using Lemma 1.14 (b), it follows that

φ ∗ Q(λ∗i ) ∗ λD(i) = µi ∗ λD(i) ,
which, by Lemma b3.4.2, implies that φ ○ Q(λ∗i ) = µi. Hence,

µ = φ ∗ Q[λ∗] .

It remains to prove that the morphism φ is unique. Suppose that
ψ ∶ aE → b is a morphism such that µ = ψ ∗ Q[λ∗]. Then

[ψ ∗ λE]⩕I(b) ∗ λ∗i = [ψ ∗ Q(λ∗i ) ∗ λD(i)]⩕I(b)= [µi ∗ λD(i)]⩕I(b) = νi = [t]⩕I(b) ∗ λ∗i ,
and it follows by Lemma b3.4.2 that

[ψ ∗ λE]⩕I(b) = [t]⩕I(b) .

Hence, Lemma 1.14 (b) implies that t = ψ ∗ λE . By choice of φ, it follows
that ψ = φ. ◻
Combining these two functors we obtain the desired λ-directed ex-

tension.

Proposition 2.11. Let κ ⊴ λ and let C be a category with κ-directed colimits
of size less than λ. For every κ-directed diagram D ∶ J→ C, there exists a
λ-directed diagram D+ ∶ J+ → C such that

limÐ→D+ ≅ limÐ→D

and, for every i ∈ I+, there is some κ-directed set S ⊆ I of size ∣S∣ < λ such
that

D+(i) ≅ limÐ→(D ↾ S) .
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Proof. Let D+ ∶ J+ → Indλ
κ(C) be the (κ, λ)-completion of D. By The-

orem 2.6 (3), the diagram D+ is λ-directed. Furthermore, we have seen
in Lemma 2.8 that limÐ→D+ ≅ D. According to Lemma 2.10, the canonical
projection functor Q ∶ Indλ

κ(C) → C preserves colimits. Hence, it follows
that

limÐ→(Q ○ D+) = Q(limÐ→D+) ≅ Q(D) ≅ limÐ→D .

Furthermore, each index i ∈ I+ is of the form i = ⇓S for some κ-directed
set S ⊆ I of size ∣S∣ < λ. Since S is dense in ⇓S, it follows that

Q(D+(i)) ≅ limÐ→D+(i) ≅ limÐ→(D ↾ ⇓S) ≅ limÐ→(D ↾ S) .

Hence, Q ○ D+ ∶ J+ → C is the desired diagram. ◻
Example. We can also use the previous results to give a short alternative
proof of Proposition b3.4.16. Let C be a category with directed colimits
and letD be the class of all directed partial orders. For D ∈ IndD(C) of
size κ, we find the desired chain C as follows.

By Proposition b3.3.6, there exists a chain (Hα)α<κ of directed subsets
Hα ⊆ I of size ∣Hα ∣ < κ such that I = ⋃α<κ Hα . Set F ∶= {Hα ∣ α < κ }, let
D+ be the F-completion of D, and let Q ∶ IndD(C) → C be the canonical
projection. As above,

limÐ→(Q ○ D+) = Q(limÐ→D+) ≅ Q(D) ≅ limÐ→D .

Since ⟨F , ⊆⟩ ≅ ⟨κ, ≤⟩ it follows that C ∶= Q ○ D+ is the desired chain.

Shifted diagrams

We conclude this section by presenting a second construction of dia-
grams. It provides a way to modify the colimit of a κ-filtered diagram
D ∶ I → C by adding morphisms to the index category I but no new
objects. We will see below that this results in a retraction of the colimit.
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Definition 2.12. Let D ∶ I → C be a diagram.
(a) A morphism f ∶ a→ a is idempotent if f ○ f = f . Similarly, we call

a link t from D to D idempotent if t ○ t ⩕D t.
(b) By↺ we denote the category with a single object ∗ and two

morphisms id, e ∶ ∗ → ∗ where e ○ e = e and id is the identity morphism.
(c) Let t be an idempotent link from D to D, let F ∶ ↺ → Indall(C)

be the diagram mapping ∗ to D and e to [t]⩕∗ , and let D+ ∶ I+ → C be
the union of F where we choose t as representative of [t]⩕D . We say that
D+ is the diagram obtained by shifting the diagram D by t.

Our aim is to show that the colimit of a shifted diagram is a retract of
the colimit of the original one.We also characterise which retracts we can
obtain in this way. The key argument is a proof that, in certain categories,
every idempotent morphism factorises as a retraction followed by a
section.

Lemma 2.13. Let D ∶ ↺ → C be a diagram. A cocone µ ∈ Cone(D, a) is
limiting if, and only if, the morphism µ∗ ∶ D(∗) → a has a right inverse
s ∶ a→ D(∗) such that

D(e) = s ○ µ∗ .

Proof. (⇒) Since D(e)○D(e) = D(e ○ e) = D(e), the family consisting
just of the morphism D(e) is a cocone from D to D(∗). If µ is limiting,
we can therefore find a morphism s ∶ a→ D(∗) such that D(e) = s ∗ µ∗.

We claim that s is the right inverse of µ∗. Since µ is a cocone, we have

µ∗ ○ s ○ µ∗ = µ∗ ○ D(e) = µ∗ ,
which implies by Lemma b3.4.2 that µ∗ ○ s = ida.(⇐) Let s be a right inverse of µ∗ such that D(e) = s ○ µ∗. Given
another cocone µ′ ∈ Cone(D, b), we set φ ∶= µ′∗ ○ s. Then

µ′∗ = µ′∗ ○ D(e) = µ′∗ ○ s ○ µ∗ = φ ○ µ∗
implies that µ′ = φ∗ µ. To show that φ is unique, suppose that µ′ = ψ∗ µ.
Then

ψ = ψ ○ (µ∗ ○ s) = µ′∗ ○ s = φ ○ µ∗ ○ s = φ . ◻
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Corollary 2.14. Let C be a category with finite κ-filtered colimits, for some
cardinal κ. A morphism p ∶ a → a is idempotent if, and only if, p = s ○ r
for some retraction r ∶ a→ b with right inverse s ∶ b→ a.

Proof. (⇒) Let p ∶ a → a be idempotent and let D ∶ ↺ → C be the
diagram mapping the object ∗ to a and the morphism e to p. By assump-
tion, D has a limiting cocone λ to some object b. Consequently, it follows
by Lemma 2.13 that the morphism r ∶= λ∗ has a right inverse s with
s ○ r = D(e) = p.(⇐) Let r be a retraction with right inverse s. Since (s ○ r) ○ (s ○ r) =
s ○ id ○ r = s ○ r, every morphism of the form s ○ r is idempotent. ◻

One consequence of Lemma 2.13 is that every diagram D+ obtained
by shifting a diagram D is a retract of D in Indall(C). For the proof that
the same holds for their colimits, we start with a technical lemma.

Lemma 2.15. Let D+ ∶ I+ → C be the diagram obtained by shifting a
filtered diagram D ∶ I → C by an idempotent link t.

(a) t is a link from D+ to D.

(b) Let µ ∈ Cone(D, a). Then

µ ∈ Cone(D+ , a) iff µ ∗ t = µ .

Proof. (a) Note that the morphism [t]⩕D ∶ D → D forms a cocone
from F ∶ ↺ → Indall(C) to D whose union is just [t]⩕D . Therefore,
Lemma 1.12 (b) implies that t is a link from D+ to D.

(b) (⇒) Let θ be the index map of t. If µ is a cocone of D+, then
µθ(i) ○ ti = µi, which implies that

µ ∗ t = (µθ(i) ○ ti)i∈I = (µi)i∈I .

(⇐) If µ ∗ t = µ, then it follows by (a) and Lemma b3.5.8 that

µ = µ ∗ t = πt(µ) ∈ Cone(D+ , a) . ◻
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Proposition 2.16. Let D+ ∶ I+ → C be the diagram obtained by shifting a
filtered diagram D ∶ I → C by an idempotent link t and let λ be a limiting
cocone from D to some object a. For an object b ∈ C, the following two
statements are equivalent.

(1) limÐ→D+ ≅ b

(2) There exists a retraction r ∶ a → b with right inverse e ∶ b → a
satisfying

λ ∗ t = (e ○ r) ∗ λ .

Proof. (1)⇒ (2) Let λ+ be a limiting cocone form D+ to b. Since λ ∗ t ∈
Cone(D+ , a) and λ+ ∈ Cone(D, b), there exist unique morphisms r ∶
a→ b and e ∶ b→ a such that

λ ∗ t = e ∗ λ+ and λ+ = r ∗ λ .

By Lemma 2.15 (b), it follows that

(r ○ e) ∗ λ+ = r ∗ (e ∗ λ+)= r ∗ (λ ∗ t)= (r ∗ λ) ∗ t = λ+ ∗ t = λ+ = id ∗ λ+ .

Therefore, Lemma b3.4.2 implies that r ○ e = id. Consequently, r ∶ a→ b
is a retraction with section e ∶ b→ a. Furthermore,

λ ∗ t = e ∗ λ+ = e ∗ (r ∗ λ) = (e ○ r) ∗ λ .

(2)⇒ (1) We claim that λ+ ∶= r ∗ λ is a limiting cocone from D+ to b.
Since

λ+ ∗ t = (r ∗ λ) ∗ t = r ∗ (λ ∗ t)= r ∗ ((e ○ r) ∗ λ)= (r ○ e ○ r) ∗ λ = r ∗ λ = λ+ ,
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Lemma 2.15 (b) implies that λ+ ∈ Cone(D+ , b). To see that λ+ is limiting,
we prove that the natural transformation

η ∶ C(b,−) → Cone(D+ ,−) ∶ f ↦ f ∗ λ+
from Lemma b3.4.2 is a natural isomorphism.
We start by showing that each component η$ of η is surjective. Let

µ ∈ Cone(D+ , $). Since µ ∈ Cone(D, $) and λ is limiting, there exists a
unique morphism φ ∶ a→ $ such that µ = φ ∗ λ. Consequently,

µ = µ ∗ t = φ ∗ λ ∗ t= φ ∗ (e ○ r) ∗ λ= (φ ○ e) ∗ (r ∗ λ)= (φ ○ e) ∗ λ+ = η$(φ ○ e) ∈ rng η$ .

For injectivity, suppose that f , f ′ ∶ b→ $ are two morphisms such that
η$( f ) = η$( f ′). Since

( f ○ r) ∗ λ = f ∗ (r ∗ λ) = f ∗ λ+ = η$( f )
and, analogously, ( f ′ ○ r) ∗ λ = η$( f ′), it follows that

( f ○ r) ∗ λ = ( f ′ ○ r) ∗ λ .

By Lemmab3.4.2, this implies that f ○r = f ′○r. Since r is an epimorphism,
we obtain f = f ′, as desired. ◻
3. Presentable objects
When trying to find a category-theoretical generalisation of statements
involving the cardinality of structures, one needs a notion of cardinality
for the objects of a category. Of course, one could simply add a functionCobj → Cn to a category C and axiomatise its properties. But it is not
obvious what such axioms should look like. It turns out that, for certain
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categories, there is a simpler way. Without explicitly adding a notion of
cardinality, we can recover it from the category. To do so we introduce
the concept of a κ-presentable object, which generalises the concept of a
κ-generated structure in Emb(Σ).
Definition 3.1. Let C be a category and κ a cardinal.

(a) Let D ∶ I → C be a diagram and µ ∈ Cone(D, b) a cocone.
A morphism f ∶ a → b factorises through µ if there exists an object
i ∈ I and a morphism f0 ∶ a→ D(i) such that

f = µi ○ f0 .

We say that this factorisation is essentially unique if, for every other
factorisation f = µk ○ f ′0 with k ∈ I and f ′0 ∶ a→ D(k), we have

f0 ⩕D f ′0 .

(b) An object a of C is κ-presentable if, for each κ-directed diagram
D ∶ J→ C with colimit b, every morphism f ∶ a→ b factorises essentially
uniquely through the limiting cocone. For κ = ℵ0, we call a finitely
presentable.

Remark. (a) Let κ ≤ λ. Since each λ-directed diagram is also κ-directed,
it follows that κ-presentable objects are λ-presentable.

(b) For a singular cardinal κ, it follows by Lemma 1.4 that an object is
κ-presentable if, and only if, it is κ+-presentable.

Example. In Set every set X is ∣X∣+-presentable.

Exercise 3.1. Prove that an object a is κ-presentable if, and only if, for
every κ-filtered diagram D with limiting cocone λ ∈ Cone(D, b), the
function

Indall(C)(I(a), I[λ])∶ Indall(C)(I(a),D) → Indall(C)(I(a), I(b))∶ [t]⩕D ↦ I[λ] ○ [t]⩕D
is bijective. (I denotes the inclusion functor C → Indall(C).)
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I(a) D

I(b)

[t]⩕D

I[λ] ○ [t]⩕D I[λ]

Exercise 3.2. Let D ∶ I → C be a κ-filtered diagram with a κ-presentable
colimit a, and let λ be a limiting cocone from D to a. Prove that, in
Ind∞κ (C), the morphism I[λ] ∶ D ≅ I(a) induced by λ is an isomorph-
ism.

First, let us show that this notion indeed generalises the concept of
being κ-generated.

Proposition 3.2. Let κ be a regular cardinal. A Σ-structure A is κ-present-
able in the category Emb(Σ) if, and only if, it is κ-generated.

Proof. (⇒) Let A be κ-presentable. To show that A is κ-generated, let
J be the family of all κ-generated substructures of A ordered by inclusion
and let D ∶ J→ C be the canonical diagram. By Proposition b3.3.16, this
diagram is κ-directed and its colimit is A. Let λ be the limiting cocone.
Since A is κ-presentable, the identity idA ∶ A→ A factorises through λ.
Therefore, we can find an index k ∈ I and an embedding f ∶ A→ D(k)
such that λk○ f = idA. As λk○ f = idA is surjective, so is the embedding λk .
Consequently, λk is an isomorphism and A ≅ D(k) is κ-generated.(⇐) Suppose that A is generated by a set X ⊆ Aof size ∣X∣ < κ. To show
that A is κ-presentable, let D ∶ J → Emb(Σ) be a κ-directed diagram
with colimit B and f ∶ A → B an embedding. Let λ ∈ Cone(D,B) be
a limiting cocone. For every element a ∈ X, fix an index ia ∈ I with
f (a) ∈ rng λ ia and let k be an upper bound of { ia ∣ a ∈ X }. Then

f [X] ⊆ ⋃
a∈X rng λ ia ⊆ rng λk ,

which implies that rng f ⊆ rng λk . By Lemma a2.1.10, there exists a right
inverse g ∶ rng λk → D(k) of λk . We set f0 ∶= g ○ f . Then

λk ○ f0 = λk ○ g ○ f = f .
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It remains to show that the factorisation is essentially unique. Hence,
suppose that there is an index i ∈ I and an embedding f ′0 ∶ A → D(i)
such that λ i ○ f ′0 = f . For every element a ∈ X,

λ i( f ′0(a)) = f (a) = λk( f0(a))
implies, by the definition of a κ-directed limit of Σ-structures, that there
is some index la ≥ i , k such that

D(i , l)( f ′0(a)) = D(k, l)( f0(a)) .

Choosing an upper bound m of { la ∣ a ∈ X }, we obtain

D(i ,m) ○ f ′0 = D(k,m) ○ f0 .

This implies that f ′0 ⩕D f0. ◻
Let us present several alternative characterisations of being κ-present-

able. The first one rests on the fact that, since every κ-filtered colimit can
be written as a κ-directed one, we can replace in the definition κ-directed
diagrams by κ-filtered ones. The second characterisation is based on
hom-functors.

Theorem 3.3. Let C be a category and a an object. The following statements
are equivalent:

(1) a is κ-presentable.

(2) For each κ-filtered diagram D ∶ I → C with colimit b, every morph-
ism f ∶ a → b factorises essentially uniquely through the limiting
cocone.

(3) The covariant hom-functor C(a,−) preserves κ-directed colimits.

(4) The covariant hom-functor C(a,−) preserves κ-filtered colimits.

Proof. (4)⇒ (3) is trivial.
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(3)⇒ (1) Let D ∶ J→ C be a κ-directed diagram with limiting cocone
λ ∈ Cone(D, b), and let f ∶ a → b be a morphism. By assumption(C(a, λ i))i∈I is a limiting cocone of C(a,−) ○ D. Consequently,

C(a, b) = ⋃
i∈I C(a, λ i)[C(a,D(i))] .

In particular, there are an index i ∈ I and a morphism f0 ∈ C(a,D(i))
with

f = C(a, λ i)( f0) = λ i ○ f0 .

Hence, f factorises through λ. For essential uniqueness, suppose that
there is a second index j ∈ I and a morphism f ′0 ∶ a → D( j) such that
f = λ j ○ f ′0. Then

C(a, λ j)( f ′0) = λ j ○ f ′0 = λ i ○ f0 = C(a, λ i)( f0) .

Hence, f0 ∈ C(a,D(i)) and f ′0 ∈ C(a,D( j)) correspond to the same
element of the colimit C(a, b). This implies that there exists an index
k ≥ i , j such that

C(a,D(i , k))( f0) = C(a,D( j, k))( f ′0) .

Consequently,

D(i , k) ○ f0 = D( j, k) ○ f ′0 ,
which implies that f0 ⩕D f ′0.

(1) ⇒ (2) Let λ be a limiting cocone from D to b. By Theorem 1.7,
there exists a dense κ-directed diagram F ∶ K → I . Furthermore, ac-
cording to Proposition b3.5.15, the projection πD ,F along F is a natural
isomorphism. Consequently, it follows by Lemma b3.4.3 that the pro-
jection µ ∶= πD ,F(λ) is a limiting cocone from D ○ F to b. Therefore,
every morphism f ∶ a→ b factorises essentially uniquely through µ as
f = µk ○ f0, for some k ∈ K and f0 ∶ a→ D(F(k)).
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We claim that λF(k) ○ f0 is an essentially unique factorisation of f
through λ. Note that λF(k) ○ f0 = µk ○ f0 = f implies that it is a factor-
isation of f . Hence, it remains to prove essential uniqueness.

Suppose that f = λi ○ f ′0 is a second factorisation. As F is dense, there
exists an index l ∈ K and a morphism g ∶ i→ F(l). Hence,

µk ○ f0 and µ l ○ D(g) ○ f ′0
are two factorisations of f through µ and, by essential uniqueness, we
obtain

f0 ⩕D○F D(g) ○ f ′0 .

By Lemma b3.5.3 (d), this implies that f0 ⩕D f ′0.
(2)⇒ (4) Let D ∶ I → C be a κ-filtered diagram with limiting cocone

λ ∈ Cone(D, b). We have to show that λ′ ∶= (C(a, λi))i∈I is a limiting
cocone from C(a,−) ○ D to C(a, b). By Lemma b3.4.2, it is sufficient to
prove that the natural transformation

η ∶ Set(C(a, b),−) → Cone(C(a,−) ○ D,−) ∶ φ ↦ φ ∗ λ′
is a natural isomorphism. We define an inverse ζ of η as follows.

For each morphism f ∶ a→ b, we choose an essentially unique factor-
isation

f = λi( f ) ○ g( f ) , with i( f ) ∈ I and g( f ) ∶ a→ D(i( f )) ,
and, for a cocone µ of C(a,−) ○ D and a morphism f ∶ a→ b, we set

ζ(µ)( f ) ∶= µi( f )(g( f )) .

It remains to show that ζ is an inverse of η. First, note that ζ(λ′) = id
since

ζ(λ′)( f ) = λ′i( f )(g( f ))= C(a, λi( f ))(g( f )) = λi( f ) ○ g( f ) = f .
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Furthermore,

ζ(φ ∗ µ)( f ) = (φ ∗ µ)i( f )(g( f ))= φ(µi( f )(g( f ))) = φ(ζ(µ)( f ))
implies that ζ(φ ∗ µ) = φ ○ ζ(µ). Consequently,

ζ(η(φ)) = ζ(φ ∗ λ′) = φ ○ ζ(λ′) = φ ○ id = φ .

To show that ζ is also a right inverse of η, note that, if f = λj ○ f0 is
an arbitrary factorisation of f ∶ a→ b through λ, it follows by essential
uniqueness and Corollary 1.3, that there are morphisms h ∶ i( f ) → k and
h′ ∶ j→ k such that

D(h) ○ g( f ) = D(h′) ○ f0 .

For a cocone µ of C(a,−) ○ D, it therefore follows that

µi( f )(g( f )) = (µk ○ C(a,D(h)))(g( f ))= µk(D(h) ○ g( f ))
= µk(D(h′) ○ f0)= (µk ○ C(a,D(h′)))( f0) = µj( f0) .

Consequently,

η(ζ(µ)) = ζ(µ) ∗ λ′ = (ζ(µ) ○ C(a, λj))j∈I= ( f0 ↦ µi(λj○ f0)(g(λj ○ f0)))j∈I= ( f0 ↦ µj( f0))j∈I= (µj)j∈I . ◻
Exercise 3.3. Prove that a hom-functor C(a,−) always preserves limits.
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Corollary 3.4. Let a be κ-representable and let D ∶ I → C be a κ-filtered
diagram with limiting cocone λ. If f i ∶ a → D(ki), i < γ, is a family of
γ < κ morphisms with

λki ○ f i = λk j ○ f j , for all i , j < γ ,

then there exist an object l ∈ I and morphisms g i ∶ ki → l, i < γ, such that

D(g i) ○ f i = D(g j) ○ f j , for all i , j < γ .

Proof. For every pair i , j < γ, we apply Theorem 3.3 (b) to the morphism
λki ○ f i = λk j ○ f j . By essential uniqueness and Corollary 1.3, there are
morphisms h i j ∶ ki → li j and h′i j ∶ k j → li j such that

D(h i j) ○ f i = D(h′i j) ○ f j .

By Lemma 1.2, there exist an object m ∈ I and morphisms

g i ∶ ki → m and g i j ∶ li j → m , for i , j < γ ,

such that

g i = g i j ○ h i j and g j = g i j ○ h′i j , for all i , j < γ .

Consequently,

D(g i) ○ f i = D(g i j) ○ D(h i j) ○ f i= D(g i j) ○ D(h′i j) ○ f j = D(g j) ○ f j . ◻
To prove that an object of a full subcategory is κ-presentable, the next

lemma is sometimes useful.

Lemma 3.5. Let F ∶ C → D be a full and faithful functor that preserves
κ-directed colimits. Then F reflects κ-presentable objects.

323



b4. Accessible categories

Proof. Let a ∈ C be an object such that F(a) is κ-presentable. To show
that a is also κ-presentable, let D ∶ J → C be a κ-directed diagram
with colimit b, let λ be a corresponding limiting cocone, and let f ∶
a→ b be a morphism. Then F[λ] is a limiting cocone of the κ-directed
diagram F ○ D ∶ J → D. Hence, F( f ) factorises essentially uniquely
as F( f ) = F(λ i) ○ g, for some g ∶ F(a) → F(D(i)). As F is full, we
can find a morphism f0 ∶ a → D(i) with F( f0) = g. Consequently,
F( f ) = F(λ i ○ f0) which, by faithfulness of F, implies that f = λ i ○ f0.
We claim that this factorisation is essentially unique. Suppose that

f = λk ○ f ′0 is a second factorisation. Then F( f ) = F(λk) ○ F( f ′0) is a
factorisation of F( f ) and it follows by essential uniqueness that

F( f0) ⩕F○D F( f ′0) .

By Corollary 1.3, there exist an index l ≥ i , k such that

F(D(i , l)) ○ F( f0) = F(D(k, l)) ○ F( f ′0) .

Since F is faithful, this implies that

D(i , l) ○ f0 = D(k, l) ○ f ′0 .

Consequently, f0 ⩕D f ′0. ◻
Cardinality
In the next section we will define a notion of cardinality such that κ-
presentable objects have size less than κ. The aim of the following results
is to show that κ-presentability does indeed behave as we would expect
for a notion of cardinality: an object consisting of λ parts of size less
than κ has size less than κ ⊕ λ+. Before giving the proof, we start with a
technical result about diagrams of κ-presentable objects.

Lemma 3.6. Let E ∶ J → C be a κ-filtered diagram with limiting cocone
µ ∈ Cone(E , b), and let D ∶ I → C a diagram where each object D(i) is
κ-presentable.
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(a) For all links s and t from D to E,

s ⩕E t iff µ ∗ s = µ ∗ t .

(b) Given a limiting cocone λ ∈ Cone(D, a) and a morphism f ∶ a→ b,
there exists a link t from D to E such that

µ ∗ t = f ∗ λ .

Furthermore, this link t is unique up to a.p.-equivalence.

Proof. (a) Let ρ and θ be the index maps of, respectively, s and t. For
every i ∈ I , we have

si ⩕E ti iff µρ(i) ○ si = µθ(i) ○ ti ,

where one direction follows by Lemma b3.5.4 and the other one by
Theorem 3.3 (b), which implies that the morphism µρ(i) ○ si = µθ(i) ○ ti

factorises essentially uniquely through µ.
(b) SinceD(i) is κ-presentable, it follows by Theorem 3.3 (b) that f ○λi

has an essentially unique factorisation

f ○ λi = µθ(i) ○ ti ,

where θ(i) ∈ I and ti ∶ D(i) → E(θ(i)). Setting t ∶= (ti)i∈I it follows
that

f ∗ λ = µ ∗ t .

Hence, it remains to show that t is a link and that it is unique. For
uniqueness, note that, according to (a)

µ ∗ t′ = f ∗ λ = µ ∗ t implies t′ ⩕E t .

To show that t is a link, let g ∶ i→ j be a morphism of I . Then

µθ(i) ○ ti = f ○ λi = f ○ λj ○ D(g) = µθ(j) ○ tj ○ D(g)
are two factorisations of the same morphism through µ. By essential
uniqueness, it therefore follows that ti ⩕D tj ○ D(g). ◻
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Proposition 3.7. Let D ∶ I → C be a diagram where each D(i) is κ-
presentable. If it exists, the colimit of D is (κ ⊕ ∣Imor∣+)-presentable.

Proof. Let λ be a limiting cocone from D to a ∈ C and set µ ∶= κ⊕∣Imor∣+.
To show that a is µ-presentable, consider a morphism f ∶ a → b where
b is the colimit of a µ-directed diagram E ∶ K → C. Let λ′ ∈ Cone(E , b)
be the corresponding limiting cocone. By Lemma 3.6 (b), there exists a
link t from D to E such that

λ′ ∗ t = f ∗ λ .

Let θ ∶ Iobj → K be the index map of t. For h ∶ i→ j in I , we have

λ′θ(i) ○ ti = f ○ λi = f ○ λj ○ D(h) = λ′θ(j) ○ tj ○ D(h) .

As D(i) is µ-presentable, it follows by essential uniqueness and Corol-
lary 1.3 that we can find an index kh ∈ K such that

E(θ(i), kh) ○ ti = E(θ(j), kh) ○ tj ○ D(h) .

Let l ∈ K be an upper bound of { kh ∣ h ∈ Imor } and set

νi ∶= E(θ(i), l) ○ ti , for i ∈ I .

Then ν = (νi)i∈I is a cocone from D to E(l).
Since λ is limiting, there exists a morphism φ ∶ a → E(l) such that

ν = φ ∗ λ. It follows that

f ○ λi = λ′θ(i) ○ ti = λ′l ○ E(θ(i), l) ○ ti = λ′l ○ νi = λ′l ○ φ ○ λi ,

for every i ∈ I . By Lemma b3.4.2, this implies that f = λ′l ○ φ.
It remains to check that φ is essentially unique. Suppose that there is a

second morphism ψ ∶ a→ E(m), for some m ∈ K, such that f = λ′m ○ ψ.
For i ∈ I , it follows that

λ′m ○ ψ ○ λi = f ○ λi = λ′l ○ φ ○ λi .
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As D(i) is µ-presentable, it follows by essential uniqueness and Corol-
lary 1.3 that there is an index ni ≥ l ,m such that

E(m, ni) ○ ψ ○ λi = E(l , ni) ○ φ ○ λi .

Let n∗ ∈ K be an upper bound of { ni ∣ i ∈ I }. Then

E(m, n∗) ○ ψ ○ λi = E(l , n∗) ○ φ ○ λi , for all i ∈ I .

Consequently, it follows by Lemma b3.4.2 that

E(m, n∗) ○ ψ = E(l , n∗) ○ φ .

This implies that ψ ⩕E φ. ◻
For the converse of this statement we need additional requirements

on the category C.

Theorem 3.8. Let κ ⊴ λ be regular cardinals and C a category with
κ-directed colimits of size less than λ. Suppose that there exists a classK ⊆ Cobj of κ-presentable objects such that every object of C can be written
a κ-filtered colimit of objects in K.
An object a ∈ C is λ-presentable if, and only if, it is the colimit of a

κ-filtered diagram D ∶ I → C of size less than λ where each D(i) ∈ K.

Proof. (⇐) was already shown in Proposition 3.7.(⇒) Let a be λ-presentable and let D ∶ J→ C be a κ-directed diagram
with colimit a such that each D(i) belongs toK. Since κ ⊴ λ, we can use
Proposition 2.11 to find a λ-directed diagram D+ ∶ J+ → C with colimit a
such that, for every i ∈ I+, there exists a κ-directed subset S ⊆ I of size
less than λ such that

D+(i) ≅ limÐ→(D ↾ S) .

Let µ+ be a limiting cocone from D+ to a. Since a is λ-presentable, there
exists an essentially unique factorisation ida = µ+S ○ e, for some index
i ∈ I+ and morphism e ∶ a→ D+(i). Set

b ∶= D+(i) and r ∶= µ+i .
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By construction of D+, there exists a κ-directed subset S ⊆ I of size∣S∣ < λ such that D+(i) ≅ limÐ→(D ↾ S). Let µ be a limiting cocone form
D ↾ S to b.

It follows that r ∶ b→ a is a retraction with right inverse e ∶ a→ b. By
Lemma 3.6 (b), there exists a link t from D ↾ S to D ↾ S such that

µ ∗ t = (e ○ r) ∗ µ .

Furthermore, according to Lemma 3.6 (a),

µ ∗ t ∗ t = (e ○ r) ∗ µ ∗ t= (e ○ r) ∗ (e ○ r) ∗ µ= (e ○ r ○ e ○ r) ∗ µ = (e ○ r) ∗ µ = µ ∗ t

implies that t ○ t ⩕D t. Hence, the link t is idempotent and we can
shift D ↾ S by t to obtain a diagram E ∶ J → C. By Proposition 1.13
and Proposition 2.16, it follows that E is a κ-filtered diagram of size less
than λ and that limÐ→ E ≅ a. Finally, note that, for every j ∈ J , there is
some i ∈ I with E(j) = D(i) ∈ K. ◻

As a further indication that our notion of cardinality is well-behaved,
let us conclude this section with the remark that retracts do not increase
the size.

Proposition 3.9. Every retract of a κ-presentable object is κ-presentable.

Proof. Let a be κ-presentable and let r ∶ a→ b be a retraction with right
inverse e ∶ b → a. To show that b is also κ-presentable, let D ∶ J → C
be a κ-directed diagram with limiting cocone λ ∈ Cone(D, $), and let
f ∶ b → $ be a morphism. Since a is κ-presentable, f ○ r factorises
essentially uniquely through λ as

f ○ r = λ i ○ g , for some g ∶ a→ D(i) .

We obtain a factorisation

f = f ○ r ○ e = λ i ○ g ○ e
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of f . We claim that this factorisation is essentially unique.
Suppose that f = λk ○ h is a second factorisation. Then λk ○ (h ○ r) is

a factorisation of f ○ r and essential uniqueness implies that g ⩕D h ○ r.
By Lemma b3.5.3 (b), it follows that

g ○ e ⩕D h ○ r ○ e = h ,

as desired. ◻
4. Accessible categories
Using the notion of κ-presentability, we can define a class of categories
where one can associate a cardinality with each object.

Definition 4.1. Let κ be a cardinal. A category C is κ-accessible if◆ it has κ-directed colimits,
◆ every object a ∈ C is a κ-directed colimit of κ-presentable objects,
◆ up to isomorphism, there exists only a set of κ-presentable objects.

It follows by Proposition 3.7 that every object of a κ-accessible category
is λ-presentable, for some cardinal λ. We can use this fact to define a
notion of cardinality for the objects of such a category.

Definition 4.2. Let C be a κ-accessible category. The cardinality ∥a∥ of
an object a ∈ C is the least cardinal λ such that a is λ+-presentable.

Example. The categories Emb(Σ) and Set are κ-accessible, for all regular
cardinals κ. We have ∥X∥ = ∣X∣, for every infinite set X ∈ Set. Similarly,
if A is a Σ-structure in Emb(Σ) with ∣As ∣ ≥ ∣Σ∣+, for every sort s, then∥A∥ = ∣A∣.

The following theorem immediately follows from Theorem 3.8.

Theorem 4.3. Let κ ⊴ λ be regular cardinals and C a κ-accessible category.
An object a ∈ C is λ-presentable if, and only if, it is the colimit of a κ-filtered
diagram D ∶ I → C of size less than λ where each D(i) is κ-presentable.
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Let us give some non-trivial examples of κ-accessible categories. The
first one is the category of all κ-directed partial orders.

Definition 4.4. Let κ be a cardinal. We denote by Dir(κ) the full subcat-
egory of Emb(≤) induced by all κ-directed partial orders.

Proposition 4.5. Let κ be a cardinal and let J ∶ Dir(κ) → Emb(≤) be the
inclusion functor.

(a) For every κ-directed diagram D ∶ J→ Dir(κ), the colimit of J ○ D
in Emb(≤) is a κ-directed partial order.

(b) J preserves κ-directed colimits.
(c) Let λ ≥ κ be a regular cardinal. An object J ∈ Dir(κ) is λ-present-

able if, and only if, ∣I∣ < λ.
(d) Dir(κ) is κ-accessible.

Proof. (a) Let D ∶ J → Dir(κ) be a κ-directed diagram. Since Emb(≤)
has colimits, the diagram J ○ D has a colimit A = ⟨A, ≤⟩ ∈ Emb(≤). Let
λ be a limiting cocone from J ○ D to A.

To show that A is a partial order, consider elements a, b, c ∈ A. Since
D is κ-directed, there exists an index i ∈ I such that a, b, c ∈ rng λ i .

For reflexivity, note that λ i is an embedding and that D(i) is a partial
order. Hence, λ−1

i (a) ≤ λ−1
i (a) implies that a ≤ a.

For antisymmetry, suppose that a ≤ b and b ≤ a. Then we have
λ−1

i (a) ≤ λ−1
i (b) and λ−1

i (b) ≤ λ−1
i (a), which implies that λ−1

i (a) =
λ−1

i (b). Hence, a = b.
For transitivity, suppose that a ≤ b ≤ c. Then λ−1

i (a) ≤ λ−1
i (b) ≤

λ−1
i (c), which implies that λ−1

i (a) ≤ λ−1
i (c). Hence, a ≤ c.

It remains to prove that A is κ-directed. Let X ⊆ A be a set of size∣X∣ < κ. Since D is κ-directed, we can find an index i ∈ I such that
X ⊆ rng λ i . As D(i) is κ-directed, λ−1

i [X] has an upper bound c ∈ D(i).
Hence, λ i(c) is an upper bound of X.

(b) Consider a κ-directed diagram D ∶ J→ Dir(κ). Since Emb(≤) has
colimits, the diagram J ○ D has a limiting cocone λ to some structure
A = ⟨A, ≤⟩. We have seen in (a) that A ∈ Dir(κ). Since the inclusion
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functor is full and faithful, it follows that λ is a cocone from D to A
in Dir(κ). Furthermore, note that J reflects colimits by Lemma b3.4.7.
Hence, λ is also limiting in Dir(κ).

To show that J preserves κ-directed colimits, let µ ∈ Cone(D,B) be
a limiting cocone. As both λ and µ are limiting, there exists a (unique)
isomorphism π ∶ B→ A such that λ = π∗µ. Since λ = J[λ] = J(π)∗J[µ]
is limiting in Emb(≤) and since J(π) is an isomorphism, it follows that
J[µ] is also limiting.

(c) (⇐) Let J be a κ-directed partial order of size ∣I∣ < λ. According
to Proposition 3.2, J is λ-presentable in Emb(≤). By (b) and Lemma 3.5,
the inclusion functor Dir(κ) → Emb(≤) reflects λ-presentability. Hence,
J is also λ-presentable in Dir(κ).(⇒) For a partial order J, we denote by J⊺ the extension of J by a
new greatest element ⊺.

Suppose that J is λ-presentable. To show that ∣I∣ < λ, letS be the family
of all substructures of J⊺ of size less than λ, and let D ∶ S → Emb(≤)
be the canonical diagram. By Proposition b3.3.16, we have J⊺ = limÐ→D.
Let S0 ⊆ S be the subfamily of all substructures of J⊺ that contain the
element ⊺. Note that every such substructure is κ-directed and that S0 is
dense in S . Consequently, the restriction D ↾ S0 also has the colimit J⊺
and it factorises as D ↾ S0 = J ○ D0 for some D0 ∶ S0 → Dir(κ). By
Lemma b3.4.7, J reflects colimits. Therefore, J(J⊺) = J⊺ = limÐ→(J ○ D0)
implies that J⊺ = limÐ→D0.

Let µ be a corresponding limiting cocone. As J is λ-presentable, the
inclusion h ∶ J→ J⊺ factorises as h = µA ○ g, for some A ∈ S0 and some
embedding g ∶ J → A. Since g is injective, it follows that ∣I∣ = ∣rng g∣ ≤∣A∣ < λ.

(d) To show that Dir(κ) has κ-directed colimits, let D ∶ J → Dir(κ)
be a κ-directed diagram. By (a), the colimit A of J ○D in Emb(≤) belongs
to Dir(κ). By Lemma b3.4.7, the inclusion functor J reflects colimits.
Consequently, A is also the colimit of D in Dir(κ).

Furthermore, note that (c) implies that, up to isomorphism, there
exist only a set of κ-presentable objects in Dir(κ).
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Hence, it remains to show that every object of Dir(κ) can be written
as a κ-directed diagram of κ-presentable objects. Given J ∈ Dir(κ),
let S be the family of all substructures of J of size less than κ and let
D ∶ S → Emb(≤) be the canonical diagram. By Proposition b3.3.16, we
have J = limÐ→D. Let S0 ⊆ S be the subfamily of all substructures of J
that have a greatest element. We claim that S0 is dense in S . Let A ∈ S .
Then ∣A∣ < κ and, since J is κ-directed, the set A ⊆ I has an upper bound
b ∈ I. Consequently, J∣A∪{b} is an element of S0 containing A.

Note that every substructure in S0 is κ-directed and that S0 is dense
in S . It follows that the restriction D ↾ S0 also has the colimit J and that
D ↾ S0 factorises as D ↾ S0 = J ○ D0 for some D0 ∶ S0 → Dir(κ). By
Lemma b3.4.7, J reflects colimits. Therefore, J(J) = J = limÐ→(J ○ D0)
implies that J = limÐ→D0, as desired. ◻

A further important example of a κ-accessible category is the inductive
completion of a category.

Lemma 4.6. Let C be a category, κ a regular cardinal, and let I ∶ C →
Ind∞κ (C) be the inclusion functor. In Ind∞κ (C) every object of the form
I(a) is κ-presentable.

Proof. To keep notation simple, we will not distinguish below between a
morphism f ∶ a→ b of C and the link t = (t i)i∈[1] whose only component
is t0 = f .

Let D ∶ I → Ind∞κ (C) be a κ-directed diagram with union U ∶ J → C.
By Proposition 1.13, the family µ = (µi)i∈I with µi = [inD(i)]⩕U is a
limiting cocone from D to U .

To show that I(a) is κ-presentable, let [ f ]⩕U ∶ I(a) → U be amorphism.
We have to show that [ f ]⩕U factorises essentially uniquely through the
cocone µ. Suppose that f ∶ a → U(⟨i, k⟩). Then we can regard f as a
link from I(a) to D(i). Let [ f ]⩕D(i) ∶ I[a] → D(i) be the corresponding
morphism of Ind∞κ (C). Then

µi ○ [ f ]⩕D(i) = [inD(i)]⩕U ○ [ f ]⩕D(i) = [idD(i)(k) ○ f ]⩕U = [ f ]⩕U .
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We claim that this factorisation of [ f ]⩕U is essentially unique.
Let [ f ]⩕U = µj ○ [g]⩕D(j) be a second factorisation where [g]⩕D(j) ∶

I(a) → D(j). Then g ∶ a → D(j)(l), for some index l, and, as above, it
follows that

[ f ]⩕U = µj ○ [g]⩕D(j) = [idD(j)(l) ○ g]⩕U = [g]⩕U .

Hence, f ⩕U g and there are morphisms

h ∶ ⟨i, k⟩ → ⟨m, n⟩ and h′ ∶ ⟨j, l⟩ → ⟨m, n⟩
of J such that

U(h) ○ f = U(h′) ○ g .

By definition of the union, we can express h and h′ as finite compositions

h = hu−1 ○ ⋅ ⋅ ⋅ ○ h0 and h′ = h′v−1 ○ ⋅ ⋅ ⋅ ○ h′0
of morphisms of the form D(x)(φ) and t(x, y)x, for indices x ∈ I , morph-
isms φ in the index category of D(x), and links t(x, y) such that D(x, y) =[t(x, y)]⩕D(y). By induction on u and v it follows that

[hu−1 ○ ⋅ ⋅ ⋅ ○ h0 ○ f ]⩕D(m) ⩕D [ f ]⩕D(i)
and [h′v−1 ○ ⋅ ⋅ ⋅ ○ h′0 ○ g]⩕D(m) ⩕D [g]⩕D(j) .

Hence, h ○ f = h′ ○ g implies that

[ f ]⩕D(i) ⩕D [hu−1 ○ ⋅ ⋅ ⋅ ○ h0 ○ f ]⩕D(m)= [h′v−1 ○ ⋅ ⋅ ⋅ ○ h′0 ○ g]⩕D(m) ⩕D [g]⩕D(j) . ◻
Proposition 4.7. Ind∞κ (C) is κ-accessible, for every small category C.

Proof. Let I ∶ C → Ind∞κ (C) be the inclusion functor. We have seen in
Theorem 1.15 that the category Ind∞κ (C) has κ-directed colimits and that
every object of Ind∞κ (C) can be written as a κ-filtered diagram of objects
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in rng I. Hence, it follows from Lemma 4.6 that every object of Ind∞κ (C)
is a κ-filtered colimit of κ-presentable objects.
Consequently, it remains to prove that, up to isomorphism, the κ-

presentable objects of Ind∞κ (C) form a set. By Theorem 3.8, every κ-
presentable object can be written as a κ-filtered colimit of size less than κ
where all objects are in rng I ≅ C. Consequently, an object is κ-present-
able if, and only if, it belongs to Indκ

κ(C). Since C is small, there exist,
up to isomorphism, only a set of diagrams D ∶ I → C of size less than κ.
Therefore, Indκ

κ(C) is small (up to isomorphism). ◻
In fact, all κ-accessible categories are of this form.

Theorem 4.8. A category C is κ-accessible if, and only if, it is equivalent
to a category of the form Ind∞κ (C0), for some small category C0.

Proof. (⇐)We have seen in Proposition 4.7 that Ind∞κ (C0) is κ-access-
ible. Hence, all categories C equivalent to Ind∞κ (C0) are κ-accessible.(⇒) Suppose that C is κ-accessible, let C1 be the full subcategory of
all κ-presentable objects of C, and let C0 be a skeleton of C1. We claim
that C is equivalent to Ind∞κ (C0).

Let Q0 ∶ Ind∞κ (C0) → C be the restriction of the canonical projec-
tion Q ∶ Ind∞κ (C) → C to Ind∞κ (C0). We claim that Q0 is the desired
equivalence. By Theorem b1.3.14, it is sufficient to prove that Q0 is full
and faithful and that every object of C is isomorphic to some object in
rng Qobj

0 .
Let D ∶ I → C0 and E ∶ J → C0 be objects of Ind∞κ (C0) and let

λD and λE be the limiting cocones used to define Q0(D) and Q0(E).
To show that Q0 is faithful, let [ f ]⩕E , [g]⩕E ∶ D → E be morphisms of

Ind∞κ (C0) with Q0([ f ]⩕E ) = Q0([g]⩕E ). Then

λE ∗ f = Q0([ f ]⩕E ) ∗ λD = Q0([g]⩕E ) ∗ λD = λE ∗ g .

By Lemma 3.6, this implies that f ⩕E g. Hence, [ f ]⩕E = [g]⩕E .
To prove that Q0 is full, let f ∶ Q0(D) → Q0(E) be a morphism of C.

By Lemma 3.6 (b), there exists a link t from D to E such that

λE ∗ t = f ∗ λD .
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By definition of Qmor
0 , this implies that Q0([t]⩕E ) = f .

Hence, it remains to prove that every object a ∈ C is isomorphic to
some object in rng Qobj

0 . Let D ∶ J → C be a κ-directed diagram with
colimit a where every object D(i) belongs to C1. For every index i ∈ I,
let E(i) be the unique object of C0 isomorphic to D(i). This defines the
object part of a functor E ∶ J→ C0. To define the morphism part, we fix
isomorphisms η i ∶ D(i) ≅ E(i) and we set

E(i , j) ∶= η j ○ D(i , j) ○ η−1
i , for i ≤ j .

Then E is a κ-directed diagram in Ind∞κ (C0) and η ∶= (η i)i∈I is a natural
isomorphism η ∶ D ≅ E. Consequently, it follows by Lemma b3.4.3 that

Q0(E) = limÐ→ E ≅ limÐ→D = a ,

as desired. ◻
Finally, let us show that in general it is not true that a κ-accessible

category is also λ-accessible for larger cardinals λ. Studying this question,
we again meet the relation ⊴.

Theorem 4.9. Let κ ≤ λ be regular cardinals. The following statements
are equivalent:

(1) κ ⊴ λ

(2) Every κ-accessible category is λ-accessible.

(3) Let C be a category with κ-directed colimits. For each κ-directed
diagram D ∶ J→ C of κ-presentable objects, there exists a λ-directed
diagram D+ ∶ J+ → C of λ-presentable objects with the same colimit.

(4) For every set X of size ∣X∣ < λ, we can write the partial order⟨℘κ(X), ⊆⟩ as the colimit of a λ-directed diagram D ∶ J→ Dir(κ)
of partial orders of size ∣D(i)∣ < λ.

Proof. (1)⇒ (3) Let D ∶ J→ C be a κ-directed diagram of κ-presentable
objects. By (1) and Proposition 2.11, there exists a λ-directed diagram
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D+ ∶ J+ → C with the same colimit as D where every object D+(i) is of
the form limÐ→(D ↾ S), for some κ-directed subset S ⊆ I of size ∣S∣ < λ. By
Proposition 3.7, it follows that each D+(i) is λ-presentable.

(3) ⇒ (2) Let C be a κ-accessible category. Since every λ-directed
diagram is also κ-directed, it follows that C has λ-directed colimits.
We claim that every a ∈ C is a λ-directed colimit of λ-presentable

objects. As C is κ-accessible, there exists a κ-directed diagram D ∶ J→ C
of κ-presentable objects with colimit a. By (3), it follows that a is the
colimit of a λ-directed diagram D+ of λ-presentable objects.

It remains to prove that the λ-presentable objects form a set. By The-
orem 4.3, we can write every λ-presentable object as a κ-directed dia-
gram D of size less than λ such that each D(i) is κ-presentable. Since, up
to isomorphism, there exists only a set of κ-presentable objects, it follows
that, up to isomorphism, there also exists only a set of such diagrams.

(2)⇒ (4) Let X be a set of size less than λ. Since κ is regular, the partial
order ⟨℘κ(X), ⊆⟩ is κ-directed. Hence, it is an object of the category
Dir(κ). We have shown in Proposition 4.5 that Dir(κ) is κ-accessible.
By (2), it is also λ-accessible. Consequently, we can write ℘κ(X) as the
colimit of a λ-directed diagram D ∶ J→ Dir(κ) of λ-presentable objects.
By Proposition 4.5 (c), it follows that every D(i) has size less than λ.

(4)⇒ (1) Let X be a set of size less than λ. We have to find a dense
set H ⊆ ℘κ(X) of size ∣H∣ < λ. By (4), there exists a λ-directed diagram
D ∶ J→ Dir(κ) of partial orders of size less than λ with limÐ→D = ℘κ(X).
Let µ be the corresponding limiting cocone. For each element x ∈ X, we
select an index i(x) ∈ I such that {x} ∈ rng µ i(x). Since J is λ-directed,
there exists an index k ∈ I with k ≥ i(x), for all x ∈ X. This implies that{{x} ∣ x ∈ X } ⊆ rng µk .
We claim that the range H ∶= rng µk is the desired dense set. Since∣H∣ = ∣D(k)∣ < λ, it remains to show that H is dense. Let Y ∈ ℘κ(X). As

D(k) is κ-directed, it contains an upper bound c of the set { µ−1
k ({y}) ∣

y ∈ Y }. Consequently, µk(c) ∈ H is an upper bound of {{y} ∣ y ∈ Y }.
This implies that Y ⊆ µk(c). ◻
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Substructures
We have shown in Proposition b3.3.16, that every Σ-structure can be
written as a κ-directed colimit of its κ-generated substructures. This
statement can be generalised to arbitrary κ-accessible categories. We
start by introducing a notion of substructure for accessible categories.

Definition 4.10. Let C be a category, K ⊆ Cobj a class of objects, and
a ∈ C.

(a) We define the arrow category

SubK(a) ∶= (K ↓ a) ,
where we have writtenK for the inclusion functorK → C.

For the class K of all κ-presentable objects, we also write Subκ(a)
instead of SubK(a).

(b) The canonical diagram D ∶ SubK(a) → C of a overK is defined by

D( f ) ∶= $ , for objects f ∶ $→ a ,
and D(φ) ∶= φ , for morphisms φ ∶ f → f ′ .

Before generalising Proposition b3.3.16 we prove a technical lemma.

Lemma 4.11. Let C be a category, D ∶ Subκ(a) → C the canonical diagram
of a ∈ C, and E ∶ I → C a diagram with colimit a such that every E(i) is
κ-presentable.

(a) E factorises as E = D ○ F, for a suitable functor F ∶ I → Subκ(a).
(b) If I is κ-filtered, we can choose F to be dense.

Proof. Let λ be a limiting cocone from E to a. We define

F(i) ∶= λi , for i ∈ Iobj ,
F( f ) ∶= E( f ) , for f ∈ Imor .

To see that F is indeed a functor I → Subκ(a), note that, for a morphism
f ∶ i→ j of I , λi = λj ○ E( f ) implies that F( f ) ∈ Subκ(a)(λi , λj).
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(a) We have

(D ○ F)(i) = D(λi) = E(i) , for i ∈ Iobj ,(D ○ F)( f ) = D(E( f )) = E( f ) , for f ∈ Imor .

(b) (d1) Consider g ∈ Subκ(a). Since g factorises essentially uniquely
through λ, there are i ∈ I and a morphism g0 such that g = λi ○ g0. Since
F(i) = λi, it follows that g0 ∶ g → F(i) is a morphism in Subκ(a).

(d2) Let f ∶ g → F(i) and f ′ ∶ g → F(i′) be morphisms of Subκ(a).
Then

λi ○ f = F(i) ○ f = g = F(i′) ○ f ′ = λi′ ○ f ′ .

Consequently, λi ○ f and λi′ ○ f are two factorisations of g through λ. As
E is κ-filtered and the domain of g is κ-presentable, it follows by essential
uniqueness and Corollary 1.3 that there are morphisms h ∶ i → k and
h′ ∶ i′ → k such that

E(h) ○ f = E(h′) ○ f ′ .

Consequently,

F(h) ○ f = F(h′) ○ f ′ ,
which implies that f ⩕F f ′. ◻
Proposition 4.12. Let C be a κ-accessible category and a ∈ C an object.
The canonical diagram D ∶ Subκ(a) → C of a is κ-filtered and limÐ→D = a.

Proof. Fix a κ-directed diagram E ∶ J→ C of κ-presentable objects with
colimit a and let λ be the corresponding limiting cocone. To show that
Subκ(a) is κ-filtered, we have to check two conditions.

(f1) Let X ⊆ Subκ(a)obj be a set of size ∣X∣ < κ. Every g ∶ $g → a in X
factorises essentially uniquely through λ as g = λkg ○ g0, for suitable
kg ∈ I and g0 ∶ $g → E(kg). Since J is κ-directed, there exists an upper
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bound l ∈ I of { kg ∣ g ∈ X }. Consequently, λ l ∶ E(l) → a is an object of
Subκ(a) and

E(kg , l) ○ g0 ∶ g → λ l , for g ∈ X ,

is the desired family of morphisms of Subκ(a).
(f2) Let X ⊆ Subκ(a)(g , g′) be a set of size ∣X∣ < κ. There are essen-

tially unique factorisations

g = λ i ○ g0 and g′ = λ j ○ g′0 , for suitable i , j ∈ I .

For every f ∈ X,
λ j ○ (g′0 ○ f ) = g′ ○ f = g ,

is another factorisation of g. Consequently, g′0 ○ f ⩕E g0 and, by Corol-
lary 1.3, we can find an index k f ≥ i , j such that

E( j, k f ) ○ g′0 ○ f = E(i , k f ) ○ g0 .

Let l be an upper bound of { k f ∣ f ∈ X }. Then

E( j, l) ○ g′0 ○ f = E(i , l) ○ g0 = E( j, l) ○ g′0 ○ f ′ ,
for all f , f ′ ∈ X. Since λ l ∶ E(l) → a is an object of Subκ(a) and
E( j, l) ○ g′0 ∶ g′ → λ l is a morphism, the claim follows.

It remains to prove that D has the colimit a. Let F ∶ I → Subκ(a) be
the dense functor from Lemma 4.11 with E = D ○ F. Then

limÐ→D = limÐ→(D ○ F) = limÐ→ E = a . ◻
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1. Open and closed sets

Definition 1.1. A topology on a set X is a system C ⊆ ℘(X) of subsets
of X that satisfies the following conditions:

◆ ∅, X ∈ C
◆ If Z ⊆ C then ⋂ Z ∈ C.

◆ If C0 ,C1 ∈ C then C0 ∪ C1 ∈ C.

A topological space is a pair X = ⟨X , C⟩ consisting of a set X and a
topology C on X. The elements of C are called closed sets. A set O is open
if its complement X ∖O is closed. Sets that are both closed and open are
called clopen. A set U is a neighbourhood of an element x ∈ X if there
exists an open set O with x ∈ O ⊆ U . The elements of a topological
space X are usually called points.

Example. (a) In the usual topology ⟨R, C⟩ of the real numbers a subset
A ⊆ R is open if and only if, for every a ∈ A, there exists an open interval(c, d) ⊆ A with a ∈ (c, d). Correspondingly, a set A ⊆ R is closed if it
contains all elements a ∈ R such that, for every open interval (c, d) with
a ∈ (c, d), there exists an element b ∈ (c, d) ∩ A. The only clopen sets
are ∅ and R.

(b) Consider the space Rn . We denote the usual Euklidean norm of a
tuple ā ∈ Rn by

∥ā∥ ∶= √a2
0 + ⋅ ⋅ ⋅ + a2

n−1 ,
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and the ε-ball around ā by

Bε(ā) ∶= { b̄ ∈ Rn ∣ ∥b̄ − ā∥ < ε } .

A set A ⊆ Rn is open if and only if, for every ā ∈ A, there is some ε > 0
such that Bε(ā) ⊆ A. The set A is closed if, whenever ā ∈ Rn is a tuple
such that Bε(ā) ∩ A ≠ ∅, for all ε > 0, then we have ā ∈ A.

(c) Let X be an arbitrary set. The trivial topology of X is given by the
set C = {∅, X} where only ∅ and X are closed.

(d) The discrete topology of a set X is its power set C = ℘(X) where
every set is clopen.

(e) We can define a topology on any set X by

C ∶= {C ⊆ X ∣ C is finite} .

(f) Let K be a field and n < ω. For a set I ⊆ K[x0 , . . . , xn−1] of polyno-
mials over K, define

Z(I) ∶= { ā ∈ Kn ∣ p(ā) = 0 for all p ∈ I } .

We can equip Kn with the Zariski topology

Z ∶= { Z(I) ∣ I ⊆ K[x̄] } .

Let us prove that Z is indeed a topology. Clearly,

∅ = Z({1}) ∈ Z and Kn = Z({0}) ∈ Z .

Let X ⊆ Z and set I ∶= { I ∣ Z(I) ∈ X }. Then we have

⋂X = ⋂{ Z(I) ∣ I ∈ I } = Z(⋃I) ∈ Z .

Finally, suppose that Z(I0), Z(I1) ∈ Z . Then

Z(I0) ∪ Z(I1) = Z(J) , where J ∶= { pq ∣ p ∈ I0 , q ∈ I1 } .

Note that, for n = 1, Z consists of all finite subsets of K. If K = R
and C is the usual topology on R then we have Z ⊂ C. An example of aC-closed set that is not Z-closed is [0, 1]n .
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Remark. (a) Note that the systemO of open sets satisfies:◆ ∅, X ∈ O
◆ If Z ⊆ O then ⋃ Z ∈ O.
◆ If O0 ,O1 ∈ O then O0 ∩ O1 ∈ O.

Conversely, given any systemO with these properties we can define a
topology by

C ∶= {X ∖ O ∣ O ∈ O } .

(b) The family of clopen sets of a topological space X forms a boolean
algebra.

Lemma 1.2. Let X be a topological space. A set A ⊆ X is open if and only
if it is a neighbourhood of all of its elements.

Proof. Clearly, if A is open and x ∈ A then we have x ∈ A ⊆ A and A is a
neighbourhood of x. Conversely, suppose that, for every x ∈ A, there is
an open set Ox with x ∈ Ox ⊆ A. Then A = ⋃x∈A Ox is open. ◻
Remark. The family of all neighbourhoods of a point x ∈ X forms a filter
in the power-set lattice ℘(X).

Note that every topological space is a closure space. Hence, we can
use Lemma a2.4.8 to assign to each topology a corresponding closure
operator.

Definition 1.3. Let X = ⟨X , C⟩ be a topological space.
(a) The topological closure of a set A ⊆ X is

cl(A) ∶= ⋂{C ∈ C ∣ A ⊆ C } .

(b) The interior of A is the set

int(A) ∶= ⋃{O ∣ O ⊆ A is open} .

(c) The boundary of A is the set

∂A ∶= cl(A) ∖ int(A) .
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Example. (a) Consider the space R. We have cl(Q) = R, int(Q) = ∅,
and ∂Q = R.

(b) The interior of a closed interval [a, b] is the corresponding open
interval (a, b). Its boundary is {a, b}.
Exercise 1.1. Prove that

int(A) = A∖ cl(X ∖ A) and ∂A = cl(A) ∩ cl(X ∖ A) .

Lemma 1.4. Let X be a set.

(a) If C is a topology on X, the corresponding operation cl forms a
topological closure operator on X.

(b) Conversely, if c is a topological closure operator on X, then fix c is a
topology on X.

As seen in the examples above, it can be quite cumbersome to describe
a topology by defining when a set is closed. Instead, it is usually easier to
define only some especially simple closed sets. Note that the intersection
of a family of topologies is again a topology. Hence, the collection of all
topologies on a set X form a complete partial order and we can assign
to each family B ⊆ ℘(X) the least topology containing B.

Definition 1.5. Let X = ⟨X , C⟩ be a closure space.
(a) A closed base of C is a system B ⊆ ℘(X) such that

C = {⋂ Z ∣ Z ⊆ B } .

(By convention, we set ⋂∅ ∶= X.)
(b) An open base of C is a system B ⊆ ℘(X) such that

C = {X ∖⋃ Z ∣ Z ⊆ B } .

(c) A closed subbase of C is a system B ⊆ ℘(X) such that the set

{B0 ∪ ⋅ ⋅ ⋅ ∪ Bn−1 ∣ n < ω, B i ∈ B }
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forms a closed base of C.
(d) An open subbase of C is a system B ⊆ ℘(X) such that the set

{B0 ∩ ⋅ ⋅ ⋅ ∩ Bn−1 ∣ n < ω, B i ∈ B }
forms an open base of C.

(e) If B is a base or subbase of C then we say that B induces the
topology C.

Every family B ⊆ ℘(X) is a closed base for the closure space ⟨X , C⟩
where

C ∶= {⋂ Z ∣ Z ⊆ B } .

In the following lemma we characterise those families B where resulting
closure space is topological.

Lemma 1.6. Let X be a set and B ⊆ ℘(X).
(a) B forms a closed base of some topology C on X if and only if it

satisfies the following conditions:
◆ ⋂B = ∅ .◆ For all C0 ,C1 ∈ B, there exists a set Z ⊆ B such that C0∪C1 =⋂ Z.

(b) B forms an open base of some topology C on X if and only if it
satisfies the following conditions:
◆ ⋃B = X .◆ For all O0 ,O1 ∈ B, there is a set Z ⊆ B such that O0 ∩ O1 =⋃ Z.

Remark. (a) The set of all open intervals forms an open base for the
topology of R. An open subbase is given by the set of all intervals of the
form ↓a and ↑a, for a ∈ R. Similarly, the set of all intervals of the form⇓a and ⇑a is a closed subbase for this topology.

(b) The usual topology of Rn has an open base consisting of all balls
Bε(ā) with ā ∈ Rn and ε > 0.
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Definition 1.7. Let X = ⟨X , C⟩ be a closure space and Y ⊆ X. The closure
subspace of X induced by Y is the closure space

X∣Y ∶= ⟨X , C∣Y⟩ where C∣Y ∶= {C ∩ Y ∣ C ∈ C } .

C∣Y is called the system of closed sets on Y induced by C.

Lemma 1.8. If X is a topological space then so is X∣Y , for every Y ⊆ X.

Example. Let X = R2 with the usual topology and Y ∶= R × {0} ⊆ X.
The set A ∶= (0, 1) × {0} = (0, 1) ×R ∩ Y is an open subset of Y in the
subspace topology. Clearly, A is not an open subset of X.

2. Continuous functions
As usual we employ structure preserving maps to compare topological
spaces.

Definition 2.1. Let f ∶ X → Y be a function between closure spaces.
(a) f is continuous if f −1[C] is closed, for every closed set C ⊆ Y .
(b) f is closed if f [C] is closed, for every closed set C ⊆ X.
(c) f is a homeomorphism if it is bijective, closed, and continuous.

Exercise 2.1. Let f ∶ R → R. Show that f is continuous if and only if,
for every element x ∈ R and all ε > 0, there exists a number δ > 0 such
that ∣ f (y) − f (x)∣ < ε, for all y with ∣y − x∣ < δ. Hence, for the standard
topology of the real numbers the above definition coincides with the
well-known definition from analysis.

Lemma 2.2. Let f ∶ X → Y be a function between closure spaces. The
following statements are equivalent:

(1) f is continuous.

(2) f −1[O] is open, for every open set O ⊆ Y.

(3) f −1[O] is open, for every basic open set O ⊆ Y.

346

2. Continuous functions

(4) f −1[C] is closed, for every basic closed set C ⊆ Y.

Proof. (1)⇒ (2) If O is open then Y ∖ O is closed. Hence,

X ∖ f −1[O] = f −1[Y ∖ O]
is closed and f −1[O] is open.

(3)⇒ (4) follows analogously. If B is a closed base for the topology
of Y then {Y ∖ B ∣ B ∈ B } is an open base for this topology. Hence, if
B ∈ B then

X ∖ f −1[B] = f −1[Y ∖ B]
is open and f −1[B] is closed.

(2)⇒ (3) is trivial.
(4)⇒ (1) Let C ⊆ Y be closed. Then there exists a family S of basic

closed sets such that C = ⋂ S. Hence,

f −1[C] = ⋂{ f −1[B] ∣ B ∈ S }
is closed. ◻
Example. We claim that addition of real numbers is a continuous func-
tion + ∶ R2 → R with regard to the usual topologies on R and R2.
Since the open intervals form a base for the topology of R it is sufficient
to check that the preimage of every open interval (a, b) is open. This
preimage is the set

{ ⟨x , y⟩ ∈ R2 ∣ a − x < y < b − x }
which is open in the topology of R2.

Exercise 2.2. Prove that multiplication ⋅ ∶ R2 → R is also continuous.

Lemma 2.3. Let f ∶ X → Y be a function between topological spaces.
(a) f is continuous if, and only if, there exists a closed subbase B of Y

such that f −1[B] is closed, for every B ∈ B.
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(b) If f is injective, then f is closed if, and only if, there exists a closed
subbase B of X such that f [B] is closed, for every B ∈ B.

Proof. (a) (⇒) is trivial. For (⇐), note that

f −1[B0 ∪ ⋅ ⋅ ⋅ ∪ Bn−1] = f −1[B0] ∪ ⋅ ⋅ ⋅ ∪ f −1[Bn−1]
is closed, for all B0 , . . . , Bn−1 ∈ B. Hence, there is a close base

B+ ∶= {B0 ∪ ⋅ ⋅ ⋅ ∪ Bn−1 ∣ n < ω, B0 , . . . , Bn−1 ∈ B }
of Y such that f −1[B] is closed, for all B ∈ B. Consequently, we can use
Lemma 2.2 to show that that f is continuous.

(b) (⇒) is trivial. For (⇐), let C ⊆ X be closed. Then there is a family(Fi)i∈I of finite subsets Fi ⊆ B such that

C = ⋂
i∈I⋃ Fi .

Since f is injective, it follows that

f [C] = f [⋂i∈I ⋃ Fi] = ⋂
i∈I f [⋃ Fi] = ⋂

i∈I ⋃B∈Fi

f [B] .

This set is closed. ◻
Lemma 2.4. Let f ∶ X → Y and g ∶ Y → Z be functions between closure
spaces.

(a) If f and g are continuous then so is g ○ f .
(b) If f and g are closed then so is g ○ f .

The following lemma comes in handy when one wants to prove that a
piecewise defined function is continuous.

Lemma 2.5 (Gluing Lemma). Let f ∶ X → Y be a function between
topological spaces and suppose that C0 , . . . ,Cn−1 ⊆ X is a finite sequence
of closed sets such that X = C0 ∪ ⋅ ⋅ ⋅ ∪ Cn−1. If each restriction f ↾ C i is
continuous then so is f .
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Proof. Let A ⊆ Y be closed. Since f ↾ C i is continues it follows that the
sets f −1 ↾ C i[A] are closed. Hence,

f −1[A] = f −1 ↾ C0[A] ∪ ⋅ ⋅ ⋅ ∪ f −1 ↾ Cn−1[A]
being a finite union of closed sets is also closed. ◻
As an application we consider topologies on partial orders and con-

tinuous functions between them.

Definition 2.6. Let ⟨A, ≤⟩ be a partial order. The order topology of A is
the topology induced by the open subbase consisting of all sets ↑a and ↓a,
for a ∈ A.

Example. (a) The order topology of ⟨Z, ≤⟩ is the discrete topology.
(b) The order topology of ⟨R, ≤⟩ is the usual topology.
(c) The order topology of ⟨Q, ≤⟩ is the subspace topology induced by

the inclusion Q ⊆ R. If (a, b) ⊆ R is an open interval with irrational
endpoints then (a, b) ∩Q is a clopen subset of Q.

Lemma 2.7. Let X be a topological space and L a lattice with the or-
der topology. If f , g ∶ X → L are continuous then so are the functions
f ⊔ g , f ⊓ g ∶ X → L with

( f ⊔ g)(x) ∶= f (x) ⊔ g(x) and ( f ⊓ g)(x) ∶= f (x) ⊓ g(x) .

Proof. The preimages

( f ⊔ g)−1[↓a] = f −1[↓a] ∩ g−1[↓a]( f ⊔ g)−1[↑a] = f −1[↑a] ∪ g−1[↑a]
of the basic open sets ↓a and ↑a are open. The claim for f ⊓ g follows
analogously. ◻
Corollary 2.8. Let L be a lattice with the order topology and let C(X, L)
be the set of all continuous functions X → L. If we order f , g ∈ C(X, L) by

f ⊑ g : iff f (x) ⊑ g(x) , for all x ∈ X ,

then C(X, L) ∶= ⟨C(X, L), ⊑⟩ forms a lattice.
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Proof. We have shown in the preceding lemma that f , g ∈ C(X, L) im-
plies f ⊔ g , f ⊓ g ∈ C(X, L). Clearly, f ⊔ g = sup{ f , g} and f ⊓ g =
inf { f , g}. ◻
Definition 2.9. Let A = ⟨A, ≤⟩ be a partial order. The chain topology
on A is the topology where a set U ⊆ A is closed if, and only if, supC ∈ U ,
for every nonempty chain C ⊆ U that has a supremum.

Lemma 2.10. Let ⟨A, ≤⟩ be a complete partial order. If C ⊆ A is closed in
the chain topology then the suborder ⟨C , ≤⟩ is inductively ordered.

Lemma 2.11. An increasing function f ∶ A→ B between partial orders is
continuous (in the sense of Definition a2.3.12) if and only if it is continuous
with regard to the chain topology.

Proof. (⇒) Suppose that U ⊆ B is a closed set such that f −1[U] is not
closed. Then there exists a chain C ⊆ f −1[U] such that supC exists but
supC ∉ f −1[U]. Since f is increasing it follows that f [C] is a chain in U .
If sup f [C] does not exist then f is not continuous and we are done.
Otherwise, we have sup f [C] ∈ U since U is closed. Since f (supC) ∉ U
it follows that sup f [C] ≠ f (supC), as desired.(⇐) Suppose that there is a chain C ⊆ A such that supC exists but,
either sup f [C] does not or sup f [C] ≠ f (supC). Set c ∶= f (supC).
Since c is an upper bound of f [C] but not the least one, we can find an
upper bound b of f [C] with b ≱ c. Since C ⊆ f −1[⇓b] is a chain with
supremum supC ∉ f −1[⇓b] it follows that f −1[⇓b] is not closed. The
set ⇓b, on the other hand, is closed. Consequently, f is not continuous
with regard to the chain topology. ◻
3. Hausdorff spaces and compactness
The finer a topology on X is, that is, the more subsets of X are closed, the
smaller the vicinity of a point becomes. One extreme is the trivial topo-
logy {∅, X} where all points are near to each other. The other extreme
is the discrete topology ℘(X) which consists of isolated points that are
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far away from each other. When we equip a set X with a topology we
aim at imposing a spatial relationship on the points of X. To exclude
trivial cases we will adopt the basic requirement that the topology is fine
enough to separate each point from every other one. Such topologies are
called Hausdorff topologies.

Definition 3.1. Let X be a topological space.
(a) X is a Hausdorff space if, for all x , y ∈ X with x ≠ y, there exist

open sets U and V with x ∈ U , y ∈ V , and U ∩ V = ∅.
(b) X is zero-dimensional, or totally disconnected, if it has an open base

of clopen sets.

Example. (a) R is a Hausdorff space. It is not zero-dimensional.
(b) Q is a zero-dimensional Hausdorff space.
(c) The Zariski topology is not Hausdorff.

A typical example for the kind of topological space we are mostly
interested in is given by the Cantor discontinuum.

Definition 3.2. The Cantor discontinuum is the space C ∶= ⟨2ω , C⟩ where
the open sets are of the form

⟨W⟩ ∶= { x ∈ 2ω ∣ w ⪯ x for some w ∈W }
with W ⊆ 2<ω . (⪯ denotes the prefix order.)

Remark. The Cantor discontinuum can be regarded as the set of all
branches of the infinite binary tree ⟨2<ω , ⪯⟩. An open set ⟨W⟩ consists
of all branches that contain an element of W . Correspondingly, a set C is
closed if there exists a set W ⊆ 2<ω such that C consists of all branches
that avoid every element of W . In particular, every singleton {x} is
closed. An open base of the Cantor topology consists of the sets ⟨{w}⟩
with w ∈ 2<ω .

Lemma 3.3. The Cantor discontinuum is a zero-dimensional Hausdorff
space.
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Proof. Let w = c0 . . . cn−1 ∈ 2<ω and set d i ∶= 1 − c i . The complement of
a basic open set ⟨{w}⟩ is the open set⋃{⟨c0 . . . c i−1d i⟩ ∣ i < n }. Hence,
every basic open set ⟨{w}⟩ is clopen.

To show that the topology is Hausdorff let x , y ∈ 2ω with x ≠ y. Then
there exists a least index n < ω with x(n) ≠ y(n). Let w ∈ 2<ω be the
common prefix of x and y of length n and set c ∶= x(n) and d ∶= y(n).
Then we have x ∈ ⟨wc⟩, y ∈ ⟨wd⟩ and ⟨wc⟩ ∩ ⟨wd⟩ = ∅. ◻

Many familiar properties of the real topology are shared by all Haus-
dorff spaces.

Lemma 3.4. In a Hausdorff space X every singleton {x} is closed.

Proof. Let x ∈ X. For every y ≠ x, there are disjoint open sets Uy ,Vy
with x ∈ Uy and y ∈ Vy . The set O ∶= ⋃y≠x Vy is open. Since O = X∖{x}
it follows that {x} is closed. ◻
An important property of topological spaces is compactness which

can be regarded as a strong form of completeness (the precise statement
is given in Lemma 3.6 (3) below).

Definition 3.5. Let X be a topological space.
(a) A cover of X is a subset U ⊆ ℘(X) such that ⋃U = X. The cover

is called open if every U ∈ U is an open set. A subcover of U is a subsetU0 ⊆ U that is still a cover of X.
(b) X is compact if every open cover has a finite subcover. We call a

set A ⊆ X compact if the subspace induced by A is compact.
(c) X is locally compact if every point x ∈ X has a compact neighbour-

hood.

Exercise 3.1. (a) Prove that R is not compact.
(b) Prove that a subset A ⊆ R is compact if, and only if, it is closed

and bounded.
(c) Prove that R is locally compact.
(d) Prove that Q is not locally compact.
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Lemma 3.6. Let X be a topological space. The following statements are
equivalent:

(1) X is compact.
(2) The topology of X has an open subbase B such that every cover U

of X with U ⊆ B has a finite subcover.
(3) If C ⊆ ℘(X) is a family of closed sets with ⋂C = ∅ then there exists

a finite subfamily C0 ⊆ C with ⋂C0 = ∅.

Proof. (1)⇒ (2) is trivial. (2)⇒ (1) Let F be the set of all open covers
of X that do not have a finite subcover. We have to show that F = ∅.
For a contradiction, suppose otherwise. Note that ⟨F , ⊆⟩ is inductively
ordered. Hence, there exists a maximal element U ∈ F . Let V ∶= U ∩ B.
Since no finite subset of V is a cover of X and V ⊆ B it follows by (2)
that V is not a cover of X. Let x ∈ X ∖ ⋃V and choose some open set
U ∈ U with x ∈ U . By definition of a subbase there exist finitely many
sets B0 , . . . , Bn ∈ B such that

x ∈ B0 ∩ ⋅ ⋅ ⋅ ∩ Bn ⊆ U .

Since x ∉ ⋃V we have B i ∉ U , for all i < n. By maximality of U it follows
that U ∪ {B i} has a finite subcover. That is, for every i < n, there exists a
finite subset Ui ⊆ U such that Ui ∪ {B i} is a cover of X. It follows that

U ∪ ⋃
i<n
⋃Ui ⊇ ⋂

i<n
B i ∪ ⋃

i<n
⋃Ui ⊇ ⋂

i<n
(B i ∪⋃Ui) = X .

Consequently, U contains the finite subcover {U} ∪ U0 ∪ ⋅ ⋅ ⋅ ∪ Un−1.
Contradiction.

(1)⇒ (3) Set U ∶= {X ∖ C ∣ C ∈ C }. If ⋂C = ∅ then U is an open
cover of X. Hence, there exists a finite subcover U0 ⊆ U which implies
that ⋂C0 = ∅ where C0 ∶= {X ∖U ∣ U ∈ U0 } ⊆ C.

(3)⇒ (1) Let U be an open cover of X and set C ∶= {X ∖U ∣ U ∈ U }.
Then ⋂C = ∅. Hence, there exists a finite subset C0 ⊆ C such that⋂C0 = ∅. This implies that {X ∖ C ∣ C ∈ C0 } is a finite subcover
of U . ◻
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Lemma 3.7. The Cantor discontinuum is compact.

Proof. Let U be a cover of 2ω consisting of basic open sets ⟨W⟩ with
W ⊆ 2<ω . SetW ∶= {W ⊆ 2<ω ∣ ⟨W⟩ ∈ U } and

T ∶= 2<ω ∖⋃W .

Note that if w ∈ W then ⟨W⟩ = ⟨W ∪ {wx}⟩, for all x ∈ 2<ω . Con-
sequently, v ∈ T implies u ∈ T , for all u ⪯ v. Hence, T is a tree. We claim
that it is finite.

Suppose otherwise. As the tree T is binary we can use Lemma b2.1.9
to find an infinite branch α ∈ 2ω through T . This implies that α ∉ ⟨W⟩,
for all W ∈ W . Hence, α ∉ ⋃U . Contradiction.

Since T is finite it follows that the partial order ⟨2<ω∖T , ⪯⟩ has finitely
many minimal elements w0 , . . . ,wn−1. For every i < n, choose some
Wi ∈ W with w i ∈ Wi . Then {⟨W0⟩, . . . , ⟨Wn−1⟩} is a finite subcover
of U . ◻
Lemma 3.8. If A and B are compact then so is A∪ B.

Proof. Let U be an open cover of A∪ B. Since A is compact there exists
a finite subset V ⊆ U that is a cover of A. Similarly, we find a finite coverW ⊆ U of B. Hence, V ∪W ⊆ U is a finite cover of A∪ B. ◻
Lemma 3.9. If X is compact and A ⊆ X closed then A is compact.

Proof. We employ the characterisation of Lemma 3.6 (3). Let C be a
family of subsets of A that are closed in A. It is sufficient to show that
every set in C is also closed in X. For every C ∈ C, there is a closed set
U ⊆ X with C = U ∩ A. Since A is closed it follows that so is C. ◻
Lemma 3.10. Let f ∶ X → Y be continuous. If K ⊆ X is compact then so is
f [K].
Proof. Let U be an open cover of f [K]. Then V ∶= { f −1[U] ∣ U ∈ U }
is an open cover of K that, by assumption, contains a finite subcoverV0 ⊆ V . For every V ∈ V0, fix some set UV ∈ U such that f −1[UV ] = V .
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We claim that U0 ∶= {UV ∣ V ∈ V0 } is a cover of f [K]. If y ∈ f [K]
then y = f (x), for some x ∈ K. Choose some V ∈ V0 with x ∈ V . Then
y = f (x) ∈ f [V] = UV is covered by U0. ◻
Lemma 3.11. Let X be a Hausdorff space and K ⊆ X a compact set.

(a) For every x ∈ X ∖ K, there exist disjoint open sets U and V with
x ∈ U and K ⊆ V.

(b) For every compact set A ⊆ X, disjoint from K, there exist disjoint
open sets U and V with A ⊆ U and K ⊆ V.

(c) K is closed.

Proof. (a) Let x ∈ X ∖ K. Since X is a Hausdorff space we can find, for
every y ∈ K, disjoint open sets Uy ,Vy ⊆ X with x ∈ Uy and y ∈ Vy . Since
K ⊆ ⋃y Vy is compact there exist finitely many points y0 , . . . , yn−1 ∈ K
such that K ⊆ Vy0 ∪ ⋅ ⋅ ⋅ ∪ Vyn−1 =∶ V . The set U ∶= Uy0 ∩ ⋅ ⋅ ⋅ ∩ Uyn−1 is
open, disjoint from V , and it contains x.

(b) The proof is similar to that of (a). Applying (a) we fix, for every
x ∈ K, disjoint open sets Ux and Vx with x ∈ Vx and A ⊆ Ux . Since
K ⊆ ⋃x Vx there exist finitely many elements x0 , . . . , xn−1 ∈ K with
K ⊆ Vx0 ∪ ⋅ ⋅ ⋅ ∪Vxn−1 =∶ V . The set U ∶= Ux0 ∩ ⋅ ⋅ ⋅ ∩Uxn−1 is open, disjoint
from V , and it contains A.

(c) For every x ∈ X ∖ K, we can use (a) to find an open set Ux with
x ∈ Ux and K ∩Ux = ∅. Since X ∖ K = ⋃x Ux is open it follows that K
is closed. ◻

We turn to an investigation of locally compact Hausdorff spaces. The
following lemma shows that these are very similar to the real topology.

Lemma 3.12. Let X be a locally compact Hausdorff space.
(a) For every neighbourhood U of a point x ∈ X, there exists a compact

neighbourhood V ⊆ U of x.
(b) For all sets K ⊆ O ⊆ X where K is compact and O is open, there

exists an open set U such that K ⊆ U ⊆ cl(U) ⊆ O and cl(U) is
compact.
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(c) If C ⊆ X is closed and O ⊆ X is open then the subspace induced by
C ∩ O is a locally compact Hausdorff space.

Proof. (a) Replacing U by int(U) we may assume that U is open. Let
K be a compact neighbourhood of x. If K ⊆ U we are done. Otherwise,
the set A ∶= K∖U = K∩(X∖U) is closed. Since A ⊆ K it is also compact.
There exist disjoint open sets W0 ,W1 with A ⊆W0 and x ∈W1. The set
V ∶= K ∩ (X ∖W0) = K ∖W0 is closed, compact, and it contains x.
Furthermore, K ∖U ⊆W0 implies that V = K ∖W0 ⊆ U .

(b) By (a), we can choose, for every x ∈ K, a compact neighbourhood
Wx ⊆ O. The family

W ∶= { int(Wx) ∣ x ∈ K }
is an open cover of K. By compactness, there exists a finite subcoverW0 ⊆ W . The set U ∶= ⋃W0 is open and we have

cl(U) = cl(⋃W0) = ⋃{ cl(int(Wx)) ∣ int(Wx) ∈ W0 }⊆ ⋃{Wx ∣ int(Wx) ∈ W0 } ⊆ O .

Finally, cl(U) is compact because it is a finite union of compact sets.
(c) Every subspace of a Hausdorff space is Hausdorff. To prove that

C ∩ O is locally compact, let x ∈ C ∩ O. By (a), there exists a compact
neighbourhood K ⊆ O of x. The set V ∶= C ∩ K ⊆ C ∩ O is compact.
Furthermore, V is a neighbourhood of x in C ∩ O since x ∈ C ∩ int(K)
and C ∩ int(K) is open in C ∩ O. ◻
Theorem 3.13. A Hausdorff space X is locally compact if and only if there
exist a compact Hausdorff space Y such that X ⊆ Y is an open subset of Y.

Proof. (⇐) If Y is compact and X ⊆ Y is open then Lemma 3.12 (c)
implies that X = X ∩ Y is locally compact.(⇒)We set Y ∶= X ∪ {∞} where∞ ∉ X is a new point. Let C be the
topology of X. We define the topology of Y by

D ∶= {C ∪ {∞} ∣ C ∈ C } ∪ {K ∣ K ⊆ X is compact} .
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Let us show thatD is a topology. Since ∅ is compact we have

∅ ∈ D and Y = X ∪ {∞} ∈ D .

Furthermore, if A, B ∈ D then either ∞ ∈ A∪ B and (A∪ B) ∖ {∞} is
closed in X, or A and B are compact in X and so is A∪ B. In both cases
it follows that A∪ B ∈ D.

Finally, suppose that Z ⊆ D. If∞ ∈ ⋂ Z then⋂ Z ∖{∞} being closed
in X it follows that⋂ Z ∈ D. Otherwise, there is a compact set K ∈ Z and⋂ Z ⊆ X is closed in X. Since ⋂ Z ⊆ K it follows that it is also compact.
Hence, ⋂ Z ∈ D.

Since {∞} = ∅ ∪ {∞} ∈ D it follows that X is an open subset of Y .
Hence, it remains to prove that Y is a compact Hausdorff space.

If x ≠ y are points in X then X contains disjoint open neighbourhoods
of x and y. These are also open in Y . Similarly, for x ∈ X and∞, we can
select a compact neighbourhood K ⊆ X of x. Then int(K) and Y ∖K are
disjoint open sets with x ∈ int(K) and∞ ∈ Y ∖ K. Consequently, Y is a
Hausdorff space.

For compactness, let Z ⊆ D be a family with ⋂ Z = ∅. Since∞ ∉ ⋂ Z
there is a set K ∈ Z that is compact in X. The family,

Z′ ∶= {C ∩ K ∣ C ∈ Z }
is a family of closed subsets of K with ⋂ Z′ = ∅. Since K is compact it
follows that there is a finite subset Z′0 ⊆ Z′ with ⋂ Z′0 = ∅. Suppose that

Z′0 = {C0 ∩ K , . . . ,Cn−1 ∩ K} .

Then Z0 ∶= {K ,C0 , . . . ,Cn−1} is a finite subset of Z with⋂ Z0 = ∅. ◻
4. The Product topology
Definition 4.1. Let (Xi)i∈I be a sequence of topological space. Their
product∏i∈I Xi is the space with universe∏i∈I X i whose topology has
as open base all sets of the form ∏i∈I O i where each O i ⊆ X i is open
and there are only finitely many i with O i ≠ X i .
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Example. The Cantor discontinuum is the product∏n<ω[2] where each
factor [2] is equipped with the discrete topology.

Lemma 4.2. The product topology is the least topology such that every
projection is continuous.

Proof. Let Xi , i ∈ I, be a family of topological spaces and let C be the
product topology. Set

B ∶= {pr−1
k [O] ∣ k ∈ I, O ⊆ Xk open} .

Since B is an open subbase of C it follows that pr−1
k [O] is open, for every

open O ⊆ Xk . Hence, prk ∶ ∏i X i → Xk is continuous.
Let C′ be another topology on∏i X i such that all projections prk are

continuous. If O ⊆ Xk is open then pr−1
k [O] is open in C′. Hence, every

set of B is open in C′. Since B is a subbase of C it follows that every open
set of C is open in C′, that is, C ⊆ C′. ◻
Lemma 4.3. Let Xi , for i ∈ I, be nonempty topological spaces.

(a) The product∏i∈I Xi is a Hausdorff space if and only if each factor Xi
is a Hausdorff space.

(b) The product space∏i∈I Xi is zero-dimensional if and only if each
factor Xi is zero-dimensional.

Proof. (a) (⇐) Let (x i)i , (y i)i ∈ ∏i X i be distinct. Fix some index i
with x i ≠ y i . Since X i is Hausdorff there exist disjoint open sets U ,V ⊆
X i with x i ∈ U and y i ∈ V . Hence, U∗ ∶= pr−1

i [U] and V∗ ∶= pr−1
i [V]

are disjoint open sets with (x i)i ∈ U∗ and (y i)i ∈ V∗.(⇒) Fix elements z i ∈ X i , for i ∈ I. For x ∈ Xk , let x∗ ∶= (x i)i where

x i ∶= ⎧⎪⎪⎨⎪⎪⎩
x if i = k ,
z i otherwise .

To show that Xk is a Hausdorff space let x , y ∈ Xk be distinct. By as-
sumption there are disjoint open sets U ,V ⊆ ∏i X i with x∗ ∈ U and
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y∗ ∈ V . W.l.o.g. we may assume that U = ∏i U i and V = ∏i Vi are
basic open with open sets U i ,Vi ⊆ X i . It follows that x ∈ Uk and
y ∈ Vk . Furthermore, Uk ∩ Vk = ∅ since z ∈ Uk ∩ Vk would imply
that z∗ ∈ ∏i U i ∩∏i Vi = ∅.

(b) (⇒) Suppose that∏i Xi is zero-dimensional. Fix elements z i ∈ X i
and define the functions fk ∶ Xk →∏i X i ∶ x ↦ (y i)i where

y i ∶= ⎧⎪⎪⎨⎪⎪⎩
x if i = k ,
z i otherwise .

Then fk is a homeomorphism from Xk to a subspace of∏i Xi . Since every
subspace of a zero-dimensional space is zero-dimensional it follows that
so is Xk .(⇐) Suppose that every factor Xi has an open base Bi of clopen sets.
The space∏i Xi has an open base consisting of all sets of the form

pr−1
k0
[B0] ∩ ⋅ ⋅ ⋅ ∩ pr−1

kn
[Bn]

where B i ∈ Bk i . Since each element of Bk i is clopen, the projections prk i

are continuous, and the family of clopen sets is closed under boolean
operations it follows that these sets are clopen. ◻
Theorem 4.4 (Tychonoff). Let Xi , for i ∈ I, be nonempty topological
spaces. The product space∏i∈I Xi is compact if and only if each factor Xi
is compact.

Proof. (⇒) Let U be an open cover of X i . Then

V ∶= {pr−1
i [U] ∣ U ∈ U }

is an open cover of∏i X i . Consequently, there exists a finite subcoverV0 ⊆ V and {U ∈ U ∣ pr−1
i [U] ∈ V0 } is a finite subcover of U .(⇐) Let U be a cover of∏i Xi . By Lemma 3.6, we may assume that

every set in U is of the form pr−1
i (U) where i ∈ I and U ⊆ X i is open.

For i ∈ I, let

Ui ∶= {U ⊆ X i ∣ pr−1
i [U] ∈ U } .
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We claim that there is some index i ∈ I such that ⋃Ui = X i . Suppose
otherwise. Then, for every i ∈ I, we can find a point x i ∈ X i ∖ ⋃Ui .
Hence, (x i)i ∉ ⋃U and U is not a cover of∏i Xi . Contradiction.

Fix such an index i. Since Xi is compact there exists a finite subcoverU0 ⊆ Ui of Xi . It follows that {pr−1
i [U] ∣ U ∈ U0 } is a finite subcover

of U . ◻
Lemma 4.5. Let f ∶ Y0 × ⋅ ⋅ ⋅ ×Yn−1 → Z and g i ∶ Xi → Yi , for i < n, be
functions and define h ∶ X0 × ⋅ ⋅ ⋅ × Xn−1 → Z by

h(ā) = f (g0(a0), . . . , gn−1(an−1)) .

If f and all g i are continuous then so is h.

Proof. Let k ∶ X0 × ⋅ ⋅ ⋅ ×Xn−1 → Y0 × ⋅ ⋅ ⋅ ×Yn−1 be the function such that

k(ā) ∶= ⟨g0(a0), . . . , gn−1(an−1)⟩ .

Since h = f ○ k it is sufficient to prove that k is continuous.
Let O ⊆ X0 × ⋅ ⋅ ⋅ × Xn−1 be a basic open set. Then O = U0 × ⋅ ⋅ ⋅ ×Un−1

where each U i is open. Since g i is continuous it follows that g−1
i [U i] is

also open. Consequently,

k−1[O] = g−1
0 [U0] × ⋅ ⋅ ⋅ × g−1

n−1[Un−1]
is open. ◻
Example. From this lemma and the fact that addition and multiplication
of real numbers are continuous functions, it follows immediately that
every polynomial function Rn → R is continuous.

We conclude this section with two further lemmas showing that Haus-
dorff spaces exhibit properties familiar from real topology. The first one
is similar to Lemma 3.4.

Lemma 4.6. If X is a Hausdorff space then the set

∆ ∶= { ⟨x , x⟩ ∣ x ∈ X }
is closed in X × X.
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Proof. If ⟨x , y⟩ ∉ ∆ then there are disjoint open sets U and V with x ∈ U
and y ∈ V . Hence, U × V is an open neighbourhood of ⟨x , y⟩. Since
U and V are disjoint we have U × V ∩ ∆ = ∅. It follows that X × X ∖ ∆
is open and ∆ closed. ◻
Lemma 4.7. Let f ∶ X → Y be a continuous function where Y is a
Hausdorff space. Then f is a closed subset of X ×Y.

Proof. The function g ∶ X × Y → Y × Y with g(x , y) ∶= ⟨ f (x), y⟩ is
continuous, by Lemma 4.5. Since ∆ is closed in Y ×Y and

f = { ⟨x , f (x)⟩ ∣ x ∈ X } = g−1[∆]
if follows that f is closed in X × X. ◻
5. Dense sets and isolated points
In this section we study two different approaches to classify subsets of a
space into ‘thin’ and ‘thick‘ ones. The first one is the property of Baire
and the second one the Cantor-Bendixson rank.

Definition 5.1. A set A ⊆ X is dense if A∩ O ≠ ∅, for every nonempty
open set O.

Example. The set Q is dense in R.

Lemma 5.2. Let X be a topological space and A ⊆ X.
(a) A is dense if and only if cl(A) = X.
(b) int(A) = ∅ if and only if X ∖ A is dense.

Proof. (a) (⇐) Let O be a nonempty open set. Then C ∶= X ∖ O ≠ X.
Since cl(A) = X it follows that C ⊉ A. This implies that O ∩ A ≠ ∅.(⇒) Let C ⊇ A be closed and set O ∶= X ∖ C. If O ≠ ∅ then we have
O ∩ A ≠ ∅ since A is dense. It follows that A ∖ C ≠ ∅. Contradiction.
Hence, X is the only closed set containing A, which implies that cl(A) =
X.
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(b) Let O ≠ ∅ be open. If O ∩ (X ∖ A) = ∅ then O ⊆ Awhich implies
that int(A) ≠ ∅. Conversely, if O ⊆ A then O∩(X∖A) = ∅ and X∖A is
not dense. ◻
Definition 5.3. Let X be a topological space and A ⊆ X.

(a) A is nowhere dense if its closure has empty interior.
(b) A is meagre if A is a countable union of nowhere dense sets.

Lemma 5.4. Let X be a topological space and A ⊆ X.

(a) If A is meagre and B ⊆ A then B is meagre.

(b) If A = ⋃n<ω Bn where each Bn is meagre then A is meagre.

(c) If D ⊆ X is dense and A∩ D is meagre in D then A is meagre in X.

Proof. (a) Fix nowhere dense sets Cn , n < ω, such that A = ⋃n Cn . Since
B = ⋃n(Cn ∩ B) and every Cn ∩ B is nowhere dense it follows that B is
also meagre.

(b) Fix nowhere dense sets Ck
n , k, n < ω, such that Bn = ⋃k Ck

n . Then

A = ⋃
n
Bn = ⋃

n
⋃
k
Ck

n

is a countable union of nowhere dense sets.
(c) Let A = ⋃n Bn where each set Bn ∩ D is nowhere dense in D. It

is sufficient to prove that every Bn is nowhere dense in D. Let O be
the interior of the closure of Bn in X. For a contradiction, suppose that
O ≠ ∅. Then O ⊆ clX(B) implies O ∩ D ⊆ clD(B ∩ D). Since O ∩ D is
open in D we have O ∩ D ⊆ intD(clD(B ∩ D)). But D is dense in X and
O is open. Hence, O ∩ D ≠ ∅ and B ∩ D is not nowhere dense in D.
Contradiction. ◻

This lemma shows that the meagre subsets A ⊆ X form an ideal in℘(X) that is closed under countable unions.We are interested in spaces X
where this ideal is proper. The next lemma gives several equivalent char-
acterisations of such spaces.
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Lemma 5.5. Let X be a topological space. The following statements are
equivalent:

(1) If, for every n < ω, An is a closed set with empty interior then⋃n<ω An has empty interior.

(2) If An is open and dense, for every n < ω, then ⋂n<ω An is dense.

(3) If A is open and nonempty then A is not meagre.

(4) If A is meagre then X ∖ A is dense.

Proof. (1)⇒ (2) If An is open and dense then X ∖An is a closed set with
empty interior. By (1), it follows that B = ⋃n(X ∖An) has empty interior.
Consequently, ⋂n<ω An = X ∖ B is dense.

(2)⇒ (3) Suppose that A is open, nonempty, and meagre. Then there
are nowhere dense sets Bn such that A = ⋃n<ω Bn . Since the interior
of cl(Bn) is empty it follows that On ∶= X ∖ cl(Bn) is dense and open.
(2) implies that the set X ∖ A = ⋂n On is dense. Consequently, A has
empty interior and, since A is open it follows that A = ∅. A contradiction.

(3) ⇒ (4) Suppose that A is meagre but X ∖ A is not dense. Then
int(A) ≠ ∅ and there exists a nonempty open subset O = int(A) ⊆ A
of A. By (3), it follows that O is not meagre. This contradicts Lemma 5.4.

(4)⇒ (1) Let B = ⋃n<ω An where each An is a closed set with empty
interior. Then B is meagre and it follows by (4) that X ∖ B is dense.
Consequently, we have int(B) = ∅. ◻
Definition 5.6. A topological space X has the property of Baire if there is
no set A ⊆ X that is nonempty, open, and meagre.

Lemma 5.7. Let X be a topological space with the property of Baire. If
A is a meagre set then the subspace X ∖ A has the property of Baire. In
particular, X ∖ A is not meagre.

Proof. Let A be a meagre subset of X. By Lemma 5.5 (4), it follows that
X ∖A is dense. According to Lemma 5.4 (c), if B is a meagre set in X ∖A
then B is also meagre in X. By Lemma 5.4 it follows that A ∪ B is also
meagre. Consequently, C = (X ∖A)∖B = X ∖(A∪B) is dense in X and,
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therefore, C is also dense in X ∖ A. By Lemma 5.5, it follows that X ∖ A
has the property of Baire. ◻
Theorem 5.8 (Baire). Every locally compact Hausdorff space X has the
property of Baire.

Proof. We show that X has the property of Lemma 5.5 (2). Let (An)n<ω
be a family of open dense subsets of X. Let O0 be an arbitrary nonempty
open set in X. We have to prove that O0 ∩ ⋂n An ≠ ∅. We construct a
decreasing chain

O0 ⊇ cl(O0) ⊇ O1 ⊇ cl(O1) ⊇ . . .⋅ ⋅ ⋅ ⊇ On ⊇ cl(On) ⊇ On+1 ⊇ cl(On+1) ⊇ . . .

where each On is nonempty and open, cl(On) is compact, and cl(On) ⊆
An .

Suppose that On is already defined. Since An is dense there exists an
element an ∈ On ∩ An . Since the singleton {an} is compact we can use
Lemma 3.12 (b) to find an open set On+1 such that

an ∈ On+1 ⊆ cl(On+1) ⊆ On ∩ An

and cl(On+1) is compact.
Since C ∶= ⋂n cl(On) is the intersection of a decreasing sequence of

nonempty compact sets it follows that C ≠ ∅. Furthermore, we have
C ⊆ O0 and C ⊆ An , for every n. ◻
Definition 5.9. Let X be a topological space and A ⊆ X. A point x ∈ X is
an accumulation point of A if x ∈ cl(A∖ {x}). A point a ∈ A that is not
an accumulation point of A is called isolated.

Remark. x is an isolated point of X if and only if the set {x} is open.

Lemma 5.10. Let X be a topological space. The following statements are
equivalent:

(1) X is a finite Hausdorff space.
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(2) X is a Hausdorff space with a finite dense subset.

(3) X is a finite space with discrete topology.

(4) X is compact and every point is isolated.

Proof. (1)⇒ (2) is trivial.
(2)⇒ (1) Suppose thatA = {a0 , . . . , an−1} is dense in X. Each singleton {a i}

is closed sinceX is aHausdorff space. Hence, their unionA = {a0}∪⋅ ⋅ ⋅∪{an−1}
is also closed. Since A is dense in X it follows by Lemma 5.2 that A =
cl(A) = X. Thus, X is finite.

(1)⇒ (3) Suppose that X = {x0 , . . . , xn−1} and let A ⊆ X be an arbit-
rary set.We claim that A is open. SinceX is Hausdorffwe can choose open
sets U i k , for i ≠ k, such that x i ∈ U i k and xk ∉ U i k . Let O i ∶= ⋂k≠i U i k .
Then we have O i = {x i} and A = ⋃{O i ∣ x i ∈ A} and these sets are
open.

(3)⇒ (4) Let X = {x0 , . . . , xn−1}. Since {x i} is open it follows that
every element is isolated. For compactness, suppose that (U i)i∈I is an
open cover of X. For every xk , we fix some ik ∈ I with xk ∈ U ik . Then(U ik)k<n is a finite subcover of X.

(4)⇒ (1) For every pair x ≠ y of distinct points we have the disjoint
open neighbourhoods {x} and {y}. Hence, X is a Hausdorff space.

To show that X is finite fix, for every x ∈ X, an open neighbourhoodUx
isolating x, i.e., Ux = {x}. Then U = {Ux ∣ x ∈ X } is an open cover
of X. By compactness, we can find a finite subcover U0 = {Ux ∣ x ∈ X0 }
with X0 ⊆ X. It follows that

X = ⋃
x∈X Ux = ⋃

x∈X0

Ux = X0

is also finite. ◻
Definition 5.11. Let X be a topological space and A ⊆ X. The Cantor-
Bendixson rank rkCB(x/A) of an element x ∈ X with respect to A is
defined as follows:

◆ rkCB(x/A) = −1 iff x ∉ A.
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◆ rkCB(x/A) ≥ 0 iff x ∈ A.

◆ rkCB(x/A) ≥ α + 1 if rkCB(x/A) ≥ α and x is an accumulation
point of the set { a ∈ A ∣ rkCB(a/A) ≥ α } .

◆ For limit ordinals δ, we set rkCB(x/A) ≥ δ if rkCB(x/A) ≥ α, for
all α < δ.

The Cantor-Bendixson rank of A is

rkCB(A) ∶= sup{ rkCB(a/A) ∣ a ∈ A} .

Remark. A point a is an isolated point of A if and only if rkCB(a/A) = 0.

Proposition 5.12. Let X be a topological space. For α ∈ On ∪ {∞}, define

X<α ∶= { x ∈ X ∣ rkCB(x/X) < α }
and set X≥α ∶= X ∖ X<α and Xα ∶= X≥α ∩ X<α+1.

(a) rkCB(X) ≥ ∣X∣+ implies rkCB(X) = ∞.

(b) Each set X<α is open, while X≥α is closed.

(c) X∞ is a closed set without isolated points.

(d) The following statements are equivalent:

(1) The isolated points are dense in X.
(2) X∞ is nowhere dense.
(3) int(X∞) = ∅.

Proof. (a) By definition, X≥α = X≥α+1 implies X≥α = X∞. Since the
sequence (X≥α)α is decreasing it follows that there is some α < κ+ with
X≥α ∖ X≥α+1 = ∅. Consequently, X≥α = X∞. If X≥α = ∅ then we have
rkCB(X) ≤ α < κ+. Otherwise, rkCB(X) = ∞.

(b) Suppose that there is some element x ∈ cl(X≥α) ∖ X≥α . Let β ∶=
rkCB(x/X) < α. Then x ∈ cl(X≥α) = cl(X≥α ∖ {x}) ⊆ cl(X≥β ∖ {x})
implies that x is an accumulation point of X≥β . This implies that x ∈
X≥β+1. A contradiction.
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(c) We have seen in (b) that X∞ is closed. Fix some α < ∣X∣+ with
X≥α = X∞. If X≥α had an isolated point then we would have X∞ ⊆
X≥α+1 ⊂ X≥α . Contradiction.

(d) The equivalence (2) ⇔ (3) follows from the fact that X∞ is closed.
It remains to prove (1) ⇔ (3). If X0 is dense in X then so is X<∞ ⊇ X0.
By Lemma 5.2 (b), it follows that int(X∞) = ∅. Conversely, let O ⊆ X be
a nonempty open set. Choose some a ∈ O such that α ∶= rkCB(a/X) < ∞
is minimal. Since a is an isolated point of X≥α it follows that there is an
open set U with U ∩ X≥α = {a}. By choice of a we have O ⊆ X≥α and it
follows that U ∩ O = {a}. Hence, {a} is open and a is an isolated point
of X. Therefore, a ∈ O ∩ X0 ≠ ∅, as desired. ◻
Lemma 5.13. Let X be a topological space and C ⊆ X a closed set. For
every c ∈ C, we have

rkCB(c/C) = rkCB(c/X) .

Proof. We prove by induction on α that

rkCB(c/C) = α iff rkCB(c/X) = α .

Set

Xα ∶= { x ∈ X ∣ rkCB(x/X) < α } ,
Cα ∶= { x ∈ C ∣ rkCB(x/C) < α } .

By inductive hypothesis, we have

Cα = Xα ∩ C and C ∖ Cα = (X ∖ Xα) ∩ C .

It follows that

rkCB(c/C) = α iff c is isolated in C ∖ Cα

iff c is isolated in X ∖ Xα

iff rkCB(c/X) = α . ◻
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Lemma 5.14. Let f ∶ X → Y be injective and continuous. For every x ∈ X,
we have

rkCB(x/X) ≤ rkCB( f (x)/Y) .

Proof. We prove by induction on α that

rkCB(x/X) ≥ α implies rkCB( f (x)/Y) ≥ α .

For α = 0, there is nothing to do and, if α is a limit ordinal then the claim
follows immediately from the inductive hypothesis. For the successor
step, suppose that rkCB(x/X) ≥ α + 1. Set

X≥α ∶= { x ∈ X ∣ rkCB(x/X) ≥ α } ,
Y≥α ∶= { y ∈ Y ∣ rkCB(y/Y) ≥ α } .

By inductive hypothesis, we know that f [X≥α] ⊆ Y≥α . For a contradic-
tion, suppose that rkCB( f (x)/Y) = α. Then f (x) is an isolated point
of Y≥α and we can find an open neighbourhood O of f (x) such that
Y≥α ∩ O = { f (x)}. Hence,

{x} = f −1[{ f (x)}] = f −1[Y≥α ∩ O] = f −1[Y≥α] ∩ f −1[O]⊇ X≥α ∩ f −1[O] ⊇ {x} .

It follows that X≥α ∩ f −1[O] = {x} and x is an isolated point of X≥α .
Contradiction. ◻
Lemma 5.15. Let X be a compact Hausdorff space and C ⊆ X a closed set.
If rkCB(C) < ∞ then the set

{ c ∈ C ∣ rkCB(c/C) = rkCB(C) }
is finite and nonempty.

Proof. Let C ⊆ X be the subspace induced by C. By Lemma 3.9, C is also
a compact Hausdorff space. Replacing X by C, we may therefore assume
w.l.o.g. that C = X.
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Let α ∶= rkCB(X). By Proposition 5.12 (b), the set Xα = X≥α is closed.
Consequently, Xα is a compact subspace of X where every point is isol-
ated. By Lemma 5.10, it follows that Xα is finite.

It remains to prove that it is nonempty. Suppose otherwise. Then{X<β ∣ β < α } is an open cover of X. By compactness, we can find
an open subcover {X<β0 , . . . , X<βn}. Set γ ∶= max {β0 , . . . , βn}. Then
X = X<γ implies that rkCB(X) ≤ γ < α. Contradiction. ◻
Lemma 5.16. Let X be a locally compact Hausdorff space. If rkCB(X) = ∞
then ∣X∣ ≥ 2ℵ0 .

Proof. Let A ∶= { x ∈ X ∣ rkCB(x/X) = ∞}. We prove that ∣A∣ ≥ 2ℵ0 . We
choose points xw ∈ A, for w ∈ 2<ω , and open neighbourhoods Uw of xw
such that, for all v ,w ∈ 2<ω ,

◆ Uv ⊆ Uw iff v ⪯ w,
◆ if v ⪯̸ w and w ⪯̸ v then Uv ∩Uw = ∅.

By assumption A ≠ ∅. Choose an arbitrary element x⟨⟩ ∈ A, let K be
a compact neighbourhood of x⟨⟩, and set U⟨⟩ ∶= int(K). Suppose that
xw has already been chosen. Since A has no isolated points there is some
element

y ∈ (A∖ {xw}) ∩Uw .

We set xw0 ∶= xw and xw1 ∶= y. As X is aHausdorff space there are disjoint
open sets V0 and V1 with xw0 ∈ V0 and xw1 ∈ V1. We set Uw0 ∶= Uw ∩V0
and Uw1 ∶= Uw ∩ V1. For every σ ∈ 2ω , let

Cσ ∶= ⋂
w≺σ

cl(Uw) .

Since K is compact and cl(Uw) ⊆ K it follows that Cσ ≠ ∅. Furthermore,
we have Cσ ∩ Cρ = ∅, for σ ≠ ρ. Consequently,

∣A∣ ≥ ∑
σ∈2ω
∣Cσ ∣ ≥ 2ℵ0 . ◻
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6. Spectra and Stone duality
Boolean algebras can be characterised in terms of topological spaces.
With every boolean algebra we can associate a topological space in such
a way that we can recover the original algebra from the topology.

Definition 6.1. Let L be a lattice. The spectrum of L is the set

spec(L) ∶= { u ⊆ L ∣ u an ultrafilter}
of all ultrafilters of L. We equip spec(L) with the topology consisting of
all sets of the form

⟨X⟩ ∶= { u ∈ spec(L) ∣ X ⊆ u} , for X ⊆ L .

For X = {x}, we simply write ⟨x⟩.
Remark. Note that the sets ⟨X⟩ really form a topology since,

spec(L) = ⟨∅⟩ , ∅ = ⟨L⟩ ,
⋂
i∈I ⟨X i⟩ = ⟨⋃i∈I X i⟩ ,

⟨X⟩ ∪ ⟨Y⟩ = ⟨{ x ⊔ y ∣ x ∈ X , y ∈ Y }⟩ .

Lemma 6.2. Let L be a lattice.
(a) The sets of the form ⟨x⟩, for x ∈ L, form a closed base of the topology

of spec(L).
(b) If L is a boolean algebra then every basic closed set ⟨x⟩ is clopen.

Proof. (a) Every closed set ⟨X⟩ = ⋂{ ⟨x⟩ ∣ x ∈ X } is an intersection of
basic closed sets.

(b) The complement L∖⟨x⟩ = ⟨x∗⟩ of a basic closed set is closed. ◻
Example. Let A be an infinite set. For the lattice F = ⟨F , ⊆⟩ with

F ∶= {X ⊆ A ∣ X or A∖ X is finite} ,
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we have spec(F) = {u∞} ∪ { ua ∣ a ∈ A} where

ua ∶= ⇑{a} and u∞ ∶= {X ⊆ A ∣ A∖ X is finite} .

The basic closed sets are

⟨X⟩ = ⎧⎪⎪⎨⎪⎪⎩
{ ua ∣ a ∈ X } , if X is finite,{ ua ∣ a ∈ X } ∪ {u∞} , if X is infinite.

Each ua is isolated while u∞ is an accumulation point. Consequently, we
have rkCB(spec(F)) = 1 .

Exercise 6.1. Let B be a boolean algebra. Prove that a point u ∈ spec(B)
is isolated if, and only if, u is principal.

Exercise 6.2. Prove that ⟨x ⊔ y⟩ = ⟨x⟩ ∪ ⟨y⟩, ⟨x ⊓ y⟩ = ⟨x⟩ ∩ ⟨y⟩, and⟨x∗⟩ = spec(B) ∖ ⟨x⟩.
Lemma 6.3. Let f ∶ L→ K be a homomorphism between lattices. If u is
an ultrafilter of K such that f −1[u] ≠ L, then f −1[u] is an ultrafilter of L.

Proof. If a ∈ f −1[u] and a ⊑ b then f (a) ⊑ f (b) ∈ u implies b ∈ f −1[u].
Similarly, if a, b ∈ f −1[u] then f (a ⊓ b) = f (a) ⊓ f (b) ∈ u implies
a⊓ b ∈ f −1[u]. Finally, if a⊔ b ∈ f −1[u] then f (a⊔ b) = f (a)⊔ f (b) ∈ u
implies f (a) ∈ u or f (b) ∈ u. Hence, a ∈ f −1[u] or b ∈ f −1[u]. It follows
that either f −1[u] = L or it is an ultrafilter. ◻
Definition 6.4. Let f ∶ L→ K be a homomorphism between lattices. If
there is no ultrafilter of K containing rng f then we can define

spec( f ) ∶ spec(K) → spec(L) ∶ u↦ f −1[u] .

Remark. Note that spec( f ) is defined if (a) f is surjective, or (b) K is a
boolean algebra.

Lemma 6.5. Let f ∶ L → K be a homomorphism between lattices such
that spec( f ) is defined.
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(a) The function spec( f ) ∶ spec(K) → spec(L) is continuous.
(b) If f is surjective, then spec( f ) is injective.

Proof. (a) For every basic closed set ⟨a⟩L ⊆ spec(L),
spec( f )−1[⟨a⟩L] = { u ∈ spec(K) ∣ a ∈ f −1[u] } = ⟨ f (a)⟩K .

Hence, spec( f ) is continuous.
(b) Let u, v ∈ spec(K). If f −1[u] = f −1[v] then Lemma a2.1.10 implies

u = f [ f −1[u]] = f [ f −1[v]] = v . ◻
Since for boolean algebras the function spec is always defined, we

obtain the following corollary.

Proposition 6.6. spec is a contravariant functor from the category Bool
of boolean algebras to the category Top of topological spaces.

Lemma 6.7. Let f ∶ A→ B be a homomorphism between boolean algeb-
ras.

(a) If f is surjective then spec( f ) is continuous and injective.
(b) If f is injective then spec( f ) is a closed continuous surjection.
(c) If spec( f ) is injective then f is surjective.
(d) If spec( f ) is surjective then f is injective.

Proof. (a) was already proved in Lemma 6.5.
(b) We have already seen in Lemma 6.5 that spec( f ) is continuous.

To show that spec( f ) is surjective let u ∈ spec(A). We have to find
some v ∈ spec(B) with f −1[v] = u. Set v0 ∶= f [u]. If there is some
ultrafilter v ⊇ v0, then f −1[v] ⊇ f −1[ f [u]] = u, by injectivity of f and
Lemma a2.1.10, and we are done. Hence, suppose that such an ultrafilter
does not exist. By Corollary b2.4.10, we can find elements b0 , . . . , bn ∈ v0
with b0⊓⋅ ⋅ ⋅⊓bn = �. Choosing elements a i ∈ uwith f (a i) = b i it follows
that

f (a0 ⊓ ⋅ ⋅ ⋅ ⊓ an) = b0 ⊓ ⋅ ⋅ ⋅ ⊓ bn = � .

372

6. Spectra and Stone duality

Since f is injective this implies that a0 ⊓ ⋅ ⋅ ⋅ ⊓ an = �. Hence, � ∈ u.
Contradiction.

It remains to prove that spec( f ) is closed. For X ⊆ B, we have to
show that f −1[⟨X⟩] is closed. Since ⟨X⟩ = ⟨c↑(X)⟩ we may assume that
X = c↑(X) is a filter. We claim that f −1[⟨X⟩] = ⟨ f −1[X]⟩.(⊆) If u ∈ ⟨X⟩ then X ⊆ u implies that f −1[X] ⊆ f −1[u]. Hence,
f −1[u] ∈ ⟨ f −1[X]⟩.(⊇) For a contradiction suppose that there is some element

u ∈ ⟨ f −1[X]⟩ ∖ f −1[⟨X⟩] .

Then there is no ultrafilter v ∈ ⟨X⟩ with f −1[v] = u. Note that every
ultrafilter v containing the set X ∪ f [u] satisfies v ∈ ⟨X⟩ and f −1[v] ⊇
f −1[ f [u]] = u, by injectivity of f and Lemma a2.1.10. Hence, there is no
such ultrafilter and we can use Corollary b2.4.10 to find finite subsets
C ⊆ u and D ⊆ X such that

⊓ f [C] ⊓ ⊓D = � .

Set c ∶= ⊓C ∈ u and d ∶= ⊓D ∈ X. Then

f (c) ⊓ d = � implies d ⊑ f (c)∗ = f (c∗) .

Since X is a filter it follows that f (c∗) ∈ X. Hence, c∗ ∈ f −1[X] ⊆ u
which implies that � = c ⊓ c∗ ∈ u. Contradiction.

(c) Note that rng f induces a subalgebra of B. Hence, if rng f ⊂ B, we
can use Proposition b2.4.14 to find distinct ultrafilters u, v ∈ spec(B)
with u∩ rng f = v∩ rng f . Consequently, f −1[u] = f −1[v] and spec( f ) is
not injective.

(d) For a contradiction, suppose that spec( f ) is surjective, but f is not
injective. Then there are elements a, b ∈ Awith a ≠ b and f (a) = f (b).
We distinguish three cases.

If a ⊓ b∗ ≠ �, there is some ultrafilter u ∈ spec(A) with a ⊓ b∗ ∈ u. As
spec( f ) is surjective, we can find some v ∈ spec(B) with f −1[v] = u. It
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follows that

a ∈ u = f −1[v] ⇒ f (a) ∈ v⇒ f (b) ∈ v ⇒ b ∈ f −1[v] = u .

Since b∗ ∈ u we obtain � = b ⊓ b∗ ∈ u. A contradiction.
If b ⊓ a∗ ≠ �, we analogously choose an ultrafilter u with b ⊓ a∗ ∈ u

and we obtain a ⊓ a∗ ∈ u as above.
Hence, it remains to consider the case that a ⊓ b∗ = � = b ⊓ a∗. Then

a ⊔ b∗ = (a∗ ⊓ b)∗ = �∗ = ⊺. Hence, b∗ satisfies the defining equations
for the complement of a. Since complements are unique, it follow that
b∗ = a∗. Hence, b = a. A contradiction. ◻
We will show below that the functor spec has an inverse. But first let

us show that the class of topological spaces of the form spec(B), for a
boolean algebra B, can be characterised in purely topological terms.

Definition 6.8. (a) A Stone space is a nonempty Hausdorff space that is
compact and zero-dimensional.

(b) If S is a Stone space then we denote by clop(S) the lattice of all
clopen subsets of S.

Example. The Cantor discontinuum C is a Stone space. clop(C) consists
of all sets

⟨W⟩ ∶= { x ∈ 2ω ∣ w ⪯ x for some w ∈W }
whereW ⊆ 2<ω is finite.

It follows from Lemma 4.3 and Theorem 4.4 that the class of Stone
spaces is closed under products.

Lemma 6.9. Let Xi , i ∈ I, be a family of nonempty topological spaces.
The product∏i Xi is a Stone space if and only if every factor Xi is a Stone
space.
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The next theorem states that the functors spec and clop form an equi-
valence between the category of boolean algebras and the category of
Stone spaces.

Theorem 6.10. Let B be a boolean algebra and S a Stone space.

(a) spec(B) is a Stone space.

(b) clop(S) is a boolean algebra.

(c) The function

g ∶ B→ clop(spec(B)) ∶ x ↦ ⟨x⟩
is an isomorphism.

(d) The function

h ∶ S→ spec(clop(S)) ∶ x ↦ {C ∈ clop(S) ∣ x ∈ C }
is a homeomorphism.

Proof. (a) Every basic closed set ⟨x⟩ is open since ⟨x⟩ = spec(B)∖ ⟨x∗⟩.
Hence, the topology is zero-dimensional.

Next, we show that it is Hausdorff. If u ≠ v are distinct points of
spec(B) then we can find some element x ∈ u ∖ v. This implies that
x∗ ∈ v ∖ u. The sets ⟨x⟩ and ⟨x∗⟩ are disjoint, open, and we have u ∈ ⟨x⟩
and v ∈ ⟨x∗⟩, as desired.

It remains to prove that spec(B) is compact. Let ⟨x i⟩i∈I be a cover
of spec(B) consisting of basic open sets. Set X ∶= { x i ∣ i ∈ I } and let
a ∶= c↓(X) be the ideal generated by X. We claim that a is non-proper.

Suppose otherwise. Then we can use Theorem b2.4.7 to find an ul-
trafilter u with u ∩ a = ∅. In particular, we have x i ∉ u, for all i. Hence,
u ∉ ⋃i∈I⟨x i⟩ and ⟨x i⟩i is not a cover of spec(B). A contradiction.
Consequently, we have ⊺ ∈ a. By definition of c↓(X) it follows that

there is a finite subset X0 ⊆ X with ⊺ = ⊔X0. If v is an ultrafilter then⊔X0 = ⊺ ∈ v implies, by definition of an ultrafilter, that there is some

375



b5. Topology

x ∈ X0 with x ∈ v. Hence, we have found a finite subcover

spec(B) = ⋃
x∈X0

⟨x⟩ .

(b) Clearly, the complement of a clopen set is clopen. Since the class
of open sets and the class of closed sets are both closed under finite
intersections and unions so is the class of clopen sets. Hence, clop(S)
forms a boolean algebra.

(c) The function g is clearly an embedding. We only need to prove
that it is surjective. Let U be a clopen subset of spec(B). By (a), we can
find a finite cover ⋃i≤n⟨x i⟩ of U consisting of basic clopen sets. Since

U = ⟨x0⟩ ∪ ⋅ ⋅ ⋅ ∪ ⟨xn⟩ = ⟨x0 ⊔ ⋅ ⋅ ⋅ ⊔ xn⟩
we have U ∈ rng g.

(d) The set h(x) is a final segment of clop(S) and it is closed under
finite intersections. Furthermore, if C ∪ D ∈ h(x) then at least one
of C and D is also in h(x). Hence, h(x) is an ultrafilter and h is well-
defined.

Since S is a zero-dimensional Hausdorff space we have ⟨x⟩ ∈ h(x).
Hence, h(x) ≠ h(y), for x ≠ y, and h is injective. For surjectivity, let
u ∈ spec(clop(S)). Since S is compact we have ⋂ u ≠ ∅. Fix some
element x ∈ ⋂ u. We claim that h(x) = u.

Let C be a clopen set in S. If C ∈ u then we have x ∈ C. Conversely,
x ∉ S ∖ C implies that S ∖ C ∉ u. Therefore, it follows that

C ∈ u iff x ∈ C iff C ∈ h(x) .

It remains to prove that h is a homeomorphism. Note that, if C ∈
clop(S) then

h(x) ∈ ⟨C⟩ iff C ∈ h(x) iff x ∈ C .

Consequently, if ⟨C⟩ ∈ spec(clop(S)) then h−1[⟨C⟩] = C ∈ clop(S).
Conversely, if C ∈ clop(S) then h[C] = { h(x) ∣ x ∈ C } = ⟨C⟩ is
clopen. ◻
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Corollary 6.11. The functor spec forms an equivalence between the cat-
egory Bool of boolean algebras and the opposite Stoneop of the category of
Stone spaces. Its inverse is the functor clop.

An immediate consequence of Theorem 6.10 is that every boolean
algebra is isomorphic to an algebra of sets.

Corollary 6.12. For every boolean algebra B, there exists a set X such
that B is isomorphic to a substructure of ⟨℘(X),∩,∪, ∗ ,∅, X⟩.
Corollary 6.13. Every boolean algebra A is a subdirect product of two-
element boolean algebras B2. In particular, B2 is the only subdirectly
irreducible boolean algebra.

Proof. The power-set algebra ℘(X) is isomorphic to BX
2 . ◻

7. Stone spaces and Cantor-Bendixson rank
The structure of Stone spaces will play an important part in the following
chapters. In particular, we will be interested in their cardinality and their
Cantor-Bendixson rank. We start with an observation that immediately
follows from Lemma 5.10.

Lemma 7.1. If S is a Stone space with rkCB(S) = 0 then S is finite.

A generalisation of this result is given in the next lemma which shows
that the size of a Stone space is minimal if the corresponding boolean
algebra has a partition rank.

Lemma 7.2. Let B be a boolean algebra. If rkP(a) < ∞, for every a ∈ B,
then then ∣spec(B)∣ ≤ ∣B∣.
Proof. This follows immediately from Corollary b2.5.22. ◻

Conversely, if the boolean algebra has infinite partition rank then its
Stone space is large.
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Lemma 7.3. Let B be a boolean algebra and let κ, λ be cardinals. If there
exists an embedding of λ<κ into B, then ∣spec(B)∣ ≥ λκ .

Proof. Let (aw)w∈λ<κ be an embedding of λ<κ into B. For sequences
α ∈ λκ , define

Xα ∶= ⋂{ ⟨aw⟩ ∣ w ≺ α } .

(⪯ denotes the prefix order.) If α ≠ β, then there exists some prefix
w ∈ λ<κ and ordinals i , k < λ with i ≠ k such that wi ≺ α and wk ≺ β.
Consequently, we have Xα ⊆ ⟨aw i⟩ and Xβ ⊆ ⟨awk⟩. Since aw i ⊓ awk = �
it follows that Xα ∩ Xβ = ∅.

Hence, it is sufficient to prove that Xα ≠ ∅, for all α ∈ λκ . For finitely
many elements w0 ≺ ⋅ ⋅ ⋅ ≺ wn ≺ α, we have

⟨aw0⟩ ∩ ⋅ ⋅ ⋅ ∩ ⟨awn ⟩ = ⟨aw0 ⊓ ⋅ ⋅ ⋅ ⊓ awn ⟩ = ⟨awn ⟩ ≠ ∅ .

Thus, the family ⟨aw⟩w≺α has the finite intersection property and, by
compactness, it follows that Xα = ⋂w≺α⟨aw⟩ ≠ ∅. ◻
Corollary 7.4. Let B be a boolean algebra. If there is an element a ∈ B
with rkP(a) = ∞ then ∣spec(B)∣ ≥ 2ℵ0 .

Proof. By Lemma b2.5.15, there exists an embedding (bw)w∈2<ω of 2<ω

into B. Hence, the claim follows by Lemma 7.3. ◻
Remark. In Theorem 7.8 below we will prove that Cantor-Bendixson
rank and partition rank are the same. Hence, Corollary 7.4 is just a special
case of Lemma 5.16.

Combining Corollary 7.4 with Lemma 7.2, we obtain the following
result.

Corollary 7.5. Let B be a countable boolean algebra. If ∣spec(B)∣ > ℵ0
then ∣spec(B)∣ = 2ℵ0 .
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In the remainder of this section we provide tools to compute the
Cantor-Bendixson rank of a Stone space. First, we show that it coincides
with the partition rank of the associated Boolean algebra, which is usually
easier to compute.

Lemma 7.6. Let B be a boolean algebra and a ∈ B. If rkP(a) < ∞ then
there exists an ultrafilter u ∈ ⟨a⟩ with rkP(u) = rkP(a).
Proof. For every u ∈ ⟨a⟩, choose an element cu ∈ u of minimal rank and
degree. Then

⟨a⟩ = ⋃
u∈⟨a⟩⟨a ⊓ cu⟩ .

By compactness, there exists a finite subcover

⟨a⟩ = ⟨a ⊓ cu0⟩ ∪ ⋅ ⋅ ⋅ ∪ ⟨a ⊓ cun ⟩ .

Hence, a = (a ⊓ cu0) ⊔ ⋅ ⋅ ⋅ ⊔ (a ⊓ cun). By Lemma b2.5.11, there is some
index i ≤ n such that

rkP(a) = rkP(a ⊓ cui ) .

This implies that

rkP(ui) ≤ rkP(a) = rkP(a ⊓ cui ) ≤ rkP(cui ) = rkP(ui) . ◻
Corollary 7.7. Let B be a boolean algebra and a ∈ B.

rkP(a) = sup{ rkP(u) ∣ u ∈ ⟨a⟩ } .

Proof. If u ∈ ⟨a⟩, then a ∈ u implies that rkP(u) ≤ rkP(a). Conversely,
we can use Lemma 7.6 to find some ultrafilter u ∈ ⟨a⟩ with rkP(u) =
rkP(a). ◻
Theorem 7.8. Let B be a boolean algebra. For every u ∈ spec(B), we have

rkP(u) = rkCB(u/ spec(B)) .
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Proof. We prove by induction on α that

rkP(u) ≥ α iff rkCB(u/ spec(B)) ≥ α .

For α = 0 the claim holds trivially and, if α is a limit ordinal, it follows
immediately from the inductive hypothesis. Thus, suppose that α = β + 1
is a successor ordinal. Let

X ∶= { u ∈ spec(B) ∣ rkP(u) ≥ β } .

By inductive hypothesis, we know that

X = { u ∈ spec(B) ∣ rkCB(u/ spec(B)) ≥ β } .

Suppose that rkP(u) = β. Fix an element a ∈ u of minimal partition
rank and degree. If v ∈ ⟨a⟩ is an ultrafilter with v ≠ u then we have
rkP(v) < rkP(u) = β, by Proposition b2.5.21. Hence, ⟨a⟩ ∩ X = {u} and
u is an isolated point of X. This implies that rkCB(u/ spec(B)) = β.

Conversely, suppose that rkCB(u/ spec(B)) = β. Then there is a basic
open set ⟨a⟩ such that ⟨a⟩ ∩ X = {u}. By inductive hypothesis it follows
that rkP(a) ≥ rkP(u) ≥ β. Let P be a partition of a with rkP(p) = β, for
all p ∈ P. By Lemma 7.6, there are ultrafilters vp ∈ ⟨p⟩, for p ∈ P, such
that rkP(vp) = rkP(p) = β. Hence, vp ∈ X. It follows that

vp ∈ ⟨p⟩ ∩ X ⊆ ⟨a⟩ ∩ X = {u} .

Consequently, vp = u and rkP(u) = rkP(vp) = β. ◻
Corollary 7.9. Let B be a boolean algebra and a ∈ B. Then

rkCB(⟨a⟩) = rkP(a) .

Proof. By Lemma 5.13, Theorem 7.8, and Corollary 7.7, it follows that

rkCB(⟨a⟩) = sup{ rkCB(u/⟨a⟩) ∣ u ∈ ⟨a⟩ }= sup{ rkCB(u/ spec(B)) ∣ u ∈ ⟨a⟩ }
= sup{ rkP(u) ∣ u ∈ ⟨a⟩ }= rkP(a) . ◻
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Corollary 7.10. Let S be a Stone space and C ⊆ S closed.

rkCB(C) = rkP(C/clop(C))
Proof. Let C be the subspace of S induced by C. By Lemma 3.9, C is
compact. Since every subspace of a zero-dimensional Hausdorff space
is itself a zero-dimensional Hausdorff space, it follows that C is a Stone
space. Let B ∶= clop(C). Then spec(B) ≅ C and Corollary 7.9 implies
that

rkCB(C) = rkCB(spec(B)) = rkP(⊺/B) = rkP(C/clop(C)) . ◻
When applying Corollary 7.10, we have to consider clopen sets in a

closed subspace of the given Stone space. The following lemma shows
that such clopen sets are just restrictions of sets that are clopen in the
ambient space.

Lemma 7.11. Let B be a boolean algebra, A ⊆ B, and let SA be the
subspace of spec(B) induced by ⟨A⟩. A set C ⊆ ⟨A⟩ is clopen in SA if,
and only if, it is of the form C = ⟨b⟩ ∩ ⟨A⟩, for some b ∈ B.

Proof. (⇐) A set of the form C = ⟨b⟩ ∩ ⟨A⟩ is obviously closed. It is
open since its complement ⟨A⟩ ∖ C = ⟨b∗⟩ ∩ ⟨A⟩ is also closed.(⇒) Suppose that C ⊆ ⟨A⟩ is clopen in SA. Then there are sets D, E ⊆
B such that

C = ⟨D⟩ ∩ ⟨A⟩ and ⟨A⟩ ∖ C = ⟨E⟩ ∩ ⟨A⟩ .

Consequently,

⟨A⟩ ∩ ⟨E⟩ ∩ ⋂
d∈D⟨d⟩ = ⟨A⟩ ∩ ⟨E⟩ ∩ ⟨D⟩ = ∅ .

As spec(B) is compact, there exists a finite subset D0 ⊆ D such that

⟨A⟩ ∩ ⟨E⟩ ∩ ⋂
d∈D0

⟨d⟩ = ∅ .
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It follows that

C = ⟨D⟩ ∩ ⟨A⟩ ⊆ ⟨D0⟩ ∩ ⟨A⟩ ⊆ ⟨A⟩ ∖ ⟨E⟩ = C .

Hence, C = ⟨b⟩ ∩ ⟨A⟩ for b ∶= ⊓D0. ◻
Corollary 7.12. Let S be a Stone space, C ⊆ S closed, and D ∈ clop(C).
Then

clop(D) = { E ∈ clop(C) ∣ E ⊆ D } .

Proof. Let B ∶= clop(S). By Lemma 7.11, there is some A ∈ B such that
D = A∩ C. By the same lemma it follows that

E ∈ clop(D) iff E = A′ ∩ D for some A′ ∈ B
iff E = A′ ∩ A∩ C for some A′ ∈ B
iff E = A′′ ∩ C for some A′′ ∈ B with A′′ ⊆ A
iff E ∈ clop(C) and E ⊆ D . ◻

Corollary 7.13. Let S be a Stone space, C ⊆ S closed, and D ∈ clop(C).
Then

rkP(D/clop(D)) = rkP(D/clop(C)) .

As an application of these results, we show that, under a surjective
continuous map, the Cantor-Bendixson rank never increases.

Lemma 7.14. Let f ∶ S → T be a surjective continuous map between
Stone spaces. For every closed set C ⊆ T,

rkCB(C/T) ≤ rkCB( f −1[C]/S) .

Proof. We prove by induction on α that

rkCB(C/T) ≥ α implies rkCB( f −1[C]/S) ≥ α .
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For α = 0, surjectivity of f implies that

rkCB(C/T) ≥ 0 iff C ≠ ∅
iff f −1[C] ≠ ∅
iff rkCB( f −1[C]/S) ≥ 0 .

For limit ordinals α, the claim follows immediately from the inductive
hypothesis. For the successor step, suppose that rkCB(C/T) ≥ α + 1. By
Corollary 7.10, it follows that

rkP(C/clop(C)) ≥ α + 1 .

Consequently, we can find a sequence (Dn)n<ω of disjoint, nonempty,
clopen subsets Dn ⊆ C such that rkP(Dn/clop(C)) ≥ α. Using Co-
rollary 7.10 and Corollary 7.13, this implies that rkCB(Dn/T) ≥ α. By
inductive hypothesis, it therefore follows that

rkCB( f −1[Dn]/S) ≥ α .

Since, byCorollary 7.10, ( f −1[Dn])n<ω is a sequence of disjoint, nonempty,
clopen subsets of f −1[C] with

rkP( f −1[Dn] / clop( f −1[C])) ≥ α ,
it follows that

rkP( f −1[C] / clop( f −1[C])) ≥ α + 1 .

Hence, rkCB( f −1[C]/S) ≥ α + 1. ◻
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1. Groups
In this chapter we apply the general theory developed so far to the
structures arising in classical algebra.

Definition 1.1. (a) A monoid is a structure M = ⟨M , ○, e⟩ with a binary
function ○ and a constant e such that all elements a, b, c ∈ G satisfy the
following equations:

a ○ (b ○ c) = (a ○ b) ○ c (associativitiy)
a ○ e = a = e ○ a (neutral element)

Usually, we omit the symbol ○ in a ○ b and just write ab instead.
(b) A group is a structure G = ⟨G , ○, −1 , e⟩ with a binary function ○, a

unary function −1, and a constant e such that ⟨G , ○, e⟩ is a monoid and,
for all a ∈ G, we have

a ○ a−1 = e (inverse)

(c) A group G is abelian, or commutative, if we further have

ab = ba , for all a, b ∈ G .

Remark. Every substructure of a group is again a group.

Example. (a) Let A be a set. The structure ⟨A<ω , ⋅ , ⟨⟩⟩ of all finite se-
quences over Awith concatenation forms a monoid.

(b) The integers with addition form a group ⟨Z,+,−, 0⟩.
(c) The positive rational numbers with multiplication form the group⟨Q+ , ⋅ , −1 , 1⟩.
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Definition 1.2. Let M be a Σ-structure. The automorphism group

Aut M = ⟨Aut M, ○, −1 , idM⟩
of M consists of all automorphisms of M with composition ○ as multi-
plication and the identity function idM as neutral element.

Exercise 1.1. Let G be a group. Prove that GG = G and G−1 = G where

GG ∶= { gh ∣ g , h ∈ G } and G−1 ∶= { g−1 ∣ g ∈ G } .

Below we will show that the congruences of a group can be described
in terms of certain subgroups. We start by looking more generally at
equivalence relations induced by arbitrary subgroups.

Definition 1.3. Let U ⊆ G be groups. We define

G/U ∶= { gU ∣ g ∈ G } .

The elements of G/U are called (left) cosets of U. The number ∣G/U ∣ of
cosets is called the the index of U in G.

Lemma 1.4. Let U ⊆ G be groups.
(a) G/U forms a partition of G.
(b) For all g , h ∈ G, we have a bijection λ ∶ gU → hU with λ(x) ∶=

hg−1x.

Proof. (a) Since g ∈ gU , we haveG = ⋃g gU = ⋃(G/U). If gU∩hU ≠ ∅
then there are elements u, v ∈ U with gu = hv. Consequently, h =
g(uv−1) ∈ gU which implies that hU = gU .

(b) To show that λ is surjective let u ∈ U . Then hu = hg−1 gu =
λ(gu) with gu ∈ gU . For injectivity, suppose that λ(x) = λ(y) then
hg−1x = hg−1 y and, multiplying with (hg−1)−1 on the left, it follows that
x = y. ◻
Theorem 1.5 (Lagrange). If U ⊆ G are groups then

∣G∣ = ∣G/U ∣ ⊗ ∣U ∣ .
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Proof. By the preceding lemma, we have G = ⋃(G/U) and ∣gU ∣ = ∣hU ∣,
for all g , h ∈ U . It follows that

∣G∣ = ∣⋃(G/U)∣ = ∑
gU∈G/U∣gU ∣ = ∑

gU∈G/U∣U ∣ = ∣G/U ∣ ⊗ ∣U ∣ . ◻
The equivalence relation induced by the partition G/U does not need

to be a congruence. Subgroups where it is one are called normal.

Definition 1.6. Let G be a group. A subgroup N ⊆ G is normal if we
have gN = Ng, for all g ∈ G.

Remark. Every subgroup of an abelian group is normal.

Lemma 1.7. If N is a normal subgroup of G then the relation

g ≈N h : iff gN = hN

is a congruence relation.

Proof. If gN = g′N and hN = h′N then

ghN = ghNN = gNhN = g′Nh′N = g′h′NN = g′h′N ,

and g−1N = g−1N−1 = (Ng)−1 = (gN)−1 = (g′N)−1

= (Ng′)−1 = (g′)−1N−1 = (g′)−1N . ◻
Lemma 1.8. Let f ∶ G→ H be a surjective homomorphism. If G is a group
then so is H.

Proof. Let x , y, z ∈ H and set u ∶= f (e). Since f is surjective there are
elements a, b, c ∈ G with f (a) = x, f (b) = y, and f (c) = z. It follows
that

[xy]z = [ f (a) f (b)] f (c) = f (ab) f (c) = f ((ab)c)= f (a(bc)) = f (a) f (bc) = f (a)[ f (b) f (c)] = x[yz] ,
xu = f (a) f (e) = f (ae) = f (a) = x ,

x f (a−1) = f (a) f (a−1) = f (aa−1) = f (e) = u .
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Consequently, the multiplication of H is associative, u is its neutral ele-
ment, and every element x = f (a) ∈ H has the inverse f (a−1). ◻
Corollary 1.9. Let N be a normal subgroup of G. Then the quotient

G/N ∶= ⟨G/N , ⋅, −1 , N⟩
where the multiplication is defined by gN ⋅ hN = ghN is a group.

Proof. The function g ↦ gN is a surjective homomorphism G→ G/N.◻
We have seen that every normal subgroup induces a congruence. The

converse is given by the following lemma.

Lemma 1.10. If ≈ is a congruence a of group G then [e]≈ induces a normal
subgroup of G.

Proof. Let π ∶ G → G/≈ be the canonical projection. Since {[e]≈} in-
duces a subgroup of the quotient G/≈ it follows by Lemma b1.2.8 that
the set [e]≈ = π−1([e]≈) induces a subgroup of G. To show that this
subgroup is normal, let u ∈ [e]≈ and g ∈ G. Then

[gug−1]≈ = [g]≈[u]≈[g−1]≈= [g]≈[e]≈[g−1]≈ = [geg−1]≈ = [e]≈ ,
which implies that gug−1 ∈ [e]≈. Consequently, we have

g[e]≈g−1 ⊆ [e]≈ and g[e]≈ ⊆ [e]≈g .

Analogously, we can show that g−1ug ∈ [e]≈, for all u ∈ [e]≈. This implies
that [e]≈g ⊆ g[e]≈. ◻
Combining Lemmas 1.7 and 1.10, we obtain the following character-

isation of the congruence lattice of a group.

Theorem 1.11. Let G be a group. Then Cong(G) is isomorphic to the lattice
of all normal subgroups of G. The corresponding isomorphism is given by≈ ↦ [e]≈ and its inverse is N↦ ≈N .
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It follows that we can translate Theorems b1.4.12 and b1.4.18 into the
language of normal subgroups.

Theorem 1.12. Let h ∶ G→ H be a homomorphism between groups and
set K ∶= h−1[e]. Then

G/K ≅ rng h .

Theorem 1.13. Let G be a group with normal subgroups K,N ⊆ G where
K ⊆ N. Then N/K is a normal subgroup of G/K and

(G/K) / (N/K) ≅ G/N .

A related statement is the following one.

Theorem 1.14. Let G be a group with subgroups U,N ⊆ G where N is
normal. Then

UN/N ≅ U/(U ∩N) .

Exercise 1.2. Prove the preceding theorem and formulate a generalisa-
tion to arbitrary structures and congruences.

2. Group actions
One important class of groups we will deal with frequently are auto-
morphism groups. To study such groups we can make use of the fact
that they consist of functions on some set.

Definition 2.1. Let Ω be a set.
(a) The symmetric group of Ω is the group

Sym Ω ∶= ⟨Sym Ω, ○, −1 , idΩ⟩
where the universe

Sym Ω ∶= { α ∈ ΩΩ ∣ α bijective}
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consists of all permutations of Ω.
(b) An action of a group G on Ω is a homomorphism α ∶ G→ Sym Ω,

that is, to every element g ∈ G we associate a permutation α(g) of Ω.
Such an action induces a map G × Ω → Ω. If α is understood then we
usually write ga instead of α(g)(a), for g ∈ G and a ∈ Ω.

(c) If Ω = ⋃s Ωs is a many-sorted set then an action α of G on Ω is a
family of actions αs of G on Ωs .

(d) Each action of G on Ω induces an action of G on Ωn by

g⟨a0 , . . . , an−1⟩ ∶= ⟨ga0 , . . . , gan−1⟩ .

Remark. Any action of a group G on a set Ω satisfies the following laws.
For all g , h ∈ G and a ∈ Ω, we have

g(ha) = (gh)a and ea = a ,
where e is the neutral element of G.

Example. Every subgroup G ⊆ Sym Ω induces a canonical action idG ∶
G→ Sym Ω. In particular, we have a canonical action of the automorph-
ism group Aut A on As̄ , for all s̄.

Definition 2.2. Let G be a group acting on Ω.
(a) For F ⊆ G and ā ⊆ Ω, we set

F(ā) ∶= { gā ∣ g ∈ F } .

(b) The orbit of a tuple ā ⊆ Ω is the set G(ā).
(c) If there is some element a ∈ Ω with G(a) = Ω then we call the

action transitive. The action is oligomorphic if, for every finite tuple of
sorts s̄, there are only finitely many different orbits on Ω s̄ .

Remark. For each s̄, the orbits of all s̄-tuples form a partition of Ω s̄ . In
particular, the orbits of two s̄-tuples are either equal or disjoint.

Example. Consider the action of the automorphism group on the struc-
ture ⟨Q, ≤⟩. The orbit of ⟨0, 1⟩ consist of all pairs ⟨a, b⟩ with a < b. It
follows that Q2 is the disjoint union of the orbits of ⟨0, 1⟩, ⟨0, 0⟩, and⟨1, 0⟩. In fact, the automorphism group of ⟨Q, ≤⟩ is oligomorphic.
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Example. Every group G acts on itself via conjugation. This action is
defined by

α(g)(h) ∶= ghg−1 .

The orbits of α on G are called the conjugacy classes of G.
We can characterise normal subgroups of G in terms of α. A subgroup

N ⊆ G is normal if and only if N is a union of conjugacy classes.(⇒) Suppose that N is a normal subgroup. By definition this means
that gN = Ng, for all g ∈ G. Consequently, we have gNg−1 = Ngg−1 = N
which implies that α(g)(u) ∈ N , for all u ∈ N . Hence, N is a union of
orbits of α.(⇐) Let g ∈ G. By assumption we have gNg−1 = N . Hence, gN =
gNg−1 g = Ng and N is normal.

Definition 2.3. Let G be a group acting on Ω and let X ⊆ Ω.
(a) The pointwise stabiliser of X is the set

G(X) ∶= { g ∈ G ∣ gx = x for all x ∈ X } .

(b) Its setwise stabiliser is the set

G{X} ∶= { g ∈ G ∣ gX = X } .

Remark. G(X) and G{X} are subgroups of G with G(X) ⊆ G{X} ⊆ G.
We can use the following lemmas to compute the size or the number

of orbits.

Lemma 2.4. Let G be a group acting on Ω and let a ∈ Ω. Then

∣G∣ = ∣G(a)∣ ⊗ ∣G(a)∣ .
Proof. By Theorem 1.5 it is sufficient to prove that ∣G(a)∣ = ∣G/G(a)∣.
We define a function µ ∶ G/G(a) → G(a) by

µ(gG(a)) ∶= ga .
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First, let us show that µ is well-defined. Suppose that gG(a) = hG(a).
Then there is some u ∈ G(a) with g = hu. Hence,

µ(gG(a)) = ga = hua = ha = µ(hG(a)) .

Furthermore, µ is surjective since, for every b ∈ G(a) there is some
g ∈ G with b = ga. Hence, b = µ(gG(a)). Therefore, it remains to prove
that µ is injective. Suppose that µ(gG(a)) = µ(hG(a)). Then ga = ha
implies h−1 ga = a. Hence, h−1 g ∈ G(a) and

gG(a) = hh−1 gG(a) = hG(a) . ◻
Lemma 2.5. Let G be a group acting on Ω and let a ∈ Ω. Then G(ga) =
gG(a)g−1.

Proof. We have

h ∈ G(ga) iff hga = ga

iff g−1hga = a
iff g−1hg ∈ G(a) iff h ∈ gG(a)g−1 . ◻

Corollary 2.6. Let G be a group acting on Ω and a, b ∈ Ω. If G(a) = G(b)
then ∣G(a)∣ = ∣G(b)∣.
Proof. Let g ∈ G be an element with gb = a. The function G(a) → G(b) ∶
h ↦ ghg−1 is bijective. ◻
Lemma 2.7 (Burnside). Let G be a group acting on Ω and let κ be the
number of orbits. Then

κ ⊗ ∣G∣ = ∑
g∈G∣fix g∣ where fix g ∶= { a ∈ Ω ∣ ga = a } .
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Proof. For each orbit of G, fix one representative a i ∈ Ω, i < κ. It follows
that

κ ⊗ ∣G∣ = ∑
i<κ
∣G∣ = ∑

i<κ
∣G(a i)∣ ⊗ ∣G(a i)∣ = ∑

i<κ
∑

b∈G(a i)
∣G(a i)∣

= ∑
i<κ

∑
b∈G(a i)

∣G(b)∣ = ∑
b∈Ω∣G(b)∣

= ∣{ ⟨g , b⟩ ∈ G ×Ω ∣ gb = b }∣ = ∑
g∈G∣fix g∣ . ◻

Corollary 2.8. If G is a finite group acting on Ω then the number of orbits
is

1∣G∣ ∑g∈G∣fix g∣ .
Let us collect two combinatorial results about groups and their sub-

groups.

Lemma 2.9 (B. H. Neumann). Suppose that H0 , . . . ,Hn−1 are subgroups
of a group G and a0 , . . . , an−1 ∈ G elements such that

G = a0H0 ∪ ⋅ ⋅ ⋅ ∪ an−1Hn−1 .

but G ≠ ⋃i∈I a i H i , for every proper subset I ⊂ [n] .

Then ∣G/⋂i H i ∣ ≤ n! . In particular, ∣G/H i ∣ is finite for all i.

Proof. Let H ∶= ⋂i Hi . We claim that

∣⋂i∈I H i/H∣ ≤ (n − ∣I∣)! , for all nonempty I ⊆ [n] .

For I = {i}, it then follows that every H i is the union of at most (n − 1)!
cosets of H. Hence, G can be written as union of n! such cosets, i.e.,∣G/H∣ ≤ n! .
We prove the above claim by induction on n − ∣I∣. For I = [n], we

have ∣H/H∣ = 1. Suppose that ∣I∣ < n and set F ∶= ⋂i∈I Hi . By assumption
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there is some element g ∈ G ∖ ⋃i∈I a i H i . Hence, for all i ∈ I, we have
a i H i ∩ gH i = ∅. This implies that

a i H i ∩ gF = ∅ and g−1a i H i ∩ F = ∅ .

For every i < n, we either have

g−1a i H i ∩ F = ∅
or there is some h i ∈ G with

g−1a i H i ∩ F = h i(F ∩H i) .

For i ∈ I, we have seen that the intersection is empty. Therefore, F is
the union of at most n − ∣I∣ sets of the form h i(F ∩ H i) with i ∉ I. By
inductive hypothesis, we can write each of these as union of at most(n − ∣I∣ − 1)! cosets of H. Therefore, ∣F/H∣ ≤ (n − ∣I∣)! . ◻
Corollary 2.10 (Π. M. Neumann). Let M be a Σ-structure and ā ∈ M<ω .
If no a i lies in a finite orbit of Aut M then the orbit of ā under Aut M
contains an infinite set of pairwise disjoint tuples.

Proof. Let C ⊆ M be finite. We claim that there is some g ∈ Aut M such
that gā∩C = ∅. For a contradiction, suppose otherwise. For every c ∈ C
and each i < n, choose, if possible, some element g i c ∈ Aut M with
g i ca i = c. Let Hi ∶= (Aut M)(a i). By assumption, every g ∈ Aut M is con-
tained in some coset g i cH i . Hence, we can apply B. H. Neumann’s lemma
and it follows that at least one Hi has finite index in Aut M. Therefore,
the orbit of a i under Aut M is finite. Contradiction. ◻

When studying group actions it is helpful to introduce a topology on
the group.

Definition 2.11. A topological group is a group G equipped with a topo-
logy such that the group multiplication ⋅ ∶ G × G → G and its inverse−1 ∶ G → G are continuous.
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Example. The additive group of the real vector space Rn is topological
in the usual topology.

Each action induces a canonical topology on its group.

Definition 2.12. Let G be a group acting on Ω. For finite tuples ā, b̄ ∈ Ωn ,
we set

⟨ā ↦ b̄⟩ ∶= { g ∈ G ∣ gā = b̄ } .

Subsets O ⊆ G of the form O = ⟨ā ↦ b̄⟩ are called basic open.

Lemma 2.13. Let G be a group acting on Ω.

(a) The family of all basic open sets induces a topology on G.

(b) G equipped with this topology forms a topological group.

(c) A subgroup H ⊆ G is open if and only if there is some finite tuple
ā ∈ Ω<ω with G(ā) ⊆ H.

(d) A subset F ⊆ G is closed if and only if, whenever g ∈ G is an element
such that, for all finite tuples ā ⊆ Ω, there is some element h ∈ F
with gā = hā, then we have g ∈ F.

(e) A subset F ⊆ G is dense in G if and only if the orbits of G and F
on Ωn are the same, for all n < ω.

Proof. (a) We have ⟨ā0 ↦ b̄0⟩ ∩ ⟨ā1 ↦ b̄1⟩ = ⟨ā0 ā1 ↦ b̄0 b̄1⟩. Therefore,
we only have to show that every g ∈ G is contained in some basic open
set. Fix an arbitrary element a ∈ Ω and let b ∶= ga. Then g ∈ ⟨a ↦ b⟩.

(b) If g ∈ ⟨ā ↦ b̄⟩ then g−1 ∈ ⟨b̄ ↦ ā⟩. Hence, −1 is continuous.
Similarly, gh ∈ ⟨ā ↦ b̄⟩ implies gc̄ = b̄ where c̄ ∶= hā. Consequently, we
have g ∈ ⟨c̄ ↦ b̄⟩, h ∈ ⟨ā ↦ c̄⟩, and ⟨c̄ ↦ b̄⟩ ⋅ ⟨ā ↦ c̄⟩ ⊆ ⟨ā ↦ b̄⟩.

(c) If G(ā) ⊆ H then

H = ⋃
h∈H hG(ā) = ⋃

h∈H⟨ā ↦ hā⟩
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is open. Conversely, if H is open then it contains some basic open set⟨ā ↦ b̄⟩. Fixing some h ∈ ⟨ā ↦ b̄⟩ ⊆ H we have

G(ā) = ⟨ā ↦ ā⟩ = h−1⟨ā ↦ b̄⟩ ⊆ h−1H = H .

(d) F is closed if and only if it contains all elements g ∈ G such that

F ∩ ⟨ā ↦ b̄⟩ ≠ ∅ , for all basic open set with g ∈ ⟨ā ↦ b̄⟩ .

This is equivalent to (d).
(e) F is dense if and only if every nonempty basic open set ⟨ā ↦ b̄⟩

has a nonempty intersection with F. Therefore, F is dense iff, for every
g ∈ G with gā = b̄, there is some h ∈ F mapping ā to b̄. ◻
We can characterise automorphism groups in topological terms.

Lemma 2.14. Let G ⊆ Sym Ω. A subgroup H ⊆ G is closed in G if and only
if there is some structure M with universe Ω such that H = G ∩Aut M.

In particular, a subgroup H ⊆ Sym Ω is of the form Aut M if and only if
it is closed.

Proof. (⇒) Let M be the structure with universe Ω that, for each finite
tuple s̄ of sorts and every orbit ∆ ⊆ Ω s̄ , has a relation RM

∆ ∶= ∆ of type s̄.
Since every element of H maps R∆ into R∆ we have H ⊆ Aut M. Hence,
H ⊆ G implies H ⊆ G ∩Aut M.

For the converse, let g ∈ G ∩ Aut M. If ā ∈ R∆ then gā ∈ R∆ . Hence,
there is some h ∈ H mapping ā to gā. Since H is closed in G it follows
by Lemma 2.13 (d) that g ∈ H.(⇐) Let H = G ∩ Aut M. To show that H is closed in G we apply
Lemma 2.13 (d). Let g ∈ G and suppose that, for every finite tuple ā ∈ Ω,
there is some h ∈ H with hā = gā. Let φ(x̄) be an atomic formula and
ā ∈ Ωn . Choose h ∈ H such that hā = gā. Since H ⊆ Aut M it follows
that

M ⊧ φ(ā) iff M ⊧ φ(hā) iff M ⊧ φ(gā) .

Hence, g ∈ Aut M which implies that g ∈ H. ◻
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Exercise 2.1. Let A be a countable structure with countable signature
such that

∣Aut⟨A, ā⟩∣ > 1 , for all ā ∈ A<ω .

Prove that ∣Aut A∣ = 2ℵ0 .

3. Rings
Let us consider what happens if we add a second binary operation to an
abelian group.

Definition 3.1. (a) A structure R = ⟨R,+,−, ⋅, 0, 1⟩ is a ring if the reduct⟨R,+,−, 0⟩ is an abelian group, ⟨R, ⋅, 1⟩ is a monoid, and all elements
a, b, c ∈ R satisfy the following distributive laws:

a ⋅ (b + c) = a ⋅ b + a ⋅ c ,(a + b) ⋅ c = a ⋅ c + b ⋅ c .

Usually we omit the dot and write ab instead of a ⋅ b.
(b) A ring R is commutative if we further have

a ⋅ b = b ⋅ a , for all a, b ∈ R .

(c) A ring R is a skew field if 0 ≠ 1 and, for every a ∈ R with a ≠ 0,
there is some element a−1 ∈ R such that

a ⋅ a−1 = 1 = a−1 ⋅ a .

A commutative skew field is called a field.

Example. (a) The integers ⟨Z,+,−, ⋅, 0, 1⟩ form a commutative ring.
(b) The rationals ⟨Q,+,−, ⋅, 0, 1⟩ form a field.
(c) Let V be a vector space. The set Lin(V,V) of all linear maps

h ∶ V→ V forms a ring where addition is defined component wise:

(g + h)(x) ∶= g(x) + h(x) ,
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and multiplication is composition:

(g ⋅ h)(x) ∶= g(h(x)) .

This ring is not commutative.

An important example of rings are polynomial rings. Here we present
only their basic properties. In Section 5 we will study polynomial rings
over a field in more detail.

Definition 3.2. Let R be a ring.
(a) The ring R[[x]] of formal power series over R has the universe

R[[x]] ∶= Rω .

For s, t ∈ R[[x]], we define addition and multiplication by

(s + t)(n) ∶= s(n) + t(n) and (s ⋅ t)(n) ∶= n∑
i=0 s(i)t(n − i) .

We also define a derivation operation on R[[x]] by
s′(n) ∶= (n + 1)s(n + 1) .

Usually, elements s ∈ R[[x]] are written more suggestively in the form

s = ∑
n<ω

anxn where an ∶= s(n) .

The numbers an are called the coefficients of s. In this notation the above
definitions take the following form:

∑
n<ω

anxn + ∑
n<ω

bnxn ∶= ∑
n<ω
(an + bn)xn ,

∑
n<ω

anxn ⋅ ∑
n<ω

bnxn ∶= ∑
n<ω
( n∑

i=0 a ibn−i)xn ,

(∑
n<ω

anxn)′ ∶= ∑
n<ω

an+1(n + 1)xn .
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(b) The polynomial ring over R is the subring R[x] ⊆ R[[x]] of all
formal power series∑n<ω anxn where an = 0 for all but finitely many n.
Elements p ∈ R[x] are called polynomials. Omitting zero terms we can
write them as finite sums

p = anxn + an−1xn−1 + ⋅ ⋅ ⋅ + a1x + a0 ,

where a i ∶= p(i) and n is an arbitrary number such that p(i) = 0, for
i > n.

(c) The degree of a polynomial∑i a ix i ∈ R[x] is the largest number n
with an ≠ 0. We denote it by deg p. If all coefficients a i are equal to 0
then we set deg p ∶= −∞.

(d) We can iterate the construction of polynomial rings to obtain rings
R[x0 , x1 , . . . , xn−1] ∶= R[x0][x1] . . . [xn−1].
Remark. Let Ring be the category of all rings with homomorphisms. We
can turn the operation R ↦ R[x] into a functor F ∶ Ring→ Ring if, for
homomorphisms h ∶ R→ S, we define

F(h)(∑n anxn) ∶= ∑n h(an)xn .

Remark. Let R be a commutative ring and p, q ∈ R[x]. A direct calcula-
tion shows that we have

(p + q)′ = p′ + q′ and (pq)′ = pq′ + p′q .

Polynomial rings can be regarded as a free extension of a ring by a
single new element x.

Lemma 3.3. Let R and S be rings. For each homomorphism h0 ∶ R→ S
and every element a ∈ S, there exists a unique homomorphism h ∶ R[x] →
S with h(x) = a and h ↾ R = h0.

Proof. For p = cnxn + ⋅ ⋅ ⋅ + c1x + c0, we define

h(p) ∶= h0(cn)an + ⋅ ⋅ ⋅ + h0(c1)a + h0(c0) .
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It is straightforward to check that h is a homomorphism. For uniqueness,
suppose that g is another homomorphism such that g(x) = a and g↾R =
h0. For every polynomial p = cnxn + ⋅ ⋅ ⋅ + c1x + c0, we have

g(p) = g(cn)g(x)n + ⋅ ⋅ ⋅ + g(c1)g(x) + g(c0)= h0(cn)an + ⋅ ⋅ ⋅ + h0(c1)a + h0(c0) = h(p) .

Hence, g = h. ◻
As for groups we can characterise congruences of rings in terms of

certain subrings.

Definition 3.4. Let R be a ring.
(a) A left ideal of R is a subset a ⊆ R such that

a + b ∈ a , for all a, b ∈ a ,
ra ∈ a , for all a ∈ a and every r ∈ R .

(b) A (two-sided) ideal of R is a subset a ⊆ R such that

a + b ∈ a , for all a, b ∈ a ,
ras ∈ a , for all a ∈ a and all r, s ∈ R .

(c) We denote the set of all ideals of R ordered by inclusion by

Idl(R) ∶= ⟨Idl(R), ⊆⟩ .

(d) Let ā ⊆ R. The ideal generated by ā is

(ā) ∶= ⋂{ a ⊆ R ∣ a an ideal with ā ⊆ a} .

Remark. Clearly, every two-sided ideal is also a left ideal. The converse
does not hold in general, but for commutative rings both notions coin-
cide.

Example. Let Z = ⟨Z,+,−, ⋅, 0, 1⟩ be the ring of integers. A subset a ⊆ Z
is an ideal if and only if it is of the form mZ, for some m ∈ N.
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Exercise 3.1. Prove that

(a0 , . . . , an−1) = { r0a0s0 + ⋅ ⋅ ⋅ + rn−1an−1sn−1 ∣ r̄, s̄ ⊆ R } .

Lemma 3.5. Let R be a ring.
(a) If h ∶ R→ S is a surjective homomorphism then S is also a ring.
(b) If h ∶ R→ S is a homomorphism into a ring S, then h−1[0] is an

ideal of R.
(c) If a is an ideal of R, then the relation

r ≈a s : iff r − s ∈ a

is a congruence of R.

Proof. (a) For all elements a, b, c ∈ S, there are elements x ∈ h−1(a),
y ∈ h−1(b), and z ∈ h−1(c). Since h is a homomorphism it follows that
every equation satisfied by x, y, and z is also satisfied by a, b, and c.

(b) Let a, b ∈ h−1[0] and r, s ∈ R. Then

h(a + b) = h(a) + h(b) = 0 + 0 = 0 ,
and h(ras) = h(r) ⋅ h(a) ⋅ h(s) = h(r) ⋅ 0 ⋅ h(s) = 0 .

(c) First, we prove that ≈a is an equivalence relation. Let r, s, t ∈ R. The
relation ≈a is reflexive since r − r = 0 ∈ a. It is symmetric since r − s ∈ a
implies s− r = (−1) ⋅ (r− s) ∈ a. Finally, it is transitive since r− s, s− t ∈ a
implies r − t = (r − s) + (s − t) ∈ a.

It remains to show that ≈a is a congruence. Suppose that r ≈a r′ and
s ≈a s′. Then

(r + s) − (r′ + s′) = (r − r′) + (s − s′) ∈ a ,

and rs − r′s′ = rs − rs′ + rs′ − r′s′ = r(s − s′) + (r − r′)s′ ∈ a . ◻
Theorem 3.6. Let R be a ring. The function Idl(R) → Cong(R) ∶ a↦ ≈a

is an isomorphism.
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Proof. By definition, a ⊆ b implies ≈a ⊆ ≈b. Hence, h ∶ a ↦ ≈a is a
homomorphism and it remains to find a homomorphism g ∶ Cong(R) →
Idl(R) that is inverse to h. For ∼ ∈ Cong(R), we define

g(∼) ∶= [0]∼ .

Then ∼ ⊆ ≈ implies g(∼) ⊆ g(≈). Furthermore,

g(h(a)) = g(≈a) = [0]≈a = a ,

and h(g(∼)) = h([0]∼) = ≈[0]∼ = ∼ . ◻
Definition 3.7. Let R be a ring.

(a) For an ideal a of R, we set

R/a ∶= R/≈a .

(b) The kernel of a homomorphism h ∶ R→ S is the ideal

Ker h ∶= h−1[0] (= [0]ker h) .

To every ring we can assign a topological space in much the same way
as we associated Stone spaces with boolean algebras.

Definition 3.8. Let R be a ring.
(a) An ideal p of R is prime if p ≠ R and

ab ∈ p implies a ∈ p or b ∈ p , for all a, b ∈ R .

(b) The spectrum of R is the set spec(R) of all prime ideals. We endow
spec(R) with a topology by taking as closed sets all sets of the form

⟨X⟩ ∶= { p ∈ spec(R) ∣ X ⊆ p} , for X ⊆ R .

Exercise 3.2. Prove that spec ∶ Ring→ Top is a contravariant functor.

402

4. Modules

4. Modules
Instead of a group acting on a set we can consider a ring acting on an
abelian group. This leads to the notion of a module.

Definition 4.1. Let R be a ring.
(a) An R-module M consists of an abelian group M = ⟨M ,+,−, 0⟩

and an action R × M → M satisfying

r(sa) = (rs)a ,
r(a + b) = ra + rb , for all r, s ∈ R and a, b ∈ M .(r + s)a = ra + sa ,

The action R × M → M is called scalar multiplication.
(b) A vector space is an R-module where the ring R is a skew field.
(c) We regard R-modules as one-sorted structures

M = ⟨M ,+,−, 0, (λr)r∈R⟩
where λr ∶ a ↦ ra are the scalar multiplication maps. When we talk
about substructures or homomorphisms of modules we always have this
signature in mind.

(d) We denote by ModR the category of all R-modules and homo-
morphisms.

Example. (a) We can turn every abelian group A into a Z-module by
defining

0a ∶= 0 ,(n + 1)a ∶= na + a , for n ∈ N and a ∈ A .(−n)a ∶= −(na) ,
(b) Every ring R is an R-module for the canonical action α(r)(a) ∶=

ra given by multiplication.
(c) The derivation map R[x] → R[x] ∶ p ↦ p′ is a homomorphism

of R-modules. It is not a ring homomorphism.
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b6. Classical Algebra

We can turn the set of all homomorphisms M→ N into an R-module
by defining addition and scalar multiplication pointwise.

Exercise 4.1. If M and N are R-modules then so is ModR(M,N).
For N =M we not only get a module but even a ring.

Definition 4.2. The endomorphism ring End(M) of an R-module M is
the ring with universe

End(M) ∶=ModR(M,M)
where addition and multiplication are defined by

(g + h)(x) ∶= g(x) + h(x) and (g ⋅ h)(x) ∶= g(h(x)) .

Lemma 4.3. End(M) is a ring.

Exercise 4.2. Prove the lemma.

We have seen above that congruences of groups and rings can be
described in terms on certain substructures. For modules, the situation
is much simpler. Every submodule corresponds to a congruence.

Theorem 4.4. Let M be an R-module. The function

Sub(M) → Cong(M) ∶ U ↦ {⟨a, b⟩ ∣ a − b ∈ U }
is an isomorphism. Its inverse is given by the map ≈ ↦ [0]≈.

Exercise 4.3. Prove the preceding theorem.

Lemma 4.5. Let M be an R-module. Then Sub(M) is a modular lattice.

Proof. Let K, L ⊆M. It is straightforward to check that

K ⊓ L = K ∩ L ∶=M∣K∩L and K ⊔ L = K + L ∶=M∣K+L .
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Hence, Sub(M) is a lattice. To show that it is modular it is sufficient to
prove that

K ⊆ L implies L ∩ (K +N) ⊆ K + (L ∩N) .

Let a ∈ L ∩ (K + N). Then there are elements b ∈ K and c ∈ N such
that a = b + c. Since a ∈ L and b ∈ K ⊆ L it follows that c = a − b ∈ L.
Hence, c ∈ L ∩ N and we have a = b + c ∈ K + (L ∩ N). ◻

Since congruences of modules are simpler than those of rings, it is
frequently worthwhile to regard rings as modules. The following obser-
vation shows that we can study the left ideals of a ring in this way. For
the proof, it is sufficient to note that the closure conditions of a left ideal
and those of a submodule coincide.

Lemma 4.6. Let R be a ring. A subset a ⊆ R is a left ideal of R if and only
if it is a submodule of R.

Let us consider products of modules. We will show below that we can
decompose every vector space over a skew field S as a product of copies
of S.

Lemma 4.7. If Mi , for i ∈ I, are R-modules then so is their direct product∏i∈I Mi .

Definition 4.8. Let (Mi)i∈I be a family of R-modules. The direct sum⊕i∈I Mi is the submodule of ∏i∈I Mi consisting of all sequence a ∈∏i M i such that a(i) = 0, for all but finitely many i.
The direct power of a module M is the direct sum M(I) ∶= ⊕i∈I M of

I copies of M.

Remark. In the category ModR the direct product∏i Mi and the direct
sum⊕i Mi play the role of, respectively, product and coproduct.

That is, for every family of homomorphisms h i ∶ N→Mi , i ∈ I, there
is a unique homomorphism g ∶ N→∏i Mi such that h i = pri ○ g where
pii ∶ ∏ j M j →Mi is the i-th projection.
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b6. Classical Algebra

Similarly, for every family of homomorphisms h i ∶ Mi → N, i ∈ I,
there is a unique homomorphism g ∶ ⊕i Mi → N such that h i = g ○ ini
where ini ∶ Mi →⊕ j M j is the i-th injection.

To conclude this sectionwe take a look at the structure of vector spaces,
which is particularly simple. We will show below that every vector space
over a skew field S is isomorphic to a direct power of S.

Definition 4.9. Let V be a vector space over a skew field S.
(a) A set X ⊆ V is linearly dependent if there are pairwise distinct

elements a0 , . . . , an−1 ∈ X and nonzero scalars s0 , . . . , sn−1 ∈ S ∖ {0},
such that

s0a0 + ⋅ ⋅ ⋅ + sn−1an−1 = 0 .

Otherwise, X is called linearly independent.
(b) A basis of V is a linearly independent subset B ⊆ V generating V.

Lemma 4.10. Let V be a vector space over a skew field S, a ∈ V, and
suppose that I ⊆ V is linearly independent. Then I ∪ {a} is linearly inde-
pendent if and only if a ∉ ⟪I⟫V.

Proof. (⇒) If a ∈ ⟪I⟫V then there are elements b0 , . . . , bn−1 ∈ I and
scalars s0 , . . . , sn−1 ∈ S such that

a = s0b0 + ⋅ ⋅ ⋅ + sn−1bn−1 .

Omitting all terms s ib i that are zero, we may assume that s i ≠ 0, for all i.
Consequently,

s0b0 + ⋅ ⋅ ⋅ + sn−1bn−1 − a = 0
and I ∪ {a} is linearly dependent.(⇐) Suppose that I ∪ {a} is linearly dependent. Then there are ele-
ments b0 , . . . , bn−1 ∈ I and nonzero scalars r, s0 , . . . , sn−1 ∈ S such that

ra + s0b0 + ⋅ ⋅ ⋅ + sn−1bn−1 = 0 .
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(This sum must contain a term with a since I is independent.) Con-
sequently,

a = −r−1s0b0 − ⋅ ⋅ ⋅ − r−1sn−1bn−1 ∈ ⟪I⟫V . ◻
Lemma 4.11. Every vector space has a basis.

Proof. Suppose that V is a vector space over S. Let I be the set of all
linearly independent sets I ⊆ V . The partial order ⟨I , ⊆⟩ is inductive.
Consequently, it has amaximal element B. We claim that B is a basis. Sup-
pose otherwise. Then there is some vector a ∈ V ∖⟪B⟫V. By Lemma 4.10,
it follows that B ∪ {a} is linearly independent. This contradicts the max-
imality of B. ◻
Theorem 4.12. Let V be an S-vector space with basis B. There exists an
isomorphism

h ∶ S(B) → V ∶ (sb)b∈B ↦ ∑
b∈B sbb .

Proof. It is straightforward to check that h is a homomorphism. We
claim that it is bijective. For surjectivity, fix a ∈ V . Since V = ⟪B⟫V there
are elements b0 , . . . , bn−1 ∈ B and scalars s0 , . . . , sn−1 ∈ S such that

a = s0b0 + ⋅ ⋅ ⋅ + sn−1bn−1 .

Hence, a ∈ rng h.
It remains to prove that h is injective. Suppose that h(sb)b = h(s′b)b .

We have

∑
b∈B(sb − s′b)b = ∑

b∈B sbb − ∑
b∈B s′bb = h(sb)b − h(s′b)b = 0 .

(Note that these sums are defined since (sb)b , (s′b)b ∈ S(B).) Since B is
linearly independent it follows that sb − s′b = 0, for all b. Consequently,(sb)b = (s′b)b . ◻
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Every vector space is freely generated by its basis.

Lemma4.13. Let V andW beS-vector spaces and suppose that B is a basis
of V. For every map h0 ∶ B →W, there exists a unique homomorphism
h ∶ V→W such that h ↾ B = h0.

Proof. By Theorem 4.12, we can find, for every a ∈ V , a unique sequence(sb)b ∈ S(B) such that a = ∑b sbb. We define h(a) ∶= ∑b sbh0(b).
Then h ↾ B = h0 and we have

h(a + b) = h(a) + h(b) and h(sa) = sh(a) .

Hence, h is a homomorphism. It is obviously unique. ◻
Lemma 4.14 (Exchange Lemma). Let V be a vector space over a skew
field S, suppose that I ⊆ V is linearly independent, and let I0 ⊆ I. For
every element a ∈ ⟪I⟫V ∖ ⟪I0⟫V, there exists ane element b ∈ I ∖ I0 such
that (I ∖{b})∪ {a} is linearly independent and b ∈ ⟪(I ∖{b})∪ {a}⟫V.

Proof. Since I ∪ {a} is dependent it follows by Lemma 4.10 that there
are elements b0 , . . . , bn−1 ∈ I and scalars s0 , . . . , sn−1 ∈ S such that

a = s0b0 + ⋅ ⋅ ⋅ + sn−1bn−1 .

We choose these elements such that the number n is minimal. It particu-
lar this implies that s i ≠ 0, for all i.

Since the set I0 ∪ {a} is independent we have b i ∈ I ∖ I0, for some i.
By renumbering the elements we may assume that b0 ∈ I ∖ I0. We claim
that b0 is the desired element.

First of all,

b0 = s−1
0 a − s−1

0 s1b1 − ⋅ ⋅ ⋅ − s−1
0 sn−1bn−1

implies that b0 ∈ ⟪(I ∖ b0) ∪ {a}⟫V. Hence, it remains to prove that(I ∖ b0) ∪ {a} is linearly independent.
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For a contradiction, suppose otherwise. Then Lemma 4.10 implies
that a ∈ ⟪I ∖ {b0}⟫V. Since ⟪ ⋅ ⟫V is a closure operator it follows that

b0 ∈ ⟪(I ∖ {b0}) ∪ {a}⟫V ⊆ ⟪⟪I ∖ {b0}⟫V⟫V = ⟪I ∖ {b0}⟫V .

Hence, I = (I ∖ {b0}) ∪ {b0} is linearly dependent. Contradiction. ◻
Theorem 4.15. Let V be a vector space over the skew field S. If V has a
finite basis then all bases of V have the same cardinality.

Proof. Let B and C be two bases of V and suppose that B is finite. We
prove by induction on ∣B ∖ C∣ that ∣B∣ = ∣C∣.

First, suppose that B ⊆ C. If there is some element c ∈ C ∖ B then
B ∪ {c} is linearly independent. By Lemma 4.10, it follows that c ∉⟪B⟫V = V . A contradiction. Consequently, C = B.

For the inductive step, suppose that there is some element b ∈ B ∖ C.
Let I ∶= B ∩ C. By Lemma 4.14, we can find a vector c ∈ C ∖ I such that
C′ ∶= (C ∖ {c}) ∪ {b} is linearly independent and ⟪C′⟫V = ⟪C⟫V = V .
Hence, C′ is a basis of V and it follows by inductive hypothesis that∣C∣ = ∣C′∣ = ∣B∣. ◻
Remark. Thepreceding theorem holds also for vector spaces with infinite
bases. We postpone the proof to Section f1.1 where we will prove the
corresponding result in a more general setting.

Definition 4.16. Let V be a vector space. The dimension dim V of V is
the minimal cardinality of a basis of V.

Theorem 4.17. Let V and W be S-vector spaces. Then V ≅W if and only
if dim V = dim W.

Proof. (⇒) is trivial. For (⇐), suppose that B andC are bases of, respect-
ively, V and W such that ∣B∣ = ∣C∣. Then V ≅ S(B) ≅ S(C) ≅W. ◻
Lemma 4.18. Let V be a vector space and n < ω. Then we have dim V ≥ n
if and only if there exists a strictly increasing chain

{0} = U0 ⊂ ⋅ ⋅ ⋅ ⊂ Un = V
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of subspaces of V.

Proof. (⇒) Let B be a basis of V. By assumption, ∣B∣ ≥ n. Choose n dis-
tinct elements b0 , . . . , bn−1 ∈ B and set

Uk ∶= ⟪b0 , . . . , bk−1⟫V .

We claim that U0 ⊂ ⋅ ⋅ ⋅ ⊂ Un . For a contradiction, suppose that Uk+1 = Uk ,
for some k. Then

bk ∈ Uk = ⟪b0 , . . . , bk−1⟫V .

By Lemma 4.10 it follows that {b0 , . . . , bk−1 , bk} is linearly dependent.
Contradiction.(⇐) Suppose that {0} = U0 ⊂ ⋅ ⋅ ⋅ ⊂ Un = V. For every k < n, choose
some element bk ∈ Uk+1 ∖Uk . Let m be the maximal number such that
the set {b0 , . . . , bm−1} is linearly independent. Since m ≤ dim V it is
sufficient to prove that m = n.

For a contradiction, suppose otherwise. Then {b0 , . . . , bm−1 , bm} is
linearly dependent and, by Lemma 4.10, it follows that

bm ∈ ⟪b0 , . . . , bm−1⟫V ⊆ Um .

But bm ∈ Um+1 ∖Um . Contradiction. ◻
5. Fields
We have seen in the previous section that modules over fields are better
behaved than modules over arbitrary rings. In this section we study
further properties particular to fields. The first and largest part of the
section is devoted to constructions turning rings into fields. In particular,
we will study quotients of polynomial rings. In the second part we use
this machinery to investigate extensions of fields.

Definition 5.1. Let R be a ring.
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(a) An ideal a ⊆ R is maximal if a ≠ R and there is no ideal b with
a ⊂ b ⊂ R.

(b) An element a ∈ R is a unit if there is some b ∈ R such that ab =
1 = ba.

(c) An element a ∈ R is a zero-divisor if a ≠ 0 and there exists some
element b ≠ 0 such that ab = 0 or ba = 0.

(d) R is an integral domain if it is commutative and it contains no
zero-divisors.

Remark. (a) Every field is an integral domain. (b) A zero-divisor is never
a unit. (c) A ring is a skew field if and only if every element but 0 is a
unit.

Exercise 5.1. Let R and S be commutative rings. Show that the direct
product R ×S is never an integral domain.

Exercise 5.2. Prove that every maximal ideal is prime.

In the same way as Q is obtained from Z, we can associate a field with
every integral domain.

Definition 5.2. Let R be an integral domain. The field of fractions of R
is the ring FF(R) consisting of all pairs ⟨r, s⟩ ∈ R2 with s ≠ 0. We write
such pairs as fractions r/s.

Two fractions r/s and r′/s′ are considered to be equal if rs′ = r′s.
Addition and multiplication is defined by the usual formulae

r/s + r′/s′ ∶= (rs′ + r′s)/ss′ and r/s ⋅ r′/s′ ∶= rr′/ss′ .

Lemma 5.3. Let R be an integral domain. Then FF(R) is a field.

Exercise 5.3. Prove the preceding lemma.

Lemma 5.4. Let R be an integral domain and K a field. For every embed-
ding h0 ∶ R → K, there exists a unique embedding h ∶ FF(R) → K with
h ↾ R = h0.
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Proof. We define h(r/s) ∶= h0(r)⋅h0(s)−1. It is straightforward to check
that h is an embedding and that this is the only possible choice to define h.◻
Theorem 5.5. A ring R is an integral domain if and only if R can be
embedded into some field K.

Proof. Every integral domain R can be embedded into the field FF(R).
Conversely, suppose that R ⊆ K, for some field K. Since K is an integral
domain, so is R. ◻

We can construct integral domains by taking quotients by prime ideals.

Lemma 5.6. Let R be a commutative ring and a ⊆ R an ideal. The quotient
R/a is an integral domain if and only if a is prime.

Proof. Let π ∶ R→ R/a be the canonical projection.(⇒) To show that a is prime consider elements a, b ∈ R with ab ∈ a.
Then π(ab) = 0. SinceR/a is an integral domain it follows that π(a) = 0
or π(b) = 0. Hence, a ∈ a or b ∈ a.(⇐) Suppose that π(a)π(b) = 0. Then ab ∈ p. Since p is prime it
follows that a ∈ p or b ∈ p. Hence, π(a) = 0 or π(b) = 0. ◻

In a similar way we can characterise ideals a such that R/a is a field.

Definition 5.7. A structure A is simple if Congw(A) = {�, ⊺}.
Example. A ring R is simple if and only if {0} and R are its only ideals.

Exercise 5.4. Let R be a ring. Prove that an ideal m of R is maximal if
and only if the quotient R/m is simple.

Lemma 5.8. A commutative ring R is a field if and only if it is simple.

Proof. (⇒) Let R be a field and a an ideal of R. Suppose that a ≠ {0}
and choose a nonzero element a ∈ a. Since R is a field it follows that
1 = a−1a ∈ a. Hence, a = R.(⇐)The set a ∶= { a ∈ R ∣ a is not a unit} is an ideal of R. Since 1 ∉ a
it follows that a = {0}. Consequently, every nonzero element of R is a
unit and R is a field. ◻
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Corollary 5.9. Let R be a commutative ring and a ⊆ R an ideal. The
quotient R/a is a field if and only if a is maximal.

Proof. By Theorem b1.4.19, each ideal of R/a corresponds to an ideal b
of R with a ⊆ b. Hence, R/a is simple if and only if a is maximal. Con-
sequently, the claim follows from Lemma 5.8. ◻
Exercise 5.5. Show that every homomorphism between fields is an em-
bedding.

The main part of this section is concerned with extensions of fields
and ways to construct them. First we take a look at the subfields of a
given fields.

Definition 5.10. Let K be a field
(a) The characteristic of K is the least number n > 0 such that

1 + ⋅ ⋅ ⋅ + 1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

= 0 .

If there is no such number then we define the characteristic to be 0.
(b) The subfield generated by a subset X ⊆ K is the set

{ ab−1 ∣ a, b ∈ ⟪X⟫K } .

(c) The prime field of K is the subfield generated by ∅.

Example. (a) The prime field of R is Q.
(b) Let p be a prime number. The ring Z/(p) of all integers modulo p

is a field of characteristic p.

Exercise 5.6. Let K be a field of characteristic m > 0. Prove that m is a
prime number.

Lemma 5.11. Let K be a field with prime field K0.
(a) K has characteristic 0 if and only if K0 ≅ Q.
(b) K has characteristic p > 0 if and only if K0 ≅ Z/(p).
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Definition 5.12. (a) An embedding h ∶ K → L of fields is called a field
extension.

(b) Let h ∶ K → L be a field extension. We can regard L as a K-vector
space by defining

λa ∶= h(λ) ⋅ a , for λ ∈ K and a ∈ L .

The dimension of the extension h is the dimension of this vector space.
(c) If K → L is a field extension and ā ⊆ L, then we denote the subfield

of L generated by K ∪ ā by K(ā).
Example. The subfield of R generated by

√
2 is

K ∶= { a + b
√

2 ∣ a, b ∈ Q} .

The field extension Q→ K has dimension 2.

One way to obtain an extension of a field K is by considering its poly-
nomial ring K[x]. We can obtain a field extending K by either forming
the field of fractions FF(K[x]), or by taking a suitable quotient K[x]/p.
We start by taking a closer look at polynomial rings of fields.

Lemma 5.13. Let R be an integral domain and p, q ∈ R[x] polynomials.

deg(pq) = deg p + deg q .

Proof. Let m ∶= deg p and n ∶= deg q and suppose that

p = amxm + ⋅ ⋅ ⋅ + a0 and q = bnxn + ⋅ ⋅ ⋅ + b0 .

If p = 0 or q = 0 then deg(pq) = deg0 = −∞ and we are done. Hence,
suppose that p and q are nonzero. Then

pq = m+n∑
k=0 (

k∑
i=0 a ibk−i)x i = ambnxm+n + m+n−1∑

k=0 (
k∑

i=0 a ibk−i)x i

(where a i ∶= 0, for i > m, and b i ∶= 0, for i > n). By assumption am ≠ 0
and bn ≠ 0. Since R is an integral domain it follows that ambn ≠ 0.
Hence, deg pq = m + n. ◻
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Lemma 5.14. Let K be a field.

(a) For all polynomials p, q ∈ K[x] with p ≠ 0, there exist polynomials
r, s ∈ K[x] such that

q = r p + s and deg s < deg p .

(b) For every ideal a ⊆ K[x], there exists a polynomial p ∈ K[x] such
that (p) = a.

Proof. (a) Suppose that

p = amxm + ⋅ ⋅ ⋅ + a0 and q = bnxn + ⋅ ⋅ ⋅ + b0 ,

where am ≠ 0 and bn ≠ 0. We prove the claim by induction on n. If
m > n we can take r ∶= 0 and s ∶= q. Hence, we may assume that m ≤ n.
Setting

r′ ∶= a−1
m bnxn−m and s′ ∶= q − r′p

it follows that q = r′p+ s′ and the degree of s′ is less than n. By inductive
hypothesis, there are polynomials r′′ and s′′ such that s′ = r′′p + s′′
and the degree of s′′ is less than n. Consequently, we obtain the desired
polynomials by setting r ∶= r′ + r′′ and s ∶= s′′.

(b) If a = {0} = (0) then there is nothing to do. Hence, suppose that
a contains some nonzero polynomial. Choose a nonzero polynomial
p ∈ a of minimal degree. We claim that (p) = a. Clearly, we have (p) ⊆ a.
For the converse, let q ∈ a. By (a), there are polynomials r, s ∈ K[x] such
that q = r p+ s and deg s < deg p. Since s = q− r p ∈ a it follows, by choice
of p, that s = 0. Hence, q = r p ∈ (p). ◻
Definition 5.15. Let R be a ring, p ∈ R[x] a polynomial, and a ∈ R.

(a) We define

p[a] ∶= ha(p) ,
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where ha ∶ R[x] → R is the unique homomorphism such that ha(x) = a
and ha ↾R = id. The polynomial function associated with p is the function

p[x] ∶ R→ R ∶ a ↦ p[a] .

(b) We say that a is a root of p if p[a] = 0.

Lemma 5.16. Let K be a field and p ∈ K[x] a nonzero polynomial of
degree n.

(a) If a is a root of p then p = q ⋅ (x − a), for some q ∈ K[x].
(b) p has at most n roots in K.

Proof. (a) We can use Lemma 5.14 to find polynomials q, r such that
p = q(x − a) + r and deg r < deg(x − a) = 1. Hence, r ∈ K and it follows
that

0 = p[a] = q[a](a − a) + r[a] = r[a] = r .

Consequently, p = q(x − a).
(b) Let a0 , . . . , am−1 be an enumeration of all roots of p. By (a), we have

p = q(x − a0)⋯(x − am−1). Therefore, the degree of p is at least m. ◻
Definition 5.17. Let R be a ring. A nonzero polynomial p ∈ R[x] is
irreducible if p is not a unit and there is no factorisation p = qr with
q, r ∈ R[x] such that neither q nor r is a unit.

Lemma 5.18. Let K be a field. A polynomial p ∈ K[x] is irreducible if and
only if the ideal (p) is maximal.

Proof. (⇒) Suppose that a ⊆ K[x] is an ideal with (p) ⊂ a. Fix some q ∈
a∖(p). By Lemma 5.14, there is some polynomial r with (r) = (p, q). In
particular, p = sr, for some s ∈ K[x]. Since p is irreducible it follows that
one of r or s is a unit. If r is a unit then we have a ⊇ (p, q) = (r) = K[x].
Otherwise, r = s−1 p implies that (r) = (p) ⊂ (p, q). Contradiction.(⇐) Let (p) be maximal and suppose that p = qr, for some q, r ∈
K[x]. Then (p) ⊆ (q) and (p) ⊆ (r). By maximality of (p) it follows
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that either (q) = (p) or (q) = K[x]. In the latter case q is a unit and
we are done. Hence, suppose that (q) = (p). Similarly, we may assume
that (r) = (p). Consequently, there are units u, v ∈ K[x] such that
q = up and r = vp. It follows that p = qr = uvp2. This is only possible if
deg p ≤ 0. Hence, p ∈ K. Contradiction. ◻
Lemma 5.19. Let K be a field. For every nonzero polynomial p ∈ K[x],
there exists a factorisation p = cq0⋯qm−1 where c ∈ K and q0 , . . . , qm−1 ∈
K[x] are irreducible.

Proof. We prove the claim by induction on deg p. If p ∈ K or p is already
irreducible then there is nothing to do. Otherwise, we can find polyno-
mials q, r ∈ K[x] of degree at least 1 such that p = qr. Since

deg q = deg p − deg r < deg p

we can use the inductive hypothesis to find a factorisation q = cq0⋯q l−1
of q into irreducible polynomials. In the same way we obtain such a
factorisation r = dr0⋯rm−1 for r. It follows that p = cdq0⋯q l−1r0⋯rm−1.◻
Lemma 5.20. Let K be a field and suppose that p ∈ K[x] is an irreducible
polynomial of degree n.

(a) K[x]/(p) is a field.

(b) The field extension K → K[x]/(p) has dimension n.

(c) p has a root in K[x]/(p).
Proof. Let π ∶ K[x] → K[x]/(p) be the canonical projection.

(a) follows from Lemma 5.18 and Corollary 5.9.
(c) p[π(x)] = π(p) = 0.
(b) We claim that 1, π(x), . . . , π(xn−1) form a basis of K[x]/(p). First,

let us show that these elements generate the K-vector space K[x]/(p).
For every q ∈ K[x], we can use Lemma 5.14 to find polynomials r, s ∈
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K[x] such that q = r p + s and the degree of s is less than n. Hence,
s = an−1xn−1 + ⋅ ⋅ ⋅ + a0, for some a0 , . . . , an−1 ∈ K, and

π(q) = π(s) = an−1π(xn−1) + ⋅ ⋅ ⋅ + a1π(x) + a0 .

It remains to prove that 1, π(x), . . . , π(xn−1) are linearly independ-
ent. For a contradiction, suppose that there are nonzero coefficients
a0 , . . . , an−1 ∈ K such that

a0 + a1π(x) + ⋅ ⋅ ⋅ + an−1π(xn−1) = 0 .

Then there is some b ∈ K[x] such that

a0 + a1x + ⋅ ⋅ ⋅ + an−1xn−1 = bp .

But the degree of the polynomial on the left hand side is between 0 and
n−1, while the degree of bp is either−∞ or at least n. Contradiction. ◻
With the help of polynomial rings we can study field extensions.

Definition 5.21. Let K be a field and U ⊆ K a subring.
(a) A subset X ⊆ K is algebraically dependent over U if there exist

elements a0 , . . . , an−1 ∈ X and a polynomial p ∈ U[x0 , . . . , xn−1] such
that p[a0 , . . . , an−1] = 0. We call X algebraically independent over U if
it is not algebraically dependent over U .

(b) A transcendence basis of K over U is a maximal subset I ⊆ K that
is algebraically independent over U . The cardinality of a transcendence
basis is called the transcendence degree of K over U .

(d) An element a ∈ K is algebraic over U if {a} is algebraically de-
pendent over U . Otherwise, a is transcendental over U . A field extension
h ∶ K → L is algebraic if every element a ∈ L∖rng h is algebraic over rng h.
Similarly, we call h transcendental if every a ∈ L∖rng h is transcendental
over rng h.

(e) The field K is algebraically closed if every polynomial p ∈ K[x] has
a root in K.
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Remark. The partial order of all algebraically independent subsets of a
field K has finite character and, consequently, it is inductively ordered.
Hence, every field has a transcendence basis.

Lemma 5.22. Let h ∶ K → L be a field extension and a ∈ L an element.
(a) If a is transcendental over K then

K(a) ≅ FF(K[x]) .

(b) If a is algebraic over K then there exists an irreducible polynomial
p ∈ K[x] such that

K(a) ≅ K[x]/(p) .

Proof. (a) There exists a unique embedding h0 ∶ K[x] → L with h0 ↾K =
id and h0(x) = a. Let h ∶ FF(K[x]) → L be the unique embedding with
h ↾K[x] = h0. We claim that h is surjective. Every element of K(a) is of
the form bc−1, for b, c ∈ ⟪K ∪ {a}⟫L. Fix polynomials p, q ∈ K[x] such
that b = h0(p) and c = h0(q). Then bc−1 = h0(p) ⋅ h0(q)−1 = h(p/q).

(b) By Lemma 3.3, there exists a homomorphism h ∶ K[x] → K(a)
with h(x) = a and h ↾ K = id. Note that h is surjective since K ∪ {a} ⊆
rng h. The kernel Ker h is an ideal of K[x]. By Lemma 5.14, there exists a
polynomial p ∈ K[x] such that Ker h = (p). Let π ∶ K[x] → K[x]/(p) be
the canonical projection. By Theorem b1.4.12, there exists an isomorph-
ism g ∶ K[x]/(p) → rng h = K(a) such that h = g ○ π. ◻
Definition 5.23. We call the polynomial p from statement (b) of the
preceding lemma the minimal polynomial of a.

Lemma 5.24. Let K → L be an extension of fields of characteristic 0.
Suppose that p ∈ K[x] is an irreducible polynomial (in K[X]) that can be
factorised in L[x] as

p = (x − a)nq , for a ∈ L, q ∈ L[x], n < ω .

Then n ≤ 1.
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Proof. Note that p′ ∉ (p) because deg p′ < deg p. Hence, (p) ⊂ (p, p′).
Since the polynomial p is irreducible, the ideal (p) is maximal and it
follows that (p, p′) = K[X] = (1). Hence, there are r, s ∈ K[x] such that
r p + sp′ = 1. Consequently,

r(x − a)nq + s[n(x − a)n−1q + (x − a)nq′] = 1 .

Setting t ∶= rq(x−a)+nsq+sq′(x−a)we obtain a polynomial such that(x−a)n−1 t = 1. This implies that 0 = deg 1 = deg (x − a)n−1 t ≥ n−1. ◻
Algebraically closed fields are particularly well-behaved. As we will

prove below, they are uniquely determined by their characteristic and
their transcendence degree.

Lemma 5.25. Let K be an algebraically closed field of transcendence de-
gree κ. Then ∣K∣ = κ ⊕ ℵ0.

Proof. Let I ⊆ K be a transcendence basis of K over∅. Then ∣K∣ ≥ ∣I∣ = κ.
Furthermore, we have ∣K∣ ≥ ℵ0 since, if K = {a0 , . . . , an−1} were finite,
we could find a polynomial

p ∶= (x − a0)⋯(x − an−1) + 1

without root in K. Hence, K would not be algebraically closed.
Therefore, we have ∣K∣ ≥ κ ⊕ ℵ0 and it remains to prove the con-

verse. For every element a ∈ K ∖ I, the set I ∪ {a} is algebraically de-
pendent. Hence, there are elements b0 , . . . , bn−1 ∈ I and a polynomial
p ∈ Q[x , y0 , . . . , yn−1] such that

p[a, b0 , . . . , bn−1] = 0 .

Setting f (a) ∶= ⟨p, b̄⟩ we obtain a function

f ∶ K ∖ I → ⋃
n<ω
(Q[x , ȳ] × In) .
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For every pair ⟨p, b̄⟩, there are only finitely many elements a ∈ K with
f (a) = ⟨p, b̄⟩ since p[x , b̄] has at most deg p < ℵ0 roots in K. It follows
that

∣K∣ = ∑⟨p,b̄⟩∈rng f
f −1(⟨p, b̄⟩)

≤ ℵ0 ⊗ ∣rng f ∣ = ℵ0 ⊗ (ℵ0 ⊗ κ<ω) ≤ ℵ0 ⊕ κ . ◻
Lemma 5.26. For every field K, there exists an extension K → L such that
every polynomial in K[x] of degree at least 1 has a root in L.

Proof. We have seen in Lemma 5.20 that, if p ∈ K[x] is a polynomial
and q an irreducible factor of p, then the field K[x]/(q) is an extension
of K in which p has the root x.

Fix an enumeration (pα)α<κ of K[x]. We construct a chain (Lα)α<κ
of fields Lα ⊇ K such that pα has a root in Lα+1. We set L0 ∶= K and
Lδ ∶= ⋃α<δ Lα , for limit ordinals δ. For the successor step we define
Lα+1 ∶= Lα[x]/(qα) where qα is an irreducible factor of pα . The union
L ∶= ⋃α<κ Lα is the desired extension of K. ◻
Proposition 5.27. Every field K has an extension K → L where L is
algebraically closed.

Proof. By the preceding lemma, we can construct a chain (Ln)n<ω as
follows. L0 ∶= K and Ln+1 is some extension of Ln such that every polyno-
mial in Ln[x] has a root in Ln+1. The union L ∶= ⋃n<ω Ln is algebraically
closed since, if p ∈ L[x] then p ∈ Ln[x], for some n, and p has a root
in Ln+1 ⊆ L. ◻

The previous proposition tells us that every field has an algebraically
closure. In the following lemmas we prove that it is unique.

Lemma 5.28. Let K0 → L0 and K1 → L1 be field extensions with algebra-
ically closed fields L0 and L1. If L1 and L2 have the same transcendence
degree over, respectively, K0 and K1, then we can find, for every element
a ∈ L0 and every isomorphism π ∶ K0 → K1, and element b ∈ L1 and an
isomorphism σ ∶ K0(a) → K1(b) such that σ ↾ K0 = π.
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Proof. First, we consider the case that a is algebraic over K0. Let p be the
minimal polynomial. We can extend π to an isomorphism π′ ∶ K0[x] →
K1[x]. Let q ∶= π′(p). Since L1 is algebraically closed, q has a root b ∈ L1.
It follows that

K0(a) ≅ K0[x]/(p) ≅ K1[x]/(q) ≅ K1(b) ,
and this isomorphism extends π.

It remains to consider the case that a is transcendental over K0. Then
the transcendence degree of L0 over K0 is at least 1 and we can find an
element b ∈ L1 that is transcendental over K1. It follows that

K0(a) ≅ FF(K0[x]) ≅ FF(K1[x]) ≅ K1(b) . ◻
Theorem 5.29. Let K be a field and h0 ∶ K → L0 and h1 ∶ K → L1
algebraically closed extensions of K. If L0 and L1 have the same transcend-
ence degree over K then there exists an isomorphism π ∶ L0 ≅ L1 with
π ○ h0 = h1.

Proof. Since L0 and L1 have the same transcendence degree λ of K we
have ∣L0∣ = ∣K∣ ⊕ λ = ∣L1∣. Fix enumerations (a i)i<κ and (b i)i<κ of,
respectively, L0 and L1. By induction on α, we construct increasing
sequences

L0
d ⊆ L1

d ⊆ ⋅ ⋅ ⋅ ⊆ Lα
d ⊆ . . . and π0 ⊆ π1 ⊆ ⋅ ⋅ ⋅ ⊆ πα ⊆ . . .

of subfields Lα
d ⊆ Ld and isomorphisms πα ∶ Lα

0 → Lα
1 such that

aα ∈ dom πα+1 and bα ∈ rng πα+1 .

Then π ∶= ⋃α πα is an isomorphism with dom π = L0 and rng π = L1.
We start with L0

d ∶= K and π0 ∶= idK . For limit ordinals δ, we take
unions Lδ

d ∶= ⋃α<δ Lα
d and πδ ∶= ⋃α<δ πα . For the successor step, suppose

that πα ∶ Lα
0 → Lα

1 has already been defined. We apply the preceding
lemma twice, first to construct an extension σ ⊇ πα with aα ∈ dom σ ,
and then to find an extension πα+1 ⊇ σ with bα ∈ rng πα+1. ◻
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Corollary 5.30. Two algebraically closed fields with the same characteristic
and the same transcendence degree are isomorphic.

Corollary 5.31. Let L be an algebraically closed field. For every isomorph-
ism σ ∶ K0 → K1 between subfields K0 ,K1 ⊆ L, there exists an automorph-
ism π ∈ Aut L such that π ↾ K0 = σ.

We can use automorphisms to study algebraic field extensions. This
leads to what is called Galois theory. Here, we present only a simple
lemma that is needed in the next section.

Definition 5.32. Let h ∶ K → L be a field extension. We set

Aut (L/K) ∶= { π ∈ Aut L ∣ π ↾ rng h = id} .

Lemma 5.33. Let K → L be a field extension where L is algebraically
closed.

(a) If a ∈ L is an element such that π(a) = a, for all π ∈ Aut (L/K),
then a ∈ K.

(b) If C ⊆ L is a finite set such that π[C] ⊆ C, for all π ∈ Aut (L/K),
then there exists a polynomial p ∈ K[x] of degree deg p = ∣C∣ such that
C is the set of roots of p.

Proof. (a) For a contradiction, suppose that a ∉ K. First, we consider the
case that a is algebraic over K. Let p be its minimal polynomial and let
a0 , . . . , an−1 be the roots of p. We have n = deg p. Since

K(a i) ≅ K[x]/(p) ≅ K(a) ,
we can use Corollary 5.31 to find automorphisms π i ∈ Aut (L/K) such
that π i(a) = a i . By assumption, this implies a i = a. Hence, we have

p = (x − a)n = n∑
i=0 (

n
i
)an−ix i ,

which implies that a, a2 , . . . , an ∈ K. Contradiction.
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It remains to consider the case that a is transcendental over K. Then
a2 is also transcendental over K. Hence,

K(a) ≅ FF(K[x]) ≅ K(a2)
and we can use Corollary 5.31 to find an automorphism π ∈ Aut (L/K)
with π(a) = a2. This implies a2 = a, i.e., a = 1 ∈ K. Contradiction.

(b) Suppose that C = {c0 , . . . , cn−1} and set

p ∶= (x − c0)⋯(x − cn−1) .

Clearly,C is the set of roots of p. Hence, it remains to prove that p ∈ K[x].
For every π ∈ Aut (L/K), we have

π(p) = (x − π(c0))⋯(x − π(cn−1)) = p .

Hence, every coefficient of p is fixed by every element of Aut (L/K).
By (a), it follows that all coefficients of p belong to K. ◻
We conclude this section with a result stating that every finite di-

mensional field extension is generated by a single element (at least in
characteristic 0).

Theorem 5.34. Let K → L be an extension of fields of characteristic 0. For
all algebraic elements a, b ∈ L, there exists a finite subset U ⊆ K such that

K(a, b) = K(ac + b) , for all c ∈ K ∖U .

Proof. W.l.o.g. we may assume that L is algebraically closed. Let p and q
be theminimal polynomials of a and b, respectively. Let a′0 , . . . , a′m−1 ∈ L
be the roots of p and b′0 , . . . , b′n−1 ∈ L the roots of q where a′0 = a and
b′0 = b. We claim that the set

U ∶= { (b′j − b)(a − a′i)−1 ∣ 1 ≤ i < m and 0 ≤ j < n }
has the desired properties. Let c ∈ K ∖U and set d ∶= ac + b. We have to
show that

K(a, b) = K(d) .
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Clearly, K(d) ⊆ K(a, b). For the converse, let r ∈ K(d)[x] be a
polynomial such that

(r) = (p, q[d − cx]) .

Then p[a] = 0 and q[d − ca] = q[b] = 0 implies that r[a] = 0. Further-
more, if r[z] = 0, for some z ∈ L, thenwe have p[z] = 0 and q[d−cz] = 0.
The former implies that z = a′i , for some i, while the latter implies that
d − cz = b′j , for some j. Hence,

ac + b − cz = b′j implies (a − z)c = b′j − b .

Since c ∉ U it follows that z = a. Consequently, a is the only root of r
and we have

r = (x − a)k , for some k < ω .

Since r divides p it follows that p = (x − a)k p0, for some p0 ∈ K(a)[x].
As p is irreducible, we can use Lemma 5.24 to conclude that k = 1. Hence,
r = x − a. Since r ∈ K(d)[x] it follows that a ∈ K(d). This, in turn,
implies that b = d − ac ∈ K(d). Consequently, K(a, b) ⊆ K(d). ◻
6. Ordered fields
The field C of complex numbers is the canonical example of an algebrai-
cally closed field of characteristic zero. We have studied such fields in
the previous section. In this section we study fields like the field R of
real numbers. It turns out that the theory of R is more complicated than
that of C. We start by looking at fields equipped with a partial order.

Definition 6.1. (a) A structure R = ⟨R,+,−, ⋅, 0, 1, <⟩ is a partially
ordered ring if ⟨R,+,−, ⋅, 0, 1⟩ is a ring and < is a strict partial order
on R satisfying the following conditions:

◆ a < b implies a + c < b + c, for all a, b, c ∈ R .
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◆ a < b and c > 0 implies a ⋅ c < b ⋅ c .

If < is a linear order then we call R an ordered ring.
(b) A ring R is orderable if there exists a linear order < such that ⟨R, <⟩

is an ordered ring.
(c) For an element a ∈ R of an ordered ring R, we define

∣a∣ ∶= ⎧⎪⎪⎨⎪⎪⎩
a if a ≥ 0 ,−a if a < 0 .

(d) A field K is real if −1 cannot be written as a sum of squares.

Exercise 6.1. Let K be an ordered field. Prove that −1 < 0.

Lemma 6.2. If K is an ordered field then a2 ≥ 0, for all a ∈ K.

Proof. If a > 0 then we have a ⋅ a > 0 ⋅ a = 0. Similarly, if a = 0 then
a2 = 02 = 0 ≥ 0. Hence, suppose that a < 0. Then we have

0 = a + (−a) < 0 + (−a) = −a ,
which implies that −a2 = a ⋅ (−a) < 0 ⋅ (−a) = 0. Consequently, we have
0 = (−a2) + a2 < 0 + a2 = a2. ◻
Lemma 6.3. Every orderable field has characteristic 0.

Proof. By the previous lemma, we have 1 = 12 > 0. This implies that
0 + 1 < 1 + 1 and, by induction it follows that

1 + 1 < 1 + 1 + 1 , 1 + 1 + 1 < 1 + 1 + 1 + 1 , . . .

If some sum 1 + ⋅ ⋅ ⋅ + 1 equals 0 then we have

0 < 1 < 1 + 1 < ⋅ ⋅ ⋅ < 1 + ⋅ ⋅ ⋅ + 1 < 0 .

A contradiction. ◻
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Lemma 6.4. Let K be a real field. Then ⟨K, ≤⟩ is partially ordered where

a ≤ b : iff b − a is a sum of squares.

Proof. We start by showing that ≤ is a partial order. It is clearly reflexive.
For transitivity, suppose that b − a = x and c − b = y where x and y are
sums of squares. Then c − a = x + y is also a sum of squares. Finally,
suppose that a ≤ b and b ≤ a for a ≠ b. Then x ∶= b−a and y ∶= a−b are
nonzero sums of squares with x + y = 0. Suppose that x = x2

0 + ⋅ ⋅ ⋅ + x2
m

and y = y2
0 + ⋅ ⋅ ⋅ + y2

n . Then

−x2
0 = x2

1 + ⋅ ⋅ ⋅ + x2
m + y2

0 + ⋅ ⋅ ⋅ + y2
n

implies

−1 = (x1/x0)2 + ⋅ ⋅ ⋅ + (xm/x0)2 + (y0/x0)2 + ⋅ ⋅ ⋅ + (yn/x0)2 .

Contradiction.
To show that K is partially ordered by ≤ note that, if b− a and c = c−0

are sums of squares and d is an arbitrary element then

(b + d) − (a + d) = b − a and bc − ac = (b − a)c
are also sums of squares. ◻
We have seen that every real field can be equipped with a canonical

partial order. We would like to extend this partial order to a linear one.
To do so we consider field extensions such that, for every pair of ele-
ments a, b, one of a − b and b − a is a square. In the following we denote
by
√
a an arbitrary root of the polynomial x2 − a, either in the given

field K itself or one of its extensions.

Lemma 6.5. Let K be a real field and a ∈ K an element.
(a) If a is a sum of squares then K(√a) is a real field.
(b) If −a cannot be written as a sum of squares then K(√a) is a real

field.
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Proof. For a contradiction, suppose that K(√a) is not real. This implies
that
√
a ∉ K. Furthermore, there are numbers b i , c i ∈ K such that

−1 = ∑
i<n
(b i + c i

√
a)2 = ∑

i<n
(b2

i + 2b i c i
√
a + ac2

i ) .

Since K(√a) is a K-vector space with basis {1,√a} it follows that

−1 = ∑
i<n
(b2

i + ac2
i ) and 0 = ∑

i<n
2b i c i

√
a .

Consequently, if a is a sum of squares then so is −1 and K is not real. This
contradiction proves (a).

For (b), note that setting d ∶= ∑i c2
i the above equation implies

−a = 1 +∑i b2
i∑i c2

i
= ∑i c2

i +∑i b2
i ⋅ ∑i c2

i(∑i c2
i )2= ∑

i
(c i/d)2 +∑

i
b2

i ⋅ ∑
i
(c i/d)2 ,

and −a is a sum of squares. Again a contradiction. ◻
Corollary 6.6. If K is real and a ∈ K then at least one of K(√a) and
K(√−a) is real.

Lemma 6.7. Let K be a real field and p ∈ K[x] an irreducible polynomial
of odd degree. If a is a root of p (in some extension of K) then K(a) is a
real field.

Proof. We prove the claim by induction on n ∶= deg p. Suppose that
K(a) is not real. Then there are elements b i ∈ K(a) with

−1 = b2
0 + ⋅ ⋅ ⋅ + b2

k .

Since K(a) ≅ K[x]/(p) we can find polynomials q i ∈ K[x] of degree
less than n such that b i ≡ q i (mod p). It follows that

−1 ≡ q2
0 + ⋅ ⋅ ⋅ + q2

k (mod p) .
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Hence, there is some polynomial r ∈ K[x] such that

−1 = q2
0 + ⋅ ⋅ ⋅ + q2

k + r p .

Each square q2
i has an even degree. Let m be the degree of the sum

q2
0 + ⋅ ⋅ ⋅ + q2

k . If m ≤ 0 then we would have r = 0 and −1 would be a sum
of squares of elements in K. Hence, we have 0 < m ≤ 2n−2. As n = deg p
is odd, it follows that the degree of r is also odd and at most n − 2. Let
r0 be an irreducible factor of r of odd degree and let c be a root of r0.
Then

−1 = (q0[c])2 + ⋅ ⋅ ⋅ + (qk[c])2
is a sum of squares in K(c). Hence, K(c) is not real. This contradicts the
inductive hypothesis since the degree of r0 is odd and less than n. ◻
Definition 6.8. (a) A field is real closed if it is real and it has no proper
algebraic extension that is real.

(b) A real closure of a field K is an algebraic extension K → L that is
real closed.

Theorem 6.9. Every real field has a real closure.

Proof. Let K be a real field and letR be the set of all real fields that are
algebraic extensions of K. ThenR is inductively ordered by inclusion.
Hence, it has a maximal element L. This is the desired real closure of K.◻
Lemma 6.10. Let K be a real closed field. There exists a unique linear
order < such that ⟨K, <⟩ is an ordered field.

Proof. Let ≤ be the partial order of Lemma 6.4. We claim that ≤ is linear.
Suppose that a ≰ b. Then b − a is not a sum of squares. By Lemma 6.5 it
follows that K(√a − b) is real. SinceK is real closed we have

√
a − b ∈ K.

Hence, a − b is a square and we have b ≤ a, as desired.
Finally, note that, since every sum of squares must be non-negative≤ is the only possible linear order on K. ◻
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Theorem 6.11. A field is orderable if and only if it is real.

Proof. (⇒) If ⟨K, <⟩ is an ordered field then a2 ≥ 0, for all a ∈ K. Hence,
every sum of squares is non-negative.(⇐) Let K be a real field and let L be a real closure of K. Then L has a
unique linear order <. The restriction of < to K yields the desired order
of K. ◻
Lemma 6.12. Let K0 be an ordered field and K0 → K1 an (unordered)
field extension such that there are no elements c i ∈ K1 and a i ∈ K0 with
a i > 0 and

−1 = a0c2
0 + ⋅ ⋅ ⋅ + an−1c2

n−1 .

Let A be the algebraic closure of K1 and L ⊆ A the subfield generated by
the set K1 ∪ {√c ∣ c ∈ K0 , c > 0}. Then L is a real field whose canonical
partial order extends that of K0.

Proof. Since every positive element of K0 has a square root in L it follows
that the canonical order of L extends the order of K0. Hence, we only
need to prove that L is real.

If L were not real then we would have

−1 = a0c2
0 + ⋅ ⋅ ⋅ + an−1c2

n−1 ,

where a i = 1 and c i ∈ L, for i < n. Furthermore, by definition of L,
there would be elements b0 , . . . , bk−1 ∈ K0 such that c0 , . . . , cn−1 ∈
K1(√b0 , . . . ,

√
bk−1).

Consequently, it is sufficient to prove that we cannot find elements
a0 , . . . , an−1 , b0 , . . . , bk−1 ∈ K0 and c0 , . . . , cn−1 ∈ K1(√b0 , . . . ,

√
b1)

such that a i , b i > 0 and

−1 = a0c2
0 + ⋅ ⋅ ⋅ + an−1c2

n−1 .

We proceed by induction on k. For k = 0 the claim follows by our
assumption on K1. Hence, let k > 0 and, for a contradiction, suppose
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that there are elements a i , b i , and c i as above. Then

c i = u i + v i
√
bk−1 , where u i , v i ∈ K1(√b0 , . . . ,

√
bk−2) .

Hence,

−1 = ∑
i<n

a i(u i + v i
√
bk−1)2

= ∑
i<n
(a iu2

i + a ibk−1v2
i + 2a iu iv i

√
bk−1) .

If bk−1 ∈ K1(√b0 , . . . ,
√
bk−2) then we obtain the desired contradiction

by inductive hypothesis. Hence, assume that bk−1 is not contained in
this field. Then 1 and

√
bk−1 are linearly independent and it follows that

−1 = ∑
i<n
(a iu2

i + a ibk−1v2
i ) and 0 = ∑

i<n
2a iu iv i

√
bk−1 .

But the first equation contradicts the inductive hypothesis. ◻
Theorem 6.13. Every ordered field K has a real closure R such that the
canonical ordering of R extends the order of K.

Proof. Applying Lemma 6.12 with K0 = K1 = K we obtain a real field L
such that the canonical partial order of L extends the order of K. The
claim follows since the canonical order of every real closure of L extends
the canonical order of L. ◻

The next theorem gives a more concrete characterisation of when a
field is real closed.

Theorem 6.14. Let K be a real field. The following statements are equival-
ent:

(1) K is real closed.

(2) K(√−1) is algebraically closed.
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(3) Every polynomial p ∈ K[x] of odd degree has a root in K and, for
every a ∈ K, either a or −a is a square.

Proof. (1)⇒ (3) follows from Lemmas 6.5 and 6.7.
(3)⇒ (2) We start by showing that every element a+b√−1 ∈ K(√−1)

has a square root in K(√−1). Let < be an ordering of K. Then a2+b2 > 0
implies that a2 + b2 is a square. Since −√a2 + b2 ≤ a ≤ √a2 + b2 we
have

e ∶= a +√a2 + b2

2
> 0 .

Hence, e is also a square. Set c ∶= √e and d ∶= b
2c . It follows that

(c + d
√−1)2 = e + b

√−1 − b2

4e

= a
2
+ √a2 + b2

2
+ b
√−1 − b2

2(a +√a2 + b2)
= a

2
+ b
√−1 + √a2 + b2(a +√a2 + b2) − b2

2(a +√a2 + b2)
= a

2
+ b
√−1 + a

√
a2 + b2 + a2

2(a +√a2 + b2)= a + b
√−1 ,

as desired.
To prove that K(√−1) is algebraically closed we have to show that

every irreducible polynomial p ∈ K[x] has a root in K(√−1). Suppose
that the degree of p is n = 2m l where l is odd. We prove the claim by
induction on m. If m = 0 then the claim holds by assumption on K.
Suppose that m > 0. Let K → L be an algebraic field extension in which p
has n roots a0 , . . . , an−1. ByTheorem 5.34, there exist finite subsets U i k ⊆
K such that

K(a i + ak , a iak) = K(a i + ak + ca iak) , for all c ∈ K ∖U i k .
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Fix some element c ∈ K ∖ ⋃i ,k U i k . By Lemma 5.33, there is a poly-
nomial q ∈ K[x] of degree n(n − 1)/2 whose roots are the elements
a i + ak + ca iak . By inductive hypothesis, one of them is in K(√−1).
Suppose that a i + ak + ca iak ∈ K(√−1).

First, we show that b ∶= a i + ak ∈ K(√−1) and b′ ∶= a iak ∈ K(√−1).
For a contradiction, suppose otherwise. Note that, if one of b and b′ is
not in K(√−1) then b + cb′ ∈ K(√−1) implies that the other one also
does not belong to K(√−1). Hence, K(b, b′ ,√−1) is a K(√−1)-vector
space with basis {1, b, b′}. But these vectors are not linearly independent
since they satisfy the equation λ1−b−b′ = 0 with λ = b+ cb′ ∈ K(√−1).
Contradiction.

Consequently, a i is the root of a quadratic polynomial in K(√−1)[x].
Since every element of K(√−1) has a square root it follows that a i ∈
K(√−1).

(2)⇒ (1) By Lemma 6.4, there exists a partial order

a ≤ b : iff b − a is a sum of squares

on K. We claim that ≤ is linear. This implies that K is real.
It is sufficient to show that every element a ∈ K satisfies a ≥ 0 or−a ≥ 0. Suppose that a ≠ 0 is not a sum of squares. Let b be a root of the

polynomial x2 − a. Since b is algebraic over K we have K(b) ⊆ K(√−1).
Hence, there are elements c, d ∈ K with b = c + d

√−1. Consequently,

b2 = c2 + 2cd
√−1 − d2 .

Since K(√−1) is a K-vector space with basis {1,√−1} it follows that
cd = 0 and b2 = c2 − d2. Since b ∉ K we have d ≠ 0. Hence, c = 0 and−a = −b2 = d2 is a square.

Finally, note that the real closure R of K is contained in K(√−1) since
the latter is algebraically closed. To show that K is real closed we have
to prove that R = K. For a contradiction, suppose that there is some
element a ∈ R ∖ K. Since a ∈ K(√−1) there are elements b, c ∈ K with
a = b + c

√−1. Hence,
√−1 = (a − b)/c ∈ R and −1 is a square in R.

Contradiction. ◻
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We continue our investigation of ordered fields by looking at the roots
of polynomials.

Lemma 6.15. If K is real closed then every polynomial p ∈ K[x] can be
written as a product of polynomials of degree at most 2.

Proof. Since K(√−1) is algebraically closed it follows that

p = u(x − a0)⋯(x − an−1) ,
for some a0 , . . . , an−1 , u ∈ K(√−1). For c = a + b

√−1 ∈ K(√−1) we
denote by c∗ ∶= a − b

√−1 its complex conjugate. The mapping c ↦ c∗
is a field homomorphism. Therefore, we have p[c]∗ = p[c∗]. It follows
that, for every i < n, there is some l < n with a∗i = a l . If i = l we have
a i ∈ K and x − a i is a factor of p in K[x]. Otherwise, p has the factor

(x − a i)(x − a l) = x2 − (a i + a∗i )x + a ia∗i
with a i + a∗i ∈ K and a ia∗i ∈ K. ◻
Lemma 6.16. Let p = xn + an−1xn−1 + ⋅ ⋅ ⋅ + a1x + a0 be a polynomial
over an ordered field K and suppose that b ∈ K is some element with
b > 1 + ∣a0∣ + ⋅ ⋅ ⋅ + ∣a2n ∣. Then

p[b] > 0 and (−1)n p[−b] > 0 .

Proof. Note that b > 1 implies b i+1 > b i , for all i. Hence,

p[b] > bn −∑
i<n
∣a i ∣ ⋅ b i ≥ bn − bn−1∑

i<n
∣a i ∣ > 0 .

Similarly,

p[−b] = (−1)nbn +∑
i<n
(−1)ia ib i

implies

(−1)n p[−b] > bn −∑
i<n
∣a i ∣ ⋅ b i > 0 . ◻
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Proposition 6.17. An ordered field K is real closed if and only if, for every
polynomial p ∈ K[x] and all elements a < b in K with p[a] < 0 < p[b],
there exists some c ∈ (a, b) with p[c] = 0.

Proof. (⇐)We use the characterisation of Theorem 6.14 (3).
For a ∈ K set p ∶= x2 − a. If a > 0 then p[0] = −a < 0 < a = p[2a].

Hence, there is some element c ∈ (0, 2a) with p[c] = 0. This implies that
a = c2 is a square.

Similarly, if a < 0 then p[a] = 2a < 0 < −a = p[0]. As above we find
an element c with p[c] = 0. Hence, −a = c2 is a square.

Finally, let p = x2n+1 + a2nx2n + ⋅ ⋅ ⋅ + a1x + a0 be a polynomial of odd
degree. Choose b ∈ K such that b > 1 + ∣a0∣ + ⋅ ⋅ ⋅ + ∣a2n ∣. By Lemma 6.16
we have p[−b] < 0 < p[b]. Therefore, p has a root c ∈ (−b, b).(⇒) Let p = pk0

0 ⋯pkn
n where each p i is irreducible. Choosing the

interval (a, b) small enough we may assume that there is exactly one
factor p i with p i[a] < 0 < p i[b] while all other factors have constant
sign on the interval (a, b). If p i = x + c then a + c < 0 < b + c implies−c ∈ (a, b). Hence, −c is the desired root of p.

Suppose that p i = x2 + cx +d. As p i is irreducible we have 4d − c2 > 0.
It follows that

p i[z] = (z + c/2)2 + (d − c2/4) > 0 , for all z ∈ (a, b) .

This contradicts our choice of p i . ◻
Lemma 6.18. Let K be an ordered field and p ∈ K[x] a polynomial. For
every element a ∈ K with p[a] > 0, there exists some ε > 0 such that

p[z] > 0 , for all a − ε ≤ z ≤ a + ε .

Proof. We consider the polynomial q ∶= p[a + x]. Suppose that

q = cnxn + ⋅ ⋅ ⋅ + c1x + c0 .
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Set k ∶= max1≤i≤n ∣c i ∣ and let ε be the minimum of 1 and c0/2kn. For∣z∣ ≤ ε it follows that

q[z] = c0 + c1z + ⋅ ⋅ ⋅ + cnzn

≥ c0 − ε∣c1∣ − ⋅ ⋅ ⋅ − εn ∣cn ∣≥ c0 − εk − ⋅ ⋅ ⋅ − εk= c0 − εkn

≥ c0
2
= p[a]

2
> 0 . ◻

Lemma 6.19. Let K be an ordered field and p ∈ K[x] a polynomial. If
p′[a] > 0 then there exist some ε > 0 such that

p[z] > p[a] , for a < z < a + ε ,
p[z] < p[a] , for a − ε < z < a .

Proof. Set q ∶= p[a + x] − p[a]. Since q[0] = 0 we have q = xq0, for
some q0 ∈ K[x]. Furthermore, we have

q0[0] = q0[0] + 0 ⋅ q′0[0] = q′[0] = p′[a] > 0 .

Hence, we can use Lemma 6.18 to find a number ε > 0 such that

q0[z] > 0 , for all −ε < z < ε .

This implies that

q[z] > 0 , for 0 < z < ε ,
and q[z] < 0 , for −ε < z < 0 . ◻
Lemma 6.20. Let K be a real closed field and p ∈ K[x] a polynomial. If
a < b are elements such that

p′[z] ≥ 0 , for all a ≤ z ≤ b ,
then p[a] < p[b].
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Proof. First, suppose that p′[z] > 0, for all a ≤ z ≤ b. If p[a] ≥ p[b] then
applying Lemma 6.19 to a and b, respectively, we obtain elements a < c <
d < b with p[d] < p[b] ≤ p[a] < p[c]. Consequently, Proposition 6.17
implies that the polynomial p− p[a] has a root b1 with c < b1 < d. Since
p[b1] = p[a] we can repeat this argument to obtain a second root b2
of p − p[a] with a < b2 < b1. Continuing in this way we obtain an
infinite descending sequence b1 > b2 > . . . of roots of p − p[a]. But
every nonzero polynomial has only finitely many roots. Contradiction.

For the general case, fix an enumeration c0 < ⋅ ⋅ ⋅ < ck−1 of all roots
of p′ in the interval (a, b), and let d0 < ⋅ ⋅ ⋅ < d2k+2 be the sequence
defined by

a < a + c0
2
< c0 < c0 + c1

2
< c2 < . . .

< ck−2 + ck−1

2
< ck−1 < ck−1 + b

2
< b .

It is sufficient to prove that p[d i] < p[d i+1], for all i ≤ 2k. Therefore, we
may assume that p′[z] > 0 for all z in the interval [a, b] except possibly
for one of the endpoints.

Suppose that p′[a] = 0 and p′[b] > 0. If p[a] > p[b] then applying
Lemma 6.18 to the polynomial p−p[b]we obtain some element a < c < b
with p[c] > p[b]. Since p′[z] > 0, for all z ∈ [c, b] this contradicts the
first part of the proof. Consequently, we have p[a] ≤ p[b]. By the same
argument it follows that p[a] ≤ p[(a+ b)/2]. Hence, the first part of the
proof implies that p[a] ≤ p[(a + b)/2] < p[b], as desired.

For p′[a] > 0 and p′[b] = 0 the claim follows in the same way by
exchanging the roles of a and b. ◻

We conclude this section by proving that the real closure of an order
field is unique.

Lemma 6.21. Let L0 and L1 be real closures of an ordered field K whose
canonical orders extend the order of K. Suppose that a ∈ L0 ∖ K is an
element whose minimal polynomial has minimal degree. Then there exists
an order preserving embedding K(a) → L1.
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Proof. Let p be the minimal polynomial of a and set n ∶= deg p. We
start by showing that p has a root in L1. Note that, by Lemma 6.16, there
are elements b− , b+ ∈ K with b− < a < b+. Further, note that, if q is
a polynomial of degree less than n then all roots of q are in K. Hence,
when z varies over L i then the sign of q[z] changes only at points z ∈ K.

By choice of p we have p′[a] ≠ 0 since, otherwise, we would have
p′ = (x − a)q, for some q. Hence, p = (x − a)2r, for some r, which
contradicts Lemma 5.24. Therefore, replacing p by −p if necessary, we
may assume that p′[a] > 0.
We claim that there are elements c, d ∈ K with c < a < d such that

p′ is positive on the interval [c, d]. Let c′ be the largest root of p′ that is
less than a. If such a root does not exist then we set c′ ∶= b−. Similarly,
let d′ be the smallest root of p′ that is greater than a, or set d′ ∶= b+ if
there is no such root. Since p′ has degree n − 1 it follows that c′ , d′ ∈ K.
Furthermore, Proposition 6.17 implies that p′ has constant sign on the
interval (c′ , d′). Setting c ∶= (c′ + a)/2 and d ∶= (d′ + a)/2 we obtain
the desired elements.
By Lemma 6.20 it follows that p[c] < 0 < p[d]. Hence, we can use

Proposition 6.17 to find a root b ∈ L1 of p.
Let a0 < ⋅ ⋅ ⋅ < a l−1 be an increasing enumeration of all roots of p in L0

and let b0 < ⋅ ⋅ ⋅ < bm−1 be an increasing enumeration of all roots of p
in L1. We claim that l = m and that there exists an order preserving
embedding σ ∶ K(ā) → K(b̄) with σ(a i) = b i and σ ↾ K = id.

Fix elements c1 , . . . , cn−1 ∈ L0 such that c2
i = a i − a i−1. There exists an

embedding σ ′ ∶ K(āc̄) → L1 of unordered fields with σ ′ ↾ K = id. Since

σ ′(a i) − σ ′(a i−1) = σ ′(c i)2
it follows that σ ′(a i−1) < σ ′(a i). Furthermore, σ ′(a i) is a root of p.
Hence, σ ′(a i) ∈ b̄. This implies that l ≤ m. Similarly, we can show
that m ≤ l . Hence, there exists an embedding σ ∶ K(ā) → K(b̄) with
σ(a i) = b i and σ ↾ K = id. It remains to show that σ is order preserving.

Let z ∈ K(ā) be an element with z > 0. We fix some u ∈ L0 such that
u2 = z. As above we can find an embedding of unordered fields σ ′′ ∶
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K(āc̄u) → L with σ ′′(a i) = b i and σ ′′ ↾ K = id. Hence, σ ′′ ↾ K(ā) = σ .
Furthermore, σ(z) = σ ′′(z) = σ ′′(u)2 > 0. ◻
Theorem 6.22. If L0 and L1 are ordered real closures of an ordered field K
then there exists a unique isomorphism π ∶ L0 → L1 with π ↾ K = id.

Proof. As in Theorem 5.29, we construct increasing sequences of iso-
morphisms

πα ∶ Lα
0 → Lα

1

where L0
i ⊆ L1

i ⊆ ⋅ ⋅ ⋅ ⊆ Li are increasing chains of subfields with union⋃α Lα
i = Li . The limit π ∶= ⋃α πα is the desired isomorphism.

We start with π0 ∶= idK . For limit steps, we take unions πδ ∶= ⋃α<δ πα .
For the inductive step, we apply Lemma 6.21 twice. First, we select some
element a ∈ L0 ∖ Lα

0 such that its minimal polynomial over Lα
0 has

minimal degree and we extend πα to an isomorphism Lα
0(a) → Lα

1 (b),
for some b ∈ L1. Then we select some element d ∈ L1 ∖Lα

1 (b) and extend
the isomorphism to πα+1 ∶ Lα

0(a, c) → Lα
1 (b, d), for some c ∈ L0. ◻
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The following two theorems summarise the results of this section.

Theorem 6.12 (Cohen, Shelah). Let T be a complete first-order theory.
The following conditions are equivalent:

(1) T is stable.

(2) T has Un(κ, λ)-representations, for some cardinals κ and λ.

(3) T has Wf(0, ∣T ∣)-representations.

(4) T has Wf(∣T ∣, ∣T ∣)-representations.

Proof. (2)⇒ (1) has been shown in Proposition 6.8 (a), the implications
(4)⇒ (3)⇒ (2) follow from Lemmas 6.5 and 6.2, and (1)⇒ (4) follows
by Proposition 6.11. ◻
Theorem 6.13 (Cohen, Shelah). Let T be a complete first-order theory.
The following conditions are equivalent:

(1) T is ℵ0-stable.

(2) T has Lf(ℵ0 ,ℵ0)-representations.

Proof. (2)⇒ (1) follows by Proposition 6.8 (b) and (1)⇒ (2) follows by
Proposition 6.11. ◻
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D[t] image of a link under a

functor, 279
IndP(C) inductive P-completion,

280
Indall(C) inductive completion, 280

Chapter b4

Indλ
κ(C) inductive(κ, λ)-completion, 291

Ind(C) inductive completion, 292↺ loop category, 313∥a∥ cardinality in an accessible
category, 329

SubK(a) category ofK-subobjects,
337

Subκ(a) category of κ-presentable
subobjects, 337

Chapter b5

cl(A) closure of A, 343
int(A) interior of A, 343
∂A boundary of A, 343

rkCB(x/A) Cantor-Bendixson rank,
365

spec(L) spectrum of L, 370⟨x⟩ basic closed set, 370
clop(S) algebra of clopen subsets,

374

Chapter b6

Aut M automorphism group, 386
G/U set of cosets, 386
G/N factor group, 388
Sym Ω symmetric group, 389
ga action of g on a, 390
Gā orbit of ā, 390
G(X) pointwise stabiliser, 391
G{X} setwise stabiliser, 391⟨ā ↦ b̄⟩ basic open set of the group

topology, 395
deg p degree, 399
Idl(R) lattice of ideals, 400
R/a quotient of a ring, 402
Ker h kernel, 402
spec(R) spectrum, 402⊕i Mi direct sum, 405

M(I) direct power, 405
dim V dimension, 409
FF(R) field of fractions, 411
K(ā) subfield generated by ā, 414
p[x] polynomial function, 415
Aut (L/K)automorphisms over K, 423∣a∣ absolute value, 426
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ZL[K, X] Zariski logic, 443⊧ satisfaction relation, 444
BL(B) boolean logic, 444
FOκℵ0 [Σ, X] infinitary first-order

logic, 445¬φ negation, 445⋀Φ conjunction, 445⋁Φ disjunction, 445∃xφ existential quantifier, 445∀xφ universal quantifier, 445
FO[Σ, X] first-order logic, 445
A ⊧ φ[β] satisfaction, 446
true true, 447
false false, 447
φ ∨ ψ disjunction, 447
φ ∧ ψ conjunction, 447
φ → ψ implication, 447
φ↔ ψ equivalence, 447
free(φ) free variables, 450
qr(φ) quantifier rank, 452
ModL(Φ) class of models, 454
Φ ⊧ φ entailment, 460≡ logical equivalence, 460
Φ⊧ closure under entailment,

460
ThL(J) L-theory, 461≡L L-equivalence, 462
dnf(φ) disjunctive normal form,

467
cnf(φ) conjunctive normal form,

467
nnf(φ) negation normal form, 469
Logi$ category of logics, 478∃λxφ cardinality quantifier, 481

FOκℵ0(wo) FO with well-ordering
quantifier, 482

W well-ordering quantifier,
482

QK Lindström quantifier, 482
SOκℵ0 [Σ, Ξ] second-order logic, 483
MSOκℵ0 [Σ, Ξ] monadic

second-order logic, 483
PO category of partial orders,

488
Lb Lindenbaum functor, 488¬φ negation, 490
φ ∨ ψ disjunction, 490
φ ∧ ψ conjunction, 490
L∣Φ restriction to Φ, 491
L/Φ localisation to Φ, 491⊧Φ consequence modulo Φ,

491≡Φ equivalence modulo Φ, 491

Chapter c2

EmbL(Σ) category of L-embeddings,
493

QFκℵ0 [Σ, X] quantifier-free
formulae, 494∃∆ existential closure of ∆, 494∀∆ universal closure of ∆, 494∃κℵ0 existential formulae, 494∀κℵ0 universal formulae, 494∃+κℵ0 positive existential
formulae, 494⪯∆ ∆-extension, 498⪯ elementary extension, 498

Φ⊧∆ ∆-consequences of Φ, 521
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≤∆ preservation of ∆-formulae,
521

Chapter c3

S(L) set of types, 527⟨Φ⟩ types containing Φ, 527
tpL(ā/M)L-type of ā, 528
S s̄

L(T) type space for a theory, 528
S s̄

L(U) type space over U , 528
S(L) type space, 533
f (p) conjugate of p, 543
S∆(L) S(L∣∆) with topology

induced from S(L), 557⟨Φ⟩∆ closed set in S∆(L), 557
p∣∆ restriction to ∆, 560
tp∆(ā/U) ∆-type of ā, 560

Chapter c4

≡α α-equivalence, 577≡∞ ∞-equivalence, 577
pIsoκ(A,B) partial isomorphisms,

578
ā ↦ b̄ map a i ↦ b i , 578∅ the empty function, 578
Iα(A,B) back-and-forth system, 579
I∞(A,B) limit of the system, 581≅α α-isomorphic, 581≅∞ ∞-isomorphic, 581
m =k n equality up to k, 583
φα

A, ā Hintikka formula, 586
EFα(A, ā,B, b̄)

Ehrenfeucht-Fraïssé

game, 589
EFκ∞(A, ā,B, b̄)

Ehrenfeucht-Fraïssé
game, 589

Iκ
FO(A,B)partial FO-maps of size κ,

598⊑κ
iso ∞κ-simulation, 599≅κ
iso ∞κ-isomorphic, 599

A ⊑κ
0 B Iκ

0(A,B) ∶ A ⊑κ
iso B, 599

A ≡κ
0 B Iκ

0(A,B) ∶ A ≡κ
iso B, 599

A ⊑κ
FO B Iκ

FO(A,B) ∶ A ⊑κ
iso B, 599

A ≡κ
FO B Iκ

FO(A,B) ∶ A ≡κ
iso B, 599

A ⊑κ∞ B Iκ∞(A,B) ∶ A ⊑κ
iso B, 599

A ≡κ∞ B Iκ∞(A,B) ∶ A ≡κ
iso B, 599G(A) Gaifman graph, 605

Chapter c5

L ≤ L′ L′ is as expressive as L, 613
(a) algebraic, 614
(b) boolean closed, 614
(b+) positive boolean closed, 614
(c) compactness, 614
(cc) countable compactness, 614
(fop) finite occurrence property,

614
(kp) Karp property, 614
(lsp) Löwenheim-Skolem

property, 614
(rel) closed under relativisations,

614
(sub) closed under substitutions,

614
(tup) Tarski union property, 614
hnκ(L) Hanf number, 618
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lnκ(L) Löwenheim number, 618
wnκ(L) well-ordering number, 618
occ(L) occurrence number, 618
prΓ(K) Γ-projection, 636
PCκ(L, Σ)projective L-classes, 636
L0 ≤κ

pc L1 projective reduction, 637
RPCκ(L, Σ) relativised projective

L-classes, 641
L0 ≤κ

rpc L1 relativised projective
reduction, 641

∆(L) interpolation closure, 648
ifp f inductive fixed point, 658
lim inf f least partial fixed point, 658
lim sup f greatest partial fixed point,

658
fφ function defined by φ, 664
FOκℵ0(LFP) least fixed-point logic,

664
FOκℵ0(IFP) inflationary fixed-point

logic, 664
FOκℵ0(PFP) partial fixed-point

logic, 664⊲φ stage comparison, 675

Chapter d1

tor(G) torsion subgroup, 704
a/n divisor, 705
DAG theory of divisible

torsion-free abelian
groups, 706

ODAG theory of ordered divisible
abelian groups, 706

div(G) divisible closure, 706
F field axioms, 710

ACF theory of algebraically
closed fields, 710

RCF theory of real closed fields,
710

Chapter d2

(<µ)λ ⋃κ<µ κλ , 721
HO∞[Σ, X] infinitary Horn

formulae, 735
SH∞[Σ, X] infinitary strict Horn

formulae, 735
H∀∞[Σ, X] infinitary universal

Horn formulae, 735
SH∀∞[Σ, X] infinitary universal

strict Horn formulae, 735
HO[Σ, X] first-order Horn formulae,

735
SH[Σ, X] first-order strict Horn

formulae, 735
H∀[Σ, X] first-order universal Horn

formulae, 735
SH∀[Σ, X] first-order universal

strict Horn formulae, 735⟨C; Φ⟩ presentation, 739
Prod(K) products, 744
Sub(K) substructures, 744
Iso(K) isomorphic copies, 744
Hom(K) weak homomorphic

images, 744
ERP(K) embeddings into reduced

products, 744
QV(K) quasivariety, 744
Var(K) variety, 744

1357



Symbol Index

Chapter d3

( f , g) open cell between f and g,
757[ f , g] closed cell between f and g,
757

B(ā, b̄) box, 758
Cn(D) continuous functions, 772
dimC dimension, 773

Chapter e2

dclL(U) L-definitional closure, 815
aclL(U) L-algebraic closure, 815
dclAut(U)Aut-definitional closure,

817
aclAut(U) Aut-algebraic closure, 817
M the monster model, 825
A ≡U B having the same type

over U , 826
Meq extension by imaginary

elements, 827
dcleq(U) definable closure in Meq ,

827
acleq(U) algebraic closure in Meq ,

827
T eq theory of Meq , 829
Gb(p) Galois base, 837

Chapter e3

Icl(A,B) elementary maps with
closed domain and range,
873

Chapter e4

pMorK(a, b) category of partial
morphisms, 894

a ⊑K b forth property for objects
inK, 895

a ⊑κ
pres b forth property for

κ-presentable objects,
895

a ≡κ
pres b back-and-forth equivalence

for κ-presentable objects,
895

Subκ(a) κ-presentable subobjects,
906

atp(ā) atomic type, 917
ηpq extension axiom, 918
T[K] extension axioms forK, 918
Tran[Σ] random theory, 918
κn(φ) number of models, 920
Prn

M[M ⊧ φ] density of models, 920

Chapter e5

[I]κ increasing κ-tuples, 925
κ → (µ)νλ partition theorem, 925
pf(η, ζ) prefix of ζ of length ∣η∣, 930
T∗(κ<α) index tree with small

signature, 930
Tn(κ<α) index tree with large

signature, 930⟪X⟫n substructure generated in
Tn(κ<α), 930

Lvl(η̄) levels of η̄, 931≈∗ equal atomic types in T∗,
931
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≈n equal atomic types in Tn ,
931≈n ,k refinement of ≈n , 932≈ω ,k union of ≈n ,k , 932

ā[ı̄] ā i0 . . . ā in−1 , 941
tp∆(ā/U) ∆-type, 941
Av((ā i)i/U) average type, 943⟦φ(ā i)⟧ indices satisfying φ, 952
Av1((ā i)i/C) unary average type,

962

Chapter e6

Emb(K) embeddings between
structures inK, 965

pF image of a partial
isomorphism under F,
968

ThL(F) theory of a functor, 971
Aα inverse reduct, 975R(M) relational variant of M, 977
Av(F) average type, 986

Chapter e7

ln(K) Löwenheim number, 995
A ⪯K B K-substructure, 996
hn(K) Hanf number, 1003Kκ structures of size κ, 1004
IκK(A,B) K-embeddings, 1008
A ⊑κK B IκK(A,B) ∶ A ⊑κ

iso B, 1008
A ≡κK B IκK(A,B) ∶ A ≡κ

iso B, 1008

Chapter f1

⟪X⟫D span of X, 1031
dimcl(X) dimension, 1037
dimcl(X/U) dimension over U ,

1037

Chapter f2

rk∆(φ) ∆-rank, 1073
rks̄

M(φ) Morley rank, 1073
degs̄

M(φ) Morley degree of φ, 1075
(mon) Monotonicity, 1084
(nor) Normality, 1084
(lrf) Left Reflexivity, 1084
(ltr) Left Transitivity, 1084
(fin) Finite Character, 1084
(sym) Symmetry, 1084
(bmon) Base Monotonicity, 1084
(srb) Strong Right Boundedness,

1085
cl√ closure operation

associated with
√
, 1090

(inv) Invariance, 1097
(def) Definability, 1097
(ext) Extension, 1097
A df
√

U B definable over, 1098
A at
√

U B isolated over, 1098
A s
√

U B non-splitting over, 1098
p t√ q √

-free extension, 1103
A u
√

U B finitely satisfiable, 1104
Av(u/B) average type of u, 1105
(lloc) Left Locality, 1109
(rloc) Right Locality, 1109
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loc(√) right locality cardinal of
√
,

1109
loc0(√) finitary right locality

cardinal of
√
, 1109

κreg regular cardinal above κ,
1110

fc(√) length of
√

-forking chains,
1111

(sfin) Strong Finite Character, 1111
∗√ forking relation to

√
, 1113

Chapter f3

A d
√

U B non-dividing, 1125

A f
√

U B non-forking, 1125

A i
√

U B globally invariant over, 1134

Chapter f4

altφ(ā i)i∈I φ-alternation number,
1153

rkalt(φ) alternation rank, 1153
in(∼) intersection number, 1164
ā ≈ls

U b̄ indiscernible sequence
starting with ā, b̄, . . . ,
1167

ā ≡ls
U b̄ Lascar strong type

equivalence, 1168
CF((ā i)i∈I) cofinal type, 1194
Ev((ā i)i∈I) eventual type, 1199
rkdp(ā/U) dp-rank, 1211

Chapter f5

(lext) Left Extension, 1228
A fli
√

U B combination of li
√

and f
√
,

1239
A sli
√

U B strict Lascar invariance,
1239

(wind) Weak Independence
Theorem, 1253

(ind) Independence Theorem,
1253

Chapter g1

ā ⫝!U B unique free extension, 1274
mult√(p)√-multiplicity of p, 1279
mult(√) multiplicity of

√
, 1279

st(T) minimal cardinal T is
stable in, 1290

Chapter g2

(rsh) Right Shift, 1297
lbm(√) left base-monotonicity

cardinal, 1297
A[I] ⋃i∈I A i , 1306
A[<α] ⋃i<α A i , 1306
A[≤α] ⋃i≤α A i , 1306
A ⊥do

U B definable orthogonality,
1328

A si
√

U B strong independence, 1332
Υκλ unary signature, 1338
Un(κ, λ) class of unary structures,

1338
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Lf(κ, λ) class of locally finite unary structures, 1338
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abelian group, 385
abstract elementary class, 995
abstract independence relation, 1084
κ-accessible category, 329
accumulation, 12
accumulation point, 364
action, 390
acyclic, 519
addition of cardinals, 116
addition of ordinals, 89
adjoint functors, 234
affine geometry, 1037
aleph, 115
algebraic, 149, 815
algebraic class, 996
algebraic closure, 815
algebraic closure operator, 51
algebraic diagram, 499
algebraic elements, 418
algebraic field extensions, 418
algebraic logic, 487
algebraic prime model, 694
algebraically closed, 815
algebraically closed field, 418, 710
algebraically independent, 418
almost strongly minimal theory, 1056
alternating path in a category, 271

alternating-path equivalence, 272
φ-alternation number, 1153
alternation rank of a formula, 1153
amalgamation class, 1005
amalgamation property, 910, 1004
amalgamation square, 652
Amalgamation Theorem, 521
antisymmetric, 40
arity, 28, 29, 149
array, 1221
array property, 1221
array-dividing, 1227
associative, 31
asynchronous product, 752
atom, 445
atom of a lattice, 215
atomic, 215
atomic diagram, 499
atomic structure, 855
atomic type, 917
atomless, 215
automorphism, 156
automorphism group, 386
average type, 943
average type of an

Ehrenfeucht-Mostowski
functor, 986

logic, algebra & geometry 2024-04-09 — ©achim blumensath 1363



Index

average type of an indiscernible
system, 949

average type of an ultrafilter, 1105
Axiom of Choice, 109, 458
Axiom of Creation, 19, 458
Axiom of Extensionality, 5, 458
Axiom of Infinity, 24, 458
Axiom of Replacement, 132, 458
Axiom of Separation, 10, 458
axiom system, 454
axiomatisable, 454
axiomatise, 454

back-and-forth property, 578, 893
back-and-forth system, 578
Baire, property of —, 363
ball, 342√

-base, 1228
base monotonicity, 1084
base of a partial morphism, 894
base projection, 894
base, closed —, 344
base, open —, 344
bases for a stratification, 1336
basic Horn formula, 735
basis, 110, 1034, 1037
beth, 126
Beth property, 648, 822
bidefinable, 885
biindiscernible family, 1219
biinterpretable, 891
bijective, 31
boolean algebra, 198, 455, 490
boolean closed, 490
boolean lattice, 198
boolean logic, 444, 462
bound variable, 450

boundary, 343, 758
κ-bounded, 598
bounded equivalence relation, 1172
bounded lattice, 195
bounded linear order, 583
bounded logic, 618
box, 758
branch, 189
branching degree, 191

canonical base, 834
canonical definition, 831

weak —, 847
canonical diagram, 337
canonical parameter, 831

weak —, 846
canonical projection from theP-completion, 309
Cantor discontinuum, 351, 534
Cantor normal form, 100
Cantor-Bendixson rank, 365, 377
cardinal, 113
cardinal addition, 116
cardinal exponentiation, 116, 126
cardinal multiplication, 116
cardinality, 113, 329
cardinality quantifier, 482
cartesian product, 27
categorical, 877, 909
category, 162
δ̄-cell, 773
cell decomposition, 775
Cell Decomposition Theorem, 776
chain, 42
L-chain, 501
chain condition, 1247
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chain condition for Morley sequences,
1257

chain in a category, 267
chain topology, 350
chain-bounded formula, 1168
Chang’s reduction, 532
character, 105
characteristic, 710
characteristic of a field, 413
choice function, 106
Choice, Axiom of —, 109, 458
class, 9, 54
clopen set, 341=-closed, 512
closed base, 344
closed function, 346
closed interval, 757
closed set, 51, 53, 341
closed subbase, 344
closed subset of a construction, 871,

1307
closed unbounded set, 135
closed under relativisations, 614
closed under substitutions, 614
closure operator, 51, 110
closure ordinal, 81
closure space, 53
closure under reverse ultrapowers, 734
closure, topological —, 343
co-chain-bounded relation, 1172
cocone, 253
cocone functor, 258
codomain of a partial morphism, 894
codomain projection, 894
coefficient, 398
cofinal, 123
cofinality, 123

Coincidence Lemma, 231
colimit, 253
comma category, 170
commutative, 385
commutative ring, 397
commuting diagram, 164
comorphism of logics, 478
compact, 352, 613
compact, countably —, 613
Compactness Theorem, 515, 531
compactness theorem, 718
compatible, 473
complement, 198
complete, 462
κ-complete, 598
complete partial order, 43, 50, 53
complete type, 527
completion of a diagram, 306(λ, κ)-completion of a diagram, 307(λ, κ)-completion of a partial order,

300
composition, 30
composition of links, 275
concatenation, 187
condition of filters, 721
cone, 257
confluence property, 1197
confluent family of sequences, 1197
congruence relation, 176
conjugacy class, 391
conjugate, 817
conjugation, 391
conjunction, 445, 490
conjunctive normal form, 467
connected category, 271
connected, definably —, 761
consequence, 460, 488, 521
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consistence of filters with conditions,
721

consistency over a family, 1221
consistent, 454
constant, 29, 149
constructible set, 869√

-constructible set, 1306
construction, 869√

-construction, 1306
continuous, 46, 133, 346
contradictory formulae, 627
contravariant, 168
convex equivalence relation, 1164
coset, 386
countable, 110, 115
countably compact, 613
covariant, 167
cover, 352
Creation, Axiom of —, 19, 458
cumulative hierarchy, 18
cut, 22

deciding a condition, 721
definability of independence relations,

1097
definable, 815
definable expansion, 473
definable orthogonality, 1329
definable Skolem function, 842
definable structure, 885
definable type, 570, 1098
definable with parameters, 759
definably connected, 761
defining a set, 447
definition of a type, 570
definitional closed, 815
definitional closure, 815

degree of a polynomial, 399
dense class, 1256
dense linear order, 600
κ-dense linear order, 600
dense order, 454
dense set, 361
dense sets in directed orders, 246
dense subcategory, 281
dependence relation, 1031
dependent, 1031
dependent set, 110
derivation, 398
diagonal functor, 253
diagonal intersection, 137
diagram, 251, 256
L-diagram, 499
Diagram Lemma, 499, 634
difference, 11
dimension, 1037
dimension function, 1038
dimension of a cell, 773
dimension of a vector space, 409
direct limit, 252
direct power, 405
direct product, 239
direct sum of modules, 405
directed, 246
directed colimit, 251
directed diagram, 251
κ-directed diagram, 251
directed limit, 256
discontinuum, 351
discrete linear order, 583
discrete topology, 342
disintegrated matroid, 1044
disjoint union, 38
disjunction, 445, 490
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disjunctive normal form, 467
distributive, 198
dividing, 1125
dividing chain, 1136
dividing κ-tree, 1144
divisible closure, 706
divisible group, 705
domain, 28, 151
domain of a partial morphism, 894
domain projection, 894
dp-rank, 1211
dual categories, 172

Ehrenfeucht-Fraïssé game, 589, 592
Ehrenfeucht-Mostowski functor, 986,

1002
Ehrenfeucht-Mostowski model, 986
element of a set, 5
elementary diagram, 499
elementary embedding, 493, 498
elementary extension, 498
elementary map, 493
elementary substructure, 498
elimination

uniform — of imaginaries, 840
elimination of finite imaginaries, 853
elimination of imaginaries, 841
elimination set, 690
embedding, 44, 156, 494
∆-embedding, 493K-embedding, 995
elementary —, 493
embedding of a tree into a lattice, 222
embedding of logics, 478
embedding of permutation groups,

886
embedding, elementary —, 498

endomorphism ring, 404
entailment, 460, 488
epimorphism, 165
equivalence class, 54
equivalence formula, 826
equivalence of categories, 172
equivalence relation, 54, 455
L-equivalent, 462
α-equivalent, 577, 592
equivalent categories, 172
equivalent formulae, 460
Erdős-Rado theorem, 928
Euklidean norm, 341
even, 922
exchange property, 110
existential, 494
existential closure, 699
existential quantifier, 445
existentially closed, 699
expansion, 155, 998
expansion, definable —, 473
explicit definition, 648
exponentiation of cardinals, 116, 126
exponentiation of ordinals, 89
extension, 152, 1097
∆-extension, 498
extension axiom, 918√

-extension base, 1228
extension of fields, 414
extension, elementary —, 498
Extensionality, Axiom of —, 5, 458

factorisation, 180
Factorisation Lemma, 158
factorising through a cocone, 317
faithful functor, 167
family, 37
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field, 397, 457, 498, 710
field extension, 414
field of a relation, 29
field of fractions, 411
field, real —, 426
field, real closed —, 429
filter, 203, 207, 530
κ-filtered category, 285
κ-filtered colimit, 285
κ-filtered diagram, 285
final segment, 41
κ-finitary set of partial isomorphisms,

598
finite, 115
finite character, 51, 105, 1084

strong —, 1111
finite equivalence relation, 1164
finite intersection property, 211
finite occurrence property, 613
finite, being — over a set, 775
finitely axiomatisable, 454
finitely branching, 191
finitely generated, 154
finitely presentable, 317
finitely satisfiable type, 1104
first-order interpretation, 446, 475
first-order logic, 445
fixed point, 48, 81, 133, 657
fixed-point induction, 77
fixed-point rank, 675
Fodor

Theorem of —, 139
follow, 460
forcing, 721
forgetful functor, 168, 234
forking chain, 1136√

-forking chain, 1110

√
-forking formula, 1103

forking relation, 1097√
-forking type, 1103

formal power series, 398
formula, 444
forth property for partial morphisms,

895
foundation rank, 192
founded, 13
Fraïssé limit, 912
free algebra, 232
free extension of a type, 1103√

-free extension of a type, 1103
free model, 739
free structures, 749√

-free type, 1103
free variables, 231, 450
full functor, 167
full subcategory, 169
function, 29
functional, 29, 149
functor, 167

Gaifman graph, 605
Gaifman, Theorem of —, 611
Galois base, 834
Galois saturated structure, 1011
Galois stable, 1011
Galois type, 997
game, 79
generalised product, 751
κ-generated, 255, 965
generated substructure, 153
generated, finitely —, 154
generating, 41
generating a sequence by a type, 1158
generating an ideal, 400
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generator, 154, 739
geometric dimension function, 1038
geometric independence relation, 1084
geometry, 1036
global type, 1114
graduated theory, 698, 783
graph, 39
greatest element, 42
greatest fixed point, 657
greatest lower bound, 42
greatest partial fixed point, 658
group, 34, 385, 456
group action, 390
group, ordered —, 705
guard, 447

Hanf number, 618, 637, 1003
Hanf ’s Theorem, 606
Hausdorff space, 351
having κ-directed colimits, 253
height, 190
height in a lattice, 215
Henkin property, 858
Henkin set, 858
Herbrand model, 511, 858
hereditary, 12
κ-hereditary, 910, 965
hereditary finite, 7
Hintikka formula, 586, 587
Hintikka set, 513, 858, 859
history, 15
hom-functor, 258
homeomorphism, 346
homogeneous, 787, 925≈-homogeneous, 931
κ-homogeneous, 604, 787
homogeneous matroid, 1044

homomorphic image, 156, 744
homomorphism, 156, 494
Homomorphism Theorem, 183
homotopic interpretations, 890
honest definition, 1157
Horn formula, 735

ideal, 203, 207, 400
idempotent link, 313
idempotent morphism, 313
identity, 163
image, 31
imaginaries

uniform elimination of —, 840
imaginaries, elimination of —, 841
imaginary elements, 826
implication, 447
implicit definition, 647
inclusion functor, 169
inclusion link, 276
inclusion morphism, 491
inconsistent, 454
k-inconsistent, 1125
increasing, 44
independence property, 952
independence relation, 1084
independence relation of a matroid,

1083
Independence Theorem, 1253
independent, 1031√

-independent family, 1289
independent set, 110, 1037
index map of a link, 275
index of a subgroup, 386
indiscernible sequence, 941
indiscernible system, 949, 1337
induced substructure, 152
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inductive, 77
inductive completion, 291
inductive completion of a category,

280
inductive fixed point, 81, 657, 658
inductively ordered, 81, 105
infimum, 42, 195
infinitary first-order logic, 445
infinitary second-order logic, 483
infinite, 115
Infinity, Axiom of —, 24, 458
inflationary, 81
inflationary fixed-point logic, 664
initial object, 166
initial segment, 41
injective, 31
κ-injective structure, 1008
inner vertex, 189
insertion, 39
inspired by, 950
integral domain, 411, 713
interior, 343, 758
interpolant, 653
interpolation closure, 648
interpolation property, 646
∆-interpolation property, 646
interpretation, 444, 446, 475
intersection, 11
intersection number, 1164
interval, 757
invariance, 1097
invariant class, 1256
invariant over a subset, 1325
U-invariant relation, 1172
invariant type, 1098
inverse, 30, 165
inverse diagram, 256

inverse limit, 256
inverse reduct, 975
irreducible polynomial, 416
irreflexive, 40√

-isolated, 1297
isolated point, 364
isolated type, 855, 1098
isolation relation, 1297
isomorphic, 44
α-isomorphic, 581, 592
isomorphic copy, 744
isomorphism, 44, 156, 165, 172, 494
isomorphism, partial —, 577

joint embedding property, 1005
κ-joint embedding property, 910
Jónsson class, 1005

Karp property, 613
kernel, 157
kernel of a ring homomorphism, 402

label, 227
large subsets, 825
Lascar invariant type, 1178
Lascar strong type, 1168
lattice, 195, 455, 490
leaf, 189
least element, 42
least fixed point, 657
least fixed-point logic, 664
least partial fixed point, 658
least upper bound, 42
left extension, 1228
left ideal, 400
left local, 1109
left reflexivity, 1084
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left restriction, 31
left transitivity, 1084
left-narrow, 57
length, 187
level, 190
level embedding function, 931
levels of a tuple, 931
lexicographic order, 187, 1024
lifting functions, 655
limit, 59, 257
limit stage, 19
limiting cocone, 253
limiting cone, 257
Lindenbaum algebra, 489
Lindenbaum functor, 488
Lindström quantifier, 482
linear independence, 406
linear matroid, 1037
linear order, 40
linear representation, 687
link between diagrams, 275
literal, 445
local, 608
local character, 1109
local enumeration, 772
κ-local functor, 965
local independence relation, 1109
localisation morphism, 491
localisation of a logic, 491
locality, 1109
locality cardinal, 1306
locally compact, 352
locally finite matroid, 1044
locally modular matroid, 1044
logic, 444
logical system, 485
Łoś’ theorem, 715

Łoś-Tarski Theorem, 686
Löwenheim number, 618, 637, 641, 995
Löwenheim-Skolem property, 613
Löwenheim-Skolem-Tarski Theorem,

520
lower bound, 42
lower fixed-point induction, 658

map, 29
∆-map, 493
map, elementary —, 493
mapping, 29
matroid, 1036
maximal element, 42
maximal ideal, 411
maximal ideal/filter, 203
maximally φ-alternating sequence,

1153
meagre, 362
membership relation, 5
minimal, 13, 57
minimal element, 42
minimal polynomial, 419
minimal rank and degree, 224
minimal set, 1049
model, 444
model companion, 699
model of a presentation, 739
model-complete, 699
κ-model-homogeneous structure,

1008
modular, 198
modular lattice, 216
modular law, 218
modular matroid, 1044
modularity, 1094
module, 403
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monadic second-order logic, 483
monoid, 31, 189, 385
monomorphism, 165
monotone, 758
monotonicity, 1084
monster model, 825
Morley degree, 1075
Morley rank, 1073
Morley sequence, 1118
Morley-free extension of a type, 1076
morphism, 162
morphism of logics, 478
morphism of matroids, 1044
morphism of partial morphisms, 894
morphism of permutation groups, 885
multiplication of cardinals, 116
multiplication of ordinals, 89
multiplicity of a type, 1279
mutually indiscernible sequences,

1206

natural isomorphism, 172
natural transformation, 172
negation, 445, 489
negation normal form, 469
negative occurrence, 664
neighbourhood, 341
neutral element, 31
node, 189
normal subgroup, 387
normality, 1084
nowhere dense, 362

o-minimal, 760, 956
object, 162
occurrence number, 618
oligomorphic, 390, 877

omitting a type, 528
omitting types, 532
open base, 344
open cover, 352
open dense order, 455
open interval, 757
Open Mapping Theorem, 1276
open set, 341
open subbase, 345
opposite category, 166
opposite functor, 168
opposite lattice, 204
opposite order, 40
orbit, 390
order, 454
order property, 567
order topology, 349, 758
order type, 64, 941
orderable ring, 426
ordered group, 705
ordered pair, 27
ordered ring, 425
ordinal, 64
ordinal addition, 89
ordinal exponentiation, 89
ordinal multiplication, 89
ordinal, von Neumann —, 69

pair, 27
parameter equivalence, 831
parameter-definable, 759
partial fixed point, 658
partial fixed-point logic, 664
partial function, 29
partial isomorphism, 577
partial isomorphism modulo a filter,

727
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partial morphism, 894
partial order, 40, 454
partial order, strict —, 40
partition, 55, 220
partition degree, 224
partition rank, 220
partitioning a relation, 775
path, 189
path, alternating — in a category, 271
Peano Axioms, 484
pinning down, 618
point, 341
polynomial, 399
polynomial function, 416
polynomial ring, 399
positive existential, 494
positive occurrence, 664
positive primitive, 735
power set, 21
predicate, 28
predicate logic, 444
prefix, 187
prefix order, 187
preforking relation, 1097
prelattice, 207
prenex normal form, 469
preorder, 206, 488
κ-presentable, 317
presentation, 739
preservation by a function, 493
preservation in products, 734
preservation in substructures, 496
preservation in unions of chains, 497
preserving a property, 168, 262
preserving fixed points, 655√

-κ-prime, 1314
prime field, 413

prime ideal, 207, 402
prime model, 868
prime model, algebraic, 694
primitive formula, 699
principal ideal/filter, 203
Principle of Transfinite Recursion, 75,

133
product, 27, 37, 744
product of categories, 170
product of linear orders, 86
product topology, 357
product, direct —, 239
product, generalised —, 751
product, reduced —, 242
product, subdirect —, 240
projection, 37, 636
projection along a functor, 260
projection along a link, 276
projection functor, 170
projective class, 636
projective geometry, 1043
projectively reducible, 637
projectively κ-saturated, 804
proper, 203
property of Baire, 363
pseudo-elementary, 636
pseudo-saturated, 807

quantifier elimination, 690, 711
quantifier rank, 452
quantifier-free, 453
quantifier-free formula, 494
quantifier-free representation, 1338
quasi-dividing, 1231
quasivariety, 743
quotient, 179
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Rado graph, 918
Ramsey’s theorem, 926
random graph, 918
random theory, 918
range, 29
rank, 73, 192
∆-rank, 1073
rank, foundation –, 192
real closed field, 429, 710
real closure of a field, 429
real field, 426
realising a type, 528
reduced product, 242, 744
reduct, 155
µ-reduct, 237
refinement of a partition, 1336
reflecting a property, 168, 262
reflexive, 40
regular, 125
regular filter, 717
regular logic, 614
relation, 28
relational, 149
relational variant of a structure, 976
relativisation, 474, 614
relativised projective class, 640
relativised projectively reducible, 641
relativised quantifiers, 447
relativised reduct, 640
Replacement, Axiom of —, 132, 458
replica functor, 979
representation, 1338
restriction, 30
restriction of a filter, 242
restriction of a Galois type, 1015
restriction of a logic, 491
restriction of a type, 560

retract of a logic, 547
retraction, 165
retraction of logics, 546
reverse ultrapower, 734
right local, 1109
right shift, 1297
ring, 397, 457
ring, orderable —, 426
ring, ordered —, 425
root, 189
root of a polynomial, 416
Ryll-Nardzewski Theorem, 877

satisfaction, 444
satisfaction relation, 444, 446
satisfiable, 454
saturated, 793
κ-saturated, 667, 793√

-κ-saturated, 1314
κ-saturated, projectively —, 804
Scott height, 587
Scott sentence, 587
second-order logic, 483
section, 165
segment, 41
semantics functor, 485
semantics of first-order logic, 446
semi-strict homomorphism, 156
semilattice, 195
sentence, 450
separated formulae, 627
Separation, Axiom of —, 10, 458
sequence, 37
shifting a diagram, 313
signature, 149, 151, 235, 236
simple structure, 412
simple theory, 1135
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simply closed, 694
singular, 125
size of a diagram, 251
skeleton of a category, 265
skew embedding, 938
skew field, 397
Skolem axiom, 505
Skolem expansion, 999
Skolem function, 505
definable —, 842
Skolem theory, 505
Skolemisation, 505
small subsets, 825
sort, 151
spanning, 1034
special model, 807
specification of a dividing chain, 1137
specification of a dividing κ-tree, 1144
specification of a forking chain, 1137
spectrum, 370, 531, 534
spectrum of a ring, 402
spine, 981
splitting type, 1098
stabiliser, 391
stability spectrum, 1290
κ-stable formula, 564
κ-stable theory, 573
stably embedded set, 1156
stage, 15, 77
stage comparison relation, 675
stationary set, 138
stationary type, 1272
Stone space, 374, 531, 534√

-stratification, 1306
strict homomorphism, 156
strict Horn formula, 735
strict ∆-map, 493

strict order property, 958
strict partial order, 40
strictly increasing, 44
strictly monotone, 758
strong γ-chain, 1017
strong γ-limit, 1017
strong finite character, 1111
strong limit cardinal, 808
strong right boundedness, 1085
strongly homogeneous, 787
strongly κ-homogeneous, 787
strongly independent, 1332
strongly local functor, 981
strongly minimal set, 1049
strongly minimal theory, 1056, 1149
structure, 149, 151, 237
subbase, closed —, 344
subbase, open —, 345
subcategory, 169
subcover, 352
subdirect product, 240
subdirectly irreducible, 240
subfield, 413
subformula, 450
subset, 5
subspace topology, 346
subspace, closure —, 346
substitution, 234, 465, 614
substructure, 152, 744, 965
∆-substructure, 498K-substructure, 996
substructure, elementary —, 498
substructure, generated —, 153
substructure, induced —, 152
subterm, 228
subtree, 190
successor, 59, 189
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successor stage, 19
sum of linear orders, 85
superset, 5
supersimple theory, 1294
superstable theory, 1294
supremum, 42, 195
surjective, 31
symbol, 149
symmetric, 40
symmetric group, 389
symmetric independence relation,

1084
syntax functor, 485
system of bases for a stratification,
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T0-space, 534
Tarski union property, 614
tautology, 454
term, 227
term algebra, 232
term domain, 227
term, value of a —, 231
term-reduced, 466
terminal object, 166
L-theory, 461
theory of a functor, 971
topological closure, 343, 758
topological closure operator, 51, 343
topological group, 394
topological space, 341
topology, 341
topology of the type space, 533
torsion element, 704
torsion-free, 705
total order, 40
totally disconnected, 351

totally indiscernible sequence, 942
totally transcendental theory, 574
transcendence basis, 418
transcendence degree, 418
transcendental elements, 418
transcendental field extensions, 418
transfinite recursion, 75, 133
transitive, 12, 40
transitive action, 390
transitive closure, 55
transitive dependence relation, 1031
transitivity, left —, 1084
translation by a functor, 260
tree, 189
φ-tree, 568
tree property, 1143
tree property of the second kind, 1221
tree-indiscernible, 950
trivial filter, 203
trivial ideal, 203
trivial topology, 342
tuple, 28
Tychonoff, Theorem of —, 359
type, 560
L-type, 527
Ξ-type, 804
α-type, 528
s̄-type, 528
type of a function, 151
type of a relation, 151
type space, 533
type topology, 533
type, average —, 943
type, average — of an indiscernible

system, 949
type, complete —, 527
type, Lascar strong —, 1168
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types of dense linear orders, 529

ultrafilter, 207, 530
κ-ultrahomogeneous, 906
ultrapower, 243
ultraproduct, 243, 797
unbounded class, 1003
uncountable, 115
uniform dividing chain, 1137
uniform dividing κ-tree, 1144
uniform elimination of imaginaries,

840
uniform forking chain, 1137
uniformly finite, being — over a set,

776
union, 21
union of a chain, 501, 688
union of a cocone, 293
union of a diagram, 292
unit of a ring, 411
universal, 494
κ-universal, 793
universal quantifier, 445
universal structure, 1008
universe, 149, 151
unsatisfiable, 454
unstable, 564, 574
upper bound, 42
upper fixed-point induction, 658

valid, 454
value of a term, 231
variable, 236

variable symbols, 445
variables, free —, 231, 450
variety, 743
Vaughtian pair, 1057
vector space, 403
vertex, 189
von Neumann ordinal, 69

weak γ-chain, 1017
weak γ-limit, 1017
weak canonical definition, 847
weak canonical parameter, 846
weak elimination of imaginaries, 847
weak homomorphic image, 156, 744
Weak Independence Theorem, 1252
weakly bounded independence

relation, 1189
weakly regular logic, 614
well-founded, 13, 57, 81, 109
well-order, 57, 109, 132, 598
well-ordering number, 618, 637
well-ordering quantifier, 482, 483
winning strategy, 590
word construction, 972, 977

Zariski logic, 443
Zariski topology, 342
zero-dimensional, 351
zero-divisor, 411
Zero-One Law, 922
ZFC, 457
Zorn’s Lemma, 110

1377



The Roman and Fraktur alphabets

A a A a N n N n
B b B b O o O o
C c C $ P p P p
D d D d Q q Q q
E e E e R r R r
F f F f S s S s +
G g G g T t T t
H h H h U u U u
I i I i V v V v
J j J j W w W w
K k K k X x X x
L l L l Y y Y y
M m M m Z z Z z

The Greek alphabet

A α alpha N ν nu
B β beta Ξ ξ xi
Γ γ gamma O o omicron
∆ δ delta Π π pi
E ε epsilon P ρ rho
Z ζ zeta Σ σ sigma
H η eta T τ tau
Θ ϑ theta Υ υ upsilon
I ι iota Φ ϕ phi
K κ kappa X χ chi
Λ λ lambda Ψ ψ psi
M µ mu Ω ω omega
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