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B1. Structures and homomorphisms

1. Structures

We have seen how to define graphs and partial orders in set theory. By
a straightforward generalisation, we obtain other such structures like
groups, fields, or vector spaces. A graph is a set equipped with one binary
relation. In general, we allow arbitrary many relations and functions
of arbitrary arities. To keep track of which relations and functions are
present in a given structure we assign a name to each of them. These
names are called symbols, the set of all symbols is called a signature.

Definition 1.1. A signature X is a set of relation symbols and function
symbols each of which has a fixed (finite) arity. We call X relational if it
contains only relation symbols and it is functional or algebraic if all of
its elements are function symbols. A function symbol of arity o is also
called a constant symbol.

Definition 1.2. Let X be a signature. A X-structure ¥ consists of

+ aset A called the universe of 2,

o an n-ary relation R* ¢ A", for each relation symbol R € X of
arity »n, and

« an n-ary function f¥ : A" — A, for each function symbol f € =
of arity n.

Formally, we can define a structure to be a pair (A, 0) where A is the
universe and ¢ a function & ~ & mapping each symbol & € X to the
relation or function it denotes. But usually, in particular if the signature
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B1. Structures and homomorphisms

is finite, we will write structures simply as tuples
T A
A=(AR; R ,.... [ fi>-).

We will denote structures by fraktur letters &, B, €.... and their universes
by the corresponding roman letters A, B, C.....

Example. (a) A group G can be seen as structure (G, -} where the binary
function - : G x G - G denotes the group multiplication. Another
possibility would be to take the richer structure (G, -, ", e) where e is
the unit of G and ™' : G — G the inverse.

(b) Similarly, a field K corresponds to a structure (K, +, -, 0,1) with
two binary functions and two constants.

The above definition of a structure is still not quite general enough. For

instance, vector spaces fit only with some acrobatics into this framework.

Example. When we want to model a K-vector space V as a structure
we face the problem of which set should be taken for the universe. One
possibility is to define the structure (V, +, (A;)4ex) where the universe
just consists of the vectors and, for each field element a € K, we add a
function A, : V. - V : v » av for scalar multiplication with a. This
formalism is mainly suited if one is interested in K-vector spaces for a
fixed field K.

Another way of encoding vector spaces that treats K and V equally is
to choose the structure (V UK, V, K, A, M) where the universe consists
of the union of K and V, we have two unary predicates V and K that
can be used to determine which elements are vectors and which are
field elements, and there are two ternary relations A€ V x V x V and
M c K x V x V for vector addition and scalar multiplication. Note that
we cannot use functions in this case since those would have to be defined
for all elements of (V UK) x (V UK).

To make such codings unnecessary we extend the definition to allow

structures that contain elements of different sorts like vectors and scalars.

1. Structures

Definition 1.3. Let S be a set and suppose that, for each s € S, we are
given some set A such that A; and A, are disjoint, for s # t. The elements
of S will be called sorts.

(a) For § € S, we write A := [T; As,.

(b) The type of an n-ary relation R € A° is the sequence § € S”.

(c) The type of an n-ary function f : AS — Ay is the pair (5, t) € S" x S
which we will write more suggestively as § — .

(d) If A = Wses As and B = s By are sets that are partitioned into
sorts, we denote by B# the set of all functions f : A — B such that
flAs] € Bs, foralls e S.

(e) An S-sorted signature X is a set of relation symbols and function
symbols to each of which is assigned some type.

Definition 1.4. Let X be an S-sorted signature. A X-structure 2 consists
of

+ afamily of sets A, fors € S,
« arelation R¥ c A® for each relation symbol R € X of type §, and
o a function f* : A° — A, for every function symbol f € X of
type § — t.
We call A, the domain of sort s. The disjoint union A := (J,g A of all
domains is the universe of 2.
Example. We can model a K-vector space V as {s, v}-sorted structure

(K) V) +5 OV, OK, IK)

where

¢ +:VxV > Voftype vv — v is the addition of vectors,

¢ -1 KxV > Voftype sv — v is scalar multiplication, and

* 0" € Vand oK, 1X € K are constants oftype v, s, and s, respectively.
We could also add field addition and multiplication.

Lemma 1.5. Let X be a signature and k > R,. Up to isomorphism there
are at most 2°®*| different X-structures % of size |A| = «.
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Proof. For every n, there are at most 25 = 2* n-ary relations R ¢ A”
and at most k* = 2" n-ary functions f : A" — A. Hence, the number of
different Z-structures is at most (2)/* = 2@/, O

Many results in algebra and logic try to shed light on the ‘internal
structure’ of some given X-structure . A typical result of this kind could,
for instance, state that every structure in a given class is built up from
smaller structures in a certain way. In the remainder of this section we
look at a given structure and try to find all structures that are contained
in it.

Definition 1.6. Let X be an S-sorted signature and 2% and B X-structures.
(a) We write A ¢ B if

A, € B, for each sorts € S,
R*=R®n A", for every n-ary relation symbol R € X,
and  f¥= (A, for every n-ary function symbol f € X.

If A € B then we say that U is a substructure of B and that B is an
extension of 2. The set of all substructures of % is denoted by Sub (%),
and we set

Gub(2) = (Sub(2), <)

(b) Let X c A. If there is a substructure & ¢ A with universe B = X
then we say that X induces the substructure 3. We denote this substruc-
ture by |x.

Example. N = (N, +, 0) is a substructure of 3 = (Z, +, 0).

Remark. (a) Note that the preceding example shows that if & = (G, - ) is
a group and H € & a substructure then H is not necessarily a subgroup
of &. If, on the other hand, we consider groups with the richer signature
(G, -, 7, e) then every substructure is also a subgroup.

(b) If the signature is relational then every set induces a substructure.

1. Structures

(c) Since a substructure is uniquely determined by its universe we
will not always distinguish between substructures and the sets inducing
them.

What substructures does a given structure & have?

Lemma1.7. Let U be a X-structure. A set X C A induces a substructure
of U if and only if X is closed under all functions of U, that is, we have

f(a)eX, forevery n-ary function f € X and all a € X" .

Proof. Suppose that X induces the substructure A, ¢ . For f € ¥ and
a e X" = A? it follows that

f(a)=f*(a) e Ao = X.
Conversely, if X is closed under functions then we can define the desired
substructure 9, by setting
R% :=R¥n X", for every n-ary relation R € X,
o= A xm for every n-ary function f € X. [

Lemma 1.8. Let U be a Z-structure and Z C £ (A). If every element of Z
induces a substructure of U then so does (N Z.

Proof. Let f € X be an n-ary relation symbol and a € (N Z)". Since
every element X € Z induces a substructure of U it follows that @ € X
implies f*(a) € X. Hence, f*(a) € N Z. By Lemma 1.7, it follows that
N Z induces a substructure. O

Since the family of substructures is closed under intersection we can
use Lemma A2.4.8 to characterise Sub(?) via a closure operator.

Definition 1.9. Let 2 be a X-structure.
(a) The substructure of U generated by a set X ¢ Ais (X))o := Y|z
where

Z :=({B| B2 X induces a substructure of  } .
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B1. Structures and homomorphisms

(b) If { X o = A then we say that X generates A and we call the elements
of X generators of Y. If A is generated by a finite set then we call ¥ finitely
generated.

Example. (a) The structure N = (N, +, 0} is finitely generated by {1}.
(b) Let 3 = (Z, +, —) be the additive group of the integers. The set
X := {5} generates the substructure

A:=(XN3=(A,+,—-) with A={sk|keZ}.

Note that X does not induce U since A > X.
If we consider the structure 3’ = (Z, +) without negation then X gen-
erates the substructure

DB:=(X)y =(B,+) with B={sk|keZ, k>o0}.

(c) Let B = (V,+, (Aa)aex) be a vector space encoded as untyped
structure. If X ¢ V then { X))y is the subspace spanned by X. If, instead,
we encode V as two-sorted structure

v v K K _V K K
QSZ<K,V,+ 't T 5,7 ,0 ,0,1 ))

where +V is vector addition, -V scalar multiplication, and +X and -X the
field operations, then { X))o just consists of all linear combinations

AoVo + o+ ApyVipy
where vg, ..., v, € Xand A,,..., A, €N,

Lemma 1.10. Let U be a S-structure. The function ¢ : X — (X)y is a
closure operator on A with finite character.

Proof. Tt follows from Lemma A2.4.8 that c is a closure operator. It re-
mains to prove that it has finite character. Let

Z = J{{Xo)a | Xo € X is finite } .

154
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To prove that ¢(X) = Z it is sufficient to show that Z induces a substruc-
ture of 2. We use Lemma 1.7. Let f be an n-ary function symbol and
a € Z". Then there exists a finite set X, € X with a € {X, ). Since
(X, )or induces a substructure of 2 it follows that

fH(@) e (Xo)ucZ. O

Corollary 1.11. Let U be a structure.
(a) Gub(¥) forms a complete partial order.
(b) If Z < Sub(¥) then N Z € Sub(¥).
(c) If C c Sub(¥) is a chain then | C € Sub(%).

So far, we have considered structures obtained by removing elements
from a given structure. Instead, we can also remove relations or functions.

Definition 1.12. (a) Let £ and " be signatures with ¥ ¢ 2%, and let
A be a X*-structure. The Z-reduct |5 of A is the X-structure B with the
same universe as % where &2 = &%, for all symbols £ € 2. If B = |z we
call ¥ an expansion of B.

(b) Let X be an S-sorted signature, T C S, and % a Z-structure. Let
I' € X be the T sorted signature consisting of all elements of X whose type
only contains sort from T. By U| we denote the I'-structure obtained
from A by removing all domains A with s € S \ T and all relations and
function from X \ I

Example. (G, -)isareduct of (G, -, 7%, e). In general, a Z-structure has
21*l reducts.

Remark. IfYU ¢ B then U|s € JB|s.

Remark. Let S € T be sets of sorts. Every S-sorted signature X is also
T-sorted. Similarly, every S-sorted structure U can be turned into a T-
sorted structure by setting A, := &, for t € T \ S. In the following we will
not distinguish between an S-sorted structure U and the corresponding
T-sorted one obtained in that way.
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2. Homomorphisms

Similarly to graphs and partial orders we can compare two structures
by defining a map between them. The notions of an increasing func-
tion and an isomorphism can be extended in a straightforward way to
arbitrary structures. Since now we have several relations we need the
symbols of the signature in order to know which relation of one structure
corresponds to a given relation of the other structure.

In the following, given @ € A” and h : A - B we will abbreviate

(h(ao),...,h(a,-,)) by h(a).

Definition 2.1. Let 2% and B be Z-structures.
(a) Amapping h : A — B isa homomorphism if it satisfies the following
conditions:

* h(A;)c By, for every sort s.
o Ifae R then h(a) e R®, forallac AandeveryReX.
o h(f4a)) = f2(h(a)), foralla c Aandevery f € X.

(b) A homomorphism h : A — B is strict if it further satisfies
e aeR* iff h(a)eR®, forallac AandeveryReZX.

(c) A homomorphism & : A — B is semi-strict if, whenever h(a) € R®
then there is some a’ € R* with h(a’) = h(a).

(d) An embedding is an injective strict homomorphism and an iso-
morphism is a bijective stricthomomorphism. We write A ~ B to indicate
that there exists an isomorphism & — B. Finally, an isomorphism % —
is called an automorphism of .

(e) If there exists a surjective homomorphism A — B, B is called a
weak homomorphic image of . It is a homomorphic image of 2 if the
homomorphism is semi-strict.

Example. (a) Let A and B be partial orders. A function f : A > Bisa
homomorphism if and only if it is increasing, and f is a strict homo-
morphism if and only if it is strictly increasing.
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2. Homomorphisms

(b) The function (w, +) — (w, - ) with #n — 2" is an embedding.

(c) The function {(w, +) — ([5], +) with n » n mod s is a strict homo-
morphism.

(d)IfK = (K, +, ) isafieldand K[x] = (K[x], +, -) the corresponding
ring of polynomials then we have a homomorphism

S K[x] > K: p(x) = p(o)
mapping a polynomial to its value at x = o.
Remark. A homomorphism h : ¥ — B is strict if and only if

h7'[R®]=R¥, for every relation R.
Similarly, 4 is semi-strict if and only if

h[R*] = R®, for every relation R

Exercise 2.1. Let N = (w, - ). Construct an automorphism f : N - N
with f(2) =3.

Lemma2.2. If g: A - Band h: B — € are isomorphisms then so are
the functions g7 : B > UAand ho g: A - €.

Lemma 2.3. Every injective semi-strict homomorphism h : A — B is
strict.

Proof. Suppose that h(a) € R®. Then there is some tuple a’ € R* with
h(a") = h(a). Since h is injective, it follows that @’ = a and, hence,
aeR. O

Definition 2.4. Let f : & — B be a function. The kernel of f is the
relation

ker f = {(a,b) € A*| f(a) = f(b) }.

Remark. The kernel of a function is obviously an equivalence relation.
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B1. Structures and homomorphisms

Lemma 2.5 (Factorisation Lemma). Let f : A - B, g: B —» C, and
h: A — C be functions.

ALrngf ALB
NFON
C C

(a) There exists at most one function ¢ : tng f - C withh =¢o f.
(b) If g is injective then there exists at most one functiony : A - B

withh=govy.

(c) There exists a function ¢ : rng f — C with h = ¢ o f if and only if
ker f ¢ ker h.

(d) There exists a function y : A — B with h = g o y if and only if
rmgh crngg.

Proof. (a) If 9, ¢" : rng f — C are functions such that g o f = g= ¢’ o f
then, since f : A — rng f is surjective, it follows by Lemma A2.1.10 that
=9

(b) If y,y' : A — B are functions such that goy = h = g o ¢/ then,
since g : B — C is injective, it follows by Lemma a2.1.10 that y = v

(c) (=) If (a,a’) € ker f then we have

h(a) = ¢(f(a)) = ¢(f(a")) = h(a"),

which implies that {(a, a’} € ker h.

(«=) For b € rng f, select an arbitrary element a € f7*(b) and set
¢(b) = g(a). We claim that g o f = g. Let a € Aand set b := f(a).
By definition of ¢, we have ¢(b) = g(a’), for some element a’ € A
with f(a") = b. Hence, (a,a’) € ker f ¢ ker g, which implies that
g(a) = g(a"). Consequently, we have

9(f(a)) = ¢(b) =g(a") = g(a).
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(d) (=) If c € rng h then there is some element a € A with ¢ = h(a)
and g(y(a)) = h(a) = c implies that ¢ € rng g.

(«=) For a € A, we have h(a) € rngh < rng g. Hence, we can select
some element b € g7'(h(a)) and we set y(a) := b. Then g(y(a)) =
¢(b) = h(a). 0

Lemma2.6. Let g: A - B and h: B — € be functions.

A 3

—£,
L
¢
(a) Suppose that g is a surjective semi-strict homomorphism.
(i) If h o g is a homomorphism then so is h.
(ii) If h o g is a semi-strict homomorphism then so is h.
(iii) If h o g is a strict homomorphism then so is h.
(b) Suppose that h is an injective semi-strict homomorphism.
(i) Ifho g is a homomorphism then so is g.
(ii) If h o g is a semi-strict homomorphism then so is g.
(iii) If h o g is a strict homomorphism then so is g.

Proof. (a) (i) Let b e B" and a; € g7 (b;), for i < n. For an n-ary
function symbol f, we have

FE(h(B)) = £5(h(g(a))) = (ho g)(f(a))
= h(f2(5(2))) = h(f7(D)).
If R is an n-ary relation symbol with b € R® then, since g is semi-strict,
we can find elements a; € g7 (b;) such that a ¢ R*. This implies that
h(b) = (hog)(a)eR"
(ii) For every relation R, we have h[R®] = h[g[R*]] = R®.
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(iii) Since g is surjective we have g[¢7*[X]] = X, for every X C B. It
follows that

W' [RY] = g[g 7 [ [R*]]] = g[R"] = R®.
(b) (i) Let a € A" and f an n-ary function symbol. Then we have
h(g(f*(@)) = 5 ((hog)(@)) = h(f>(g(a))).

Since h is injective it follows that g(f*(a)) = f2(g(a)).

If R is an n-ary relation symbol with G € R* then we have (hog)(a) €
R® and, since h is semi-strict, there is some tuple b € R® with h(b) =
h(g(a)). Since h is injective it follows that g(a) = b € R®.

(i) Since h is injective we have h™'[h[X]] = X, for every X C B.
Furthermore, injective semi-strict homomorphisms are strict. Therefore,
we have

g[R*] = h'[h[g[R*]]] = h*[R¥] = R®.
(iii) As in (ii) we have
g ' [R®] = g ' [W ' [A[R®]]] = (ho g)'[R] = R O

Corollary 2.7. Ifg: A - B and h : A - € are surjective semi-strict ho-
momorphisms with ker g = ker h then there exists a unique isomorphism
90:B->Cwithh=¢og.

A —B

RN

(0

Proof. By Lemmas 2.5 and 2.6 there exist unique semi-strict homomorph-
isms

9:B3->C and y:€->B
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such that h = ¢ o gand g = y o h. In the same way, kerg = kerg
implies that there exists a unique homomorphism 7 : B — B with with
g = 1o g Since id and y o ¢ both satisfy this equation it follows that
Y o ¢ = id. In the same way we obtain ¢ o y = id. Consequently, ¢ is an
isomorphism. O

We can use a homomorphism /4 : % - B to compare the family of
substructures of U to that of 3.

Lemma 2.8. Let A and B be X-structures and h : A — B a homomorph-
ism.

(a) If A, c A then h[A,] induces a substructure of B.

(b) If B, € B then h™'[ B, induces a substructure of .

(©) If X € Athen h[(X)a] = (h[X])=.
Proof. (a) We have to show that B, := h[A, ] is closed under all functions
of B. Let f € X be n-ary and b,,...,b,_, € B,. There exist elements

Aos...>any € Ay such that b; = h(a;), for i < n. Since A, is closed
under f we have f%(a) € A,, which implies that

F2(bos. .. bys) = f2(hao, ... ha,_,)
= h(f*(as...»an1)) € Bo.

(b) Set A, := h™'[B,]. By (a) and Corollary 1.1, we know that the
sets C := rng h and B, := B, n C induce substructures of B. Note that
we have A, = h™'[B,]. Let f € X be n-aryand g, ..., a,_, € A,. Then
h(a;) € B, implies f2(h(a,),...,h(a,_,)) € B,. Since

h(f*(aos...»an-)) = f2(hao,...,ha,_,) € B,

it follows that f¥(@) € h™'[B,] = Ao.
(c) By (a) we know that h[{X))y] induces a substructure of B con-
taining h[ X]. Hence,

(h[XThas € A[{XDa]
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Conversely, set Y := {h[X])s. By (b), h*[Y] induces a substructure
of A with X ¢ h™'[Y]. Consequently, we have (X))o € h™*[Y], which
implies that

h[(XDa] € AR [Y]] =Y = (h[X] ). O

Corollary 2.9. Let U and B be Z-structures. If h : 4 - B is a homo-
morphism then rng h induces a substructure of B.

Definition 2.10. Let /i : U - B be a homomorphism between X-struc-
tures A and B. For a substructure U, ¢ A, we denote by h(%,) the
substructure of B induced by h[A,].

3. Categories

Many algebraic properties can be expressed in terms of homomorphisms
between structures. Category theory provides a general framework for
doing so.

Definition 3.1. A category C consists of

o aclass C°% of objects,

o for each pair of objects a,b € C°%, a set C(a,b) of morphisms
from a to b, and

o forall a,b, ¢ € C°Y, an operation
0:C(b,c) xC(a,b) = C(a,¢),

such that the following conditions are satisfied:

(1) If feC(c,b), geC(b,c), heC(a,b) then

fo(goh)=(fog)oh.
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(2) For every a € C°%, there is a morphism id, € C(a,a) such that

idyo f=f, forall feC(b,a),
foidy=f, forall feC(a,b).

We call id, the identity morphism of a.

If the category is understood we will write f : a — b to indicate
that f € C(a,b). By C™°" we denote the class of all morphisms of C,
irrespective of their end-points. Instead of a € C°, we also simply write

aeC.
Example. (a) The category Get consists of all sets where
Set(A, B) := B4

and o is the usual composition of functions.

(b) Hom(X) is the category of all Z-structures where Hom(X) (A, D) is
the set of homomorphisms % — B. Similarly, we can form the category
Hom,(2) of all Z-structures where the morphisms are strict homomorph-
isms, and the category €mb(Z) of embeddings.

(c) Brp is the subcategory of Hom( -, ™, ) consisting of all groups.

(d) In the category SGet, of pointed sets the objects are pairs (A, a)
where Aisasetand a € A. A morphism f : (A, a) - (B, b) is a function
f:A— Bsuchthat f(a)=b.

(e) Similarly, in the category Get* the objects are pairs (A, A,) of
sets with A, € A and a morphism f : (4, A,) - (B, B,) is a function
f:A— Bsuch that f[A,] € Bo.

(f) We have categories Top and Sop” of topological spaces and pairs of
such spaces where the morphisms are continuous functions.

(g) We can consider every partial order & = (A, <) as a category where
the objects are the elements of 2 and the morphisms are

A(a,b) := {;W’b)} ifa<b,

otherwise.
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Almost all statements in category theory involve equations of the form
f o g =hok. When there are many of them a graphical presentation
comes handy. Usually, we will use diagrams of the form

We say that such a diagram commutes if, for every pair of paths starting
at the same object and ending at the same one, the equation

fmo"'ofo:gno"'ogo

holds, where f,, ..., fin and g, . . . , gn are the respective labels along the
two paths. For example, the above diagram commutes if the following
equations hold:

hoe=f, iog=koh, iogoe=kof.
(The last one is actually redundant.)

Lemma 3.2. Let C be a category. For each object a € C°, there is a unique
identity morphism id, € C(a, a).

Proof. Ifid, and id are identity morphisms of a then
id, = id, o id] = id . O

Although the morphisms of a category need not to be functions we
can generalise many concepts from functions to arbitrary categories. For
instance, we can use the characterisation of Lemma A2.1.10 to generalise
the notion of injectivity and surjectivity.
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Definition 3.3. (a) A morphism f : a — b is a monomorphism if, for all
morphisms g and h,

fog=foh implies g=h.

And f is an epimorphism if

gof=hof implies g=h.

(b)If f :a —band g: b — aare morphisms with g o f = id,, we call
g aleftinverse of f and f a right inverse of g. In this situation we also say
that f is a section and g is a retraction. An inverse of f is a morphism g
that is both a left and a right inverse of f. If f : a — b has an inverse, we
denote it by f™ : b — a and we call f an isomorphism between a and b.

Example. In many categories where the morphisms are actual functions,
monomorphisms correspond to injective functions and epimorphisms
correspond to surjective functions. For instance, in Set and in Hom(X)
this is the case. But there are also examples where monomorphisms
are not injective or epimorphisms are not surjective. For instance, in
the category of all rings the inclusion homomorphism 4 : Z - Q is an
epimorphism since a homomorphism f : QQ - R is uniquely determined
by its restriction f | Z. Similarly, in the category of all Hausdorff spaces
with continuous maps as morphisms a morphism f : £ - 9 is an
epimorphism if, and only if, its image rng f is dense in Y.

Lemma 3.4. (a) Every section is a monomorphism.
(b) Every retraction an epimorphism.
(c) Every epimorphism with a left inverse is an isomorphism.
(d) Every monomorphism with a right inverse is an isomorphism.
(e) If a morphism f has a left inverse g and a right inverse h then f is

an isomorphism and g = h.

Proof. (a) and (b) are left as an exercise.
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(c) Let f : a - b be an epimorphism with left inverse g : b — a. Then
go f =1id, implies that fo go f = f =idy o f. As f is an epimorphism,
this implies that f o g = idy. Hence, g is an inverse of f.

(d) follows in the same way as (c).

(e) Wehave g=goidy=go(foh)=(gof)oh=idgoh=h. [

Exercise 3.1. Let f :a — band g: b - ¢ be morphisms. Show that
(a) if f and g are monomorphisms then so is g o f;
(b) if f and g are epimorphisms then so is g o f.
Most statements of category theory also hold if every morphism is

reversed. To avoid duplicating proofs we introduce the notion of the
opposite of a category.

Definition 3.5. Let C be a category. The opposite of C is the category C°P
with the same objects as C. For each morphism f : a - b of C there exists
the morphism f°P : b — a in C°P. The composition of such morphisms
is defined by

gr oS = (fog)™.

Definition 3.6. An object a € C is initial if, for every b € C, there exists
a unique morphism a — b. Similarly, we call a terminal if there exist
unique morphisms b — a, for all b € C.

Example. (a) Set contains one initial object &, while every singleton
{x} is terminal.
(b) The trivial group {e} is both initial and terminal in &zp.

The importance of initial and terminal objects stems from the fact
that, up to isomorphism, they are unique.

Lemma 3.7. Let C be a category. All initial objects of C are isomorphic
and all terminal objects are isomorphic.
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Proof. Note that a terminal object in C is an initial object in C°P. There-
fore, it is sufficient to prove the claim for initial objects. Suppose that
a and b are initial objects in C. Then there exist unique morphisms
fra—>bandg:b—>a. Leth:=go f. Thenh:a— aand his the only
morphism a — a since a is initial. It follows that & = id,. By a symmetric
argument, it follows that f o ¢ = idy,. Consequently, g is an inverse of f
and f is an isomorphism. O

To compare two categories we need the notion of a ‘homomorphism’
between categories.

Definition 3.8. (a) A (covariant) functor F from a category C to a cat-
egory D consists of two functions

Fobj . Cobj N Dobj and Fmer . cmor _, pymor

such that the following conditions are satisfied:

¢ F™°" maps each morphism f : a — b in C to a morphism
F™r(f): F%(a) - F°(b) inD.

o F™7(idy) = idpovi(a) » for all a e C°Y.

e F™"(go f)=Fm"(g)o F™"(f), forall f:a—band
g:b—-cinC™.

Usually we will omit the superscripts and just write F instead of F°® and
Fmor.

(b) A functor F : C — D is called faithful if, for every pair a,b € C, the
induced map

F:C(a,b) > D(F(a),E(b))

is injective. Similarly, F : C — D is called full if, for every pair a,b € C,
the induced map

F:C(a,b) > D(F(a),E(b))

167



B1. Structures and homomorphisms

is surjective.

(c) A contravariant functor form C to D is a covariant functor from
C°? to D.

(d) The opposite of a functor F : C — D is the functor F°P : C°P — D°P
with

F°P(a) := F(a), foraeC,
FOP(f°P):= F(f)°P, for feC™".

Example. (a) For a signature X, the forgetful functor F : Hom(X) — Set
maps every structure U to its universe A and every homomorphism
h : A - B to the corresponding function h : A — B between the
universes. This functor is faithful, but in general not full.

(b) Let G : Get — Hom() be the functor mapping a set X to the
structure (X) over the empty signature. This functor is full and faithful.
The forgetful functor F : Hom(z) — Set is an inverse of G. It follows
that the categories Set and Hom(@) are isomorphic.

Definition 3.9. Let F : C — D be a functor and let P be a property of
objects or morphisms.

(a) We say that F preserves P if, whenever x is an object or morphism
with property P, then F(x) also has this property.

(b) We say that F reflects P if, whenever x is an object or morphism
such that F(x) has property P, x also has this property.

Lemma 3.10.  (a) Every functor preserves sections, retractions, and iso-
morphisms.

(b) Faithful functors reflect monomorphisms and epimorphisms.

(c) Full and faithful functors reflect sections, retractions, and isomorph-
isms.

Proof. Let F: C — D be a functor.
(a)Let f:a - band g: b - abe morphisms of C such that go f = id,.
Then

F(g)oF(f) =F(go f)=F(idy) = idp(a) -
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Hence, F(g) is a left inverse of F(f) and F(f) is a right inverse of F(g).

(b) Suppose that F is faithful and let f : a - b be a morphism such
that F(f) is a monomorphism. To show that f is also a monomorphism,
consider morphisms g,/ : ¢ > awith f o g = f o h. Then

F(f)oF(g) =F(fog)=F(foh)=F(f)oF(h).

Since F(f) is a monomorphism, it follows that F(g) = F(h). Because
F is faithful, this implies that g = h.

In the same way it follows that F reflects epimorphisms.

(c) Suppose that F is faithful and full and let F(f) : F(a) — F(b) be
a section with left inverse g : F(b) — F(a). As F is full, there exists a
morphism g, : b - a with F(g,) = g. Hence,

F(idy) = idp(a) = F(go) 0 F(f) = F(go © f).

Since F is faithful, this implies that g, o f = id,. Consequently, f is a
section. The cases where f is a retraction or an isomorphism follow in
the same way. OJ

Let us briefly present some operations on categories.

Definition 3.11. Let C and D be categories.
(a) C is a subcategory of D if
- Cobj c Dobj and C™or ¢ pmor
¢ the identity morphisms of C are the identity morphisms of D,

¢ the composition g o h of two morphisms of C gives the same result
in both categories.

A subcategory C ¢ D is full if
C(a,b) =D(a,b), foralla,beC®.

The inclusion functor I : C — D from a subcategory C to D maps each
object and morphism of C to itself.
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(b) The product of C and D is the category C x D where
(C « D)obj . Cobj % Dobj’
and (C xD)({a,,a,), (bo,b,)) := C(00,b5) x D(a,,b,),

for objects {a,,a,), (bo,b,) € C x D. The composition of morphisms is
defined componentwise:

(for fi) 0 (80> &) = {fo 0 go» fro &)
With each product C x D are associated two projection functors
P,:CxD—->C and P, :CxD->1D,

where P; maps an object (4o, a,) to a; and a morphism (f, f,) to f;.

(c) Given an object a € D and a functor F : C - D, we define the
comma category (a | F) whose objects are all pairs (f,b) consisting
of an object b € C and a morphism f : a — F(b) of D. A morphism
h:{(f,b) = (f',¢) from f : a — F(b) to f' : a > F(¢) is a morphism
h :b — cof C such that

J'=E(hyef.
f/ F(C)
; ]F(h)
f\p(b)

Similarly, we can define the comma category (F | a) consisting of all
pairs (b, f) consisting of an object b € C and a morphism f : F(b) - a
of D, where a morphism % : (b, f) — (¢, f’) consists of a morphism
h e C™" such that f = f' o F(h).

F(C) f/
F(h) a
F(o)” /
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More generally, given two functors F : Z - Dand G : J — D, we
define the comma category (F | G) of all triples (a, f,b) where a € Z,
beJ,and f : F(a) > G(b). A morphism ¢ : {(a, f,b) - (a’, f',b")
from f : F(a) - G(b) to /' : F(a’) - G(b") consists of a pair ¢ = (g, h)
of morphisms g:a — a’ and h : b — b’ such that

F(h)o f=f"oF(g).

F(a')—L—F(¥)
Fe) F(h)

F(a) T» F(b)

To simplify notation, we will usually just write f : F(a) - G(b) for an
object (a, f,b).

Example. Consider the identity functor I : Emb(X) — Cmb(ZX). For
A € Emb(X), the comma category (I | A) consists of all embeddings
€ — A of a substructure into .

Remark. The general definition of a comma category (F | G) covers the
special cases (a | F) and (F | a) by using the functor G : [1] - D from
the single object category [1] to D which maps the unique object of [1]
toa.

Exercise 3.2. Prove that the product C x D of two categories is universal
in the sense that, given any category £ and two functors F : £ - C and
G: & — D, there existsafunctor H: £ - C x Dsuchthat F = P, o H
and G = P, o H. (For sets we have proved a corresponding statement in
Lemma A2.2.2).

To compare two functors we define the notion of a homomorphism
between functors. In particular, we want to define when two functors
are ‘basically the same’
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Definition 3.12. (a) Let F and G be two functors from C to D. A natural
transformation from F to G is a family = (#4)qecov; Of morphisms

o € D(F(a),G(a)), fora e C°,
such that, for every morphism f : a — b of C, the diagram

f)

Fla) — By

fa o

B ——
6(a) —s5— G(6)
commutes. If each 7, is an isomorphism we call the transformation a
natural isomorphism. In this case we write  : F = G.
(b) A functor F : C — D is an equivalence between the categories
C and D if there exist a functor G : D — C and natural isomorphisms
n:idp 2 FoGand p : GoF 2 id¢, where id denotes the identity functor.
In this case we call C and D equivalent. If C is equivalent to D°P, we say
that the categories C and D are dual.

Example. Let V be a finite dimensional K-vector space. The dual V"
of V consists of all linear maps V — K. V" is again a K-vector space
and we have (VY)Y = V. For every linear map h : V - W, we obtain a
linear map h¥ : WY — V" by setting 1" (1) := A o h. Consequently, the
mapping F : V — V" forms a contravariant functor from the category
of all finite dimensional K-vector spaces into itself. Furthermore, the
family of isomorphisms 7y : (VY)Y — V forms a natural isomorphism
between F o F and the identity functor. Hence, we can say that ‘up to
isomorphismy’ F = F7.

Lemma 3.13. An equivalence F : C — D preserves and reflects mono-
morphisms, epimorphisms, initial objects, and terminal objects.

Exercise 3.3. Prove the preceding lemma.
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The next theorem provides an alternative characterisation of equi-
valences between categories. It also contains an important relationship
between the two natural isomorphisms # and p associated with an equi-
valence.

Theorem 3.14. Let F : C — D be a functor. The following statements are
equivalent:
(1) F is an equivalence.

(2) F is full and faithful, and every object of D is isomorphic to one in
rng F°%.

(3) There exist a functor G : D — C and two natural isomorphisms
n:idp 2 FoGandp: G o F 2idc satisfying
F(pa) =1py and  G(1s) = pg(p) -

Proof. (3) = (1) is trivial.

(1) = (2) Suppose that there exist a functor G : D — C and two
natural isomorphisms # : idp 2 FoG and p : Go F = id¢ with the above
properties. For every object b € D, we have the isomorphism

#s : b= F(G(b)) € rng F°®.

To show that F is faithful, let f, ' : a = b be morphisms with F(f) =
F(f"). Then

f=fopaops =psoG(E(f))op,’
=psoG(F(f)ops" = fopacops’ =1

In the same way, it follows that G is faithful.
It remains to show that F is full. Let f : F(a) - F(b) be a morphism
of D. Setting

g=psoG(f)op.’,
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we have

pooG(f)op =g=gopaop, =psoG(F(g))op, .

As py and p, are isomorphisms, this implies that G(f) = G(F(g)).
We have shown above that G is faithful. Consequently, it follows that

f=F(g) e rng F™".

(2) = (3) By (2), we can choose, for every b € Do some object
G(b) € C and an isomorphism #5 : b = F(G(b)). This defines the object
part of the functor G.

It remains to define the morphism part G™°". Since F is full and
faithful, it induces bijections

Vs = F [ C(a,b) : C(a,b) > D(F(a),F(b)), fora,beC.
For a morphism f : a — b of D, we set

G(f) = VYg@y.cm(mefong).
Since F(go f) = F(g) o F(f), we have

Var(g0f) = ¥o:(g) oy (f)
for f: F(a) » F(b) and g : F(b) - F(c). Consequently,

G(g°f) =¥6(a).6)(Mcogofon’)

= V6.6 (Mo gony omsofon’)

= VYe(0),600 (M2 g°M") ° Vg(a),a) (Moo fong’)
=G(g)oG(f),

and G is a functor.
We have choosen each morphism #, to be an isomorphism. Hence,
to show that # is a natural isomorphism, it is sufficient to prove that

F(G(f))ona=mnpof, forall f:a—binD™".
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For a morphism f : a - b, we have
F(G(f)) o = F(Wgtay.cm (0 fonz")) o 1a
=Moo fong ot
=Moo f,

as desired.
To conclude the proof, we define

Pa = VG (F())a(ME(a))» foraeC.
Then p := (pa)aec is @ natural transformation since, for f :a — binC,
ps o G(F(f))
= Va(r)) 6 (ME()) © Y (F)),.c(re)) (MTEe) © F(f) © MF(a))
= Ve (r(a)).6 (MTE(s) © Mr() © F(f) © ME(a)
=Y (F(f)) 2 VG (Mr())
=fop.t.

Furthermore, each component p, is an ismorphism since F(p,) = ME(a)
is an isomorphism and the functor F is full and faithful. Finally, note
that

G(1s) = ¥6(s).6(F(G(5))) (ME(G @) © Mo oMy )
= V6 (),6(F(G(0))) (MEG(6)))
= (Yatram).em (MEGw)))) = Pow) - O]

4. Congruences and quotients
Sometimes we do not want to distinguish between certain elements of a

structure. In these situations we can use congruences to obtain a more
abstract view of the given structure.
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Definition 4.1. Let 9 be a X-structure.
(a) An equivalence relation ~ on the universe A is a weak congruence
relation if it satisfies the following properties:

o If a ~ b then there is some sort s such that a, b € A;.

¢ If f € Yisan n-ary function and a, ~ b,,..., dp_y ~ by_, then
P aos...sanoy) ~ [P (bos...,bpy).

(b) A (strong) congruence relation is a weak congruence relation ~
with the additional property that

¢ if R € X is an n-ary relation and a, ~ bo,..., ay—, ~ b,_, then
(Ags...ran_y) €R* iff  (bg,...,b,_,) € RY.

(c) We denote the set of all congruence relations of U by Cong(2),
and we set

Cong () := (Cong(¥),c).

Similarly, Cong, (%) is the set of all weak congruences and
Cong,, () := (Cong,, (%), <)

is the corresponding partial order.

Example. (a) If ¥ = (A, <) is a linear order then Cong(%) = {id} while
Cong, () contains all equivalence relations over A.

(b) Let B = (V, +, (1,)a) be a vector space. If ~ is a congruence of B
then [o]. forms a linear subspace of B. Conversely, if Ll € B is a linear
subspace then the relation

a~b iff a-beU

is a congruence of B with [o]. = U. It follows that the map ~ — [o]. is
an isomorphism between €ong(B) and the class of all linear subspaces
of B ordered by inclusion.
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(c) Let3 =(Z,+) and © = (N, c) where
xcy :iff ylx

is the reverse divisibility order. We claim that €ong(3) 2 ®. For k € N,
set

x~gy ciff x—y=kzforsomezeZ.
We show that Cong(3) = { ~¢ | k € N }. Since
~p Sy it m k

it then follows that the function ~; + k is the desired isomorphism.

Clearly, every relation ~ is a congruence of 3. Conversely, let ~ be
a congruence of 3. If » # ~, then there are numbers x < y with x » y.
Since —x ~ —x it follows that

0O=X+-X®”y+-x>0.

Let k be the minimal number such that k > o and o » k. We claim
that ~ = ~. Since o0 ~ k we have o » kz, for all z € Z. Hence, ~ C =.
Conversely, if x ~ y then we have seen that |y — x| ~ 0. Suppose that

ly-—x|=m (mod k), foro<m«<k.

Since o » k it follows that m ~ o. By choice of k, we have m = 0. Hence,
X~k Y.

Before turning to quotients let us take a closer look at the structure of
Cong ().

Lemma 4.2. Cong(¥) is an initial segment of Cong,, ().

Proof. Let ~ € Cong() and ~ € Cong, () with ~ C ~. Let R be an n-
ary relation symbol of 2. If a, ~ by, ..., d,—; ~ b,_, then ~ C ~ implies
a; ~ by, for all i. Hence, we have

aeR* iff beR™

Consequently, ~ € Cong(¥). O
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Lemma 4.3. Let A be a Z-structure and X ¢ Cong, (%) nonempty. Set
E_:=NX and E,:=TCc(UX).
(a) E_ and E, are weak congruence relations on A.
(b) If X < Cong () then we have E_, E, € Cong(2).

Proof. We have already seen in Corollary a2.4.17 that E_ and E, are
equivalence relations. It remains to prove that they are (weak) congru-
ences.

Suppose that (a;, b;) € E_, for i < n, and fix some F € X. Let f be an
n-ary function. Since (a;, b;) € F it follows that

(f(a).f(b)) € F.
Hence, (f(a), f(b)) e N X.

For (b), we also have to consider n-ary relations R. Fix a congruence
F e X c Cong(?). Then (a;, b;) € F implies

(aos...ran)€R iff  (bo,...,b,,) €R.

The proof for E, is slightly more involved. Suppose that (a;, b;) € E,,
for i < n. For every i < n, there is a sequence c,, ..., ¢}, with [; < w,
such that

co=ai, ¢, =b;, and (cjc,)eUX, forallj<l;.

i

Let f be an n-ary function. For every i < n and all j < [;, we have

(f(bo, oo bilg, c;, AisrsernsOnor)s
f(boa e bi—l) C;Jrl, Aitrs .- >an—1)> € UX

This implies that

<f(b0)'--abi—1a a;, ai+1)‘-"ai’l—1)a
f(bo,-- -)bifl) bis Ait1s .- -)an—1)> € TC(UX) >
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and, by induction, it follows that

(f(a). f(bo, a1 05, a50)) € Es
<f(a-)’f(bo’b1’ Ass . -,an_1)> € E+ s

(f(@), f(bor...,bu_zra4y)) € Ey,
(£(@), f(bor. ., bu—zsbyy)) € Ey.
Similarly, if R is an n-ary relation then we have, forall i < nand j < [;,
<b0>-u)bi—ncj‘)ai-i—n-uaan—1> €R
iff (b0>-~-’bi—l)C;‘.H)ai-H:---)an—l> GR)
and it follows that
(bo:--',bi—l)ai>ai+la~'-7an—l) €R
iff (bOa--->bi—17 bi)“iﬂ:---;an—l) €R.
As above we can conclude that d € Riffb e R. O

Theorem 4.4. Let A be a structure. Cong,, (U) and Cong(A) form complete
partial orders where, for every nonempty set X, we have

infX=NX and supX=1Cc(UX).

Proof. We have seen in Corollary A2.4.17 that the partial order of equi-
valence relations on A is complete. Consequently, the claim follows from
Lemma 4.3 and Corollary A2.3.11. O

Every weak congruence defines an abstraction operation on structures.

Definition 4.5. Let ¥ be a Z-structure and ~ a weak congruence of 2.
(a) The quotient A/~ of A is the Z-structure where the domain of sort s
is A;/~, for each n-ary relation symbol R € X, we have the relation

RY~ = {{[a0]es---s[an-1]) | (os- . orans) € RQ[},
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N I I AU wm
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and, for every n-ary function symbol f € X, the function

fm/N([aO]w v lana]l) = [fg[(ac» e nog)]e

We also say that we obtain &/~ from 2 by factorisation by ~.
(b) The function 77 : A — A/~ with z(a) := [a]. is called the canonical
projection.

Remark. The structure 9/~ is well-defined since, by definition, if we
have a, ~ b,..., dy_, ~ b,_, then

Faos. . sany) ~ [P (bos...rbpy),

which implies that

[ (0> s an1)]- = [ (bos- . bns)]-.
Example. On = (Wo, <)/2 and ord : (Wo, <) - On is a homomorphism.

There is a strong connection between congruence relations and ho-
momorphisms.

Lemma 4.6. Let U be a Z-structure, ~ a weak congruence on 9, and
7 : U — A/~ the canonical projection.
(a) mis a surjective semi-strict homomorphism with ker m = ~.

(b) If ~ is a congruence then m is a surjective strict homomorphism.
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Proof. (a) m is surjective since
Al~={la]-|acA}={n(a)|acA}=rngn.

It is a homomorphism since, for all n-ary functions symbols f € %, we
have

T (aos- s ans) = [ (0. ran_y)]-
= " ([o]us-- s [@ns]~)
:fm/”(ﬂao,...,nanﬂ%

and, for each n-ary relation symbols R € Z,
(dor...rany) €RY = ([ao]er. ., [ans].) e R~
= (mao,...,May_,) € RY~.

To show that 7 is semi-strict let ([a,], ..., [an-]) € R¥/~. By definition
of U/~ there are elements b; ~ a;, i < n, with b € R¥. This implies that

n(b) = n(a).
(b) We have already seen in (a) that 7 is a surjective homomorphism.
It is strict since, for each n-ary relation symbols R € X, we have
(Gs...rans) €RY iff  ([ao]es.. ., [an_y].) e R
iff  (mao,...,mau_,) e R~ O

Lemma 4.7. Let h: A — B be a function.

(a) If h is a homomorphism then ker h is a weak congruence of .

(b) If h is a strict homomorphism then ker h is a congruence.
Proof. (a) ker h is an equivalence relation since = is reflexive, symmetric,
and transitive. Furthermore, h(a) = h(b) implies that a and b are of the

same sort. Suppose that (ao, bo),..., (an_1,by_,) €ekerh. If f € Zisan
n-ary function symbol then

h(f*(a)) = f2(h(a)) = f2(h(b)) = h(f*(b))
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implies that (f*(a), f*(b)) € ker h.
(b) If R € X is an n-ary relation symbol then we have
aeR* iff h(a)eR® iff h(b)eR® if beR. O

Corollary 4.8. Let U be a 2-structure and ~ € A x A a binary relation.

(a) ~ is a weak congruence relation if and only if there exists a homo-
morphism h : 4 — B such that ~ = ker h.

(b) ~ is a congruence relation if and only if there exists a strict homo-
morphism h : % — B such that ~ = ker h.

(c) Let B be a Z-structure. There exists a weak congruence ~ such that
B = A/~ if and only if B is a homomorphic image of Y.

Proof. We prove all three claims simultaneously. The direction (<)
follows immediately from Lemma 4.7. For (=) we can take & := o/~
and h: a — [a]., by Lemma 4.6. O

Definition 4.9. Let h : A - B be a homomorphism and ~ a weak
congruence on B. We set

h(~) = {(a,b) e Ax A| h(a) ~h(b)}.

Lemma 4.10. Let h: U — B be a homomorphism and ~ a weak congru-
ence on B.

(a) h7*(~) is a weak congruence on .
(b) If his strict and ~ € Cong(B) then h™*(~) € Cong(Y).

Proof. If m: % — B/~ is the canonical projection then we have
h7(~) =ker(moh).
Hence, the claims follow from Lemma 4.7. O

Theorem 4.11. (a) There exists a contravariant functor

F: Hom(Z) - Hom(c) : A — Cong,, (A)
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with F(f) : ~ = f7'(~), for homomorphisms f : A - B.
(b) There exists a contravariant functor

G :Hom (X)) - Hom(c) : A — Cong(Y)
withG(f) : ~— f'(~), for strict homomorphisms f : A - B.

Proof. (a) If f : A - B is a homomorphism and ~ C ~ are weak congru-
ences of B then we have

FNH) =) f(%) =F(f)=).
Hence, F(f) is a homomorphism. Furthermore, we have
F(idy)(~) =~, forall~e Cong (%),

which implies that 7 (idy) = idgong, (). Finally, if f : % — B and g
B — € are homomorphisms then we have

F(go f)(~) = (g /) (~)
=) = (F(f) e F()(~) -

(b) is shown in exactly the same way replacing homomorphism’ by
‘strict homomorphism’ and ‘weak congruence’ by ‘congruence’ O

Theorem 4.12 (Homomorphism Theorem). For every semi-strict homo-
morphism h : A — B, there exists a unique isomorphism

¢ : U kerh - h(Y)
such that the following diagram commutes.
dy — B
1
14

A/ kerh =—= h(¥)
¢
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Proof. Letm: YU — A/ Kker h be the canonical projection. The existence of
¢ : U/ ker h — h(Y) follows immediately from Corollary 2.7 since both
homomorphisms 7 and h : % — h(9) are semi-strict and surjective and
we have ker 7 = ker h. O

Corollary 4.13. Every strict homomorphism h : A — B can be factorised
as h = ¢ o w where 7 is a surjective strict homomorphism and ¢ is an
injective strict homomorphism.

Example. Let h : 8 - H be a homomorphism between groups. Let
N := ker h be the (normal subgroup corresponding to the) kernel of A.
Then there exists a homomorphism ¢ : /N - Hsuch that h = gon
where 77 : 8 - &/N is the canonical projection.

Corollary 4.14. Let A and B be structures.

(a) There exists a surjective strict homomorphism A — B if and only if
D = A/~, for some congruence relation ~.

(b) There exists a strict homomorphism A — B if and only if there is a
substructure B, € B and a congruence relation ~ on A such that
By = A/~

We conclude this section with an investigation of the relationship
between quotients 2/~ and U/~ of the same structures.

Remark. For weak congruences ~ C ~, we have [a]. € [a]s. Hence,
every ~-class is partitioned by ~ into one or several ~-classes.

Definition 4.15. For weak congruences ~ C ~ on U we define
N[~ = {([a]N, [b].) e A/~ x Af~ | aw~ b}.

Remark. If ~ C ~ are weak congruences on U then ~ is also a weak
congruence of (¥, ~) and we have

() [~ = (A~ /~) .

Furthermore, if ~ is a congruence on 2 then ~ is also a congruence of
(o w).
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A/~ |see| oo |oee
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Lemma 4.16. Let ~ C ~ be weak congruences on A and let rr.. : A — A/~
and 1 : A — A/~ be the corresponding canonical projections.

We have ~[~ = ker ¢ where ¢ : A/~ — U/~ is the unique semi-strict
homomorphism with m. = ¢ o 7...

Proof. Since kerm.. = ~ C ~ = ker 7, it follows by Lemmas 2.5 and 2.6
that there exists a unique semi-strict homomorphism ¢ : A/~ — A/~
with 7, = ¢ o 7... For [a]., [b]. € A/~, we have

gla]. = o[b]. it (pon.)(a)=(pom.)(b)
iff  7.(a)=mn.(b)
iff awxb
iff [a].=~/~[D].. O
Corollary 4.17. Let ~ € ~ be weak congruences on Q.
(a) =/~ is a weak congruence on A/~.
(b) If ~ is a congruence then so is ~~.
Proof. (a) follows immediately from Lemma 4.16. For (b) note that, if

~ is a congruence then 7, is strict and it follows by Lemma 2.6 that ¢ is
a strict homomorphism. OJ
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Theorem 4.18. Let ~ C ~ be weak congruences on . There exists an
isomorphism

CIDVCTDERTS

Proof. According to Lemma 4.16 there exists a semi-strict homomorph-
ism ¢ : A/~ — A/~ with ker ¢ = ~/~. By the Homomorphism Theorem,
it follows that there exists an isomorphism

y (A~) ] (m]~) > Ul O

Example. Let 9t ¢ U ¢ & be normal subgroups of &. Then N is also a
normal subgroup of U and we have

6/U = (8/N)/(U/N).
Theorem 4.19. Let A be a structure and ~ € Cong(9). The function
h:f~ — Cong(Y/~) with h(w):=rn/~

defines an isomorphism between Cong(2/~) and the final segment f}~
of Cong(¥).

Proof. Let p, o € fi~. It follows immediately from the definition that we
have

p/~ca/~ f pco.

Therefore, h is a strict homomorphism.
It remains to show that it is bijective. Suppose that p # ¢. By symmetry,
we may assume that there is some pair (a, b) € p \ o. It follows that

([a]-.[b].) € p/~=h(p) and ([a].,[b].)¢a/~=h(0).

Hence, we have h(p) # h(o) and h is injective. For surjectivity, let
p € Cong(/~) and define

o:={(a,b)e AxA|([a]..[b]-)ep}.
Then we have h(o) = p. O
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1. Trees

Recall that, for an ordinal a, we denote by A% the set of all sequences
f: B = Awith 8 < a. To simplify notation we will write finite sequences
a = (ao,...,a,) without braces and commas as a = a, ... a,. We can
equip A<* with the following operations.

Definition 1.1. Let x, y € A<%.

(a) The length of x is the ordinal |x| := dom x.

(b) The concatenation x - y of x and y is the sequence z : |x| + |y| > A
with

xg if f<|x],
zg = .
yy ifB=|x[+y.

Usually, we omit the dot and simply write x y instead of x - y. For sets
X, Y c A% we introduce the usual abbreviations

XY:={xy|xeX,yeY} and  xY:={xy|yeY}.
(c) The prefix order < on A<* is defined by
x=<y :iff  |x|<[|yland y x| =x.

If x < y then x is called a prefix of y.
(d) If we are given a linear order C on A then we can define the lexico-
graphic order <jex on A<* by

Xx<lex y :iff x < yorthereareze A andacbe A

suchthatza <xandzb=<y.
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1 1

\/ON/ N/ N
N/ N/
~
Figure 1. (2, <)

Example. (a)Ifx=a,...am-,and y=b,...b,_, then
Xy=0do...0m_1bo... by,

In particular, x < xy.

(b) Wehave x - () = x = () - x, for all x € A<

(c) The prefix order (24, <) is depicted in Figure 1, while the lexico-
graphic ordering (24, <1y ) is

() <0< 00<000<001<01<010<011

<1<10<100<101<11<110<111.

This order corresponds to a so-called ‘pre-order’ or ‘depth-first” traversal
of the tree (24, <).

Exercise 1.1. Prove that x < y iff there exists some z such that y = xz.

Note that, if x, y € A<* then xy € A“%*, but it might be the case that
xy ¢ A<*. Since dom xy = dom x + dom y we can use Lemma A3.4.25 to
obtain a characterisation of all ordinals « such that A<® is closed under
concatenation.

Lemma 1.2. Let a € On. The set A<* is closed under concatenation if and
onlyifa = 0 or & = 0", for some 1.
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Remark. It follows that, for every «, the structure (A“"(a), - ()) forms a
monoid.

Trees play a prominent role in mathematics and computer science.
Firstly, they have many pleasant algebraic and algorithmic properties,
and secondly, many processes and structures can be modelled as a tree.
For instance, consider an inductive fixed-point iteration that, starting
with some basic elements, combines them in every step to form new
elements. Every element is built up from one or several other elements
that, in turn, consist of even more primitive elements, and so on until a
basic element is reached. To model such hierarchical dependencies we
will frequently use families (4, )yer indexed by a tree T.

Definition 1.3. (a) A tree is a partial order € = (T, <) such that
o the set |v is well-ordered, for every v € T, and
o each pair u,v € T has a greatest lower bound u nv := inf {u, v}.

(b) The elements of a tree are usually called nodes or vertices. A max-
imal element of a tree is called a leaf, all other elements of T are inner
vertices, and the least element is the root.

(c) A vertex v is a successor of the vertex u if u < v and there is no
vertex w with u <w < v.

(d) A chain C ¢ T is a path if u,v € C implies that w € C, for all
u < w < v. A maximal path is called a branch.

Remark. (a) Note that every tree is a well-founded partial order.
(b) By convention, we will usually depict trees upside down with the
root at the top.

The partial order (24, <) in Figure 1 is a tree. In fact, the prefix order <
always forms a tree and we will see below that every tree can be obtained
in this way.

Lemma 1.4. (A%, <) isa tree, for all A and a.

The only thing preventing a tree from being a complete partial order
is the lack of a greatest element.
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Lemma 1.5. Let S = (T,<) be atree. If X C T is nonempty then there are
elements a,b € X with inf X = a N b. In particular, X has an infimum.

Proof. Fix some element a € X. The set
Yi={anx|xeX}

is a nonempty subset of la. Hence, it has a least element ¢ € Y. This
element is a lower bound of X since we have

c<anx<x, for every x € X.

Fix some element b € X with ¢ = a n b. If d is another lower bound of X
thend < aand d < b implies d < an b = c. Consequently, we have
c=anb=inf X. U

Definition 1.6. Let$ = (T, <) be atree and v € T a vertex.
(a) The subtree of ¥ rooted at v is the substructure ¥, := ¥y, induced

by fjv.
(b) The level of a vertex v is the ordinal

[v| := ord (Iv,<).
The height of ¥ is the least ordinal greater than all levels
sup{|v|+1|veT}.

Example. Let % = (A%, <). The level of v € A<* is the length of v. (That
is the reason why we denote both by |v|.) It follows that the height of €
is a.

Lemma 1.7. For every tree T = (T, <) of height a, there exists an initial
segment X C |T|<% such that T = (X, <).

Proof. For 3 € On, define Tg := {v € T | |v| < B }. Let & be the minimal
ordinal such that T, = T and set ¥ := |T|. To prove the claim it is
sufficient to define an embedding i : T — x*% such that X := rngh
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forms an initial segment. By induction on f3, we construct an increasing
sequence h, € h, C ... of embeddings hg : Tg — «x~F. The desired
function h : T — x~* will be obtained as the limit / := Ug, hgp.

Let v be the root of T. Since v is the only vertex of length o we can set

hy: {v} = {(} v ().

For the inductive step, suppose that h, is already defined for all y < .
If B is a limit ordinal then we can set hg := U, g hy. Therefore, suppose
that B = y + 1 is a successor. For every vertex v € T of length |v| < y,
we set hg(v) := h,(v). It remains to consider the case that |v| = y. First,
suppose that y = 5 + 1 is a successor. For each vertex u € T of length
|u| = #n, we fix an injective function g, : S, — « from the set S, of
successors of u into «. If |v| = y then v € S,,, for some u, and we can set

hp(v) = hy(u) - (gu(v))-

Finally, suppose that y is a limit ordinal. We set hg(v) := x where x :
y — k<’*" is the sequence with

xy = hy(u), forthe vertex u <v with [u| = 7. U

We conclude this section with an investigation of the connection
between trees and fixed-point inductions. First, we characterise those
trees that contain an infinite path. Then we show that those without can
be generated bottom-up in a recursive way.

Definition 1.8. The branching degree of a tree ¥ is the minimal cardinal
such that there exists an embedding of ¥ into k%, for some ordinal «.
We say that 2 is finitely branching if every vertex v € T has only finitely
many successors.

Example. The branching degree of (A<%, <) is |A|.

Remark. (a) Note that there are finitely branching trees of branching
degree R,. For instance, the tree (T, <) with

T:={aer’|a,<nforn<w},
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is finitely branching. Every vertex a of length |a| = # has n + 1 successors.
(b) The branching degree of a tree £ is at most | T|, by the above lemma.

Lemma 1.9 (Kénig). Every infinite tree that is finitely branching contains
an infinite branch.

Proof. By induction, we construct an infinite branch v, < v, < ... such
that {v,, is infinite, for all n. Let v, be the root of €. By assumption,
fivo = T is infinite. For the inductive step, suppose that we have already
defined the path v, < --- < v, such that fjv, is infinite. Since v, has only
finitely many successors uo, . . . , U and

ﬂvn = {Vn}uﬂuo U"'Uﬂuk>
there must be at least one successor u; such that {ju; is infinite. We set
Vit = Ui, O
If we compute a set X as the inductive fixed point of some operation

then we can associate with the elements of X a rank that measures at
which stage of the induction the element entered the fixed point.

Definition 1.10. Let f : £(A) — £(A) be a function that is inductive
over @ and let F : On — §°(A) be the corresponding fixed-point in-
duction. We associate with every element a € A a rank as follows. For
elements a € F(oo), we define the rank of a as the ordinal « such that
aeF(a+1)\F(a).Fora ¢ F(co), we set the rank of a to occ.

Example. The power-set operation {° : S — S is inductive over &. The
corresponding notion of rank coincides with the rank p(a) introduced
in Definition A3.2.24.

Let us define a rank for trees.

Definition 1.11. Let £ = (T, <) be a tree. The foundation rank frk(v)
of a vertex v € T is the rank corresponding to the fixed-point operator

f:R(T) - P(T) with
f(X):={veT|tvecX}.
The rank frk(2) of £ is the rank of its root.
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Remark. We have frk(v) = o if and only if v is a leaf of T.

In the course of this book we will introduce several ranks. Since it
is cumbersome to define them in terms of fixed-point operations we
will usually give more informal definitions. For a given ordinal «, we
will just specify all elements a such that a ¢ F(a). For instance, for the
foundation rank the definition would have the following format:

o frk(v) > o,forallv e T.

¢ For successor ordinals, we have frk(v) > a + 1if and only if there
is some u > v with frk(u) > a.

o If § is a limit ordinal then frk(v) > § iff frk(v) > a, for all & < 6.
Example. (a) The tree

2/'\
1
/7 \\ /7 N\ |
[e] 1 [e] [e] 3
| VRN
o 1 2
| |
[e] 1
VEERN
(o) (o]

has foundation rank s.

(b) For every ordinal «, we can construct a tree ¥, of foundation
rank a. ¥, consists just of a single vertex. If a > o then we can construct
¥, by taking the disjoint union of all £, B < «, and adding a new vertex
as the root:

3lX"’l

AN N AN

Lemma 1.12. Let ¥ be a tree and u,v € T. If u < v then we have

frk(u) > frk(v) or frk(u) = frk(v) = oo.
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Lemma1.13. Let S beatreeandv e T.
(a) frk(v) =sup{frk(u) + 1| u is a successor of v } .
(b) We have frk(v) = oo if and only if fiv contains an infinite path.

Proof. (a) Let F be the fixed point induction used to define frk(v). If u is
a successor of v then u € F(frk(u) + 1) \ F(frk(u)) and u € tv implies
that v ¢ F(frk(u) + 1). Hence, frk(v) > frk(u) + 1. For the converse,
suppose that frk(v) > a, i.e, v ¢ F(a +1). There exists some vertex
w > v with w ¢ F(a). Let u be the successor of v such that v < u < w. If
u < w then, by definition of F(a +1), it follows that u ¢ F(a+1) 2 F(a).
Otherwise, we have u = w ¢ F(«). Consequently, for every a < frk(v),
there exists some successor u with frk(u) > a.

(b) If frk(v) = oo then (a) implies that there is some successor u of v
with frk(u) = co. Hence, we can inductively construct an infinite path
V=¥, <V, <... such that frk(v,) = oo, for all n.

Conversely, if v, < v, < ... is an infinite path then it follows by
induction on « that v, ¢ F(«a), for all n. Therefore, we have frk(v,) =

0. O

Corollary 1.14. Let S = (T,<). We have frk(2) < oo if and only if the
partial order 2P := (T, >) is well-founded.

Lemma 1.15. Let T € x%. If frk(T) < oo then frk(T) < x™*.

Proof. Suppose, for a contradiction that x* < frk(T) < co. By the pre-
ceding corollary, we know that the inverse ordering > is well-founded.
Hence, there exists a maximal vertex v € T such that frk(v) > ™. Let
S be the set of successors of v. By maximality and Lemma 1.13, it follows
that

k" =frk(v) = sup { frk(u) +1|ueS},

where frk(u) < x*. Hence, «* is the supremum of a set of |S| < x*
ordinals each of which is less then «™. This contradicts the fact that every
successor cardinal is regular. OJ
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2. Lattices

Lattices are partial orders that, although not necessarily complete, enjoy
a certain weak completeness property. Instead of requiring that every
subset has a supremum and an infimum we only do so for all finite sets.

Definition 2.1. (a) A partial order £ = (L,c) is a lower semilattice if
every pair a, b € L has a greatest lower bound inf {a, b}. Analogously
we call £ an upper semilattice if every pair a,b € L has a least upper
bound sup {a, b}.

(b) A lattice is a structure € = (L, L, N, ) where E is a partial order
and

anb=inf{a,b} and aub=sup{a,b}, fora,bel.
A lattice £ is bounded if it has a least element 1 and a greatest element T.

Remark. (a) If (L,c) is both an upper and a lower semilattice then there
exists a unique expansion (L, 1, U, E) to a lattice. Informally we will there-
fore also call the order (L, c) a lattice. But note that by a homomorphism
between lattices we always mean a homomorphism with respect to the
full signature.

Similarly, we will also call structures of the form (L, n, £) with

anb=inf{a,b}
a lower semilattice, and structures (L, L, =) with
aub=sup{a,b}

an upper semilattice.
(b) All complete partial orders and all linear orders are lattices.

Example. (a) The divisibility order (N, | } is a lattice where m nn is the
greatest common divisor of m and n and m U # is their least common
multiple.
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(b) Cong () and Sub(Q) are lattices.
(c) Let A be a structure and S the family of all finitely generated
substructures of 2. Then (S, €) is a lattice.

Exercise 2.1. (a) Let £ be a lattice and a, b € L. Prove that the interval
[a, b] induces a sublattice.
(b) Prove that every substructure of a lattice is a lattice.

The ordering T is actually redundant since it can be defined with the
help of mor L.

Lemma 2.2. Let €= (L,M,,E) be a lattice.

(a) Fora,b € L, we have
acb iff anb=a iff aub=0>.

(b) Ifbc cthen
anbcanc and aubtauc.

Proof. (a) is trivial. For (b), we have
anb=an(bnc)=(ana)n(bnec)=(anb)n(anc),

by (a). Again by (a), it follows that a m b c a r c. The other inequality is
proved in the same way. O

Lemma 2.3. A structure € = (L, N, ) is a lower semilattice if and only if,
forall a,b, c € L, we have

acb iff anb=a,

ana=a, (idempotence)
anb=bna, (commutativity)
an(bnc)=(anb)nc. (associativity)
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Proof. (=) If € is a lower semilattice then the above conditions follow
immediately from the definition of the infimum.

(<=) Suppose that £ satisfies the above conditions. First we show that
C is a partial order. It is reflexive since a M a = a implies that a © a. For
antisymmetry, note that a © b and b c© a implies that

a=anb=bna=>b.

Finally, for transitivity suppose that a © b and b c© c. Then we have
anb=aandbnc =b. It follows that

anc=(anb)nc=an(bnc)=anb=a.

Hence, we have a C c.
It remains to prove that a M b = inf {a, b}. We have

(anb)nb=an(bnb)=anb,
which implies that amb € b. Similarly, we obtain arb £ a. Consequently,
anb is alower bound of {a, b}. Furthermore, if ¢ is some element with
cCaandcc bthenwehavecmna=candcnb = cand it follows that

crn(anb)=(cna)nb=cnb=c.

Hence, ¢ = an b and anb is the greatest lower bound of {a,b}. [

As an immediate consequence we obtain the following characterisa-
tion of lattices.

Lemma 2.4. A structure £ = (L,N, U, C) is a lattice if and only if, for all
a,b,ce L, wehave

acb iff anb=a
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and ana=a ala=a (idempotence)
anb=bna aub=bua (commutativity)
an(aub)=a au(anb)=a (absorption)
an(bne)=(anb)nc (associativity)

au(buc)=(aub)uc

We conclude this section with a look at three important subclasses of
lattices.

Definition 2.5. Let £ = (L, M, U, c) be a lattice.
(a) £ is modular if, for all a, b, ¢ € L, we have that

acb implies au(bnc)=bn(auc).
(b) £ is distributive if, for all a, b, ¢ € L, we have
an(buc)=(anb)u(anc)
and au(bnc)=(aub)n(auc).

(c) £1is boolean if it is distributive, bounded, and, for every a € L there
is some element a* € L such that

arna*=1 and aua*=T.

The element a” is called the complement of a. If € is a boolean lattice
then we call the structure (L, M, U, *) a boolean algebra.

Example. For every set A, (P(A),n,u,*) forms a boolean algebra with
X*:=ANX.

Remark. Note that every sublattice of a power-set lattice ((A), C) is
distributive.

Exercise 2.2. Prove that every sublattice of a distributive lattice is dis-
tributive and that every sublattice of a modular lattice is modular.
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buc
b alc
bn(auc)
c
au((bnc)
a
brc
anc

Figure 2.. The general situation

To better understand the modularity condition we have shown in
Figure 2 the corresponding situation in an arbitrary lattice. (Some of the
depicted elements might coincide.)

Lemma 2.6. If a & b then we have
actau(bnec)cbn(auc)ch.

Proof. The first and the last inequality follow immediately from the
definition of U and n. For the remaining inequality, note that

ach andbncch implies au(bnc)cb,
and acaucandbnccccauc implies au(bnec)cauc.[]
In general the distributive laws also hold only in one direction.
Lemma 2.7. In every lattice £, we have
an(buc)2(anb)u(anc)
and au(bnec)e(aub)n(auc),
foralla,b,ceL.
Lemma 2.8. Every distributive lattice is modular.

Proof. a £ b implies a u b = b. Consequently, we have

au(bne)=(aub)n(auc)=bn(auc). O
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Lemma 2.9. A lattice £ is modular if, and only if,
actbandauc=buc implies au(bnc)=b.
Proof. (=) Ifac bandauc=buc, modularity implies that
b=bn(buc)=bn(auc)=au(bnec).
(«=) Suppose that a c b. To show that
au(bne)=bn(auc)

we consider the element x := b (auc). Note that a © x © a U ¢ implies
auc = x U c. By assumption, it therefore follows that

au(xnc)=x.
Furthermore, by Lemma 2.6 we have
bnccau(bne)cxch,
which implies that x M ¢ = b ¢. Hence,
au(bne)=au(xnc)=x. O

Distributive and modular lattices can be characterised in terms of
forbidden configurations.

Definition 2.10. Let M; and N, be the following lattices:
Ms ! Ns:
a Cc c
1 1

Theorem 2.11. Let £ be a lattice.

(a) £is modular iff there exists no embedding N, — L.
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(b) & is distributive iff there exists neither an embedding My — £ nor
an embedding Ny — £.

Proof. (a) (=) Suppose that h : N; — £ is an embedding. Then h(a) ©
h(b) but
h(a)u (h(b)nh(c)) =h(a)uh(L) = h(a)
#h(b) =h(b)nh(T)
=h(b)n (h(a)uh(c)).

Hence, £ is not modular.
(<=) Suppose that £ is not modular. Then there exist elements x, y, z €
L,suchthatx € ybutxu(ynz) # yn(xuz). Set

a=xu(ynz), d=buz,
b=yn(xuz), e:=anz.

We claim that the inclusion map {a,b,z,d, e} — L is the desired em-
bedding.
Note that x © y and x £ x U z implies

a=xu(ynz)cxu(yn(xuz))=yn(xuz)=>b.

Hence, wehavee T ac bt dandec zc d. It remains to prove that
a%z%b.If a czthen we have

z=auz=(xu(ynz))uz=xu((ynz)uz)=xuz
which implies that
acb=yn(xuz)=ynzcxu(ynz)=a.

A contradiction. The assumption that z = b leads to a similar contradic-
tion.

(b) By (a) it is sufficient to prove that a modular lattice £ is distributive
if and only if there is no embedding M, — £.
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(=) Suppose that i : M, — £ is an embedding. Then we have

h(a)u(h(b)nh(c)) =h(a)uh(L) =h(a)
+h(T) =h(T)nh(T)
= (h(a)uh(b)) 1 (h(a) L h(c)).

Hence, £ is not distributive.
(<=) Suppose that £ is not distributive. Then we can find elements
X, ¥,z € L such that

xu(ynz)e(xuy)n(xuz).
Set

d=(xny)u(xnz)u(ynz), a:=(xne)ud,
e=(xuy)n(xuz)n(yuz), b:=(yne)ud,
c:=(zne)ud.

By definition we have d € a, b, ¢ € e. We claim that {a, b, ¢, d, e} induce
a copy of M. By absorption, we have

xud=xuxu(ynz)=xu(ynz).
On the other hand, since £ is modular and x € (x U y) N (x Uz) we have

xUe=xuU[(xuy)n(xuz)n(yuz)]

=[(xuy)n(xuz)]nfxu(yuz)]
=(xuy)n(xuz).

Hence, x U d c x u e which implies that d c e. It remains to prove that

anb=anc=bnc=d,

and aub=auc=buc=e.
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By symmetry and duality, we only need to show that a b = d. Applying
the absorption law twice we have

(anb)nd=((xne)ud)n((yne)ud)nd
=((xne)ud)nd=d.

Finally, note that the elements a, b, c are distinct since a = b would imply
thatd=anb=a=aub=e. OJ

3. Ideals and filters

The notions of a normal subgroup or an ideal of a ring can be generalised
to lattices.

Definition 3.1. Let £ = (L, M, U, c) be a lattice.

(a) A nonempty initial segment a C L is an ideal if a, b € a implies
a u b ¢ a. Similarly, we call a nonempty final segment u € L a filter if
a,b euimpliesanb e u.

(b) An ideal or filter is proper if it is a proper subset of L. A proper
ideal or filter a is maximal if there exists no proper ideal or filter b such
that a c b c L. Ideals of the form |}a, for some a € L, and filters of the
form fla are called principal.

Example. (a) In every bounded lattice we have the trivial ideal {1} and
the trivial filter {T}.
(b) Consider (f(A), c). We can define an ideal a and a filter u by

a:={XcA|Xisfinite },
u:={XcA|A~\ Xisfinite }.

They are proper if and only if A is infinite.
(c) Let K be a field and consider the lattice of all polynomials over K
with leading coefficient 1 ordered by the inverse divisibility relation

peq :iff qlp.
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We have L = oand T = 1. p N q is the least common multiple of p and g
and p U q is their greatest common divisor. For every subset A ¢ K, we
obtain the ideal

I(A):={peK[x]|p(a)=oforallac A}.

Remark. To every lattice € = (L, M, U, E) we can associate the opposite
lattice £°P = (L, U, N, 3) where the order is reversed. Obviously, this
functions maps filters of £ to ideals of £°P and ideals of £ to filters.
Therefore, we will state and prove many results only in one version,
either for filters or for ideals. The other half can be obtained by duality.

Ideal and filters can be characterised in terms of a suitable closure

operator.

Definition 3.2. Let £ be a lattice and X ¢ L. We define

dy(X):={beL|bca,u---Ua,forsomea,,...,a, € X, n<w},

cdy(X)={beL|b2a,n---Na,forsomea,,...,a, € X, n<w}.

Lemma 3.3. Let € be a lattice.

(a) If Lis bounded then cl| and cly are closure operators on L with finite
character.

(b) A nonempty set X < L is an ideal if and only if it is cl,-closed.
(c) A nonempty set X < L is a filter if and only if it is cl;-closed.

Corollary 3.4. The set of all ideals of a bounded lattice £ forms a complete
partial order. It is closed under arbitrary intersections and under unions
of chains.

Corollary 3.5. Let £ be a lattice. If a is a proper ideal and u a proper filter
with a nu = & then the set

Z:={b|baproperideal withaCbandbnu=g}

contains a maximal element.
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Proof. We show that 7 is inductively ordered. Then it contains a maximal
element by Zorn’s Lemma. Let C € 7 be a chain. Then ¢ := U C is an
ideal. Since anu = @&, for all a € Z, we have ¢ nu = @. In particular, ¢ is
proper. Consequently, ¢ € Z. O

Lemma 3.6. Let £ be a lattice. The following statements are equivalent:
(1) Every ideal of € is principal.

(2) Every strictly increasing sequence a, C a, C ... of ideals of £ is
finite.

(3) The inverse subset relation is a well-order on the set of all ideals of £.

Proof. Clearly, (2) is equivalent to (3). Let us prove that (2) implies (1).
Suppose that there exists an ideal a that is not principal. We select a
sequence (a, )< Of elements of a as follows. Let a, € a be arbitrary. If
Ao, . ..>an € a have already been chosen then, since a is not principal,
we can find an element a,,;, € a\ (g, U+ U a,) # @. This way we
obtain an infinite strictly increasing sequence of ideals

lao cl(aoua)c---cl(agu---ua,)c...,

as desired.

It remains to prove the converse. Suppose that a, c a; ¢ ... is an
infinite strictly increasing sequence of ideals. Their union b := U, a, is
again an ideal. We claim that b is not principal. Suppose otherwise. Then
b = ||b, for some b € b. Since b = U, a,, there is some index n such that
b € a,. It follows that b = |b C a,, c a,,,, € b. Contradiction. O

Ideals and filters in lattices play the same role with regard to homo-
morphisms and congruences as normal subgroups in group theory or
ideals in ring theory. The main difference is that, since the lattice oper-
ations are not invertible, there might be several congruences inducing
the same ideal.

Lemma 3.7. Let h: £ - K be a homomorphism between lattices and let
a € K be an ideal of K. If h™*[a] is nonempty then it is an ideal of €.
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Proof. Suppose that a € h™*[a] and b € a. Since h is a homomorphism
it follows that h(b) © h(a) € a. Consequently, we have h(b) € a and
beh™[a].

Similarly, if a, b € h™"[a] then h(a), h(b) € a implies that h(au b) =
h(a) uh(b) € a. Hence, we have a u b € h™'[a]. O

Corollary 3.8. Let h : £ - K be a surjective homomorphism between
lattices where K is bounded.

(@) h™'(L) is an ideal.
(b) h7(T) is a filter.

Corollary 3.9. Let £ be a bounded lattice. If ~ is a congruence of £ then
[L]~ is an ideal and [T].. is a filter.

There are important cases where we would like to apply lattice theory
but which do not fall under the above definition of a lattice because the
underlying ‘order’ £ fails to be a partial order. A prominent example is
given by ringslike (Z, | ) and (R[x], | ) where the divisibility relation |
is not antisymmetric. In the ring of integers, for instance, we have

1]-1 and -1]1.

Definition 3.10. A graph (V, E) is a preorder if E is reflexive and transit-
ive.

Example. If R is a ring then the divisibility relation
x|y :ifft y=axb, forsomea,beR
forms a preorder on R.
Every preorder has a quotient that is a partial order.

Lemma 3.11. Let P = (P, <) be a preorder and define
x~y :iff x<yandy=<x.

~ is a congruence on P and the quotient (P, <)/~ is a partial order.
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Proof. By definition, ~ is symmetric. And since < is a preorder it follows
that ~ is reflexive and transitive. Therefore, ~ is an equivalence relation.
Suppose that x ~ x" and y ~ y". If x < y then x’ < x < y < y' implies
x’" < y'. Hence, ~ is a congruence.

It is easy to see that P/~ is a preorder. It remains to show that it is also
antisymmetric. Let [x]., [y]. € P/~ with [x]. < [y]. and [y]. < [x]..
Then x < y and y < x implies x ~ y. Hence, [x]. = [y]-. O

We can generalise many concepts of lattice theory to preorders.

Definition 3.12. (a) A prelattice is a preorder (L, <) such that the corres-
ponding partial order (L, <)/~ is a lattice.

(b) Let £ be a prelattice and 7 : € - £/~ the canonical projection to
the corresponding lattice. An ideal of £ is a set of the form 77 [a] where
a is an ideal of €/~. Similarly, if u is a filter of £/~ then we call the set
7 '[u] a filter of £. In the same way we can generalise other notions to
prelattices, like proper and principal ideals.

Example. Let (R, +,—,-, 0,1) be a commutative factorial ring. The divis-
ibility order (R, | ) is a prelattice and a subset I € R is a ring-theoretic
ideal if, and only if, it is a filter of (R, | ).
4. Primeideals and ultrafilters
Definition 4.1. A proper ideal a is a prime ideal if

xmyea implies xecaoryea.
Similarly, we call a proper filter u an ultrafilter if

xUyeu implies xeuoryeu.

In the special case that the lattice in question is the power-set algebra
(P(X),u,n, c) we call u an ultrafilter on X.
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Example. (a) Let 9t := (N, | ). A filter u € N is an ultrafilter if, and only
if, either u = {0} or there exists a prime number p such that

u={kp|keN}.
(b) Let § = (F, ) where
F:={Xcw|Xorw\ Xis finite } .
Then § is a lattice and we have the following ultrafilters:

u, = f{n}, forn<w,
U :={ X Cw|w~ Xisfinite } .

Lemma 4.2. A set X C L is a prime ideal if, and only if, its complement
L\ X is an ultrafilter.

Proof. By duality it is sufficient to prove one direction. Leta € L be a
prime ideal. We claim that u := L \ a is an ultrafilter. Since a is proper
and nonempty so is u. If a © b then b € a implies a € a. Consequently,
a € uimplies b € u and u is a final segment. If a M b € a then we have
acaorb easinceais prime. Thus, a,b € uimpliesanb euanduisa
filter. Finally, a, b € a implies a U b € a. Hence, if a U b € u then we have
acuorbeu. O

Prime ideals can be characterised in terms of homomorphisms.

Definition 4.3. Let B, denote the lattice with universe [2] and ordering
0 <1. And B, is the lattice with universe [2] x [2] and ordering

(i,ky<(j,1) :iff i<jandk<I.
Remark. B, and B,,, are boolean lattices.

Lemma 4.4. Let h: € — B, be a surjective lattice homomorphism.

(a) h7'(o) is a prime ideal.

208

4. Prime ideals and ultrafilters

(b) h7*(1) is an ultrafilter.

Proof. Leta:= h™'(0). We have already seen in Lemma 3.8 that a is an
ideal. To show that it is prime suppose that anb € a. Then h(a) nh(b) =
h(amnb) = o implies that h(a) = o or h(b) = o. Hence, a € a or
bea. O

Lemma 4.5. Let € be a lattice, a a prime ideal, and u an ultrafilter with
anu=g.
(a) There exists a homomorphism h : € — B, with h™ (o) = a.
(b) There exists a homomorphism h : € - B, with h™' (1) = u.
(c) There exists a homomorphism h : € - B,,, with h™'({0,0)) = a
and h™({1,1)) = u.

Proof. (a) We claim that the function

h(x) = {o ifxea,

1 ifx¢éa.

is the desired homomorphism. By definition we have a = h™*(0). There-
fore, we only need to check that & is indeed a homomorphism.
If x, y ¢ a then we have x 1 y ¢ a since a is prime. It follows that

h(xmy)=1=1n1=h(x)nh(y).

Otherwise, we may assume, by symmetry, that x € a. Since x N y € x we
have x My e aand

h(xny)=o=o0onh(y)=h(x)nh(x).

The claim that h(xuy) = h(x)uh(y) is shown analogously. If x, y € a
then x U y € a and we have h(x U y) = o = h(x) u h(y). Otherwise, by
symmetry, we may assume that x ¢ a. Hence, x U y ¢ a which implies
that h(x L y) =1=h(x) uh(y).

(b) follows from (a) by duality.

209



B2. Trees and lattices

(c) Let ho, hy : € > B, be the homomorphisms from (a) and (b) with
hy'(o) =aand h*(1) = u. We define

h(x) = (ho(x), hy(x)).

Since a nu = @ it follows that h™*({0,0)) = a and h™*((1,1)) = u.

Furthermore, 4 is a homomorphism since

h(x)Uh(y) = (Bo(x), (%)) U (Bo(y), (1))
= (ho(x) Uho(y), h(x)u hl()’)) =h(xuy),

and similarly for m. O

Corollary 4.6. Let £ be a lattice. A subset X C L is a prime ideal if and
only if X = h™(0) for some surjective homomorphism h : £ - B,.

The prime ideals in distributive and boolean lattices are especially
well-behaved. We will show that for these lattices every maximal ideal is
prime and that, for boolean lattices, the converse also holds. Note that
in general there may be non-prime maximal ideals. For instance, the
lattice M, has three maximal ideals none of which is prime.

Theorem 4.7. Let £ be a distributive lattice, a an ideal, and u a filter with
anu = g. There exists a maximal ideal b 2 a with b nu = & and this ideal
is prime.

Proof. The existence of b was already proved in Corollary 3.5. It remains
to show that it is prime. Suppose otherwise. Then there are elements
x,y € L~ bwith x n y € b. By maximality of b, it follows that

cdy(bu{x})nuzz and dc(bu{y})nuz+g.

Therefore, there are elements a,b ¢ bwithaux euandbu y € u.

Consequently,

z:=(aux)n(buy)eu.
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On the other hand, by distributivity we have

z=(anb)u(any)u(xnb)u(xny).
—_— Y= Y Y=
b €b €b b

Thus, z € b nu # . Contradiction. O

Corollary 4.8. Every maximal ideal in a distributive lattice is prime.

As a consequence of Theorem 4.7 we obtain a simple condition for
the existence of ultrafilters containing given elements.

Definition 4.9. A set X C L has the finite intersection property if
MX, #L1, forallfinite X, € X.

If L has no least element then every subset has the finite intersection
property.

Corollary 4.10. Let € be a bounded distributive lattice and X C L. There
exists an ultrafilter w 2 X if, and only if, X has the finite intersection

property.

Proof. X has the finite intersection property if and only if 1 ¢ cl;(X).
By (the dual of) Theorem 4.7, 1 ¢ cl;(X) implies that there exists an
ultrafilter u 2 cl4 (X). O

In boolean lattices the structure of the prime ideals is especially simple.

Theorem 4.11. Let B be a boolean lattice and a € B an ideal. The following
statements are equivalent:

(1) ais maximal.

(2) ais prime.

(3) For every x € B, we have either x c a or x* € a.
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Proof. (1) = (2) was shown in Corollary 4.8.

(2) = (3) We have x mx™* = 1 € a. Since a is a prime ideal it follows
that x € a or x* € a. Clearly, we cannot have both since, otherwise,
T =x U x* e aand a would not be proper.

(3) = (1) Let b o a be an ideal. We have to show that b is nonproper.
Fix some x € b \ a. By assumption, x* € a € b. Hence, T = x Lx* € band
b = B is nonproper. O

Corollary 4.12. A bounded distributive lattice £ is boolean if, and only if,
there are no prime ideals a,b with a c b.

Proof. (=) By Theorem 4.11, every prime ideal is maximal.
(<«=) We have to show that every element a € L has a complement a*.
Suppose that some element a has none. The sets

u:={bel|aub=T},
p:={belL|b2andforsomedeu}
are filters. If 1 € p then 1 = and for some d with aud = T, and d would

be a complement of a. Consequently, v is proper. By Theorem 4.7 it
follows that there exists a prime ideal a with a N v = &. The ideal

b:={beL|bcaucforsomecea}

is proper since T = a U ¢, for some ¢ € a would imply that c e anu #
@. Choose some prime ideal ¢ 2 b. Since b > a we have found two
comparable prime ideals a c ¢. Contradiction. O

Let us compute the number of ultrafilters in a boolean lattice of the

form (£(A),c).
Theorem 4.13. For every infinite set A there are 22" ultrafilters on A.

Proof. Set k :=|Al. As every ultrafilter is a subset of £(A), there are at
most [P(£(A))| = 22" ultrafilters on A. Thus, we only need to prove a
lower bound.
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We call a family F ¢ £(A) independent if every non-trivial finite
boolean combination of sets in F has cardinality |A|, that is, for all pair-
wise distinct sets X, ..., X;u_1, Yo, ..., Yy, € F, m,n < w, we have

‘Xom..-meﬂﬁ(A\Yo)ﬁ-"ﬁ(A\Ynfl)‘:|A|'

We will prove below that there exists an independent family F ¢ (A)
of size |F| = 2*. Using such a family F we can construct 2> ultrafilters as
follows. For each subset K ¢ F, set

Sk =KU{A~NX|XeF\K}.

Note that Sx C F has the finite intersection property since F is independ-
ent. Therefore, we can use Corollary 4.10 to extend Sk to an ultrafilter
ug 2 Sg.

Since |[P(F)| = 2!Fl = 2", it remains to prove that ug # uy for K # L.
Thus, let K # L. By symmetry, we may assume that there is some set
X e KNL. Then X € Sk € ugand AN X € §; € ug. Consequently,
Ug # Ur.

It remains to construct the desired family F ¢ (A). Let W be the
set of all pairs (B, H) where B C A is finite and H is a finite set of finite
subsets of A. Then |W| = |A|*™ ® (JA|™° )< = |A| and there exists
a bijection ¢ : W — A. It is sufficient to find an independent family
F ¢ P(W) of size 2* since we can apply ¢ to F to obtain the desired
subsets of f°(A). For s € A, let

P:={(B,H)e W|BnseH}.
We claim that
F:={P|scA}

is the desired independent family.

To show that it has size 2", consider distinct subsets s, ¢ A. By
symmetry we may assume that s ¢ ¢. Fixing some element a € s \ ¢, it
follows that

({a},{{a}}) e P.\ P;, which implies that P, # P;.
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B2. Trees and lattices
To show that F is independent, let so,...,Sn-1,to,...,tn—1 S A be
pairwise distinct. For every pair (i, k) € [m] x [n], we fix some element
aik € (siNtp) U (b Nsi).

Let Q be the set of all finite subsets of A that contain all chosen ele-
ments a;k, for i < m, k < n. By choice of a;; we have

Bns;+#+Bntg, forallBeQ.
Setting Hp := { Bn's; | i < m } this implies that

(B,Hp)eP;, and (B,Hp)¢P;,, foralli<mandk<n.
Consequently,

(B,Hpg)eP, ,n---nP;, Nn(WNP )n---n(W\P, ),
for all B € Q. This implies that

P, NP, A (WNP)n--n(WNP,)
>1Ql=x = |W]|. O

Exercise 4.1. How many ultrafilters are there on a finite set A?

We conclude this section with a result stating that ultrafilters of a
subalgebra have several extensions to ultrafilters of the whole algebra.

Proposition 4.14. Let % ¢ B be boolean algebras. If, for every ultrafilter u
of U, there exists a unique ultrafilter v of B with u C v, then A = B.

Proof. Let U € B be boolean algebras such that every ultrafilter of & can
be extended to a unique ultrafilter of B. Consider some element b € B.
In order to show that b € A, we prove the following statements.

(1) For every ultrafilter v of & with An b S v, the set (v N A) U {b}
has the finite intersection property.
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(2) There is no ultrafilter v of B containing A n b and b*.
(3) There is some element a € AN f{b with a £ b.

Note that the proposition follows from (3) since a € b implies b < a.
Hence, b = a € A. It remains to prove the claims.

(1) For a contradiction, suppose that there is some ultrafilter v such
that An b € v, but (vn A) U {b} does not have the finite intersection
property. Since v N A is closed under the infimum operation n, it follows
that there is some element a e v N A such thatamb = L. Hence, b E a¥,
which implies that a* e Anffb Cpand 1L = ana” e v. A contradiction.

(2) For a contradiction, suppose that there is some ultrafilter v of B
with (An fib) u {b*} < v. By (1) and Corollary 4.10, there is some
ultrafilter v’ containing (v N A) U {b}. By assumption, ' NA=pn A
implies v’ = v. But b € v’ while b* € v. A contradiction.

(3) According to (2) there is no ultrafilter containing (An{b) u {b*}.
By Corollary 4.10, it follows that this set does not have the finite inter-
section property. Since A N fib is closed under the infimum operation r,
we can therefore find an element a € A n f{b such that a m b* = 1.
Consequently, a £ b. U

5. Atomic lattices and partition rank

In this section we take a closer look at those elements of a lattice that are
near to the bottom. The distance of an element from 1 can be measured
in different ways. A simple but coarse measure is the height of an element.

Definition 5.1. Let £ be a lattice.
(a) The height of an element a € L is

ht(a) :=sup {|C|| C c laisachain}.

Elements of height 1 are called atoms.
(b) £ is atomless if it has no atoms. It is atomic if || a contains an atom,
for every element a # 1.
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Example. Let B be a vector space and let £ be the set of all linear sub-
spaces of B. Note that £ consists of all fixed points of the closure operator
mapping a set X € V to the subspace spanned by X. Hence, £ forms a
complete lattice where UMW = UnWand Uu W = U @ W is the
subspace spanned by U u W. This lattice is atomic. The height of an
element U € L coincides with its dimension.

The notion of height is mainly meaningful for modular lattices where
it is well-behaved, at least for elements of finite height.

Lemma 5.2. Let £ be a modular lattice and a, b € L. The function
¢:[lanb, b] - [a, aub]l:x—»aux
is strictly increasing and surjective. Its inverse is given by the function

¢:[a, aub]l—[anb, b]:x—bnx.

a/\x\ /b

u

X

/
anb
Proof. Clearly, ¢ and y are increasing and we have rngg ¢ fla and
rng y € ||b. Furthermore, x € b © aub implies that ¢(x) = aux c aub.
Hence, rng ¢ < |}(a L ). Similarly, it follows that rngy < ff(a N b).

It remains to show that y is the inverse of ¢. Note that if £ is modular
then so is £°P. It is therefore sufficient to prove that ¢ o ¥ = id, the
equation yo ¢ = id then follows by duality. For a € x © au b, modularity
implies that

o(y(x))=au(bnx)=xn(aubd)=x,
as desired. OJ
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Figure 3.. Proof of Lemma 5.3

Lemma 5.3. Let £ be a modular lattice and a € L an element of height
n < R,. Every maximal chain in |la has size n + 1.

Proof. We prove by induction on # that, if b, c --- c b, is a maximal
chain with b,, = a, then m = n. Since a has height », there exists a chain
CoC-+Ccyofsizen+1withc, = Land ¢, = a.If b,,_, = ¢,_, then
the claim follows by inductive hypothesis. Suppose that b,,_; # c,_;.
Setd := by_, Mcy—y and let C € |d be a maximal chain. Then |C| =
ht(d) +1<ht(c,—,) +1=n.

By Lemma 5.2, there is no element x with d © x £ ¢,_, because,
otherwise, we would have ¢,,_, = ¢,_, U x £ ¢, in contradiction to the
minimality of n. Consequently, C U {c,_, } is a maximal chain in |}c,_,
and, by inductive hypothesis, it follows that |C| + 1 = n.

Similarly, there is no element x with d = x © b,,_,. Hence, CU{b,,_, }
is a maximal chain in ||b,,_, and we have |C| + 1 = m. It follows that
m =|C| +1 = n, as desired. O

Example. For infinite heights the lemma fails. Consider the real interval
I := [0,1] and its subset K := I n Q. We order the product L := [ x K
by (a,b) < (¢,d) iff a < b and ¢ < d. Then L is a modular lattice with
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maximal chains
C:={o}xK)u(Ix{1}) and C":={(x,x)|xeK}.
But |C| = 2% while |C'| = R,.

Lemma 5.4. Let £ be a modular lattice and a € b elements of finite height.
The size of a maximal chain C C [a, b] isht(b) — ht(a) + 1.

Proof. Every chain in C C [4,b] can be extended to a chain in |}b
of size |C| + ht(a). Therefore, the size of such chains is bounded by
ht(b) - ht(a) + 1. Conversely, fix maximal chains C' ¢ [a,b] and
C" c[1,a]. Then C'uC" is also maximal. By Lemma 5.3, it follows that
|C"'uC”| =ht(b) +1.Since |C"'| = ht(a) +1and C'n C" = {a} it follows
that |C'| = ht(b) — ht(a) +1. O

Theorem s5.5. Let £ be a modular lattice. If a, b € L are elements with
ht(a L b) < R, then

ht(a) + ht(b) =ht(au b) + ht(an b).

Proof. Setl, :=[anb,a]andI, := [b,au b]. The partial orders J, :=
(I,,c) and 3§, := (I,,c) are modular lattices and, by Lemma 5.2, there
exists an isomorphism ¢ : §, - J,. By Lemma 5.4, the height of the top
element of 3, is ht(a) — ht(a M b) + 1 and the height of the top element
of 3, isht(aub) —ht(b) + 1. Since F, = J, it follows that

ht(a) -ht(anb) +1=ht(aub) —ht(d) +1. O

Remark. The above equation is called the modular law. It can be used
to characterise modular lattices. If £ is a lattice where every element
has finite height then £ is modular if and only if every pair a, b € L of
elements satisfies the modular law.

Example. For the subspace lattice of a vector space, we obtain the well-
known dimension formula:

dimU +dim W =dim(Un W) +dim(U & W).
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For boolean algebras the structure of the elements of finite height is
especially simple.

Lemma 5.6. Let B be a boolean algebra. If b c ¢ are elements of finite
height then there exists an atom a € |lc \ ||b.

Proof. Let b’ := ¢ b*. Since ¢ has finite height there exists a finite chain
C c |Jb’ of maximal size. This chain contains an atom a. Note that a = b
would imply a € brb’ = L which is impossible since a is an atom. Hence,
acelc~|b. O

Lemmas.7. Let B be a boolean algebra and a € B an element of height
n < R,. Then there are exactly n atoms in | a.

Proof. By Lemma 5.6, if ¢, © --- © ¢, is a chain of length n + 1 with
¢n = a then there are at least n atoms below c¢,,. Conversely, suppose

that b,,...,b,-, € |a are atoms. Set ¢, := 1 and ¢;4, := ¢; U b;. Then
Co T -+ C ¢, forms a chain of length n +11in |a. Consequently, the height
of a is at least n. Ol

Corollary 5.8. Let B be a boolean algebra. Every element a € B with
finite height is the supremum of finitely many atoms.

Proof. Let P be the set of all atoms in |Ja. It is sufficient to show that
a = sup P. Suppose otherwise. Then ¢ := sup P c a. By Lemma 5.6, there
exists an atom b € |Ja \ | c. By definition of P, it follows that b € P. But
b % ¢ = sup P. Contradiction. O

Example. The previous lemma cannot be generalised to infinite heights.
Let A be an uncountable set and define

F:={XcA|XorA~ Xisfinite } .
Then (F, c) is a boolean algebra and we have

|X| if X is finite,
R, otherwise.

ht(X) = {
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But every infinite set X € F is uncountable. Hence, there are uncountably
many atoms below X.

Let us introduce a second measure of the distance between an element
and 1 that allows a finer classification of elements of infinite height.
Basically, instead of considering all chains in |Ja we only look at strictly
decreasing sequences.

Definition 5.9. Let £ be a lattice with least element 1.

(a) A partition of an element a € Lisa set P C |la with 1 ¢ P such that
prng=1,forall p,qePwithp+q.

(b) The partition rank of an element a € L is defined as follows:

o rkp(a) =—1iffa=1.
o tkp(a) >oiffa#1.

¢ rkp(a) > o +1iff there exists an infinite partition P of a such that
rkp(p) > o, forall p € P.

o For limit ordinals 8, we set tkp(a) > iff rkp(a) > «, forall a < 4.

Exercise 5.1. Let B be a boolean algebra and a € B an element of height
o < ht(a) < R,. Show that rkp(a) =1.

Lemma s.10. a C b implies tkp(a) < rkp(b).
Lemma s5.11. If € is a distributive lattice then
rkp(a L b) = max {rkp(a),rkp(b)}.

Proof. By the preceding lemma, we have rkp(aub) > rkp(a), tkp(b). It
remains to show that rkp(a u b) > o implies rkp(a) > a or rkp(b) > a.
We proceed by induction on a.

If o =-1then au b = 1 implies a = | and b = 1. For limit ordinals «,
there is nothing to do. Suppose that rkp(a L b) > a + 1. Then there exists
an infinite partition P of a U b such that rkp(p) > «, for all p € P. For
pe€P,seta,:=anpandb,:=bnp. Then

apuby,=(anp)u(bnp)=(aub)np=p.
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By inductive hypothesis, we know that
rkp(a, uby) =rkp(p) > &
implies that rkp(a,) > a or rkp(b,) > a. Set

Py:={peP|rkp(ap)>a}
and P,:={peP|rkp(b,)>a}.

Then P, U P, = P and at least one of the sets is infinite. By symmetry, let
us assume that P, is infinite. Then P, is an infinite partition of a with
tkp(q) > a, for all g € P,. Consequently, rkp(a) > o + 1. O

Lemma 5.12. Let h : A — B be an injective homomorphism between
boolean algebras. Then

tkp(a) <rkp(h(a)), forallacA.

Proof. If A c B then it follows immediately from the definition that
the rank of an element a € A in U is less than or equal to its rank in B.
Therefore, it is sufficient to prove that every injective homomorphism
between boolean algebras is an embedding.

Suppose that h(a) < h(b). Then L = h(a)nh(b)* = h(anb™). Since
h is injective it follows that a mb* = 1. Hence, a < b. O

As usual for ranks defined by inductive fixed points the maximal
non-infinite rank is bounded by the cardinality of the underlying set.

Lemma 5.13. Let € be a lattice. rkp(a) > |L|* implies that rkp(a) = co.

Proof. Letk := |L|and set X, := {a € L | rkp(a) > « }. Then X, 2 X,
for a < 8. Consequently, there is some « < x* such that X, = X,+,. This
implies that X, = X+ = Xo. O

The next lemma shows that it is possible to split elements of infinite
rank into an arbitrary number of elements whose rank is again infinite.
This will be useful to prove the existence of many different ultrafilters in
Corollary Bs.7.4 below.
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Definition 5.14. Let £ be a lattice with least element 1, and let x be
a cardinal and « an ordinal. An embedding of the tree x** is a family
(@ )wex<e of elements a,, € L such that

leca,ca, foralu<w,

a,May,=1 forallu,wwithu £wandw £ u.
(Note that the ordering is reversed.)

Lemma 5.15. Let € be a lattice and a € L. The following statements are
equivalent:

(1) rkp(a) = oo.
(2) There exists an embedding (b, )we,<o of 2= into £ with by = a.
(3) There exists an embedding (b, ) yexze of RS® into € with by = a.

Proof. (3) = (2) is trivial.

(1) = (3) Let k := |L|*. We construct the family (b,,),, by induction
on w such that rkp(b, ) = co. We start with by = a. If b,, has been
defined then rkp(b,,) > k + 1 implies that there exists an infinite parti-
tion P of b,, with rkp(p) > «, for all p € P. By Lemma 5.13, it follows that
rkp(p) = oo, for each p € P. Select distinct elements b, € P, for k < w.
Then we have b,,x N b,,, = 1 for k # n and rkp(b,,;) = o0, as desired.

(2) = (1) Let (b, ), be an embedding of 2°“ into € with by = a. By
induction on «, we prove that rkp(b,,) > «, for all w. Since b,,, c b,
we have b,, # 1 and rkp(b,,) > o. For limit ordinals, the claim follows
immediately from the inductive hypothesis. Hence, it remains to consider
the successor step. Suppose that rkp(b,, ) > «, for all w. The set { byon, |
n < w } is an infinite partition of b,, where each element has rank at
least . Therefore, rkp(b,,) > o + 1. O

In contrast to the preceding result, it turns out that we can split ele-

ments of non-infinite rank only a finite number of times into elements
of the same rank.
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Lemma 5.16. Let B be a boolean algebra. For every element a € B with
rkp(a) < oo, there exists a finite partition P of a such that

a=supP and rkp(p)=rkp(a), forallpeP.
Furthermore, if Q is any other partition of a with

tkp(q) =1kp(a), forallgeQ,
then |Q| < |P).

Proof. Let a := rkp(a). To find P we construct a tree T € 2°“ and
elements b,, € B, for w € T, with rkp(b,,) = a as follows. We start with
b(y = a.If b,, is already defined and there is some element ¢ € B such
that rkp (b, M ¢) = a and rkp(b,, N c*) = &, then we add woand wito T
and we set b,,, := b, N cand b,,, := b,, N ¢*. Otherwise, w becomes a
leaf of T.

We claim that any such tree T is finite. For a contradiction, suppose
there exists an infinite tree T as above. Since T is binary it contains an
infinite path € 2, by Lemma 1.9. Let w,, := 3 | n be the prefix of 8
of length n. For n < w, set ¢, := b, N b}, .Then we have ¢, € g and

Wnt1

tkp(c,) = a. Furthermore, b,,, € b,,,, ., for k < n, implies that

CkM ey =by, Nby, Nby,, Nb, =1.

Wn+1

Consequently, tkp(a) > a. Contradiction.

Let T be a tree as above and let P € T be the set of its leaves. Set
m := |P|andlet po, ..., pm—, be an enumeration of P. Then rkp(p,) = a,
pxMpn=Lfork#nanda=pou---Upm_.

Let Q be another partition of a with rkp(q) = a, for g € Q. We claim
that n < m. By construction of P, there exists, for every p € P, at most
one q € Q with rkp(p M q) = a. Hence, if n > m then we can find some
element g € Q such that rkp(p 1 q) < a, for all p € P. But

q=(gnpo)u---u(qgnpn)

implies, by Lemma 5.11, that rkp(g) < a. Contradiction. O
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Definition 5.17. Let B be a boolean algebra.

(a) Let a € B be an element with rkp(a) < oo. The partition de-
gree deg,(a) of a is the maximal cardinality of a partition P of a with
tkp(p) = rkp(a), forall p € P.If rkp(a) = oo then we set deg, (a) := oo.

(b) Let u be an ultrafilter of B. The partition rank of u is

rkp(u) :=min{rkp(a) |acu},
and its partition degree is
degp (1) := min { deg,(a) | a € u with rkp(a) = rkp(u) }.
We say that an element a € u has minimal rank and degree if
rkp(a) =rkp(u) and deg,(a) = deg,(u).
Example. Let Abe asetand § := (F, <) where
F:={XcA|Xor A~ Xisfinite }.
For X € F, we have

o if X is finite,

1 otherwise.

I'kp(X) = {

and

deg. (X) |X| if X is finite,
e =
& 1 otherwise.
For the ultrafilters
u,:=f{a} and u. :={XcA|AN Xisfinite},

we have

rkp(u,) =0 degp(u,) =1,
rkp (o) =1 degp (10) = 1.
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Remark. If P is a maximal partition of a with rkp(p) = rkp(a), for
all p € P, then it follows that deg, (p) = 1, for every p € P. For a proof,
suppose that p is an element with deg;, (p) > 1. Then there is a partition Q
of p with |Q| > 1 and we could enlarge P by replacing p by Q.

Lemma 5.18. Let B be a boolean algebra and o < n < R,. An element
a € B has height n if, and only if, rkp(a) = o and degp(a) = n.

Proof. If rkp(a) = o then |a contains only finitely many atoms since,
otherwise, these would form an infinite partition of a. Hence, a has finite
height.

Conversely, if rkp(a) > o then there exists an infinite partition P of a
such that tkp(p) > o, for all p € P. For every p € P, there is some atom
in ||p. Since ||p nllq = {1}, for p # g in P, it follows that there are
infinitely many atoms below a. By Lemma 5.7, it follows that ht(a) > R,.

Consequently, we have rkp(a) = o if and only if o < ht(a) < R,. It
remains to prove that deg, (a) = ht(a), for such elements a. We proceed
by induction on 7 := ht(a). If a is an atom then we have deg,(a) =1
since {a} and @ are the only partitions of a. For the inductive step,
suppose that n > 1. Let P be the set of atoms in | a. Then |P| = n and
a = sup P. Furthermore, by inductive hypothesis,

P={belal|deg,(b)=1}.

Let Q be a partition of a such that |Q| = deg,(a) and rkp(g) = o, for all
g € Q. By maximality of | Q] it follows that deg, () = 1, for g € Q. Hence,
Q ¢ P, which implies that Q = P and degp,(a) = |P| = n. O

Lemma 5.19. If u is an ultrafilter with rkp(u) < co then degp(u) =1.

Proof. Let a € ube an element of minimal rank and degree and let P be
a maximal partition of a such that a = sup P and rkp(p) = rkp(a), for
all p € P. Since u is an ultrafilter and P is finite, it follows that sup P € u
implies that p € u, for some p € P. By maximality of P we have deg, (p) =
1. This implies that deg,, (1) = 1. O
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Lemma 5.20. tkp(anc) = rkp(a) = rkp(anc*) < oo implies that
degp(anc) < degy(a).

Exercise 5.2. Prove the preceding lemma.

Every ultrafilter of non-infinite partition rank can be characterised by
any of its elements of minimal rank and degree.

Proposition 5.21. Let B be a boolean algebra and u, v distinct ultrafilters
of B with rkp (1), rkp(v) < co. Ifa € u and b € v are elements of minimal
rank and degree then a + b.

Proof. Since u # v there is some element ¢ € u\v. It follows that arc e u
and

rkp(anc) <rkp(a) =rkp(u).

Since a is of minimal rank we therefore have
tkp(anmc) =rkp(a).

Analogously, we can conclude that
rkp(bnc*) =rkp(d).

If a = b then it would follow that
tkp(amc) =rkp(a) =tkp(anc®).

This implies that deg, (a N ¢) < deg,(a) in contradiction to the minim-
ality of a. O

In particular, the number of such ultrafilters is bounded by the size of
the boolean algebra.

Corollary 5.22. Let B be a boolean algebra. There are at most |B| ultrafil-
ters u € B with rkp (1) < oco.

Proof. For every ultrafilter u ¢ B, choose an element a, € u of minimal
rank and degree. By Proposition 5.21, it follows that a, # a,, for u # p.
Consequently, there are at most |B| such ultrafilters. O
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1. Terms and term algebras

We can compose the operations of a structure to build new operations. In
the same way as the signature provides names for the basic operations we
can associate a name with each of these derived operation. A canonical
way of doing so is to name each operation by a description of how it is
build up from the given operations. These canonical names are called
terms.

Definition 1.1. (a) A term domain is an initial segment T € x<“ such
that, if « < § < x then xf € T implies xa € T. In particular, every term
domain forms a tree.

(b) A term is a function t : T — A where T is a term domain and
A a set of function symbols. The domain of t is the set dom ¢ := T. If
t(v) = A then we say that v is labelled by A.

(c) Let X be a signature and X a set of variables. We denote the set of
all function symbols of X by Zgy. A Z-termisatermt: T — g U X
satistying the following properties:

¢ Allinner vertices v € dom t are labelled by elements of Z,,.

+ If the function symbol ¢(v) = f € Zg,, is of type so ... Sp—y — 5
then v has exactly n successors u,,...,u,_, and, for all i < n,
either t(u;) € X, is a variable of type s; or t(u;) = g € Zgyp is a
function symbol of type 7 — s;, for some 7.

The set of all finite X-terms with variables from X is denoted by T[ X, X].
By T;[Z, X] we denote the subset of all terms ¢ € T[X, X] whose root is
labelled by a function symbol of type # — s, for some 7.

LOGIC, ALGEBRA & GEOMETRY 2024-04-09 — ©OACHIM BLUMENSATH 227



B3. Universal constructions
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Figure 1.. Domain and labelling of .

Remark. The difference between a general term and a X-term is that the
symbols of the former need not to have an arity. In particular, a Z-term is
always finitely branching since, by definition, all symbols in a signature
have finite arity.

Example. The polynomial
((x-x)-x+3-(x-x))+(6-x-8)

correspondstoa X-term ¢ : T — X where X = {-, +, -, 3, 6, 8}. (Note that
we need to include the coeflicients as constant symbols.) The domain T
of t and its labelling are shown in Figure 1.

Definition 1.2. Let t be a term and v € dom ¢. By t, we denote the term
with domain

domt, := {x|vx edomt}
and labelling
t,(x) = t(vx).
A subterm of t is a term of the form t¢,, for some v € dom ¢.

Terms as defined above are cumbersome to write down. Therefore, we
represent terms t € T2, X] by sequences y(t) € (X u X)<*.
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Definition 1.3. We define the function y: T[2, X] - (2 u X)<“ by
() = t(x0 )t (xn)

where x, <jex *** <lex Xx is an enumeration of dom ¢ in lexicographic
order.

Remark. Equivalently, we can define y(¢) recursively as follows. If the
root () of t has exactly n successors (0), ..., (n —1) then we set

y(8) = t(() - y(t(o)) -+ y(tuyy) -
Example. If t is the term

then y(t) = fexhyhc.

The next lemma shows that it is save to identify ¢ and y(t). Below we
will therefore not distinguish between the tree ¢ and the sequence y(t)
encoding it, and we will use whatever formalism is the most convenient
one at the time.

Lemma 1.4. The function y is injective.

Proof. Let s and t be terms and u and v arbitrary sequences. We prove
by induction on |y(s)] that

y(s)u=y(t)v implies s=tandu=v.

For the special case that u = () = v it follows that y is injective.

Let f :=s(()) and g := ¢(()) be the function symbols at the roots of
s and t, respectively. Then y(s) = fx and y(t) = gz, for some sequences
x and z. Since

fxu=y(s)u=y(t)v=gzv
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it follows that f = g. Let n be the arity of f. If n = o then x = () and
z = () and we have fu = fv which implies u = v. Otherwise, let s; := s;
and t; := t(; be the subterms of s and ¢ rooted at the successors of the
root. By definition, we have

y(s) = fy(so)y(sn) and  y(t) = fy(to)y(tn-)-

Hence, y(s)u = y(t)v implies

Y(so) -y (sn-n)u = y(to) - y(tn-a)v.

Since |y(so)| < [y(s)| we can apply the inductive hypothesis and it follows
that

so=to and  y(s;)-y(sn—)u = y(t)y(tn-s)v.
Applying the inductive hypothesis n —1 more times we can conclude that
=ty s Sy =ty and u=v. O

We can use the function y to obtain a simple upper bound on the
number of finite 2-terms.

Lemma1s. |T[Z, X]| < |2 @ |X| @ R,.
Proof. Since y: T[Z,X] — (2 u X)<“ is injective we have
IT[Z, X]| < [(EuX)<“|=|ZuX|er, = |Z|@|X|®R,,
by Lemma A4.4.31. O

Remark. Note that, for finite terms ¢ € T[Z, X|, we can perform proofs
and definitions by induction on |[dom(¢)|. Usually such proofs proceed
in two steps. First, we show the desired property for all terms consisting
of a single variable. Then we prove, for every n-ary function symbol,
that, if the terms t,, ..., t,, have the desired property then so does

fto. tny.
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We have introduced terms as names for derived operations, but we
have yet to define which operation a term denotes.

Definition 1.6. Let t € T[2, X] be a Z-term.
(a) The set of free variables of t is

free(t) :=rngtn X.

(b) Let U be a Z-structure, t € T[Z,X] a Z-term,and f: X, > Aa
function with domain free(t) € X, € X. The value t*[B] of ¢ in o is
defined inductively by the following rules.

o Ift = x € X is a variable then t*[] := B(x).
o Ift=ft,...t,_, with f € X then

18] = AR IBL - s - [B]) -

Example. Consider the ring of integers 3 = (Z, +, - ) and let ¢ be the
term

+
- \x
7N\
y X
Iff: X - Z maps x + 3and y ~ 5 then £3[8] = 18.

A trivial induction on the size of a term ¢ shows that its value t*[ 3]
depends only on those variables that appear in .

Lemma 1.7 (Coincidence Lemma). Let t € T[X, X] be a Z-term and Y a
Z-structure. If B,y : X — A are variable assignments with

B 1 free(t) =y | free(t)

then t*[ ] = *[y].
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Remark. We write t(x,,...,X,—,) to indicate that
free(t) € {xo,.. . Xn_n} -
For such a term, we set

(s ..ran_y) = [ B]
where 8 : X — A is any function with 8(x;) = a;. By the Coincidence
Lemma, this is well-defined.

The function symbols of X operate in a natural way on 2-terms. A
function symbol f € X of type s, ...s,_, - r maps terms to, ..., t,_, of
sort So, . . ., Su_y, respectively, to the term ft,...t,_,.

Definition 1.8. For an S-sorted signature X and a set of variables X, the
term algebra [ X, X] is the S-sorted Z-structure defined as follows.

¢ The domain of sort s € Sis T;[Z, X].

¢ For each n-ary function symbol f € X, we have the function
5 with

fS[Z,X](tO’ s tn—l) = fto e tn—l .

« For each relation symbol R € Z, we have R¥*X] := g,

Example. If T = 2[Z, X] is a term algebra and f : X — X the identity
function then t¥[B] = ¢t, for all t € T[Z, X].

The term algebra € = [, X] is also called the free algebra over X
since the only equations s* = ¢* that hold in ¥ are the trivial ones of the
form t = t. This fact is used in the following lemma which states that
T is a universal object in the category of all Z-structures.

Theorem 1.9. Let A be a X-structure and 3 : X — A an arbitrary function.
There exists a unique homomorphism

h:2[2,X]->A with hX=p.
The range of h is the set rng h = {(rng ).
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Proof. We define h(t) := t*[B]. For x € X, it follows that

h(x) = x"[B] = B(x).

We claim that / is a homomorphism. Since all relations of [ X, X] are
empty we only need to verify that # commutes with functions. Let f €
be an n-ary function symbol and ¢, ..., t,_, € T[Z, X]. We have

h(fto e tn—l) = (fto s t"—l)g[[ﬁ]
= AL s [BD)
= fA(h(to), .. h(tas)),

as desired.

Suppose that g : [, X]| — U is a homomorphism with g I X = 8. By
induction on ¢ € T[Z, X], we prove that g(t) = h(t).If x € X then, by
assumption, g(x) = f(x) = h(x). For the inductive step, let f € X be an
n-ary function symbol and t,, . .., t,—, € T[Z, X]. We have

g(fto- - tn) = f1(g(to)s - 8(tns))
= A (h(to)s.. s h(tnos)) = h(fto.. tus).

Consequently, g = h.

It remains to prove that rngh = (rng 8))or. By Lemma B1.2.9, rng h in-
duces a substructure of . Since rng 8 C rng h it follows that {rng 8} C
rng h.

To show that rngh € B := ((rng 8))o we prove, by induction on ¢ €
T[Z, X], that h(t) € B. For x € X, we have h(x) = B(x) € rng 8 € B. Let
f € X be an n-ary function symbol and f,, ..., t,—, € T[Z, X]. Setting
a; = h(t;), for i < n, it follows that

h(fto.. tues) = f2(M(t)s. s h(tnos)) = [ (A0s - s dn_y).

By inductive hypothesis, we know that g, . . ., a,—, € B. Since B is closed
under all functions of % we have f*(a,,...,a,_,) € B, as desired. []
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Remark. We can rephrase the theorem in the following way: For every
S-sorted signature X and each Z-structure 9, there exists a bijection

Hom,(2)(Z[Z, X],Y) - Sets(X,A):h—h 1 X,

where Set; is the category of S-sorted sets. In category theoretical terms
this means that the term-algebra functor

Sets - Hom(2) : X —» Z[Z, X]
and the forgetful functor

Hom,(Z) > Setg : A A
form an adjunction.

Corollary 1.10. Let A be a X-structure and X € A a subset. We have
(X))o = rng h where h is the unique homomorphism h : [, X] - A
with h | X =idx.

Corollary 1.11. If U is a Z-structure and X C A then
[(XDa| < |T[2, X]| < [X| @ 2] @ R .
If s and f are terms and x a free variable of s then we can construct
the term s[x/t] by replacing every occurrence of x by the term t.

Definition 1.12. (a) Let ¥ be an S-sorted signature and ¢ € T[X, X] a
term. If, for all i < n, x; € X, is a variable of sort s; and t; € T, [ 2, X ] a
term of the same sort then we define the substitution

HXo/tos v vsXnoa/tnoa] = ££12X] [B]

where 8 : X — T[Z, X] is the function with (x;) := ¢;, for i < n, and
B(x) := x, for all other variables x € X.

(b) Similarly, if 8 : A — B is some function and a and b elements,
then we denote by $[a/b] the function Au {a} - Bu {b} with

ifx=a,

(x) otherwise.

b
Bla/b](x) := {ﬁ
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The next lemma states the trivial fact that, when computing the value
of a term s[x/t] it does not matter whether we substitute ¢ for x first and
then evaluate the whole term, or whether we compute the value of ¢ first
and then evaluate s with the corresponding value for x. For instance, if
s=x+yandt=y+ythens[x/t] = (y+ y)+ y and the lemma claims
that s[x/£](1) = (1+1) + 1 = 3 coincides with s(2,1) =2 +1=3.

Lemma 1.13 (Substitution Lemma). Lets, t € T[X, X] be terms, x € X a
variable, ¥ a X-structure, and ff : X — A function. We have

[/ D[P = "B where  B":= Blx/*[B]].

Proof. We prove the claim by induction on the term s. If s = x then

(x[x/D)*[B] = £1B] = B'(x) = =™ [B'].

If s = y # x then

x/DB] =y (Bl = B(y) = B'(») = B

Finally, if s = fs, ...s,—, then we have by inductive hypothesis

(fso--- Snfl)[x/t]m[/j] = fgl(so [x/t]gl[/-;]’ e ’Snﬂ[x/t]gl[ﬁ])
= FUSIBT - s sha[B)
= (fso”-sn—l)gl[ﬂ’]- ]

The operations T[ZX, X] and $[Z, X] assigning to a signature ¥ and a
set X of variables, respectively, the set of terms and the term algebra can
be seen as functors between suitable categories.

Definition 1.14. (a) Let SigBar be the category consisting of all triples
(S, 2, X) where S is a set of sorts, £ an S-sorted signature, and X an
S-sorted set of variables. The morphisms

(Boy):($2.X) > (T.1,Y)

are triples of functions y: § - T, ¢ : X - I',and y : X - Y with the
following properties:
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¢ A relation symbol R € X of type s, ... 5, is mapped to a relation
symbol ¢(R) € I of type x(so) ... x(Sn-1)-
¢ A function symbol f € X of type s, ...5,_, = t is mapped to a
function symbol ¢(f) € I of type x(so) - .. x(5n-1) = x(£).
o A variable x € X of type s is mapped to a variable y(x) € Y of
type x(s).
Since the set of sorts S is determined by the signature X we will usually
omit it from (S, Z, X) and just write (X, X).

(b) We define two subcategories of GigBat. The category Sig consists
of all triples (S, %, X) € SigBar with X = & and the category Bar consists
of all (S, 2, X) € GigBar with X = @.

(c) A morphism « = (y, ¢, y) € SigBar((Z, X), (I, Y)) induces the

map
Tla]:T[2,X] > T[I,Y]

which assigns to a term ¢ € T;[ %, X] the term T[a](t) € Ty(5)[I, Y]

with

o(t(x)) ift(x)eZ,

y(t(x)) ift(x)eX.

Let Term denote the category with objects T[Z, X], for all X, X, and
morphisms

Zerm(T[2, X], T[[, Y]) := { T[a] | a € SigBar((Z, X), ([, Y)) }.

Tla)(1)(x) = {

Example. Let 2 := {o, ™", e} be the signature of multiplicative groups
and I' := {+, —, o} the signature of additive groups. Since there exists an
isomorphism X — I' in &ig these signatures are interchangeable.

Remark. 1t follows immediately from the definition of Zetm that the
operation

(Z,X)~»T[2,X] and a~ T[a]

forms a functor T : SigBar — Term.
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We can also define corresponding categories of structures.

Definition 1.15. (a) Let g = (x, ¢) : (S,2) = (T, I') be a morphism
of &ig. The p-reduct |, of a I'-structure U is the X-structure B where
the domain of sort s € S is B; := A,(;) and the relations and functions
are defined by

=98, foréel.

(b) For a signature X, we denote by Str[Z] the class of all 2-structures
and by Str[ 2, X] the class of all pairs (2, ) where A is a 2-structure and
B : X - Aavariable assignment.

Every morphism ¢ = (y,¢,¥) : (T,I[,Y) - (5,2, X) of SigBar
induces a function

Str[p] : Str[Z, X] = Str[L, Y] : (Y, B) = (U] foy).

(c) In the category SttBar the objects are the classes Str[ 2, X ] and the
morphisms are all mappings Str[ 2, X] — Str[ I, Y] induced by a morph-
ism (I, Y) > (Z, X) of SigBat. As above we define the subcategory Str
where the objects are those classes Str[ %, X] with X = @.

(d) The canonical functor Str : SigBar — StrBar maps a pair (X, X)
to the class Str[ 2, X] and a morphism (X, X) — (I', Y) to the function
Str[I, Y] — Str[Z, X] it induces. By abuse of notation we denote the
corresponding functor Str : &ig — Str by the same symbol. Note that
Str is contravariant.

Remark. Suppose that X ¢ I and let Y be a I'-structure. If y : = — I'is
inclusion map then |, = |5 is the ordinary X-reduct of 2.

The next lemma relates the structures 9 and Str[¢](¥). It follows
immediately from the respective definitions.

Lemma 1.16. Let p: (2, X) — (I, Y) be a morphism of SigQBat. For all
interpretations (U, B) € Str[I, Y] and terms t € T[ 2, X], we have

(T[u](6))"[B] = P[y] where (B,y) = Str[u](2B).
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15, x] — 2 7r vy

|

s —F—F A

Example. Let 2 = {o,7",e} and I = {+, —, 0} be signatures of groups
and X = {x} and Y = {y} sets of variables. Consider the morphism

p={(id, 9, y): (2, X) > ([.Y)
with ¢(0)=+, ¢(7)=-, ¢(e)=0, and y(x)=y.

Let3 = (Z, +, —, 0) be the additive group of the integersand f: y ~ 3 a
variable assignment. Then Str[¢](3, ) = (3',y) where 3’ = (Z,0, ", ¢)
and y : x — 3. For the term ¢(x) = x 0 e o x™* the lemma states that

Byl =(xoeox ™) [y]=3+0-3=0

equals

(T[u](1))[B] = (y+ o0+ (—»))3[Bl =3+0-3=0.

2. Direct and reduced products

Products are a common construction in algebra since many important
classes, such as groups and rings, are closed under products. In this
section we will introduce products of arbitrary structures and prove
some of their basic properties.

Below we will frequently deal with tuples of sequences of the form

a= <(aé),-61, ey (ail_l),-d) € (Al)n .
To simplify notation we define
a'=(al,...,al_)eA" and a;:=(a})igecA’.

[} >¥n—1
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Definition 2.1. Let (2');; be a sequence of Z-structures.
(a) Their direct product is the X-structure

B=],

iel

where the domain of sort s is B := [];; AL, for every n-ary relation
R € X, we have

R®={aeB"|a R foralliel},
and, for each function f € X,

£2a) = (@),

If ' = 9, for all i € I, we usually write %' instead of [];.; 2.
(b) Recall that the k-th projection is the function

pry: [T = A* 1 (a')jer = a".

iel

Example. (a) Let U = (U, +, (1,)aqcx) be a K-vector space of dimen-
sion 1. Every K-vector space B = (V, +, (1,),) of dimension #n < w is
isomorphic to U".

(b) Let B, = ([2],u,M, 0,1, %, <) be the two-element boolean algebra
and ¥ = (P(X),u,n, 3, X, *, c) the power-set algebra of a set X. Then
A2 [Tiex B, = BE.

Analogously to products of sets we can characterise products of struc-
tures as terminal objects in a suitable category.
Lemma 2.2. Let pr; : [];; A" — A¥ be a projection.

(a) pry is a surjective homomorphism.

(b) pr,, is semi-strict if and only if, for every relation symbol R, the set
{ieI|RY =@} contains k or it equals either & or 1.
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Lemma 2.3. Let (9),c; be a sequence of X-structures. For every struc-
ture B and all homomorphisms hy : B — Ak, k € I, there exists a unique
homomorphism ¢ : B — [1;.; A" with hy = pr; o ¢, for all k.

Exercise 2.1. Prove the preceding lemmas.

Exercise 2.2. Prove that the direct product of groups is again a group
and that the direct product of rings is a ring.

Given a class KC of structures that is closed under products one can
try to classify K by isolating a subclass /C, € KC such that every structure
in K can be expressed as product of elements of K. The classification
of finitely generated abelian groups is of this kind. If K is furthermore
closed under substructures then we can also try to find a subclass K, such
that every structure in K is the substructure of a product of elements
of IC,. For instance, every K-vector space of dimension  is a substructure
of K*. This motivates an investigation of substructures of products.

Definition 2.4. Let ();c; be a sequence of Z-structures.

(a) A X-structure B is a subdirect product of (), if there exists an
embedding g : B — [1;c; 2’ such that pr, o g is surjective and semi-strict,
forall k € I.

(b) A structure B is subdirectly irreducible if, for every sequence (2I');
of which 3 is a subdirect product, there exists an index k with & = 9.

Lemma 2.5. Let B be a subdirect product of (4 )y and g : B — [1; A
the corresponding embedding. If s,t € T[X, X] are terms, 3 : X - Ba
variable assignment, and B; 1= pr; o g o 3 then we have

SIB1=2p] it ST[B]=C[Bi]. foralliel.

Proof. The lemma follows immediately if we can show that

g(FP[B]) = (' [Bi)s -

We proceed by induction on the size of ¢. For t = x € X, we have

g(x®[B]) = g(B(x)) = (Bi(x)): -
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Ift = fso...5n, then

85050 ¥[B) = 2P GBS BD)
= [T (g(s2IBD) - g(STLBD)
S A (G N G T AT
= (ST [Bids s LBD)),
= ((fso---sn0) " [B]), D

An important special case of a subdirect product are reduced products
which are obtained from a product by factorising over a filter. To define
what we mean by ‘factorising over a filter’ we need some preliminaries.

Definition 2.6. Let (2);c; be a sequence of Z-structures and u € (1)
a filter. Let S be the set of sorts of X and set

B:=|JB! where BY:=]]Al.

seS iew
wen

For d,b € BY° x --- x BY"", we define
[a'=b']; ::{1'61/1/0r1--~r1wn_1 | a = Z_Ji},
[a"eR];:={iewon--nw,,|d e RY }s
and a~y b ciff @' =b'] e,
We denote the ~,-class of a tuple a € B by [a].

Lemma 2.7. Let (A');; be a sequence of Z-structures and u € £(I) a
filter.

(a) ~y is an equivalence relation.

(b) @~y b implies [a'eR];eu iff [b' e R]; cu.

(c) a~yb implies f2(a) ~, f2(b).
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Proof. (a) We have (a')jer ~y (a')ies since I € u. Furthermore, since = is
symmetric it follows that so is ~,. Finally, suppose that

(ai)iel ~u (bi)ieI and (bi)iel ~u (Ci)ieI-
Since [(a'); = (¢")ili 2 [(a")i = (b7):]i n[(¥)i = (¢")i]i €n
it follows that (ai)igl ~y (Ci),‘el.
(b) We have [a' = b]; € uand, by symmetry, we may assume that
[a' € R]; € u. Hence, [b’ € R]; 2 [a' € R]; n[a’ = b']; e uand it

follows that [b’ € R]; € u. i )
(c) follows immediately from [ f(a') = f(b")]; 2 [a' = b']; eu. O

Definition 2.8. Let u be a filter over I and J < I. The restriction of u to J
is the set

uj:={snJ|seu}.

Lemma 2.9. Let u be a filter over I and S € u.
(a) uls is a filter over S.
(b) If uis an ultrafilter then so is uls.

Definition 2.10. Let (2');¢; be a sequence of Z-structures and u ¢ (1)
a filter.
(a) The reduced product of (1) c; over u is the structure

B = HQ[i/u

iel
defined as follows. For each sort s, let
I={icl|Al+@}.
The domain of sort s is

B. := {(Hids Ai)/"’ul,s ifl; eu,
s

%] otherwise.
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For every n-ary relation R € X, we have
R®:={[al.eB"|[a'€R];eu},

and, for each function f € X,

F2([al) = [(b:)il where b;:= f*'(a").

(b) If u is an ultrafilter then J];.; & /u is also called an ultraproduct.
In the special case that 9 = 2, for all 7, we call [],; 2/u the ultrapower
of U over u and we simply write U".

Remark. Note that [];.; 2 /u is well-defined by Lemma 2.7.

Lemma 2.11. Let B = [];; A /u. If s, t € T[Z, X] are terms, f: X > Ba
variable assignment, and f3; := pr; o 8 then we have

SR =2[(B] iff {iel|s[Bi]="[Bi]} eu.

Proof. By induction on t one can show that t2[] = [(tg[i [[3,]),]u Con-
sequently, the claim follows by definition of ~,. O

Exercise 2.3. Prove that an ultraproduct of linear orders is again a linear
order and that an ultraproduct of fields is a field.

Lemma 2.12. Let A be a X-structure and u a proper filter. There exists an
embedding h : A — A",

Proof. Suppose that u is a filter over I. We denote by a~ the constant
sequence (a'); with @’ := @, for all i. We claim that ki : a + [a~], is the
desired embedding.

h is injective since, if a # b then [(a~)’ = (b7)']; = @ ¢ u, which
implies that h(a) + h(b).If R € X is an n-ary relation then we have

Ieu ifaeRY,
éu ifa¢ R

[(a7) eR]; = {
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Therefore, we have @ € R¥ iff h(a) € R*. Finally, if f € X is an n-ary
function then we have
(@) = (a7l = [T @),
=[(F(@)7], = h(F(a)).

It follows that £ is the desired injective strict homomorphism. O
Example. Let® = (R, +,—, -, 0,1, <) be the ordered field of real numbers
and u a non-principal ultrafilter on w. The ultrapower R" is again an
ordered field with R € R*. Let (a;)i<w € RY, be the sequence with
a; = i, and let a := [(a;);], be its ~,-class. It follows that a > x, for
every real number x € R. Hence, X" contains an infinite number a.
The element a™ is positive but smaller than every positive real number.

Thus, we have constructed an extension of R containing infinite and
infinitesimal elements.

In the definition of a reduced product we have neglected those factors
with empty domains. This choice is motivated by the following obser-
vation which is an immediate consequence of Lemma ?? below. For
simplicity, we only treat the case that all domains are nonempty.

Lemma 2.13. Let (') ;cs be a family of Z-structures whose domains are
all nonempty and let u be a filter over 1. For every ] € u, we have

[Tz TT ful;.

el jel
Proof. To simplify notation set v := u|; and define
Ar =i A, Arfu =Tl A'/u,
and Ay =TT, ¥, Apfo:=T1e; ¥ )v.
For sequences (a');er set a ] := (a’) jes. Let
¢ A > Arfus (a')i = [(a')ilu

y: > Ay/o: (a)); - [(a)]s
n:Ur->A:amall
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A —F—

QII/LIT)QIJ/D

be the canonical homomorphisms. For sequences (a');c; and (b);cr,
we have

<(ai)i,(bi)i> ekerg iff [[ai = b’],- cu
iff [a'=b']inJev
iff ((ai)iez,(bi)id) Eker(won).

By the Factorisation Lemma, it follows that there exists a unique bijection
n: () > (yom)(U) withyorm=nog,ie,

n([al) =[a Tl

It remains to prove that this function is an isomorphism. (Note that, if
¢ and y are semi-strict then we can apply Corollary B1.2.7.)
For a function symbol f, we have

n(fM"([alw) = n([f*(a)])

= [f%(d r])]b
= (@ 1) = A7 (n([al)

and, for a relation symbol R, we have

[a]lu e RM" iff [a'eR];eu
if [a'eR];nJeu
iff  n([als) =1[at]]se RV O
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Corollary 2.14. Let (%');c; be a family of -structures. If u = f{] is a
principal filter over I then

[T =],

iel jeJ

In particular, if ] = {j} then [1;c; %' fu = .

3. Directed limits and colimits

With each structure 9 we can associate the family of its finitely generated
substructures, ordered by inclusion. Conversely, given such a partially
ordered family of structures, we can try to assemble them into a single
structure. This leads to the notion of a directed colimit. Not every family
of structures arises from a superstructure . Before introducing directed
colimits, we therefore isolate the key property of those families that do.

Definition 3.1. Let k be a cardinal. We call a partial order § = (I, <)
k-directed if every subset X ¢ I of size | X| < x has an upper bound. For
K = R,, we simply speak of directed sets.

Example. (a) Every ideal is directed.

(b) An infinite cardinal « is regular if, and only if, the linear order
(x, <) is x-directed.

(c) Let A be a set, x a regular cardinal,and F:= { X ¢ A | |X| < x }.
The order (F, €) is k-directed.

(d) Let A be a Z-structure and S the class of all substructures of
that are generated by a set of size less than «. If x is regular, the order
(S, 2) is k-directed.

Let us show that, if we partition a directed set into finitely many parts,
at least one of them is again directed.

Definition 3.2. Let (I, <) be a directed partial order. A subset D C I is
denseif fin D + &, foralli e I.
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Lemma 3.3. Let (I, <) be a x-directed partial order. If D C I is dense then
(D, <) is x-directed.

Proof. Let X ¢ D beaset of size |X| < . Since I is x-directed, it contains
an upper bound [ of X. As D is dense we can find an element m € {/n D.
Hence, D contains an upper bound m of X. O

If we partition a x-directed set into less than « pieces, one of them is
dense and, hence, x-directed.

Proposition 3.4. Let (I, <) be a x-directed partial order. If (Jo)u<) is a
family of subsets o C I of size A < k such that Uy<) J« = L, then at least
one set ], is dense.

Proof. Fori €1, set

Aj={a<A|fin],#3},
Ui={a<A|acA, foralll >i}.

Clearly, if there is some index « < A such that « € U;, for every i, then
the set J, is dense in I.

To find such an index we first prove that U; # @, for all i. For a
contradiction, suppose that there is some i € [ with U; = @. Then we
can find, for every o < A, an element I, > i such that I, n J, = @.
Let m be an upper bound of { I, | « < A } in I. Then m ¢ J,, for all .
A contradiction.

To conclude the proof it is sufficient to show that U; = Uj, for all
i, j € I. Fix some [ > i, j. Then we have

U= () Am< () Am=U,.

mefi mefl

Conversely, suppose that there were an element « € U; \ U;. Then we
could find some m > i such that f{m n J, = @. For s > m, I, this would
imply that a ¢ A 2 U;. A contradiction. Hence, we have U; = U; = U;
as desired. OJ
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Directed sets can be regarded as generalisations of chains. Surprisingly
in many cases it suffices to consider chains even if the use of a directed
set might be more convenient. Before giving examples, let us present
two technical results. The first one allows us to extend an arbitrary set to
a directed one. In Section B4.4 below we will generalise this lemma to
k-directed sets, where the situation is more complicated.

Lemma 3.5. Let (I, <) be a directed partial order. For every X C I there
exists a directed subset D € I with X € D and |D| < |X| ® Ro.

Proof. Set

F:={sc X |s+ o finite }.

For every s € F, we choose elements a, € I, by induction on |s|, as follows.

Let
us:=su{a,|vcs}.

If u, has a greatest element b then we set a; := b. Otherwise, since u; is
finite and I is directed we can find an element a; € I with u; € |a;.
After having defined the elements a; we can set

D:=Xu{as|seF}. O

Proposition 3.6. Let 3 be an infinite directed set of cardinality k := |I|.
There exists a chain (H ) q<y 0f directed subsets Hy € I of size |[Hy| < &
such that I = Uy, Hy.

Proof. Fix an enumeration (i )q< of I. We define H, by induction on «.
Set H, := @ and Hg := U, <5 Hg, for limit ordinals 8. For the successor
step, we use Lemma 3.5 to choose a directed set Hyy, 2 H, U {i,} of
size |Hyy,| < [Ho| @ Ro.

Each set H, is directed. Furthermore, i, € Hy., implies U, Hy = I. It
remains to show that |H,| < k. By induction on «, we prove the stronger
claim that |H,| < ||, for every infinite ordinal .
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For a = w, we have
|[Hy| =sup{|Hu| | n<w} < R,.
Analogously, for limit ordinals J,
|Hs| = sup {|He|[a <8} <][9].
Finally, we have |[Hy, | < [Ho|®R, < |a|@R, = a+1],foro <a <x. [

We will give several examples of how to use Proposition 3.6 to replace
directed sets by chains.

Proposition 3.7. Let (A, <) be a partial order. The following statements
are equivalent:

(1) A is inductively ordered.

(2) Every nonempty directed set I C A has a supremum.

Proof. The direction (2) = (1) is trivial since every chain is directed. We
prove the converse by induction on  := |I|. Since every finite directed set
has a greatest element we may assume that I is infinite. Let (H, ), be the
sequence of directed sets from Proposition 3.6. By inductive hypothesis,
the suprema a, := sup H, exist. Since (a4 )4« is a chain it follows that
sup I = sup,, a, exists as well. O

Lemma 3.8. Let ¢ be a closure operator on A. The following statements
are equivalent:

(1) c has finite character.

(2) ¢(UC) =UC, forevery chain C ¢ fixc.

(3) c(UI) = UL for every directed set I < fix c.
Proof. (1) = (2) was proved in Lemma A2.4.6.

(2) = (3) We prove the claim by induction on « := |I|. If I is finite then

UI = X, for some X € I, and we are done. Hence, we may assume that I is
infinite. Let (H, ), be the sequence of directed sets from Proposition 3.6.
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By inductive hypothesis, we know that X,, := U Hy € fix . Since (Xy ) g<x
is a chain it follows that U I = U, X, € fixc, as desired.

(3) = (1) Let X € Aand set I := { ¢(X,) | X, € X is finite }. We have
to show that ¢(X) = U I For one direction, note that X, € X implies
that ¢(X,) < ¢(X). Consequently, we have UI < ¢(X).

For the converse, note that I is directed since ¢(X, ), ¢(X,) € I implies
that ¢(X, U X,) € I and we have ¢(X;) € ¢(X, U X,). By (3), it follows
that U I € fix c. Therefore,

X =U{X, | Xo € X is finite }
cU{c(X,) | Xo € Xisfinite } =UT

implies that ¢(X) c c(UI) = UL O
Lemma 3.9. Let f : A — B a function between partial orders where A is
complete. The following statements are equivalent:

(1) f is continuous.

(2) sup f[I] = f(supI), for every directed set I € A.
Proof. Again the direction (2) = (1) is trivial. We prove the converse
by induction on x := |I|. Since every finite directed set has a greatest

element we may assume that I is infinite. Let (H, ), be the sequence of
directed sets from Proposition 3.6. The set

C:={supH, |a<x}
is a chain with sup C = sup I. Since f is continuous it follows that

sup f[I] = sup f[C] = f(sup C) = f(supI). O

Having defined directed sets, we can introduce directed colimits. The
systems we want to map to their colimit consist of a directed partial order
of X-structures where each inclusion is labelled by a homomorphism spe-
cifying how the smaller structure is included in the larger one. Although
we will mainly be interested in 2-structures, we give the definition in a
general category-theoretic setting.
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Definition 3.10. Let Z be a small category and C an arbitrary category. A
diagram over 1 is a functor D : 7 — C. If 7 is a x-directed partial order,
we call D a k-directed diagram. The size of D is the cardinal |Z™°"|.

Remark. In the case where the index category Z is a partial order, a
diagram D : 7 — C consists of objects D(i) € C, for i € I, and morphisms

D(i,k):D(i) > D(k), fori<k,
such that
D(i,i) =idp¢y and D(k,1)o D(i,k) = D(i,1),

foralli <k <.

Before giving the general category-theoretic definition of a x-directed
colimit, let us present the special case of 2-structures.

Definition 3.11. Let D : § — Hom(X) be a directed diagram. The directed
colimit of D is the X-structure

lim D
—

where the domain of sort s is the set (3; D(i);)/~ obtained from the
disjoint union of the domains D(i); by factorising by the relation

(i,a)~(jb) iff  D(i,k)(a) = D(j.k)(b)
for some k > i, j.

That is, we identify a € D(i) and b € D(j) iff they are mapped to the
same element in some D (k).

We denote by [i, a] the ~-class of (i, a). The relations and functions
are defined by

R:= { ([i>a0)>--->[i>an-]) | (Gos. . r@n_y) € R } ’
and f([l’ ao]’ Tt [i’a”—l]) = [i’fD(i)(ao, N )an—l)] .

(Note that is it sufficient to consider elements [io, do ], - - [in-1, Gn_1]
where iy =+ = i,_,.)
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Remark. Directed colimits are also called direct limits in the literature.

We will not use this term to avoid confusion with directed limits, which
we will introduce below.

Example. Let 3 := (Z, +) be the group of integers.
(a) We define a directed diagram D : w — Hom(+) by D(n) := 3, for
all n, and

D(k,n):3—>3:z»—>2”’kz, fork<n.

Its colimit is the structure lim D = (Q,, +) where
Q,:={m/2"|meZ, keN}

is the set of dyadic numbers.
(b) If, instead, we use the homomorphisms

!
D(k,n):3—>8:z»—>%z, fork<mn,

then the colimit lim D = (Q, +) is the group of rationals.

Remark. If the directed set § has a greatest element k, then we have
lim D = D(k).

Exercise3.1. Let D : § — Hom(X) be a directed diagram and S < I dense.

Prove that
limD zlim (D 1S),
— —
where D | S : §|s - Hom(X) is the restriction of D to S.

Directed colimits can also be characterised in category-theoretical
terms via so-called limiting cocones. We use this property to define
directed colimits in an arbitrary category.
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Definition 3.12. Let D : 7 — C be a diagram.
(a) A cocone from D to an object a € C is a family p = (yi)iezor Of
morphisms y; : D(i) - a such that

ueo D(f) = i, PO,
D U
forall f:i— fin Z™°". v )T
D(f)] i
D(i)

(b) A cocone A from D to a is limiting if, for every cocone y from D
to some object b, there exists a unique morphism 4 : a — b with

pi=hold;, forallieZ. D(f)
A

o)
D(i)

(Thus, limiting cocones are precisely the initial objects in the category
of all cocones of D.)

(c) An object a € C is a colimit of D if there exists a limiting cocone
from D to a. We denote the colimit of D by lim D.

(d) We say that a category C has k-directed colimits if all x-directed
diagrams D : § — C have a colimit.

Example. Let £ be a partial order and D : 7 — £ a diagram.

(a) There exists a cocone from D to an element a € L if, and only if,
a is an upper bound of rng D.

(b) An element a € L is a colimit of D if, and only if, a = suprng D.

Remark. (a) Equivalently, we could define a cocone from D toato bea
natural transformation y from D to the diagonal functor A(a) : Z - C
with
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A(a)(i) =a, forallieZ, D()—— @
and  A(a)(f) =idy, forall f e Z™, D(f’)] Tid"

f
D(f)] Lda

(b) Not that, by the uniqueness of 4 in the definition of a limiting
cocone, colimits are unique up to isomorphism. As limiting cocones are
initial objects in the category of all cocones, this also follows directly
from Lemma B1.3.7.

According to the next lemma, the colimit lim D of a directed diagram
D : 3 — Hom(X) of Z-structures coincides with the category-theoretical
notion of a colimit.

Lemma 3.13. Every k-directed diagram D : § — Hom(X) has a limiting
cocone A from D to lim D.

Proof. Let % :=lim D and [i, a] be the ~-class of (i, a). We claim that
the functions

Ai:D(i)>U:aw[i,a], foriel,

form a limiting cocone. Let a € D(i) and j > i. By definition, we have
(j,D(i,j)(a)) ~ (i, a). Hence,

Ai(a) = [i,a] = [, D(i, j)(a)] = A;(D(i, j)(a)) »

and (A;);er is a cocone.

To show that it is limiting, suppose that y is a cocone from D to B.

We define the desired homomorphism 4 : % — B by

hli,a] = pi(a).
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h is obviously the unique function such that 4 o A; = y;. Therefore, it
remains to show that h is well-defined. Suppose that (i, a) ~ (j, b). Then
there is some k > i, j with D(i, k)(a) = D(j, k)(b). Hence, we have

hli,a] = pi(a) = (ux o D(i, k))(a)
= (ko D(js k) (b) = pj(b) = h[j, b]. O
Corollary 3.14. Hom(2) has k-directed colimits, for all infinite cardinals x.

Exercise 3.2. Prove that the functions A; and & defined in the proof
above are homomorphisms.

Let us give several applications of the notion of a directed colimit.

Definition 3.15. Let U be a structure and x a cardinal. A substructure
A, € A is k-generated if A, = (X o, for some set X of size |X| < k.

Proposition 3.16. Let k be a regular cardinal. Every structure U is the
k-directed colimit of its k-generated substructures.

Proof. LetI:={{X)a||X| <« } be the set of all k-generated substruc-
tures of . If ({X; Do) i<a € I%, for a < , then {U; X;)o € I since « is
regular. Consequently, (I, C) is x-directed.

For€e I, set D(€) := Candlet D(B,E): B > ¢, for B < Cin [, be
the inclusion map. Then

Ql'sli_n}D. O

Lemma 3.17. Every reduced product [];e U Ju is the directed colimit of
products [];c, & withs e u.

Proof. For s € u, set D(s) := [];c, A'. We order u by inverse inclusion.
Fors2 tinu,let

D(s,t): D(s) = D(t) : (a')ies = (a')ies
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by the canonical projection. We claim that

limD = T fu.

iel
Note that, if (a’);e; € [T;c; A* and s, t € u then we have
[s: (a")ies] = [t (a") ies]
since (a')jesns = (ai)iesﬁt and s N ¢ € u. Consequently, we can define a
function ¢ : T]; A’ /u - lim D by
o([(a")ilu) =[5, (a')ies], for some/alls € u.
It is easy to check that ¢ is the desired isomorphism. O

The dual notion to a directed colimit is a directed limit.

Definition 3.18. Let J be a directed partial order.

(a) An inverse diagram over J is a functor D : 3P — C.

(b) The directed limit of an inverse diagram D : 3°P — Hom(Z2) is the
X-structure

lim D == (IT; )|,
obtained from the product of the 9’ by restriction to the set
U:={(a;)i e[, A" | a; = D(i, j)(a;) forall i < j } .
Remark. Directed limits are also called inverse limits.

Example. (a) Let D : § — Hom(Z) be a chain. If we reverse the order of
the index set I, this chain becomes an inverse diagram whose limit is
isomorphic to the intersection of the D(i), that is,

lim D = D(K)|c

where C := N; D(i) and k € I is arbitrary.

(b) Let & be a field and D(n) := K[x]/(x"), for n < w, the ring of
polynomials over & of degree less than n. The directed limit lim D =
K[[x]] is isomorphic to the ring of formal power series over K.
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As above we can characterise inverse limits in category-theoretical
terms.

Definition 3.19. Let D : Z°° — C be an inverse diagram.
(a) A cone from an object a € C to D is a family y = (pi)iegon of
morphisms y; : @ - D(i) such that

D(f)o."lf:.uia p D([)
D(f’
for all f :{— fin Z™°T, "
a —)D(f)
Ut
h lD(f)
D(i)

(b) A cone A to a is limiting if, for every cone y from some object b
to D, there exists a unique morphism % : b — a with

pi=Aioh, forallieZ. Ht D(f)
/{f
A

b S JD(f)
\m—>\D(i)

(Thus, limiting cones are precisely the terminal objects in the category
of all cones of D.)

(c) An object a € C is a limit of D if there exists a limiting cone from a
to D.

Lemma 3.20. Every k-directed inverse diagram D : 3°P — Hom(ZX) has a
limiting cone from lim D to D.

Exercise 3.3. Prove Lemma 3.20.

Exercise 3.4. Let Z be a category where the only morphisms are the
identity morphisms. Show that the limit of a diagram D : Z — Hom(X)
is isomorphic to the direct product

[IDG).

ieZ
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4. Equivalent diagrams

In this section we study the question of when two diagrams have the
same colimit. Our aim is, given a diagram D : Z — C to find a diagram
E : J — C with the same colimit where the index category J is simpler
in one way or another. We start by developing methods to prove that
two diagrams have the same colimit. These methods are based on the
notion of a cocone functor.

Definition 4.1. Let C be a category.
(a) Let u bea cocone from D : 7 — C to some object a. For a morphism
f:a— b, we define

fru=(foper.

(b) The cocone functor Cone(D, —) : C — Set associated with a dia-
gram D : 7 — C maps

¢ objects a to the set Cone(D, a) of all cocones from D to a, and

¢ morphisms f : a — b to the function
Cone(D, f) : Cone(D,a) - Cone(D,b) :pu— f * u.

(c) The covariant hom-functor associated with an object a € C is the
functor

C(a,=):C - Cet

mapping an object b € C to the set C(a, b) of all morphisms from a to b
and mapping a morphism f : b — ¢ to the function

C(a,f):C(a,b) >C(a,c): g fog.

Given a functor F : C - D and an object b € D, we will abbreviate
D(b,-) o Fby D(b, F-).
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Remark. In this terminology a limiting cocone of D is an element A €
Cone(D, a) such that, for every y € Cone(D, b), there exists a unique
morphism f:a - bwith gy = f %A

We start with a characterisation of limiting cocones in terms of the
cocone functor.

Lemma 4.2. Let D : Z — C be a diagram. A cocone A € Cone(D, a) is
limiting if, and only if, the family 5 = (11 )oec of morphisms defined by

s : C(a,b) — Cone(D,b) : f > f* A
is a natural isomorphism 1 : C(a,—) = Cone(D, -).

Proof. (<=) Suppose that 7 is a natural isomorphism. To show that A is
limiting, consider a cocone y € Cone(D,b). Setting h := ' (u), we
obtain the desired equation

p=ny(h)=h=1.

To conclude the proof, let 4’ : a — b be a second morphism with
u =h"» A Then ny(h") = u = ny(h) implies, by injectivity of s, that
h' = h.

(=) We start by showing that # is a natural transformation. Let f :
a—band g:b— ¢ be morphisms. Then

n6(C(a,8)(f)) = ns(g o f)
=(gof) A
=g* (f*A)=Cone(D,g)(n(f))-

Now, suppose that A is limiting. We claim that #; is bijective. For
surjectivity, let u € Cone(D, b). As A is limiting, there exists a unique
morphism A : a — b such that g = h * A. Hence, y = 5(h) € rng #p.

For injectivity, let f, f’ : @ - b be morphisms with #5(f) = 75(f").
We set p := #5(f). Since A is limiting, there exists a unique morphism
h:a—bsuchthat y=hx*A As

frd=n(f)=p=n(f)=f *A4,
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it follows by uniqueness of & that f = h = f. O

The following lemma is our main tool to prove that two diagrams have
the same colimit.

Lemma 4.3. Let D:Z — C and E : J — C be diagrams. Every natural
isomorphism 1 : Cone(D, -) = Cone(E, —) maps limiting cocones of D
to limiting cocones of E.

Proof. Let A € Cone(D,a) be a limiting cocone of D. Then #,(1) €

Cone(E, a) is a cocone from E to a. It remains to prove that it is limiting.

Given an arbitrary cocone y € Cone(E,b), the preimage #;"(p) is a
cocone from D to b. As A is limiting, there exists a unique morphism
h:a — b such that

7y (u) =h*A=Cone(D,h)(1).
Applying #; to this equation, we obtain

Y= qb(Cone(D, h)()u)) = Cone(E, h)(#,(1)) = h * n,(1),

as desired. Furthermore, if b’ : a — b is another morphism satisfying
y=h"*n.(1), then

1 () = 1" (Cone(E, W) (na(1))) = Cone(D, K'Y (A) = ' + A,
and it follows by uniqueness of h that h’ = h. O

Below we will frequently simplify a diagram D : Z — C by finding a
functor F : J — Z such that DoF has the same colimit as D and the index
category J is simpler than Z. To study the colimit of such a composition
D o F, we introduce two natural transformations 7p r and 7pr.

Definition 4.4. Let D : Z — C be a diagram.

(a) The projection mp  along a functor F : J — Z is the function
mapping a cocone y of D to the family (ppj) )jes-

(b) The translation 1,p by a functor G : C — D is the function
mapping a cocone y of D to the family G[u] := (G (1) )iez-
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Lemma 4.5. Let D : Z — C be a diagram.

(a) The projection along a functor F : J — T is a natural transforma-
tion

nip,r : Cone(D,—) — Cone(DoF,-).

(b) The translation by a functor G : C — D is a natural transformation
76,p : Cone(D,—) — Cone(G o D,G-).

(c) FordiagramsF:J - Zand G: K - J,
7TD,FoG = TTDoF,G © 7ID,F -

Proof. (a) Given a cocone u from D to a, the image 7p p() is clearly a
cocone from D o F to a. Hence, it remains to prove that 7p r is natural.
Let f : a — b be a morphism of C and y € Cone(D, a) a cocone. Then

7p,r(Cone(D, f)(¢)) = 7p,r((f © pi)ier)
= (fourg)ies
=Cone(DoF, f)(np,r(p)) .

(b) Given a cocone y from D to a, the image 76,p(p) is clearly a
cocone from G o D to G(a). Hence, it remains to prove that 75 p is
natural. Let f : a - b be a morphism of C and y € Cone(D, a) a cocone.
Then

76,0(Cone(D, f)(¢)) = 76,0 ((f © i)iez)
=(G(f) o G(w)),,

=G(f) *G[u]
= Cone(G o D, G(f))(76,0(#)) -

(c) For u € Cone(D, a), we have

mpor,c(7p,r(4)) = ﬂDoF,G((.“P(i))ieI)
= (Ur(G() )tek = TD,Foc (H) - O

261



B3. Universal constructions

We extend the terminology of Definition B1.3.9 as follows.

Definition 4.6. Let F : C — D be a functor and let P be a class of
diagrams.

(a) We say that F preserves P-colimits if, whenever A is a limiting
cocone of a diagram D € P, then F[1] is a limiting cocone of F o D.

(b) We say that F reflects P-colimits if, whenever A is a cocone of a
diagram D € P such that F[A] is limiting, then A is also limiting.

(c) Analogously, we define when F preserves or reflects P-limits.

Lemma 4.7. Let F : C — D be full and faithful.
(a) For every diagram D : 1 — C,

7r p : Cone(D,—) - Cone(F o D, F-)

is a natural isomorphism.
(b) F reflects all limits and colimits.

Proof. (a) For injectivity, suppose that u, u’ € Cone(D, a) are cocones
with F[u] = F[u']. As F is faithful, F(y;) = F(p{) implies that y; = y,
forallieZ.

For surjectivity, let y € Cone(F o D, F(a)). As F is full, we can find
morphisms A; : D(i) — a, for every i € Z, such that F(A;) = p;. Then
F[A] = pwhere A := (A)cz. Hence, it remains to prove that A is a cocone
of D. Let f : i — j be a morphism of Z. Then

F(40 D(f)) = F(&)) o E(D(f)) = p o F(D(f)) = pi = F(A)

implies, by faithfulness of F, that A o D(f) = A;.
(b) Let D : Z — C be a diagram and A € Cone(D, a) a cocone such
that F[1] is limiting. Let

n:D(F(a),-) 2 Cone(FoD,-): f~ f*F[A]

be the natural isomorphism of Lemma 4.2. As F is full and faithful, the
natural transformation

¢:C(a,=) > D(F(a), F-) : f = F(f)
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is also a natural isomorphism. By (a), it follows that the composition
Tppono(:C(a,~)— Cone(D,~)

is a natural isomorphism that maps a morphism f :a — b to
(trp o110 O)(f) = (tgp o M) (F(f))

= 1 (F(f) * F[A])
=t (F[f # A]) = f* ).

Consequently, it follows by Lemma 4.2 that A is limiting. O

Equivalences and skeletons

As a first application we show that isomorphic and equivalent diagrams
have the same colimit.

Lemma 4.8. Every natural isomorphism 1 : D 2 E between two diagrams
D,E: 7 — J, induces a natural isomorphism

{: Cone(D,~) = Cone(E,~) : = (i o ;" )iez -
Proof. We define { and its inverse & by

((u) = (wion" )iz, forpeCone(D,a),
E(p) = (pioni)iez, for p e Cone(E,q).

To show that { and & are well-defined, let 4 € Cone(D,a) and let
f 1 — jbeamorphism of Z. Then

C(u)io E(f) =mon o E(f)
=pioD(f)on =pon ={(u)-

Hence, {(u) is a cocone of E. In the same way, one can check that

E(w)ioD(f) =&(u)i, forueCone(E,a)and f:i—j.
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Furthermore, { is a natural transformation since, for y € Cone(D, a)
and f:a—b,

((Cone(D, f)(u)) = C((f © pi)iez)
=(fouon iz
= Cone(E, f)((pion; ")iez)
= Cone(E, f)({(u))-

Finally, note that
§(C(u)) = E((uioniex) = (wion o fidiex = @,
and, similarly, {(&(u)) = u. O

Proposition 4.9. Let F : T — J be an equivalence between two small
categories L and J and let D : J — C be a diagram. The projection

nip,r : Cone(D,—) - Cone(D o F,—)
along F is a natural isomorphism.

Proof. By Theorem B1.3.14, there exist a functor G : J — Z and natural
isomorphisms p : G o F 2 idz and # :id s = F o G such that

Flp) = ey and - Glmi) = P

It follows that D[#7"] is a natural isomorphism D o F o G = D which, by
Lemma 4.8, induces a natural isomorphism

(:Cone(DoFoG,-)— Cone(D,-):pr (o D(1))jes -
We claim that { o 71por,g is an inverse of 7p .

Cone(D, )—»Cone(D oF,—

A

Cone(Do FoG,—
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For y € Cone(D, a), tp(g(j)) © D(#;) = yj implies that

(¢ o mpor,c © mp,r) (1) = ({ © mpor,c ) ((Hr() )iez)
= {((urcaqy)ies)
= (Hrcagy © D(ﬂi))iej = (W)jes -
Similarly, let 4 € Cone(D o F,a). Then y; o D(F(p;)) = g (r(iy) implies
that
(mp,r 0 {0 por,6) (1) = (1,5 0 ) ((Ha() e )
= 7p,((#aq) © D(1))jes )
= (#erw) ° DUIF®)) oz
= (ue(r@y) o DF(P) ™)) ot
= (pi)iez - O
Corollary 4.10. Let F : T — J be an equivalence between two small
categories T and J . Then
lim(DoF)=limD, forevery diagram D: J —C.

As an application of this corollary, we show how to get rid of iso-
morphic copies in the index category of a diagram.

Definition 4.11. A skeleton of a category C is a full subcategory C, € C
such that

¢ every object of C is isomorphic to some object of C,,

¢ no two objects of C, are isomorphic.

Example. A skeleton of et is given by the full subcategory induced by
the class Cn of all cardinals.

We will prove in the next two lemmas that skeletons are unique up
to isomorphism, and that they are equivalent to the original category.
Consequently, given a diagram D : Z — C, we can replace the index
category Z by its skeleton without changing the colimit.
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Lemma 4.12. IfC, and C, are skeletons of C, there exists an isomorphism
Co =C,.

Proof. We define functors F; : C; - C,_;, for i < 2, as follows. For
aeC;,let a9 be the unique element of C,_; isomorphic to a. We fix

. . bj -
isomorphisms 70 : a - a(), fora e C5", and we set 7} := (m3ey) " We
define

Fi(a) = a9, fora e

i

F'(f):=miofo(n)™", forf:a—binCl .
We claim that F*~# o F' = id. Fora € Cfbj, we have
F(F (@) = F7 (@) = (a00) () =,
For f:a — bin C"*, we have
F(E(f) = F ' (mpo f o (m) ™)
= ety om0 f o (1) o (myely )

= (m) " omo fo(m) om,

= f O
Lemma 4.13. Every skeleton C, of a category C is equivalent to C.

Proof. LetI : C, — C be the inclusion functor. We define a functor
Q : C — C, as follows. For each a € C°Y, let a' be the unique element
of C, isomorphic to a and let 77, : a — a' be an isomorphism. We set

Q(a) :=a', fora e C°Y,
Q(f)=myofom, forf:a—binC™" .

We claim that the families # := (7, )qec, and p := (71, )aec are natural
isomorphisms #7: QoI zidand p: I o Q 2 id. Since each component
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of n and p is an isomorphism, it is sufficient to prove that 7 and p are
natural transformations. For #, let f : a — b be a morphism of C,. Then

QU(f)) etta=myo fomom=raof.
For p, let f : a = b be a morphism of C. Then
1(Q(f))epa=mofonom=poof. O
By Corollary 4.10, we obtain the following result.

Corollary 4.14. LetZ, € T be a skeleton of Z and F : T, — L the inclusion
functor. Then

imD =lim (Do F), forevery diagram D:1 —C.

Chains

As a second application we show how to reduce directed diagrams to
diagrams where the index category is a linear order.

Definition 4.15. A diagram D : 7 — C is a chain if 7 is a linear order.

Proposition 4.16. Let C be a category with directed colimits, D: 3 — C a
directed diagram, and set « := |I|. There exists a chain C : k — C such that

limC =1lim D
— —
and, for every a < k,
C(a) = li,n(D VHy), for some directed subset Hy < I of
size |Hq| < |1].

Proof. By Proposition 3.6, there exists a chain (Hy ) o<« of directed sub-
sets Hy € I of size |Hy| < & such that I = U, Hy. For a < <, let
A% be a limiting cocone of D | H, and let

7y : Cone(D,—) — Cone(D | Hy,-),
7q,g : Cone(D | Hg,—) = Cone(D | Hy, -),
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be the projections along the inclusion functors H, — I and H, — Hyg,
respectively. We define C°% by

C(a):=lim (D | Hy), fora<k.
To define C™", let o < f. Since A* is limiting and 7, 3(1#) is a cocone
of D | H,, there exists a unique morphism

C(e,B) lim (D | Ha) — lim (D | Hp),
such that

a,g(AP) = C(a, B)  A*.

To prove that C is the desired chain, it is sufficient, by Lemma 4.3, to
find a natural isomorphism

1 : Cone(D,-) = Cone(C,-).
By Lemma 4.2, there are natural isomorphisms
74 :Cone(D | Hy,-) 2 C(C(&),-), fora<xk,
such that
p=14(p)* A%, forcoconesyof DI H,,
f=14(f*A%), forall f:C(a)—>a.
For a cocone y of D, we set

n(u) = (ta(ma(4)))acx -

First, let us show that 7 () is indeed a cocone of C. For indices « < f3,
Lemma 4.5 (c) implies that

To(ma()) = Ta(ma,p(ms(1)))
= Ta(7a (75 (s (1)) * AF))
= Ta(7p(mp()) * e p(AF))
= 7o ((18(mp (1)) o C(ar, B)) * %)
=15(p()) o C(a, B).
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Hence, (74 (74 () ))a<x is a cocone from C to a.
To see that # is a natural transformation, let 4 € Cone(D,a) and
f:a—b. Then

no(Cone(D, f)(u)) = (Ta(7a(f * 1)) ..
To(f * ma(p)) )MK
(C(C(a), ) (Ta(ma(1)))), ...
[ (Ta(ma () a<x
Co

ne(C, f)(1a(#)) -

It remains to show that # is a natural isomorphism. We define an
inverse { of # as follows. Given y € Cone(D, a) and i € I, we set

(v
= (

(C(p))i=pqo A}, forsomea <k suchthatie H,.

First, we have to show that the value of {(y) does not depend on the
choice of the ordinals «. For i € Hy and « < f3,

7as(AF) = C(a, ) * A"
implies that
Ha o A =g o Cla ) oA = ugoAf.

To show that ( is an inverse of #, we fix, for every i € I, some ordinal
a; < x with i € H,,. For p € Cone(D, a), it follows that

() = C((ra(ma(1)))a<x)
= (7, (7, () 0 A1) .,
= (70 (1 (1)) * A%),)
= (70, (1) i) ier
= (/«li)iel-
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Conversely, for y € Cone(C, a), we have

1(5(w)) = n((tay © AT ier)
= (rp(mp((pas 0 Af)ier))) 5.,
= (7p((pa © A7) iet1y)) ey
= (rp((up 0 A0 )iery)) o
= (zp(up +A)) 5, = (Hp)pe O

Proposition 4.17. Let C be a category with directed colimits. A class KC € C
is closed under arbitrary directed colimits if, and only if, it is closed under
colimits of chains.

Proof. (=) is trivial since every chain is directed. For (<), suppose that
KC is closed under colimits of chains. Let D : 7 — C be a directed diagram
such that D(i) € K, for all i. We prove by induction on |I| thatlim D € K.
If I'is finite then lim D = D(k) € K, for some k. Hence, we may suppose
that I is infinite. Let C : ¥ — C be the chain from Proposition 4.16. By
inductive hypothesis, it follows that C(«) € K, for every a < k. Since
C is a chain, it follows h_r)n D= h_r)n Cek. O

5. Links and dense functors

There is a large class of cases where the projection 7p r along a functor F
is a natural isomorphism. As we have seen, this implies that D o F has
the same colimit as D.

Alternating paths

Before introducing this class of functors, we develop several technical res-
ults to compare two functors. We start with the notion of an alternating
path.
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Definition 5.1. Let C be a category.
(a) For n < w, we denote by 3,, = (Z,, <) the partial order on the
elements

Zn = {0\/"”)”\/’0/\"”)(n_l)/\}
that is defined by

x<y :iff x=ivandy=k"fork<i<k+1.

o’ % A (n-1)"
PN NN N 7
oV v 5V (y,_l)\/ nVv

And we write 3;, for the extension of 3,, by a bottom element.

P NIAANIPSAN I

e

(b) A alternating path from a € C to b € C is a diagram P : 3, — C, for
some n, such that P(0¥) =aand P(n") = b.

(c) We say that C is connected if, for every pair of objects a, b € C, there
exists an alternating path from a to b.

Remark. We will frequently be interested in alternating paths in comma
categories (a | F). In this case, an alternating path P : 3,, - (a| F) from
fia— F(i) to g: a > F(f) corresponds to a diagram P* : 3, — C with
P(1,0¥)=fand P*(L,nY) =g

<\\ /%»F(f)

Definition 5.2. Let F : Z — C a functor.
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(a) For two morphisms f, g € (a | F), we write

fmpg :iff  (al F) contains an alternating path
from f to g.

If f mp g, wecall f and g alternating-path equivalent, or a.p.-equivalent
for short. We denote the a.p.-equivalence class of f by [f]x.
(b) For families f = (f;)icr and g = (g;) ier of morphisms, we set

fmpg ciff  fimpg foralliel.
Again, we denote the a.p.-equivalence class of f by [ f]5.

The following lemma collects the basic properties of the relation np.

Lemmas.3. Let F:Z — C be a functorand f,g € (a | F).
(a) mp is an equivalence relation.

(b) For every morphism h :b — a,
fmpg implies fohmpgoh.
(c) For all functors D:C — D,
fmpg implies D(f) mpor D(g).
(d) For all functors G : J — I and morphisms h, h' € T™°",
F(h)o f mpog F(h')og implies f mpg.
Proof. (a) mp is reflexive since, for every morphism f : a - F(i), there
is an alternating path P : 3, — (a | F) of length o with P(0") = f. For
symmetry, note that, if there is an alternating path from f to g, we can
reverse it to obtain one from g to f. For transitivity, suppose that f Ap g

and g A h. Then we can find alternating paths P : 3,, - (a | F) and
Q:3, = (alF) from f to g and from g to h, respectively. Concatenating
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these paths, we obtain the desired alternating path 3,,., — (alF) from f
to h.

(b) Let P: 3, - (a| F) be an alternating path from f to g. We obtain
an alternating path Q : 3, — (b | F) from f o h to g o h by setting

Q(x):=P(x)oh and Q(x,y):=P(x,y), forx,yeZ,.

(c)IfP:3, — (al F) is an alternating path from f to g,then Do P:
3, = (D(a) | D o F) is an alternating path from D( f) to D(g).

(d) Let P:3, — (a| F o G) be an alternating path from F(h) o f to
F(h") o g. We can define an alternating path Q : 3, - (a | F) from f
to g by

f ifx =0,
Q(x):=1g ifx =nY,
P(x) otherwise.

G(P(0Y,0"))oh if (i,k) = (0,0),
Q(iY, k") ={G(P(nY,(n-1)"))o k" if(i,k)=(n,n-1),
G(P(iV, k")) otherwise .

E(j) (G(%))

\F(G(P(ZV’IA)))

—)F
F(K')

y F(G(L,))
o ))F(G(Pov,m»
a F(G(t,
POY) F(G(P(1Y,0")))
) F(G(L))
N F(G(P(0¥,0M)))
Fli) — P p(6()) 0
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The main reason why we are interested in alternating paths is the next
lemma.

Lemmas5.4. Let D :Z — C be a diagram and f : a - D(i), g : a = D(j)
morphisms. Then

fmp g implies piof=pjog, forallcoconesyof D.

Proof. Let P: 3, — (al D) be an alternating path from f to g. We prove
the claim by induction on its length n.

For n = o, we have f = g and there is nothing to do. If n > 1, we can
use the inductive hypothesis twice to obtain

piof =puoP(") =piog,

where f € I is the index such that P(1¥) : a - D(f).
Hence, it remains to prove the case where n = 1. Let h : i — f and
h’ :j — fbe morphisms of Z such that

P(0¥,0")=D(h) and P(1',0")=D(K').
It follows that

pio f =pioP(0") =poD(h)oP(o”)
= uro D(h") o P(17) = pjo P(1") = pjog.
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Links

The second technical notion we introduce is that of a link, which gener-
alises the notion of a natural transformation.

Definition 5.5. Let D : Z - C and E : J — C be diagrams. A link
from D to E is a family ¢ = (#;);czoy of morphisms

t;: D(i) - E(0(i)), for some function 6 : 7°% — 7°%,
satisfying
ti Mg tio D(f),

forall f:i—>jinZ.

t,
D(j) ——E(6(}))
D(f)]
D(i) ———E(6()
We call 0 the index map of the link.

Example. (a) Every natural transformation # : D — E is a link from D
to E with index map 6(i) := .

(b) Every cocone y € Cone(D,a) is a link from D to the singleton
functor [1] — C mapping the unique object o € [1] to a. The index map is
(i) := o. Alternatively, we can regard y as a link from D to the identity
functor id¢ : C — C with index map 6(i) := a.

(c) Every morphism f : a - b can be regarded as a link from the
functor [1] — C : 0 ~ a to the functor [1] > C: 0+~ b.

We extend the componentwise composition operation * and the pro-
jection transformation from cocones to links as follows.

Definition 5.6. LetD:Z - C,E: J — C,and F : K — C be diagrams,
salink from E to F, t alink from D to E.
(a) The composition of s and t is the family

s* t:= (Sg(i) © ti)iez

where 0 is the index map of t.
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(b) The projection along t is the function 7, mapping a cocone y of E
to u *t.
(c) The inclusion link associated with D is the family

inp = (idp(i )iez -

Lemmas.y. LetD:Z - C, E: J — C,and F : K — C be diagrams,
s,s" links from E to F, and t, t' links from D to E.

(a) s = tisalink from D to F.
(b) Ifsmps’ andt mpt', thens =t mp s *t'.

(c) For morphisms f :a — D(i) and g : a - D(j),
fmpg implies tiof mptog.

(d) The inclusion link ing associated with E is a link from E to the
identity functor id¢ : C — C such that

ingxt=t and s*ing=s.

Proof. We start with (c), which generalises Lemma 5.4. Choose an al-
ternating path P : 3,, - (a | D) from f to g, and suppose that

P(kv,k/\) = hy :myp - ng
and P((k+1)",k") = hp :myy, > ng.

As t is a link, we have
tme ME o, © D(hg) and  ty,, Mgty o D(hy),
which implies that

twm, © P(k") Mg to, 0 D(hi) o P(KY)
=ty 0 D(h}) o P((k+1)") Mg tm,,, o P((k+1)").
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tmg,y

D(my4,) ———————E(60(mny,))

P((k+1)Y)
D(i,)

D(ﬁk)—’E(Q(ﬁk))

D(hy)
P(KY)

D(my) ——————E(8(my))

Consequently, it follows by transitivity that
tio f =ty oP(0") Mg tw, o P(n") =tjog.
(a) Let f : i — j be a morphism of Z. Since ¢ is a link, we have
t Ag o D(f),
which, by (c), implies that
sa(i) © ti ME Sg(j) o tjo D(f).

Hence, s * t is a link from D to F.
(b) Let 6 and 0’ be the index maps of ¢ and ¢/, respectively. For every
i € Z, it follows by (c) that

ti ME ti/ implies Sg(i) © ti NE Sgr(i) © ti, .
Furthermore,
! . 1 ! 4 !
Sgr(i) AF Sgr(jy 1MPplies  Sgr() © & M Sgr(jy © £ -
By transitivity, it follows that
4 /
Se(i) © Ly Afp S@’(i) o tlr .
(d) For every morphism f : i — j of Z, we have

E(f) ° idE(i) = E(f) = idE(i) ° idE(i) ° E(f) .
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Hence, the morphisms E(f) and idg(j) form an alternating path from
idg(j) to idgjy o E(f) in (E(i) | idc). Furthermore,

ing * t = (idg(a(i)) © ti)iez = (ti)iez = t
and s *ing = (sj0idg(j))ies = (5))jes = 5. O

The concept of a link being quite weak, we cannot prove many state-
ments about links in general. Their main property is the fact that they
allow us to transfer cocones of E to cocones of D. In light of Lemma 5.9
below, the following lemma is a generalisation of Lemma 4.5 (a).

Lemmas5.8. Lettbealink fromD:7 -CtoE:J —C.
(a) The projection mt; along t is a natural transformation

7y : Cone(E,—) — Cone(D, -).

(b) s mg timplies s = my, for every link s from D to E.

(¢) 7in, =1id and 7.5 = 75 0 4, for every link s from some diagram F
to D.

Proof. (a) We start by showing that 7; maps cocones of E to cocones
of D. Let 0 be the index map of ¢, y € Cone(E,a),andlet g:i—jbea
morphism of Z. As t is a link, we have

Ly Mg tjo D(g) ,
which, by Lemma 5.4, implies that

o) © ti =ty © tio D(g) .

Hence, 7;(y) = y * t is a cocone of D.
To show that 7; is a natural transformation, let 4 € Cone(E, a) and
f:a—b. Then

i (Cone(E, f)(u)) = (f *p) » t
= f# (ux1t) = Cone(D, f)(m:(u)).-
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(b) Let p and 0 be the index maps of, respectively, s and t. Consider a
cocone y € Cone(E,a) and an index i € Z. Since s; i 1, it follows by
Lemma 5.4 that

Hp(i) © Si = Ho(i) © Li-
Hence, ms(p) =pu*s=pt=m(p).
(c) For every cocone y of E,
Tin (4) = p #ing = 1,
and ”t*s(ﬂ):‘u*t*szns(nt(‘u))' O

Let us also make a remark about the behaviour of links when com-
posed with a functor.

Lemmas.9. Let D :Z — C be a diagram and t a link from F: J — T to
G:K->1.

(a) D[t]:=(D())jes is alink from Do Fto D o G.

(b) np,r = 7ip[¢] © D,G-

Cone(D, -)
7D,F 7D,G
Cone(Do F,—) M Cone(D o G, -)
t

(c) mp,r= TTD[ing]-

Proof. (a)Let g:i— jbeamorphism of J. As t is a link, we have
tio F(g) mq ti,

which, by Lemma 5.3 (c), implies that
D(#) o D(F(g)) Mpog D(#).

Hence, D[¢] isalink from Do Fto Do G.
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(b) Let p € Cone(D, a). Then

o1 (mp,6 (4)) = o (B k)
= (ua(oq)) © D(1)),es
= (#F(f))iej =np,r(p),

where the third step follows from the fact that y is a cocone of D.
(c) For a cocone y of D,

7ling) (4) = 4 * D[inF]
= (pr(j) © D(idr)))ier = (rG)ies = mp.r(u) . O
We have seen in Lemma 5.7 that a.p-equivalence of links is a con-

gruence with respect to composition. Consequently, we can define a
category of a.p.-equivalence classes of links between diagrams.

Definition 5.10. Let C be a category and P a class of small categories.
The inductive P-completion of C is the category Indp (C) whose objects
are all diagrams D : 7 — C with Z € P. A morphism D — E between
two diagrams D and E is an a.p.-equivalence class [ ¢]% of alink ¢ from D
to E. We write Ind,y (C) if P is the class of all small categories.

Let us conclude this section with the following remarks.

Proposition 5.11. Two diagrams D : T — C and E : J — C that are
isomorphic in Ind,y (C) have the same colimits.

Proof. Let [s]f : D — E be an isomorphism with inverse [¢]}) : E - D.
By Lemma 5.8,

t*smpinp implies 7150 M= Mpus = Min,, = id,

and sx*tmging implies 7 0 o= Mouy = Min, = id.

Hence, 7, : Cone(E,—) — Cone(D, —) is a natural isomorphism and
the claim follows by Lemma 4.3. O
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The following exercise presents an alternative, more abstract definition
of the morphisms of Ind,;; (C).

Exercise5.1. Let D:Z - C and E : J — C be diagrams.
(a) Prove that, for every object a € C, there exists a bijection between
li_I)nC(a, E-) and the set

{[f18 | f:a— E(j) for someje J }.
(b) Prove that there exists a bijection
Ind,;(C)(D, E) - LiiqD h_r)nE C(D-,E-),
wherelim _lim C(D-, E-) denotes the limit of the functor
<—D —E

arlimC(D(a), E-).

Dense functors

After these preliminaries, we can define the class of functors preserving
colimits that we mentioned above.

Definition 5.12. Let C be a category. A functor F : Z — C is dense if, for
every object a € C, the comma category (a | F) is (D1) non-empty and
(D2) connected.

Lemmas.a3. Let F:Z - J and G : J — C be dense functors. Then
G o F is also dense.

We can characterise dense functors in terms of links.

Lemma 5.14. Let F : T — C be a diagram into a small category C and let
ing be the inclusion link associated with F. Then F is dense if, and only if,
the morphism [ing]fy : F — idc of Indan(C) has a left inverse.
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Proof. (=) Let F be dense. We use (D1) to select, for each a € C, a
morphism ¢, : a - F(6(a)) € (a] F). We claim that ¢ := (#,)qcc is a link
such that [#]7 o [ing]f5, = id.

To check that ¢ is a link, let f : a — b be a morphism of C. Then we can
use (D2) to find the desired alternating path from #, € (a | F) to ty o f ¢
(al F). To show that ¢ is a left inverse of ing, let i € Z. By (D2), there exists
an alternating path from tp ;) to idp(;y. Hence, t(j) o idpgy AF idp().

(<) Let [t]F be a left inverse of [ing]{3, . Then the morphisms ¢, €
(a} F) witness (p1). To check (p2), consider two morphisms f : a — F(i)
and g :a — F(f). Since [¢]} o [ing]{y, = id, we have

triy = tr(iy © idp@y AF idp()
tery = te(ry © idpgy AF idpgr)
which implies that
teayo f mpidpgyof =1,
tr(ry 0§ Mpidppryog=g.
As t is a link from id¢ to F, it follows that
f ME tpay o f A ta ME tpr) 0§ AF & O

Let us finally prove that the projection along a dense functor preserves
colimits.

Proposition 5.15. Let C be a category and D : T — C a diagram. The
projection

np,r : Cone(D,~) - Cone(D o F, -)
along a dense functor F : S — 1 is a natural isomorphism.

Proof. We have already seen in Lemma 4.5 (a) that 7p p is a natural
transformation. To show that it is a natural isomorphism, we construct
an inverse of 71p .
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5. Links and dense functors

By Lemma 5.14, [inp]{, : F — idz has a left inverse [¢]3 : idz — F.
According to Lemma 5.9, its image D[¢] under D is a link from D to
D o F satistying

Ip[¢] © D,F = 7p,id = id.

Hence, 7rp[y) is aleft inverse of 7rp, r. To show that it is also a right inverse,
note that, by choice of ¢ as left inverse to ing, we have

tr() = tr() © 1@y AF idE) »
which implies, by Lemma 5.3 (¢), that
D(tg(iy) Mpor D(idg()) -
For y € Cone(D o F,a), it therefore follows by Lemma 5.4 that
o, (o (1)) = 7,5 ((pey © D(8) iex)
= (ko(r®) © D(tr))) s
= (#1 o D(ldF(l)))lES
U- O

Corollary 5.16. Let D : T — C be a diagram with a colimit. IfF: J - T
is dense, then lim (D o F) = lim D.
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B4. Accessible categories

1. Filtered limits and inductive completions

Recall that every partial order can be considered as a category where
there is at most one morphism between any two objects. Using this corres-
pondence, we can generalise the notion of being «x-directed from partial
orders to arbitrary categories where there may be several morphisms
between two objects.

Definition 1.1. (a) A category C is k-filtered if

(k1) for every set X ¢ C°% of size |X| < «, there exist an object b € C
and morphisms a — b, for each a € X;

(r2) for every pair of objects a,b € C and every set X € C(a,b) of size
|X] < «, there exist an object ¢ € C and a morphism g : b — ¢ such
that

gof=gof', foralf,f eX.

For x = R,, we call C simply filtered.

(b) A x-filtered diagram is a diagram D : Z — C where the index
category Z is k-filtered. The colimit of such a diagram is called a «-filtered
colimit.

Conditions (1) and (¥2) state that certain diagrams have a cocone.
It turns out that both conditions together imply that every sufficiently
small diagram has a cocone.

Lemma 1.2. A category C is k-filtered if, and only if, there is a cocone for
every diagram D : T — C of size less than k.

LOGIC, ALGEBRA & GEOMETRY 2024-04-09 — ©OACHIM BLUMENSATH 285



B4. Accessible categories

Proof. (<=) is obvious. For (=), let D : Z — C be a diagram of size less
than . By (r1), there exist an object a and morphisms g; : D(i) — a, for
i € Z. By (¥2), we can find, for every morphism f : i - f of Z, an object
bs € C and a morphism hy : a — by such that

hgogi=hysogoD(f).

By (¥1), there exist an object ¢ € C and morphisms kf iby >, for
f € Z™°". By (¥2), we can find an object d € C and a morphism e : ¢ - d
such that

eokfohs=eokspohy, forallf,f eZI™ .

\hf; kg

D(f)—»a
bf—> ¢

-

D(i)—— a D

&i
D(f’)l " —

fr——¢
D(I)T’ a

8t

kf/
hfl

Set ¢ := eokyohy, for an arbitrary f € Z™°". Then ¢ * g is the desired
cocone since, for every f :{ - fin Z™,

@ogioD(f)=eoksohysogioD(f)
:eokfohfogi
=@og. O

It follows that a.p.-equivalence is especially simple for filtered dia-
grams.

Corollary 1.3. Let D : Z — C be a filtered diagram and f : a - D(i) and
g :a = D(j) morphisms. Then

fmpg iff thereareh:i—ftandh':j— tinZ such that
D(h)o f=D(H)og.
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Proof. («<=)If D(h) o f = D(h’) o g then h and h’ form an alternating
path P: 3, — (a| D) oflength 1 from f to g.

(=) Fix an alternating path P : 3, - (a | D) from f to g and let
Q : (a} D) — T be the projection defined by

Q(g):=t, forobjects g:a— D(f),
Q(h):=h, formorphismsh:g—g .

Then QoP: 3, — T isan alternating path in Z and Lemma 1.2 provides a
cocone y from Qo P to some object m € Z. By Lemma B3.4.5 (b), it follows
that D[ u] is a cocone from D o Q o P to D(m). Since all morphisms of P
are in the range of D o Q o P, it follows that P factorises as P = I o P,,
where P, : 3, > (a} D o Q o P) is an alternating path from f to g and
I:(alDoQoP)— (al]D)istheinclusion functor. Hence, f Apoqop &
and, applying Lemma B3.5.4 to the diagram D o Q o P, we obtain

D(po)o f=D(pn)og. |

When considering «-filtered categories, we will frequently restrict our
attention to the case where « is regular. This practice is justified by the
following lemma.

Lemma 1.4. Let « be a singular cardinal. Every x-filtered category C is
k*-filtered.

Proof. Let C be k-filtered. To show that it is k™ -filtered, we have to check
two conditions.

(F1) Let X € C°Y be a set of size |X| < k. As « is singular, we can
write X as a union Ug<y X of A < « sets of size | X,| < . Since C is
k-filtered, it follows that, for every a < A, there exist an object a, € C and
morphisms f* : b — a,, for b € X,. Similarly, we can find an object ¢ € C
and morphisms g, : a5 — ¢, for & < A. For each b € X, fix an ordinal
a(b) such that b € X, ). It follows that the family

&a(b) Ofba(B):b—W, forbe X,
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witnesses (F1).

(F2) Let X € C(a,b) be a set of size | X| < k. We write X as the union
Ug<) X, of an increasing sequence (X ) 4<) of A < x sets of size | X, | < .
Since C is x-filtered, it follows that, for every a < A, there exist an object
¢y € C and a morphism g, : b — ¢, such that

guof=gaof', foralf,f eX,.

By Lemma 1.2, we can find an object d and morphisms A, : ¢, - d and
h' : b — b such that

hyoga=h, foralla<A.

We claim that /' is the desired morphism. Let f, f' € X. Then f € X,
and f’ € Xp, for some a, 8 < A. Setting y := max {a, B}, it follows that
f>f eX,and

h'of:hyogyof:hyogyof':h’of'_ O

Reducing filtered to directed colimits

We will show below that every «-filtered colimit can also be obtained
as colimit of a x-directed diagram. Hence, in terms of colimits this
generalisation does not provide more expressive power. We start with
some technical lemmas.

Lemma 1.5. Let Z and J be k-filtered categories.

(a) Z x J is x-filtered.

(b) The projection functor P: I x J — L is dense.
Proof. (a) (F1) Let {a;, b;)i<, be a family of objects of size y < «. Since
7 and J are k-filtered, we can find objects ¢ € Z and d € J and morph-

isms f; : a; - cand g; : b; - b, for i < y. Consequently, we obtain
morphisms (f;, g;) : {a;,0;) = (¢, d), for i < y.
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(r2) Consider a family of morphisms

{fi-gi) :(a,b) > (D), i<y,

of size y < k. Since 7 and J are k-filtered, we can find morphisms
h:¢—e¢inZand k:d — fin J such that

hofi=hof; and kogi=kog;, foralli,j<y.
Consequently,

(k) o(figi) = (h. k) o (f.gj), foralli,j<y.

(b) (D1) We can use (1) with X = @ to find some object b € J. It
follows that, for every a € Z, we have a morphism id, : a - P({a,b)).

(p2) Let f : a —» P({b,c)) and f" : a - P({b',¢’)) be morphisms
of Z. By Lemma 1.2, there exist morphisms g : b - b, ¢’ : b’ - b, and
g’ a—>bdsuchthatgo f = g" = g’ o f'. As J is k-filtered, there exist an
object ¢ € J and morphisms /i : ¢ - eand b’ : ¢ — e. Consequently, we
obtain morphisms (g, h) : (b,¢) > (b,e¢) and (g’, k') : (', ¢') — (b, ¢)
such that

P((g;h)) o f = P({g'sh")) o f".
These two morphisms form an alternating path from f to f". O

Lemma1.6. Let T be a x-filtered category and K a k-directed partial order
without maximal elements. Every subcategory A ¢ T x & with |A™"| <
can be extended to a subcategory A € A, € T x K such that | AT"| < x
and A, has a unique terminal object.

Proof. Let A ¢ 7 x K be a subcategory with less than x morphisms.
According to Lemma 1.5, the product Z x K is x-filtered. Therefore, we can
use Lemma 1.2 to find a cocone ¢ from the inclusion functor A - Z x &
to some object (b, k) € Z x K. Since & has no maximal element, there
exists some | € K with [ > k. Let h := (idy, b’} : (b, k) — (b, 1) be the
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morphisms whose second component is the unique morphism h’ : k — |
of K. Let A, be the category obtained from .A by adding the object (b, I),
the identity morphism id ;), and the morphisms

hop,y(a,i) > (b 1), forall(a,i)eA.

(Note that these morphisms are closed under composition since k * y is
a cocone.) Then (b, I) is the unique terminal object of A,. O

Theorem 1.7. Let k be a regular cardinal. For every small k-filtered cat-
egory C, there exist a dense k-directed diagram D : § — C.

Proof. Set J :=C x k andlet P : J — C be the projection functor. By
Lemma 1.5, 7 is k-filtered and P is dense. It is therefore sufficient to find
a dense x-directed diagram D : § — J. Then the composition P o D is
the desired dense x-directed diagram.

As index set we use the partial order J := (Z, <) where 7 is the set
of all subcategories A € J with | A™"| < x such that A has a unique
terminal object. To show that J is x-directed, consider a set X ¢ 7 of size
|X| < k. Let A be the subcategory of 7 generated by the morphisms in

U Bmor .

BeX

Since « is regular, A still has less than ¥ morphisms. By Lemma 1.6, there
exists a subcategory A € A, € J with a unique terminal object. Hence,
A, €T is an upper bound of X.

Let D : § - J be the functor mapping a subcategory A € § to its
terminal object and mapping a pair A C B of subcategories to the unique
morphism from the terminal object of A to the terminal object of B. We
claim that D is dense in J.

For (p1), let ¢ € J. The subcategory A of J consisting just of the
object ¢ and its identity morphism has a unique terminal object. Hence,
A € Jand D(A) = «. Consequently, the identity morphism id, : ¢ -
D(A) has the desired properties.
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For (p2),let f : ¢ > D(A,) and f’ : ¢ > D(A,) be morphisms of 7.
Let B be a subcategory of J of size | B™°"| < « containing f, f’ and every
morphism of A" U A", By Lemma 1.6, there exists a subcategory
B, € I containing B. Since D(B,) is a terminal object, 5, contains
unique morphisms

h:c—D(B,), D(A,)
g:D(As) ~ D(B,.), J §
gl;D(Al)—>D(8+). ] D(B.)
f 4
D(A,)
By uniqueness, it follows that go f = h = ¢’ o f’. Hence, g and g’ from
an alternating path from f to f’ O

Corollary 1.8. Let k be a regular cardinal. For every k-filtered diagram
D : Z — C with a colimit, there exists a k-directed diagram F : § - T
such thatlim (D o F) = lim D.

Corollary 1.9. Let k be a regular cardinal. A functor F : C — D preserves

Kk-filtered colimits if, and only if, it preserves k-directed ones.

Inductive completions

There is a general way to construct the closure of a category under «-
filtered colimits.

Definition 1.10. Let C be a category,  an infinite cardinal, and A either
an infinite cardinal or A = co.
(a) The inductive (x, A)-completion of C is the category

Ind}(C) := Indp (C) ,
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where P2 is the class of all small x-filtered categories of size less than A.
For k = R, and A = oo, we drop the indices and simply write Ind(C).
(b) Let P be a class of small categories containing the singleton cat-
egory [1]. The inclusion functor I : C — Indp(C) sends an object a € C to
the singleton diagram C, : [1] - C : 0 = a and a morphism f : a — b to
the link ¢ = (¢;) je[,] from C, to Cy that consists of the morphism ¢, := f.

We will show below that Indi (C) is the closure of C under «-filtered
colimits of size less than A. We start by determining the colimit of a
k-filtered diagram D : Z — Indi (C). This colimit consists of a large
diagram U that is built up from the diagrams D(i), fori € Z.

Definition 1.11. Let D : Z — Indi (C) be a diagram and, for i € Z, let
KC(i) be the index category of the diagram D(i) : (i) - C

(a) A union of D is a diagram U : J — C of the following form. For
each morphism f : { — jof Z, fix a link ¢(f) from D(i) to D(j) such
that D(f) = [t(f)]};)- Let S be the subcategory of C generated by all
morphisms in

U mgD(H)™ v U t(f).

iGI"bJ fel'm"r
The index category J has the objects
T = ) K@) = {(i,f) |[ieZ, te (i)},

feZobj
and the morphisms
T8, (,1) = S(DW) (O, DHH(D)..
The functor U : J — C is defined by

U((i,8) := D(i)(f), for (i,f) e 7°,
uif):=1, for f e J™.
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(b) Let 4 be a cocone from D to some object E € Ind*(C) and, for
ieZ,lett' = (#)exc(i) be alink such that y; = [¢']?. The union of y is
the a.p.-equivalence class [¢]5 of the family

ti=(t) (e

Remark. Note that, due to the choice of the links ¢(f), a diagram D
might have several unions. It will follow from Proposition 1.13 below that
they are all isomorphic.

To prove that the union of a diagram is its colimit, we start with a
lemma collecting several technical properties of the union operation.

Lemma 1.12. Let U : J — C be a union of the diagram D : T — Ind’ (C),
and let E € Ind? (C).
(a) Every cocone y € Cone(D, E) has a unique union.
(b) The union [u]y of u € Cone(D, E) is a morphism [u]} : U - E
Of Indau(C).
(c) The function ng : Cone(D,E) — Ind.(C)(U, E) that maps a
cocone to its union is bijective.

(d) ForieZ, the inclusion link inp ) is a link from D(i) to U.

Proof. Let k(i) be the index category of D(i) and, for f € Z™, let
t(f) be the representative of D( f) used to construct the union U.

(a) We have to show that the union of y is independent of the choice
of the links. For each i € Z, suppose that u' and w' are a.p.-equivalent
links from D({) to E such that

[W]E = pi = [W]E -

Then [u{]} = [wf]g“, for all (i,f) € 7, which implies that the corres-
ponding links u = (1) (e and w = (w}) ( yes are a.p.-equivalent and
induce the same value [ ]E = [w]p.

(b) Let 4 € Cone(D, E) be a cocone where y; = [u']%, and let [u]% be
the union of y. We have to show that u is a link from U to E. As every
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morphism of 7 is a finite composition of morphisms of the form ¢( f);
and D(i)(g), it is sufficient to prove the equivalence

u} o U(h) g u}

for morphisms & : (i,f) — (j,[) of this form.
For h = D(i)(g) with g : f - [in K(1), note that u' is a link from D({)
to E. Hence,

u} o D(i)(g) mEg u}

For h = t(f)s with f : i > jin Z and f € K(i), the fact that y is a
cocone of D implies that [u/]% o [t ()b = [u']®. Hence,

uja(f) o t(f)e mg ul,

where 0 is the index map of £( f).
(c) We have seen in (b) that #z maps cocones from D to E to morph-
isms in Ind,; (C) (U, E). Hence, it remains to prove that 7 is bijective.
For injectivity, consider two cocones y, ' € Cone(D, E) such that
ne(u) = ne(u'). Fixlinks u', w', and t = (fi£) i gye7 such that

w=[w]g, wi=[wlE, and ns(w)=[t]7.
Then [1]5 = [£,9]3 = [w]} for all indices i, f. Consequently,

i = [u]R = [W]h=ul, forallieZ,
which implies that p = p'.

For surjectivity, let s = (si ) (i1ye7 be a link from U to E. For i € Z, we
set s':= (sie)rerc(y and = ([$']7 )iez. As np(u) = [s]} it is sufficient
to prove that y is a cocone from D to E.

We start by showing that each family s' is a link from D(i) to E. Let
g : f > [ be a morphism of K(i). As s is a link from U to E, we have
sico D(1)(g) Mg sip as desired.

294

1. Filtered limits and inductive completions

It remains to show that y is a cocone. Let f : i — j be a morphism of 7
and let 6 be the index map of t(f). Since s is a link from U to E,

spoct) © U(t(f)e) mE sie,  forevery fe KC(i) .
Consequently,
uio D(f) = [S1E o [1()]pg) = [1F = -
(d) Consider a morphism g : f — [ of k(i) and set f := D(i)(g). Then
fi(i,f) = (i,[) in J and
U(idgi) e idpyqy © D(D)(g) = f = U(f) = U(f) e idpgiy(r) -

Hence, id(; ) and f form an alternating path from idp () o D(i)(g) to
idD(i)(f) in (D(I)(f) J, U). |:|

After these preparations we can prove that a union is a colimit.

Proposition 1.13. Let C be a category, «, A regular cardinals (or A = c0),

andletD:T — Indi (C) be a k-filtered diagram of size less than A with
union U.

(a) UeInd}(0).
(b) U =lim D and a limiting cocone y = (pi)iez from D to U is given
by
Ui = [inD(i)]”U“ D(I) - U.
Proof. Let k(i) be the index category of D(i) and, for f € Z™, let

t(f) be the representative of D( f) used to construct the union U.
(a) Since A is regular, we have

7™ < SIK()™ | < A

ieZ

Hence, it remains to prove that U is x-filtered.
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(¥1) Let X ¢ Z° be a set of size |X| < «. Since Z is «-filtered, there
exist an object m € Z and, for every (i,f) € X, a morphism f;:i > min Z.
Let ' be the index map of ¢( f;). Since K(m) is x-filtered, it contains an
object n € K(m) and morphisms g : 0'(f) — n, for every (i, f) € X. The
desired family of morphisms of 7 is given by

hig:= D(m)(gir) o t(fi)e, for (i,f) e X.

(F2) Let X € J({i,f), (j, [)) be a set of size | X]| < . For each morphism
f € X, we choose a factorisation

f:hgo"'oh{:f>

where each factor h{ is of the form D(m)(g), for some m € Z°% and
g € K(i)™°", or of the form #( f )y, for some f € Z™°". Let J, € J be

the minimal subcategory of 7 that contains all these morphisms h{ , for
f € Xandi < ng,and such that the restriction U, := U ' 7, is a union of
some restriction D | Z,, for some Z, € Z. Let F : Z, — 7 be the inclusion
functor. Note that | X| < x implies

|70 <« and | T"| < k.

As T is k-filtered, we can use Lemma 1.2 to find a cocone p,, from F
to some object m € Z. Set 4 := D[ o] and let [u] 7,y be the union of .

By Lemma 1.12 (b), u is a link from U, to D(m). Hence,

Uiy o f Apemy U, forevery feX.

Let p be the index map of u. As D(m) is x-filtered, we can use Corol-
lary 1.3 to find morphisms

hpp({0) >y and Ky p((8) - ny

such that

D(m)(hy) o gy o f = D(m)(hf) o ugy -

296

1. Filtered limits and inductive completions

According to Lemma 1.2, we can find an object n € K(m) and morphisms
g 10y = n, for f € X, such that

grohg=gpohp and grohf=gpohl,

for all f, f* € X. Hence, ¢ := D(m)(gy o hs) o uyy (which does not
depend on f) is a morphism such that

gof=D(m)(grohys)ougyof
=D(m)(gs o h}) O Ufi,fy
=D(m)(gs o h) ougy
=D(m)(gpohp)ougyof =gof,
forall f, f € X.
(b) To see that p is the desired limiting cocone, we have to check
several properties. We have already seen in Lemma 1.12 (d) that each
component g; is a morphism D(i) - U.

Next, we prove that 4 is a cocone of D. Let f : { - j be a morphism
of 7 and let 0 be the index map of ¢(f). Then

U(t(f)e) oidpqiycey = t(f)e = U(idg;e¢)) © idpgiy oy © (e -

Hence, t(f): and id(jg(s)y form an alternating path from idp ) to
idpyacry) © t(f)rin (D(i)(F) | U). This implies that

uio D(f) = [inp) 15 o [t(N)]pg)
= [inD(i) * t(f)]@ = [inD(i)]@ = Ui
It remains to show that g is limiting. Let 4’ € Cone(D, E) be a cocone

where u/ = [w']®, and let [w]® be the union of u’. We have seen in
Lemma 1.12 (b) that [w]} is a morphism U — E. Furthermore,

[wg * = ([W1E o [inp®]0) ey = (WE) ey = (Wi = 1
Hence, the function [w]} ~ [w]} * u is an inverse to the bijective
function of Lemma 1.12 (c). By Lemma B3.4.2 it follows that y is limiting.

O
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It turns out that Indﬁ (C) is the closure of C under «-filtered colimits
of size less than A, i.e,, it is the smallest category containing C that is
closed under such colimits. We begin the proof with a technical lemma
summarising properties of the inclusion functor C — Indp(C).

Lemma 1.14. Let C be a category, P a class of small categories containing
the singleton category [1], and be I : C — Indp (C) be the inclusion functor.

(a) Iis well-defined.
(b) For links s and t from D € Indp(C) to I(a),

[s17tay = [t]7(a) : D = I(a) implies s=t.

(c) Iis full and faithful.
(d) For every D € Indp(C), the inclusion [inp|y : D — U is an
isomorphism, where U is the union of I o D.

(e) For every D € Indp(C) and every object a € C, I induces an iso-
morphism

Cone(D,a) - Indp(C)(D,I(a)) : p — I[p].

(f) A family t is a link from a diagram D : T — C to I(a) if, and only if,
t is a cocone from D to a.

Proof. To keep notation simple, we will not distinguish below between
a morphism f : a — b of C and the link ¢ = (t;);e[,] from I(a) to I(b)
whose only component is t, = f.

(a) Clearly, I(a) € Ind’(C), for every object a ¢ C. Furthermore, if
f +a— bisamorphism of C, then the family I( f) consisting just of f is
alink from I(a) to I(b) since it only has to satisfy the trivial requirement
that f o I(ida) MI(b) f

(b) Leti € Z. Since [s]7,) = [t]7(,) the comma category (D(i) | I())
contains an alternating path from s; to #. As id, is the only morphism
of I(a), this alternating path consists only of identity morphisms. Con-
sequently, s; = t;.
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(c) To show that I is full, let [f]?“(b) : I(a) - I(b) be a morphism of
Ind}(C). Then f = (fi)ie[o] consists just of one morphism f, : a — b

and 1(£,) = [/ T2

To prove that I is faithful, suppose that I(f) = I(g) for morphisms
f>g:a—b.Then [f]7,) = [g]fs and (b) implies that f = g.

(d) Let D : T — C be an object of Indp(C) and let U : J — C be
the union of I o D. Note that 7°% = Z°% x [1]. Since [inp]#} : D - U
only consists of identity morphisms idp ;) : D(i) - U({i, 0)), it has an
inverse [¢]} : U — D where

ti0) = 1idpgy : U((i,0)) = D(i), for(i,0) e J.

Furthermore, as both families only consist of identity morphisms, it is
straightforward to check that they are links.
(e) By (d), D is the union of I o D. Hence, the morphism

Cone(D,a) - Indp(C)(D,I(a)) : u~— I[u]
can be written as composition of the natural isomorphisms

71,p : Cone(D,a) - Cone(Io D,I(a)): y— I[y]
and  75() : Cone(I o D,I(a)) - Ind.i(C)(D,I(a)),

where 7,y is the morphism from Lemma 1.12 (c).

(f) («<=) Let t be a cocone from D to a. For every morphism f : i — j
of Z, we have tj o D(f) = t;, which implies that t; o D(f) a ) t.

(=) Let t be a link from D to I(a). By (e), there is a unique cocone
p € Cone(D,a) such that I[u] = [t]f,. Hence, (b) implies that y = t.
In particular, t € Cone(D, a). O

Theorem 1.15. Let C be a category, «, A regular cardinals (or A = o), and
1:C - Ind}(C) the inclusion functor.

(a) Every x-filtered diagram D : T — Indf(1 (C) of size less than A has a
colimit in Ind*(C).
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(b) For every object a € Indi (C), there exists a x-filtered diagram D :
I — C of size less than A such that a = lim (I o D).

Proof. (a) follows immediately from Proposition 1.13.
(b) Let D € Ind’ (C). By Lemma 1.14 (e), D is isomorphic to the union

of I'o D. Consequently, it follows by Proposition 1.13 that D = lim (I o D).

O

Exercise 1.1. Prove the following universal property of Indi (C): for
every functor F : C — D into a category D that has x-directed colimits
of size less than A, there exists a unique functor G : Indi (C) - D such
that G preserves k-filtered colimits of size less than A and F factorises as
F=Gol, where:C — Ind’(C) is the inclusion functor.

Remark. For every x-filtered diagram D : Z — C of size less than A, the
inductive completion Ind’ (C) has a colimit: the diagram D itself. But
note that, if D already has a colimit a in C, the corresponding object I(a)
of Ind? (C) will in general not be a colimit. In fact, a limiting cocone A
from D to a induces a morphism [A];’“(a) : D - I(a) in Ind?(C), but
there is no reason why this morphism should be an isomorphism.

2. Extensions of diagrams
In this section we consider ways to extend a diagram D : 7 — C to a
diagram D* : Z* — C with a larger index category. For instance, given a

k-directed diagram and a cardinal A > k, we would like to construct a
A-directed diagram with the same colimit.

Completions of directed orders

We start by transforming x-directed partial orders into A-directed ones.

Definition 2.1. Let J be a partial order and «, A infinite cardinals or
A = oo. The (k, A)-completion of § is the partial order 3* := (I*,C)
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where
I":={||S| S cIisk-directed and |S| < A } .

Our hope is that, using a generalisation of Lemma B3.3.5, we can
prove that the (x, 1)-completion of a x-directed partial order is A-direc-
ted. Unfortunately, this is not true in general. In only holds for certain
cardinals x and A.

Before characterising such cardinals, we compare the («, A)-comple-
tion of a k-directed partial order J to its inductive completion. It turns
out that these two categories are equivalent. Before presenting the proof,
let us note that the inductive completion of a preorder is again a preorder.

Lemma 2.2. Let x and A be infinite cardinals or A = co. If § is a preorder,
then so is Ind’(3).

Proof. We have to prove that between any two objects D : J — J and
E: K - S of Ind}(3), there is at most one morphism. Consider two
links s and ¢ from D to E. We claim that s s t. Let p and 0 be the index
maps of, respectively, s and t and let j € 7. As E is «-filtered, there exist
an index f € K and morphisms g : p(j) - fand h : 0(j) — £. It follows
that E(g) osjand E(h) o t; are both morphisms from D(j) to E(f). Since
3 is a preorder, this implies that E(g) o s; = E(h) o t;. Consequently,
g and h form an alternating path from s; to ¢ in (D(j) | E). This implies
that Sj NE t]'. O

Proposition 2.3. Let J be a partial order and let k, A be infinite cardinals
or A = co. The (x, \)-completion 3+ of I is equivalent to Ind’(3).

Proof. It is sufficient to prove that the function
h:Ind*(3) - 3" : D ~ | rng DY

is a surjective strict homomorphism. Then h induces a full and faithful
functor Indi (3) = 3. Since, trivially, every object of I* is isomorphic

301



B4. Accessible categories

to some object in the image of this functor, it follows by Theorem B1.3.14
that the functor is an equivalence.

Let D: J - Jand E : K — 3 be diagrams in Indi (3). To see that h is
a homomorphism, suppose that there exists a morphism [¢]} : D - E.
Let 6 be the index map of t. Then the morphisms t; : D(j) - E(0(j))
witness that D(j) < E(60(j)), for all j € 7. This implies that

rng D ¢ || rng E°Y.

Hence, h(D) < h(E).

For strictness, suppose that 4(D) € h(E). Then rng DY ¢ |} rng E°®
implies that, for every index j € J, we can find some index 6(j) € K
such that D(j) < E(6(j)). Setting

ti = (D(j), E(6(}))), forjeJ,

we obtain a link from D to E with index map 6.

It remains to prove that k is surjective. Let S € I'*. Then S = ||S,, for a
k-directed set S, € I of size |So| < A.Let D: J | S; — J be the inclusion
functor. Then D ¢ Ind?(3) and h(D) = IS, = S. O

If the (x, 1)-completion is equivalent to the inductive completion,
why did we introduce it? The reason is that we would like to extend a
k-directed diagram D : § — C to a A-directed one D* : §* — C. We
cannot take the category Ind’ (3) as index category 3+ since it is not
small. Instead, we can use the skeleton of Ind? (3), which is small and
isomorphic to the (x, 1)-completion of 3.

Before doing so, we sill have to characterise the cardinals «, A such that
the (x, A)-completion is A-directed. This is achieved by the following
relation.

Definition 2.4. For infinite cardinals x, A, we write x 4 A if « < A and,
for every set X of size | X| < A, there existsa set D € £, (X) of size |D| < A
that is dense in the partial order (P, (X), c), where

Po(X)={ScX||s|<x}.
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Exercise 2.1. Let « be a regular cardinal. Prove that a set D ¢ £, (X) is
dense if, and only if, (D, ¢) is k-directed and U D = X.

The next lemma summarises the basic properties of the relation <.

Lemma 2.5. Let Cny, be the class of all infinite cardinals.
(a) isa partial order on Cny,.
(b) x < x™, for every regular cardinal .
(¢) Ifk < A are cardinals such that u=* < A, for all y < A, then x < A.

(d) x <2 (2" for all cardinals x < M.

(e) The partial order (Cny,, 4) is k-directed for every cardinal .

Proof. (a) The relation < is antisymmetric since, by definition, ¥ < A
implies x < A. For reflexivity, let X be a set of size |X| < k. Then X ¢
£« (X) and the set D := {X} is dense. It remains to prove transitivity.
Suppose that « 9 A < . If A = p, we are done. Hence, suppose that A < .
To show that k < g, let X be a set of size |X| < p. Since A < g, there exists
a dense set D ¢ §, (X) of size |D| < y. Since « 9 A, we can choose, for
every Y € D, adense set Ey < £, (Y) of size |[Ey| < A. Set

F:= UEy.

YeD

Then |F| < Y yepl|Ey| £ A ® |D| < . Hence, it remains to prove that F is
dense. Let U € P (X). Then U € £, (X) and there is some Y € D with
U c Y. Therefore, we can find aset Z € Ey € Fwith U ¢ Z.

(b) Let X be a set of size |X| < x*. Choose an injective map f : X — «.
We claim that the set

D:={f"[la]|a<xk}

is dense in £, (X). First, note that |[f[l«]| < |«| < «, for each « < «.
Hence, D ¢ £, (X).

Given Y € £, (X), set y := sup f[Y]. Since | f[Y]| < « and « is regular,
it follows that y < x. Hence, Y € f'[{(y +1)] € D.
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(c) Let X be a set of size y := | X| < A. Then | (X)| = u<* < A. Hence,
D := f,(X) is a dense set of size less than A.
(d) Let k < A and set y == (2*)*. Then

(<H)<K — (2</\)<K :sup{(z}to)xo |Ko <k, Ao <A}

=sup { 27%% | ko <k, Ao <A} <2t <.

Hence, (c) implies that x < y.

(e) Let X be a set of cardinals. We set g := sup X and A := (2%¥)*.
By (d), it follows that x < A, for every x < y. Hence, A is an upper bound
of X. U

Exercise 2.2. Prove that X, < A, for all infinite cardinals A.

Example. To show that the relation < is non-trivial, we prove that &, +
Ry+1 by showing that there is no dense set D € £, (R, ) of size |D| < R,,.
For a contradiction, suppose that D is such a dense set. Fix a surjective
function f : X, — D. Since

Uf[an]SNn®Ro=Nn<Nn+1>

we can pick, for every n < w, an element z, € R,,, N U f[IR,]. Set
Z:={z,|n<w} Then Z € £y, (R,) and, as D is dense, there exists a
set Y e D with Z ¢ Y. Since f is surjective, there is some y € R, with
f(y) =Y. Fixan index n < w with y € R,,. Then

Zn € R N U fIRA] 2R N Y
implies that Z ¢ Y. A contradiction.

For regular cardinals we can characterise the relation < in several
different equivalent ways. One of them solves our question regarding
the (%, A)-completion. Further characterisations will be given in The-
orem 4.9 below.

Theorem 2.6. Let k < A be regular cardinals. The following statements
are equivalent:
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(1) kg

(2) For each k-directed set 3, every subset X ¢ I of size |X| < A is
contained in a x-directed subset H C I of size |H| < A.

(3) The (x, A)-completion of a x-directed partial order is A-directed.
(4) Ind}(3) is A-directed, for every k-directed partial order 3.

Proof. (1) = (2) Let I be a k-directed partial order and let X C I be a set
of size |X| < A.If A = «, the set X has an upper bound ¢ € I and Xu{c} is
the desired x-directed set containing X. Therefore, we may assume that
A > k. For the construction of H, we consider the following operation
B : #y(I) — Ry(I). Given U € £,(I), we define B(U) € £,(I) as
follows. Choose a dense set D ¢ R, (U) of size |U| < A and, for every
Z € D, fix an upper bound k; € I of Z c I. We set

B(U)=Uu{k;|ZeD}.

Then U € B(U) and |B(U)| < |U|® |D| < A.
Using this operation, we define an increasing sequence (H*(U)) y<«
of sets by

H°(U):=U,
H*(U) = B(H*(U)),
H’(U) := |J H*(U), for limit ordinals & .
a<d
By induction on «, it follows that |H*(U)| < A, for a < x and |U]| < A.
We claim that H*(S) is the desired x-directed set containing S. Let U <
H*(S) be a set of size |U| < «. Since « is regular, there is some ordinal «
such that U € H*(S). Consequently, H*"*(S) ¢ H*(S) contains an
upper bound of U.
(2) = (3) Let 3* be the (k,1)-completion of a x-directed partial
order J and let X ¢ I'* be a set of size |X| < A. By definition of I*, there

exists a family X, of k-directed subsets s € I of size |s| < A such that
X ={ls|seXo} SetS :=UX,. Since A is regular, we have |S| < A.
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By (2), we can find a x-directed set H € I such that S € H and |H| < A.
For each s € X, s € H implies that ||s € ||H. Hence, ||H € I'* is an upper
bound of X.

(3) < (4) Let 3 be a x-directed partial order and let * be its (x, 1)-
completion. We have seen in Proposition 2.3 that the categories Indi (3)
and 3" are equivalent. Hence, the former is A-directed if, and only if, the
latter is A-directed.

(4) = (1) Let X be a set of size | X| < A. Note that, since « is regular,
we have U Z € P, (X), for every subset Z ¢ £, (X) of size | Z| < k. Con-
sequently, (£, (X), €) is x-directed. By (4), it follows that Ind’ (£, (X))
is A-directed. Therefore, the preorder Ind? (¥, (X)) contains an up-
per bound D : 7T — R, (X) of the set {I({x}) | x € X}, where
I:£.(X) - Ind} (£, (X)) is the inclusion functor. For x € X, let 6, be
the index map of the link from I({x}) to D. Then {x} € D(68,(0)), for
all x € X.

We claim that rng DY is a dense subset of £, (X). Let Y € £, (X).
Since D is «-filtered, there exist an index f € Z and morphisms f, :
0,(o) — £, for y € Y. Consequently,

{y} cD(8,(0)) c D(f) implies Y c D(f) € rng D°". O

Extensions of directed diagrams

Having found a A-directed completion §* of a given k-directed partial
order J, we can use it to extend «k-directed diagrams D : § - Ctoa
A-directed diagram D* : 3* — C. This construction is defined via a
detour through the inductive completion Indi (C). We construct two
diagrams §* — Ind?(C) and Ind}(C) — C whose composition is the
extension §* — C we are looking for. Let us start with the first diagram.

Definition 2.7. (a) Let D : Z — C be a diagram and F ¢ £(Z°%). The
F-completion of D is the diagram

D*: (F,E) — Indau(C)

306

2. Extensions of diagrams

defined by

D*(S)=D 1S, for objects S € F,
D*(S,T):=[inps]pr, forpairsScT.
(b) Let  be a partial order, D : § — C a diagram, and «, A cardinals

or A = co. The (k, A)-completion of D is the I'*-completion D* : §* —
Ind,(C) of D, where 3+ is the (x, A)-completion of 3.

For well-behaved sets F, the F-completion preserves the colimit.

Lemma 2.8. Let F ¢ P(Z°) be a directed set with |JF = T°% and let
D be the F-completion of D : T — C. Then lim D™ = D.

Proof. Let U : J — C be the union of D* where, for each pair § ¢ T,

we have chosen the representative 5T := inps of the equivalence class

D*(S,T) = [u®>T]}, 1. By Proposition 1.13 it is sufficient to show that
U 2 D. For (S,i) € J = UJser S, set

s(s,iy = idpiy : U({S,1)) = D(i).
For every i € Z, choose a set 8(i) € F with i € 8(i) and set
ti==idpgy : D(i) - U((0(i),1)).

We claim that s := (s(s,) )(s,iyes and t := (#)icz are links from, respect-
ively, U to D and D to U such that [s]}) : U — D is an inverse of
[(t]§:D—U.

We start by showing that s and ¢ are a links. For f,let f : i > jbea
morphism of Z and choose a set S € F withi,j € S. Then

D% o 10 D(f) = idp o idpy o D(f)
= D(f) o ldD(t) o ldD(l)
= UD(f)) 0! o,
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Hence, uie(j)’s and D(f)o uf(i)’s form an alternating path from # o0 D( f)
to t;in (D(i) | U).

For s, note that 7 is generated by morphisms of the form D(f) and
uf’T, for f € I™°", S ¢ T, and i € Z°%. Hence, it is sufficient to check
that

s(r,jy © U(h) mp s(sy for such morphisms /.
For h = uiS’T, we have

sgry o U(") =idpgy o idpgy = idpgyy = S(s,0 -
For h=D(f) with f:i—>jinZ,

D(idy) o s(sjy o U(D(f)) = D(id;) o idp(j) o D(f)
= D(f) o idD(,')
=D(f)o $(8,i)

implies that s(gjy o U(D(f)) Ap s,i-
It remains to prove that [s]}) is an inverse of [¢]7). Since

st =(s(9¢i).i © t)iez = (Idpiy iez »

s is a left inverse of ¢. To show that it is also a right inverse, let (S, i) € J
and fixa set T € F with (i) u S € T. Then

U)o (15 5) (s = idpgy © fi 0 (5.
=idp@y o idp() °idp(y
= U(idp(y) o idy((s,iy)
implies that (t * 5) (s Av idy((s,y)- O

The second step of the construction uses the following functor to go
back to the category C.
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Definition 2.9. Let C be a category with P-colimits. Fixing, for every
diagram D € Indp(C), a limiting cocone A” € Cone(D, ap) of D, we
define the canonical projection functor

Q:Indp(C) > C

as follows. Q°” maps diagrams D € Indp(C) to their colimit ap. For
morphisms [¢]7 : D - E, we choose for Q™°"([¢]4 ) the unique morph-
ism ¢ : ap — agp such that

AExt=goAl.

Lemma 2.10. Let P be a class of small categories containing the singleton
category [1], C a category with P-colimits, and let Q : Indp(C) — C be
the canonical projection functor.

(a) Q is well-defined.

(b) Q preserves colimits.

Proof. Let (AP)p be the family of limiting cocones used to define Q and
let (ap)p be the corresponding colimits.

(a) Clearly, the object part Q% is well-defined. Hence, it remains to
check the morphism part Q™. First note that, for a link ¢ from D to E,
we have shown in Lemma B3.5.8 that AF * ¢ is a cocone of D. As AP is
limiting, there therefore exists a unique morphism ¢ such that

AExt=goAl
It remains to show that this morphism ¢ does not depend on the choice
of the representative t. Suppose that s ag t. Then

AE w5 A 1(a) AE ¢

and it follows by Lemma 1.14 (b) that Af s = ¥ % ¢.

(b) Let A* be a limiting cocone from D : Z — Indp(C) to E. By
Lemma B3.4.5, Q[1*] is a cocone from Q o D to Q(E) = ag. Hence, it
remains to show that Q[A*] is limiting.
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Let p € Cone(Q o D, b) be a cocone. We have to find a unique morph-
ism ¢ :ap - bsuch that gy = ¢ » Q[A*]. Forie Z, set

= [+ APOT ) -

We claim that v := (v;)icz is a cocone from D to I(b).
Let f : { > j be a morphism of 7 and suppose that D(f) = [t]5;.
Note that, by definition of Q,

AP0 4= Q(D(f)) * 2P

Since y is a cocone of Q o D, it follows that

v o D(f) = [w = APOT} o D(f)

[/l % AD(]) * t][(b)
= [H’ * Q(D f)) AD(I)]I([,)
[ [ * )LD(I)]I([») =Y,

as desired.
Asvisacoconeof Dand A is limiting, there exists a unique morphism
[t]7s) : E > 1(b) such that

v=[t]fe * A"

By Lemma 1.14 (f) it follows that t is a cocone from E to b. As Af is
limiting, there exists a unique morphism ¢ : ag — b such that t = ¢ * AE.
Suppose that A/ = [s']2. Then

Q(/ll*) *AD(i) :AE *Si

implies that

N

[ QA7) *AD(O]I(Q y < [AE]I(QE) *Af
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For every i € Z, it follows that
D(i) _ E *
[(P * Q(’ln ) * A ' ]I(b) - [90 * A ]I(b) /1
= [ty * A = vi= [+ /\D(I)mb)'

Using Lemma 1.14 (b), it follows that

9 * QA7) % APD =y x APO),
which, by Lemma B3.4.2, implies that ¢ o Q(A*) = y;. Hence,

u=9xQA7].

It remains to prove that the morphism ¢ is unique. Suppose that
¥ :ag — bisa morphism such that y = y * Q[A*]. Then

* D(i
[y * A ]I(b) * A= [y Q) A ()]1(5)
=[ui*A (l)mb) =v =t ]1(5) * AL
and it follows by Lemma B3.4.2 that
[y * A" 17ty = ()70, -

Hence, Lemma 1.14 (b) implies that ¢ = y * A¥. By choice of g, it follows
that y = ¢. O

Combining these two functors we obtain the desired A-directed ex-
tension.

Proposition 2.11. Let k < A and let C be a category with k-directed colimits
of size less than A. For every x-directed diagram D : § — C, there exists a
A-directed diagram D : 3+ — C such that

lim D* 2 lim D
iy iy

and, for every i € I, there is some x-directed set S C I of size |S| < A such
that

D* (i) 2lim (D 1 §).
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Proof. Let D* : 3* — Ind}(C) be the (x, 1)-completion of D. By The-
orem 2.6 (3), the diagram D* is A-directed. Furthermore, we have seen
in Lemma 2.8 that lim D* = D. According to Lemma 2.10, the canonical
projection functor Q : Ind’ (C) — C preserves colimits. Hence, it follows
that

lim(Q o D*) = Q(lim D*) = Q(D) = lim D

Furthermore, each index i € I' is of the form i = |} for some k-directed
set S C I of size |S| < A. Since S is dense in ||S, it follows that

Q(D* (i) 2 lim D* (3) = lim (D } ) 2 lim (D 1 5) .
Hence, Q o D* : §* — C is the desired diagram. O

Example. We can also use the previous results to give a short alternative
proof of Proposition B3.4.16. Let C be a category with directed colimits
and let D be the class of all directed partial orders. For D € Indp(C) of
size x, we find the desired chain C as follows.

By Proposition B3.3.6, there exists a chain (Hy ) o<, of directed subsets
H, c Iofsize |Hy| < k suchthat I = Uge Hy.Set F:i= { Hy | o < & }, let
D™ be the F-completion of D, and let Q : Indp(C) — C be the canonical
projection. As above,

lim (Q o D*) = Q(lim D*) = Q(D) =lim D.

Since (F, ¢) = (x, <) it follows that C := Q o D™ is the desired chain.

Shifted diagrams

We conclude this section by presenting a second construction of dia-
grams. It provides a way to modify the colimit of a x-filtered diagram
D : T — C by adding morphisms to the index category Z but no new
objects. We will see below that this results in a retraction of the colimit.
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Definition 2.12. Let D :Z — C be a diagram.

(a) A morphism f : a — ais idempotent if f o f = f. Similarly, we call
alink ¢ from D to D idempotent if t o t mp t.

(b) By O we denote the category with a single object * and two
morphismsid, e : * - * where e o e = e and id is the identity morphism.

(c) Let ¢ be an idempotent link from D to D, let F: J — Ind,;(C)
be the diagram mapping * to D and e to [t]%, and let D : T+ — C be
the union of F where we choose t as representative of [ ¢]7). We say that
D™ is the diagram obtained by shifting the diagram D by ¢.

Our aim is to show that the colimit of a shifted diagram is a retract of
the colimit of the original one. We also characterise which retracts we can
obtain in this way. The key argument is a proof that, in certain categories,
every idempotent morphism factorises as a retraction followed by a
section.

Lemma 2.13. Let D: (O — C be a diagram. A cocone yu € Cone(D, a) is
limiting if, and only if, the morphism u. : D(*) — a has a right inverse
s:a— D(*) such that
D(e)=sou..
Proof. (=) Since D(e)oD(e) = D(ece) = D(e), the family consisting
just of the morphism D(e) is a cocone from D to D(*). If y is limiting,
we can therefore find a morphism s : a — D(x) such that D(e) = s * y..
We claim that s is the right inverse of p.. Since g is a cocone, we have
prosopy = psoD(e) = p.,

which implies by Lemma B3.4.2 that g, o s = id,.
(<) Let s be a right inverse of y, such that D(e) = s o u,. Given
another cocone ' € Cone(D, b), we set ¢ := y, os. Then

W, =p,oD(e)=p,os0u, =¢pou,

implies that 4’ = ¢ * . To show that ¢ is unique, suppose that y' = y * u.
Then

y=yo(u,0s)=p,0s=¢@op,05s=¢. O
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Corollary 2.14. Let C be a category with finite k-filtered colimits, for some
cardinal x. A morphism p : a — a is idempotent if, and only if, p=sor
for some retraction r : a — b with right inverse s : b — a.

Proof. (=) Let p : a - a be idempotent and let D : () — C be the
diagram mapping the object * to a and the morphism e to p. By assump-
tion, D has a limiting cocone A to some object b. Consequently, it follows
by Lemma 2.13 that the morphism r := A, has a right inverse s with
sor=D(e) = p.

(<=) Let r be a retraction with right inverse s. Since (sor) o (sor) =
soidor =sor, every morphism of the form s o r is idempotent. [

One consequence of Lemma 2.13 is that every diagram D* obtained
by shifting a diagram D is a retract of D in Ind,y; (C). For the proof that
the same holds for their colimits, we start with a technical lemma.

Lemma 2.15. Let D* : I% — C be the diagram obtained by shifting a
filtered diagram D : T — C by an idempotent link t.

(a) tisalink from D* to D.
(b) Let u € Cone(D,a). Then
peCone(D*,a) iff puxt=p.
Proof. (a) Note that the morphism [¢]}) : D — D forms a cocone
from F : O — Ind,;(C) to D whose union is just [¢]}. Therefore,
Lemma 1.12 (b) implies that ¢ is a link from D* to D.

(b) (=) Let 6 be the index map of . If u is a cocone of D*, then
o) © ti = i, which implies that

poxt=(pog © ti)iez = (Wi)iez -

(<) If u * t = y, then it follows by (a) and Lemma B3.5.8 that

p=ux*t=m(u)ecCone(D",a). O
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Proposition 2.16. Let D" : % — C be the diagram obtained by shifting a
filtered diagram D : L — C by an idempotent link t and let A be a limiting
cocone from D to some object a. For an object b € C, the following two
statements are equivalent.

(1) limD* =6
—

(2) There exists a retraction r : a — b with right inversee : b - a
satisfying

Axt=(eor)*A.

Proof. (1) = (2) Let A* be a limiting cocone form D* to b. Since A * t €
Cone(D*,a) and A* € Cone(D, b), there exist unique morphisms r :
a—bande:b— asuch that

Axt=ex A" and AT =rxA.
By Lemma 2.15 (b), it follows that

(roe)* A" =rx*(ex ")
=r*(A*t)
:(r*/\)*t:fr*t:)ﬁ:id*/V.

Therefore, Lemma B3.4.2 implies that r o e = id. Consequently, 7 : a — b
is a retraction with section e : b — a. Furthermore,

Axt=ex A =ex(rxA)=(eor)*A.

(2) = (1) We claim that A* := 7 x A is a limiting cocone from D* to b.
Since

Mut=(rxd)st=rx(Axt)
“re((eor) D)
:(roeor)x-/\:r*)L:AJr,
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Lemma 2.15 (b) implies that A* € Cone(D™, b). To see that A" is limiting,
we prove that the natural transformation

7:C(b,—) - Cone(D*,=): f > f*A"

from Lemma B3.4.2 is a natural isomorphism.
We start by showing that each component 7, of 7 is surjective. Let
y € Cone(D™,¢). Since p € Cone(D, ¢) and A is limiting, there exists a
unique morphism ¢ : a — ¢ such that y = ¢ + 1. Consequently,
p=pxt=gxixt

=px*(eor)xA

= (poe)x (reh)

=(poe)xA" =n(poe)ecrngy..

For injectivity, suppose that f, ' : b — ¢ are two morphisms such that

n(f) = n(f"). Since
(for)*A=fx(rxd)=f*A"=n(f)
and, analogously, (f' o r) * A = 5.(f"), it follows that

(for)sd=(flor) ).

By Lemma B3.4.2, this implies that for = f’or. Since r is an epimorphism,
we obtain f = f', as desired. O

3. Presentable objects

When trying to find a category-theoretical generalisation of statements
involving the cardinality of structures, one needs a notion of cardinality
for the objects of a category. Of course, one could simply add a function
C°% — Cn to a category C and axiomatise its properties. But it is not
obvious what such axioms should look like. It turns out that, for certain
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categories, there is a simpler way. Without explicitly adding a notion of
cardinality, we can recover it from the category. To do so we introduce
the concept of a k-presentable object, which generalises the concept of a
x-generated structure in Emb(X).

Definition 3.1. Let C be a category and « a cardinal.

(a) Let D : Z — C be a diagram and y € Cone(D,b) a cocone.
A morphism f : a - b factorises through y if there exists an object
i € Z and a morphism f, : a - D(i) such that

f=uiofs.

We say that this factorisation is essentially unique if, for every other
factorisation f = ps o f, withfe Z and f; : a — D(f), we have

fomp fy .-

(b) An object a of C is k-presentable if, for each x-directed diagram
D : § — C with colimit b, every morphism f : a — b factorises essentially
uniquely through the limiting cocone. For ¥ = R,, we call a finitely
presentable.

Remark. (a) Let x < A. Since each A-directed diagram is also x-directed,
it follows that x-presentable objects are A-presentable.

(b) For a singular cardinal «, it follows by Lemma 1.4 that an object is
k-presentable if, and only if, it is ™ -presentable.

Example. In Get every set X is | X|*-presentable.

Exercise 3.1. Prove that an object a is k-presentable if, and only if, for
every k-filtered diagram D with limiting cocone A € Cone(D, b), the
function

Ind,;(C)(I(a), I[A])
: Indan(C)(I(a), D) = Inda (C)(I(a), I(b))
[t]p = I[A] o [t]D

is bijective. (I denotes the inclusion functor C — Ind,;(C).)
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I —> D
) T

Exercise 3.2. Let D : T — C be a «-filtered diagram with a x-presentable
colimit a, and let A be a limiting cocone from D to a. Prove that, in
Ind;”(C), the morphism I[A] : D = I(a) induced by A is an isomorph-
ism.

First, let us show that this notion indeed generalises the concept of
being x-generated.

Proposition 3.2. Let k be a regular cardinal. A X-structure A is k-present-
able in the category Cmb(ZX) if, and only if, it is k-generated.

Proof. (=) Let U be x-presentable. To show that U is x-generated, let
3 be the family of all x-generated substructures of & ordered by inclusion
and let D : § — C be the canonical diagram. By Proposition B3.3.16, this
diagram is x-directed and its colimit is . Let A be the limiting cocone.
Since U is k-presentable, the identity idy : A — A factorises through A.
Therefore, we can find an index k € I and an embedding f : % — D(k)
such that Ao f = idy. As Agof = idy is surjective, so is the embedding A.
Consequently, A4 is an isomorphism and & = D(k) is x-generated.

(«<=) Suppose that 2 is generated by aset X ¢ A of size |X| < . To show
that U is x-presentable, let D : § - Emb(X) be a x-directed diagram
with colimit & and f : ¥ > B an embedding. Let A € Cone(D,B) be
a limiting cocone. For every element a € X, fix an index i, € I with
f(a) erngA;, and let k be an upper bound of { i, | a € X }. Then

f[X]< U rngA;, € rngly,
aeX

which implies that rng f € rng A;. By Lemma A2.1.10, there exists a right
inverse g : rng Ay — D(k) of 1. We set f, := g o f. Then

/\,kOfO:/\kOgOf:f.
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It remains to show that the factorisation is essentially unique. Hence,
suppose that there is an index i € I and an embedding f! : A - D(i)
such that A; o f; = f. For every element a € X,

Ai(f(a)) = f(a) = Ak(fo(a))

implies, by the definition of a k-directed limit of 2-structures, that there
is some index [, > i, k such that

D(i,1)(fs(a)) = D(k. 1)(fo(a))-
Choosing an upper bound m of { I, | a € X }, we obtain
D(im)o f, = D(k,m)o fo.
This implies that £/ ap fo. O

Let us present several alternative characterisations of being x-present-
able. The first one rests on the fact that, since every «-filtered colimit can
be written as a x-directed one, we can replace in the definition x-directed
diagrams by «-filtered ones. The second characterisation is based on
hom-functors.

Theorem 3.3. Let C be a category and a an object. The following statements
are equivalent:
(1) ais x-presentable.

(2) For each x-filtered diagram D : T — C with colimit b, every morph-
ism f : a — b factorises essentially uniquely through the limiting
cocone.

(3) The covariant hom-functor C(a, —) preserves k-directed colimits.

(4) The covariant hom-functor C(a, —) preserves x-filtered colimits.

Proof. (4) = (3) is trivial.
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(3) = (1) Let D : § — C be a k-directed diagram with limiting cocone
A € Cone(D,b), and let f : a — b be a morphism. By assumption
(C(a, 7)) ies is a limiting cocone of C(a, —) o D. Consequently,

C(a,b) = UIC(a,)L,-)[C(a, D(i))].
In particular, there are an index i € I and a morphism f, € C(a, D(i))
with

f=C@ti)(fo) =Aiofo.

Hence, f factorises through A. For essential uniqueness, suppose that
there is a second index j € I and a morphism f : a - D(j) such that
f=2Ajof;. Then

C(a,Aj)(fo) = Ajo fo =Aio fo=C(a,1i)(fo).

Hence, f, € C(a,D(i)) and f] € C(a, D(j)) correspond to the same
element of the colimit C(a,b). This implies that there exists an index
k > i, j such that

C(a,D(i, k))(fo) = C(a, D(j, k) (f5) -

Consequently,
D(i, k) fo = D(j k) o fs

which implies that f, ap f?.

(1) = (2) Let A be a limiting cocone from D to b. By Theorem 1.7,
there exists a dense x-directed diagram F : & — Z. Furthermore, ac-
cording to Proposition B3.5.15, the projection np  along F is a natural
isomorphism. Consequently, it follows by Lemma B3.4.3 that the pro-
jection y := 7p p(A) is a limiting cocone from D o F to b. Therefore,
every morphism f : a — b factorises essentially uniquely through y as
f = ko fo, for some k € K and f, : a > D(F(k)).
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We claim that Ag(x) o f, is an essentially unique factorisation of f
through A. Note that Ag(x) o fo = px o fo = f implies that it is a factor-
isation of f. Hence, it remains to prove essential uniqueness.

Suppose that f = A; o f; is a second factorisation. As F is dense, there
exists an index [ € K and a morphism g : { > F(I). Hence,

profo and proD(g)of,

are two factorisations of f through u and, by essential uniqueness, we
obtain

fo Mpor D(g) © f .

By Lemma B3.5.3 (d), this implies that f, ap f,.

(2) = (4) Let D : 7 — C be a k-filtered diagram with limiting cocone
A € Cone(D, b). We have to show that A" := (C(a, A) )iez is a limiting
cocone from C(a,—) o D to C(a,b). By Lemma B3.4.2, it is sufficient to
prove that the natural transformation

1 : Set(C(a,b),—) — Cone(C(a,-)oD,—): 9> @ x A

is a natural isomorphism. We define an inverse ( of # as follows.
For each morphism f : a — b, we choose an essentially unique factor-
isation

f=Xyog(f), withi(f)eZandg(f):a~ D((f)),
and, for a cocone y of C(a,—) o D and a morphism f : a — b, we set

() (f) = win) (8(f)) -

It remains to show that { is an inverse of #. First, note that {(1") = id
since

CAN(S) = Ay (8(f))
=C(a, i) (g(f)) =iy og(f)=f.
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Furthermore,

{(pxu)(f)=(¢ *#)i(f)(g(f))
= 9(picn (8())) = o(E(W)(N)

implies that {(¢ * u) = ¢ o {(u). Consequently,
((n(9)) =L(p*A) = 9o l(X) =goid=¢.

To show that { is also a right inverse of #, note that, if f = Aj 0 f, is
an arbitrary factorisation of f : a — b through 4, it follows by essential
uniqueness and Corollary 1.3, that there are morphisms h : i(f) — f and
h':j— fsuch that

D(h)og(f) =D(h')o fo.

For a cocone y of C(a, —) o D, it therefore follows that

wicr)(8(f)) = (uk 0 C(a, D(h)))(g(f))
= ur(D(h) © g(f))
= ur(D(H') o fo)
= (uk 0 C(a, D(R")))(fo) = ui(fo) -

Consequently,

n(C(u)) = Ep) * A" = ({(p) 0 C(0, 1)
= (fo= titros (€N 0 £6))), g

= (fo = 4i(fo))iex
= (W)jez - O

Exercise 3.3. Prove that a hom-functor C(a, —) always preserves limits.
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Corollary 3.4. Let a be x-representable and let D : T — C be a k-filtered
diagram with limiting cocone A. If f; - a - D(f;), i <y, is a family of
y < K morphisms with

Ao fi=Ayofj, foralli,j<y,

then there exist an object | € T and morphisms g; : t; — [, i <y, such that
D(g)o fi=D(g)) oy forallisj<y.

Proof. For every pair i, j < y, we apply Theorem 3.3 (b) to the morphism

At o fi = A, o fj. By essential uniqueness and Corollary 1.3, there are
morphisms h;; : f; - [;; and h;j :f; - [;j such that

D(hij) o fi = D(hi;) o f;.
By Lemma 1.2, there exist an object m € Z and morphisms
gitfi—»m and g;;:l;—>m, fori,j<y,
such that
gi=gjohij and gj=gjohi;, forallij<y.
Consequently,

D(gi) o fi = D(gij) o D(hij) o fi
= D(gij) o D(hi;) o fj = D(g;) © f;. O

To prove that an object of a full subcategory is x-presentable, the next
lemma is sometimes useful.

Lemma 3.5. Let F : C — D be a full and faithful functor that preserves
k-directed colimits. Then F reflects k-presentable objects.
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Proof. Let a € C be an object such that F(a) is k-presentable. To show
that a is also x-presentable, let D : § — C be a x-directed diagram
with colimit b, let A be a corresponding limiting cocone, and let f :
a — b be a morphism. Then F[1] is a limiting cocone of the x-directed
diagram F o D : § — D. Hence, F(f) factorises essentially uniquely
as F(f) = F(1;) o g, for some g : F(a) - F(D(i)). As F is full, we
can find a morphism f, : @ - D(i) with F(f,) = g. Consequently,
F(f) = F(A; o fo) which, by faithfulness of F, implies that f = A; o f.
We claim that this factorisation is essentially unique. Suppose that
f = Ak o f is a second factorisation. Then F(f) = F(Ax) o F(f})isa
factorisation of F(f) and it follows by essential uniqueness that

E(fo) mrop F(f3)-

By Corollary 1.3, there exist an index I > 7, k such that

F(D(i, 1)) o F(fo) = F(D(k, 1)) o F(f5) -

Since F is faithful, this implies that
D(i,1) o fo = D(k, 1) o f.

Consequently, f, np f. O

Cardinality

In the next section we will define a notion of cardinality such that «-
presentable objects have size less than x. The aim of the following results
is to show that x-presentability does indeed behave as we would expect
for a notion of cardinality: an object consisting of A parts of size less
than x has size less than x @ A*. Before giving the proof, we start with a
technical result about diagrams of x-presentable objects.

Lemma 3.6. Let E : J — C be a k-filtered diagram with limiting cocone
y € Cone(E,b), and let D : T — C a diagram where each object D(i) is
Kk-presentable.
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(a) For all links s and t from D to E,
smpt iMf prs=pxt.

(b) Given a limiting cocone A € Cone(D, a) and a morphism f : a — b,
there exists a link t from D to E such that

puxt=fxA.
Furthermore, this link t is unique up to a.p.-equivalence.

Proof. (a) Let p and 6 be the index maps of, respectively, s and ¢. For
everyie Z, we have

simp b fE ppiy osi=pegy o ki,
where one direction follows by Lemma B3.5.4 and the other one by
Theorem 3.3 (b), which implies that the morphism p,jy o si = pg(i) o t
factorises essentially uniquely through u.

(b) Since D(i) is k-presentable, it follows by Theorem 3.3 (b) that f o A;

has an essentially unique factorisation

foki=peqoti,
where 0(i) € Z and ¢t : D(i) — E(0(i)). Setting t := (#)icz it follows
that

f * )= p*t.

Hence, it remains to show that t is a link and that it is unique. For
uniqueness, note that, according to (a)

pxt' =fxA=puxt implies t mgpt.
To show that ¢ is a link, let g : i — j be a morphism of Z. Then
poy o ti= fodi=foljoD(g) = peag) o i o D(g)

are two factorisations of the same morphism through y. By essential
uniqueness, it therefore follows that t; mp tj o D(g). O
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Proposition 3.7. Let D : T — C be a diagram where each D(i) is k-
presentable. If it exists, the colimit of D is (x ® |Z™°"|")-presentable.

Proof. Let A be alimiting cocone from Dtoa € C and set y := k®|Z™°"|*.
To show that a is y-presentable, consider a morphism f : a — b where
b is the colimit of a y-directed diagram E : & — C. Let A’ € Cone(E, b)
be the corresponding limiting cocone. By Lemma 3.6 (b), there exists a
link ¢ from D to E such that

AMxt=fx).
Let 6 : T° — K be the index map of ¢. For & : i — j in Z, we have
Moy oti=fohi=foldoD(h) =2y otioD(h).

As D(i) is py-presentable, it follows by essential uniqueness and Corol-
lary 1.3 that we can find an index kj, € K such that

E(6(i), kn) o ti = E(6(j), kn) © tj o D(h) .
Let I € K be an upper bound of { kj, | h € Z™°" } and set
vi:=E(08(i),])ot;, forieZ.

Then v = (V)7 is a cocone from D to E(1).
Since A is limiting, there exists a morphism ¢ : a - E(I) such that
v = ¢ = A. It follows that

foli=Appoti=AoE(8(i), 1) oti=Ajovi=Ajogol,

for every i € 7. By Lemma B3.4.2, this implies that f = 1] o ¢.

It remains to check that ¢ is essentially unique. Suppose that there is a
second morphism y : a — E(m), for some m € K, such that f = 1/, o y.
For i € Z, it follows that

/\;noll/oAi:fo,li:A;ogoo/\i_
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As D(i) is py-presentable, it follows by essential uniqueness and Corol-

lary 1.3 that there is an index #; > [, m such that
E(m,n)oyodi=E(l,n)o¢ol.

Let n, € K be an upper bound of { #; | i € Z }. Then
E(m,n.)oyod=E(l,n.)ogpold;, foralieZ.

Consequently, it follows by Lemma B3.4.2 that
E(m,n.)oy=E(l,n.)o0.

This implies that ¢ Ag ¢. O

For the converse of this statement we need additional requirements
on the category C.

Theorem 3.8. Let k < A be regular cardinals and C a category with
k-directed colimits of size less than A. Suppose that there exists a class
K € C°% of k-presentable objects such that every object of C can be written
a x-filtered colimit of objects in K.

An object a € C is A-presentable if, and only if, it is the colimit of a
k-filtered diagram D : T — C of size less than A where each D(i) € K.

Proof. (<=) was already shown in Proposition 3.7.

(=) Letabe A-presentable and let D : § — C be a k-directed diagram
with colimit a such that each D(i) belongs to /. Since x < A, we can use
Proposition 2.11 to find a A-directed diagram D* : §* — C with colimit a
such that, for every i € I, there exists a x-directed subset S c I of size
less than A such that

D*(i) 2lim (D | ).

Let u* be a limiting cocone from D* to a. Since a is A-presentable, there
exists an essentially unique factorisation id, = ¢ o e, for some index
i € I'* and morphism e : a > D*(i). Set

b:=D"(i) and r:=pu].
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By construction of D*, there exists a x-directed subset S ¢ I of size
|S| < A such that D*(i) = lim (D | S). Let y be a limiting cocone form
D1Stob.

It follows that r : b — a is a retraction with right inverse e : a — b. By
Lemma 3.6 (b), there exists a link ¢ from D | S to D | S such that

prt=(eor) p.
Furthermore, according to Lemma 3.6 (a),
y*t*t:(eor)*‘ux—t
~(eor)x(eor)
=(eoroeor)xu=(eor)*xu=pxt
implies that t o t ap t. Hence, the link ¢ is idempotent and we can
shift D | S by ¢ to obtain a diagram E : J — C. By Proposition 1.13

and Proposition 2.16, it follows that E is a x-filtered diagram of size less
than A and that lim E = a. Finally, note that, for every j € J, there is

some i € Z with EU)) =D(i) e K. O

As a further indication that our notion of cardinality is well-behaved,
let us conclude this section with the remark that retracts do not increase
the size.

Proposition 3.9. Every retract of a k-presentable object is k-presentable.

Proof. Let a be k-presentable and let r : @ — b be a retraction with right
inverse e : b — a. To show that b is also x-presentable, let D : § — C
be a x-directed diagram with limiting cocone A € Cone(D, ¢), and let
f + b = ¢ be a morphism. Since a is x-presentable, f o r factorises
essentially uniquely through A as

for=M1og, forsomeg:a— D(i).
We obtain a factorisation

f:foroe:liogoe
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of f. We claim that this factorisation is essentially unique.

Suppose that f = Ay o h is a second factorisation. Then A o (hor) is
a factorisation of f o r and essential uniqueness implies that g mp hor.
By Lemma B3.5.3 (b), it follows that

goemphoroe=h,

as desired. O

4. Accessible categories

Using the notion of x-presentability, we can define a class of categories
where one can associate a cardinality with each object.
Definition 4.1. Let x be a cardinal. A category C is k-accessible if
it has x-directed colimits,
¢ every object a € C is a k-directed colimit of x-presentable objects,
¢ up to isomorphism, there exists only a set of x-presentable objects.
It follows by Proposition 3.7 that every object of a x-accessible category

is A-presentable, for some cardinal A. We can use this fact to define a
notion of cardinality for the objects of such a category.

Definition 4.2. Let C be a x-accessible category. The cardinality |a| of
an object a € C is the least cardinal A such that a is A* -presentable.

Example. The categories €mb(X) and Set are x-accessible, for all regular
cardinals x. We have | X| = |X|, for every infinite set X € Set. Similarly,
if A is a Z-structure in Emb(X) with |Ag| > |Z|*, for every sort s, then
4] = [A]

The following theorem immediately follows from Theorem 3.8.

Theorem 4.3. Let k < A be regular cardinals and C a k-accessible category.
An object a € C is A-presentable if, and only if, it is the colimit of a k-filtered
diagram D : T — C of size less than A where each D(i) is k-presentable.
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Let us give some non-trivial examples of x-accessible categories. The
first one is the category of all x-directed partial orders.

Definition 4.4. Let k be a cardinal. We denote by Dit(x) the full subcat-
egory of €mb(<) induced by all k-directed partial orders.

Proposition 4.5. Let x be a cardinal and let ] : Dit(x) - Emb(<) be the
inclusion functor.

(a) For every x-directed diagram D : § — Dit(«x), the colimit of J o D
in Cmb(<) is a k-directed partial order.

(b) ] preserves k-directed colimits.

(c) Let A >k be a regular cardinal. An object § € Dit(x) is A-present-
able if, and only if; |I] < \.

(d) Dir(x) is k-accessible.

Proof. (a) Let D : § — Dir(x) be a k-directed diagram. Since Emb(<)
has colimits, the diagram J o D has a colimit A = (A, <) € Emb(<). Let
A be a limiting cocone from J o D to 2.

To show that U is a partial order, consider elements a, b, ¢ € A. Since
D is k-directed, there exists an index i € I such that a, b, ¢ € rngA;.

For reflexivity, note that A; is an embedding and that D(i) is a partial
order. Hence, A7*(a) < A;7*(a) implies that a < a.

For antisymmetry, suppose that a < b and b < a. Then we have
A7 (a) < A7%(b) and A;*(b) < A7'(a), which implies that 17 (a) =
A7'(b). Hence, a = b.

For transitivity, suppose that a < b < ¢. Then A;'(a) < A7%(b) <
A7'(c), which implies that A7*(a) < A7*(c¢). Hence, a < c.

It remains to prove that ¥ is x-directed. Let X C A be a set of size
|X] < «. Since D is k-directed, we can find an index i € I such that
X crngl;. As D(i) is k-directed, A7*[X] has an upper bound ¢ € D(i).
Hence, 1;(c¢) is an upper bound of X.

(b) Consider a k-directed diagram D : § — ®it(«x). Since Emb(<) has
colimits, the diagram ] o D has a limiting cocone A to some structure
A = (A, <). We have seen in (a) that A € Dit(k). Since the inclusion
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functor is full and faithful, it follows that A is a cocone from D to U
in it(x). Furthermore, note that J reflects colimits by Lemma B3.4.7.
Hence, A is also limiting in Dit(k).

To show that J preserves x-directed colimits, let 4 € Cone(D,®) be
a limiting cocone. As both A and p are limiting, there exists a (unique)
isomorphism 77 : B — UYsuch that A = 7w+ p. Since A = J[A] = J(7)*J[u]
is limiting in €mb(<) and since J(7) is an isomorphism, it follows that
J{¢] is also limiting.

(c) (<) Let 3 be a k-directed partial order of size |I| < A. According
to Proposition 3.2, § is A-presentable in €mb(<). By (b) and Lemma 3.5,
the inclusion functor Dit(x) — Emb(<) reflects A-presentability. Hence,
F is also A-presentable in Dit(x).

(=) For a partial order J, we denote by §" the extension of § by a
new greatest element T.

Suppose that J is A-presentable. To show that |I| < A, let S be the family
of all substructures of 37 of size less than A, and let D : S — Emb(<)
be the canonical diagram. By Proposition B3.3.16, we have §" = lim D.
Let S, € S be the subfamily of all substructures of 3" that contain the
element T. Note that every such substructure is x-directed and that S, is
dense in S. Consequently, the restriction D ' S, also has the colimit 37
and it factorises as D | S, = J o D, for some D, : S, - Dit(x). By
Lemma B3.4.7, ] reflects colimits. Therefore, J(F7) =37 = li)n (Jo Dy)
implies that 37 = ll_n)i D,.

Let p be a corresponding limiting cocone. As § is A-presentable, the
inclusion h : § — 37 factorises as h = pg o g, for some U € S, and some
embedding g : § — 9. Since g is injective, it follows that |I| = [rng g| <
|A] < A.

(d) To show that Dit(x) has x-directed colimits, let D : § - Dit(x)
be a x-directed diagram. By (a), the colimit & of J o D in Emb(<) belongs
to ®it(x). By Lemma B3.4.7, the inclusion functor J reflects colimits.
Consequently, U is also the colimit of D in Dit(x).

Furthermore, note that (c) implies that, up to isomorphism, there
exist only a set of k-presentable objects in Dir(x).
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Hence, it remains to show that every object of Dit(x) can be written
as a k-directed diagram of k-presentable objects. Given § € Dit(k),
let S be the family of all substructures of J of size less than « and let
D : S — Gmb(<) be the canonical diagram. By Proposition B3.3.16, we
have § = h_n} D.Let S, € S be the subfamily of all substructures of
that have a greatest element. We claim that S, is dense in S. Let Y € S.
Then |A| < x and, since J is x-directed, the set A C I has an upper bound
b € I. Consequently, 3|43} is an element of S, containing 2.

Note that every substructure in S, is x-directed and that S, is dense
in S. It follows that the restriction D | S, also has the colimit § and that
D S, factorises as D | S, = J o D, for some D, : S, - Dit(x). By
Lemma B3.4.7, ] reflects colimits. Therefore, J(3) = § = h_r)n (JoD,)
implies that § = h_r)n D,, as desired. O

A further important example of a k-accessible category is the inductive
completion of a category.

Lemma 4.6. Let C be a category, k a regular cardinal, and let I : C —
Ind;”(C) be the inclusion functor. In Ind;’ (C) every object of the form
I(a) is k-presentable.

Proof. To keep notation simple, we will not distinguish below between a
morphism f : a - bof C and thelink ¢ = (¢;);¢[,) whose only component
ist, = f.

Let D : Z — Ind; (C) be a x-directed diagram with union U : J — C.
By Proposition 1.13, the family g = (u)icz with yi = [inpg)]7 is a
limiting cocone from D to U.

To show that I(a) is k-presentable, let [ f]7) : I(a) - U be amorphism.
We have to show that [ f]{} factorises essentially uniquely through the
cocone y. Suppose that f : a - U((i,f)). Then we can regard f as a
link from I(a) to D({). Let [ f]5;) : I[a] > D(i) be the corresponding
morphism of Ind;” (C). Then

uio [f1pew = linpw1y o [f1ne) = lidpwy o f15 = [f15 -
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We claim that this factorisation of [ f]7; is essentially unique.

Let [f]7 = uj o [g]p; be a second factorisation where [g]”g(i) :
I(a) = D(j). Then g : a = D(j)(I), for some index [, and, as above, it
follows that

[f15 = wio[g]5g) = [idpgym © glo = [£]0 -
Hence, f Ay g and there are morphisms
h:(i,f) > (m,n) and A":(j[) > (m,n)
of J such that
U(h)of=U(h")og.
By definition of the union, we can express h and h' as finite compositions
h=hy,0---oh, and h'=h|_o---oh

of morphisms of the form D(r)(¢) and #(t,1),, for indices r € Z, morph-
isms ¢ in the index category of D(r), and links ¢(r, v) such that D(r,v) =
[t(z, 9)]”3(»)' By induction on u and v it follows that

[hu—l 0--:0 ho [} f]g(m) ND [f]/g(l)
and [h,_ 0 0ohgo g]g(m) AD [g]ﬁ(j) .
Hence, h o f = h' o g implies that

[f]ﬁ(i) Mp [hy—y 00 ho Of]@(m)
[y 00 hgoglhmy Ap [€]D) - O]

Proposition 4.7. Ind; (C) is k-accessible, for every small category C.

Proof. LetI:C — Ind;” (C) be the inclusion functor. We have seen in
Theorem 1.15 that the category Ind;’ (C) has k-directed colimits and that
every object of Ind;” (C) can be written as a x-filtered diagram of objects
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in rng I. Hence, it follows from Lemma 4.6 that every object of Ind;” (C)
is a k-filtered colimit of x-presentable objects.

Consequently, it remains to prove that, up to isomorphism, the -
presentable objects of Ind;” (C) form a set. By Theorem 3.8, every «-
presentable object can be written as a x-filtered colimit of size less than x
where all objects are in rngI = C. Consequently, an object is x-present-
able if, and only if, it belongs to Indj (C). Since C is small, there exist,
up to isomorphism, only a set of diagrams D : 7 — C of size less than «.
Therefore, Ind}(C) is small (up to isomorphism). O

In fact, all k-accessible categories are of this form.

Theorem 4.8. A category C is k-accessible if, and only if, it is equivalent
to a category of the form Ind;’ (C, ), for some small category C,,.

Proof. (<) We have seen in Proposition 4.7 that Ind;” (C, ) is x-access-
ible. Hence, all categories C equivalent to Ind;” (C, ) are k-accessible.

(=) Suppose that C is x-accessible, let C; be the full subcategory of
all x-presentable objects of C, and let C,, be a skeleton of C,. We claim
that C is equivalent to Ind;” (C,).

Let Qo : Ind; (C,) — C be the restriction of the canonical projec-
tion Q : Ind; (C) — C to Ind; (C,). We claim that Q, is the desired
equivalence. By Theorem B1.3.14, it is sufficient to prove that Q, is full
and faithful and that every object of C is isomorphic to some object in
rng ng).

Let D:Z —» Coand E : J — C, be objects of Ind;” (C,) and let
AP and A* be the limiting cocones used to define Q, (D) and Q, (E).

To show that Q, is faithful, let [ f]%, [g]% : D — E be morphisms of

Ind;" (C,) with Qo ([£12) = Qo([g]%)- Then
A f = Qo([f12) * AP = Qo([g]R) # AP = AP x g,

N

By Lemma 3.6, this implies that f ag g. Hence, [f]7 = [¢]5.
To prove that Q, is full, let f : Qo(D) — Qo (E) be a morphism of C.
By Lemma 3.6 (b), there exists a link ¢ from D to E such that

AEwt=fxAP.
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By definition of QJ'*", this implies that Q, ([¢]%) = f.

Hence, it remains to prove that every object a € C is isomorphic to
some object in rng Q3. Let D : § — C be a x-directed diagram with
colimit a where every object D(i) belongs to C,. For every index i € I,
let E(i) be the unique object of C, isomorphic to D(i). This defines the
object part of a functor E : § — C,. To define the morphism part, we fix
isomorphisms #; : D(i) 2 E(i) and we set

E(i,j)=njoD(i,j)on;", fori<j.

Then E is a k-directed diagram in Ind;” (C,, ) and 7 := (%) jer is a natural
isomorphism # : D 2 E. Consequently, it follows by Lemma B3.4.3 that
Qo(E) =limE =limD =a,

as desired. OJ

Finally, let us show that in general it is not true that a x-accessible
category is also A-accessible for larger cardinals A. Studying this question,
we again meet the relation <.

Theorem 4.9. Let « < A be regular cardinals. The following statements
are equivalent:

(1) kg A

(2) Every k-accessible category is A-accessible.

(3) Let C be a category with k-directed colimits. For each k-directed
diagram D : § — C of x-presentable objects, there exists a A-directed
diagram D* : 3+ — C of A-presentable objects with the same colimit.

(4) For every set X of size |X| < A, we can write the partial order
(P (X), ) as the colimit of a A-directed diagram D : § — Dit(x)
of partial orders of size [D(i)| < A.

Proof. (1) = (3) Let D : § — C be a k-directed diagram of «-presentable
objects. By (1) and Proposition 2.11, there exists a A-directed diagram
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D" : §* — C with the same colimit as D where every object D* (i) is of
the form lim (D 1 S), for some «-directed subset S < I of size |S| < A. By
Proposition 3.7, it follows that each D" (i) is A-presentable.

(3) = (2) Let C be a x-accessible category. Since every A-directed
diagram is also x-directed, it follows that C has A-directed colimits.

We claim that every a € C is a A-directed colimit of A-presentable
objects. As C is x-accessible, there exists a x-directed diagram D : § — C
of x-presentable objects with colimit a. By (3), it follows that a is the
colimit of a A-directed diagram D* of A-presentable objects.

It remains to prove that the A-presentable objects form a set. By The-
orem 4.3, we can write every A-presentable object as a x-directed dia-
gram D of size less than A such that each D(i) is k-presentable. Since, up
to isomorphism, there exists only a set of x-presentable objects, it follows
that, up to isomorphism, there also exists only a set of such diagrams.

(2) = (4) Let X be a set of size less than A. Since « is regular, the partial
order (P (X),c) is x-directed. Hence, it is an object of the category
Dit(x). We have shown in Proposition 4.5 that ®it(k) is x-accessible.
By (2), it is also A-accessible. Consequently, we can write £, (X) as the
colimit of a A-directed diagram D : § — ®ir(x) of A-presentable objects.
By Proposition 4.5 (c), it follows that every D(i) has size less than A.

(4) = (1) Let X be a set of size less than 1. We have to find a dense
set H € P, (X) of size |H| < A. By (4), there exists a A-directed diagram
D : 3 - Dit(x) of partial orders of size less than A with lim D =, (X).
Let y be the corresponding limiting cocone. For each element x € X, we
select an index i(x) € I such that {x} € rng ;). Since J is A-directed,
there exists an index k € I with k > i(x), for all x € X. This implies that
{{x}|xeX}crngpu.

We claim that the range H := rng yj is the desired dense set. Since
|H| = |D(k)| < A, it remains to show that H is dense. Let Y € £, (X). As
D(k) is x-directed, it contains an upper bound ¢ of the set { y;*({y}) |
y €Y }. Consequently, uy(c) € H is an upper bound of { {y} | y € Y }.
This implies that Y < uy(c). O
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Substructures

We have shown in Proposition B3.3.16, that every Z-structure can be
written as a x-directed colimit of its x-generated substructures. This
statement can be generalised to arbitrary x-accessible categories. We
start by introducing a notion of substructure for accessible categories.

Definition 4.10. Let C be a category, K € C°% a class of objects, and
aeC.
(a) We define the arrow category

Subx(a) := (K | a),

where we have written /C for the inclusion functor I — C.
For the class K of all k-presentable objects, we also write Sub,(a)
instead of Guby(a).
(b) The canonical diagram D : Suby(a) — C of a over K is defined by
D(f):=¢, forobjects f:c—a,
and D(¢):=¢, formorphismse¢:f— f.

Before generalising Proposition B3.3.16 we prove a technical lemma.

Lemma 4.11. Let C be a category, D : Gub, (a) — C the canonical diagram
of a€C, and E : T — C a diagram with colimit a such that every E(i) is
Kk-presentable.

(a) E factorises as E = D o F, for a suitable functor F : T — Sub,(a).
(b) If T is k-filtered, we can choose F to be dense.

Proof. Let A be a limiting cocone from E to a. We define
F(i) = A, fori e Z°Y,
F(f):=E(f), forfeZ™".

To see that F is indeed a functor Z — Sub, (a), note that, for a morphism
fri—jofZ, A = Ajo E(f) implies that F(f) € Sub, (a)(A;, ;).
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(a) We have

(Do F)(i) = D(X) = E(i), fori e 7°,
(Do F)(f) = D(E(f)) = E(f), for f e ZT™".
(b) (p1) Consider g € Gub, (a). Since g factorises essentially uniquely

through A, there are i € 7 and a morphism g, such that g = A;0 g,. Since
F(i) = A, it follows that g, : ¢ — F(i) is a morphism in Sub, (a).

(p2) Let f : ¢ > F(i) and f' : g — F(i’) be morphisms of Gub,(a).

Then
diof=F({i)of=g=F(@{)of =Aof.

Consequently, A; o f and Ay o f are two factorisations of g through A. As
E is k-filtered and the domain of g is x-presentable, it follows by essential
uniqueness and Corollary 1.3 that there are morphisms 4 : i — fand
h':{" - fsuch that

E(h)o f=E(h)of".

Consequently,
F(h)o f=F(h)o f',
which implies that f ap f'. O

Proposition 4.12. Let C be a k-accessible category and a € C an object.
The canonical diagram D : @ub,(a) — C of a is k-filtered and lim D = a.

Proof. Fix a k-directed diagram E : § — C of k-presentable objects with
colimit a and let A be the corresponding limiting cocone. To show that
Sub, (a) is x-filtered, we have to check two conditions.

(F1) Let X € Gub, (a)°® be a set of size | X| < k. Every g : ¢g > ain X
factorises essentially uniquely through A as g = Ay, o g, for suitable
kg eIand g, : ¢, - E(kg). Since J is k-directed, there exists an upper
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bound ! € I of { kg | g € X }. Consequently, A; : E(I) — ais an object of
Sub, (a) and

E(kg,1)ogo:g—> A, forgeX,

is the desired family of morphisms of Sub, (a).
(F2) Let X € Gub,(a)(g, g’) be a set of size |X| < «. There are essen-
tially unique factorisations

g=Aiog, and g =1jog, forsuitablei,jel.
For every f € X,
Ajo(goof)=g'of=¢

is another factorisation of g. Consequently, ¢/ o f mg g, and, by Corol-
lary 1.3, we can find an index k¢ > i, j such that

E(j kf)ogoo f = E(iskf) o g-
Let I be an upper bound of { ks | f € X }. Then
EGi1)ogho f=E(i1)o g = EGi) ogho f,

for all f, f" € X. Since A; : E(I) — ais an object of Sub,(a) and
E(j,1)o gl : g’ = A; is a morphism, the claim follows.

It remains to prove that D has the colimit a. Let F : Z — Gub,(a) be
the dense functor from Lemma 4.11 with E = D o F. Then

lim D = lim (Do F) = im E = a. O
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1. Open and closed sets

Definition 1.1. A fopology on a set X is a system C € °(X) of subsets
of X that satisfies the following conditions:

e g, XeC
e IfZcCthenNZeC.
e IfC,,C,eCthenC,uC, €C.

A topological space is a pair ¥ = (X, C) consisting of a set X and a
topology C on X. The elements of C are called closed sets. A set O is open
if its complement X \ O is closed. Sets that are both closed and open are
called clopen. A set U is a neighbourhood of an element x € X if there
exists an open set O with x € O ¢ U. The elements of a topological
space X are usually called points.

Example. (a) In the usual topology (R, C) of the real numbers a subset
A c Risopen if and only if, for every a € A, there exists an open interval
(¢,d) € Awith a € (c,d). Correspondingly, a set A € R is closed if it
contains all elements a € R such that, for every open interval (¢, d) with
a € (¢, d), there exists an element b € (¢, d) N A. The only clopen sets
are @ and R.

(b) Consider the space R". We denote the usual Euklidean norm of a
tuple a € R” by

o— 2
=+/az - +ai_,,

lal
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and the e-ball around a by
B(a)={beR"||b-a|<e}.

A set A c R" is open if and only if, for every a € A, there is some ¢ > 0
such that B.(a) € A. The set A is closed if, whenever a € R” is a tuple
such that B,(a) n A # &, for all € > o, then we have a € A.

(c) Let X be an arbitrary set. The trivial topology of X is given by the
set C = {&, X} where only @ and X are closed.

(d) The discrete topology of a set X is its power set C = £(X) where
every set is clopen.

(e) We can define a topology on any set X by

C:={CcX|Cisfinite }.

(f) Let R be a field and n < w. Foraset I € K[x,, ..., X, ] of polyno-
mials over K, define

Z(I):=={aeK"|p(a)=oforallpel}.

We can equip K" with the Zariski topology
Z:={Z(I)|I1cK[x]}.

Let us prove that Z is indeed a topology. Clearly,
@=2({1})eZ and K"=Z({o})eZ.

Let X € ZandsetZ:={I|Z(I) € X }. Then we have
NX={z(I)|IeZT}=2Z(UI)eZ.

Finally, suppose that Z(1,), Z(I,) € Z. Then
Z(I,)uZ(L,) = Z(J), where J:={pq|pel,,qel,}.

Note that, for n = 1, Z consists of all finite subsets of K. If K = R
and C is the usual topology on R then we have Z c C. An example of a
C-closed set that is not Z-closed is [0,1]".
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Remark. (a) Note that the system O of open sets satisfies:
¢ 3.XeO
e IfZcOthenUZeO.
* If0,,0,€Othen O, N 0O, € O.

Conversely, given any system O with these properties we can define a
topology by

C={X~0|0ec0}.

(b) The family of clopen sets of a topological space ¥ forms a boolean
algebra.

Lemma 1.2. Let X be a topological space. A set A ¢ X is open if and only
if it is a neighbourhood of all of its elements.

Proof. Clearly, if Ais openand x € Athenwehavex e AC Aand Aisa
neighbourhood of x. Conversely, suppose that, for every x € A, there is
an open set O, with x € O, € A. Then A = U,c4 Oy is open. O

Remark. The family of all neighbourhoods of a point x € X forms a filter
in the power-set lattice £( X).

Note that every topological space is a closure space. Hence, we can
use Lemma A2.4.8 to assign to each topology a corresponding closure
operator.

Definition 1.3. Let X = (X, C) be a topological space.
(a) The topological closure of a set A ¢ X is

d(A):={CeC|AcC}.
(b) The interior of A is the set

int(A) = J{O|OcAisopen}.
(c) The boundary of A is the set

0A :=cl(A) v int(A).

343



Bs. Topology

Example. (a) Consider the space R. We have cl(Q) = R, int(Q) = &,
and 0Q = R.

(b) The interior of a closed interval [a, b] is the corresponding open
interval (a, b). Its boundary is {a, b}.

Exercise 1.1. Prove that
int(A) =A~Ncd(XNA) and JdA=c(A)ncd(X\A).

Lemma 1.4. Let X be a set.

(a) If C is a topology on X, the corresponding operation cl forms a
topological closure operator on X.

(b) Conversely, if ¢ is a topological closure operator on X, then fix c is a
topology on X.

As seen in the examples above, it can be quite cumbersome to describe
a topology by defining when a set is closed. Instead, it is usually easier to
define only some especially simple closed sets. Note that the intersection
of a family of topologies is again a topology. Hence, the collection of all
topologies on a set X form a complete partial order and we can assign
to each family B ¢ £(X) the least topology containing B.

Definition 1.5. Let X = (X, C) be a closure space.
(a) A closed base of C is a system B < {°(X) such that

C={NZ|ZcB}.

(By convention, we set & := X.)
(b) An open base of C is a system B ¢ £(X) such that

C={X~\UZ|zcB}.
() A closed subbase of C is a system B € {°(X) such that the set

{Bou---UB,_,|n<w, B;eB}
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forms a closed base of C.
(d) An open subbase of C is a system BB C £(X) such that the set

{Bon-*NB,_,|n<w, BijeB}

forms an open base of C.
(e) If B is a base or subbase of C then we say that B induces the
topology C.

Every family B ¢ £(X) is a closed base for the closure space (X,C)
where

C={NZz|ZcB}.

In the following lemma we characterise those families 3 where resulting
closure space is topological.

Lemma 1.6. Let X be a set and BB ¢ £(X).

(a) B forms a closed base of some topology C on X if and only if it
satisfies the following conditions:

e NB=g.
o Forall C,, C, € B, there exists a set Z < B such that C,uC, =
NZ.

(b) B forms an open base of some topology C on X if and only if it
satisfies the following conditions:

¢ UB=X.
o Forall Oy, O, € B, there is a set Z € BB such that O, n O, =
UZz.

Remark. (a) The set of all open intervals forms an open base for the
topology of R. An open subbase is given by the set of all intervals of the
form |a and 14, for a € R. Similarly, the set of all intervals of the form
Ja and fja is a closed subbase for this topology.

(b) The usual topology of R” has an open base consisting of all balls
B.(a) witha e R" and ¢ > o.
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Definition 1.7. Let ¥ = (X, C) be a closure space and Y ¢ X. The closure
subspace of X induced by Y is the closure space

Xly :=(X,C|ly) where Cly={CnY|CeC}.
C|y is called the system of closed sets on Y induced by C.

Lemma 1.8. If ¥ is a topological space then so is X|y, for every Y € X.

Example. Let X = R*> with the usual topology and Y := R x {0} ¢ X.
The set A := (0,1) x {0} = (0,1) x RN Y is an open subset of Y in the
subspace topology. Clearly, A is not an open subset of X.

2. Continuous functions

As usual we employ structure preserving maps to compare topological
spaces.

Definition 2.1. Let f : ¥ — Q) be a function between closure spaces.
(a) f is continuous if f7*[C] is closed, for every closed set C C Y.
(b) f is closed if f[C] is closed, for every closed set C ¢ X.

() f is a homeomorphism if it is bijective, closed, and continuous.

Exercise 2.1. Let f : R — R. Show that f is continuous if and only if,
for every element x € R and all € > o, there exists a number § > o such
that |f(y) - f(x)] < ¢, for all y with |y — x| < 8. Hence, for the standard
topology of the real numbers the above definition coincides with the
well-known definition from analysis.

Lemma 2.2. Let f : X - Q) be a function between closure spaces. The
following statements are equivalent:

(1) f is continuous.

(2) f'[O] is open, for every open set O C Y.

(3) f7'[O] is open, for every basic openset O € Y.
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(4) f'[C] is closed, for every basic closed set C C Y.
Proof. (1) = (2) If O is open then Y \ O is closed. Hence,
X~ fr[o]=f[Y~O]

is closed and f7'[O] is open.

(3) = (4) follows analogously. If B is a closed base for the topology
of Y then { Y \ B| B € B} is an open base for this topology. Hence, if
B € B then

X~ f[B]=f"[Y\B]

is open and f7*[B] is closed.

(2) = (3) is trivial.

(4) = (1) Let C c Y be closed. Then there exists a family S of basic
closed sets such that C = N S. Hence,

fCl=N{f"[B]IBeS}
is closed. O

Example. We claim that addition of real numbers is a continuous func-
tion + : R* — R with regard to the usual topologies on R and R>.
Since the open intervals form a base for the topology of R it is sufficient
to check that the preimage of every open interval (a, b) is open. This
preimage is the set

{{x,y)eR*|a-x<y<b-x}
which is open in the topology of R?.
Exercise 2.2. Prove that multiplication - : R* - R is also continuous.

Lemma 2.3. Let f : X — Q) be a function between topological spaces.

(a) f is continuous if, and only if, there exists a closed subbase B of Q)
such that f7'[B] is closed, for every B € B.
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(b) If f is injective, then f is closed if, and only if, there exists a closed
subbase B of X such that f[B] is closed, for every B € B.

Proof. (a) (=) is trivial. For (<=), note that
7 [Bo U+ UB] = £ [Bo]U-eU £ [Bysr]

is closed, for all B, ..., B,,_, € B. Hence, there is a close base
By:={B,u--+UB,_,|n<w, By,...,B,_, € B}

of Y such that f~'[B] is closed, for all B € B. Consequently, we can use
Lemma 2.2 to show that that f is continuous.

(b) (=) is trivial. For (<=), let C € X be closed. Then there is a family
(F;) ez of finite subsets F; € B such that

C=NUF:.
iel
Since f is injective, it follows that

fIC] = f[Nier UF;] =Qf[UFi] = U f[B].

iel BeF;
This set is closed. OJ
Lemma 2.4. Let f : X - Qand g: Y — 3 be functions between closure
spaces.
(a) If f and g are continuous then so is g o f.
(b) If f and g are closed then sois g o f.

The following lemma comes in handy when one wants to prove that a
piecewise defined function is continuous.

Lemma 2.5 (Gluing Lemma). Let f : ¥ — Q) be a function between
topological spaces and suppose that Co,, . .., C,_, € X is a finite sequence
of closed sets such that X = C, U --- U Cy,_,. If each restriction f | C; is
continuous then so is f.

348

2. Continuous functions

Proof. Let A € Y be closed. Since f | C; is continues it follows that the
sets f~* | C;[A] are closed. Hence,

f_l[A] = f_1 F CO[A] U Uf_l T Cn—l[A]
being a finite union of closed sets is also closed. O

As an application we consider topologies on partial orders and con-
tinuous functions between them.

Definition 2.6. Let (A, <) be a partial order. The order topology of A is
the topology induced by the open subbase consisting of all sets ta and | 4,
fora € A.

Example. (a) The order topology of (Z, <} is the discrete topology.

(b) The order topology of (R, <) is the usual topology.

(c) The order topology of (Q, <) is the subspace topology induced by
the inclusion Q ¢ R. If (a,b) ¢ R is an open interval with irrational
endpoints then (a,b) N Q is a clopen subset of Q.

Lemma 2.7. Let X be a topological space and £ a lattice with the or-
der topology. If f,g : X — & are continuous then so are the functions
fug fng:X— Lwith

(fug)x)=f(x)ug(x) and (frg)(x):=f(x)ng(x).
Proof. The preimages

(fug)lal=f"[la]ng™[la]

(fug)™[ta] = f"[taJug™[1a]

of the basic open sets |a and ta are open. The claim for f 1 g follows
analogously. O

Corollary 2.8. Let £ be a lattice with the order topology and let C(¥%, &)
be the set of all continuous functions ¥ — £. If we order f, g € C(%,£) by

fecg ciff f(x)eg(x), forallxeX,
then €(%, £) := (C(¥, £),c) forms a lattice.
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Proof. We have shown in the preceding lemma that f, g € C(%,£) im-
plies fug, fnge C(%,8). Clearly, fug = sup{f,g}and fng =
inf {f, g}. O

Definition 2.9. Let U = (A, <) be a partial order. The chain topology
on A is the topology where a set U € A is closed if, and only if, sup C € U,
for every nonempty chain C ¢ U that has a supremum.

Lemma 2.10. Let (A, <) be a complete partial order. If C € A is closed in
the chain topology then the suborder (C, <) is inductively ordered.

Lemma 2.11. An increasing function f : A — B between partial orders is
continuous (in the sense of Definition A2.3.12) if and only if it is continuous
with regard to the chain topology.

Proof. (=) Suppose that U € B is a closed set such that f'[U] is not
closed. Then there exists a chain C ¢ f™*[U] such that sup C exists but
sup C ¢ f7*[U]. Since f is increasing it follows that f[C] is a chain in U.
If sup f[C] does not exist then f is not continuous and we are done.
Otherwise, we have sup f[C] € U since U is closed. Since f(supC) ¢ U
it follows that sup f[C] # f(sup C), as desired.

(«<=) Suppose that there is a chain C ¢ A such that sup C exists but,
either sup f[C] does not or sup f[C] # f(supC). Set ¢ := f(supC).
Since ¢ is an upper bound of f[C] but not the least one, we can find an
upper bound b of f[C] with b # c. Since C € f'[|b] is a chain with
supremum sup C ¢ f'[|b] it follows that f~*[|}b] is not closed. The
set ||b, on the other hand, is closed. Consequently, f is not continuous
with regard to the chain topology. O

3. Hausdor{f spaces and compactness
The finer a topology on X is, that is, the more subsets of X are closed, the
smaller the vicinity of a point becomes. One extreme is the trivial topo-

logy {@, X} where all points are near to each other. The other extreme
is the discrete topology £(X) which consists of isolated points that are
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far away from each other. When we equip a set X with a topology we
aim at imposing a spatial relationship on the points of X. To exclude
trivial cases we will adopt the basic requirement that the topology is fine
enough to separate each point from every other one. Such topologies are
called Hausdor{f topologies.

Definition 3.1. Let X be a topological space.

(a) X is a Hausdor{f space if, for all x, y € X with x # y, there exist
opensets Uand Vwithx e U,ye V,andUnV =g@.

(b) X is zero-dimensional, or totally disconnected, if it has an open base
of clopen sets.

Example. (a) R is a Hausdorff space. It is not zero-dimensional.
(b) Q is a zero-dimensional Hausdorff space.
(c) The Zariski topology is not Hausdorff.

A typical example for the kind of topological space we are mostly
interested in is given by the Cantor discontinuum.

Definition 3.2. The Cantor discontinuum is the space € := (2%, C) where
the open sets are of the form

(W):={xe2“|w=<xforsomewe W}

with W ¢ 2%¢. (< denotes the prefix order.)

Remark. The Cantor discontinuum can be regarded as the set of all
branches of the infinite binary tree (2<“, <). An open set (W) consists
of all branches that contain an element of W. Correspondingly, a set C is
closed if there exists a set W € 2% such that C consists of all branches
that avoid every element of W. In particular, every singleton {x} is
closed. An open base of the Cantor topology consists of the sets ({w})
with w € 25,

Lemma 3.3. The Cantor discontinuum is a zero-dimensional Hausdorff
space.
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Proof. Letw =c¢,...cp_y €2°Y and set d; := 1 — ¢;. The complement of
a basic open set ({w}) is the open set U { (¢, ...ci—d;) | i < n }. Hence,
every basic open set ({w}) is clopen.

To show that the topology is Hausdorff let x, y € 2 with x # y. Then
there exists a least index n < w with x(n) # y(n). Let w € 2<“ be the
common prefix of x and y of length n and set ¢ := x(n) and d := y(n).
Then we have x € (wc), y € (wd) and (wc) n (wd) = @. O

Many familiar properties of the real topology are shared by all Haus-
dorff spaces.

Lemma 3.4. In a Hausdor{f space X every singleton {x} is closed.

Proof. Let x € X. For every y # x, there are disjoint open sets U,, V,,
withx € U, and y € V. The set O := U, V, isopen. Since O = X\ {x}
it follows that {x} is closed. O

An important property of topological spaces is compactness which
can be regarded as a strong form of completeness (the precise statement
is given in Lemma 3.6 (3) below).

Definition 3.5. Let X be a topological space.

(a) A cover of X is a subset U < £(X) such that UU = X. The cover
is called open if every U € U is an open set. A subcover of U is a subset
U, € U that is still a cover of X.

(b) X is compact if every open cover has a finite subcover. We call a
set A € X compact if the subspace induced by A is compact.

(c) X is locally compact if every point x € X has a compact neighbour-
hood.

Exercise 3.1. (a) Prove that R is not compact.

(b) Prove that a subset A € R is compact if, and only if, it is closed
and bounded.

(c) Prove that R is locally compact.

(d) Prove that Q is not locally compact.
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Lemma 3.6. Let X be a topological space. The following statements are
equivalent:

(1) X is compact.

(2) The topology of X has an open subbase B such that every cover U
of X withU < B has a finite subcover.

(3) IfC € P(X) is a family of closed sets with N\ C = @& then there exists
a finite subfamily C, ¢ C withNC, = @.

Proof. (1) = (2) is trivial. (2) = (1) Let F be the set of all open covers
of X that do not have a finite subcover. We have to show that F = @.
For a contradiction, suppose otherwise. Note that (F, c) is inductively
ordered. Hence, there exists a maximal element U/ € F. Let V :=U n B.
Since no finite subset of V is a cover of X and V ¢ B it follows by (2)
that V is not a cover of X. Let x € X \ UV and choose some open set
U € U with x € U. By definition of a subbase there exist finitely many
sets By, ..., B, € B such that

xeB,n---NnB,cU.

Since x ¢ UV we have B; ¢ U, for all i < n. By maximality of I/ it follows
that & U {B;} has a finite subcover. That is, for every i < n, there exists a
finite subset U; € U such that U; U {B;} is a cover of X. It follows that

vuJUlU; 2N BivJUUi 2 (BivUU;) = X.
i<n i<n i<n i<n
Consequently, U contains the finite subcover {U} Ully U --- U U,_;.
Contradiction.

(1)=@3)SetU :={X~C|CeC}.IfNC = @ then U is an open
cover of X. Hence, there exists a finite subcover U, € U which implies
that NC, = @ where C, :={ XU |Ue€l, } cC.

(3) = (1) Let U be an open cover of X and setC:= { X\ U | U el }.
Then NC = @. Hence, there exists a finite subset C, € C such that
NCo, = @. This implies that { X \ C | C € C, } is a finite subcover
ofU. O
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Lemma 3.7. The Cantor discontinuum is compact.

Proof. Let U be a cover of 2 consisting of basic open sets (W) with
Wc2%“. SetW:={Wc2“|(W)eld } and

T:=2~UW.

Note that if w € W then (W) = (W u {wx}), for all x € 2<“. Con-
sequently, v € T implies u € T, for all u < v. Hence, T is a tree. We claim
that it is finite.

Suppose otherwise. As the tree T is binary we can use Lemma B2.1.9
to find an infinite branch « € 2¢ through T. This implies that a ¢ (W),
for all W € W. Hence, « ¢ UU. Contradiction.

Since T is finite it follows that the partial order (2<“ \ T, <) has finitely

many minimal elements w,, ..., w,_,. For every i < n, choose some
W; € W with w; € W,. Then {(Wo), e (Wn_l)} is a finite subcover
of . O

Lemma 3.8. If A and B are compact then so is AU B.

Proof. Let U be an open cover of AU B. Since A is compact there exists
a finite subset }V € U that is a cover of A. Similarly, we find a finite cover
W ¢ U of B. Hence, YV U W ¢ U is a finite cover of AU B. O

Lemma 3.9. If X is compact and A € X closed then A is compact.

Proof. We employ the characterisation of Lemma 3.6 (3). Let C be a
family of subsets of A that are closed in A. It is sufficient to show that
every set in C is also closed in X. For every C € C, there is a closed set
U c X with C = U n A. Since A is closed it follows that so is C. O

Lemma 3.10. Let f : £ — Q) be continuous. If K € X is compact then so is
fIK].

Proof. LetU be an open cover of f[K]. Then V := { f[U] | U el }
is an open cover of K that, by assumption, contains a finite subcover
V, € V. For every V €V, fix some set Uy € U such that f'[Uy] = V.
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We claim that U, := {Uy | V €V, } is a cover of f[K].If y € f[K]
then y = f(x), for some x € K. Choose some V €V, with x € V. Then
y = f(x) e f[V] = Uy is covered by U, U

Lemma 3.11. Let X be a Hausdor{f space and K € X a compact set.

(a) For every x € X \ K, there exist disjoint open sets U and V with
xeUandKc V.

(b) For every compact set A € X, disjoint from K, there exist disjoint
opensets U and V with AC U and KC V.

(c) K is closed.

Proof. (a) Let x € X \ K. Since ¥ is a Hausdorff space we can find, for
every y € K, disjoint open sets U, V,, ¢ X with x € Uj, and y € V,,. Since
K c U, V), is compact there exist finitely many points yo, ..., yp-, € K
suchthat K€ V, u---uV, = V.ThesetU:=U, n---nU,, is
open, disjoint from V, and it contains x.

(b) The proof is similar to that of (a). Applying (a) we fix, for every
x € K, disjoint open sets U, and V, with x € V, and A ¢ U,. Since
K ¢ Uy Vi there exist finitely many elements x,,...,x,_, € K with
KcVy,u---uV,, = V.Theset U := Uy, n---nUy,_, is open, disjoint
from V, and it contains A.

(c) For every x € X \ K, we can use (a) to find an open set U, with
x € Uy and Kn U, = @. Since X \ K = U, Uy, is open it follows that K
is closed. O

We turn to an investigation of locally compact Hausdorff spaces. The
following lemma shows that these are very similar to the real topology.
Lemma 3.12. Let X be a locally compact Hausdorff space.

(a) For every neighbourhood U of a point x € X, there exists a compact
neighbourhood V < U of x.

(b) For all sets K € O € X where K is compact and O is open, there
exists an open set U such that K < U ¢ l(U) € O and cl(U) is
compact.
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(c) If C c X is closed and O < X is open then the subspace induced by
Cn O isalocally compact Hausdorff space.

Proof. (a) Replacing U by int(U) we may assume that U is open. Let
K be a compact neighbourhood of x. If K ¢ U we are done. Otherwise,
theset A:= K\U = Kn(X\U) is closed. Since A € K it is also compact.
There exist disjoint open sets W,, W, with A € W, and x € W,. The set
V= Kn(X\W,) = K~ W, is closed, compact, and it contains x.
Furthermore, K \ U € W, implies that V = K\ W, c U.

(b) By (a), we can choose, for every x € K, a compact neighbourhood
W, € O. The family

W= {int(W,)|xeK}

is an open cover of K. By compactness, there exists a finite subcover
W, € W. The set U := U W, is open and we have

A(U) = A(UW,) = U { cl(int(W;)) | int(Wy) e W, }
cJ{ Wi |int(Wy) e W, } 0.

Finally, cl(U) is compact because it is a finite union of compact sets.
(c) Every subspace of a Hausdorft space is Hausdorff. To prove that
C n O is locally compact, let x € C n O. By (a), there exists a compact
neighbourhood K € O of x. The set V := Cn K ¢ Cn O is compact.
Furthermore, V is a neighbourhood of x in C n O since x € C nint(K)
and C nint(K) is open in Cn O. O

Theorem 3.13. A Hausdor{f space X is locally compact if and only if there
exist a compact Hausdor{f space Q such that X C Y is an open subset of Y.

Proof. (<) If Y is compact and X ¢ Y is open then Lemma 3.12 (¢)
implies that X = X n Y is locally compact.

(=) Weset Y := X U{oo} where oo ¢ X is a new point. Let C be the
topology of X. We define the topology of 9 by

D:={Cu{oo}|CeC}uU{K|KcXiscompact}.
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Let us show that D is a topology. Since & is compact we have
@eD and Y=Xu{o}eD.

Furthermore, if A, B € D then either co € AuB and (AU B) \ {oo} is
closed in X, or A and B are compact in X and so is A U B. In both cases
it follows that Au B € D.

Finally, suppose that Z ¢ D. If co € | Z then N Z ~ {oo} being closed
in X it follows that N Z € D. Otherwise, there is a compact set K € Z and
N Z < X is closed in X. Since N Z < K it follows that it is also compact.
Hence, N Z € D.

Since {o0} = @ U {0} € D it follows that X is an open subset of Y.
Hence, it remains to prove that Q) is a compact Hausdorff space.

If x # y are points in X then X contains disjoint open neighbourhoods
of x and y. These are also open in Y. Similarly, for x € X and oo, we can
select a compact neighbourhood K ¢ X of x. Then int(K) and Y \ K are
disjoint open sets with x € int(K) and oo € Y \ K. Consequently, Q) is a
Hausdorff space.

For compactness, let Z ¢ D be a family with N Z = &. Since 00 ¢ N Z
there is a set K € Z that is compact in X. The family,

Z':={CnK|CeZ}

is a family of closed subsets of K with N Z’ = @. Since K is compact it
follows that there is a finite subset Z, ¢ Z’" with N Z. = @. Suppose that

Z! ={CynK,...,C,.,nK}.
Then Z, := {K, C,, ..., C,_,} is a finite subset of Z with N Z, = @. [

4. The Product topology

Definition 4.1. Let (¥;);c; be a sequence of topological space. Their
product [];; X; is the space with universe [];.; X; whose topology has
as open base all sets of the form [];; O; where each O; € X; is open
and there are only finitely many i with O; # X;.
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Example. 'The Cantor discontinuum is the product [T, [2] where each
factor [2] is equipped with the discrete topology.

Lemma 4.2. The product topology is the least topology such that every
projection is continuous.

Proof. Let X;, i € I, be a family of topological spaces and let C be the
product topology. Set

B:={pr'[0] | keI, Oc Xy open}.

Since BB is an open subbase of C it follows that pr;*[O] is open, for every
open O ¢ Xj. Hence, pr, : [1; X; — Xj is continuous.

Let C' be another topology on []; X; such that all projections pr, are
continuous. If O € Xj is open then pr;'[O] is open in C’. Hence, every
set of B is open in C'. Since B is a subbase of C it follows that every open
set of C is open in C’, thatis, C < C'. O

Lemma 4.3. Let X;, for i € I, be nonempty topological spaces.

(a) The product I1;c; Xi is a Hausdor({f space if and only if each factor X;
is a Hausdor{f space.

(b) The product space [1;c; X; is zero-dimensional if and only if each
factor X; is zero-dimensional.

Proof. (a) («<=) Let (x;)i, (¥:): € I1; X; be distinct. Fix some index i
with x; # y;. Since X; is Hausdorff there exist disjoint open sets U, V' ¢
X; with x; € U and y; € V. Hence, U, := pr;'[U] and V, := pr;*[V]
are disjoint open sets with (x;); € U, and (y;); € V;.

(=) Fix elements z; € X;, for i € I. For x € Xy, let x* := (x;); where

x ifi=k,
Xi = .
z; otherwise.

To show that Xy is a Hausdorff space let x, y € X be distinct. By as-
sumption there are disjoint open sets U, V ¢ []; X; with x* € U and
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y* € V. Wlo.g. we may assume that U = [[; U; and V = []; V; are
basic open with open sets U;, V; € X;. It follows that x € Uy and
y € Vi. Furthermore, Uy N Vi = @ since z € Ux N Vi would imply
thatz* e[, U;n[[; Vi = @.

(b) (=) Suppose that []; ¥; is zero-dimensional. Fix elements z; € X;
and define the functions f; : Xy — [1; X; : x = (y;); where

x ifi=k,
Yi=

z; otherwise.

Then fi isa homeomorphism from Xy to a subspace of []; %;. Since every
subspace of a zero-dimensional space is zero-dimensional it follows that
so is X.

(<=) Suppose that every factor ¥; has an open base B; of clopen sets.
The space []; X; has an open base consisting of all sets of the form

Prii [Bo]n---n pra (B, ]

where B; € By, . Since each element of By, is clopen, the projections pr;_
are continuous, and the family of clopen sets is closed under boolean
operations it follows that these sets are clopen. O

Theorem 4.4 (Tychonoft). Let X;, for i € I, be nonempty topological
spaces. The product space [1;¢; X; is compact if and only if each factor %;
is compact.

Proof. (=) LetU be an open cover of X;. Then
Vi (pr[U] | U etd}

is an open cover of []; X;. Consequently, there exists a finite subcover
VoS Vand{U el | pr;'[U] €V, } is a finite subcover of U.

(«=) Let U be a cover of []; ¥;. By Lemma 3.6, we may assume that
every set in U is of the form pr;*(U) where i € I and U ¢ X; is open.
Foriel,let

U= {U <X, |pr;'[U] eU}.
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We claim that there is some index i € I such that JU; = X;. Suppose
otherwise. Then, for every i € I, we can find a point x; € X; \ UU;.
Hence, (x;); ¢ UU and U is not a cover of []; ¥;. Contradiction.

Fix such an index i. Since X; is compact there exists a finite subcover
U, € U; of X;. Tt follows that { pr;*[U] | U € U, } is a finite subcover
of . O

Lemma 4.5. Let f: Qo %+ x Yy, > 3and g; : X; - Y, fori < n, be
functions and define h : X5 x --- x X,_, > 3 by

h(d) = f(go(ao)’ cee ’gn—l(anﬂ)) .

If f and all g; are continuous then so is h.

Proof. Letk : %, x - xX,_; = Yo X+ x Yy, be the function such that
k(d) = (gO(‘JO)) cee ’gn—l(an—l)) .

Since h = f o k it is sufficient to prove that k is continuous.

Let O € X, x--- x X,,_, be abasic open set. Then O = U, x --- x U,
where each U; is open. Since g; is continuous it follows that g;*[U;] is
also open. Consequently,

k7[0] = g5 ' [Uo] x - x g2, [Un-]
is open. O

Example. From this lemma and the fact that addition and multiplication
of real numbers are continuous functions, it follows immediately that
every polynomial function R” — R is continuous.

We conclude this section with two further lemmas showing that Haus-
dorft spaces exhibit properties familiar from real topology. The first one
is similar to Lemma 3.4.

Lemma 4.6. If X is a Hausdor{f space then the set
A={(x,x)|xeX}

is closed in X x X.
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Proof. 1f (x, y) ¢ A then there are disjoint open sets U and V with x € U
and y € V. Hence, U x V is an open neighbourhood of (x, y). Since
U and V are disjoint we have U x V n A = &. It follows that X x X \ A
is open and A closed. O

Lemma 4.7. Let f : £ - Q) be a continuous function where 9 is a
Hausdorff space. Then f is a closed subset of £ x Q.

Proof. The function g : X x Y — Y x Y with g(x, y) := (f(x),y) is
continuous, by Lemma 4.5. Since A is closed in 9 x Q) and

f={{xf(x))[xe X} =g7[A]
if follows that f is closed in X x %. O

5. Dense sets and isolated points

In this section we study two different approaches to classify subsets of a
space into ‘thin’ and ‘thick® ones. The first one is the property of Baire
and the second one the Cantor-Bendixson rank.

Definition 5.1. A set A € X is dense if An O # @, for every nonempty
open set O.

Example. The set QQ is dense in R.

Lemma 5.2. Let X be a topological space and A ¢ X.
(a) Aisdense if and only if 1(A) = X.
(b) int(A) = @ ifand only if X \ A is dense.

Proof. (a) («=) Let O be a nonempty open set. Then C := X \ O # X.
Since cl(A) = X it follows that C 2 A. This implies that O n A # @.

(=) Let C 2 Abe closed and set O := X  C. If O # & then we have
O n A # @ since A is dense. It follows that A \ C # &. Contradiction.
Hence, X is the only closed set containing A, which implies that cl(A) =
X.
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(b) Let O + @ be open. If O N (X \ A) = & then O ¢ A which implies
that int(A) # @. Conversely, if O € Athen On (X~ A) =gand X\ Ais
not dense. O

Definition 5.3. Let X be a topological space and A € X.
(a) A is nowhere dense if its closure has empty interior.
(b) A is meagre if A is a countable union of nowhere dense sets.

Lemma 5.4. Let X be a topological space and A C X.
(a) If A is meagre and B € A then B is meagre.
(b) If A = U, <, By where each B,, is meagre then A is meagre.
(c) If D c X is dense and A n D is meagre in D then A is meagre in X.

Proof. (a) Fix nowhere dense sets C,,, n < w, such that A = U, C,. Since
B =U,(C, nB) and every C, N B is nowhere dense it follows that B is
also meagre.

(b) Fix nowhere dense sets C’,;, k,n < w, such that B,, = Uy C'n‘. Then

A=Us,=UUc,
n n k

is a countable union of nowhere dense sets.

(c) Let A = U,, B,, where each set B, n D is nowhere dense in D. It
is sufficient to prove that every B, is nowhere dense in D. Let O be
the interior of the closure of B, in X. For a contradiction, suppose that
O # @. Then O ¢ clx(B) implies O N D ¢ clg(B N D). Since O N D is
open in D we have O n D C intg(clp(Bn D)). But D is dense in X and
O is open. Hence, O N D # @ and B n D is not nowhere dense in D.
Contradiction. O

This lemma shows that the meagre subsets A € X form an ideal in
£(X) that s closed under countable unions. We are interested in spaces ¥
where this ideal is proper. The next lemma gives several equivalent char-
acterisations of such spaces.
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Lemma 5.5. Let X be a topological space. The following statements are
equivalent:

(1) If, for every n < w, A, is a closed set with empty interior then
Un<w An has empty interior.

(2) If A, is open and dense, for every n < w, then N, <, A, is dense.
(3) If A is open and nonempty then A is not meagre.
(4) If A is meagre then X \ A is dense.

Proof. (1) = (2) If A, is open and dense then X \ A,, is a closed set with
empty interior. By (1), it follows that B = U, (X \ A,,) has empty interior.
Consequently, N, Az = X \ Bis dense.

(2) = (3) Suppose that A is open, nonempty, and meagre. Then there
are nowhere dense sets B,, such that A = U, B,,. Since the interior
of cI(B,) is empty it follows that O, := X \ cl(B,,) is dense and open.
(2) implies that the set X \ A = N, O, is dense. Consequently, A has
empty interior and, since A is open it follows that A = &. A contradiction.

(3) = (4) Suppose that A is meagre but X \ A is not dense. Then
int(A) # @ and there exists a nonempty open subset O = int(A) € A
of A. By (3), it follows that O is not meagre. This contradicts Lemma 5.4.

(4) = (1) Let B = U, <, A, Where each A, is a closed set with empty
interior. Then B is meagre and it follows by (4) that X \ B is dense.
Consequently, we have int(B) = @. O

Definition 5.6. A topological space X has the property of Baire if there is
no set A ¢ X that is nonempty, open, and meagre.

Lemma 5.7. Let X be a topological space with the property of Baire. If
A is a meagre set then the subspace X \ A has the property of Baire. In
particular, X \ A is not meagre.

Proof. Let A be a meagre subset of X. By Lemma 5.5 (4), it follows that
X \ Ais dense. According to Lemma 5.4 (), if B is a meagre setin X \ A
then B is also meagre in X. By Lemma 5.4 it follows that A U B is also
meagre. Consequently, C = (X N\ A)\ B = X\ (AUB) is dense in ¥ and,
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therefore, C is also dense in X \ A. By Lemma 5.5, it follows that X \ A
has the property of Baire. O

Theorem 5.8 (Baire). Every locally compact Hausdor{f space X has the
property of Baire.

Proof. We show that ¥ has the property of Lemma 5.5 (2). Let (A, ) u<o
be a family of open dense subsets of X. Let O, be an arbitrary nonempty
open set in X. We have to prove that O, NN, A, # &. We construct a
decreasing chain

0, 2c(0,)20,2d(0,) 2...
20, 2cd(04) 2044, 2(0psy) 2.....

where each O, is nonempty and open, cI(O,,) is compact, and cl(O,) <
A,

Suppose that O, is already defined. Since A, is dense there exists an
element a, € O, N A,,. Since the singleton {a, } is compact we can use
Lemma 3.12 (b) to find an open set O,,, such that

an € Opyy €cl(0py,) €0, NA,

and cl(0,4,) is compact.

Since C := N, cl(0,) is the intersection of a decreasing sequence of
nonempty compact sets it follows that C # @. Furthermore, we have
C<c O, and C ¢ A, for every n. O

Definition 5.9. Let X be a topological space and A ¢ X. A point x € X is
an accumulation point of Aif x € cl(A \ {x}). A point a € A that is not
an accumulation point of A is called isolated.

Remark. x is an isolated point of X if and only if the set {x} is open.

Lemma 5.10. Let X be a topological space. The following statements are
equivalent:

(1) X is a finite Hausdorff space.
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(2) X is a Hausdor{f space with a finite dense subset.
(3) X is a finite space with discrete topology.

(4) X is compact and every point is isolated.

Proof. (1) = (2) is trivial.

(2) = (1) Suppose that A = {a,, ..., a,_, } isdense in X. Each singleton {a; }]
is closed since ¥ is a Hausdorft space. Hence, their union A = {a, }u---u{a,_, }|
is also closed. Since A is dense in X it follows by Lemma 5.2 that A =
cl(A) = X. Thus, X is finite.

(1) = (3) Suppose that X = {x,,...,x,_,} and let A € X be an arbit-
rary set. We claim that A is open. Since X is Hausdorff we can choose open
sets U, for i # k, such that x; € U;; and xi ¢ Ujk. Let O; := Ngzi Uik.
Then we have O; = {x;} and A = U{ O, | x; € A} and these sets are
open.

(3) = (4) Let X = {xo,...,%,_, }. Since {x;} is open it follows that
every element is isolated. For compactness, suppose that (U;);es is an
open cover of X. For every xi, we fix some iy € I with x; € U;,. Then
(Ui, )k<n is a finite subcover of X.

(4) = (1) For every pair x # y of distinct points we have the disjoint
open neighbourhoods {x} and {y}. Hence, ¥ is a Hausdorff space.

To show that ¥ is finite fix, for every x € X, an open neighbourhood U,
isolating x, i.e., Uy = {x}. ThenU = { U, | x € X } is an open cover
of X. By compactness, we can find a finite subcover U, = { U, | x € X, }
with X, € X. It follows that

X=UU=U U =X,

xeX xeX,
is also finite. O

Definition 5.11. Let X be a topological space and A ¢ X. The Cantor-
Bendixson rank rkcp(x/A) of an element x € X with respect to A is
defined as follows:

o rkep(x/A) = —1iff x ¢ A.
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o rkep(x/A) 2 oiff x € A.

o rkep(x/A) > a +1if rkep(x/A) > a and x is an accumulation
point of the set { a € A | tkcp(a/A) > a }.

¢ For limit ordinals &, we set rkcp(x/A) > § if rkcp(x/A) > a, for
all a < 4.

The Cantor-Bendixson rank of A is

rkcp(A) := sup { rkcp(a/A) |ac A}.

Remark. A point a is an isolated point of A if and only if rkcg(a/A) = o.

Proposition 5.12. Let X be a topological space. For « € On U {oo}, define
X<%:={xeX|rkep(x/X) <a}

and set X>* := X \ X<% gnd X* := X>* n X<**,
(a) rkep(X) > |X|* implies rkep(X) = oco.
(b) Each set X<% is open, while X>* is closed.
(c) X is a closed set without isolated points.
(d) The following statements are equivalent:
(1) The isolated points are dense in X.

(2) X*°° is nowhere dense.
(3) int(X*) =@.

Proof. (a) By definition, X** = X***' implies X>* = X*°. Since the
sequence (X>%), is decreasing it follows that there is some « < x* with
X%\ X***' = . Consequently, X>* = X*°. If X>* = & then we have
rkep(X) < a < k™. Otherwise, rkcp (X) = oo.

(b) Suppose that there is some element x € cl(X>*) \ X>%. Let 8 :=
rkcp(x/X) < a. Then x € cl(X>%) = d(X>% \ {x}) ¢ d(X>F \ {x})
implies that x is an accumulation point of X>#. This implies that x €
X>P+1 A contradiction.
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(c) We have seen in (b) that X*° is closed. Fix some a < |X|* with
X2* = X, If X>* had an isolated point then we would have X* ¢
X2%*1 ¢ X2% Contradiction.

(d) The equivalence (2) <> (3) follows from the fact that X*° is closed.
It remains to prove (1) <> (3).If X° is dense in X then so is X<*° 2 X°.
By Lemma 5.2 (b), it follows that int(X*°) = @. Conversely, let O € X be
anonempty open set. Choose some a € O such that « := rkcp(a/X) < oo
is minimal. Since a is an isolated point of X>* it follows that there is an
open set U with U n X>* = {a}. By choice of a we have O € X>* and it
follows that U n O = {a}. Hence, {a} is open and a is an isolated point
of X. Therefore, a € O n X° # &, as desired. O

Lemma 5.13. Let X be a topological space and C ¢ X a closed set. For
every ¢ € C, we have

tkcp(¢/C) = rkep(c/X) .
Proof. We prove by induction on « that
tkep(c/C)=a iff  rtkep(c/X) =a.
Set

X*:={xeX|rkep(x/X)<a},
C*:={xeC|rkcp(x/C)<a}.

By inductive hypothesis, we have
C*=X"nC and C~NC"=(X~X")nC.
It follows that

tkep(¢/C)=a iff cisisolated in C \ C*
iff  cisisolated in X \ X*
iff  rkep(e/X) =a. O
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Lemma s5.14. Let f : £ - Q) be injective and continuous. For every x € X,
we have

rkCB(x/Xj SrkCB(f(x)/Y).
Proof. We prove by induction on « that
tkep(x/X) >« implies rkep(f(x)/Y) 2 a.

For a = o, there is nothing to do and, if « is a limit ordinal then the claim

follows immediately from the inductive hypothesis. For the successor

step, suppose that rkcp(x/X) > a + 1. Set
X**:={xeX|rkep(x/X)2a},
Y**:={yeY|tkepg(y/Y)2a}.

By inductive hypothesis, we know that f[X>*] ¢ Y>%. For a contradic-

tion, suppose that rkcg(f(x)/Y) = a. Then f(x) is an isolated point

of Y2* and we can find an open neighbourhood O of f(x) such that
Y2*n O = {f(x)}. Hence,

{x}=fHf)} =Y n0O]=f[Y**]nf[O]
5 X*%n f[0] 2 {x}.

It follows that X>* n f7'[O] = {x} and x is an isolated point of X>*.
Contradiction. O

Lemma 5.15. Let X be a compact Hausdorff space and C € X a closed set.
If tkcp(C) < oo then the set

{ceC|rkcp(c/C) =rkep(C) }
is finite and nonempty.

Proof. Let € ¢ X be the subspace induced by C. By Lemma 3.9, € is also
a compact Hausdorff space. Replacing X by €, we may therefore assume
w.lo.g. that C = X.
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Let a := rkcp (X). By Proposition 5.12 (b), the set X* = X3 is closed.
Consequently, X% is a compact subspace of X where every point is isol-
ated. By Lemma 5.10, it follows that X* is finite.

It remains to prove that it is nonempty. Suppose otherwise. Then
{X<P | B < a} is an open cover of X. By compactness, we can find
an open subcover {X<Fe, ..., X<Pr} Set y := max {fo,..., B, }. Then
X = X< implies that rkcp(X) < y < a. Contradiction. O

Lemma 5.16. Let X be a locally compact Hausdorff space. If tkcg(X) = oo
then |X| > 2%,

Proof. Let A:={x € X |rkcp(x/X) = oo }. We prove that |A| > 2%°. We
choose points x,, € A, for w € 2°“, and open neighbourhoods U, of x,,
such that, for all v, w € 2<%,

e U, cU,iffv=w,

e ifviéwandw £vthenU,nU, = @.
By assumption A # @. Choose an arbitrary element xy € A, let K be
a compact neighbourhood of xy, and set U := int(K). Suppose that

X, has already been chosen. Since A has no isolated points there is some
element

ye(AN{xy})nU,.

We set x40 := Xy and xy,, := y. As X is a Hausdorff space there are disjoint
open sets V, and V, with x,,, € V, and x,,, € V. Weset U, := U, NV,
and U,, := U,, n V;. For every o € 2%, let

Co:= () cl(Uy).

w<o

Since K is compact and cl(U,, ) ¢ K it follows that C, # &. Furthermore,
we have C; N C, = @, for 0 # p. Consequently,

|A] > 7 |Co| > 2.

oe2?
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6. Spectra and Stone duality

Boolean algebras can be characterised in terms of topological spaces.
With every boolean algebra we can associate a topological space in such
a way that we can recover the original algebra from the topology.

Definition 6.1. Let £ be a lattice. The spectrum of € is the set
spec(€) := {u c L |uan ultrafilter }

of all ultrafilters of £. We equip spec(£) with the topology consisting of
all sets of the form

(X):={uespec(€)|Xcu}, forXclL.
For X = {x}, we simply write (x).
Remark. Note that the sets (X) really form a topology since,
spec(€) = (2), @=(L),
Q(Xi) = (Uier Xi)»
(Xyu(Y)=({xuylxeX,yeY}).

Lemma 6.2. Let € be a lattice.

(a) The sets of the form (x), for x € L, form a closed base of the topology
of spec(£).
(b) If £ is a boolean algebra then every basic closed set (x) is clopen.

Proof. (a) Every closed set (X) = N {(x) | x € X } is an intersection of
basic closed sets.
(b) The complement L \ (x) = (x*) of a basic closed set is closed. [

Example. Let A be an infinite set. For the lattice § = (F, €) with

F:={XcA|XorA~ Xisfinite },
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we have spec(§) = {Ueo } U {1, | a € A} where
u,:=1{a} and u,:={XCA|A\ Xisfinite}.
The basic closed sets are

(X) = {u|laeX}, if X is finite,
" H{ualaeX}u{us}, ifXisinfinite.

Each u, is isolated while ., is an accumulation point. Consequently, we
have rkcg (spec(§)) =1.

Exercise 6.1. Let B be a boolean algebra. Prove that a point u € spec(B)
is isolated if, and only if, u is principal.

Exercise 6.2. Prove that (x U y) = (x) U (y), (x 1 y) = (x) n (), and
(x*) = spec(B) \ (x).

Lemma 6.3. Let f : £ - & be a homomorphism between lattices. If u is
an ultrafilter of K such that f~[u] # L, then f~*[u] is an ultrafilter of £.

Proof. Ifa e f7'[u] and a C b then f(a) € f(b) € uimplies b € f*[u].
Similarly, if a,b € f7'[u] then f(anb) = f(a) N f(b) € u implies
anbe f'[u]. Finally,ifaub € f'[u] then f(aub) = f(a)uf(b) cu
implies f(a) euor f(b) € u. Hence,a € f*[u] or b € f[u]. It follows
that either f'[u] = L or it is an ultrafilter. O

Definition 6.4. Let f : £ — & be a homomorphism between lattices. If
there is no ultrafilter of & containing rng f then we can define

spec(f) : spec(R) — spec(£) :uw f'[u].

Remark. Note that spec( f) is defined if (a) f is surjective, or (b) K is a
boolean algebra.

Lemma 6.5. Let f : £ - & be a homomorphism between lattices such
that spec(f) is defined.
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(a) The function spec(f) : spec(R) — spec() is continuous.
(b) If f is surjective, then spec(f) is injective.

Proof. (a) For every basic closed set (a)¢ S spec(£),

spec(f) " [{a)e] = {u e spec(R) |a e f[u]} = (f(a))s-

Hence, spec( f) is continuous.
(b) Let u, v € spec(K). If f*[u] = f*[v] then Lemma A2.1.10 implies

u=fIf7ull = I ol] = 0. O

Since for boolean algebras the function spec is always defined, we
obtain the following corollary.

Proposition 6.6. spec is a contravariant functor from the category Bool
of boolean algebras to the category Zop of topological spaces.

Lemma 6.7. Let f : A — B be a homomorphism between boolean algeb-
ras.

(a) If f is surjective then spec(f) is continuous and injective.

(b) If f is injective then spec(f) is a closed continuous surjection.

(c) If spec(f) is injective then f is surjective.

(d) If spec(f) is surjective then f is injective.

Proof. (a) was already proved in Lemma 6.5.

(b) We have already seen in Lemma 6.5 that spec( f) is continuous.
To show that spec(f) is surjective let u € spec(). We have to find
some p € spec(PB) with f'[v] = u. Set v, := f[u]. If there is some
ultrafilter v 2 v, then f™*[v] 2 f7'[f[u]] = u, by injectivity of f and
Lemma A2.1.10, and we are done. Hence, suppose that such an ultrafilter
does not exist. By Corollary B2.4.10, we can find elements b, ..., b, € v,

with b,---nb, = L. Choosing elements a; € uwith f(a;) = b; it follows
that

flagn--na,)=b,n---nb,=1.
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Since f is injective this implies that a, m---ma, = 1. Hence, 1 € u.
Contradiction.

It remains to prove that spec(f) is closed. For X ¢ B, we have to
show that f7'[(X)] is closed. Since (X) = (¢4 (X)) we may assume that
X = ¢4(X) is a filter. We claim that ™' [(X)] = (f '[X])-

() Ifu € (X) then X < u implies that f'[X] c f'[u]. Hence,
] e (XD

(2) For a contradiction suppose that there is some element

we (f7 XD~ ST

Then there is no ultrafilter v € (X) with f™'[v] = u. Note that every
ultrafilter v containing the set X U f[u] satisfies v € (X) and f™*[p] 2
[ f[u]] = u, by injectivity of f and Lemma a2.1.10. Hence, there is no
such ultrafilter and we can use Corollary B2.4.10 to find finite subsets
C cuand D ¢ X such that

Nf[CInMAD=1.

Setc:=[]Ceuandd:=[]D € X. Then

fle)md=1 implies dE f(c)* =f(c").

Since X is a filter it follows that f(c*) € X. Hence, ¢* € f7'[X] c u
which implies that 1 = ¢ m ¢* € u. Contradiction.

(c) Note that rng f induces a subalgebra of B. Hence, if rng f c B, we
can use Proposition B2.4.14 to find distinct ultrafilters u,» € spec(B)
withunrng f = vnrng f. Consequently, f~*[u] = f™*[v] and spec(f) is
not injective.

(d) For a contradiction, suppose that spec( f) is surjective, but f is not
injective. Then there are elements a,b € Awith a # band f(a) = f(b).
We distinguish three cases.

Ifanb* # 1, there is some ultrafilter u € spec() with a mb* € u. As
spec( f) is surjective, we can find some v € spec(®) with f*[v] =u. It
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follows that

acu=f"[p] = f(a)ev
= f(b)ep = befl[p]=u.

Since b* € u we obtain 1 = b b* € u. A contradiction.

Ifbra* # 1, we analogously choose an ultrafilter u with bna* e u
and we obtain a M a* € u as above.

Hence, it remains to consider the case that amb* = 1 = b a”. Then
aub*=(a*nb)* = 1" =T.Hence, b* satisfies the defining equations
for the complement of a. Since complements are unique, it follow that
b* = a*. Hence, b = a. A contradiction. O

We will show below that the functor spec has an inverse. But first let
us show that the class of topological spaces of the form spec(B), for a
boolean algebra B, can be characterised in purely topological terms.

Definition 6.8. (a) A Stone space is a nonempty Hausdorft space that is
compact and zero-dimensional.

(b) If & is a Stone space then we denote by clop(&) the lattice of all
clopen subsets of S.

Example. 'The Cantor discontinuum € is a Stone space. clop(€) consists
of all sets

(W):={xe2”|w=xforsomewe W}
where W € 2¢ is finite.

It follows from Lemma 4.3 and Theorem 4.4 that the class of Stone
spaces is closed under products.

Lemma 6.9. Let X;, i € I, be a family of nonempty topological spaces.

The product [1; X; is a Stone space if and only if every factor X; is a Stone
space.
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The next theorem states that the functors spec and clop form an equi-
valence between the category of boolean algebras and the category of
Stone spaces.

Theorem 6.10. Let B be a boolean algebra and & a Stone space.
(a) spec(DB) is a Stone space.
(b) clop(®) is a boolean algebra.
(c) The function

g:B - clop(spec(B)) : x = (x)

is an isomorphism.

(d) The function
h: & — spec(clop(&)) : x » {Ceclop(&) |xeC}
is a homeomorphism.

Proof. (a) Every basic closed set (x) is open since (x) = spec(B) \ (x*).
Hence, the topology is zero-dimensional.

Next, we show that it is Hausdorff. If u # v are distinct points of
spec(B) then we can find some element x € u \ v. This implies that
x* € v\ u. The sets (x) and (x*) are disjoint, open, and we have u € (x)
and v € (x*), as desired.

It remains to prove that spec(®B) is compact. Let (x;);c; be a cover
of spec(®B) consisting of basic open sets. Set X := {x; | i € I } and let
a:= ¢|(X) be the ideal generated by X. We claim that a is non-proper.

Suppose otherwise. Then we can use Theorem B2.4.7 to find an ul-
trafilter u with u na = @. In particular, we have x; ¢ u, for all i. Hence,
u ¢ Ujer(x;) and (x;); is not a cover of spec(DB). A contradiction.

Consequently, we have T € a. By definition of ¢, (X) it follows that
there is a finite subset X, € X with T = | | X,,. If v is an ultrafilter then
LI X, = T € v implies, by definition of an ultrafilter, that there is some
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x € X, with x € p. Hence, we have found a finite subcover

spec(B) = | (x).
xeX,

(b) Clearly, the complement of a clopen set is clopen. Since the class
of open sets and the class of closed sets are both closed under finite
intersections and unions so is the class of clopen sets. Hence, clop(S)
forms a boolean algebra.

(c) The function g is clearly an embedding. We only need to prove
that it is surjective. Let U be a clopen subset of spec(B). By (a), we can
find a finite cover U;,(x;) of U consisting of basic clopen sets. Since

U= (xo)U--U{x,)={xoU---Uxy)

we have U e rng g.

(d) The set h(x) is a final segment of clop(&) and it is closed under
finite intersections. Furthermore, if C U D € h(x) then at least one
of C and D is also in h(x). Hence, h(x) is an ultrafilter and h is well-
defined.

Since & is a zero-dimensional Hausdorff space we have (x) € h(x).
Hence, h(x) # h(y), for x # y, and h is injective. For surjectivity, let
u € spec(clop(&)). Since & is compact we have Nu # . Fix some
element x € N u. We claim that h(x) = u.

Let C be a clopen set in &. If C € u then we have x € C. Conversely,
x ¢ S\ C implies that S \ C ¢ u. Therefore, it follows that

Ceu iff xeC iff Ceh(x).

It remains to prove that h is a homeomorphism. Note that, if C €
clop(&) then

h(x)e(C) iff Ceh(x) iff xeC.

Consequently, if (C) € spec(clop(&)) then h'[(C)] = C € clop(S).
Conversely, if C € clop(&) then h[C] = {h(x) | x € C} = (C) is
clopen. O
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Corollary 6.11. The functor spec forms an equivalence between the cat-
egory Bool of boolean algebras and the opposite Stone®® of the category of
Stone spaces. Its inverse is the functor clop.

An immediate consequence of Theorem 6.10 is that every boolean
algebra is isomorphic to an algebra of sets.

Corollary 6.12. For every boolean algebra B, there exists a set X such
that B is isomorphic to a substructure of (£(X),n,u,*, 3, X).

Corollary 6.13. Every boolean algebra U is a subdirect product of two-
element boolean algebras B,. In particular, B, is the only subdirectly
irreducible boolean algebra.

Proof. The power-set algebra (X)) is isomorphic to B. O

7. Stone spaces and Cantor-Bendixson rank

The structure of Stone spaces will play an important part in the following
chapters. In particular, we will be interested in their cardinality and their
Cantor-Bendixson rank. We start with an observation that immediately
follows from Lemma s.10.

Lemma 7.1. If & is a Stone space with tkcp (&) = o then & is finite.

A generalisation of this result is given in the next lemma which shows
that the size of a Stone space is minimal if the corresponding boolean
algebra has a partition rank.

Lemma 7.2. Let B be a boolean algebra. If rkp(a) < oo, for every a € B,
then then |spec(®B)| < |B|.

Proof. This follows immediately from Corollary B2.5.22. O

Conversely, if the boolean algebra has infinite partition rank then its
Stone space is large.
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Lemma 7.3. Let B be a boolean algebra and let «, A be cardinals. If there
exists an embedding of A< into B, then |spec(B)| > A*.

Proof. Let (a,)wer<x be an embedding of A< into B. For sequences
a € A*, define

Xo = {{aw) |w=<a}.

(= denotes the prefix order.) If @ # f3, then there exists some prefix

w € A" and ordinals i, k < A with i # k such that wi < « and wk < f3.

Consequently, we have X, < (a,,;) and Xg S (a,). Since a,,; Mayx = L
it follows that X, N X = @.

Hence, it is sufficient to prove that X, # &, for all a € A*. For finitely
many elements w, < -+ < w, < «, we have

(aw,) NN {ay,) = (aw, N May,) =(ay,) 2.

Thus, the family (a,, ),<q has the finite intersection property and, by
compactness, it follows that Xo = N,y<4(aw) * 2. O

Corollary 7.4. Let B be a boolean algebra. If there is an element a € B
with rkp(a) = oo then |spec(B)| = 2%.

Proof. By Lemma B2.5.15, there exists an embedding (b,, ),ye,<w of 2<¢
into B. Hence, the claim follows by Lemma 7.3. O

Remark. In Theorem 7.8 below we will prove that Cantor-Bendixson
rank and partition rank are the same. Hence, Corollary 7.4 is just a special
case of Lemma 5.16.

Combining Corollary 7.4 with Lemma 7.2, we obtain the following
result.

Corollary 7.5. Let B be a countable boolean algebra. If |spec(B)| > R,
then |spec(B)| = 2™.
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In the remainder of this section we provide tools to compute the
Cantor-Bendixson rank of a Stone space. First, we show that it coincides
with the partition rank of the associated Boolean algebra, which is usually
easier to compute.

Lemma 7.6. Let B be a boolean algebra and a € B. If rkp(a) < oo then
there exists an ultrafilter u € (a) with tkp(u) = rkp(a).

Proof. For every u € {a), choose an element ¢, € u of minimal rank and
degree. Then

(ay= U (anc).

ue(a)
By compactness, there exists a finite subcover
(a)=(anc,)u--~ufanc,).

Hence,a = (amnc¢,,)u---u(ancy,). By Lemma B2.5.11, there is some
index i < n such that

tkp(a) =rkp(ancy,).
This implies that

rkp(u;) < tkp(a) =rkp(amcy,) < rkp(cy,) = rkp(u;). O
Corollary 7.7. Let B be a boolean algebra and a € B.

rkp(a) = sup { rkp(u) [u € (a) }.

Proof. If u € (a), then a € u implies that rkp(u) < rkp(a). Conversely,
we can use Lemma 7.6 to find some ultrafilter u € (a) with rkp(u) =

rkp(a). O

Theorem 7.8. Let B be a boolean algebra. For every u € spec(B), we have

rkp (u) = rkep (u/ spec(B)) .
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Proof. We prove by induction on « that
tkp(u) > iff  rkep(u/spec(B)) > a.

For « = o the claim holds trivially and, if « is a limit ordinal, it follows
immediately from the inductive hypothesis. Thus, suppose that & = 3 +1
is a successor ordinal. Let

X :={uespec(B)|rkp(u)>p}.
By inductive hypothesis, we know that
X = {uespec(B) | rkcp(u/spec(B)) =B }.

Suppose that rkp(u) = 8. Fix an element a € u of minimal partition
rank and degree. If p € (a) is an ultrafilter with v # u then we have
rkp(v) < rkp(u) = B, by Proposition B2.5.21. Hence, {(a) n X = {u} and
u is an isolated point of X. This implies that rkcp (1/ spec(B)) = .

Conversely, suppose that rkcg (1/ spec(B)) = 8. Then there is a basic
open set (a) such that (a) n X = {u}. By inductive hypothesis it follows
that rkp(a) > rkp(u) > B. Let P be a partition of a with rkp(p) = f3, for
all p € P. By Lemma 7.6, there are ultrafilters v, € (p), for p € P, such
that rkp(v,) = rkp(p) = B. Hence, v, € X. It follows that

vye{p)nXc(a)ynX={u}.
Consequently, v, = uand rkp(u) = rkp(v,) = f. O
Corollary 7.9. Let B be a boolean algebra and a € B. Then
tkcp({(a)) = rkp(a).
Proof. By Lemma 5.13, Theorem 7.8, and Corollary 7.7, it follows that
rken((a)) = sup { tken(u/(a)) | u e (a) }
= sup { rkep (u/ spec(B)) | ue(a) }

=sup {rkp(u) |ue(a)}
=rkp(a). O
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Corollary 7.10. Let S be a Stone space and C € S closed.
tkcp(C) = rkp(C/clop(C))

Proof. Let € be the subspace of & induced by C. By Lemma 3.9, € is
compact. Since every subspace of a zero-dimensional Hausdorff space
is itself a zero-dimensional Hausdorff space, it follows that € is a Stone
space. Let B := clop(€). Then spec(B) = € and Corollary 7.9 implies
that

tkcp(C) = rkep(spec(B)) = rkp(T/B) = rkp(C/clop(€)). O

When applying Corollary 7.10, we have to consider clopen sets in a
closed subspace of the given Stone space. The following lemma shows
that such clopen sets are just restrictions of sets that are clopen in the
ambient space.

Lemma 7.11. Let B be a boolean algebra, A € B, and let S, be the
subspace of spec(DB) induced by (A). A set C ¢ (A) is clopen in S, if,
and only if, it is of the form C = (b) n (A), for some b € B.

Proof. (<=) A set of the form C = (b) n (A) is obviously closed. It is
open since its complement (A) ~ C = (b*) n (A) is also closed.

(=) Suppose that C < (A) is clopen in &4. Then there are sets D, E C
B such that

C=(D)n(A) and (A)NC=(E)n(A).
Consequently,

(4)n (E)n (V{d) = (4) " {E) n (D) = 2.

deD

As spec(D) is compact, there exists a finite subset D, € D such that

(AYn (E)n ) (d) = 2.

deD,
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It follows that
C=(D)n(AYc(D,)n(A)c(AYN(E)=C.

Hence, C = (b) n (A) for b := [ D,. O

Corollary 7.12. Let @ be a Stone space, C € S closed, and D € clop(C).

Then
clop(D)={Eeclop(C)|ECD}.

Proof. Let DB := clop(®). By Lemma 7.11, there is some A € B such that
D = An C. By the same lemma it follows that

Eeclop(D) if E=A"nDforsomeA’ €B
iff E=A'nAnCforsomeA’ ¢B
if E=A"nCforsomeA” ¢ BwithA” c A
iff  Eecop(C)andEcD. O

Corollary 7.13. Let & be a Stone space, C < S closed, and D € clop(C).
Then

rkp(D/clop(D)) = rkp(D/clop(C)).

As an application of these results, we show that, under a surjective
continuous map, the Cantor-Bendixson rank never increases.

Lemma 7.14. Let f : & — ¥ be a surjective continuous map between
Stone spaces. For every closed set C € T,

tkep (C/F) < ke (f[C]/©) .
Proof. We prove by induction on « that

tkcp(C/R) > o implies  rkep(f[C]/S) > «.
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For a = o, surjectivity of f implies that

rkCB(C/S) >0 iff C+g
it f[Cl+o
if  rkep(F7[C)/S) > 0.

For limit ordinals «, the claim follows immediately from the inductive
hypothesis. For the successor step, suppose that rkcg(C/2) > a + 1. By
Corollary 7.10, it follows that

rtkp(C/clop(C)) > a +1.

Consequently, we can find a sequence (D) s<,, of disjoint, nonempty,
clopen subsets D, ¢ C such that rkp(D, /clop(C)) > a. Using Co-
rollary 710 and Corollary 7.13, this implies that rkcg(D, /%) > . By
inductive hypothesis, it therefore follows that

ke (f ' [Dn]/©) 2 .

Since, by Corollary 7.10, (f [ D, ]) n<w is @ sequence of disjoint, nonempty]
clopen subsets of f*[ C] with

tkp(f7'[Da] / clop(f7[C])) > a,

it follows that

rkp(f’l[C] / clop(f’l[C])) >a+1.
Hence, tkep (f[C]/S) > o +1. O
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1. Groups

In this chapter we apply the general theory developed so far to the
structures arising in classical algebra.

Definition 1.1. (a) A monoid is a structure M = (M, o, ¢) with a binary
function o and a constant e such that all elements a, b, ¢ € G satisfy the
following equations:
ao(boc)=(aob)oc (associativitiy)
aoe=a=eoaq (neutral element)
Usually, we omit the symbol o in g o b and just write ab instead.

(b) A group is a structure & = (G, 0, ™, ) with a binary function o, a
unary function 7', and a constant e such that (G, o, e) is a monoid and,
for all a € G, we have

aoa '=e (inverse)
(c) A group & is abelian, or commutative, if we further have

ab = ba, foralla,beG.

Remark. Every substructure of a group is again a group.

Example. (a) Let A be a set. The structure (A<“, -, ()) of all finite se-
quences over A with concatenation forms a monoid.

(b) The integers with addition form a group (Z, +, -, 0).

(¢) The positive rational numbers with multiplication form the group

<Q+, . ’—1,1>_
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Definition 1.2. Let M be a Z-structure. The automorphism group
Aut M = (AutM, 0, 7, id )

of M consists of all automorphisms of M with composition o as multi-
plication and the identity function idy as neutral element.

Exercise 1.1. Let & be a group. Prove that GG = G and G™' = G where
GG:={gh|gheG} and G :={g'|geG}.

Below we will show that the congruences of a group can be described
in terms of certain subgroups. We start by looking more generally at
equivalence relations induced by arbitrary subgroups.

Definition 1.3. Let U ¢ & be groups. We define
G/U:={gU|geG}.

The elements of G/U are called (left) cosets of U. The number |G/U]| of
cosets is called the the index of U in &.

Lemma 1.4. Let U C & be groups.
(a) G/U forms a partition of G.
(b) Forall g,h € G, we have a bijection A : gU — hU with A(x) :=
hg™x.

Proof. (a)Since g € gU,wehave G = U, gU = U(G/U).IfgUnhU + &
then there are elements u,v € U with gu = hv. Consequently, h =
g(uv™) € gU which implies that hU = gU.

(b) To show that A is surjective let u € U. Then hu = hg™'gu =
A(gu) with gu € gU. For injectivity, suppose that A(x) = A(y) then
hg™x = hg™y and, multiplying with (hg™ )" on the left, it follows that
x=y. O

Theorem 1.5 (Lagrange). If U ¢ & are groups then
Gl =1G/Ule|U].
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Proof. By the preceding lemma, we have G = U(G/U) and |gU| = |hU|,
forall g, h € U. It follows that

Gl=UG/v)= ¥ lgul= 3 [Ul=|G/Uls]Ul.

gUeG/U gUeG/U

The equivalence relation induced by the partition G/U does not need
to be a congruence. Subgroups where it is one are called normal.

Definition 1.6. Let & be a group. A subgroup N € & is normal if we
have gN = Ng, forall g€ G.

Remark. Every subgroup of an abelian group is normal.
Lemma 1.7. If N is a normal subgroup of & then the relation

gayho it gN=hN
is a congruence relation.
Proof. If gN = ¢’N and hN = h’N then

ghN = ghNN = gNhN = ¢'Nh'N = ¢'h'NN = ¢'h'N,
and g'N=¢g 'N"'=(Ng)"=(gN)"=(¢'N)"

=(NgH" =(g) "N =(¢)N. O

Lemma1.8. Let f : & — 9 be a surjective homomorphism. If 8 is a group
then so is 9.

Proof. Letx,y,z € Hand set u := f(e). Since f is surjective there are
elements a, b, c € G with f(a) = x, f(b) = y,and f(c) = z. It follows
that

[xy]z=[f(a)f(b)]f(c) = f(ab)f(c) = f((ab)c)
= f(a(be)) = f(a)f(be) = f(a)[f(b)f(c)] = x[yz],

xu = f(a)f(e) = f(ae) = f(a) = x,
xf(a™) = f(a)f(a™) = f(aa™) = f(e) = u.
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Consequently, the multiplication of § is associative, u is its neutral ele-
ment, and every element x = f(a) € H has the inverse f(a™). O

Corollary 1.9. Let I be a normal subgroup of 8. Then the quotient
&/ := (G/N,-,”*,N)
where the multiplication is defined by gN - hN = ghN is a group.

Proof. The function g — gN is a surjective homomorphism & — &/9t.
4

We have seen that every normal subgroup induces a congruence. The
converse is given by the following lemma.

Lemma1.10. If~ is a congruence a of group & then [ e]. induces a normal
subgroup of .

Proof. Let m: &8 — &/~ be the canonical projection. Since {[e].} in-
duces a subgroup of the quotient &/~ it follows by Lemma B1.2.8 that
the set [e]~ = 77" ([e]~) induces a subgroup of &. To show that this
subgroup is normal, let u € [e]. and g € G. Then

[gug™ ]~ = [gls[uls[g 7]~
= [gls[els[g ']~ = [geg ']~ =[]~

which implies that gug™ € [e]~. Consequently, we have

glelsg? cle]ls and glels Ce].g-

Analogously, we can show that g7'ug € [e], forall u € [e]. This implies
that [e]~g € g[e]~. O

Combining Lemmas 1.7 and 1.10, we obtain the following character-
isation of the congruence lattice of a group.

Theorem 1.11. Let & be a group. Then Cong(&) is isomorphic to the lattice
of all normal subgroups of &. The corresponding isomorphism is given by
~ > [e]s and its inverse is W — ~y.
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It follows that we can translate Theorems B1.4.12 and B1.4.18 into the
language of normal subgroups.

Theorem 1.12. Let h : & — 9 be a homomorphism between groups and
set K := h™[e]. Then

/K zrgh.

Theorem 1.13. Let & be a group with normal subgroups &, 9 € & where
K SR Then N/K is a normal subgroup of B/K and

(8/K) [ (R/K) = S/7R.
A related statement is the following one.

Theorem 1.14. Let & be a group with subgroups U,N ¢ & where N is
normal. Then

UR/R = U/(UNR).

Exercise 1.2. Prove the preceding theorem and formulate a generalisa-
tion to arbitrary structures and congruences.

2. Group actions

One important class of groups we will deal with frequently are auto-
morphism groups. To study such groups we can make use of the fact
that they consist of functions on some set.

Definition 2.1. Let O be a set.
(a) The symmetric group of Q is the group

Sym Q := (Sym Q, 0, ",idg)
where the universe

SymQ := { a € Q9| « bijective }
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consists of all permutations of Q.

(b) An action of a group & on 2 is a homomorphism « : § - Sym (2,
that is, to every element g € G we associate a permutation «a(g) of Q.
Such an action induces a map G x Q — Q. If « is understood then we
usually write ga instead of «(g)(a), for g€ Gand a € Q.

() If O = U, Q; is a many-sorted set then an action &« of S on Qisa
family of actions «; of & on Q;.

(d) Each action of & on Q induces an action of & on Q" by

(a0, s an-1) = (gdos- > g0n-1) -

Remark. Any action of a group & on a set (2 satisfies the following laws.
Forall g, h € G and a € , we have

g(ha)=(gh)a and ea=a,
where e is the neutral element of G.

Example. Every subgroup & ¢ Sym Q induces a canonical action idg :
& — Sym Q. In particular, we have a canonical action of the automorph-
ism group Aut A on A°®, for all 5.

Definition 2.2. Let & be a group acting on Q.
(a) For F ¢ G and a <€ Q, we set

F(a):={ga|geF}.

(b) The orbit of a tuple a € Q is the set G(a).

() If there is some element a € Q with G(a) = Q then we call the
action tramsitive. The action is oligomorphic if, for every finite tuple of
sorts §, there are only finitely many different orbits on Q.

Remark. For each §, the orbits of all 5-tuples form a partition of Q°. In
particular, the orbits of two §-tuples are either equal or disjoint.

Example. Consider the action of the automorphism group on the struc-
ture (Q, <). The orbit of (0,1) consist of all pairs (a, b) with a < b. It
follows that Q* is the disjoint union of the orbits of {0, 1), (0,0}, and
(1, 0). In fact, the automorphism group of (Q, <) is oligomorphic.
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Example. Every group & acts on itself via conjugation. This action is
defined by

a(g)(h)=ghg™.

The orbits of @ on G are called the conjugacy classes of &.

We can characterise normal subgroups of & in terms of a. A subgroup
N ¢ 8 is normal if and only if N is a union of conjugacy classes.

(=) Suppose that 9 is a normal subgroup. By definition this means
that gN = Ng, forall g € G. Consequently, we have gNg™' = Ngg™' = N
which implies that «(g)(u) € N, for all u € N. Hence, N is a union of
orbits of .

(<) Let g € G. By assumption we have gNg™ = N. Hence, gN =
gNg™'g = Ngand N is normal.

Definition 2.3. Let & be a group acting on 2 and let X ¢ Q.
(a) The pointwise stabiliser of X is the set

Bxy={geG|gx=xforallxeX}.
(b) Its setwise stabiliser is the set
Gx) = {geG|gX=X}.

Remark. §(x) and By, are subgroups of & with &) € S x, € 8.

We can use the following lemmas to compute the size or the number
of orbits.

Lemma 2.4. Let & be a group acting on Q and let a € Q. Then
Gl =1G(a)| ®|G(a)|-

Proof. By Theorem 1.5 it is sufficient to prove that |G(a)| = |G/G (|-
We define a function y : G/G(,) - G(a) by

#(gGa)) = ga.
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First, let us show that y is well-defined. Suppose that gG(,) = hG(,).

Then there is some u € G(,) with ¢ = hu. Hence,

#(gGay) = ga = hua = ha = u(hG,) .

Furthermore, y is surjective since, for every b € G(a) there is some
g € Gwith b = ga. Hence, b = 4(gG,)). Therefore, it remains to prove
that y is injective. Suppose that (gG,)) = #(hG,)). Then ga = ha
implies h™ ga = a. Hence, h™'g € G(,) and

gG(a) = hl’l_lgG(a) = hG(a) . O
Lemma 2.5. Let & be a group acting on Q and let a € Q. Then G(gq) =
gG(u)g_l.

Proof. We have

heGa iff hga=ga
if g 'hga=a
iff g_lhg € G(a) iff he gG(a)g_l. O

Corollary 2.6. Let & be a group actingon Qanda,b € Q.IfG(a) = G(b)
then |G(a)| = |G(b)|.

Proof. Let g € G be an element with gb = a. The function G(,) — G(s) :
h — ghg™ is bijective. O

Lemma 2.7 (Burnside). Let & be a group acting on Q and let « be the
number of orbits. Then

k®|G| = |fixg] where fixg:={acQ|ga=a}.
geG
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Proof. For each orbit of &, fix one representative a; € (2, i < x. It follows
that

k® |Gl = X |Gl = Y |G(a)| @Gyl =3 X |Gy

i< i<k i<k beG(a;)
=2, 2 1Gwl= 2lGw)
i<k beG(a;) beQ
={(g.b)eGxQ|gb=b}|= > [fixg|.
geG ]

Corollary 2.8. If & is a finite group acting on Q then the number of orbits
is

1
— » |fixg|.
|G| gezc:;

Let us collect two combinatorial results about groups and their sub-
groups.

Lemma 2.9 (B. H. Neumann). Suppose that 9, ..., 9,_, are subgroups
of agroup 8 and a,, ..., a,_, € G elements such that

G=a,Hyu---Ua,,H,_,.
but G # Ui a;H;, forevery proper subset I c [n].
Then |G/ N; H;| < n!. In particular, |G/H;| is finite for all i.
Proof. Let  :=; H;. We claim that

|Nicr Hi/H| < (n—|1|)!, forall nonempty I ¢ [n].

For I = {i}, it then follows that every H; is the union of at most (1 — 1)!
cosets of H. Hence, G can be written as union of n! such cosets, i.e.,
|G/H| < n!.

We prove the above claim by induction on #n — |I|. For I = [n], we
have |H/H| = 1. Suppose that |I| < n and set § := N;¢; H;. By assumption
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there is some element g € G \ U,y a;H;. Hence, for all i € I, we have
a;H; n gH; = &. This implies that

aiHingF=@ and g 'a;H,nF=0.
For every i < n, we either have
¢g'aHiNnF=02
or there is some h; € G with
g 'a;H;nF=h;(FnH;).

For i € I, we have seen that the intersection is empty. Therefore, F is
the union of at most n — |I] sets of the form h; (F n H;) with i ¢ I. By
inductive hypothesis, we can write each of these as union of at most
(n —|I| = 1)! cosets of . Therefore, |F/H| < (n - |I])!. O

Corollary 2.10 (IT. M. Neumann). Let M be a X-structure and a € M=°.
If no a; lies in a finite orbit of AutM then the orbit of a under AutM
contains an infinite set of pairwise disjoint tuples.

Proof. Let C ¢ M be finite. We claim that there is some g € Aut M such
that ga n C = @. For a contradiction, suppose otherwise. For every ¢ € C
and each i < n, choose, if possible, some element g;. € AutIM with
gicai = ¢. Let H; := (AutM) ,,). By assumption, every g € Aut M is con-
tained in some coset g;. H;. Hence, we can apply B. H. Neumann’s lemma
and it follows that at least one 9; has finite index in Aut M. Therefore,
the orbit of a; under Aut M is finite. Contradiction. O

When studying group actions it is helpful to introduce a topology on
the group.

Definition 2.11. A topological group is a group & equipped with a topo-
logy such that the group multiplication - : G x G - G and its inverse
~': G - G are continuous.
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Example. The additive group of the real vector space R” is topological
in the usual topology.

Each action induces a canonical topology on its group.

Definition 2.12. Let & be a group acting on Q. For finite tuples a, b € Q",
we set

(a—b)={geG|ga=b}.
Subsets O € G of the form O = (a ~ b) are called basic open.

Lemma 2.13. Let & be a group acting on Q.
(a) The family of all basic open sets induces a topology on &.
(b) & equipped with this topology forms a topological group.

(c) A subgroup ¢ 8 is open if and only if there is some finite tuple
a e Q< with Gz € H.
(d) A subset F ¢ G is closed if and only if, whenever g € G is an element

such that, for all finite tuples a C Q, there is some element h € F
with ga = ha, then we have g € F.

(e) A subset F ¢ G is dense in G if and only if the orbits of G and F
on Q" are the same, for all n < w.

Proof. (a) We have (@, = bo) N (@, = b,) = (@oa, = bob,). Therefore,

we only have to show that every g € G is contained in some basic open

set. Fix an arbitrary element a € Q and let b := ga. Then g € (a — b).
(b) If g € (G + b) then g* € (b + a). Hence, ~* is continuous.

Similarly, gh € (a + b) implies g¢ = b where ¢ := ha. Consequently, we

have g€ (¢ = b), he (@ ¢),and (¢ = b) - (a+ &) C (@~ b).
(c) If Ga) € H then

H= UhG(ﬁ)I U(d'—)hd>

heH heH
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is open. Conversely, if H is open then it contains some basic open set
(a — b). Fixing some h € (a — b) ¢ H we have

Gay=(ar~a)=h"(a~b)ch'H=H.
(d) F is closed if and only if it contains all elements g € G such that
Fn{awb)+ o, for all basic open set with g € (G — b).

This is equivalent to (d).

(e) F is dense if and only if every nonempty basic open set (d ~ b)
has a nonempty intersection with F. Therefore, F is dense iff, for every
g € G with ga = b, there is some h € F mapping a to b. O

We can characterise automorphism groups in topological terms.

Lemma 2.14. Let 8 ¢ Sym Q. A subgroup $ ¢ 8 is closed in & if and only
if there is some structure M with universe Q such that H = G N Aut M.

In particular, a subgroup € Sym Q is of the form Aut M if and only if
it is closed.

Proof. (=) Let M be the structure with universe 2 that, for each finite
tuple § of sorts and every orbit A ¢ Q°, has a relation R := A of type 5.
Since every element of H maps R, into Ry we have H ¢ AutM. Hence,
H c G implies H € G n AutIN.

For the converse, let g € G N AutM. If G € R, then ga € R,. Hence,
there is some h € H mapping a to ga. Since H is closed in G it follows
by Lemma 2.13 (d) that g € H.

(<) Let H = G n AutM. To show that H is closed in G we apply
Lemma 2.13 (d). Let g € G and suppose that, for every finite tuple a € Q,
there is some h € H with ha = ga. Let ¢(%) be an atomic formula and
a € Q". Choose h € H such that ha = ga. Since H € Aut M it follows
that

Mep(a) if Meeplha) f Meep(ga).

Hence, g € AutM which implies that g € H. O
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Exercise 2.1. Let U be a countable structure with countable signature
such that

|Aut(, a)| >1, forallae A™.

Prove that |Aut | = 2%.

3. Rings
Let us consider what happens if we add a second binary operation to an
abelian group.

Definition 3.1. (a) A structure R = (R, +,—,-,0,1) is a ring if the reduct
(R, +, -, 0) is an abelian group, (R, -,1) is a monoid, and all elements
a, b, ¢ € R satisty the following distributive laws:
a-(b+c)=a-b+a-c,
(a+b)-c=a-c+b-c.

Usually we omit the dot and write ab instead of a - b.
(b) A ring R is commutative if we further have

a-b=b-a, foralla,beR.

(c) A ring R is a skew field if o # 1 and, for every a € R with a # o,
there is some element a™* € R such that

a-a'=1=a""-a.
A commutative skew field is called a field.

Example. (a) The integers (Z, +, —, -, 0,1) form a commutative ring.
(b) The rationals (Q, +, —, -, 0,1) form a field.
(c) Let B be a vector space. The set Lin(B,B) of all linear maps
h : B — B forms a ring where addition is defined component wise:

(g+h)(x):=g(x)+h(x),
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and multiplication is composition:

(g-h)(x) = g(h(x)).
This ring is not commutative.

An important example of rings are polynomial rings. Here we present
only their basic properties. In Section 5 we will study polynomial rings
over a field in more detail.

Definition 3.2. Let R be a ring.
(a) The ring R[[x]] of formal power series over R has the universe

R[[x]] = R®.

Fors, t € R[[x]], we define addition and multiplication by
(s+t)(n):=s(n)+t(n) and (s-t)(n):=> s(i)t(n-1i).
We also define a derivation operation on R[[x]] by
s'(n) = (n+1)s(n+1).

Usually, elements s € R[[x]] are written more suggestively in the form

s=> ay,x" where a,:=s(n).
n<w

The numbers a,, are called the coefficients of s. In this notation the above
definitions take the following form:

Yapx" + > byx" =) (an +by)x",

n<w n<w n<w
n
Z a,x" - Z b,x" = Z (Z aibn,i)x",
n<w n<w n<w i=o
!
(Z anx”) =3 apn(n+1)x".
n<w n<w
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(b) The polynomial ring over R is the subring R[x] ¢ R[[x]] of all
formal power series ), ., a,x" where a,, = o for all but finitely many ».
Elements p € R[x] are called polynomials. Omitting zero terms we can
write them as finite sums

p=aux" +a,,x"+--+ax+a,,
where a; := p(i) and # is an arbitrary number such that p(i) = o, for
i>n.

(c) The degree of a polynomial 3; a;x" € R[x] is the largest number n
with a, # 0. We denote it by deg p. If all coefficients a; are equal to o
then we set deg p := —co.

(d) We can iterate the construction of polynomial rings to obtain rings
RlXo, X1,y Xn—y] = R[Xo|[x:1] - - - [%0-1]-

Remark. Let Ring be the category of all rings with homomorphisms. We
can turn the operation R — R[x] into a functor F : Ring — Ring if, for
homomorphisms 4 : R - &, we define

F(h)(Z, anx") =3, h(a,)x".

Remark. Let R be a commutative ring and p, q € R[x]. A direct calcula-
tion shows that we have

(p+a)'=p'+q and (pq)' =pq +p'q.

Polynomial rings can be regarded as a free extension of a ring by a
single new element x.

Lemma 3.3. Let R and & be rings. For each homomorphism hy : R - S
and every element a € S, there exists a unique homomorphism h : R[x] —
Swithh(x)=aandh | R = h,,.

Proof. For p = c,x" + -+ + ¢,x + ¢y, we define
o

h(P) = ho(cn)an +eet ho(cl)a + ho(Co) .
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It is straightforward to check that & is a homomorphism. For uniqueness,
suppose that g is another homomorphism such that g(x) =aand g IR =
h,. For every polynomial p = ¢,x" + -+ + ¢,x + ¢,, we have

g(p) =g(cn)g(x)" +---+ g(ci)g(x) + g(co)
= ho(cn)a" +---+ ho(cr)a+ho(co) = h(p).

Hence, g = h. O

As for groups we can characterise congruences of rings in terms of
certain subrings.

Definition 3.4. Let R be a ring.
(a) A left ideal of R is a subset a C R such that

a+bea, foralla,bea,

raca, forallacaandeveryreR.
(b) A (two-sided) ideal of R is a subset a € R such that

a+bea, foralla,bea,

rasea, forallacaandallr,seR.
(c) We denote the set of all ideals of R ordered by inclusion by
Id(R) := (Id1(R), <) .
(d) Let a € R. The ideal generated by a is
(a):=(){acR|aanidealwithaca}.

Remark. Clearly, every two-sided ideal is also a left ideal. The converse
does not hold in general, but for commutative rings both notions coin-
cide.

Example. Let3 = (Z,+,—,-,0,1) be the ring of integers. A subseta € Z
is an ideal if and only if it is of the form mZ, for some m € N.
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Exercise 3.1. Prove that
(Aos-+ern) ={Toa0So ++ + Ty_1Gn_1Sy— | LSS R }.

Lemma 3.5. Let R be a ring.
(@) If h: R - S is a surjective homomorphism then & is also a ring.

(b) If h: R — S is a homomorphism into a ring &, then h™[0] is an
ideal of R.

(c) If ais an ideal of R, then the relation
regs  ciff  r—sea
is a congruence of R.

Proof. (a) For all elements a, b, ¢ € S, there are elements x € h™'(a),
y€h™(b),and z € h™(¢). Since h is a homomorphism it follows that
every equation satisfied by x, y, and z is also satisfied by 4, b, and c.

(b) Leta,b € h™[o] and r, s € R. Then

h(a+b)=h(a)+h(b)=0+0=0,
and  h(ras) =h(r)-h(a)-h(s)=h(r)-o0-h(s)=o.

(c) First, we prove that =, is an equivalence relation. Let 7, s, t € R. The
relation =, is reflexive since r — r = o € a. It is symmetric since r — s € a
implies s —r = (1) - (r —s) € a. Finally, it is transitive since r—s, s—t € a
impliesr—t=(r—s)+(s—t) ea

It remains to show that », is a congruence. Suppose that r ~, " and
s~ s’'. Then

(r+s)-(r"+s)y=(r-r)+(s-5")ea,
and rs—r's'=rs—rs' +rs' —r's' =r(s-5")+ (r-1')s" ea. O

Theorem 3.6. Let R be a ring. The function Idl(R) — Cong(R) :a > ~,
is an isomorphism.
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Proof. By definition, a € b implies », € ~¢. Hence, h : a = g is a
homomorphism and it remains to find a homomorphism g : Cong(R) —
3IDL(R) that is inverse to h. For ~ € Cong(R), we define

8(~) = [o]..
Then ~ € »~ implies g(~) € g(~). Furthermore,

g(h(2)) = g(=y) = [o]., =a.
and  h(g(~)) = h([o].) = ~o). = ~. 0

Definition 3.7. Let i be a ring.
(a) For an ideal a of R, we set

R/a:=R/~,.
(b) The kernel of a homomorphism h : R — & is the ideal
Kerh:=h7'[o] (=[0]kern)-

To every ring we can assign a topological space in much the same way
as we associated Stone spaces with boolean algebras.

Definition 3.8. Let R be a ring.
(a) An ideal p of R is prime if p # R and

abep implies aeporbep, foralla,beR.

(b) The spectrum of R is the set spec(R) of all prime ideals. We endow
spec(R) with a topology by taking as closed sets all sets of the form

(X):={pespec(R) | Xcp}, forXcR.

Exercise 3.2. Prove that spec : Ring — Zop is a contravariant functor.
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4. Modules

Instead of a group acting on a set we can consider a ring acting on an
abelian group. This leads to the notion of a module.

Definition 4.1. Let R be a ring.
(a) An R-module M consists of an abelian group M = (M, +, -, 0)
and an action R x M — M satisfying

r(sa) = (rs)a,
r(a+b)=ra+rb, forallr,seRanda,beM.

(r+s)a=ra+sa,

The action R x M — M is called scalar multiplication.
(b) A vector space is an R-module where the ring R is a skew field.
(c) We regard R-modules as one-sorted structures

93? = <M) +,—,0, (/lr)rER>

where A, : a — ra are the scalar multiplication maps. When we talk
about substructures or homomorphisms of modules we always have this
signature in mind.

(d) We denote by Mody the category of all R-modules and homo-

morphisms.

Example. (a) We can turn every abelian group ¥ into a Z-module by
defining

oa:=o,
(n+1)a:=na+a, forneNandacA.

(-n)a:=—(na),

(b) Every ring R is an R-module for the canonical action a(r)(a) :=
ra given by multiplication.

(c) The derivation map R[x] — R[x] : p — p’ is a homomorphism
of R-modules. It is not a ring homomorphism.
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We can turn the set of all homomorphisms M — N into an R-module
by defining addition and scalar multiplication pointwise.

Exercise 4.1. If M and N are R-modules then so is Modg (M, N).
For 9t = M we not only get a module but even a ring.

Definition 4.2. The endomorphism ring Cnd(M) of an R-module M is
the ring with universe

End(M) := Mody (M, M)
where addition and multiplication are defined by
(g+h)(x):=g(x) +h(x) and (g-h)(x):=g(h(x)).
Lemma 4.3. €nd(M) is a ring.
Exercise 4.2. Prove the lemma.

We have seen above that congruences of groups and rings can be
described in terms on certain substructures. For modules, the situation
is much simpler. Every submodule corresponds to a congruence.

Theorem 4.4. Let M be an R-module. The function
Sub(M) — Cong(M): U {(a,b) |a-beU}
is an isomorphism. Its inverse is given by the map ~ — [0].

Exercise 4.3. Prove the preceding theorem.

Lemma 4.5. Let M be an R-module. Then Sub(M) is a modular lattice.

Proof. Let &, € ¢ M. It is straightforward to check that

ﬁﬂgzﬁﬂglzmh«m and §U8:§+SIZW|K+L.
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Hence, Sub(M) is a lattice. To show that it is modular it is sufficient to
prove that

Kc implies CN(K+N)cK+(EnNN).

Leta € Ln (K + N). Then there are elements b € K and ¢ € N such
thata = b+ c.Sincea e Land b € K ¢ L it follows thatc = a - b € L.
Hence,ce Ln Nandwehavea=b+ce K+ (LNN). O

Since congruences of modules are simpler than those of rings, it is
frequently worthwhile to regard rings as modules. The following obser-
vation shows that we can study the left ideals of a ring in this way. For
the proof, it is sufficient to note that the closure conditions of a left ideal
and those of a submodule coincide.

Lemma 4.6. Let R be a ring. A subset a € R is a left ideal of R if and only
if it is a submodule of R.

Let us consider products of modules. We will show below that we can
decompose every vector space over a skew field & as a product of copies
of &.

Lemma 4.7. If M;, for i € I, are R-modules then so is their direct product
HieI mi-

Definition 4.8. Let (M;);c; be a family of R-modules. The direct sum
@;c; M; is the submodule of [];.;;M; consisting of all sequence a ¢
[1; M; such that a(i) = o, for all but finitely many i.

The direct power of a module M is the direct sum MD = @, ; M of
I copies of M.

Remark. In the category DMody the direct product [T; M; and the direct
sum @; M; play the role of, respectively, product and coproduct.

That is, for every family of homomorphisms h; : 0 - M;, i € I, there
is a unique homomorphism g : 3t — [T; M; such that h; = pr; o g where
pi; : [1; M; — M; is the i-th projection.

405



B6. Classical Algebra

Similarly, for every family of homomorphisms h; : M; - N, i € I,
there is a unique homomorphism g : @; M; - N such that h; = goin;
where in; : M; — D; M; is the i-th injection.

To conclude this section we take a look at the structure of vector spaces,
which is particularly simple. We will show below that every vector space
over a skew field & is isomorphic to a direct power of &.

Definition 4.9. Let B be a vector space over a skew field &.

(a) A set X C V is linearly dependent if there are pairwise distinct
elements da,,...,a,-, € X and nonzero scalars s, ...,s,—, € S\ {0},
such that

Solo +  +Sp_1Ap_1 =0.

Otherwise, X is called linearly independent.
(b) A basis of B is a linearly independent subset B € V' generating <.

Lemma 4.10. Let B be a vector space over a skew field S, a € V, and
suppose that I € 'V is linearly independent. Then I U {a} is linearly inde-

pendent if and only if a ¢ {I)g.

Proof. (=) If a € (I))y then there are elements b,,...,b,, € I and
scalars s, ..., S$,—, € S such that

a=sobg+--+5,_1by_;.

Omitting all terms s; b; that are zero, we may assume that s; # o, for all 1.
Consequently,

Sobg +++sy,_b,_,—a=o0

and I U {a} is linearly dependent.
(<=) Suppose that I U {a} is linearly dependent. Then there are ele-
ments b, ...,b,_, € I and nonzero scalars 1, sg, ..., S,—; € S such that

ra+soby +--+s,.,b,_,=o0.
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(This sum must contain a term with a since I is independent.) Con-
sequently,

a=—-r"sobg— =1 sy by € (I O
Lemma 4.11. Every vector space has a basis.

Proof. Suppose that B is a vector space over &. Let Z be the set of all
linearly independent sets I € V. The partial order (Z, c) is inductive.
Consequently, it has a maximal element B. We claim that B is a basis. Sup-
pose otherwise. Then there is some vector a € V \ ( B)g. By Lemma 4.10,
it follows that B u {a} is linearly independent. This contradicts the max-
imality of B. O

Theorem 4.12. Let B be an S-vector space with basis B. There exists an
isomorphism

h:@P) B (sp)pep > D spb.
beB

Proof. 1t is straightforward to check that / is a homomorphism. We
claim that it is bijective. For surjectivity, fix a € V. Since V = {B)) there
are elements by, ..., b,_, € Band scalars s,, ..., s,_, € S such that

a=sobg+-+5,_1b,_,.

Hence, a € rng h.
It remains to prove that / is injective. Suppose that k(s ) = h(s})p.
We have

Y(sp—sy)b=> spb= Y spb=h(sp)p —h(sy)p =0.

beB beB beB

(Note that these sums are defined since (53 ), (s},)5 € $(®) ) Since B is
linearly independent it follows that s;, — s = o, for all b. Consequently,

(s)b = (s3)p- O
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Every vector space is freely generated by its basis.

Lemma 4.13. Let B and W be S-vector spaces and suppose that B is a basis

of B. For every map h, : B — W, there exists a unique homomorphism
h: 8-> Wsuch that h | B = h,.

Proof. By Theorem 4.12, we can find, for every a € V, a unique sequence
(sp)p € S such that a = 3, s,b. We define h(a) = Y, spho(b).
Then h | B = h, and we have

h(a+0b)="h(a)+h(b) and h(sa)=sh(a).
Hence, h is a homomorphism. It is obviously unique. O

Lemma 4.14 (Exchange Lemma). Let B be a vector space over a skew
field &, suppose that I € V is linearly independent, and let I, C 1. For
every element a € {I)g \ (I, ), there exists ane element b € I \ I, such
that (I~ {b})u{a} is linearly independent and b € {((I~{b})u{a})s.

Proof. Since I U {a} is dependent it follows by Lemma 4.10 that there
are elements b,, ..., b,_, € I and scalars s, ..., s,_; € S such that

a=soby+-+5,_.b,_,.

We choose these elements such that the number # is minimal. It particu-
lar this implies that s; # o, for all i.

Since the set I, U {a} is independent we have b; € I \ I, for some i.
By renumbering the elements we may assume that b, € I \ I,. We claim
that b, is the desired element.

First of all,

-1 —1 -1
bo=sya—sg b, — - —5."5p_1bpy

implies that b, € {(I \ b,) U {a})x. Hence, it remains to prove that
(INbo)u{a} islinearly independent.
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For a contradiction, suppose otherwise. Then Lemma 4.10 implies
that a € (I~ {b,} ). Since { - ) is a closure operator it follows that

bo € (I~ {bo}) U{a} )z & ((T~ {bo})x)n = (I~ {bo} ).
Hence, I = (I\ {b,}) U {b,} is linearly dependent. Contradiction. []

Theorem 4.15. Let B be a vector space over the skew field S. If B has a
finite basis then all bases of B have the same cardinality.

Proof. Let B and C be two bases of B and suppose that B is finite. We
prove by induction on |B \ C]| that |B| = |C|.

First, suppose that B ¢ C. If there is some element ¢ € C \ B then
B u {c} is linearly independent. By Lemma 4.10, it follows that ¢ ¢
{B)x = V. A contradiction. Consequently, C = B.

For the inductive step, suppose that there is some element b € B\ C.
Let I := Bn C. By Lemma 4.14, we can find a vector ¢ € C \ I such that
C':= (C~{c}) u{b} islinearly independent and {C')g = {(Chg = V.
Hence, C’ is a basis of B and it follows by inductive hypothesis that
[Cl=]C"] = B]. O

Remark. The preceding theorem holds also for vector spaces with infinite
bases. We postpone the proof to Section r1.1 where we will prove the
corresponding result in a more general setting.

Definition 4.16. Let B be a vector space. The dimension dim L of BV is
the minimal cardinality of a basis of B.

Theorem 4.17. Let B and W be S-vector spaces. Then B = W if and only
if dim Y = dim W.

Proof. (=) istrivial. For (<=), suppose that B and C are bases of, respect-
ively, 8 and B such that |B| = |C|. Then B = &) = &(©) = qg. O

Lemma 4.18. Let B be a vector space and n < w. Then we have dim B > n
if and only if there exists a strictly increasing chain

{o}=U,c---cl, =3
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of subspaces of B.

Proof. (=) Let B be a basis of B. By assumption, |B| > n. Choose n dis-
tinct elements by, ..., b,_, € B and set

U = (o> ..., b1 )

We claim that U, c --- c U,,. For a contradiction, suppose that Uy, = Uy,
for some k. Then

bk € llk = <<bo,...,bk_1>>:3.

By Lemma 4.10 it follows that {b,, ..., bx_;, bx } is linearly dependent.
Contradiction.

(<=) Suppose that {o} =U, c--- c U, = B. For every k < n, choose
some element by € Uy, \ Uyk. Let m be the maximal number such that
the set {b,,...,bm-,} is linearly independent. Since m < dim < it is
sufficient to prove that m = n.

For a contradiction, suppose otherwise. Then {b, ..., by, by } is
linearly dependent and, by Lemma 4.10, it follows that

bon € (Do by )og € Uy

But b,, € U1, \ Up,. Contradiction. |

5. Fields

We have seen in the previous section that modules over fields are better
behaved than modules over arbitrary rings. In this section we study
further properties particular to fields. The first and largest part of the
section is devoted to constructions turning rings into fields. In particular,
we will study quotients of polynomial rings. In the second part we use
this machinery to investigate extensions of fields.

Definition 5.1. Let R be a ring.

410

5. Fields

(a) An ideal a C R is maximal if a # R and there is no ideal b with
acbcR.

(b) An element a € R is a unit if there is some b € R such that ab =
1= ba.

(c) An element a € R is a zero-divisor if a + o and there exists some
element b # o such that ab = o or ba = o.

(d) R is an integral domain if it is commutative and it contains no
zero-divisors.

Remark. (a) Every field is an integral domain. (b) A zero-divisor is never
a unit. (c) A ring is a skew field if and only if every element but o is a
unit.

Exercise 5.1. Let R and & be commutative rings. Show that the direct
product R x & is never an integral domain.

Exercise 5.2. Prove that every maximal ideal is prime.

In the same way as QQ is obtained from Z, we can associate a field with
every integral domain.

Definition 5.2. Let R be an integral domain. The field of fractions of R
is the ring FF(R) consisting of all pairs (r,s) € R* with s # 0. We write
such pairs as fractions r/s.

Two fractions r/s and r’/s" are considered to be equal if rs’ = 's.
Addition and multiplication is defined by the usual formulae

rls+7r'[s" == (rs' +7's)[ss" and r[s-r'[s =rr[ss".
Lemma 5.3. Let R be an integral domain. Then FF(R) is a field.
Exercise 5.3. Prove the preceding lemma.

Lemma 5.4. Let R be an integral domain and K a field. For every embed-
ding hy : R — K, there exists a unique embedding h : FE(R) — & with
h R = h,.
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Proof. Wedefine h(r/s) := ho(r)-ho(s)™". It is straightforward to check

that h is an embedding and that this is the only possible choice to define .

O

Theorem s5.5. A ring R is an integral domain if and only if R can be
embedded into some field K.

Proof. Every integral domain R can be embedded into the field FF(R).
Conversely, suppose that R C K, for some field K. Since K is an integral
domain, so is R. O

We can construct integral domains by taking quotients by prime ideals.

Lemmas.6. Let R be a commutative ring and a C R an ideal. The quotient
R/a is an integral domain if and only if a is prime.

Proof. Let m: R — R/a be the canonical projection.

(=) To show that a is prime consider elements a, b € R with ab € a.
Then 7z(ab) = o. Since R/a is an integral domain it follows that 7(a) = o
or7(b) = 0. Hence,acaorb €.

(<=) Suppose that (a)m(b) = o. Then ab € p. Since p is prime it
follows that a € p or b € p. Hence, (a) = o or 7(b) = o. O

In a similar way we can characterise ideals a such that R/a is a field.
Definition 5.7. A structure U is simple if Cong_ (A) = {1, T}.
Example. A ring R is simple if and only if {o} and R are its only ideals.

Exercise 5.4. Let R be a ring. Prove that an ideal m of R is maximal if
and only if the quotient R/m is simple.

Lemma 5.8. A commutative ring R is a field if and only if it is simple.

Proof. (=) Let R be a field and a an ideal of R. Suppose thata + {0}
and choose a nonzero element a € a. Since R is a field it follows that
1=a'aca Hence,a=R.

(<) Theseta:={a € R| aisnotaunit } is an ideal of R. Since 1 ¢ a
it follows that a = {o}. Consequently, every nonzero element of R is a
unit and R is a field. OJ
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Corollary 5.9. Let R be a commutative ring and a € R an ideal. The
quotient Rfa is a field if and only if a is maximal.

Proof. By Theorem B1.4.19, each ideal of R/a corresponds to an ideal b
of R with a ¢ b. Hence, %/a is simple if and only if a is maximal. Con-
sequently, the claim follows from Lemma 5.8. O

Exercise 5.5. Show that every homomorphism between fields is an em-
bedding.

The main part of this section is concerned with extensions of fields
and ways to construct them. First we take a look at the subfields of a
given fields.

Definition 5.10. Let & be a field
(a) The characteristic of K is the least number n > o such that

1+---+1=0.
———
n times

If there is no such number then we define the characteristic to be o.
(b) The subfield generated by a subset X ¢ K is the set

{ab”'|a,be(X)x}.
(c) The prime field of K is the subfield generated by @.

Example. (a) The prime field of R is Q.
(b) Let p be a prime number. The ring Z/(p) of all integers modulo p
is a field of characteristic p.

Exercise 5.6. Let & be a field of characteristic m > o. Prove that m is a
prime number.

Lemma 5.11. Let K be a field with prime field K.
(a) K has characteristic o if and only if K, = Q.
(b) K has characteristic p > o if and only if K 2 Z/(p).
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Definition 5.12. (a) An embedding h : & — £ of fields is called a field
extension.

(b) Let h : & — £ be a field extension. We can regard £ as a K-vector
space by defining

Aa:=h(A)-a, forleKandacelL.

The dimension of the extension & is the dimension of this vector space.
(c) If & — £is a field extension and a € L, then we denote the subfield
of £ generated by K u a by K(a).

Example. The subfield of R generated by /2 is
K:={a+by2|a,beQ}.
The field extension Q — & has dimension 2.

One way to obtain an extension of a field K is by considering its poly-
nomial ring K[ x]. We can obtain a field extending K by either forming
the field of fractions FF(K[x]), or by taking a suitable quotient K[x]/p.
We start by taking a closer look at polynomial rings of fields.

Lemma 5.13. Let R be an integral domain and p, q € R[x] polynomials.
deg(pq) = degp + degq.

Proof. Let m := deg p and » := deg q and suppose that
p=amx™ +---+a, and q=b,x"+---+b,.

If p = 0 or q = o then deg(pq) = dego = —oo and we are done. Hence,
suppose that p and g are nonzero. Then

m+n , k m+n—1, k
Pa= ) (Z aibk—i)xi = apbyx™ "+ Y (Z aibk,,')xi
k=0 i=o0 k=0 i=o

(where a; := o, for i > m, and b; := o, for i > n). By assumption a,, # o
and b, # o. Since R is an integral domain it follows that a,,b, # o.
Hence, deg pg = m + n. O
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Lemma 5.14. Let K be a field.

(a) For all polynomials p, q € K[x] with p # o, there exist polynomials
r,s € K[x] such that

q=rp+s and degs<degp.

(b) For every ideal a ¢ K[x], there exists a polynomial p € K[x] such
that (p) = a.

Proof. (a) Suppose that
p:amxm+"'+ao and q:bnxn+"‘+h0,

where a,, # o and b, # o. We prove the claim by induction on #. If
m > n we can take r := o and s := q. Hence, we may assume that m < n.
Setting

m

r'i=a, b,x"™ and s§':=q-1'p
it follows that g = ' p +s” and the degree of s” is less than n. By inductive
hypothesis, there are polynomials " and s” such that s’ = r"p + s”
and the degree of s” is less than n. Consequently, we obtain the desired
polynomials by setting 7 := v’ + v/ and s := 5.

(b) Ifa = {0} = (o) then there is nothing to do. Hence, suppose that
a contains some nonzero polynomial. Choose a nonzero polynomial
p € aof minimal degree. We claim that (p) = a. Clearly, we have (p) < a.
For the converse, let q € a. By (), there are polynomials 7, s € K[x] such
that g = rp+sand degs < deg p. Since s = g—rp € ait follows, by choice
of p, that s = 0. Hence, g = rp € (p). O

Definition 5.15. Let % be a ring, p € R[x] a polynomial, and a € R.
(a) We define

plal = ha(p),
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where h, : R[x] — Ris the unique homomorphism such that h,(x) = a
and h, IR = id. The polynomial function associated with p is the function

plx]:R->R:aw pla].
(b) We say that a is a root of p if p[a] = o.

Lemma 5.16. Let K be a field and p € K[x] a nonzero polynomial of
degree n.

(a) Ifaisarootof pthen p=q-(x—a), for some q € K[x].
(b) p has at most n roots in K.

Proof. (a) We can use Lemma 5.14 to find polynomials g, r such that
p=q(x—a)+randdegr < deg(x — a) =1. Hence, r € K and it follows
that

o=pla]l=4q[a](a-a)+r[a]=r[a]=7.

Consequently, p = g(x — a).
(b) Letag, . .., ay—, be an enumeration of all roots of p. By (a), we have
p=q(x—as)(x—am-,). Therefore, the degree of p is at least m. [

Definition 5.17. Let R be a ring. A nonzero polynomial p € R[x] is
irreducible if p is not a unit and there is no factorisation p = gr with
g, 1 € R[x] such that neither g nor r is a unit.

Lemma5.18. Let K be a field. A polynomial p € K[x] is irreducible if and
only if the ideal (p) is maximal.

Proof. (=) Suppose thata € K[x] is an ideal with (p) c a. Fix some q €
ax (p). By Lemma 5.14, there is some polynomial r with (r) = (p,q). In
particular, p = sr, for some s € K[x]. Since p is irreducible it follows that
one of r or s is a unit. If 7 is a unit then we have a 2 (p, q) = (r) = K[x].
Otherwise, r = s7'p implies that (r) = (p) c (p, q). Contradiction.
(<) Let (p) be maximal and suppose that p = gr, for some g, r ¢
K[x]. Then (p) < (gq) and (p) < (r). By maximality of (p) it follows
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that either (g) = (p) or (q) = K[x]. In the latter case g is a unit and
we are done. Hence, suppose that (q) = (p). Similarly, we may assume
that (r) = (p). Consequently, there are units u,v € K[x] such that
q = up and r = vp. It follows that p = gr = uvp>. This is only possible if
deg p < 0. Hence, p € K. Contradiction. O

Lemma 5.19. Let & be a field. For every nonzero polynomial p € K[x],
there exists a factorisation p = cqo*+qm—, wherec € Kand qo, ..., qm-, €
K[x] are irreducible.

Proof. We prove the claim by induction on deg p. If p € K or p is already
irreducible then there is nothing to do. Otherwise, we can find polyno-
mials g, r € K[x] of degree at least 1 such that p = gr. Since

degg =degp —degr <degp

we can use the inductive hypothesis to find a factorisation g = ¢qo---qi-,
of g into irreducible polynomials. In the same way we obtain such a
factorisation r = dry- 7, for r. It follows that p = cdqo---qi-170"* Tm-1-

O

Lemma 5.20. Let K be a field and suppose that p € K[x] is an irreducible
polynomial of degree n.

(@) K[x]/(p) is a field.

(b) The field extension & — K[x]/(p) has dimension n.

(c) p hasarootin K[x]/(p).

Proof. Let m: K[x] = K[x]/(p) be the canonical projection.

(a) follows from Lemma 5.18 and Corollary 5.9.

(©) plr(x)] = 7(p) = o.

(b) We claim that 1, 7(x), ..., m(x"™") form a basis of K[ x]/(p). First,
let us show that these elements generate the K-vector space K[x]/(p).
For every q € K[x], we can use Lemma 5.14 to find polynomials r, s €
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K[x] such that g = rp + s and the degree of s is less than n. Hence,
S=ay_,x"'+---+ a,, for some a,,...,a,_, € K, and

n(q) = n(s) = an_w(x" ")+ +a,m(x) +a, .

It remains to prove that 1, 7(x), ..., m(x" ") are linearly independ-
ent. For a contradiction, suppose that there are nonzero coefficients
dos...,A,—, € K such that

ao+am(x)+-+a,_m(x"") =o.
Then there is some b € K[x] such that
o+ a;x+-+a,,x"" ' =bp.

But the degree of the polynomial on the left hand side is between o and
n—1, while the degree of bp is either —oo or at least n. Contradiction. []

With the help of polynomial rings we can study field extensions.

Definition 5.21. Let & be a field and U ¢ K a subring.

(a) A subset X ¢ K is algebraically dependent over U if there exist
elements ao, ..., a,-, € X and a polynomial p € U[x,,...,x,_,] such
that p[a,, ..., a,—,] = 0. We call X algebraically independent over U if
it is not algebraically dependent over U.

(b) A transcendence basis of & over U is a maximal subset I € K that
is algebraically independent over U. The cardinality of a transcendence
basis is called the transcendence degree of & over U.

(d) An element a € K is algebraic over U if {a} is algebraically de-
pendent over U. Otherwise, a is transcendental over U. A field extension
h: K — Lis algebraic if every element a € L~\rng h is algebraic over rng h.
Similarly, we call h transcendental if every a € L\ rng h is transcendental
over rng h.

(e) The field & is algebraically closed if every polynomial p € K[x] has
arootin K.
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Remark. The partial order of all algebraically independent subsets of a
field K has finite character and, consequently, it is inductively ordered.
Hence, every field has a transcendence basis.

Lemma 5.22. Let h: K — £ be a field extension and a € L an element.

(a) If a is transcendental over K then
K(a) 2 FF(K[x]).

(b) If a is algebraic over K then there exists an irreducible polynomial
p € K[x] such that

K(a) = K[x]/(p).

Proof. (a) There exists a unique embedding h, : K[x] —» Lwith i, I K =
id and h,(x) = a. Let h : FE(K[x]) — £ be the unique embedding with
h | K[x] = ho. We claim that & is surjective. Every element of K(a) is of
the form bc™, for b, ¢ € {K U {a} )¢. Fix polynomials p, g € K[x] such
that b = ho(p) and ¢ = ho(q). Then be™ = ho(p) - ho(q) ™" = h(p/q).
(b) By Lemma 3.3, there exists a homomorphism & : K[x] — K(a)
with h(x) = aand h | K = id. Note that h is surjective since Ku {a} C
rng h. The kernel Ker h is an ideal of K[ x]. By Lemma 5.14, there exists a
polynomial p € K[x] such thatKer i = (p).Let w : K[x] - K[x]/(p) be
the canonical projection. By Theorem B1.4.12, there exists an isomorph-
ism g: K[x]/(p) = rngh = K(a) such thath = go 7. O

Definition 5.23. We call the polynomial p from statement (b) of the
preceding lemma the minimal polynomial of a.

Lemma 5.24. Let & — £ be an extension of fields of characteristic o.
Suppose that p € K[x] is an irreducible polynomial (in K[ X]) that can be
factorised in L[x] as

p=(x-a)'q, foracl,qel[x], n<w.

Then n < 1.
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Proof. Note that p’ ¢ (p) because deg p’ < deg p. Hence, (p) < (p, p’).
Since the polynomial p is irreducible, the ideal (p) is maximal and it
follows that (p, p’) = K[X] = (1). Hence, there are r, s € K[x] such that
rp +sp’ = 1. Consequently,

r(x—a)'q+s[n(x-a)"'g+(x-a)"q']=1.

Setting ¢ := rq(x—a) +nsq+sq’(x —a) we obtain a polynomial such that
(x—a)"t =1. Thisimplies thato = deg1 = deg (x —a)" 't > n-1. O

Algebraically closed fields are particularly well-behaved. As we will
prove below, they are uniquely determined by their characteristic and
their transcendence degree.

Lemma 5.25. Let & be an algebraically closed field of transcendence de-
gree k. Then |[K| = k & Ro.

Proof. LetI ¢ K be a transcendence basis of & over @. Then |K| > [1| = «.
Furthermore, we have |K| > R, since, if K = {a,, ..., a,_, } were finite,
we could find a polynomial

p=(x—ao)(x—ay,)+1

without root in K. Hence, K would not be algebraically closed.

Therefore, we have |K| > x & R, and it remains to prove the con-
verse. For every element a € K \ I, the set I U {a} is algebraically de-
pendent. Hence, there are elements b, ..., b,_, € I and a polynomial
peQ[x, yo,.-., ¥n-1] such that

pla,bo,...,byy] = 0.
Setting f(a) := (p, b) we obtain a function

fiRNT> UJ(@Qx, 7] % I7).

n<w
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For every pair (p, b), there are only finitely many elements a € K with
f(a) = (p, b) since p[x, b] has at most deg p < R, roots in K. It follows
that

K= > f({pb)

(p:b)erng f
<R, ®|rng fl =R ® (Ro ® k™) <R, D k. O

Lemma 5.26. For every field &, there exists an extension & — £ such that
every polynomial in K[x] of degree at least 1 has a root in L.

Proof. We have seen in Lemma 5.20 that, if p € K[x] is a polynomial
and q an irreducible factor of p, then the field K[ x]/(q) is an extension
of & in which p has the root x.

Fix an enumeration (pg )<y of K[x]. We construct a chain (£4) <«
of fields £, 2 K such that p, has a root in £,,,. We set £, := & and
£5 1= Ug<s L4, for limit ordinals §. For the successor step we define
€411 = €4[x]/(ga) where g, is an irreducible factor of p,. The union
€ 1= Uger Ly s the desired extension of K. O

Proposition 5.27. Every field & has an extension & — £ where £ is
algebraically closed.

Proof. By the preceding lemma, we can construct a chain (£,) <, as
follows. £, := K and £,,,, is some extension of £, such that every polyno-
mialin L,[x] hasarootin L,,,. The union € := U, ., €, is algebraically
closed since, if p € L[x] then p € L,[x], for some #, and p has a root
in€,,, €& O

The previous proposition tells us that every field has an algebraically
closure. In the following lemmas we prove that it is unique.

Lemma5.28. Let &, = £, and K, — &, be field extensions with algebra-
ically closed fields £, and £,. If £, and £, have the same transcendence
degree over, respectively, K, and K,, then we can find, for every element
a € L, and every isomorphism n : K, — K, and element b € L, and an
isomorphism o : K (a) - K,(b) such that o | K, = 7.
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Proof. First, we consider the case that a is algebraic over K,. Let p be the
minimal polynomial. We can extend 7 to an isomorphism 7’ : K,[x] -
K [x]. Let q := n’(p). Since &, is algebraically closed, g hasaroot b € L,.
It follows that

Ko(a) = Ko[x]/(p) = Ki[x]/(9) = Ku(b),

and this isomorphism extends 7.

It remains to consider the case that a is transcendental over K,. Then
the transcendence degree of L, over K, is at least 1 and we can find an
element b € L, that is transcendental over K. It follows that

Ko(a) 2 FF(K,[x]) 2 FE(K,[x]) 2 Ki(b). O

Theorem 5.29. Let & be a field and h, : & - £, and h, : & - &
algebraically closed extensions of K. If £, and &, have the same transcend-

ence degree over K then there exists an isomorphism m : £, = &, with
mohgy = h,.

Proof. Since £, and &, have the same transcendence degree A of & we
have |€,| = |[K| ® A = |£,|. Fix enumerations (a;);<x and (b;)i<x of,
respectively, L, and L,. By induction on «, we construct increasing
sequences

gecgc..ceic... and mEmMCS-CmyC...
of subfields £ € £; and isomorphisms 77, : £5 — £ such that
ay €edomiyy, and b, €rngm,,,.

Then 7 := U, 7, is an isomorphism with dom 7 = L, and rng 7 = L,.
We start with £5 := & and 71, := idk. For limit ordinals §, we take
unions 22 = Ug<s €7 and 715 := Ug<s 714 For the successor step, suppose
that 7, : £5 — £% has already been defined. We apply the preceding
lemma twice, first to construct an extension ¢ 2 m, with a, € domo,
and then to find an extension 744, 2 0 with by € rng 7o,. O
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Corollarys.30. Two algebraically closed fields with the same characteristic
and the same transcendence degree are isomorphic.

Corollary 5.31. Let £ be an algebraically closed field. For every isomorph-
ism o : K — K, between subfields K, K, C &, there exists an automorph-
ism € Aut& such that n | K, = 0.

We can use automorphisms to study algebraic field extensions. This
leads to what is called Galois theory. Here, we present only a simple
lemma that is needed in the next section.

Definition 5.32. Let h: & — £ be a field extension. We set
Aut (8/R) ={meAut€|nlmgh=id}.

Lemma 5.33. Let & — £ be a field extension where £ is algebraically
closed.

(a) If a € L is an element such that n(a) = a, for all m € Aut (£/R),
then a € K.

(b) If C € L is a finite set such that n[C] ¢ C, for all m € Aut (£/R),
then there exists a polynomial p € K[x] of degree deg p = |C| such that
C is the set of roots of p.

Proof. (a) For a contradiction, suppose that a ¢ K. First, we consider the
case that a is algebraic over K. Let p be its minimal polynomial and let
o, . .., ay—, be the roots of p. We have n = deg p. Since

K(ai) = K[x]/(p) 2 K(a),

we can use Corollary 5.31 to find automorphisms 7; € Aut (£/K) such
that 77;(a) = a,. By assumption, this implies a; = a. Hence, we have

i=o

which implies that a, a*, ..., a" € K. Contradiction.
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It remains to consider the case that a is transcendental over K. Then
a’ is also transcendental over K. Hence,

K(a) 2 FF(K[x]) = K(a?)

and we can use Corollary 5.31 to find an automorphism 7 € Aut (£/K)
with (a) = a®. This implies a* = a, i.e., a = 1 € K. Contradiction.
(b) Suppose that C = {c, ..., cy—, } and set
pi=(x—co)(x—cp).

Clearly, C is the set of roots of p. Hence, it remains to prove that p € K[x].
For every 7 € Aut (£/8), we have

n(p) = (x = 7(co))(x = 7m(en)) = p.

Hence, every coeflicient of p is fixed by every element of Aut (£/K).
By (a), it follows that all coefhicients of p belong to K. O

We conclude this section with a result stating that every finite di-
mensional field extension is generated by a single element (at least in
characteristic o).

Theorem 5.34. Let K — & be an extension of fields of characteristic o. For
all algebraic elements a, b € L, there exists a finite subset U € K such that

K(a,b) =K(ac+b), forallce K\U.

Proof. Wl.o.g. we may assume that L is algebraically closed. Let p and g
be the minimal polynomials of a and b, respectively. Letal,, ..., al,_ €L
be the roots of pand b.,...,b!,_, € L the roots of g where al, = a and
bl = b. We claim that the set

Uw={(bj-b)(a-a;) " |[1<i<mando<j<n}

has the desired properties. Let ¢ € K \ U and set d := ac + b. We have to
show that

K(a,b) =K(d).
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Clearly, K(d) ¢ K(a,b). For the converse, let r € K(d)[x] be a
polynomial such that

(r) = (p.g[d = cx]).

Then p[a] = o and q[d — ca] = q[b] = o implies that r[a] = o. Further-
more, if r[z] = o, for some z € L, then we have p[z] = oand q[d—cz] = o.
The former implies that z = a/, for some i, while the latter implies that
d - cz = b’, for some j. Hence,

ac+b-cz="b; implies (a-z)c=0b;-b.

Since ¢ ¢ U it follows that z = a. Consequently, a is the only root of r
and we have

r=(x-a)*, forsomek<w.

Since r divides p it follows that p = (x — a)* p,, for some p, € K(a)[x].
As p isirreducible, we can use Lemma 5.24 to conclude that k = 1. Hence,
r = x — a. Since r € K(d)[x] it follows that a € K(d). This, in turn,
implies that b = d — ac € K(d). Consequently, K(a,b) < K(d). O

6. Ordered fields

The field C of complex numbers is the canonical example of an algebrai-
cally closed field of characteristic zero. We have studied such fields in
the previous section. In this section we study fields like the field R of
real numbers. It turns out that the theory of R is more complicated than
that of C. We start by looking at fields equipped with a partial order.

Definition 6.1. (a) A structure ® = (R,+,—,-,0,1,<) is a partially
ordered ring if (R, +,—,-,0,1) is a ring and < is a strict partial order
on R satisfying the following conditions:

e a<bimpliesa+c<b+c,foralla,b,ceR.
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¢ a<bandc>oimpliesa-c<b-c.

If < is a linear order then we call R an ordered ring.

(b) A ring R is orderable if there exists a linear order < such that (R, <)
is an ordered ring.

(c) For an element a € R of an ordered ring R, we define

a ifa>o,
o] =

-a ifa<o.

(d) A field K is real if —1 cannot be written as a sum of squares.
Exercise 6.1. Let & be an ordered field. Prove that —1 < o.
Lemma 6.2. If K is an ordered field then a*> > o, for all a € K.

Proof. If a > o then we have a - a > o-a = o. Similarly, if a = o then
a* = 0*> = 0 > 0. Hence, suppose that a < o. Then we have

o=a+(-a)<o+(-a)=-a,

which implies that —a*> = a- (-a) < 0- (—a) = o. Consequently, we have
o=(-a*)+a*<o+a*=a" O

Lemma 6.3. Every orderable field has characteristic o.

Proof. By the previous lemma, we have 1 = 1> > o. This implies that
0 +1 < 1+ 1and, by induction it follows that

1+1<1+1+1, 1+1+1<1+1+1+1,
If some sum 1 + - - - + 1 equals o then we have
0<1<1+1<+<1+-+1<0.

A contradiction. OJ
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Lemma 6.4. Let K be a real field. Then (R, <) is partially ordered where
a<b iff  b-aisasum of squares.

Proof. We start by showing that < is a partial order. It is clearly reflexive.
For transitivity, suppose that b — a = x and ¢ — b = y where x and y are
sums of squares. Then ¢ — a = x + y is also a sum of squares. Finally,
supposethata < bandb <afora+ b.Thenx:=b—-aand y:=a-bare
nonzero sums of squares with x + y = o. Suppose that x = x2 +--- + x2,
and y = y2 +--- + y2. Then

2

L2 2 2 2
e=EX A Xy Yot Y,

—-X s

implies
—1=(x/x0)" + -+ (Xm[%0)* + (§o/X0)* + -+ (Yn/%0)* -

Contradiction.
To show that K is partially ordered by < note that,if b—aandc = c—o
are sums of squares and d is an arbitrary element then

(b+d)-(a+d)=b-a and bc-ac=(b-a)c
are also sums of squares. O

We have seen that every real field can be equipped with a canonical
partial order. We would like to extend this partial order to a linear one.
To do so we consider field extensions such that, for every pair of ele-
ments a, b, one of a — b and b — a is a square. In the following we denote
by \/a an arbitrary root of the polynomial x* — g, either in the given
field K itself or one of its extensions.

Lemma 6.5. Let K be a real field and a € K an element.
(a) If a is a sum of squares then K(\/a) is a real field.

(b) If —a cannot be written as a sum of squares then K(\/a) is a real
field.

427



B6. Classical Algebra

Proof. For a contradiction, suppose that £(+/a) is not real. This implies
that \/a ¢ K. Furthermore, there are numbers b;, ¢; € K such that

—1=Y (bi +civ/a)* = ) (b} +2biciv/a+ac).
Since K(1/a) is a K-vector space with basis {1,/a} it follows that
-1= Z(bl2 +ac;) and o= Z 2biciv/a.
i<n i<n

Consequently, if a is a sum of squares then so is —1 and K is not real. This
contradiction proves (a).
For (b), note that setting d := }_; ¢} the above equation implies

1+Zib?_2i6?+2ib?- i
Yk (Tie2)?
= Y(eifd)? + 3 b3 - 2 (eifd)?

and —a is a sum of squares. Again a contradiction. O

Corollary 6.6. If K is real and a € K then at least one of K(\/a) and
K(\/-a) is real.

Lemma 6.7. Let K be a real field and p € K[x] an irreducible polynomial
of odd degree. If a is a root of p (in some extension of &) then K(a) is a
real field.

Proof. We prove the claim by induction on n := deg p. Suppose that
RK(a) is not real. Then there are elements b; € K(a) with

_ 12 2
—1—b0+"'+bk.

Since f(a) = K[x]/(p) we can find polynomials q; € K[x] of degree
less than n such that b; = g; (mod p). It follows that

-1=g>+---+q7 (modp).
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Hence, there is some polynomial r € K[x] such that

2 2
“1=qy+--+qp+71rp.

Each square g7 has an even degree. Let m be the degree of the sum
qz + -+ q;. If m < o then we would have r = 0 and —1 would be a sum
of squares of elements in K. Hence, we have o < m < 2n—2.Asn = degp
is odd, it follows that the degree of r is also odd and at most n — 2. Let
1o be an irreducible factor of r of odd degree and let ¢ be a root of 1.
Then

—1=(qo[e])* + - + (qx[c])?

is a sum of squares in (¢). Hence, K(¢) is not real. This contradicts the
inductive hypothesis since the degree of r, is odd and less than n. [

Definition 6.8. (a) A field is real closed if it is real and it has no proper
algebraic extension that is real.

(b) A real closure of a field K is an algebraic extension & — £ that is
real closed.

Theorem 6.9. Every real field has a real closure.

Proof. Let & be a real field and let R be the set of all real fields that are
algebraic extensions of K. Then R is inductively ordered by inclusion.
Hence, it has a maximal element £. This is the desired real closure of K.

O

Lemma 6.10. Let K be a real closed field. There exists a unique linear
order < such that (K, <) is an ordered field.

Proof. Let < be the partial order of Lemma 6.4. We claim that < is linear.
Suppose that a £ b. Then b — a is not a sum of squares. By Lemma 6.5 it
follows that R(V/a — b) is real. Since K is real closed we have v/a — b € K.
Hence, a - b is a square and we have b < a, as desired.

Finally, note that, since every sum of squares must be non-negative
< is the only possible linear order on K. O
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Theorem 6.11. A field is orderable if and only if it is real.

Proof. (=) If (R, <) is an ordered field then a* > o, for all a € K. Hence,
every sum of squares is non-negative.

(<=) Let & be a real field and let € be a real closure of &. Then £ has a
unique linear order <. The restriction of < to & yields the desired order

of K. |

Lemma 6.12. Let &, be an ordered field and K, — K, an (unordered)
field extension such that there are no elements c; € K; and a; € K, with
a; >oand

2

—1=aeCi+  + an_,C;_,.

Let U be the algebraic closure of K, and £ ¢ U the subfield generated by
the set K, U{\/c|c€K,, c>0}. Then £ is a real field whose canonical
partial order extends that of K.

Proof. Since every positive element of &, has a square root in £ it follows
that the canonical order of £ extends the order of &,. Hence, we only
need to prove that £ is real.

If £ were not real then we would have

2

“1=aeCi+ +an_,C;_,,

where a; = 1and ¢; € L, for i < n. Furthermore, by definition of £,
there would be elements b,,...,bi_, € K, such that cy,...,c,—, €
K.(V/bos ...y V/br1).

Consequently, it is sufficient to prove that we cannot find elements
aO)”-)aﬂ—l)bO)-”)bk—l € KO and Co»-”)cn—l € Kl(\/ bO)-”) V bl)
such that a;, b; > o and

2

“1=aoC 4+ Ay Co,.

We proceed by induction on k. For k = o the claim follows by our
assumption on K,. Hence, let k > o and, for a contradiction, suppose
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that there are elements a;, b;, and ¢; as above. Then

ci=u; +vi\/byr_,, where ui,vieKl(\/a,...,\/bk_z).

Hence,
-1= Z a;i(u; +vi/bx,)?
i<n
= Z(aiui +abi_,vi+ 2a,~u,~v,~\/bk_1).

i<n

If by, € Ki(v/bos ..., /bi_,) then we obtain the desired contradiction
by inductive hypothesis. Hence, assume that by_, is not contained in
this field. Then 1 and \/by_, are linearly independent and it follows that

-1= Z(a,-u?+a,-hk,1vi2) and o= Zza,-u,-v,-\/bk,l.
i<n i<n
But the first equation contradicts the inductive hypothesis. O

Theorem 6.13. Every ordered field & has a real closure R such that the
canonical ordering of R extends the order of K.

Proof. Applying Lemma 6.12 with &, = &, = & we obtain a real field £
such that the canonical partial order of £ extends the order of K. The
claim follows since the canonical order of every real closure of £ extends
the canonical order of £. O

The next theorem gives a more concrete characterisation of when a
field is real closed.

Theorem 6.14. Let & be a real field. The following statements are equival-
ent:

(1) K is real closed.

(2) K(\/-1) is algebraically closed.
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(3) Every polynomial p € K[x] of odd degree has a root in K and, for
every a € K, either a or —a is a square.

Proof. (1) = (3) follows from Lemmas 6.5 and 6.7.
(3) = (2) We start by showing that every element a + b\/=1 € K(v/-1)
has a square root in K(1/~-1). Let < be an ordering of K. Then a>+b*> > o

implies that a*> + b” is a square. Since -V a? + b? < a < Va? + b* we

have

a+Vva*+b?
ei=——— >o0.
2

Hence, e is also a square. Set ¢ := \/e and d := %. It follows that

(c+d\/—_1)2:e+b\/—_—%
:ﬁ+7vaz+b2+b\/___L
2 2 2(a++Va* +b?)
Va2 +b*(a+Va2+b?) - b
2(a++a* +b?)
ava? +b* + a®
2(a++a* +b?)

L =
2

L =
2
=a+b/-1,

as desired.

To prove that K(1/~1) is algebraically closed we have to show that
every irreducible polynomial p € K[x] has a root in &(1/-1). Suppose
that the degree of p is n = 2™ where I is odd. We prove the claim by

induction on m. If m = o then the claim holds by assumption on K.

Suppose that m > 0. Let & — £ be an algebraic field extension in which p
has nroots ao, ..., a,_,. By Theorem 5.34, there exist finite subsets U C
K such that

K(a; + ax,a;ar) = K(a; + ar +ca;ar), forallce K\ Uy.
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Fix some element ¢ € K \ U; x Ujx. By Lemma 5.33, there is a poly-
nomial g € K[x] of degree n(n — 1)/2 whose roots are the elements
a; + ay + ca;ay. By inductive hypothesis, one of them is in &(/-1).
Suppose that a; + ay + ca;ax € K(v/-1).

First, we show that b := a; + a € K(y/-1) and b’ := a;a; € K(v/~1).
For a contradiction, suppose otherwise. Note that, if one of b and b’ is
not in K(v/-1) then b + cb’ € K(y/-1) implies that the other one also
does not belong to K(1/-1). Hence, K(b,b’,\/-1) is a K(y/-1)-vector
space with basis {1, b, b'}. But these vectors are not linearly independent
since they satisfy the equation A1—b—b" = o with A = b+ cb’ € K(\/-1).
Contradiction.

Consequently, a; is the root of a quadratic polynomial in K(1/-1)[x].
Since every element of K(1/-1) has a square root it follows that a; €
K(v/=1).

(2) = (1) By Lemma 6.4, there exists a partial order
a<b :iff b-aisasum ofsquares

on K. We claim that < is linear. This implies that K is real.

It is sufficient to show that every element a € K satisfies a > o or
—a > o. Suppose that a # o is not a sum of squares. Let b be a root of the
polynomial x> — a. Since b is algebraic over K we have K(b) € K(1/-1).
Hence, there are elements ¢, d € K with b = ¢ + dv/~1. Consequently,

b* = ¢* + 2cdv/—1 - d>.

Since K(1/~1) is a K-vector space with basis {1,1/-1} it follows that
cd =oand b* = ¢* — d*. Since b ¢ K we have d # 0. Hence, ¢ = o and
—a = -b* = d* is a square.

Finally, note that the real closure R of & is contained in K(1/-1) since
the latter is algebraically closed. To show that K is real closed we have
to prove that ® = K. For a contradiction, suppose that there is some
element a € R \ K. Since a € K(\/-1) there are elements b, ¢ € K with
a = b+ c\/-1. Hence, /=1 = (a — b)/c € R and -1 is a square in R.
Contradiction. OJ
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We continue our investigation of ordered fields by looking at the roots
of polynomials.

Lemma 6.15. If K is real closed then every polynomial p € K[x] can be
written as a product of polynomials of degree at most 2.

Proof. Since K(+/~1) is algebraically closed it follows that
p=u(x—as)(x—an,),

for some aq,...,a, 1, u € K(/=1). For ¢ = a + b\/-1 € K(v/-1) we
denote by ¢* := a — b\/-1 its complex conjugate. The mapping ¢ — c¢*
is a field homomorphism. Therefore, we have p[c]* = p[c*]. It follows
that, for every i < n, there is some I < n with a} = a;. If i = | we have
a; € Kand x — a; is a factor of p in K[ x]. Otherwise, p has the factor
(x—a;)(x—a;)=x>—-(a; +a})x +a;a;

with a; + a] € Kand a;a} € K. O
Lemma 6.16. Let p = x" + ap_,x" ' + -+ + a,x + a, be a polynomial
over an ordered field & and suppose that b € K is some element with
b>1+|ag|+--+|a,y,l| Then

p[b]>0 and (-1)"p[-b]>o0.
Proof. Note that b > 1 implies b+ > bl for all i. Hence,

plb] > b" = Ylail- b 2 6"~ 5" Ylaif > 0.

i<n i<n
Similarly,

p[-b]=(-1)"b" + 3 (-1) a;b’

i<n
implies

(-1)"p[-b] > b" - >|ai|- b > 0. 0

i<n
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Proposition 6.17. An ordered field K is real closed if and only if, for every
polynomial p € K[x] and all elements a < b in K with p[a] < o < p[b],
there exists some ¢ € (a, b) with p[c] = o.

Proof. (<=) We use the characterisation of Theorem 6.14 (3).

Fora € K set p := x> —a.If a > o then p[o] = —a < 0 < a = p[24a].
Hence, there is some element ¢ € (0, 2a) with p[c] = o. This implies that
a = c¢* is a square.

Similarly, if a < o then p[a] = 2a < 0 < —a = p[o]. As above we find
an element ¢ with p[c] = 0. Hence, —a = ¢* is a square.

Finally, let p = x*"** + a,,x*" + --- + a,x + a, be a polynomial of odd
degree. Choose b € K such that b > 1+ |ao| + -+ +|a,,|- By Lemma 6.16
we have p[-b] < o < p[b]. Therefore, p has aroot c € (-b, b).

(=) Let p = pko...pkn where each p; is irreducible. Choosing the
interval (a, b) small enough we may assume that there is exactly one
factor p; with p;[a] < o < p;[b] while all other factors have constant
sign on the interval (a,b).If p; = x + c then a + ¢ < 0 < b + ¢ implies
—c € (a,b). Hence, —c is the desired root of p.

Suppose that p; = x>+ cx +d. As p; is irreducible we have 4d — ¢* > o.
It follows that

pilz] =(z+¢/2)*+(d-c*/4) >0, forallze (a,b).

This contradicts our choice of p;. OJ

Lemma 6.18. Let K be an ordered field and p € K[x] a polynomial. For
every element a € K with p[a] > o, there exists some € > o such that

plz] >0, foralla-e<z<a+e.
Proof. We consider the polynomial g := p[a + x]. Suppose that

gq=cax" 4+ X+ Co.
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Set k := max,<j<y|c;| and let ¢ be the minimum of 1 and ¢, /2kn. For
|z| < e it follows that

qlz] =co+crz+--+cpz"

>co —€ley| = —€"|cnl
>co—€k—---—¢ek
=co — ckn
¢ _ pla]
> —=——>0.
2 2 O

Lemma 6.19. Let & be an ordered field and p € K[x] a polynomial. If
p'[a] > o then there exist some € > o such that

plz] > pla], fora<z<a+e,

plz] < pla], fora-e<z<a.

]
]
Proof. Set q := p[a + x] — p[a]. Since g[o] = o we have g = xq,, for
some ¢, € K[x]. Furthermore, we have

qo[0] = go[0] + 0~ go[o] = q'[o] = p'[a] > o.

Hence, we can use Lemma 6.18 to find a number ¢ > o such that
qo[z] >0, forall-e<z<e.

This implies that

q[z] >0, foro<z<e,

and ¢[z]<o, for-e<z<o. O

Lemma 6.20. Let K be a real closed field and p € K[x] a polynomial. If
a < b are elements such that

p'lz] 20, foralla<z<b,
then p[a] < p[b].
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Proof. First, suppose that p’[z] > o,foralla < z < b.If p[a] > p[b] then
applying Lemma 6.19 to a and b, respectively, we obtain elements a < ¢ <
d < bwith p[d] < p[b] < p[a] < p[c]. Consequently, Proposition 6.17
implies that the polynomial p — p[a] has a root b, with ¢ < b, < d. Since
p[b,] = p[a] we can repeat this argument to obtain a second root b,
of p — p[a] with a < b, < b,. Continuing in this way we obtain an
infinite descending sequence b, > b, > ... of roots of p — p[a]. But
every nonzero polynomial has only finitely many roots. Contradiction.

For the general case, fix an enumeration ¢, < :-- < ¢k, of all roots
of p’ in the interval (a,b), and let d, < -+ < d,k4, be the sequence
defined by

a+ce Co+ 0
a< < Co < <6, <...
2 2
Ck—n *+ Ck—1 Ck_1+b
<— < (k1 < <b.
2 2

It is sufficient to prove that p[d;] < p[dis, ], for all i < 2k. Therefore, we
may assume that p’[z] > o for all z in the interval [a, b] except possibly
for one of the endpoints.

Suppose that p'[a] = 0 and p’[b] > 0. If p[a] > p[b] then applying
Lemma 6.18 to the polynomial p— p[b] we obtain some elementa < ¢ < b
with p[c] > p[b]. Since p[z] > o, for all z € [¢, b] this contradicts the
first part of the proof. Consequently, we have p[a] < p[b]. By the same
argument it follows that p[a] < p[(a + b)/2]. Hence, the first part of the
proof implies that p[a] < p[(a + b)/2] < p[b], as desired.

For p'[a] > o and p’[b] = o the claim follows in the same way by
exchanging the roles of a and b. O

We conclude this section by proving that the real closure of an order
field is unique.

Lemma 6.21. Let £, and £, be real closures of an ordered field & whose
canonical orders extend the order of K. Suppose that a € L, \ K is an
element whose minimal polynomial has minimal degree. Then there exists
an order preserving embedding K(a) — £,.
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Proof. Let p be the minimal polynomial of a and set n := deg p. We
start by showing that p has a root in L,. Note that, by Lemma 6.16, there
are elements b_, b, € K with b_ < a < b,. Further, note that, if g is
a polynomial of degree less than # then all roots of q are in K. Hence,
when z varies over L; then the sign of g[z] changes only at points z € K.

By choice of p we have p'[a] # o since, otherwise, we would have
p' = (x — a)q, for some q. Hence, p = (x — a)*r, for some r, which
contradicts Lemma 5.24. Therefore, replacing p by —p if necessary, we
may assume that p'[a] > o.

We claim that there are elements ¢, d € K with ¢ < a < d such that
p' is positive on the interval [c, d]. Let ¢’ be the largest root of p that is
less than a. If such a root does not exist then we set ¢’ := b_. Similarly,
let d’ be the smallest root of p’ that is greater than a, or set d’ := b, if
there is no such root. Since p’ has degree n — 1 it follows that ¢/, d’ € K.
Furthermore, Proposition 6.17 implies that p’ has constant sign on the
interval (¢’,d"). Setting ¢ := (¢’ + a)/2 and d := (d’' + a) /2 we obtain
the desired elements.

By Lemma 6.20 it follows that p[c] < o < p[d]. Hence, we can use
Proposition 6.17 to find a root b € L, of p.

Leta, <--- < aj_, be an increasing enumeration of all roots of p in L,
and let b, < --- < by,_, be an increasing enumeration of all roots of p
in L,. We claim that | = m and that there exists an order preserving
embedding o : R(a) - K(b) with 0(a;) = b; and o } K = id.

Fix elements c,, ..., ¢,—, € L, such that ¢} = a; — a;_,. There exists an
embedding ¢’ : R(ac¢) — &, of unordered fields with ¢’ | K = id. Since

o'(a;)-o'(aim) =0’ (c;)?

it follows that ¢/(a;-,) < o’(a;). Furthermore, ¢'(a;) is a root of p.
Hence, 0'(a;) € b. This implies that [ < m. Similarly, we can show
that m < I. Hence, there exists an embedding ¢ : &(a) — K(b) with
o(a;) = b;and o | K = id. It remains to show that ¢ is order preserving.

Let z € K(a) be an element with z > 0. We fix some u € L, such that

u® = z. As above we can find an embedding of unordered fields ¢” :
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K(acu) - £ with 6”(a;) = b; and ¢” 1 K = id. Hence, ¢”’ | K(a) = 0.
Furthermore, 0(z) = ¢"'(z) = "' (u)*> > o. O

Theorem 6.22. If £, and &, are ordered real closures of an ordered field &
then there exists a unique isomorphism m: £, — & with m | K = id.

Proof. As in Theorem 5.29, we construct increasing sequences of iso-
morphisms

Tyt €5 — L7

where £7 € £} € --- C &; are increasing chains of subfields with union
Uq £F = £;. The limit 7 := U, 71, is the desired isomorphism.

We start with 71, := idg. For limit steps, we take unions 715 := Ug<s 74
For the inductive step, we apply Lemma 6.21 twice. First, we select some
element a € L, \ L such that its minimal polynomial over £ has
minimal degree and we extend 7, to an isomorphism €% (a) — £¥(b),
for some b € L,. Then we select some element d € L, \ L¥(b) and extend
the isomorphism to 744, : €5(a,c) — £ (b, d), forsomece L,. [J
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The following two theorems summarise the results of this section.
Theorem 6.12 (Cohen, Shelah). Let T be a complete first-order theory.
The following conditions are equivalent:

(1) T is stable.

(2) T has Un(x, A)-representations, for some cardinals k and A.

(3) T has W{(o,|T|)-representations.

(4) T has WE(|T|,|T|)-representations.

Proof. (2) = (1) has been shown in Proposition 6.8 (a), the implications

(4) = (3) = (2) follow from Lemmas 6.5 and 6.2, and (1) = (4) follows
by Proposition 6.11. O]

Theorem 6.13 (Cohen, Shelah). Let T be a complete first-order theory.
The following conditions are equivalent:

(1) T is Ry-stable.

(2) T has LE(R,, R, )-representations.

Proof. (2) = (1) follows by Proposition 6.8 (b) and (1) = (2) follows by
Proposition 6.11. O
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Ind}(C) inductive
(x, A)-completion, 291
Ind(C) inductive completion, 292

O loop category, 313

| cardinality in an accessible
category, 329

Gubic(a) category of KC-subobjects,
337

Gub,(a) category of x-presentable
subobjects, 337
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c(A) closure of A, 343
int(A)  interior of A, 343
0A boundary of A, 343
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rkcg(x/A)  Cantor-Bendixson rank,
365
spec(€) spectrum of & 370

(x) basic closed set, 370

clop(®) algebra of clopen subsets,
374
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Aut M automorphism group, 386
G/U set of cosets, 386

E/N factor group, 388

SymQ  symmetric group, 389

ga action of g on 4, 390
Ga orbit of 4, 390

8x) pointwise stabiliser, 391
8x setwise stabiliser, 391

(@~ b) basic open set of the group
topology, 395

degp degree, 399

3IDL(R)  lattice of ideals, 400

R/a quotient of a ring, 402

Ker h kernel, 402

spec(R) spectrum, 402

D; M; direct sum, 405

m® direct power, 405

dim®  dimension, 409

FE(R) field of fractions, 411

K(a) subfield generated by a, 414

plx] polynomial function, 415

Aut (£/8) automorphisms over K, 423

|a] absolute value, 426
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ZL[K, X]
=
BL(DB)

Zariski logic, 443
satisfaction relation, 444
boolean logic, 444

FOxx,[2, X] infinitary first-order

-9

A
Vo
dx¢
Vxo
FO[Z, X]
A= 9[B]
true
false
VY
PAY
=y
(Z2ad 4
free(gp)
qr(e)

logic, 445
negation, 445
conjunction, 445
disjunction, 445
existential quantifier, 445
universal quantifier, 445
first-order logic, 445
satisfaction, 446
true, 447
false, 447
disjunction, 447
conjunction, 447
implication, 447
equivalence, 447
free variables, 450
quantifier rank, 452

Mod, (@) class of models, 454

DPEg

@F

ThL(ﬁ)

DNE(¢@)
ont(p)
NNF(¢)

Logic
3! xQ

entailment, 460

logical equivalence, 460

closure under entailment,
460

L-theory, 461

L-equivalence, 462

disjunctive normal form,
467

conjunctive normal form,
467

negation normal form, 469

category of logics, 478

cardinality quantifier, 481
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FOxx, (Wo)  FO with well-ordering

w

Qx

quantifier, 482
well-ordering quantifier,
482
Lindstrom quantifier, 482

SOk, [Z,Z]  second-order logic, 483
MSOxx, [2, 5] monadic

second-order logic, 483

PO category of partial orders,
488

<b Lindenbaum functor, 488

% negation, 490

VY disjunction, 490

PAY conjunction, 490

Llo restriction to @, 491

L/o® localisation to @, 491

Fo consequence modulo @,
491

=0 equivalence modulo @, 491
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Cmb. (Z) category of L-embeddings,

493

QF,,[Z, X] quantifier-free

A
VA
B
Vi,

+
HKNO

IA 1A
[~

S
NS

formulae, 494
existential closure of A, 494
universal closure of A, 494
existential formulae, 494
universal formulae, 494
positive existential

formulae, 494
A-extension, 498
elementary extension, 498
A-consequences of @, 521
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<4 preservation of A-formulae,
521
Chapter c3

S(L) set of types, 527

(@) types containing @, 527

tp, (@/M) L-type of 4, 528

Si(T)  type space for a theory, 528

S3(U)  type space over U, 528

S(L) type space, 533

f(p) conjugate of p, 543

Sa(L) ©(L|a) with topology
induced from S(L), 557

(D)4 closed setin €, (L), 557

pla restriction to 4, 560

tp,(a/U) A-type of a, 560
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=4 a-equivalence, 577

£ oo-equivalence, 577

plso, (¥, B) partial isomorphisms,
578

G~ b mapa;+—bis578

1%} the empty function, 578

I,(Y,B) back-and-forth system, 579
Ioo (U, B) limit of the system, 581

=P a-isomorphic, 581
oo co-isomorphic, 581
m=¢n  equality up to k, 583
Pya Hintikka formula, 586

EFq (%, 4,9,b)
Ehrenfeucht-Fraissé
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game, 589
EF5, (Y, a,8,b)
Ehrenfeucht-Fraissé

game, 589

I§o (%, B) partial FO-maps of size «,
598

= ook-simulation, 599

~K

=K cok-isomorphic, 599

Ak B I5(A,B) : A=k, B, 509
A=FB  I5(AUB): 9[:1‘50 B, 599
Acky B I (A, B) : Ack, B, 599
A=k B 5o (A, B) : A=, B, 509
Act, B I5(A,B) : Ak, B, 599
A= B I5(A,B) : A =L, B, 599
G() Gaifman graph, 605
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L<L' L' is as expressive as L, 613

(4) algebraic, 614

(B) boolean closed, 614

(By) positive boolean closed, 614

(c) compactness, 614

(cc) countable compactness, 614

(roP) finite occurrence property,
614

(xP) Karp property, 614

(Lsp) Lowenheim-Skolem
property, 614

(REL) closed under relativisations,
614

(suB) closed under substitutions,
614

(Tup) Tarski union property, 614
hn.(L) Hanf number, 618

In«(L) Loéwenheim number, 618

wn, (L) well-ordering number, 618

occ(L)  occurrence number, 618

pry(K) I-projection, 636

PCy (L, 2) projective L-classes, 636

L, < _pc L, projective reduction, 637

RPC«(L,X) relativised projective
L-classes, 641

Lo <tpe Li relativised projective
reduction, 641

A(L) interpolation closure, 648

ifp f inductive fixed point, 658

liminf f least partial fixed point, 658

limsup f greatest partial fixed point,

658

fo function defined by ¢, 664

FOxx, (LFP) least fixed-point logic,
664

FOux, (IFP)  inflationary fixed-point
logic, 664

FOxx, (PFP) partial fixed-point
logic, 664

g stage comparison, 675
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tor(8)  torsion subgroup, 704

aln divisor, 705

DAG theory of divisible
torsion-free abelian
groups, 706

ODAG theory of ordered divisible
abelian groups, 706

div(&) divisible closure, 706

F field axioms, 710
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ACF theory of algebraically
closed fields, 710
RCF theory of real closed fields,
710
Chapter D2

(<#)* Uscur',7m

HOw[Z,X] infinitary Horn
formulae, 735

SHeo[Z, X] infinitary strict Horn
formulae, 735

HVYo[Z,X] infinitary universal
Horn formulae, 735

SHV & [Z, X] infinitary universal
strict Horn formulae, 735

HO[Z, X] first-order Horn formulae,
735

SH[ZX, X] first-order strict Horn
formulae, 735

HV[Z, X] first-order universal Horn
formulae, 735

SHY[Z,X] first-order universal
strict Horn formulae, 735

(C; @)  presentation, 739

Prod(K) products, 744

Sub(KC) substructures, 744

Iso(K) isomorphic copies, 744

Hom(K) weak homomorphic
images, 744

ERP(K) embeddings into reduced
products, 744

QV(K) quasivariety, 744

Var(K) variety, 744
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(f.g)  opencell between f and g,
757

[f.g]  closed cell between f and g,
757

B(d,l_n) box, 758
Cn(D) continuous functions, 772
dimC  dimension, 773

Chapter E2

dcl (U) L-definitional closure, 815
acl (U) L-algebraic closure, 815
dclaut (U) Aut-definitional closure,

817
aclaut(U) Aut-algebraic closure, 817
M the monster model, 825
A=y B having the same type
over U, 826
Med extension by imaginary

elements, 827
dcl®d(U) definable closure in M9,

827

acl®d(U) algebraic closure in M9,
827

T4 theory of MY, 829

Gb(p)  Galois base, 837

Chapter E3
I4(Y,B) elementary maps with

closed domain and range,
873
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pMot,-(a,b)  category of partial
morphisms, 894

aci b forth property for objects
in IC, 895

a Cpres b forth property for
k-presentable objects,
895

@ =pres b back-and-forth equivalence
for x-presentable objects,

895

Sub,(a) «-presentable subobjects,
906

atp(a)  atomic type, 917

Mpq extension axiom, 918

T[K] extension axioms for /C, 918

Tran[Z] random theory, 918
kn(9) number of models, 920
Pry[M = @]  density of models, 920

Chapter E5

[ increasing x-tuples, 925

x — (u)) partition theorem, 925

pf(n,{) prefix of { of length |7}, 930

2. (x*%) index tree with small
signature, 930

2, (xk*%) index tree with large
signature, 930

(X)»n  substructure generated in
2, (x°%), 930

Lvl(77)  levels of 7, 931

N equal atomic types in .,
931

R equal atomic types in ¥,
931

Rk refinement of »,, 932

R,k union of ~, k, 932

ali] a...a", 9q1

tp,(a/U) A-type, 941

Av((a');/U) average type, 943

[¢(a")] indices satisfying @, 952

Av,((@');/C) unary average type,
962
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Cmb(XC) embeddings between
structures in /C, 965

p* image of a partial
isomorphism under F,
968

Thy(F) theory of a functor, 971

o« inverse reduct, 975

R(M)  relational variant of M, 977

Av(F)  average type, 986
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In(X)  Loéwenheim number, 995
A< B K-substructure, 996
hn(K)  Hanf number, 1003

K structures of size «, 1004
I (¥,B) K-embeddings, 1008
Ack B I (A,B): Ak, B,1008
A=k B I(AB): A=, B,1008
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(X)p  spanof X, 1031

dimy(X) dimension, 1037

dimy(X/U) dimension over U,
1037

Chapter F2

tka(@)  A-rank, 1073

rk ( ¢) Morley rank, 1073
deg;,(9) Morley degree of ¢, 1075
(MON) Monotonicity, 1084
(NOR) Normality, 1084

(LRF) Left Reflexivity, 1084
(LTR) Left Transitivity, 1084
(FIN) Finite Character, 1084
(sym) Symmetry, 1084

(BMON)  Base Monotonicity, 1084
(srB) Strong Right Boundedness,

1085
c, closure operation
associated with \/, 1090
(1Nv) Invariance, 1097
(DEF) Definability, 1097
(EXT) Extension, 1097

A d\f/U B definable over, 1098

A "‘\‘/U B isolated over, 1098

A {/ v B non-splitting over, 1098
P</9q /-free extension, 1103
A ‘\‘/U B finitely satisfiable, 1104
Av(u/B) average type of u, 1105
(troc)  Left Locality, 1109
(rLoc)  Right Locality, 1109
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loc(y/) rightlocality cardinal of \/,
1109

loco(y/) finitary right locality
cardinal of \/, 1109

Kree regular cardinal above «,
1110

fc(v/)  length of \/-forking chains,
1111

(SFIN) Strong Finite Character, 1111
{/ forking relation to \/ , 1113

Chapter F3

A {i/ v B non-dividing, 1125
A \f/U B non-forking, 1125
A \‘/ v B globally invariant over, 1134

Chapter F4

alty(ai)ier @-alternation number,
1153

k(@) alternation rank, 1153

in(~) intersection number, 1164

a wlg b  indiscernible sequence
starting with 4, b, .. .,
1167

a=%b  Lascar strong type
equivalence, 1168

CF((ai)ier) cofinal type, 1194

Ev((ai)icr) eventual type, 1199

tkgp(a/U)  dp-rank, 1211
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(LexT)  Left Extension, 1228

A H\VU B combination of {‘/ and \f/ ,
1239

A Sl\i/ v B strict Lascar invariance,
1239

(winp)  Weak Independence
Theorem, 1253

(IND) Independence Theorem,
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Chapter G1

a l’U B unique free extension, 1274

mult\/ (p)/-multiplicity of p, 1279

mult(y/) multiplicity of \/, 1279
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stable in, 1290

Chapter G2

(RSH) Right Shift, 1297

Ibm(y/) left base-monotonicity
cardinal, 1297

A[I] Uijes Ai,y 1306

Al<a]  Uijcq Air 1306

Al<a]  Uijcq Ai> 1306

A 1% B definable orthogonality,
1328

A S\y v B strong independence, 1332

Yia unary signature, 1338

Un(k,A) class of unary structures,
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abelian group, 385

abstract elementary class, 995
abstract independence relation, 1084
x-accessible category, 329
accumulation, 12

accumulation point, 364

action, 390

acyclic, 519

addition of cardinals, 116
addition of ordinals, 89

adjoint functors, 234

affine geometry, 1037

aleph, 115

algebraic, 149, 815

algebraic class, 996

algebraic closure, 815

algebraic closure operator, 51
algebraic diagram, 499

algebraic elements, 418

algebraic field extensions, 418
algebraic logic, 487

algebraic prime model, 694
algebraically closed, 815
algebraically closed field, 418, 710
algebraically independent, 418
almost strongly minimal theory, 1056
alternating path in a category, 271
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alternating-path equivalence, 272

g-alternation number, 1153

alternation rank of a formula, 1153

amalgamation class, 1005

amalgamation property, 910, 1004

amalgamation square, 652

Amalgamation Theorem, 521

antisymmetric, 40

arity, 28, 29, 149

array, 1221

array property, 1221

array-dividing, 1227

associative, 31

asynchronous product, 752

atom, 445

atom of a lattice, 215

atomic, 215

atomic diagram, 499

atomic structure, 855

atomic type, 917

atomless, 215

automorphism, 156

automorphism group, 386

average type, 943

average type of an
Ehrenfeucht-Mostowski
functor, 986
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average type of an indiscernible
system, 949
average type of an ultrafilter, 1105
Axiom of Choice, 109, 458
Axiom of Creation, 19, 458
Axiom of Extensionality, 5, 458
Axiom of Infinity, 24, 458
Axiom of Replacement, 132, 458
Axiom of Separation, 10, 458
axiom system, 454
axiomatisable, 454
axiomatise, 454

back-and-forth property, 578, 893
back-and-forth system, 578
Baire, property of —, 363
ball, 342

\/-base, 1228

base monotonicity, 1084

base of a partial morphism, 894
base projection, 894

base, closed —, 344

base, open —, 344

bases for a stratification, 1336
basic Horn formula, 735
basis, 110, 1034, 1037

beth, 126

Beth property, 648, 822
bidefinable, 885
biindiscernible family, 1219
biinterpretable, 891

bijective, 31

boolean algebra, 198, 455, 490
boolean closed, 490

boolean lattice, 198

boolean logic, 444, 462
bound variable, 450
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boundary, 343, 758

x-bounded, 598

bounded equivalence relation, 1172
bounded lattice, 195

bounded linear order, 583
bounded logic, 618

box, 758

branch, 189

branching degree, 191

canonical base, 834
canonical definition, 831
weak —, 847
canonical diagram, 337
canonical parameter, 831
weak —, 846

canonical projection from the
P-completion, 309

Cantor discontinuum, 351, 534

Cantor normal form, 100

Cantor-Bendixson rank, 365, 377

cardinal, 113

cardinal addition, 116

cardinal exponentiation, 116, 126

cardinal multiplication, 116

cardinality, 113, 329

cardinality quantifier, 482

cartesian product, 27

categorical, 877, 909

category, 162

5-cell, 773

cell decomposition, 775

Cell Decomposition Theorem, 776

chain, 42

L-chain, 501

chain condition, 1247

chain condition for Morley sequences,
1257

chain in a category, 267

chain topology, 350

chain-bounded formula, 1168

Chang’s reduction, 532

character, 105

characteristic, 710

characteristic of a field, 413

choice function, 106

Choice, Axiom of —, 109, 458

class, 9, 54

clopen set, 341

=-closed, 512

closed base, 344

closed function, 346

closed interval, 757

closed set, 51, 53, 341

closed subbase, 344

closed subset of a construction, 871,
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closed unbounded set, 135

closed under relativisations, 614

closed under substitutions, 614

closure operator, 51, 110

closure ordinal, 81

closure space, 53

closure under reverse ultrapowers, 734

closure, topological —, 343

co-chain-bounded relation, 1172

cocone, 253

cocone functor, 258

codomain of a partial morphism, 894

codomain projection, 894

coeflicient, 398

cofinal, 123

cofinality, 123
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Coincidence Lemma, 231

colimit, 253

comma category, 170

commutative, 385

commutative ring, 397

commuting diagram, 164

comorphism of logics, 478

compact, 352, 613

compact, countably —, 613

Compactness Theorem, 515, 531

compactness theorem, 718

compatible, 473

complement, 198

complete, 462

k-complete, 598

complete partial order, 43, 50, 53

complete type, 527

completion of a diagram, 306

(4, x)-completion of a diagram, 307

(A, k)-completion of a partial order,
300

composition, 30

composition of links, 275

concatenation, 187

condition of filters, 721

cone, 257

confluence property, 1197

confluent family of sequences, 1197

congruence relation, 176

conjugacy class, 391

conjugate, 817

conjugation, 391

conjunction, 445, 490

conjunctive normal form, 467

connected category, 271

connected, definably —, 761

consequence, 460, 488, 521
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consistence of filters with conditions,
721

consistency over a family, 1221

consistent, 454

constant, 29, 149

constructible set, 869

\/-constructible set, 1306

construction, 869

\/-construction, 1306

continuous, 46, 133, 346

contradictory formulae, 627

contravariant, 168

convex equivalence relation, 1164

coset, 386

countable, 110, 115

countably compact, 613

covariant, 167

COVer, 352

Creation, Axiom of —, 19, 458

cumulative hierarchy, 18

cut, 22

deciding a condition, 721
definability of independence relations,
1097
definable, 815
definable expansion, 473
definable orthogonality, 1329
definable Skolem function, 842
definable structure, 885
definable type, 570, 1098
definable with parameters, 759
definably connected, 761
defining a set, 447
definition of a type, 570
definitional closed, 815
definitional closure, 815
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degree of a polynomial, 399
dense class, 1256

dense linear order, 600
x-dense linear order, 600
dense order, 454

dense set, 361

dense sets in directed orders, 246
dense subcategory, 281
dependence relation, 1031
dependent, 1031

dependent set, 110
derivation, 398

diagonal functor, 253
diagonal intersection, 137
diagram, 251, 256
L-diagram, 499

Diagram Lemma, 499, 634
difference, 11

dimension, 1037

dimension function, 1038
dimension of a cell, 773
dimension of a vector space, 409
direct limit, 252

direct power, 405

direct product, 239

direct sum of modules, 405
directed, 246

directed colimit, 251
directed diagram, 251
x-directed diagram, 251
directed limit, 256
discontinuum, 351

discrete linear order, 583
discrete topology, 342
disintegrated matroid, 1044
disjoint union, 38
disjunction, 445, 490

disjunctive normal form, 467
distributive, 198

dividing, 1125

dividing chain, 1136

dividing x-tree, 1144
divisible closure, 706
divisible group, 705

domain, 28, 151

domain of a partial morphism, 894
domain projection, 894
dp-rank, 1211

dual categories, 172

Ehrenfeucht-Fraissé game, 589, 592
Ehrenfeucht-Mostowski functor, 986,
1002

Ehrenfeucht-Mostowski model, 986
element of a set, 5
elementary diagram, 499
elementary embedding, 493, 498
elementary extension, 498
elementary map, 493
elementary substructure, 498
elimination

uniform — of imaginaries, 840
elimination of finite imaginaries, 853
elimination of imaginaries, 841
elimination set, 690
embedding, 44, 156, 494
A-embedding, 493
K-embedding, 995
elementary —, 493
embedding of a tree into a lattice, 222
embedding of logics, 478
embedding of permutation groups,

886

embedding, elementary —, 498
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endomorphism ring, 404
entailment, 460, 488
epimorphism, 165
equivalence class, 54
equivalence formula, 826
equivalence of categories, 172
equivalence relation, 54, 455
L-equivalent, 462
a-equivalent, 577, 592
equivalent categories, 172
equivalent formulae, 460
Erdés-Rado theorem, 928
Euklidean norm, 341

even, 922

exchange property, 110
existential, 494

existential closure, 699
existential quantifier, 445
existentially closed, 699
expansion, 155, 998
expansion, definable —, 473
explicit definition, 648
exponentiation of cardinals, 116, 126
exponentiation of ordinals, 89
extension, 152, 1097
A-extension, 498

extension axiom, 918
\/-extension base, 1228
extension of fields, 414
extension, elementary —, 498
Extensionality, Axiom of —, 5, 458

factorisation, 180

Factorisation Lemma, 158
factorising through a cocone, 317
faithful functor, 167

family, 37
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field, 397, 457, 498, 710
field extension, 414
field of a relation, 29
field of fractions, 411
field, real —, 426
field, real closed —, 429
filter, 203, 207, 530
k-filtered category, 285
k-filtered colimit, 285
k-filtered diagram, 285
final segment, 41
x-finitary set of partial isomorphisms,
598
finite, 115
finite character, 51, 105, 1084
strong —, 1111
finite equivalence relation, 1164
finite intersection property, 211
finite occurrence property, 613
finite, being — over a set, 775
finitely axiomatisable, 454
finitely branching, 191
finitely generated, 154
finitely presentable, 317
finitely satisfiable type, 1104
first-order interpretation, 446, 475
first-order logic, 445
fixed point, 48, 81, 133, 657
fixed-point induction, 77
fixed-point rank, 675
Fodor
Theorem of —, 139
follow, 460
forcing, 721
forgetful functor, 168, 234
forking chain, 1136
\/-forking chain, 1110
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\/-forking formula, 1103

forking relation, 1097

\/-forking type, 1103

formal power series, 398

formula, 444

forth property for partial morphisms,
895

foundation rank, 192

founded, 13

Fraissé limit, 912

free algebra, 232

free extension of a type, 1103

\/-free extension of a type, 1103

free model, 739

free structures, 749

\/-free type, 1103

free variables, 231, 450

full functor, 167

full subcategory, 169

function, 29

functional, 29, 149

functor, 167

Gaifman graph, 605

Gaifman, Theorem of —, 611
Galois base, 834

Galois saturated structure, 1011
Galois stable, 1011

Galois type, 997

game, 79

generalised product, 751
K-generated, 255, 965
generated substructure, 153
generated, finitely —, 154
generating, 41

generating a sequence by a type, 1158
generating an ideal, 400

generator, 154, 739

geometric dimension function, 1038
geometric independence relation, 1084
geometry, 1036

global type, 1114

graduated theory, 698, 783

graph, 39

greatest element, 42

greatest fixed point, 657

greatest lower bound, 42

greatest partial fixed point, 658
group, 34, 385, 456

group action, 390

group, ordered —, 705

guard, 447

Hanf number, 618, 637, 1003
Hanf’s Theorem, 606
Hausdorft space, 351

having «x-directed colimits, 253
height, 190

height in a lattice, 215
Henkin property, 858
Henkin set, 858

Herbrand model, 511, 858
hereditary, 12

x-hereditary, 910, 965
hereditary finite, 7

Hintikka formula, 586, 587
Hintikka set, 513, 858, 859
history, 15

hom-functor, 258
homeomorphism, 346
homogeneous, 787, 925
~-homogeneous, 931
x-homogeneous, 604, 787
homogeneous matroid, 1044
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homomorphic image, 156, 744
homomorphism, 156, 494
Homomorphism Theorem, 183
homotopic interpretations, 890
honest definition, 1157

Horn formula, 735

ideal, 203, 207, 400
idempotent link, 313
idempotent morphism, 313
identity, 163
image, 31
imaginaries

uniform elimination of —, 840
imaginaries, elimination of —, 841
imaginary elements, 826
implication, 447
implicit definition, 647
inclusion functor, 169
inclusion link, 276
inclusion morphism, 491
inconsistent, 454
k-inconsistent, 1125
increasing, 44
independence property, 952
independence relation, 1084
independence relation of a matroid,

1083

Independence Theorem, 1253
independent, 1031
\/-independent family, 1289
independent set, 110, 1037
index map of a link, 275
index of a subgroup, 386
indiscernible sequence, 941
indiscernible system, 949, 1337
induced substructure, 152
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inductive, 77

inductive completion, 291

inductive completion of a category,
280

inductive fixed point, 81, 657, 658

inductively ordered, 81, 105

infimum, 42, 195

infinitary first-order logic, 445

infinitary second-order logic, 483

infinite, 115

Infinity, Axiom of —, 24, 458

inflationary, 81

inflationary fixed-point logic, 664

initial object, 166

initial segment, 41

injective, 31

k-injective structure, 1008

inner vertex, 189

insertion, 39

inspired by, 950

integral domain, 411, 713

interior, 343, 758

interpolant, 653

interpolation closure, 648

interpolation property, 646

A-interpolation property, 646

interpretation, 444, 446, 475

intersection, 11

intersection number, 1164

interval, 757

invariance, 1097

invariant class, 1256

invariant over a subset, 1325

U-invariant relation, 1172

invariant type, 1098

inverse, 30, 165

inverse diagram, 256
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inverse limit, 256

inverse reduct, 975
irreducible polynomial, 416
irreflexive, 40

\/-isolated, 1297

isolated point, 364

isolated type, 855, 1098
isolation relation, 1297
isomorphic, 44
a-isomorphic, 581, 592
isomorphic copy, 744
isomorphism, 44, 156, 165, 172, 494
isomorphism, partial —, 577

joint embedding property, 1005
k-joint embedding property, 910
Jonsson class, 1005

Karp property, 613
kernel, 157
kernel of a ring homomorphism, 402

label, 227

large subsets, 825

Lascar invariant type, 1178
Lascar strong type, 1168
lattice, 195, 455, 490

leaf, 189

least element, 42

least fixed point, 657

least fixed-point logic, 664
least partial fixed point, 658
least upper bound, 42

left extension, 1228

left ideal, 400

left local, 1109

left reflexivity, 1084

left restriction, 31

left transitivity, 1084
left-narrow, 57

length, 187

level, 190

level embedding function, 931
levels of a tuple, 931
lexicographic order, 187, 1024
lifting functions, 655

limit, 59, 257

limit stage, 19

limiting cocone, 253

limiting cone, 257
Lindenbaum algebra, 489
Lindenbaum functor, 488
Lindstrom quantifier, 482
linear independence, 406
linear matroid, 1037

linear order, 40

linear representation, 687
link between diagrams, 275
literal, 445

local, 608

local character, 1109

local enumeration, 772
x-local functor, 965

local independence relation, 1109
localisation morphism, 491
localisation of a logic, 491
locality, 1109

locality cardinal, 1306

locally compact, 352

locally finite matroid, 1044
locally modular matroid, 1044
logic, 444

logical system, 485

Lo¢ theorem, 715

Index

Los-Tarski Theorem, 686

Léwenheim number, 618, 637, 641, 995

Lowenheim-Skolem property, 613

Lowenheim-Skolem-Tarski Theorem,
520

lower bound, 42

lower fixed-point induction, 658

map, 29

A-map, 493

map, elementary —, 493

mapping, 29

matroid, 1036

maximal element, 42

maximal ideal, 411

maximal ideal/filter, 203

maximally ¢-alternating sequence,
1153

meagre, 362

membership relation, 5

minimal, 13, 57

minimal element, 42

minimal polynomial, 419

minimal rank and degree, 224

minimal set, 1049

model, 444

model companion, 699

model of a presentation, 739

model-complete, 699

k-model-homogeneous structure,
1008

modular, 198

modular lattice, 216

modular law, 218

modular matroid, 1044

modularity, 1094

module, 403
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monadic second-order logic, 483

monoid, 31, 189, 385

monomorphism, 165

monotone, 758

monotonicity, 1084

monster model, 825

Morley degree, 1075

Morley rank, 1073

Morley sequence, 1118

Morley-free extension of a type, 1076

morphism, 162

morphism of logics, 478

morphism of matroids, 1044

morphism of partial morphisms, 894

morphism of permutation groups, 885

multiplication of cardinals, 116

multiplication of ordinals, 89

multiplicity of a type, 1279

mutually indiscernible sequences,
1206

natural isomorphism, 172
natural transformation, 172
negation, 445, 489
negation normal form, 469
negative occurrence, 664
neighbourhood, 341
neutral element, 31

node, 189

normal subgroup, 387
normality, 1084

nowhere dense, 362

o-minimal, 760, 956
object, 162

occurrence number, 618
oligomorphic, 390, 877
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omitting a type, 528
omitting types, 532

open base, 344

open cover, 352

open dense order, 455
open interval, 757

Open Mapping Theorem, 1276
open set, 341

open subbase, 345
opposite category, 166
opposite functor, 168
opposite lattice, 204
opposite order, 40

orbit, 390

order, 454

order property, 567

order topology, 349, 758
order type, 64, 941
orderable ring, 426
ordered group, 705
ordered pair, 27

ordered ring, 425

ordinal, 64

ordinal addition, 89
ordinal exponentiation, 89
ordinal multiplication, 89
ordinal, von Neumann —, 69

pair, 27

parameter equivalence, 831

parameter-definable, 759

partial fixed point, 658

partial fixed-point logic, 664

partial function, 29

partial isomorphism, 577

partial isomorphism modulo a filter,
727

partial morphism, 894

partial order, 40, 454

partial order, strict —, 40
partition, 55, 220

partition degree, 224

partition rank, 220
partitioning a relation, 775
path, 189

path, alternating — in a category, 271
Peano Axioms, 484

pinning down, 618

point, 341

polynomial, 399

polynomial function, 416
polynomial ring, 399

positive existential, 494
positive occurrence, 664
positive primitive, 735

power set, 21

predicate, 28

predicate logic, 444

prefix, 187

prefix order, 187

preforking relation, 1097
prelattice, 207

prenex normal form, 469
preorder, 206, 488
Kk-presentable, 317
presentation, 739

preservation by a function, 493
preservation in products, 734
preservation in substructures, 496
preservation in unions of chains, 497
preserving a property, 168, 262
preserving fixed points, 655
\/-k-prime, 1314

prime field, 413

Index

prime ideal, 207, 402
prime model, 868
prime model, algebraic, 694
primitive formula, 699
principal ideal/filter, 203
Principle of Transfinite Recursion, 75,
133
product, 27, 37, 744
product of categories, 170
product of linear orders, 86
product topology, 357
product, direct —, 239
product, generalised —, 751
product, reduced —, 242
product, subdirect —, 240
projection, 37, 636
projection along a functor, 260
projection along a link, 276
projection functor, 170
projective class, 636
projective geometry, 1043
projectively reducible, 637
projectively x-saturated, 804
proper, 203
property of Baire, 363
pseudo-elementary, 636
pseudo-saturated, 807

quantifier elimination, 690, 711
quantifier rank, 452
quantifier-free, 453

quantifier-free formula, 494
quantifier-free representation, 1338
quasi-dividing, 1231

quasivariety, 743

quotient, 179
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Rado graph, 918

Ramsey’s theorem, 926

random graph, 918

random theory, 918

range, 29

rank, 73, 192

A-rank, 1073

rank, foundation —, 192

real closed field, 429, 710

real closure of a field, 429

real field, 426

realising a type, 528

reduced product, 242, 744
reduct, 155

y-reduct, 237

refinement of a partition, 1336
reflecting a property, 168, 262
reflexive, 40

regular, 125

regular filter, 717

regular logic, 614

relation, 28

relational, 149

relational variant of a structure, 976
relativisation, 474, 614
relativised projective class, 640
relativised projectively reducible, 641
relativised quantifiers, 447
relativised reduct, 640
Replacement, Axiom of —, 132, 458
replica functor, 979
representation, 1338

restriction, 30

restriction of a filter, 242
restriction of a Galois type, 1015
restriction of a logic, 491
restriction of a type, 560
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retract of a logic, 547
retraction, 165

retraction of logics, 546
reverse ultrapower, 734
right local, 1109

right shift, 1297

ring, 397, 457

ring, orderable —, 426
ring, ordered —, 425
root, 189

root of a polynomial, 416
Ryll-Nardzewski Theorem, 877

satisfaction, 444

satisfaction relation, 444, 446
satisfiable, 454

saturated, 793

k-saturated, 667, 793
\/-k-saturated, 1314

k-saturated, projectively —, 804
Scott height, 587

Scott sentence, 587
second-order logic, 483

section, 165

segment, 41

semantics functor, 485
semantics of first-order logic, 446
semi-strict homomorphism, 156
semilattice, 195

sentence, 450

separated formulae, 627
Separation, Axiom of —, 10, 458
sequence, 37

shifting a diagram, 313
signature, 149, 151, 235, 236
simple structure, 412

simple theory, 1135

simply closed, 694

singular, 125

size of a diagram, 251

skeleton of a category, 265
skew embedding, 938

skew field, 397

Skolem axiom, 505

Skolem expansion, 999
Skolem function, 505
definable —, 842

Skolem theory, 505
Skolemisation, 505

small subsets, 825

sort, 151

spanning, 1034

special model, 807
specification of a dividing chain, 1137
specification of a dividing «-tree, 1144
specification of a forking chain, 1137
spectrum, 370, 531, 534
spectrum of a ring, 402

spine, 981

splitting type, 1098

stabiliser, 391

stability spectrum, 1290
k-stable formula, 564

k-stable theory, 573

stably embedded set, 1156
stage, 15, 77

stage comparison relation, 675
stationary set, 138

stationary type, 1272

Stone space, 374, 531, 534
\/-stratification, 1306

strict homomorphism, 156
strict Horn formula, 735

strict A-map, 493

Index

strict order property, 958
strict partial order, 40

strictly increasing, 44

strictly monotone, 758

strong y-chain, 1017

strong y-limit, 1017

strong finite character, 1111
strong limit cardinal, 808
strong right boundedness, 1085
strongly homogeneous, 787
strongly x-homogeneous, 787
strongly independent, 1332
strongly local functor, 981
strongly minimal set, 1049
strongly minimal theory, 1056, 1149
structure, 149, 151, 237
subbase, closed —, 344
subbase, open —, 345
subcategory, 169

subcover, 352

subdirect product, 240
subdirectly irreducible, 240
subfield, 413

subformula, 450

subset, 5

subspace topology, 346
subspace, closure —, 346
substitution, 234, 465, 614
substructure, 152, 744, 965
A-substructure, 498
KC-substructure, 996
substructure, elementary —, 498
substructure, generated —, 153
substructure, induced —, 152
subterm, 228

subtree, 190

successor, 59, 189
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successor stage, 19

sum of linear orders, 85

superset, 5

supersimple theory, 1294

superstable theory, 1294

supremum, 42, 195

surjective, 31

symbol, 149

symmetric, 40

symmetric group, 389

symmetric independence relation,
1084

syntax functor, 485

system of bases for a stratification,
1336

T,-space, 534

Tarski union property, 614
tautology, 454

term, 227

term algebra, 232

term domain, 227

term, value of a —, 231
term-reduced, 466
terminal object, 166
L-theory, 461

theory of a functor, 971
topological closure, 343, 758
topological closure operator, 51, 343
topological group, 394
topological space, 341
topology, 341

topology of the type space, 533
torsion element, 704
torsion-free, 705

total order, 40

totally disconnected, 351
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totally indiscernible sequence, 942

totally transcendental theory, 574

transcendence basis, 418

transcendence degree, 418

transcendental elements, 418

transcendental field extensions, 418

transfinite recursion, 75, 133

transitive, 12, 40

transitive action, 390

transitive closure, 55

transitive dependence relation, 1031

transitivity, left —, 1084

translation by a functor, 260

tree, 189

@-tree, 568

tree property, 1143

tree property of the second kind, 1221

tree-indiscernible, 950

trivial filter, 203

trivial ideal, 203

trivial topology, 342

tuple, 28

Tychonoff, Theorem of —, 359

type, 560

L-type, 527

H-type, 804

a-type, 528

s-type, 528

type of a function, 151

type of a relation, 151

type space, 533

type topology, 533

type, average —, 943

type, average — of an indiscernible
system, 949

type, complete —, 527

type, Lascar strong —, 1168

types of dense linear orders, 529

ultrafilter, 207, 530

k-ultrahomogeneous, 906

ultrapower, 243

ultraproduct, 243, 797

unbounded class, 1003

uncountable, 115

uniform dividing chain, 1137

uniform dividing x-tree, 1144

uniform elimination of imaginaries,
840

uniform forking chain, 1137

uniformly finite, being — over a set,
776

union, 21

union of a chain, 501, 688

union of a cocone, 293

union of a diagram, 292

unit of a ring, 411

universal, 494

K-universal, 793

universal quantifier, 445

universal structure, 1008

universe, 149, 151

unsatisfiable, 454

unstable, 564, 574

upper bound, 42

upper fixed-point induction, 658

valid, 454
value of a term, 231
variable, 236

Index

variable symbols, 445
variables, free —, 231, 450
variety, 743

Vaughtian pair, 1057
vector space, 403

vertex, 189

von Neumann ordinal, 69

weak y-chain, 1017

weak y-limit, 1017

weak canonical definition, 847

weak canonical parameter, 846

weak elimination of imaginaries, 847

weak homomorphic image, 156, 744

Weak Independence Theorem, 1252

weakly bounded independence
relation, 1189

weakly regular logic, 614

well-founded, 13, 57, 81, 109

well-order, 57, 109, 132, 598

well-ordering number, 618, 637

well-ordering quantifier, 482, 483

winning strategy, 590

word construction, 972, 977

Zariski logic, 443
Zariski topology, 342
zero-dimensional, 351
zero-divisor, 411
Zero-One Law, 922
ZFC, 457

Zorn’s Lemma, 110
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The Roman and Fraktur alphabets

A a U a N n RN n
B b B b O o 9O oo
C ¢ € ¢ P p D
D d 9 b Q g 9 q
E e GC e R r R 1t
F f § f S s & {8
G g 8 g T t T t
H h o b U u U u
I i 3 i V. v B v
J 7 3 i W o w ® w
K k & f X x X
L I g 1 Y y 9 v
M m M m Z z 3
The Greek alphabet

A «a alpha N v nu
B [ beta E & x

I' 'y gamma O o omicron
A § delta II n pi

E ¢ epsilon P p rho
Z { zeta 2 o sigma
H 1n eta T 1 tau
© 9 theta Y v upsilon
I 1 iota ® ¢ phi
K «x kappa X x chi
A A lambda ¥ y psi
M u mu Q w omega
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