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Part C.

First-Order Logic and its
Extensions





c1. First-order logic

1. Infinitary first-order logic

Logics are languages to talk about structures and their elements. They
can be used to assert that a given structure has a certain property, to
define classes of structures, or to define relations inside a given structure.
Let us start with a simple, but typical example.

Example. Let K be a field and X a set of variables. The Zariski logic over K
is the set ZL[K, X] ∶= K[X] of all polynomials over K with unknowns
from X.

Let L ⊇ K be a field extending K. For a polynomial p ∈ ZL[K, X] and a
variable assignment β ∶ X → L, recall that pL[β] denotes the value of p
when we assign to each variable x ∈ X the value β(x). A polynomial
p ∈ ZL[K, X] defines in a given field L ⊇ K the set

pL ∶= { β ∈ LX ∣ pL[β] = 0}
of its roots. A set A ⊆ Ln is Zariski-definable over K if there exist finitely
many polynomials p0 , . . . , pk−1 ∈ ZL[K, {x0 , . . . , xn−1}] such that

A = { ⟨β(x0), . . . , β(xn−1)⟩ ∣ β ∈ pL
0 ∩ ⋅ ⋅ ⋅ ∩ pL

k−1 } .

In case of algebraically closed fields the Zariski-definable relations are
called algebraic varieties.

For instance, the polynomial x2 + y2 − 1 = 0 defines over R the unit
circle S1, while x − y2 = 0 defines a rotated parabola.
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c1. First-order logic

x2 + y2 − 1 = 0
x − y2 = 0

Let us capture the above situation in a general definition.

Definition 1.1. A logic is a triple ⟨L,K,⊧⟩ consisting of a nonempty
class L of formulae, a nonempty classK of interpretations, and a binary
satisfaction relation ⊧ ⊆ K × L.

Let J ∈ K be an interpretation and φ ∈ L a formula. If J ⊧ φ then we
say that φ holds in J, that J satisfies φ, or that J is a model of φ. For sets
of formulae Φ ⊆ L we define

J ⊧ Φ : iff J ⊧ φ for all φ ∈ Φ .

Example. (a) In the case of Zariski-logic ZL[K, X] the formulae are the
polynomials p ∈ K[X] and an interpretation is a pair ⟨L, β⟩ where L ⊇ K
is a field extension of K and β ∈ LX is a variable assignment. We have

⟨L, β⟩ ⊧ p iff pL[β] = 0 .

(b) For a boolean algebra B, we define boolean logic

BL(B) ∶= ⟨B, spec(B), ⊧⟩ ,
where, for an element b ∈ B and an ultrafilter u ∈ spec(B),

u ⊧ b : iff b ∈ u .

Themain logic we will consider is first-order logic, also called predicate
logic.We start by defining its syntax, that is, the set of first-order formulae.
For convenience we simultaneously define two logics, basic first-order
logic FO and a variant FOκℵ0 where we allow infinite formulae.
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1. Infinitary first-order logic

Definition 1.2. Let Σ be a signature and κ an infinite cardinal. For each
sort s of Σ, let Xs be a set of variable symbols of sort s, and set X ∶= ⋃s Xs .

The set FOκℵ0[Σ, X] of infinitary first-order formulae is the smallest
set of terms satisfying the following closure conditions:◆ If t0 , t1 ∈ T[Σ, X] are of the same sort then t0 = t1 belongs to

FOκℵ0[Σ, X].◆ If R ∈ Σ is of type s0 . . . sn−1 and t i ∈ Ts i [Σ, X], for i < n, then
Rt0 . . . tn−1 is in FOκℵ0[Σ, X].◆ If φ ∈ FOκℵ0[Σ, X] then ¬φ ∈ FOκℵ0[Σ, X].◆ If Φ ⊆ FOκℵ0[Σ, X] and ∣Φ∣ < κ then ⋀Φ, ⋁Φ ∈ FOκℵ0[Σ, X].◆ If φ ∈ FOκℵ0[Σ, X ∪ {x}] then ∃xφ, ∀xφ ∈ FOκℵ0[Σ, X].

For κ = ℵ0, we obtain ( finitary) first-order logic

FO[Σ, X] ∶= FOℵ0ℵ0[Σ, X] .

If we omit the cardinality restriction, we get

FO∞ℵ0[Σ, X] ∶= ⋃
κ

FOκℵ0[Σ, X] .

The operation ¬ is called negation, ⋀ and ⋁ are conjunction and dis-
junction, and ∃ and ∀ are the existential and universal quantifier. An
atom is a formula of the form

Rt0 . . . tn−1 or t0 = t1 .

A formula that is either an atom or the negation of an atom is called a
literal.

Remark. Every formula φ ∈ FOκℵ0[Σ, X] is a term φ ∶ T → Λ where
T ⊆ κ<ω and

Λ ∶= Σ ∪ X′ ∪ {=,¬,⋀,⋁} ∪ {∃x ,∀x ∣ x ∈ X′ } ,
for some X′ ⊇ X. In particular, for κ = ℵ0, we can regard FO[Σ, X] as a
subset of T[Λ,∅].
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c1. First-order logic

It remains to define the meaning of these formulae, that is, the satis-
faction relation. Before doing so, let us note that we can use induction
on formulae.

Lemma 1.3. If κ is a regular cardinal then we have frk(φ) < κ, for all
φ ∈ FOκℵ0[Σ, X].
Proof. Let Λ be the same set of symbols as in the preceding remark. The
set Γ of all terms t ∶ T → Λ such that frk(t) < κ is closed under all
operations of Definition 1.2. Since FOκℵ0[Σ, X] is the smallest such set
we have FOκℵ0[Σ, X] ⊆ Γ, as desired. ◻
Corollary 1.4. frk(φ) < ∞, for all φ ∈ FO∞ℵ0[Σ, X].

This result implies that the reversed ordering on the domain of a
formula is well-founded. Therefore, we can give proofs and definitions
by induction on this order. A proof or a construction by induction on φ
takes the following form. We have to distinguish several cases:

◆ φ is an atom.
◆ φ = ¬ψ and the inductive hypothesis holds for ψ.
◆ φ = ⋀Φ or φ = ⋁Φ and the inductive hypothesis holds for every

element of Φ.
◆ φ = ∃xψ or φ = ∀xψ and the inductive hypothesis holds for ψ.
We use induction to define the semantics of first-order logic, that is,

the satisfaction relation.

Definition 1.5. Let A be a Σ-structure and β ∶ X → A a variable as-
signment. The pair ⟨A, β⟩ is called a ( first-order) interpretation. For
φ ∈ FOκℵ0[Σ, X] we define the satisfaction relation A ⊧ φ[β] by induc-
tion on φ.

A ⊧ t0 = t1[β] : iff tA
0 [β] = tA

1 [β] ,
A ⊧ Rt0 . . . tn−1[β] : iff ⟨tA

0 [β], . . . , tA
n−1[β]⟩ ∈ RA ,

A ⊧ ¬φ[β] : iff A ⊭ φ[β] ,
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A ⊧ ⋁Φ[β] : iff there is some φ ∈ Φ such that
A ⊧ φ[β] ,

A ⊧ ⋀Φ[β] : iff A ⊧ φ[β] for all φ ∈ Φ ,
A ⊧ ∃xφ[β] : iff there is some a ∈ A such that

A ⊧ φ[β[x/a]] ,
A ⊧ ∀xφ[β] : iff A ⊧ φ[β[x/a]] for all a ∈ A .

The set defined by a formula φ is φA ∶= { β ∈ AX ∣ A ⊧ φ[β] }.
Remark. For X = ∅, we simply write A ⊧ φ and we identify the pair⟨A,∅⟩ with the structure A. In this case φA is either ∅ or A∅ = {∅}.
Exercise 1.1. Let N ∶= ⟨ω,+, 0, 1⟩ be the natural numbers with addition
and consider the formula

φ ∶= ∀x∃y[x = y + y ∨ x = y + y + 1] .

Using the above definition, give a formal proof that N ⊧ φ.

Definition 1.6. We will use the abbreviations

true ∶= ⋀∅ , false ∶= ⋁∅ ,
φ ∨ ψ ∶= ⋁{φ,ψ} , φ → ψ ∶= ¬φ ∨ ψ ,
φ ∧ ψ ∶= ⋀{φ,ψ} , φ↔ ψ ∶= (φ → ψ) ∧ (ψ → φ) ,

and t0 ≠ t1 ∶= ¬(t0 = t1) .

The operation→ is called implication. We abbreviate ∃x0⋯∃xn−1 as ∃x̄
and ∀x0⋯∀xn−1 as ∀x̄. Furthermore, we set

(∃x̄ .γ)φ ∶= ∃x̄(γ ∧ φ) and (∀x̄ .γ)φ ∶= ∀x̄(γ → φ) .

Quantifiers of the form (∃x̄ .γ) and (∀x̄ .γ) are called relativised quanti-
fiers, the formula γ is the guard of the quantifier.
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c1. First-order logic

Remark. To avoid unnecessary parenthesis we employ the following
precedence rules.

◆ Unary operators like quantifiers, negation, and the large conjunc-
tion anddisjunction signs bind strongest. For instance, the formula

∃x¬⋀
i<5 Pix ∧ ∃yP0 y is read as (∃x¬⋀

i<5 Pix) ∧ (∃yP0 y) .

◆ ∧ binds stronger than ∨,→, and↔.
◆ The precedence between ∨,→, and↔ is left unspecified.

Example. (a) Let x0 , . . . , xn−1 be variables of sort s. The formula

φn ∶= ∃x0⋯∃xn−1⋀
i≠k

x i ≠ xk

expresses that the universe contains at least n different elements of sort s.
Therefore, we can say that the domain of sort s is finite by the sentence

φfin ∶= ⋁{¬φn ∣ n < ω } .

(b) Let Σ = {<} be the signature of strict partial orders. We can
express that an element y is the immediate successor of an element x by
the formula

φ ∶= x < y ∧ ¬∃z(x < z ∧ z < y) .

(c) Let G = ⟨V , E⟩ be a graph. For every n < ω, we can write down a
first-order formula ψn saying that there exists a path of length at most n
from the element x to y :

ψn ∶= ∃z0⋯∃zn(z0 = x ∧ zn = y ∧ ⋀
i<n
(z i = z i+1 ∨ Ez iz i+1)) .

The FOℵ1ℵ0 -formula

φsc ∶= ∀x∀y ⋁
n<ω

ψn
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expresses that the graph is strongly connected.
(d) Let ⟨R,+,−, 0, <, f ⟩ be the additive ordered group of the real

numbers with one unary function symbol f . We can say that ∣x − y∣ < z
by the formula

x − y < z ∧ y − x < z .

Making heavy use of relativised quantifiers, we can express that the
function f is continuous at x by the formula

(∀ε.ε > 0)(∃δ.δ > 0)(∀y.x − y < δ ∧ y − x < δ)( fx − fy < ε ∧ fy − fx < ε) .

Exercise 1.2. (a) Let ⟨A, ≤, P⟩ be a linear order with an additional unary
predicate P ⊆ A. Write down a first-order formula φ(x) which says that
x is the supremum of P.

(b) Let ⟨V , E⟩ be a graph. Define a first-order formula φ which states
that every vertex has exactly two outgoing edges.

Lemma 1.7. For every ordinal α < κ, there exists an FOκℵ0 -formula φα
such that

A ⊧ φα iff A ≅ ⟨α, <⟩ .

Proof. We define a slightly more general formula ψα(x) such that

A ⊧ ψα(a) iff ⟨↓a, <⟩ ≅ ⟨α, <⟩ .

The sentence

ϑ ∶= ∀x¬(x < x) ∧ ∀x∀y∀z(x < y ∧ y < z → x < z)
states that < is a strict linear order. By induction on α, we set

ψ0(x) ∶= ¬∃y(y < x) ∧ ϑ ,
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and ψα(x) ∶= ⋀
β<α(∃y.y < x)ψβ(y) ∧ (∀y.y < x) ⋁

β<α ψβ(y) .

Hence, we can define the desired formula φα by

φα ∶= ⋀
β<α ∃yψβ(y) ∧ ∀y ⋁

β<α ψβ(y) . ◻
We can define the notions of a free variable, a subformula, substitution,

etc. for formulae in the sameway as for terms. But note that, unlike terms,
formulae can contain variables that are not free.

Definition 1.8. Let φ ∈ FO∞ℵ0[Σ, X].
(a) A subterm of φ is called a subformula.
(b) The set free(φ) of free variables of φ is theminimal set X0 such that

φ ∈ FO∞ℵ0[Σ, X0]. A formula without free variables is called a sentence.
(c) An occurrence of a variable x in a formula φ is bound if it lies in a

subformula of the form ∃xψ or ∀xψ. Otherwise, the occurrence of x is
free.

(d) For a sequence s̄ ∈ S I of sorts, let X s̄ ∶= { x i ∣ i ∈ I } be a standard
set of variables where x i is of sort s i . We set

FOs̄
κℵ0
[Σ] ∶= FOκℵ0[Σ, X s̄] .

For ordinals α, we define

FOα
κℵ0
[Σ] ∶= ⋃

s̄∈Sα
FOκℵ0[Σ, X s̄]

and FO<ακℵ0
[Σ] ∶= ⋃

β<α FOβ
κℵ0
[Σ] .

Remark. (a) Every FOκℵ0 -formula has less than κ free variables.
(b) Note that a variable x can occur both free and bound in the same

formula φ.
Obviously, the truth value of a formula only depends on the sym-

bols actually appearing in it. This triviality is recorded in the following
lemma. Like the corresponding result for terms it can be proved by a
straightforward induction on the structure of φ.
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Lemma 1.9 (Coincidence Lemma). Let φ ∈ FO∞ℵ0[Γ ,Y] be a formula
and, for i < 2, let Ai be a Σ i-structure and β i ∶ X i → A i a variable
assignment. If

◆ Γ ⊆ Σ0 ∩ Σ1 and free(φ) ⊆ X0 ∩ X1 ,◆ A0∣Γ = A1∣Γ and β0 ↾ free(φ) = β1 ↾ free(φ)
then we have A0 ⊧ φ[β0] iff A1 ⊧ φ[β1].
Remark. We will write φ(x0 , . . . , xn−1) to indicate that

free(φ) ⊆ {x0 , . . . , xn−1} .

Furthermore, if a0 , . . . , an−1 are elements of the structure A, we write

A ⊧ φ(a0 , . . . , an−1)
instead of A ⊧ φ[β] for the assignment β ∶ x i ↦ a i . By the Coincidence
Lemma, this notation is well-defined. Similarly, we write Φ(x̄) and A ⊧
Φ(ā), for sets Φ ⊆ FO∞ℵ0[Σ, X].

Let us compute the number of FOκℵ0 -formulae. Note that the number
of finite formulae follows immediately from Lemma b3.1.5.

Lemma 1.10. Let κ be a regular cardinal. Every formula φ ∈ FOκℵ0[Σ, X]
has less than κ subformulae.

Proof. Using the same notation as in the remark after Definition 1.2, we
see that φ is a Λ-term with dom φ ⊆ κ<ω . If κ = ℵ0 then φ is a finite term
that has only finitely many subformulae. Suppose that κ > ℵ0. Since κ is
regular it follows by induction on φ that there exists a cardinal λ < κ
such that dom φ ⊆ λ<ω . Hence, ∣dom φ∣ ≤ λ<ω = λ ⊕ ℵ0 < κ. ◻
Lemma 1.11. Let Σ be a signature, X a set of variables, and κ a regular
cardinal.

∣FOκℵ0[Σ, X]∣ ≤ (∣Σ∣ ⊕ ∣X∣ ⊕ ℵ0)<κ .

451



c1. First-order logic

Proof. We have shown in the preceding lemma that every infinitary
first-order formula φ ∈ FOκℵ0[Σ, X] is a Λ-term with ∣dom φ∣ < κ. Fur-
thermore, we have

∣Λ∣ ≤ ∣Σ∣ ⊕ ∣X′∣ ⊕ ℵ0 ≤ ∣Σ∣ ⊕ ∣X∣ ⊕ ∣dom φ∣ ⊕ ℵ0 .

Consequently, it follows that

∣FOκℵ0[Σ, X]∣ ≤ sup
λ<κ
(∣Σ∣ ⊕ ∣X∣ ⊕ λ ⊕ ℵ0)λ

= sup
λ<κ
(∣Σ∣ ⊕ ∣X∣ ⊕ ℵ0)λ = (∣Σ∣ ⊕ ∣X∣ ⊕ ℵ0)<κ . ◻

Remark. In the preceding lemma, we have tacitly identified formulae
φ and ψ that differ only in the names of bound variables, i.e., variables in
X′∖X. Hence, the above bound holds only up to this equivalence relation.
Clearly, if we distinguish the formulae ∃xPx, ∃yPy, ∃zPz,. . . then we
can construct arbitrarily many formulae by using that many different
variable names.

Exercise 1.3. Prove that every formula φ ∈ FO∞ℵ0[Σ, X] can be rewritten
to use only countably many different bound variables. That is, for every
sort s, there exists a countable set Ys such that φ can be written as Λ-term
with

Λ ∶= Σ ∪ X ∪ Y ∪ {=,¬,⋀,⋁} ∪ {∃x ,∀x ∣ x ∈ X ∪ Y } ,
where Y = ⋃s Ys . Hint. If ψ is a subformula of φ then free(ψ) ∖ X is
finite.

We have seen that each FO∞ℵ0 -formula has a foundation rank. Hence,
we could measure the complexity of a formula by its foundation rank.
But this measure is not very meaningful. There exists another rank for
formulae that better reflects the semantics of first-order logic.

Definition 1.12. The quantifier rank qr(φ) ∈ On of a formula φ ∈ FO∞ℵ0

is defined inductively by:
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◆ qr(Rt̄) ∶= 0 and qr(t = t′) ∶= 0.
◆ qr(¬φ) ∶= qr(φ).
◆ qr(∃xφ) ∶= qr(∀xφ) ∶= qr(φ) + 1.
◆ qr(⋀Φ) ∶= qr(⋁Φ) ∶= sup{qr(φ) ∣ φ ∈ Φ }.

A formula φ is quantifier-free if qr(φ) = 0.

Example. For the formulae φfin and ψsc from the example on page 448,
we have

qr(φfin) = sup{qr(φn) ∣ n < ω } = ω ,
and qr(ψsc) = sup{qr(ψn) ∣ n < ω } + 2 = ω + 2 .

Immediately from the respective definitions it follows that the found-
ation rank bounds the quantifier rank of a formula.

Lemma 1.13. qr(φ) ≤ frk(φ), for all φ ∈ FO∞ℵ0[Σ, X].
Corollary 1.14. If κ is a regular cardinal then we have qr(φ) < κ, for all
φ ∈ FOκℵ0[Σ, X].

If κ is singular then FOκℵ0 can exhibit pathological behaviour. Fortu-
nately, it is safe to ignore these logics and only consider FOκℵ0 for regular
cardinals κ.

Lemma 1.15. For singular cardinals κ, the logics FOκℵ0 and FOκ+ℵ0 have
the same expressive power.

Proof. Let κ be singular and fix a cofinal function f ∶ cf κ → κ. Every con-
junction of κ formulae can be written equivalently as nested conjunction
of less then κ formulae:

⋀
i<κ

φ i is equivalent to ⋀
α<cf(κ) ⋀i< f (α)φ i .

Consequently, we can inductively transform every formula φ ∈ FOκ+ℵ0

into an equivalent FOκℵ0 -formula. ◻
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2. Axiomatisations
Let us begin a more systematic investigation of what can be expressed in
first-order logic. In this section we give examples of classes of structures
that can be defined in FO∞ℵ0 .

Definition 2.1. Let ⟨L,K,⊧⟩ be a logic.
(a) A set of formulae Φ ⊆ L axiomatises the class

ModL(Φ) ∶= {J ∈ K ∣ J ⊧ Φ } .

For a single formula we simply write ModL(φ) ∶=ModL({φ}).
(b) A class C ⊆ K of interpretations is L-axiomatisable if

C =ModL(Φ) , for some Φ ⊆ L .

If C = ModL(Φ), for a finite set Φ ⊆ L, we say that C is finitely L-
axiomatisable. If C is axiomatised by Φ, we call the set Φ an axiom
system for C and every φ ∈ Φ is an axiom.

(c)A set of formulaeΦ ⊆ L is consistent, or satisfiable, if ModL(Φ) ≠ ∅.
Otherwise, Φ is called inconsistent, or unsatisfiable. If ModL(Φ) = K,
then Φ is called valid or a tautology. We use the same terminology for
single formulae φ.

Example (Partial orders). The class of all partial orders is finitely first-
order axiomatised by

∀x∀y∀z(x ≤ y ∧ y ≤ z → x ≤ z) ,∀x∀y(x ≤ y ∧ y ≤ x ↔ x = y) .

We get an axiom system for the class of linear orders if we add the formula

∀x∀y(x ≤ y ∨ y ≤ x) .

A linear order is dense if between any two elements there exists a third
one. The corresponding first-order axiom is

∀x∀y(x < y → ∃z(x < z ∧ z < y)) ,
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where x < y abbreviates x ≤ y ∧ x ≠ y. A dense linear order is open if it
does not have a least and a greatest element.

∀x∃y∃z(y < x ∧ x < z) .

A discrete linear order is an order where every element, except for the
first one, has an immediate predecessor and every element, except for
the last one, has an immediate successor.

∀x[∃y(y < x) → ∃y(y < x ∧ ¬∃z(y < z ∧ z < x))] ,
∀x[∃y(x < y) → ∃y(x < y ∧ ¬∃z(x < z ∧ z < y))] .

Example (Equivalence relations). The class of all structures A = ⟨A, ∼⟩
where ∼ is an equivalence relation can be axiomatised by the first-order
formulae

∀x(x ∼ x) ,∀x∀y(x ∼ y↔ y ∼ x) ,∀x∀y∀z(x ∼ y ∧ y ∼ z → x ∼ z) .

Example (Lattices). An axiom system for the class of lattices was given
in Lemma b2.2.4.

∀x∀y(x ⊑ y↔ x ⊓ y = x)∀x(x ⊓ x = x ∧ x ⊔ x = x)∀x∀y(x ⊓ y = y ⊓ x ∧ x ⊔ y = y ⊔ x)∀x∀y(x ⊓ (x ⊔ y) = x ∧ x ⊔ (x ⊓ y) = x)∀x∀y∀z(x ⊓ (y ⊓ z) = (x ⊓ y) ⊓ z)∀x∀y∀z(x ⊔ (y ⊔ z) = (x ⊔ y) ⊔ z)
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For boolean algebras we have to add the axioms

� ≠ ⊺ ,∀x(� ⊓ x = � ∧ � ⊔ x = x) ,∀x(⊺ ⊓ x = x ∧ ⊺ ⊔ x = ⊺) ,∀x(x ⊓ x∗ = � ∧ x ⊔ x∗ = ⊺) ,∀x∀y∀z[x ⊓ (y ⊔ z) = (x ⊓ y) ⊔ (x ⊓ z)] ,∀x∀y∀z[x ⊔ (y ⊓ z) = (x ⊔ y) ⊓ (x ⊔ z)] .

Example (Groups). The class of all groups (in the signature { ⋅ , −1 , e})
can be finitely axiomatised in first-order logic by the sentences

∀x∀y∀z[x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z] ,∀x(x ⋅ e = x) ,∀x(x ⋅ x−1 = e) .

If we only allow multiplication then these axioms become

∀x∀y∀z[x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z] ,∃e∀x[x ⋅ e = x ∧ ∃y(x ⋅ y = e)] .

We can add the FOℵ1ℵ0 -sentence φfin from page 448 to obtain an axiom
system for the class of all finite groups. But note that this is an infinitary
formula. We will prove in Theorem c2.4.12 that this class cannot be
axiomatised in first-order logic.

The class of all infinite groups on the other hand is first-order axio-
matisable. To the group axioms we can add, for all n < ω, the sentence

∃x0⋯∃xn−1 ⋀
i<k<n

x i ≠ xk .

This axiom system is necessarily infinite. If the class of infinite groups
where axiomatisable by a single first-order sentence, its negation could
be used to construct an axiom system of the class of all finite groups.
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Example (Rings). The class of all rings ⟨R,+,−, ⋅ , 0, 1⟩ is defined by

∀x∀y∀z[x + (y + z) = (x + y) + z] ,∀x(x + 0 = x) ,∀x(x + (−x) = 0) ,∀x∀y(x + y = y + x) ,∀x∀y∀z[x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z] ,∀x(x ⋅ 1 = x ∧ 1 ⋅ x = x) ,∀x∀y∀z[x ⋅ (y + z) = x ⋅ y + x ⋅ z] ,∀x∀y∀z[(y + z) ⋅ x = y ⋅ x + z ⋅ x] .

Example (Fields). We obtain an axiom system for the class of all fields if
we add to the ring axioms the formulae

0 ≠ 1 ,∀x∃y(x ≠ 0→ x ⋅ y = 1) ,∀x∀y(x ⋅ y = y ⋅ x) .

To get axioms for the class of ordered fields, we further have to add the
axioms for a linear order and the formulae

∀x∀y∀z(x < y → x + z < y + z) ,∀x∀y∀z(x < y ∧ 0 < z → x ⋅ z < y ⋅ z) .

Example (Set theory). The axioms of set theory can be expressed in first-
order logic. The signature consists just of one binary relation symbol ∈.

First, let us collect some auxiliary formulae. The subset relation x ⊆ y
can be defined by the formula

∀z(z ∈ x → z ∈ y) .

There are formulae Stage(x) and WellOrder(x , y) that express, respect-
ively, that the set x is a stage and that y is a well-order on the set x
(exercise).
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The Axiom of Extensionality reads

∀a∀b[a = b↔ ∀x(x ∈ a↔ x ∈ b)] .

To express the Axiom of Separation we need infinitely many formulae.
For every first-order formula φ(x , z̄) ∈ FO, we have the formula

∀z̄∀a∃b∀x[x ∈ b↔ x ∈ a ∧ φ(x , z̄)] .

(Since the signature {∈} of set theory does not contain constant symbols,
we need parameters z̄ for those sets that φ might refer to.)

The Axioms of Creation and Infinity are

∀a(∃s.Stage(s))(a ∈ s)
and (∃s.Stage(s))∀x[x ∈ s → ℘(x) ∈ s] ,
where ℘(x) ∈ s is an abbreviation for the formula

∃z[z ∈ s ∧ ∀y(y ∈ z↔ y ⊆ x)] .

For the Axiom of Choice we have the formula

∀a∃rWellOrder(a, r) .

Finally, the Axiom of Replacement again consists of several formulae,
one for every formula φ(x , y, z̄) ∈ FO.

(∀z̄.funφ(z̄))[∃u domφ(z̄, u) → ∃u rngφ(z̄, u)] ,
where

funφ(z̄) ∶= ∀x∀y∀y′[φ(x , y, z̄) ∧ φ(x , y′ , z̄) → y = y′]
says that φ defines a function and the formulae

domφ(z̄, u) ∶= ∀x∀y(φ(x , y, z̄) → x ∈ u)
and rngφ(z̄, u) ∶= ∀x∀y(φ(x , y, z̄) → y ∈ u)
express that u contains, respectively, the domain and the range of the
function defined by φ.
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Exercise 2.1. Define the following formulae over the signature {∈}.
(a) Stage(x) states that the set x is a stage.

(b) Pair(x , y, z) expresses that z = ⟨x , y⟩.
(c) WellOrder(x , y) says that y is a well-order on the set x.

Lemma 2.2. If A is a finite Σ-structure then the class {B ∣ B ≅ A} is
first-order axiomatisable. If Σ is finite then it is finitely axiomatisable.

Proof. First, we consider the case that Σ is finite. Let a0 , . . . , an−1 be an
enumeration of A without repetitions. If A has only one sort then we
can axiomatise A by the formula

∃x0⋯∃xn−1( ⋀
0≤i<k<n

x i ≠ xk ∧ ∀y⋁
i<n

y = x i

∧ ⋀{Rx i0 . . . x ik ∣ ⟨a i0 , . . . , a ik ⟩ ∈ RA , R ∈ Σ }
∧ ⋀{¬Rx i0 . . . x ik ∣ ⟨a i0 , . . . , a ik ⟩ ∉ RA , R ∈ Σ }
∧ ⋀{ f x i0 . . . x ik = x l ∣ f A(a i0 , . . . , a ik) = a l , f ∈ Σ }) .

The case of several sorts requires two modifications of this formula. We
have to replace the subformula ∀y⋁i y = x i by a conjunction of several
such formulae where y is of the respective sort s and the disjunction
ranges only over those i such that x i has the same sort s. Furthermore,
we have to remove from the conjunction ⋀i<k x i ≠ xk all inequations
x i ≠ xk where x i and xk have different sorts.

Suppose that Σ is infinite. For each finite subsignature Σ0 ⊆ Σ, we can
construct a formula φΣ0 axiomatising the Σ0-reduct A∣Σ0 of A. We claim
that the set

Φ ∶= {φΣ0 ∣ Σ0 ⊆ Σ is finite}
is the desired axiom system. Clearly, A ⊧ Φ. Conversely, suppose that
B ⊧ Φ. Then B has exactly n ∶= ∣A∣ elements. For every finite signature
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Σ0 ⊆ Σ, there exists a sequence b̄Σ0 ∈ Bn such that we can satisfy the
formula φΣ0 if we assign to the variable x i the element bΣ0

i . Define

S ∶= {Σ0 ⊆ Σ ∣ Σ0 finite}
and S(b̄) ∶= {Σ0 ∈ S ∣ b̄Σ0 = b̄ } , for b̄ ∈ Bn .

Then ⟨S , ⊆⟩ is a directed partial order with a finite partition S = ⋃b̄ S(b̄).
By Proposition b3.3.4, there exists some b̄ such that S(b̄) is a dense subset
of S. It follows that the mapping b i ↦ a i is an isomorphism from B
to A. ◻
3. Theories
In the previous section we have studied sets of formulae and the classes
they axiomatise. Now we turn to the dual question. Given a class of
structures we try to determine which formulae hold.

Definition 3.1. Let ⟨L,K,⊧⟩ be a logic, J ∈ K an interpretation, φ,ψ ∈ L
formulae, and Φ ⊆ L a set of formulae.

(a) We write

Φ ⊧ φ : iff ModL(Φ) ⊆ModL(φ) .

If Φ ⊧ φ then φ is called a consequence of Φ. We also say that φ follows
from Φ or that Φ entails φ.

If Φ = {ψ} we simply write ψ ⊧ φ and, for Φ = ∅, we write ⊧ φ. Note
that we use the same symbol ⊧ both for the satisfaction relation and for
the entailment relation. The object on the left-hand side can be used to
resolve any ambiguities.

(b) If φ ⊧ ψ and ψ ⊧ φ then φ and ψ are called equivalent and we
write φ ≡ ψ. Similarly, if Φ ∪ {φ} ⊧ ψ and Φ ∪ {ψ} ⊧ φ, we say that
φ and ψ are equivalent modulo Φ.

(c) The closure of Φ under entailment is the set

Φ⊧ ∶= {φ ∈ L ∣ Φ ⊧ φ } .
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Remark. Note that if L0 and L1 are logics with the same class of inter-
pretations, we can generalise the above definitions of Φ ⊧ φ and φ ≡ ψ
also to the case that Φ ⊆ L0, ψ ∈ L0, and φ ∈ L1.

Example. If p, q ∈ ZL[K, X]where K is algebraically closed then we have

p ⊧ q iff every zero of p is a zero of q
iff p ∣ qn , for some n < ω .

Consequently, p⊧ = { q ∈ K[X] ∣ p ∣ qn for some n < ω } ⊴ K[X] is the
radical ideal generated by p and we have

p ≡ q iff pm = aqn for some a ∈ K and m, n < ω .

Each non-constant polynomial is satisfiable. A constant polynomial p
is satisfiable if and only if p = 0. The polynomial p = 0 is the only
tautology.

The following properties of the entailment relation follow immediately
from the definition.

Lemma 3.2. Let ⟨L,K,⊧⟩ be a logic.

(a) ⊧ is a preorder on L.

(b) A set Φ ⊆ L is a final segment of ⟨L,⊧⟩ if, and only if, Φ = Φ⊧.

(c) If Φ ⊆ L is inconsistent, then Φ⊧ = L.

(d) φ is a tautology if, and only if, ∅ ⊧ φ.

Definition 3.3. Let ⟨L,K,⊧⟩ be a logic.
(a) An L-theory is a set of formulae T ⊆ L with T⊧ = T . The L-theory

of a class C ∈ K is the set

ThL(C) ∶= {φ ∈ L ∣ J ⊧ φ , for all J ∈ C } .

The L-theory of a single interpretation J ∈ K is ThL(J) ∶=ThL({J}).
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(b) An L-theory T is complete if it is of the form T =ThL(J), for some
L-interpretation J.

(c) Two L-interpretations J0 and J1 are L-equivalent if

ThL(J0) =ThL(J1) .

We write J0 ≡L J1 to denote this fact. As usual we omit the index L if
L = FO0[Σ].
Example. Let B be a boolean algebra, a, b ∈ B, and u ∈ spec(B). For
boolean logic BL(B) = ⟨B, spec(B), ⊧⟩, we have

a ⊧ b iff every ultrafilter containing a also contains b
iff a ⊑ b ,

and ThBL(B)(u) = { b ∈ B ∣ u ⊧ b } = u .

Remark. (a) The function Φ ↦ Φ⊧ is a closure operator on L whose
closed sets are the theories. Consequently, the set of all L-theories forms
a complete partial order where the least element is the set ∅⊧ of all
tautologies and the greatest element is the set L of all formulae.

(b) For Φ ⊆ L, we have

Φ =ThL(ModL(Φ)) iff Φ = Φ⊧ iff Φ is a theory .

Exercise 3.1. Let T be a satisfiable L-theory such that there is no satis-
fiable L-theory T ′ with T ⊂ T ′. Prove that T is complete.

The following properties of the entailment relation follow immediately
from the definition. We say that a logic L is closed under negation if, for
every formula φ ∈ L, there is some formula ¬φ ∈ L with

J ⊧ ¬φ iff J ⊭ φ .

Similarly, L is closed under implication if there are formulae φ → ψ such
that

J ⊧ φ → ψ iff J ⊭ φ or J ⊧ ψ or both.
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Lemma 3.4. Let L be a logic, Φ ⊆ L, and φ,ψ ∈ L.

(a) Φ ⊧ φ implies Ψ ⊧ φ, for every Ψ ⊇ Φ.

If L is closed under negation then we have

(b) Φ ⊧ φ if, and only if, Φ ∪ {¬φ} is inconsistent;

(c) φ is satisfiable if, and only if, ¬φ is no tautology;

(d) Φ is a complete theory if, and only if, we have

Φ ⊭ φ iff Φ ⊧ ¬φ , for all φ ∈ L .

If L is closed under implication then we have

(f) Φ ∪ {φ} ⊧ ψ if, and only if, Φ ⊧ φ → ψ;

(g) φ ≡ ψ modulo Φ if, and only if, Φ ⊧ φ → ψ and Φ ⊧ ψ → φ.

We conclude this section with a collection of equivalences that can be
used to simplify first-order formulae. We start with the boolean opera-
tions which, of course, satisfy the laws of a boolean algebra.

Lemma 3.5. The following equivalences hold for φ,ψ, ϑ ∈ FO∞ℵ0[Σ] :
(a) ¬¬φ ≡ φ (elimination of double negation)

(b) φ ∧ ψ ≡ ψ ∧ φ (commutativity)
φ ∨ ψ ≡ ψ ∨ φ

(c) (φ ∧ ψ) ∧ ϑ ≡ φ ∧ (ψ ∧ ϑ) (associativity)(φ ∨ ψ) ∨ ϑ ≡ φ ∨ (ψ ∨ ϑ)
(d) φ ∧ φ ≡ φ (idempotence)

φ ∨ φ ≡ φ

(e) ¬ ⋀
i<α φ i ≡ ⋁

i<α ¬φ i (de Morgan’s laws)

¬ ⋁
i<α φ i ≡ ⋀

i<α ¬φ i
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(f) φ → ψ ≡ ¬ψ → ¬φ (contraposition)

(g) φ ∧ (φ ∨ ψ) ≡ φ (absorption)
φ ∨ (φ ∧ ψ) ≡ φ

(h) φ ∧ (ψ ∨ ϑ) ≡ (φ ∧ ψ) ∨ (φ ∧ ϑ) (distributivity)
φ ∨ (ψ ∧ ϑ) ≡ (φ ∨ ψ) ∧ (φ ∨ ϑ)

Lemma 3.6. The following equivalences hold for φ,ψ ∈ FO∞ℵ0[Σ].
(a) ∃xφ ∨ ∃xψ ≡ ∃x(φ ∨ ψ)∀xφ ∧ ∀xψ ≡ ∀x(φ ∧ ψ)
(b) ¬∃xφ ≡ ∀x¬φ¬∀xφ ≡ ∃x¬φ

(c) ∃x∃yφ ≡ ∃y∃xφ∀x∀yφ ≡ ∀y∀xφ

Furthermore, if x ∉ free(φ) then we also have

(d) φ ∧ ∃xψ ≡ ∃x(φ ∧ ψ)
φ ∨ ∀xψ ≡ ∀x(φ ∨ ψ)

(e) φ ∨ ∃xψ ≡ ∃x(φ ∨ ψ) modulo ∃x(x = x)
φ ∧ ∀xψ ≡ ∀x(φ ∧ ψ) modulo ∃x(x = x)

(f) φ ≡ ∃xφ modulo ∃x(x = x)
φ ≡ ∀xφ modulo ∃x(x = x)

Remark. Note that the equivalences (e) and (f) only hold in structures
that contain at least one element of the corresponding sort.

Exercise 3.2. Prove some of the above equivalences.
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Example. In general we have

∃x(φ ∧ ψ) ≢ ∃xφ ∧ ∃xψ ,∀x(φ ∨ ψ) ≢ ∀xφ ∨ ∀xψ ,∃x∀yφ ≢ ∀y∃xφ .

For a counterexample, consider the structure A = ⟨A, P⟩ with A = {0, 1}
and P = {1}. We have

A ⊧ ∃xPx ∧ ∃x¬Px but A ⊭ ∃x(Px ∧ ¬Px) ,
A ⊧ ∀x(Px ∨ ¬Px) but A ⊭ ∀xPx ∨ ∀x¬Px ,
A ⊧ ∀y∃x(x = y) but A ⊭ ∃x∀y(x = y) .

4. Normal forms
In this section we study syntactic operations on first-order formulae.
In particular, we will define several ways to simplify a given formula.
We start by generalising the operation of substitution from terms to
formulae.

Definition 4.1. Let φ ∈ FO∞ℵ0[Σ, X] be a formula, t ∈ T[Σ, X] a term,
and x ∈ X a variable. The substitution of t for x in φ is the formula φ[x/t]
obtained from φ by

◆ renaming the bound variables of φ such that no variable in free(t)
is bound in φ, and

◆ replacing every free occurrence of x in φ by the term t.

Example. (a) When substituting terms in formulae, we have to take care
to avoid clashes with bound variables in order not to change themeaning
of the formula. For instance, consider the formula ∃y(y + y = x) which
expresses that x is divisible by 2. If we substitute y for x, we expect the
formula to say that y is divisible by 2. If we rename the bound variable to z,
we obtain the formula ∃z(z + z = y) which has the expected semantics.
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But if we forget the renaming, we get ∃y(y + y = y) which has an
altogether different meaning.

(b) Renaming bound variables does not change the meaning of a
formula. But note that renaming of free variables does. For instance, we
have ∃zRxz ≢ ∃zRyz since the interpretation ⟨A, β⟩ with

A ∶= ⟨[2], {⟨0, 1⟩}⟩ and β(x) ∶= 0 , β(y) ∶= 1

satisfies the first formula but not the second one.

Remark. Note that, if φ ≡ ψ are equivalent formulae, we have

¬φ ≡ ¬ψ , ∃xφ ≡ ∃xψ , and ∀xφ ≡ ∀xψ .

Similarly, φ i ≡ ψ i , for all i, implies that

⋀i φ i ≡ ⋀i ψ i and ⋁i φ i ≡ ⋁i ψ i .

By induction it follows that, if is φ a subformula of ϑ and φ ≡ ψ, then
ϑ ≡ ϑ[φ/ψ] where ϑ[φ/ψ] denotes the formula obtained from ϑ by
replacing the subformula φ by ψ.

In the following we give a quick summary of various normal forms for
first-order logic. That is, we present subsets Φ ⊆ FOκℵ0[Σ, X] defined by
some syntactic criterion and we prove that every formula of FOκℵ0[Σ, X]
is logically equivalent to an element of Φ. We start by simplifying the
terms appearing in a formula.

Definition 4.2. A formula φ ∈ FO∞ℵ0[Σ, X] is term-reduced if every
atomic subformula of φ is of the form

Rx̄ , f x̄ = y , or y = z ,
where x̄ , y, and z are variables.

Lemma 4.3. For each formula φ ∈ FOκℵ0[Σ, X], we can construct a term-
reduced formula ψ ∈ FOκℵ0[Σ, X] such that φ ≡ ψ.
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Proof. If φ is not term-reduced, it contains a subformula ϑ of the form
Rt̄ or f t̄ = s where not all elements of t̄ and s are variables. Suppose that
t0 is not a variable. If z is a variable that does not appear in ϑ, we can
replace Rt0 . . . tn−1 by the equivalent formula

∃z(t0 = z ∧ Rzt1 . . . tn−1) .

Similarly, we can replace f t̄ = s by

∃z(t0 = z ∧ f zt1 . . . tn−1 = s) .

By induction, it follows that, for every atomic subformula ϑ of φ, there
exists a term-reduced formula χϑ ≡ ϑ. We obtain the desired formula ψ
by replacing every atom ϑ in φ by the corresponding term-reduced
formula χϑ . ◻
Definition 4.4. (a) A formula is in disjunctive normal form if it is of the
form

⋁{⋀Φ i ∣ i ∈ I }
where each Φ i is a set of literals.

(b) A formula is in conjunctive normal form if it is of the form

⋀{⋁Φ i ∣ i ∈ I }
where each Φ i is a set of literals.

Lemma 4.5. For every quantifier-free formula φ ∈ FO[Σ, X], there exist
equivalent FO[Σ, X]-formulae dnf(φ) and cnf(φ) that are in, respect-
ively, disjunctive normal form and conjunctive normal form.

Proof. We construct dnf(φ) and cnf(φ) by induction on φ. If φ is a
literal, we can set

dnf(φ) ∶= φ and cnf(φ) ∶= φ .
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Suppose that, by inductive hypothesis, we have

dnf(ψ) = ⋁
i
⋀
k
α i k and cnf(ψ) = ⋀

i
⋁
k
β i k

dnf(ϑ) = ⋁
i
⋀
k

γ i k and cnf(ϑ) = ⋀
i
⋁
k
δ i k

Then we can set

dnf(¬ψ) ∶= ⋁
i
⋀
k
¬β i k

cnf(¬ψ) ∶= ⋀
i
⋁
k
¬α i k

dnf(ψ ∧ ϑ) ∶= ⋁
i
⋁

j
(⋀

k
α i k ∧⋀

k
γ jk)

cnf(ψ ∧ ϑ) ∶= cnf(ψ) ∧ cnf(ϑ)
dnf(ψ ∨ ϑ) ∶= dnf(ψ) ∨ dnf(ϑ)
cnf(ψ ∨ ϑ) ∶= ⋀

i
⋀

j
(⋁

k
β i k ∧⋁

k
δ jk) . ◻

Exercise 4.1. Prove the corresponding statement for FO∞ℵ0[Σ, X].
When doing inductions on the structure of a formula, it is sometimes

useful not to have to treat the case of negations. In such cases we can use
de Morgan’s laws to move all negation signs directly in front of atoms.

Definition 4.6. Given a formula φ ∈ FO∞ℵ0[Σ, X], we construct two
formulae φ+ and φ− as follows. If φ is atomic, we set φ+ ∶= φ and φ− ∶=¬φ. For other formulae we define

(¬ψ)+ ∶= ψ− , (¬ψ)− ∶= ψ+ ,(⋀Φ)+ ∶= ⋀{ψ+ ∣ ψ ∈ Φ } , (⋀Φ)− ∶= ⋁{ψ− ∣ ψ ∈ Φ } ,(⋁Φ)+ ∶= ⋁{ψ+ ∣ ψ ∈ Φ } , (⋁Φ)− ∶= ⋀{ψ− ∣ ψ ∈ Φ } ,(∃xψ)+ ∶= ∃xψ+ , (∃xψ)− ∶= ∀xψ− ,(∀xψ)+ ∶= ∀xψ+ , (∀xψ)− ∶= ∃xψ− .
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The formula φ+ is called the negation normal form of φ. It is denoted by
nnf(φ). We say that φ is in negation normal form if nnf(φ) = φ.

The following basic properties of the negation normal form of φ can
be shown by a straightforward induction on the structure of φ.

Lemma 4.7. Let φ ∈ FO∞ℵ0[Σ, X].
(a) nnf(φ) ≡ φ and φ− ≡ ¬φ.
(b) nnf(φ) is in negation normal form.
(c) φ is in negation normal form if, and only if, the only subformulae

of φ of the form ¬ψ are literals.
(d) qr(nnf(φ)) = qr(φ).

Definition 4.8. A formula φ ∈ FOκℵ0[Σ, X] is in prenex normal form if
it is of the form

φ = Q0x0⋯Qn−1xn−1ψ

where Q0 , . . . , Qn−1 ∈ {∃,∀} and ψ is quantifier-free.

We can transform formulae into prenex normal form only for struc-
tures with nonempty universe.

Definition 4.9. Let Tne be the theory consisting, for every sort s, of one
formula ∃xs(xs = xs) where xs is of sort s.

Tne expresses that all domains of a structure are nonempty. For models
of Tne we can construct prenex normal forms.

Lemma 4.10. For every formula φ ∈ FO[Σ, X], there exists a formula
ψ ∈ FO[Σ, X] in prenex normal form such that φ ≡ ψ modulo Tne.

Proof. By induction on φ, we can move the quantifiers to the front using
the equivalences of Lemma 3.6. Suppose that the prenex normal forms
of ψ and ϑ are, respectively,

Q0x0⋯Qm−1xm−1ψ0 and Q′
0 y0⋯Q′

n−1 yn−1ϑ0 ,
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where all variables x i and yk are distinct. For Q ∈ {∃,∀}, define Q by∃ ∶= ∀ and ∀ ∶= ∃. The prenex normal form of φ is

φ if φ is atomic ,

Q0x0⋯Qm−1xm−1¬ψ0 for φ = ¬ψ ,
Q0x0⋯Qm−1xm−1Q′

0 y0⋯Q′
n−1 yn−1(ψ0 ∧ ϑ0) for φ = ψ ∧ ϑ ,

Q0x0⋯Qm−1xm−1Q′
0 y0⋯Q′

n−1 yn−1(ψ0 ∨ ϑ0) for φ = ψ ∨ ϑ ,∃zQ0x0⋯Qm−1xm−1ψ0 for φ = ∃zψ ,∀zQ0x0⋯Qm−1xm−1ψ0 for φ = ∀zψ . ◻
In some cases we can get a prenex normal form that is fully equivalent

instead of being only equivalent modulo Tne.

Corollary 4.11. Let Σ be an S-sorted signature satisfying either of the
following conditions:◆ For every s ∈ S, there is a constant symbol of sort s.◆ ∣S∣ = 1 and S does not contain relations of arity 0.
For every formula φ ∈ FO[Σ, X], there exists a formula ψ ∈ FO[Σ, X] in
prenex normal form such that φ ≡ ψ.

Proof. In the first case, every Σ-structure is amodel of Tne. Hence, logical
equivalence and equivalence modulo Tne coincide.

In the second case, we can obtain ψ as follows. There exists a formulaψ′
in prenex normal form such that φ ≡ ψ′ modulo Tne. Note that, up
to isomorphism, there exists exactly one Σ-structure A0 with empty
universe since we have no relations of arity 0. Let x ∉ free(φ) be a new
variable. Note that A0 ⊧ ∀xψ′ and A0 ⊭ ∃xψ′ regardless of what the
formula ψ′ looks like. Hence, we can set

ψ ∶= ⎧⎪⎪⎨⎪⎪⎩
∀xψ′ if A0 ⊧ φ ,∃xψ′ otherwise .

For every nonempty structureA, we haveA ⊧ ψ′ iff A ⊧ ψ. Consequently,
φ ≡ ψ. ◻
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Remark. Infinitary formulae usually have no prenex normal form. For
example, consider the sentence

φ ∶= ⋀
n<ω

∃x0⋯∃xn−1⋀
i≠k

x i ≠ xk .

If we move all quantifiers to the front, we obtain a formula starting
with an infinite string of quantifiers. This is forbidden by the definition
of FO∞ℵ0 .

When we are interested in whether some theory is satisfiable, we can
also perform translations that, while preserving satisfiability, do not re-
spect logical equivalence. For infinitary formulae the following reduction
to first-order logic is useful. Another example is Skolemisation which
transforms an arbitrary theory into a universal one (see Section c2.3).

Lemma 4.12 (Chang’s Reduction). For every φ ∈ FOκℵ0[Σ, X], there
exists a signature Σφ ⊇ Σ and a set Φφ ⊆ FOκℵ0[Σφ , X] with the following
properties:

◆ Every model of φ can be expanded in exactly one way to a model
of Φφ .

◆ Every model of Φφ is a model of φ.

◆ Every subformula of φ is equivalent modulo Φφ to an atomic for-
mula.

◆ Every formula in Φφ is either a first-order formula or a sentence of
the form ∀x̄⋁i ψ i(x̄) where each ψ i is atomic.

Proof. For every subformula ψ(x̄) of φ with n free variables, choose
two new n-ary relation symbols Rψ , R¬ψ ∉ Σ. Let Σφ be the signature
consisting of Σ and all the new symbols Rψ , R¬ψ . The set Φφ consists of
the following formulae.

∀x̄(Rψ x̄ ↔ ψ(x̄)) , if ψ is atomic.∀x̄(R¬ψ x̄ ↔ ¬Rψ x̄) ,
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∀x̄(R∃yψ x̄ ↔ ∃yRψ x̄ y) ,∀x̄(R∀yψ x̄ ↔ ∀yRψ x̄ y) ,∀x̄(R⋀i<λ ψ i x̄ → Rψ i x̄) , for all i < λ ,∀x̄(Rψ i x̄ → R⋁i<λ ψ i x̄) , for all i < λ ,

∀x̄[R⋀i<λ ψ i x̄ ∨⋁i<λ R¬ψ i x̄] ,
∀x̄[R¬⋁i<λ ψ i x̄ ∨⋁i<λ Rψ i x̄] . ◻

5. Translations
In the last section we have considered transformations of formulae re-
specting logical equivalence. Now we turn to operations on structures
and we investigate how to compute the theory of the resulting structure
from the theories of the original ones. We start with a trivial example
that illustrates the general situation.

Lemma 5.1. Let Σ ⊆ Γ be signatures. For every formula φ(x̄) ∈ FOκℵ0[Σ],
there exists a formula ψ(x̄) ∈ FOκℵ0[Γ] such that

A∣Σ ⊧ φ(ā) iff A ⊧ ψ(ā) ,
for every Γ-structure A and all ā ⊆ A.

Proof. We can set ψ ∶= φ. ◻
Corollary 5.2. Let A and B Γ-structures.

A ≡FOκℵ0 [Γ] B implies A∣Σ ≡FOκℵ0 [Σ] B∣Σ , for all Σ ⊆ Γ .

The other results of this section are all of the above form. We consider
an operation F on structures and logics L and L′, and we prove that, for
every formula φ ∈ L, one can construct a formula φ′ ∈ L′ such that

F(A) ⊧ φ iff A ⊧ φ′ , for every A .
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As a consequence we obtain the result that

A ≡L′ B implies F(A) ≡L F(B) .

In the case that L′ = L we call such operations compatible with L.
As a converse to the introductory example we consider expansions

of a structure. Of course, there is no hope to reduce the theory of an
arbitrary expansion to the original structure. But if we expand a structure
by definable relations, such a reduction is possible.

Definition 5.3. Let A be a Σ-structure and Γ ⊇ Σ. A Γ-structure B is an
L-definable expansion of A if B∣Σ = A and, for every symbol ξ ∈ Γ ∖ Σ,
there is some L-formula φξ such that

ā ∈ RB iff A ⊧ φR(ā) , for all relations R ∈ Γ ∖ Σ ,

f B(ā) = b iff A ⊧ φ f (ā, b) , for all functions f ∈ Γ ∖ Σ .

In this case we also say that (φξ)ξ∈Γ∖Σ defines the expansion B of A.

Lemma 5.4. Let Σ ⊆ Γ be signatures and let φξ(x̄) ∈ FOκℵ0[Σ], for
ξ ∈ Γ ∖ Σ, be formulae. For every formula ψ(x̄) ∈ FOκℵ0[Γ], there exists a
formula ψ+(x̄) ∈ FOκℵ0[Σ] such that

A+ ⊧ ψ(ā) iff A ⊧ ψ+(ā) ,
whenever ā ⊆ A and A+ is the expansion of A defined by (φξ)ξ .
Proof. Let ψ′ be a term-reduced formula equivalent to ψ. We can ob-
tain ψ+ by replacing in ψ′

◆ every atom Rt̄ with R ∈ Γ ∖ Σ by the formula φR(t̄) and
◆ every atom f t̄ = s with f ∈ Γ ∖ Σ by φ f (t̄, s). ◻

Next we consider substructures. Again we have to restrict ourselves
to those where the universe is definable.
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Definition 5.5. Let A be an S-sorted Σ-structure and δs(x) ∈ FOs
κℵ0
[Σ],

for s ∈ S.
(a) If ⋃s∈S δA

s induces a substructure A0 of A, we call A0 the substruc-
ture defined by (δs)s∈S .

(b) The relativisation of a formula φ ∈ FOκℵ0[Σ] to (δs)s∈S is the
formula φ(δ̄) ∈ FOκℵ0 obtained from φ by replacing every subformula of
the form ∃yψ and ∀yψ by, respectively,

(∃y.δs(y))ψ and (∀y.δs(y))ψ ,

where s is the sort of y.

Lemma 5.6. If a sequence (δs)s∈S of FOκℵ0 -formulae defines a substruc-
ture A0 of A, we have

A0 ⊧ φ(ā) iff A ⊧ φ(δ̄)(ā) ,
for every φ ∈ FOκℵ0 and all ā ⊆ ⋃s∈S δA

s .

Exercise 5.1. Prove Lemma 5.6.

Factorisation by definable congruences is also compatible with first-
order logic.

Lemma 5.7. Let Σ be an S-sorted signature and εs(x , y) ∈ FOss
κℵ0
[Σ],

for s ∈ S. For every formula φ(x̄) ∈ FOκℵ0[Σ, X], there exists a formula
φ′(x̄) ∈ FOκℵ0[Σ, X] such that, if ≈ ∶= ⋃s∈S εA

s is a congruence relation
on A, then

A/≈ ⊧ φ([ā]≈) iff A ⊧ φ′(ā) , for all ā ⊆ A .

Proof. We can obtain φ′ from φ by replacing every atom of the form
t = u by the formula εs(t, u), where s is the sort of t and u. ◻

If we combine all of the above operations, we obtain the notion of a
first-order interpretation.
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Definition 5.8. Let Σ be an S-sorted signatures and Γ a T-sorted one.
(a) An FOκℵ0 -interpretation from Σ to Γ is a sequence

I = ⟨α, (δt)t∈T , (εt)t∈T , (φξ)ξ∈Γ⟩
of formulae where, for some function σ ∶ T → S<ω ,

α ∈ FO0
κℵ0
[Σ] , δt ∈ FOσ(t)

κℵ0
[Σ] , εt ∈ FOσ(t)σ(t)

κℵ0
[Σ] ,

for every relation symbol R ∈ Γ of type t0 . . . tn−1,

φR ∈ FOσ(t0). . .σ(tn−1)
κℵ0

[Σ] ,
and for every function symbol f ∈ Γ of type t0 . . . tn−1 → t′,

φ f ∈ FOσ(t0). . .σ(tn−1)σ(t′)
κℵ0

[Σ] .

(b) Each FOκℵ0 -interpretation I defines an operation on structures as
follows. Intuitively, given a Σ-structure A the interpretation I constructs
a Γ-structure I(A) every element of which is a tuple of elements of A
and where the relations and functions are defined by the formulae φξ .
The formulae δt define those tuples that encode elements of sort t and
the formula εt is used to check whether two such tuples encode the same
element. Finally, the admissibility condition α says when I(A) is defined.

Formally, if A is a Σ-structure with A ⊧ α, we define the Γ-structure

I(A) ∶= ⟨(δA
t )t∈T , (φA

ξ )ξ∈Γ⟩/≈ ,
which is obtained from the structure ⟨(δA

t )t∈T , (φA
ξ )ξ∈Γ⟩, where the

domain of sort t is δA
t ⊆ Aσ(t) and every symbol ξ ∈ Γ is interpreted as

the relation or function φA
ξ , by factorising by the congruence relation ≈

defined by the εA
t . We regard I(A) as undefined if

◆ A ⊭ α, or

475



c1. First-order logic

◆ εA
t is not a congruence relation of ⟨(δA

t )t , (φA
ξ )ξ⟩, or

◆ there is some function symbol f ∈ Γ such that φA
f is not a function.

Example. We construct an interpretation

I = ⟨δ(x̄), ε(x̄ , ȳ), φ+(x̄ , ȳ, z̄), φ⋅(x̄ , ȳ, z̄)⟩
such that

I⟨Z,+, ⋅, 0, <⟩ ≅ ⟨Q,+, ⋅⟩ .

We encode a rational number p/q by the pair ⟨p, q⟩.
δ(x , x′) ∶= x′ > 0 ,

ε(x , x′ , y, y′) ∶= x ⋅ y′ = y ⋅ x′ ,
φ+(x , x′ , y, y′ , z, z′) ∶= ε(z, z′ , x ⋅ y′ + y ⋅ x′ , x′ ⋅ y′) ,
φ⋅(x , x′ , y, y′ , z, z′) ∶= ε(z, z′ , x ⋅ y, x′ ⋅ y′) .

Exercise 5.2. Consider the structures N ∶= ⟨N,+, ⋅⟩ of arithmetic, S ∶=⟨HF, ∈⟩ of hereditary finite sets, and M ∶= ⟨2<ω , ⋅⟩ of finite sequences
over [2] with concatenation. Define interpretations I0, I1, and I2 such
that

N = I0(S) , S = I1(M) , M = I2(N) .

For the next lemma, we denote by ιs ∶ δA
s → I(A) the canonical

function mapping a tuple to the element it encodes.

Lemma 5.9 (Interpretation Lemma). Let I = ⟨α, (δs)s , (εs)s , (φξ)ξ⟩ be
an FOκℵ0 -interpretation from Σ to Γ.

(a) For every formula ψ(x0 , . . . , xm−1) ∈ FOs̄
κℵ0
[Γ], we can construct

an formula ψI(x̄0 , . . . , x̄m−1) ∈ FO<ω
κℵ0
[Σ] such that

I(A) ⊧ ψ(ιs0 ā0 , . . . , ιsm−1 ām−1) iff A ⊧ ψI(ā0 , . . . , ām−1) ,
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for all structures A such that I(A) is defined and all ā i ⊆ δA
s i

.
(b) There exists a formula χ ∈ FO0

κℵ0
[Σ] such that, for every Σ-struc-

ture A,

A ⊧ χ iff I(A) is defined.

Proof. (a) W.l.o.g. we may assume that ψ is term-reduced. We define ψI
by induction on ψ. For atomic formulae, we have

( f x0 . . . xm−1 = y)I ∶= φ f (x̄0 , . . . , x̄m−1 , ȳ) ,(Rx0 . . . xm−1)I ∶= φR(x̄0 , . . . , x̄m−1) ,
and, if x and y are of sort s then

(x = y)I ∶= εs(x̄ , ȳ) .

(Note that we assume that every tuple satisfying φξ also satisfies the cor-
responding δs . Otherwise, we have to add the conjunction of all δs i (x̄ i)
to the above formulae.) Boolean combinations are left unchanged.

(¬ϑ)I ∶= ¬ϑI ,
(⋀Φ)I ∶= ⋀{ ϑI ∣ ϑ ∈ Φ } ,
(⋁Φ)I ∶= ⋁{ ϑI ∣ ϑ ∈ Φ } .

And if y is a variable of sort s, we have to restrict quantifiers over y to δs .

(∃yϑ)I ∶= (∃ ȳ.δs( ȳ))ϑI ,(∀yϑ)I ∶= (∀ ȳ.δs( ȳ))ϑI .

(b) We can set

χ ∶= α ∧ ⋀
ξ∈Γ ϑξ
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c1. First-order logic

where, for each relation symbol R ∈ Γ of type s0 . . . sn−1, the formula

ϑR ∶= ∀x̄0⋯x̄n−1 ȳ0⋯ ȳn−1

(⋀
i<n

εs i (x̄ i , ȳ i) →
(φR(x̄0 , . . . , x̄n−1) ↔ φR( ȳ0 , . . . , ȳn−1))

expresses that the εs define a congruence with respect to the relation
defined by φR and, for each function symbol f ∈ Γ of type s0 . . . sn−1 → t,
the formula

ϑ f ∶= ∀x̄0⋯x̄n−1∃ ȳφ f (x̄0 , . . . , x̄n−1 , ȳ)∧ ∀x̄0⋯x̄n−1 ȳ0⋯ ȳn−1ūv̄

((⋀
i<n

εs i (x̄ i , ȳ i) ∧ φ f (x̄0 , . . . , x̄n−1 , ū)
∧ φ f ( ȳ0 , . . . , ȳn−1 , v̄)) → εt(ū, v̄))

says that φ f defines a function and the εs define a congruence with
respect to this function. ◻

The general scheme of these constructions is summarised in the fol-
lowing definition.

Definition 5.10. Let ⟨L0 ,K0 ,⊧⟩ and ⟨L1 ,K1 ,⊧⟩ be logics.
(a) A morphism from L0 to L1 is a pair ⟨α, β⟩ of functions α ∶ L0 → L1

and β ∶ K1 → K0 such that

J ⊧ α(φ) iff β(J) ⊧ φ , for all φ ∈ L0 and J ∈ K1 .

The category consisting of all logics and these morphisms is called Logi$.
(b) An embedding is a morphism ⟨α, β⟩ ∶ L0 → L1 where β is surject-

ive.
(c) A comorphism from L0 to L1 is a morphism ⟨α, β⟩ ∶ L1 → L0.
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(d) By abuse of terminologywe call a function α ∶ L0 → L1 amorphism
if there exists a function β ∶ K1 → K0 such that the pair ⟨α, β⟩ forms
a morphism L0 → L1. Similarly, we call β ∶ K0 → K1 a comorphism if
there is some α ∶ L1 → L0 such that ⟨α, β⟩ is a comorphism L0 → L1.

Remark. The only difference between a morphism and a comorphism
is the direction of the arrow. We will use the former term if we want to
stress the translation of formulae, while the latter term is used when we
are mainly interested in the operation on structures.

Example. Each of the operations introduced in this section induces a
comorphism. For instance, we have seen in Lemma 5.1 that the reduct
operation r ∶ A↦ A∣Σ induces the comorphism

⟨i , r⟩ ∶ FOκℵ0[Γ , X] → FOκℵ0[Σ, X] ,
where i ∶ FOκℵ0[Σ, X] → FOκℵ0[Γ , X] is the inclusion map.

In the case of interpretations we face a minor technical difficulty since
these are partial operations. An FOκℵ0 -interpretation I from Σ to Γ in-
duces a comorphism L → FOκℵ0[Γ , X] where L is not FOκℵ0[Σ, X] but
the sublogic ⟨FOκℵ0[Σ, X], C ,⊧⟩, where the class C ⊆ Str[Σ] of interpret-
ations consists of those Σ-structures A such that I(A) is defined.

Exercise 5.3. Prove that a morphism ⟨α, β⟩ ∶ L0 → L1 is a monomor-
phism if, and only if, α is injective and β is surjective. Show that it is an
epimorphism if, and only if, α is surjective and β is injective.

Lemma 5.11. Let ⟨α, β⟩ ∶ L0 → L1 be a morphism of logics.
(a) ⟨α, β⟩ is a monomorphism if, and only if, it has a left inverse.
(b) ⟨α, β⟩ is an epimorphism if, and only if, it has a right inverse.

Lemma 5.12. Let ⟨α, β⟩ ∶ L0 → L1 be a morphism of logics, Φ ⊆ L0,
φ,ψ ∈ L0, and J an L1-interpretation.

(a) φ ⊧ ψ implies α(φ) ⊧ α(ψ) .
(b) If Φ is inconsistent then so is α[Φ].
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c1. First-order logic

(c) ThL0(β(J)) = α−1[ThL1(J)] .

(d) ModL1(α[Φ]) = β−1[ModL0(Φ)] .

Proof. (a) For every L1-interpretation J, we have the following chain of
implications:

J ⊧ α(φ) ⇒ β(J) ⊧ φ⇒ β(J) ⊧ ψ ⇒ J ⊧ α(ψ) .

It follows that α(φ) ⊧ α(ψ).
(b) Suppose that α[Φ] has a model J. Then J ⊧ α[Φ] implies that

β(J) ⊧ Φ. Hence, Φ is satisfiable.
(c) For a formula φ ∈ L0 and an L1-interpretation J, we have

β(J) ⊧ φ iff J ⊧ α(φ) iff φ ∈ α−1[ThL1(J)] .

(d) By definition of a morphism, we have

J ⊧ α[Φ] iff β(J) ⊧ Φ iff J ∈ β−1[ModL1(Φ)] . ◻
Corollary 5.13. Let ⟨α, β⟩ ∶ L0 → L1 be a comorphism of logics and
suppose that J0 , J1 are L0-interpretations.

J0 ≡L0 J1 implies β(J0) ≡L1 β(J1) .

Proof. The claim follows immediately from Lemma 5.12 (c). ◻
Every monomorphism of logics is an embedding. Statement (a) of the

following lemma states that, conversely, every embedding is a monomor-
phism ‘up to logical equivalence’.

Lemma 5.14. Let ⟨α, β⟩ ∶ L0 → L1 be an embedding of logics, Φ ⊆ L0,
and φ,ψ ∈ L0 formulae.

(a) φ ⊧ ψ iff α(φ) ⊧ α(ψ).
(b) ModL0(Φ) = β[ModL1(α[Φ])] .
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Proof. (a) We have already seen in Lemma 5.12 (a) that φ ⊧ ψ implies
α(φ) ⊧ α(ψ). Conversely, suppose that α(φ) ⊧ α(ψ) and let J0 be an
L0-interpretation. By assumption, there is some L1-interpretation J1
with β(J1) = J0. Hence, we have

J0 ⊧ φ ⇒ J1 ⊧ α(φ) ⇒ J1 ⊧ α(ψ) ⇒ J0 ⊧ ψ .

It follows that φ ⊧ ψ.
(b) By Lemmas a2.1.10 and 5.12 (d), it follows that

β[ModL1(α[Φ])] = β[β−1[ModL0(Φ)]] =ModL0(Φ) . ◻

6. Extensions of first-order logic

Lindström quantifiers

First-order logic seems to be ill-suited to talk about cardinalities. To
express that there are infinitely many elements we had to use an infinite
set of formulae, and we will see in Lemma c2.4.9 that, even if we allow
infinitely many formulae, we cannot express that something is finite.

To obtain a logic where these things can be expressed, we add to
ordinary first-order logic a cardinality quantifier ∃λ with the meaning of
‘there are at least λ many’.

Definition 6.1. By FOκℵ0(∃λ)[Σ, X] we denote the logic obtained from
FOκℵ0[Σ, X] by adding the syntax rule:

◆ if φ ∈ FOκℵ0(∃λ)[Σ, X ∪ {x}] then ∃λxφ ∈ FOκℵ0(∃λ)[Σ, X].
We define the semantics of this quantifier by

A ⊧ ∃λxφ[β] : iff ∣{ a ∈ A ∣ A ⊧ φ[β[x/a]] }∣ ≥ λ .
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Example. We can axiomatise the order ⟨ω, <⟩ up to isomorphism by the
formula

∀x¬(x < x) ∧ ∀x∀y∀z(x < y ∧ y < z → x < z)∧ ∀x∀y(x < y ∨ x = y ∨ y < x)∧ ∀x∃y(x < y)∧ ∀x¬∃ℵ0 y(y < x) .

Another property that infinitary first-order logic is unable to express
is well-foundedness. As above, we can introduce a new quantifier ex-
pressing that a definable relation is a well-order. This logic will play an
important role in Section c5.6.

Definition 6.2. Let FOκℵ0(wo) be the extension of FOκℵ0 by the well-
ordering quantifier W whose semantics is given by

A ⊧Wx̄ ȳφ(x̄ , ȳ, c̄) iff the relation φA(x̄ , ȳ, c̄) is
a well-ordering of its field.

Note that the quantifier W cannot be used to express ‘there exists
a well-order’. We can only check whether some definable relation is a
well-order.

Generalising the above examples we can define extensions of (infinit-
ary) first-order logic by quantifiers for any given property.

Definition 6.3. Let Γ = {R0 , . . . , Rn} be a finite relational signature andK a class of Γ-structures. The Lindström quantifier forK is of the form
QK x̄0 . . . x̄nφ0(x̄0 , z̄) . . . φn(x̄n , z̄). The semantics of such a formula is
defined by

A ⊧ QK x̄0 . . . x̄nφ0(x̄0 , c̄) . . . φn(x̄n , c̄)
: iff ⟨A, φ0(x̄0 , c̄)A , . . . , φn(x̄n , c̄)A⟩ ∈ K .

Example. (a) The cardinality quantifier ∃λ is the quantifier QK where

K ∶= { ⟨A, P⟩ ∣ A a set , P ⊆ A , ∣P∣ ≥ λ } .
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(b) The cardinality comparison quantifier is defined by the class

K ∶= { ⟨A, P, Q⟩ ∣ ∣P∣ = ∣Q∣ } .

(c) The well-ordering quantifier W is defined by the class

K ∶= { ⟨A, R⟩ ∣ R is a well-order on its field} .

Second-order logic

In second-order logic we extend first-order logic by variables for relations
and functions and we allow quantification over such variables. When we
equip each variable with a type, the set of variables becomes a signature
where the constant symbols play the role of the first-order variables. This
particular point of view makes the definition of syntax and semantics
much more streamlined. We could also have adopted this convention
for the definition of first-order logic. But for expositionary reasons we
have refrained from doing so.

Definition 6.4. Let Σ and Ξ be S-sorted signatures. The set SOκℵ0[Σ, Ξ]
of infinitary second-order formulae is the smallest set of terms satisfying
the following closure conditions:

◆ If t0 , t1 ∈ T[Σ∪ Ξ,∅] are terms of the same sort, we have t0 = t1 ∈
SOκℵ0[Σ, Ξ].◆ If R ∈ Σ ∪ Ξ is of type s0 . . . sn−1 and t i ∈ Ts i [Σ ∪ Ξ,∅], for i < n,
then Rt0 . . . tn−1 ∈ SOκℵ0[Σ, Ξ].◆ If φ ∈ SOκℵ0[Σ, Ξ], then ¬φ ∈ SOκℵ0[Σ, Ξ].◆ If Φ ⊆ SOκℵ0[Σ, Ξ] and ∣Φ∣ < κ, then ⋀Φ, ⋁Φ ∈ SOκℵ0[Σ, Ξ].◆ If φ ∈ SOκℵ0[Σ, Ξ ∪ {ξ}], then ∃ξφ, ∀ξφ ∈ SOκℵ0[Σ, Ξ].

We define monadic second-order logic MSOκℵ0[Σ, Ξ] as the restriction
of SOκℵ0[Σ, Ξ] were we allow only constant symbols and unary relation
symbols in the variable signature Ξ.

483



c1. First-order logic

For a (Σ ∪ Ξ)-structure A and an SOκℵ0[Σ, Ξ]-formula φ, we define
the satisfaction relation A ⊧ φ by induction on φ.

A ⊧ t0 = t1 : iff tA
0 = tA

1 ,

A ⊧ Rt0 . . . tn−1 : iff ⟨tA
0 , . . . , tA

n−1⟩ ∈ RA ,

A ⊧ ¬φ : iff A ⊭ φ ,
A ⊧ ⋁Φ : iff there is some φ ∈ Φ such that A ⊧ φ ,
A ⊧ ⋀Φ : iff A ⊧ φ for all φ ∈ Φ ,

A ⊧ ∃ξφ : iff there is some relation or function ξA

such that ⟨A, ξA⟩ ⊧ φ ,

A ⊧ ∀ξφ : iff ⟨A, ξA⟩ ⊧ φ for all suitable relations or

functions ξA .

Example (Peano Axioms). The structure ⟨ω, s, 0⟩, where s ∶ n ↦ n + 1
is the successor function, can be axiomatised in monadic second-order
logic up to isomorphism by the Peano Axioms.

∀x(sx ≠ 0) ,∀x∀y(sx = sy → x = y) ,∀Z[Z0 ∧ ∀x(Zx → Zsx) → ∀xZx] .

The third axiom which states the induction principle is not first-order.

Example. (a) The class of all well-orders can be axiomatised by the MSO-
formulae

∀x∀y(x ≤ y ∧ y ≤ x ↔ x = y) ,∀x∀y∀z(x ≤ y ∧ y ≤ z → x ≤ z) ,∀x∀y(x ≤ y ∨ y ≤ x) ,∀Z[∃xZx → (∃x .Zx)(∀y.Zy)(x ≤ y)] ,
which express that ≤ is a linear order such that every nonempty set Z
has a minimal element.
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(b) Let ⟨V , E⟩ be a graph. The transitive closure of the relation E can
be defined by the monadic second-order formula

φ(x , y) ∶= ∀Z[Zx ∧ ∀u∀v(Zu ∧ Euv → Zv) → Zy] .

Consequently, we can express that a graph is strongly connected by

ψ ∶= ∀x∀yφ(x , y) .

(c) Let φ(x) and ψ(x) be second-order formulae. We can express that
the sets defined by φ andψ have the same cardinality by the second-order
formula

∃ f [(∀x .φ(x))(∀y.φ(y))(x ≠ y → f x ≠ f y)
∧ (∀x .φ(x))(∃y.ψ(y))( f x = y)
∧ (∀x .ψ(x))(∃y.φ(y))( f y = x)]

which states that there exists a bijection between these sets.

Logical systems
We have already introduced several logics and we will define some more
below. To facilitate a uniform treatment let us define a general framework
for the kind of logic we are interested in. We have two basic requirements.
Firstly, the logic should talk about structures and, secondly, it should be
well-behaved with respect to reducts and expansions of signatures. Like
in the first-order case we will therefore consider not a single logic but a
family of them, one logic for each signature. We start by giving a general
definition of a family of logics.

Definition 6.5. Let S be a category. A logical system parametrised by S
is a functor L ∶ S → Logi$. To each logical system L we associate a
covariant functor L and a contravariant functor C such that

L[s] = ⟨L[s], C[s],⊧s⟩ , for s ∈ S ,L[ f ] = ⟨L[ f ], C[ f ]⟩ , for f ∈ S(s, s′) .

L is called the syntax functor of L and C is the semantics functor.
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Remark. (a) An alternative, more concrete definition of a logical system
would be as follows. A logical system consists of a covariant functor
L ∶ S→ L, a contravariant functor C ∶ S→ Jnt, and a family (⊧s)s∈S of
binary relations ⊧s ⊆ C[s] × L[s] that satisfy the following conditions:

◆ ⟨L[s], C[s],⊧s⟩ is a logic, for all s ∈ S.

◆ For every morphism f ∶ s → t of S, all formulae φ ∈ L[s], and
each interpretation J ∈ C[t], we have

C[ f ](J) ⊧s φ iff J ⊧t L[ f ](φ) .

Note that the second condition is a generalisation of the property of
terms stated in Lemma b3.1.16.

(b) Usually the category S specifies a signature Σ and a set of vari-
ables X, and C[Σ, X] is the class of all pairs ⟨A, β⟩ where A is a Σ-struc-
ture and β a variable assignment for the variables in X. In fact, we will
mostly deal with logics without free variables where the interpretations
consists of only a structure (see Definition 6.7 below).

Example. We define a logical system based on Zariski logic. The cat-
egory S of parameters consists of all pairs ⟨K, X⟩ where K is a field and
X a set of variables. If L is an extension of K then S(⟨K, X⟩, ⟨L,Y⟩) con-
sists of all functions f ∶ X → Y . If L is not an extension of K then there
are no morphisms ⟨K, X⟩ → ⟨L,Y⟩.

The logical system maps a parameter ⟨K, X⟩ ∈ S to the Zariski logic
ZL[K, X]. Each morphism f ∶ ⟨K, X⟩ → ⟨L,Y⟩ of S is mapped to the
morphism ⟨α, β⟩ ∶ ZL[K, X] → ZL[L,Y] where

◆ α maps a polynomial p(x̄) ∈ K[X] to p( f (x̄)) ∈ L[Y] and
◆ β maps a variable assignment γ ∈MY to γ ○ f ∈MX .

Note that ⟨α, β⟩ is indeed a morphism since

γ ○ f ⊧ p(x0 , . . . , xn−1) iff γ ⊧ p( f (x0), . . . , f (xn−1)) .

Recall the categories Sig, SigVar, and Str introduced in Section b3.1.
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Definition 6.6. By FOκℵ0 we denote the logical system SigVar→ Logi$
with

⟨Σ, X⟩ ↦ ⟨FOκℵ0[Σ, X], Str[Σ, X],⊧⟩ ,
and FOs̄

κℵ0
∶ Sig→ Logi$ is the subsystem with

Σ ↦ ⟨FOs̄
κℵ0
[Σ], Str,⊧⟩ .

Exercise 6.1. Prove that FOκℵ0 and FOs̄
κℵ0

are indeed logical systems.

Exercise 6.2. Let L ∶ S→ Logi$ be a logical system with

L(s) = ⟨L[s], C[s],⊧s⟩ , for s ∈ S ,L( f ) = ⟨α f , β f ⟩ , for f ∈ S(s, t) .

Show that the function Lop ∶ Sop → Logi$ defined by

Lop(s) ∶= ⟨C[s], L[s], (⊧s)−1⟩ , for s ∈ S ,Lop( f ) ∶= ⟨β f , α f ⟩ , for f ∈ S(s, t)
is a logical system.

We are mainly interested in logical systems that, like first-order logic,
talk about structures.

Definition 6.7. An algebraic logic is a logical system L ∶ Sig → Logi$
parametrised by Sig such that

◆ the semantics functor is the canonical functor Str ∶ Sig→ Str and
◆ every logic L[Σ] is invariant under isomorphisms, that is,

A ≅ B implies A ≡L[Σ] B , for all A,B ∈ Str[Σ] .

Example. We will prove in Lemma c2.1.3 (c) that first-order logic is
invariant under isomorphisms. Consequently, FO0

κℵ0
is algebraic. Clearly,

FOα
κℵ0

is not, for α > 0, since the interpretations are not structures.
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c1. First-order logic

Remark. Note that it follows immediately from the definition of an
algebraic logic that the reduct operation A ↦ A∣Σ is a comorphism
L[Γ] → L[Σ], for every algebraic logic L.
When defining the semantics of second-order logic we have treated

the variables as symbols of a signature. This trick can be used to simulate
free variables in every algebraic logic.

Definition 6.8. Let L be an algebraic logic, Σ a signature, and X a set of
variables disjoint from Σ. We set

L[Σ, X] ∶= L[Σ ∪ X] ,
where we regard the elements of X as constant symbols. If A is a Σ-
structure and β ∶ X → A a variable assignment, we define

A ⊧ φ[β] : iff Aβ ⊧ φ ,

whereAβ is the (Σ∪X)-expansion of Awhere we assign to the additional
constants x ∈ X the value xAβ ∶= β(x).
We define φA, free(φ), A ⊧ φ(ā), and L s̄[Σ] in the same way as for

first-order logic.

Lindenbaum algebras
Usually we are only interested in the expressive power of a logic and,
hence, we will not distinguish between equivalent formulae. To this end
we associate with every logic L a partial order that reflects the structural
properties of L while abstracting away from the concrete syntax. We
have seen in Lemma 3.2 that the entailment relation ⊧ is a preorder. If
we identify equivalent formulae, we obtain the partial order ⟨L,⊧⟩/≡. In
this way we can define a functor Logi$→ PO where PO is the category
of all partial orders with homomorphisms.

Definition 6.9. The Lindenbaum functor Lb ∶ Logi$→ PO is defined by

Lb(L) ∶= ⟨L,⊧⟩/≡ , for L ∈ Logi$ ,
Lb(µ)([φ]≡) ∶= [α(φ)]≡ , for µ = ⟨α, β⟩ ∈ Logi$(L0 , L1) .
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6. Extensions of first-order logic

The partial order Lb(L) is called the Lindenbaum algebra of L.

Remark. Note that it follows by Lemma 5.12 (a) that the image Lb(µ)
of a morphism µ ∶ L0 → L1 is well-defined and that it is indeed a
homomorphism of partial orders.

Example. (a) Let K be an algebraically closed field. For Zariski logic
ZL[K, X], we have shown that

p ≡ q iff pm = aqn for some a ∈ K and m, n < ω .

The Lindenbaum algebra Lb(ZL[K, X]) is an upper semilattice where

⊺ = [0]≡ , � = [1]≡ , and [p]≡ ⊔ [q]≡ = [pq]≡ .

(b) Let B be a boolean algebra. The Lindenbaum algebra Lb(BL(B))
is isomorphic to B since, for a, b ∈ B,

a ≡ b implies a = b .

Lemma 6.10. Let µ ∶ L0 → L1 be a morphism of logics.

(a) If µ is an epimorphism then so is Lb(µ).
(b) If µ is an embedding then so is Lb(µ).

Proof. Suppose that µ = ⟨α, β⟩.
(a) Let [φ]≡ ∈ Lb(L1). The map α is surjective since µ is an epi-

morphism. Consequently, there is some ψ ∈ L0 with α(ψ) = φ. Hence,
Lb(µ)([ψ]≡) = [φ]≡, as desired.

(b) follows immediately from Lemma 5.14 (a). ◻
Definition 6.11. Let L be a logic and φ,ψ ∈ L formulae.

(a) A negation of φ is a formula ϑ ∈ L such that, for all L-interpreta-
tions J, we have

J ⊧ ϑ iff J ⊭ φ .
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c1. First-order logic

If φ has negations, we fix one and denote it by ¬φ.
(b) A disjunction of φ and ψ is a formula ϑ ∈ L such that, for all

L-interpretations J, we have

J ⊧ ϑ iff J ⊧ φ or J ⊧ ψ or both.

If disjunctions of φ and ψ exist, we fix one and denote it by φ ∨ ψ.
(c) A conjunction of φ and ψ is a formula ϑ ∈ L such that, for all

L-interpretations J, we have

J ⊧ ϑ iff J ⊧ φ and J ⊧ ψ .

If conjunctions of φ and ψ exist, we fix one and denote it by φ ∧ ψ.
(d) We say that L is closed under negation, disjunction, or conjunction

if all L-formulae have, respectively, negations, disjunctions, or conjunc-
tions. We call L boolean closed if L is closed under all three operations.

Remark. (a) Note that ¬φ, φ ∨ ψ, and φ ∧ ψ are only determined up to
logical equivalence, but they are unique when regarded as elements of
Lb(L).

(b) If L is closed under conjunction and disjunction, the Lindenbaum
algebra Lb(L) is a lattice where

[φ]≡ ⊓ [ψ]≡ = [φ ∧ ψ]≡ and [φ]≡ ⊔ [ψ]≡ = [φ ∨ ψ]≡ .

Exercise 6.3. Define a logic L such that Lb(L) is a boolean algebra but
L is closed under neither negation, nor disjunction, nor conjunction.

Lemma 6.12. Let ⟨L,K,⊧⟩ be a logic.
(a) If L is closed under conjunction and disjunction then Lb(L) is a

distributive lattice.
(b) If L is boolean closed then Lb(L) is a boolean algebra.

Proof. (a) Lb(L) is clearly a lattice if it has the above closure properties.
To show that it is distributive note that the function

f ∶ Lb(L) → ℘(K) ∶ [φ]≡ ↦ModL(φ)
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6. Extensions of first-order logic

is an embedding of Lb(L) into a power-set lattice and such lattices are
always distributive.

(b) If L is boolean closed, it contains tautologies φ ∨ ¬φ and unsatis-
fiable formulae φ ∧ ¬φ. Hence, Lb(L) forms a boolean algebra. ◻
When investigating a logical theory T we usually are only interested

in the class of models of T . In these cases we can restrict the logic by
removing all interpretations that do not satisfy T .

Definition 6.13. Let ⟨L,K,⊧⟩ be a logic, Φ ⊆ L a set of formulae, and let
i ∶ Φ → L and j ∶ ModL(Φ) → K be the corresponding inclusion maps.

(a) The restriction of L to Φ is the logic

L∣Φ ∶= ⟨Φ,K,⊧⟩ ,
where the set of formulae is restricted to Φ. The morphism

⟨i , idK⟩ ∶ L∣Φ → L

is the inclusion morphism associated with Φ and L.
(b) The localisation of L to Φ is the logic

L/Φ ∶= ⟨L, ModL(Φ), ⊧⟩ ,
where the class of interpretations is restricted to those satisfying Φ. The
morphism

⟨idL , j⟩ ∶ L → L/Φ
is the localisation morphism associated with Φ and L. We define the
relations

φ ⊧Φ ψ : iff Φ ∪ {φ} ⊧ ψ ,
φ ≡Φ ψ : iff φ ≡ ψ modulo Φ .

(c) If L is an algebraic logic and Φ ⊆ L0[Σ] then we set

L s̄/Φ ∶= L s̄[Σ]/Φ .
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c1. First-order logic

The next lemma and its corollary state that the restriction and the
localisation of a logic yield something like ‘short exact sequences’ of
logics and Lindenbaum algebras

L∣Φ → L → L/Φ and Lb(L∣Φ) → Lb(L) → Lb(L/Φ) .

Lemma 6.14. Let ⟨L,K,⊧⟩ be a logic and Φ ⊆ L a set of formulae.

(a) The inclusion morphism i ∶ L∣Φ → L is a monomorphism of logics.

(b) The localisation morphism λ ∶ L → L/Φ is an epimorphism of logics.

Corollary 6.15. Let L be a logic and Φ ⊆ L.

(a) There exists an embedding Lb(L∣Φ) → Lb(L).
(b) There exists a surjective homomorphism Lb(L) → Lb(L/Φ).

Proof. The claims follow from Lemmas 6.14 and 6.10. ◻
We can describe the entailment relation of a localisation as follows.

Lemma 6.16. Let L be a logic and T ⊆ L.

(a) φ ⊧ ψ in L/T iff φ ⊧T ψ in L .

(b) Lb(L/T) = ⟨L,⊧T⟩/≡T .

Proof. (a) We have φ ⊧ ψ in L/T if, and only if, every model of T that
satisfies φ also satisfies ψ. This is equivalent to T ∪ {φ} ⊧ ψ.

(b) follows immediately from (a). ◻
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c2. Elementary substructures and
embeddings

1. Homomorphisms and embeddings
We can compare structures by looking at the functions between them.
In this section we investigate how such maps are related to the theories
of the structures in question.

Definition 1.1. Let L be an algebraic logic and f ∶ A → B a partial
function between Σ-structures.

(a) We say that f preserves a formula φ(x̄) ∈ L[Σ, X] if
A ⊧ φ(ā) implies B ⊧ φ( f ā) , for all ā ⊆ dom f .

(b) Let ∆ ⊆ L[Σ, X] be a set of formulae. We call f a ∆-map if it
preserves every formula in ∆. A ∆-embedding is a ∆-map that is an
embedding. We say that f is strict if we have

A ⊧ φ(ā) iff B ⊧ φ( f ā) ,
for all formulae φ(x̄) ∈ ∆ and every ā ⊆ dom f .

If C ⊆ A ⊆ B then we say that f ∶ A→ B is a ∆-map or a ∆-embedding
over C if f additionally satisfies f ↾ C = idC . For historical reasons
FO-maps and FO-embeddings are usually called elementary.

(c) We denote by EmbL(A,B) the set of all L<ω[Σ]-embeddings h ∶
A→ B. We write EmbL(Σ) for the category of all L<ω[Σ]-embeddings
between Σ-structures.
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c2. Elementary substructures and embeddings

Remark. If ∆ is closed under negation then every ∆-map is strict.

Example. Let f ∶ A→ B. Immediately from the definition it follows that

(a) f is injective if and only if it preserves the formula x ≠ y ;

(b) f is a homomorphism if and only if it preserves every atomic
formula;

(c) f is an embedding if and only if it preserves every literal.

Definition 1.2. (a) We write QFκℵ0[Σ, X] for the set of all quantifier-free
FOκℵ0[Σ, X]-formulae.

(b) For ∆ ⊆ FOκℵ0[Σ, X] we denote by ∃∆ the closure of ∆ under
existential quantifiers and conjunctions and disjunctions of less than κ
formulae. Similarly, ∀∆ denotes the closure of ∆ under conjunctions,
disjunctions, and universal quantifiers. The intended value of κ should
always be clear from the context.

(c) The set of existential formulae is ∃κℵ0[Σ, X] ∶= ∃QFκℵ0[Σ, X] and
the set of universal formulae is ∀κℵ0[Σ, X] ∶= ∀QFκℵ0[Σ, X]. For κ = ℵ0,
we simply write ∃[Σ, X] and ∀[Σ, X].

(d) The set ∃+κℵ0
[Σ, X] of positive existential formulae consists of all

FOκℵ0 -formulae containing neither negations nor universal quantifiers.

Lemma 1.3. Let f ∶ A→ B.

(a) f is a homomorphism if, and only if, it preserves all ∃+∞ℵ0
-formulae.

(b) f is an embedding if, and only if, it preserves all ∃∞ℵ0 -formulae.

(c) If f is an isomorphism, it preserves all FO∞ℵ0 -formulae.

Proof. One direction follows immediately from the definition (see the
above example) since every function preserving all atomic formulae is a
homomorphism and every function preserving all literals is an embed-
ding.

For the other direction, we prove all three claims simultaneously by
induction on the structure of φ. For claims (b) and (c), we may assume
that φ is in negation normal form.
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1. Homomorphisms and embeddings

If φ = Rt0 . . . tn then we have

A ⊧ (Rt0 . . . tn−1)(ā) ⇒ ⟨tA
0(ā), . . . , tA

n−1(ā)⟩ ∈ RA

⇒ ⟨ f (tA
0(ā)), . . . , f (tA

n−1(ā))⟩ ∈ RB

⇒ ⟨tB
0 ( f ā), . . . , tB

n−1( f ā)⟩ ∈ RB

⇒ B ⊧ (Rt0 , . . . , tn−1)( f ā) .

The proof for φ = t0= t1 is similar.
For (b) and (c), we also have to consider the case that φ = ¬Rt0 . . . tn .

Since in these cases f is a strict homomorphism we have

A ⊧ ¬(Rt0 , . . . , tn−1)(ā) ⇒ ⟨tA
0(ā), . . . , tA

n−1(ā)⟩ ∉ RA

⇒ ⟨ f (tA
0(ā)), . . . , f (tA

n−1(ā))⟩ ∉ RB

⇒ ⟨tB
0 ( f ā), . . . , tB

n−1( f ā)⟩ ∉ RB

⇒ B ⊧ ¬(Rt0 , . . . , tn−1)( f ā) .

The proof for φ = t0≠ t1 is similar.
The cases that φ = ⋀Φ or φ = ⋁Φ follow immediately from the in-

ductive hypothesis. Therefore, it remains to consider quantifiers. Suppose
that φ = ∃yψ(x̄ , y). We have

A ⊧ ∃yψ(ā, y) ⇒ A ⊧ ψ(ā, b) for some b ∈ A⇒ B ⊧ ψ( f ā, f b) for some b ∈ A⇒ B ⊧ ∃yψ( f ā, y) .

Finally, for claim (c) there is the case that φ = ∀yψ(x̄ , y). Then we
have

A ⊧ ∀yψ(ā, y) ⇒ A ⊧ ψ(ā, b) for all b ∈ A⇒ B ⊧ ψ( f ā, f b) for all b ∈ A⇒ B ⊧ ∀yψ( f ā, y) ,
since f is surjective. ◻
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c2. Elementary substructures and embeddings

Corollary 1.4. Let A be a Σ-structure. For every relation R ∶= φA defined
by some formula φ(x̄) ∈ FO<ω∞ℵ0

[Σ], we have

ā ∈ R iff πā ∈ R , for each automorphism π ∶ A→ A .

Example. We can use the above characterisation to prove that certain
relations are not definable. Let A be a structure and R a relation. If we
can find an automorphism of A that is not an automorphism of the
expansion ⟨A, R⟩ then we know that R is not definable in A.

(a) Addition is not definable in the structure ⟨N, ⋅⟩. Define the function
π ∶ N→ N that maps a number of the form 2m3nk, where k is not divisible
by 2 or 3, to the number 2n3mk. Then π is an automorphism of ⟨N, ⋅ ⟩,
but it is not an automorphism of ⟨N, ⋅ ,+⟩ since we have

4 + 3 = 7 and π(4) + π(3) = 9 + 2 ≠ 7 = π(7) .

(b) Similarly, we can show that multiplication is not definable in the
structure ⟨Z,+⟩ since the mapping π ∶ x ↦ −x is an automorphism of⟨Z,+⟩ but not of ⟨Z,+, ⋅ ⟩.
Definition 1.5. A formula φ(x̄) is preserved in substructures if

A ⊧ φ(ā) implies A0 ⊧ φ(ā) ,
whenever A0 ⊆ A is a substructure containing ā.

Lemma 1.6. ∀∞ℵ0 -formulae are preserved in substructures.

Proof. This is just the dual statement of Lemma 1.3 (b). Let φ ∈ ∀∞ℵ0

and suppose there exist structures A0 ⊆ A and elements ā ⊆ A0 such
that

A ⊧ φ(ā) but A0 ⊭ φ(ā) .

Let id ∶ A0 → A be the embedding of A0 into A. Since ¬φ is equivalent
to some existential formula ψ ∈ ∃∞ℵ0 it follows from Lemma 1.3 (b) that

A0 ⊧ ¬φ(ā) implies A ⊧ ¬φ(ā) .

Contradiction. ◻
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1. Homomorphisms and embeddings

Example. Groups can be axiomatised by universal sentences:

∀x∀y∀z(x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z)∀x(x ⋅ e = x)∀x(x ⋅ x−1 = e)
It follows that every substructure of a group ⟨G , ⋅ , −1 , e⟩ is itself a group.

Note that, if we use the smaller signature consisting only of group mul-
tiplication ⋅, this property fails since the axioms are no longer universal:

∀x∀y∀z(x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z)∃e∀x[x ⋅ e = x ∧ ∃y(x ⋅ y = e)]
For instance, the group ⟨Z,+⟩ has the substructure ⟨N,+⟩ which is not
a group.

Definition 1.7. A formula φ(x̄) is preserved in unions of chains if, for all
chains (Ai)i<α and every tuple ā ⊆ A0,

Ai ⊧ φ(ā) , for all i < α , implies ⋃
i<α Ai ⊧ φ(ā) .

Lemma 1.8. Every ∀∃∞ℵ0 -formula φ is preserved in unions of chains.

Proof. Let (Ai)i<α be a chain with union B ∶= ⋃i<α Ai . Suppose that
φ ∈ ∀∃∞ℵ0 is a formula such that Ai ⊧ φ(ā), for all i < α, where ā ⊆ A0.
We prove by induction on φ that B ⊧ φ(ā).

If φ ∈ ∃∞ℵ0 then A0 ⊧ φ(ā) and A0 ⊆ B implies that B ⊧ φ(ā), by
Lemma1.3 (b). If φ = ⋀Φ or φ = ⋁Φ, for Φ ⊆ ∀∃∞ℵ0 then the claim
follows immediately from the inductive hypothesis.

Hence, it remains to consider the case that φ = ∀yψ(x̄ , y), for some
ψ ∈ ∀∃∞ℵ0 . For every b ∈ B, there is some index k such that b ∈ Ak .
By assumption, we have Ai ⊧ ψ(ā, b), for every i ≥ k. By inductive
hypothesis, it follows that ⋃i≥k Ai ⊧ ψ(ā, b). Since ⋃i≥k Ai = B we
have shown that B ⊧ ψ(ā, b), for all b ∈ B. This implies that B ⊧∀yψ(ā, y). ◻
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c2. Elementary substructures and embeddings

Remark. Similarly to Lemma ??, we can show that ∀∃∞ℵ0 -formulae are
preserved in direct limits of diagrams of embeddings. Analogously it
follows that ∀∃+∞ℵ0

-formulae are preserved in arbitrary direct limits.

Example. The class of all fields is ∀∃-axiomatisable. It follows that the
union of a chain of fields is again a field.

Exercise 1.1. Prove that every ∀∃+∞ℵ0
-formula is preserved in direct

limits.

2. Elementary embeddings
Definition 2.1. Let L be an algebraic logic, ∆ ⊆ L[Σ, X] a set of formulae,
and A and B Σ-structures.
We say that B is a ∆-extension of A, or that A is a ∆-substructure

of B, if A ⊆ B and the inclusion map A → B is a ∆-embedding. We
write A ⪯∆ B to indicate that A is a ∆-substructure of B. In the case
∆ = FO[Σ] we also speak of elementary embeddings and extensions, and
we write A ⪯ B instead of A ⪯FO B.

Example. (a) ⟨N, ≤⟩ ⊆ ⟨Q, ≤⟩ is not elementary since

⟨N, ≤⟩ ⊧ ∃x∀y(x ≤ y) but ⟨Q, ≤⟩ ⊭ ∃x∀y(x ≤ y) .

(b) There are structures A ⊆ B such that A ≡ B but A ⪯̸ B. For
instance, let A ∶= ⟨2Z, ≤⟩ and B ∶= ⟨Z, ≤⟩. Then we even have A ≅ B but
A ⊀ B since

⟨2Z, ≤⟩ ⊭ ∃x(0 < x ∧ x < 2) but ⟨Z, ≤⟩ ⊧ ∃x(0 < x ∧ x < 2) .

(c) ⟨Q, ≤⟩ ⪯FO ⟨R, ≤⟩. (The easiest proof of this statement is based
on so-called ‘back-and-forth’ arguments which will be introduced in
Chapter c4. See Lemma c4.1.4).

Exercise 2.1. Find an elementary extension of ⟨Z, s⟩ where s ∶ x ↦ x + 1
is the successor function.
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Remark. If L is closed under negation then A ⪯L B implies A ≡L B.

Definition 2.2. Let L be an algebraic logic and A a Σ-structure.
(a) For a set U ⊆ A, we denote by AU the expansion of A by one

constant ca , for each element a ∈ U , with value cA
a ∶= a. By ΣU we denote

the corresponding expansion of the signature. In the following we will
not distinguish between the element a and the symbol ca denoting it,
and we simply write a in both cases.

(b) If T is a complete theory and A a model of T with U ⊆ A then we
define T(U) ∶=ThL(AU). For U = A, we call T(A) the L-diagram of A.

Let ∆0 ⊆ FO[Σ] be the set of all atomic first-order formulae and
∆1 ⊆ FO[Σ] the set of all literals. The ∆0-diagram of A is called the
atomic diagram, and the ∆1-diagram is the algebraic diagram. As usual,
the FO-diagram is called elementary.

The next lemma states that in order to construct an L-extension of a
structure A we can take any model of its L-diagram.

Lemma 2.3 (Diagram Lemma). Let L be an algebraic logic and A and B
Σ-structures. There exists an L-map g ∶ A→ B if and only if we have

B+ ⊧ThL(AA) , for some ΣA-expansion B+ of B .

Proof. (⇒) By definition, B ⊧ φ(gā), for all φ(ā) ∈Th(AA). Hence, if
ā is an enumeration of A then we can define the desired expansion of B
by B+ ∶= ⟨B, g(ā)⟩.(⇐)We claim that the function g ∶ A → B ∶ a ↦ cB+

a is the desired
L-embedding. Since ThL(B+) =ThL(AA) we have

A ⊧ φ(a0 , . . . , an−1) iff φ(ca0 , . . . , can−1) ∈ThL(AA)⇒ B+ ⊧ φ(ca0 , . . . , can−1)
iff B ⊧ φ(g(a0), . . . , g(an−1)) . ◻

Corollary 2.4. Let A and B be structures. Let ∆0(A) be the atomic dia-
gram of A and ∆1(A) the algebraic diagram.
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c2. Elementary substructures and embeddings

(a) There exists a homomorphism A→ B if and only if

BA ⊧ ∆0(A) , for some expansion BA of B .

(b) There exists an embedding A→ B if and only if

BA ⊧ ∆1(A) , for some expansion BA of B .

For first-order logic there is a simple test to check whether some
extension is elementary.

Theorem 2.5 (Tarski-Vaught Test). Let A ⊆ B be Σ-structures and suppose
that ∆ ⊆ FO∞ℵ0[Σ] is closed under negation, subformulae, and negation
normal forms.
We have A ⪯∆ B if and only if, for every formula ∃yφ(x̄ , y) ∈ ∆ and

all tuples ā ⊆ A,
B ⊧ ∃yφ(ā, y) implies B ⊧ φ(ā, b) , for some b ∈ A .

Proof. (⇒) Since A ⪯∆ B and ∆ is closed under negation we have

B ⊧ ∃yφ(ā, y) iff A ⊧ ∃yφ(ā, y)
iff A ⊧ φ(ā, b) for some b ∈ A
iff B ⊧ φ(ā, b) for some b ∈ A .

(⇐) Since ∆ is closed under subformulae we can prove by induction
on φ that

A ⊧ φ(ā) implies B ⊧ φ(ā) , for all φ ∈ ∆ .

Moreover, it is sufficient to consider only formulae φ in negation normal
form.
We will only give the inductive step for the universal quantifier. The

other cases are handled in the same way as in the proof of Lemma 1.3.
Suppose that

A ⊧ ∀yψ(ā, y) but B ⊭ ∀yψ(ā, y) .
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2. Elementary embeddings

Since ∀yψ ∈ ∆ we have nnf(¬∀yψ) = ∃y(nnf(¬ψ)) ∈ ∆. Therefore,
B ⊧ ∃y¬ψ(ā, y) implies that B ⊧ ¬ψ(ā, b), for some b ∈ A. On the
other hand, A ⊧ ∀yψ(ā, y) implies that A ⊧ ψ(ā, b) and, by inductive
hypothesis, it follows that B ⊧ ψ(ā, b). Contradiction. ◻
Proposition 2.6. Let D ∶ J → Homs(Σ) be a directed diagram of strict
homomorphisms with cone h i ∶ D(i) → limÐ→D, i ∈ I, and suppose that
∆ ⊆ FO∞ℵ0[Σ, X] is closed under subformulae and negation. If each mapD(i , j) is a ∆-map then so is every h i .

Proof. By induction on φ ∈ ∆ we prove that

D(i) ⊧ φ(ā) iff limÐ→D ⊧ φ(h i(ā)) .

Since∀yψ(x̄ , y) ≡ ¬∃y¬ψ(x̄ , y) and ∆ is closed under negation wemay
w.l.o.g. assume that φ does not contain universal quantifiers.

If φ is atomic then the claim follows from the fact that h i is a strict
homomorphism. The cases that φ = ¬ψ, φ = ⋀Φ, or φ = ⋁Φ follow
immediately from inductive hypothesis.

Suppose that φ = ∃yψ(x̄ , y). IfD(i) ⊧ ∃yψ(ā, y) then there is some
b ∈ D(i) such thatD(i) ⊧ ψ(ā, b). By inductive hypothesis, it follows
that limÐ→D ⊧ ψ(h i(āb)). Hence, limÐ→D ⊧ φ(h i(ā)). Conversely, sup-
pose that limÐ→D ⊧ ∃yψ(h i(ā), y). Then there is some element b such
that limÐ→D ⊧ ψ(h i(ā), b). By definition of a direct limit there is some in-
dex k with b ∈ rng hk . Let l ∈ I be an index with i , k ≤ l and let c ∈ D(l)
be an element with h l(c) = b. By inductive hypothesis, it follows thatD(l) ⊧ ψ(D(i , l)(ā), c). Hence, D(l) ⊧ φ(D(i , l)(ā)). Since D(i , l)
is a ∆-map and ∆ is closed under negation we have D(i) ⊧ φ(ā), as
desired. ◻
Definition 2.7. A chain (Ai)i<α is an L-chain if Ai ⪯L Ak , for all i < k.
As usual, FO-chains are also called elementary.

Corollary 2.8. If (Ai)i<α is an FOκℵ0 -chain then Ak ⪯FOκℵ0 ⋃i<α Ai , for
all k < α.

501



c2. Elementary substructures and embeddings

If ∆ ⊆ FOκℵ0 is not closed under negation then obtain a similar result
if we require the diagram to be κ-directed and ∆ to not contain universal
quantifiers.

Proposition 2.9. Let D ∶ J → Hom(Σ) be a κ-directed diagram with
cone h i ∶ D(i) → limÐ→D, i ∈ I, and suppose that ∆ ⊆ FOκℵ0[Σ, X] is closed
under subformulae and no formula in ∆ contains universal quantifiers. If
each mapD(i , j) is a ∆-map then so is every h i .

Proof. By induction on φ ∈ ∆ we prove that

limÐ→D ⊧ φ(ā) iff there is some i ∈ I and a tuple b̄ with

h i(b̄) = ā such thatD(i) ⊧ φ(b̄) .

(φ atomic) follows from the definition of limÐ→D.(φ = ⋁Ψ) IfD(i) ⊧ φ(b̄) then there is a formula ψ ∈ Ψ withD(i) ⊧
ψ(b̄). By inductive hypothesis it follows that limÐ→D ⊧ φ(ā). Conversely,
if limÐ→D ⊧ ψ(ā), for some ψ ∈ Ψ , then we have D(i) ⊧ ψ(b̄) and
h i(b̄) = ā, for suitable i and b̄.(φ = ⋀Ψ) IfD(i) ⊧ φ(b̄) then the inductive hypothesis implies that
limÐ→D ⊧ ψ(ā), for each ψ ∈ Ψ . Conversely, if limÐ→D ⊧ φ(ā) then we can
find, for every ψ ∈ Ψ , an index iψ ∈ I and a tuple b̄ψ with h iψ(b̄ψ) = ā
andD(iψ) ⊧ ψ(b̄ψ). Since h iψ(b̄ψ) = h iϑ (b̄ϑ), for ψ, θ ∈ Ψ , there exists,
by definition of limÐ→D, an index lψϑ ≥ iψ , iθ with

D(iψ , lψϑ)(b̄ψ) = D(iϑ , lψϑ)(b̄ϑ) .

Since J is κ-directed we can find index k ∈ I with lψϑ ≤ k, for all ψ, ϑ.
Let c̄ ∶= D(iψ , k)(b̄ψ), for some/all ψ. It follows that hk(c̄) = ā andD(k) ⊧ ψ(c̄), for every ψ ∈ Ψ .(φ = ¬ψ) Since all homomorphismsD(i , k) are ∆-maps and ¬ψ ∈ ∆
we have

D(i) ⊧ ψ(b̄) iff D(k) ⊧ ψ(D(i , k)(b̄)) , for all i ≤ k .
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2. Elementary embeddings

Consequently, h i(b̄) = h j(c̄), for arbitrary i , j ∈ I, implies

D(i) ⊧ ψ(b̄) iff D( j) ⊧ ψ(c̄) .

Therefore, we have

limÐ→D ⊭ ψ(ā)
iff D(i) ⊭ ψ(b̄) for all i and b̄ ∈ h−1

i (ā) ,
iff D(i) ⊧ ¬ψ(b̄) for all i and b̄ ∈ h−1

i (ā) ,
iff D(i) ⊧ ¬ψ(b̄) for some i and b̄ ∈ h−1

i (ā) .

(φ = ∃yψ(x̄ , y)) If D(i) ⊧ ∃yψ(b̄, y) then there is some c ∈ D(i)
such thatD(i) ⊧ ψ(b̄, c). By inductive hypothesis, it follows that

limÐ→D ⊧ ψ(h i(b̄c)) .

Hence, limÐ→D ⊧ φ(h i(b̄)). Conversely, suppose that limÐ→D ⊧ ∃yψ(ā, y).
Then there is some element c such that limÐ→D ⊧ ψ(ā, c). By inductive
hypothesis, we can find an index i and elements b̄d ∈ h−1

i (āc) such thatD(i) ⊧ ψ(b̄, d). Hence,D(i) ⊧ φ(b̄). ◻
Exercise 2.2. Find an example showing that the above Proposition does
not hold if ∆ contains a formula with a universal quantifier.

We conclude this section with the observation that interpretations
preserve elementary embeddings.

Lemma 2.10. Let Σ and Γ be signatures. Every first-order interpretation I
from Σ to Γ induces a functor I ∶ EmbI → EmbFO(Γ), whereEmbI denotes
the subcategory of EmbFO(Σ) consisting of all structures A such that I(A)
is defined.

Proof. Suppose that I = ⟨α, (δs)s , (εs)s , (φξ)ξ⟩, let h ∶ A → B be an
elementary embedding such that I(A) and I(B) are defined, and let

ιs ∶ δA
s → I(A) and κs ∶ δB

s → I(B)
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be the canonical functions mapping a tuple to the element it encodes.
We define I(h) ∶ I(A) → I(B) as follows. For every element c of I(A)
of sort s, we set

I(h)(c) ∶= κs(h(ā)) , for any ā ∈ ι−1
s (c) .

We claim that I(h) is a well-defined elementary embedding.
To show that it is well-defined, suppose that ā, ā′ ∈ ι−1

s (c). Then

A ⊧ εs(ā, ā′) implies B ⊧ εs(h(ā), h(ā′)) .

Consequently,

κs(h(ā)) = κs(h(ā′)) ,
as desired.

Hence, it remains to show that I(h) is an elementary embedding. Let
c̄ be an n-tuple in I(A)with sorts s̄ and let φ(x̄) be a first-order formula.
Choosing tuples ā i ∈ ι−1

s i
(c i), it follows by Lemma c1.5.9 that

I(A) ⊧ φ(c̄)
iff A ⊧ φI(ā0 , . . . , ān−1)
iff B ⊧ φI(h(ā0), . . . , h(ān−1))
iff I(B) ⊧ φ(κs0(h(ā0)), . . . , κsn−1(h(ān−1)))
iff I(B) ⊧ φ(I(h)(c̄)) . ◻

3. The Theorem of Löwenheim and Skolem
Ageneral method to eliminate existential quantifiers consists in replacing
them by functions. Consider a formula ψ = ∃yφ(x̄ , y) which states that,
for a given value of x̄, there exists some element y satisfying φ. If we
define a function f that maps all suitable values of x̄ to such an element y
then we can write ψ equivalently as φ(x̄ , f x̄). Informally we say that the
function f we constructed yields a ‘witness’ that asserts the truth of ∃yφ.
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3. The Theorem of Löwenheim and Skolem

Definition 3.1. Let Φ ⊆ FO0∞ℵ0
[Σ] and ∆ ⊆ FO<ω∞ℵ0

[Σ].
(a) A Σ-term t(x̄) defines a Skolem function for a formula ∃yφ(x̄ , y)

(w.r.t. Φ) if

Φ ⊧ ∀x̄[∃yφ(x̄ , y) → φ(x̄ , t(x̄))] .

A formula of the form ∀x̄[∃yφ(x̄ , y) → φ(x̄ , t)] is called a Skolem
axiom for ∃yφ.

(b) A ∆-Skolemisation of Φ is a set Φ+ ⊆ FO0∞ℵ0
[Σ+], for some signa-

ture Σ+ ⊇ Σ, such that◆ Φ ⊆ Φ+,
◆ every model M ⊧ Φ has an Σ+-expansion M+ ⊧ Φ+ and,
◆ for every formula ∃yφ ∈ ∆, there exists a Σ+-term defining a

Skolem function for ∃yφ.
(c) We say that a theory T ⊆ FO0∞ℵ0

[Σ] is a ∆-Skolem theory if T is a
∆-Skolemisation of itself. If ∆ = FO<ω

κℵ0
[Σ] we simply speak of a Skolem-

isation and a Skolem theory. The intended value of κ and Σ should always
be clear from the context.

Example. Consider the ordered additive group of the real numbers R =⟨R,+, <, f ⟩ expanded by the (definable) function f (x) ∶= x/2. The term
f (x0 + x1) defines a Skolem function for the formula

φ(x0 , x1) ∶= ∃y(x0 < y < x1) .

The main reason why Skolem theories are interesting is the property
of their models that all substructures are elementary.

Lemma 3.2. Let T ⊆ FO0
κℵ0
[Σ] be a ∆-Skolem theory where the set ∆ ⊆

FO<ω
κℵ0
[Σ] is closed under negation, subformulae, and negation normal

forms. If A ⊧ T and B ⊆ A then B ⪯∆ A.

Proof. We apply the Tarski-Vaught Test. Suppose that ∃yφ(x̄ , y) ∈ ∆ is
a formula and ā ⊆ B a tuple such that

A ⊧ ∃yφ(ā, y) .
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Let t be a term defining a Skolem function for ∃yφ. Then

A ⊧ φ(ā, t(ā)) .

Since ā ⊆ B and B is closed under all functions of A it follows that
tA(ā) ∈ B, as desired. ◻

Syntactically we can use Skolemisation to eliminate existential quanti-
fiers.

Lemma 3.3. Suppose that T ⊆ FO0
κℵ0
[Σ] is a Skolem theory. For every

formula φ ∈ FO<ω
κℵ0
[Σ], we can construct a formula φ∗ ∈ ∀<ω

κℵ0
[Σ] such

that

φ∗ ⊧ φ and T ⊧ φ → φ∗ .

In particular, φ ≡ φ∗ modulo T.

Proof. We define φ∗ by induction on φ. W.l.o.g. we may assume that φ is
in negation normal form. For φ ∈ ∀κℵ0 we set φ∗ ∶= φ. For conjunctions,
disjunctions, and universal quantifiers, we set

(⋀Ψ)∗ ∶= ⋀{ψ∗ ∣ ψ ∈ Ψ } ,(⋁Ψ)∗ ∶= ⋁{ψ∗ ∣ ψ ∈ Ψ } ,(∀yψ)∗ ∶= ∀yψ∗ .

Finally, for φ = ∃yψ(x̄ , y) we set φ∗ ∶= ψ∗(x̄ , tφ) where the term tφ
defines a Skolem function for φ. ◻
Corollary 3.4. For every Skolem theory T ⊆ FO0

κℵ0
[Σ] there exists a set

Φ ⊆ ∀κℵ0[Σ] such that T ≡ Φ.

Proof. Let Φ ∶= {φ ∈ ∀0
κℵ0
[Σ] ∣ T ⊧ φ }. Then we have T ⊧ Φ. Con-

versely, we can use the preceding lemma to assign to every formula φ ∈ T
a formula φ∗ ∈ Φ with φ∗ ⊧ φ. This implies that Φ ⊧ T . ◻
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3. The Theorem of Löwenheim and Skolem

Constructing ∆-Skolemisations is easy. We just have to add Skolem
axioms for all formulae in ∆.

Lemma 3.5. For all Φ ⊆ FO0
κℵ0
[Σ] and ∆ ⊆ FO<ω

κℵ0
[Σ], there exists a

∆-Skolemisation Φ+ ⊆ FO0
κℵ0
[Σ+] of Φ with ∣Φ+∣ ≤ ∣Φ∣ ⊕ ∣∆∣ and ∣Σ+∣ ≤∣Σ∣ ⊕ ∣∆∣.

Proof. Let Σ+ be the signature obtained from Σ by adding new function
symbols f∃yφ , for every formula ∃yφ ∈ ∆. We construct Φ+ by adding
to Φ all Skolem axioms

χ∃yφ ∶= ∀x̄[∃yφ(x̄ , y) → φ(x̄ , f∃yφ x̄)]
with ∃yφ ∈ ∆. Clearly, ∣Φ+∣ ≤ ∣Φ∣ ⊕ ∣∆∣ and ∣Σ+∣ ≤ ∣Σ∣ ⊕ ∣∆∣.
We claim that Φ+ is a ∆-Skolemisation of Φ. By construction, we

have Φ ⊆ Φ+ and every formula ∃yφ ∈ ∆ has the Skolem function f∃yφ .
Hence, it remains to prove that every model of Φ can be expanded to
one of Φ+.

Suppose that A ⊧ Φ. We construct an expansion A+ ⊧ Φ+ as follows.
Let ∃yφ ∈ ∆ and ā ⊆ A. If A ⊧ ∃yφ(ā, y) then we select some b ∈ A such
that A ⊧ φ(ā, b) andwe set f A+∃yφ(ā) ∶= b. Otherwise, we set f A+∃yφ(ā) ∶= b,
for an arbitrary element b ∈ A. This ensures that A+ ⊧ χ∃yφ . Since A ⊧ Φ
and the function symbols f∃yφ do not appear in Φ we further have
A+ ⊧ Φ. Consequently, A+ ⊧ Φ+. ◻

In order to obtain a Skolem theory we can iterate this construction.

Theorem 3.6. Let κ be a regular cardinal. Every set Φ ⊆ FO0
κℵ0
[Σ] has a

Skolemisation Φ+ ⊆ FO0
κℵ0
[Σ+] such that ∣Φ+∣ ≤ (∣Σ∣⊕ℵ0)<κ and (Φ+)⊧

is a Skolem theory.

Proof. We construct an increasing sequence of sets (Φα)α<κ with Φα ⊆
FO0

κℵ0
[Σα]. We set Φ0 ∶= Φ and Φδ ∶= ⋃α<δ Φα , for limit ordinals δ. For

the successor step, we use Lemma 3.5 to obtain a FO<ω
κℵ0
[Σα]-Skolemisa-

tion Φα+1 of Φα such that

∣Φα+1∣ ≤ ∣Φα ∣ ⊕ ∣FO<ω
κℵ0
[Σα]∣ and ∣Σα+1∣ ≤ ∣Σα ∣ ⊕ ∣FO<ω

κℵ0
[Σα]∣ .
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We claim that the union Φ+ ∶= ⋃α<κ Φα is the desired Skolemisa-
tion. Let Σ+ ∶= ⋃α<κ Σα . First, we show by induction on α that ∣Σα ∣ ≤(∣Σ∣ ⊕ ℵ0)<κ . Clearly, this holds for Σ0 = Σ. For the successor step, we
have

∣Σα+1∣ ≤ ∣Σα ∣ ⊕ ∣FO<ω
κℵ0
[Σα]∣≤ ∣Σα ∣ ⊕ (∣Σα ∣ ⊕ ℵ0)<κ = (∣Σα ∣ ⊕ ℵ0)<κ

≤ ((∣Σ∣ ⊕ ℵ0)<κ ⊕ ℵ0)<κ = (∣Σ∣ ⊕ ℵ0)<κ .

For limit ordinals δ < κ, it follows that

∣Σδ ∣ = sup
α<δ ∣Σα ∣ ≤ ∣δ∣ ⊗ (∣Σ∣ ⊕ ℵ0)<κ = (∣Σ∣ ⊕ ℵ0)<κ .

Consequently, we have

∣Σ+∣ = sup
α<κ
∣Σα ∣ ≤ κ ⊗ (∣Σ∣ ⊕ ℵ0)<κ = (∣Σ∣ ⊕ ℵ0)<κ ,

by Corollary a4.4.32. This implies that

∣Φ+∣ ≤ ∣FO0
κℵ0
[Σ+]∣ ≤ (∣Σ+∣ ⊕ ℵ0)<κ ≤ (∣Σ∣ ⊕ ℵ0)<κ .

Next, we prove that (Φ+)⊧ is a Skolem theory. Let ∃yφ ∈ FO<ω
κℵ0
[Σ+].

Since κ is regular it follows by induction on φ that ∃yφ ∈ FO<ω
κℵ0
[Σα], for

some α < κ. Hence, there is a Σα+1-term that defines a Skolem function
for ∃yφ.

Finally, to show that Φ+ is a Skolemisation of Φ it remains to prove
that every model of Φ can be expanded to one of Φ+. Let A ⊧ Φ be a
model of Φ. We construct a sequence (Aα)α≤κ of models Aα ⊧ Φα with
A0 = A such that, for all α ≤ β, Aβ is an expansion of Aα . Aκ ⊧ Φ+ is the
desired expansion of A.
We start with A0 ∶= A. For the successor step, suppose that Aα has

already been defined. Since Φα+1 is a Skolemisation of Φα we can ex-
pand Aα to a Σα+1-structure Aα+1 such that Aα+1 ⊧ Φα+1. For limit or-
dinals δ, we let Aδ be the ‘union’ of all the Aα , α < δ, that is, its universe
is A and, for each function f ∈ Σα , we add the function f Aα to Aδ . (Note
that this is well-defined since, if f ∈ Σα and α < β then f Aα = f Aβ .) ◻
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An important application of the technique of Skolemisation is the
following result.

Theorem 3.7 (Downward Löwenheim-Skolem Theorem).
Let ∆ ⊆ FO<ω

κℵ0
[Σ], for a regular cardinal κ, and set µ ∶= ∣Σ∣ ⊕ ∣∆∣ ⊕ κ−

where κ− ∶= sup{ λ ∣ λ < κ }.
For each Σ-structure A, every subset X ⊆ A, and all cardinals λ with∣X∣ ⊕ µ ≤ λ ≤ ∣A∣, there exists a ∆-substructure B ⪯∆ A of size ∣B∣ = λ

with X ⊆ B.

Proof. Let Γ be the closure of ∆ under subformulae, negation, and neg-
ation normal form. Since every formula φ ∈ FO<ω

κℵ0
[Σ] has less that κ

subformulae it follows that ∣Γ∣ ≤ ∣∆∣ ⊗ κ−. By Lemma 3.5, we can choose
a Γ-Skolemisation T+ ⊆ FO0

κ+ℵ0
[Σ+] of ThΓ(A) such that

∣T+∣ ≤ ∣ThΓ(A)∣ ⊕ ∣Γ∣ and ∣Σ+∣ ≤ ∣Σ∣ ⊕ ∣Γ∣ ≤ µ .

Let A+ be a Σ+-expansion of A such that A+ ⊧ T+, and choose some
set X ⊆ Z ⊆ A of size ∣Z∣ = λ. By Corollary b3.1.11, the substructure
B+ ∶= ⟪Z⟫A+ has cardinality

λ = ∣Z∣ ≤ ∣B+∣ ≤ ∣Z∣ ⊕ ∣Σ+∣ ⊕ ℵ0 = λ .

By Lemma 3.2, we have B+ ⪯Γ A+. Let B be the Σ-reduct of B+. Then
B ⪯∆ A, as desired. ◻
Corollary 3.8. Let A be a Σ-structure. For each set X ⊆ A and every
cardinal ∣X∣ ⊕ ∣Σ∣ ⊕ ℵ0 ≤ κ ≤ ∣A∣, there exists an elementary substructure
B ⪯ A of size ∣B∣ = κ such that X ⊆ B.

Example. The field R = ⟨R,+, ⋅, 0, 1⟩ of real numbers contains a count-
able elementary substructure R0 ≺ R.

We can generalise the technique of Skolemisation to FOκℵ0(∃λ) and
FOκℵ0(wo) in a straightforward way. As a result we obtain a variant of
the Löwenheim-Skolem Theorem for these logics.
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Theorem 3.9. Let ∆ ⊆ FO<ω
κℵ0
(∃λ)[Σ], for a regular cardinal κ, and set

µ ∶= ∣Σ∣ ⊕ ∣∆∣ ⊕ λ ⊕ κ− where κ− ∶= sup{ λ ∣ λ < κ }.
For each Σ-structure A, every subset X ⊆ A, and all cardinals ν with∣X∣⊕ µ ≤ ν ≤ ∣A∣, there exists a ∆-substructure B ⪯∆ A of size ∣B∣ = ν with

X ⊆ B.

Proof. Theproof is analogous to that of Theorem 3.7.We adapt the notion
of a Skolem function and a ∆-Skolemisation as follows. We say that a
sequence (t i)i<λ defines a Skolem function for a formula of the form∃λ yφ(x̄ , y) if, for all i , k < λ with i ≠ k,

Φ ⊧ ∀x̄(∃λ yφ(x̄ , y) → φ(x̄ , t i(x̄))) ,
Φ ⊧ ∀x̄(∃λ yφ(x̄ , y) → t i(x̄) ≠ tk(x̄)) .

A ∆-Skolemisation of Φ is a set Φ+ ⊇ Φ such that

◆ every model of Φ can be extended to one of Φ+,
◆ for every formula ∃yφ ∈ ∆, there is a term defining a Skolem

function for ∃yφ,

◆ for every formula ∃λ yφ ∈ ∆, there is a sequence of terms defining
a Skolem function for ∃λ yφ.

With these definitions it follows as above that if A ⊧ Φ+ and B ⊆ A then
B ⪯∆ A. Furthermore, for every set Φ, we can find a ∆-Skolemisation of
size ∣Φ∣ ⊕ ∣∆∣ ⊕ λ. Consequently, we can repeat the construction in the
proof of Theorem 3.7. ◻
Theorem 3.10. Let ∆ ⊆ FO<ω

κℵ0
(wo)[Σ], for a regular cardinal κ, and set

µ ∶= ∣Σ∣ ⊕ ∣∆∣ ⊕ κ− where κ− ∶= sup{ λ ∣ λ < κ }.
For each Σ-structure A, every subset X ⊆ A, and all cardinals λ with∣X∣ ⊕ µ ≤ λ ≤ ∣A∣, there exists a ∆-substructure B ⪯∆ A of size ∣B∣ = λ

with X ⊆ B.

Proof. We adapt the notion of a Skolem function and a ∆-Skolemisation
as follows. A sequence (tn)n<ω defines a Skolem function for the formula
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Wx̄ ȳφ(x̄ , ȳ, z̄) if, for all n < ω,

Φ ⊧ ∀z̄[¬Wx̄ ȳφ(x̄ , ȳ, z̄) → φ(tn+1(z̄), tn(z̄), z̄)] ,
that is, the sequence (tn)n yields witnesses for the fact that the relation
defined by φ is not well-founded.
A ∆-Skolemisation of Φ is a set Φ+ ⊇ Φ such that

◆ every model of Φ can be extended to one of Φ+,
◆ for every formula ∃yφ ∈ ∆, there is a term defining a Skolem

function for ∃yφ,

◆ for every formulaWx̄ ȳφ ∈ ∆, there is a sequence of terms defining
a Skolem function for Wx̄ ȳφ.

With these definitions it follows as above that if A ⊧ Φ+ and B ⊆ A then
B ⪯∆ A. (Note that, if φ(x̄ , ȳ, c̄)A, for c̄ ⊆ B, is a well-order of its field
then so is φ(x̄ , ȳ, c̄)A ∩ Bn = φ(x̄ , ȳ, c̄)B. Conversely, if φ(x̄ , ȳ, c̄)A is
not a well-order then the Skolem function yields an infinite strictly
decreasing sequence of elements of B. Hence, φ(x̄ , ȳ, c̄)A ∩ Bn is also
not a well-order.)

Furthermore, for every set Φ, we can find a ∆-Skolemisation of size∣Φ∣ ⊕ ∣∆∣ ⊕ λ. Consequently, we can repeat the construction in the proof
of Theorem 3.7. ◻
Exercise 3.1. Work out the missing details in the above proofs.

4. The Compactness Theorem
In this section we introduce an important method to construct models
from diagrams. These models M will have the additional nice property
that every element is denoted by some term, that is, M = ⟪∅⟫M.

Definition 4.1. Let Φ ⊆ FO0∞ℵ0
[Σ]. A structure H is a Herbrand model

of Φ if H ⊧ Φ and, for every a ∈ H, there is some term t ∈ T[Σ,∅] with
tH = a.
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We start by characterising those sets of formulae that contain sufficient
information to extract a model.

Definition 4.2. A set Φ ⊆ FO0∞ℵ0
[Σ] is =-closed if

◆ t = t ∈ Φ, for all t ∈ T[Σ,∅], and
◆ if φ(x) is an atomic formula and s, t ∈ T[Σ,∅] are terms with

s = t ∈ Φ then we have φ(s) ∈ Φ iff φ(t) ∈ Φ.

Lemma 4.3. Let Φ ⊆ FO0∞ℵ0
[Σ] be =-closed. The relation

s ∼ t : iff s = t ∈ Φ

is a congruence relation of the term algebra T[Σ,∅].
Proof. ∼ is reflexive since t = t ∈ Φ, for all t. For symmetry, suppose that
s = t ∈ Φ and set φ(x) ∶= x = s. It follows that

φ(s) = s = s ∈ Φ implies φ(t) = t = s ∈ Φ .

Similarly, if r = s ∈ Φ and s = t ∈ Φ then setting φ(x) ∶= r = x we see that

φ(s) = r = s ∈ Φ implies φ(t) = r = t ∈ Φ .

Consequently, ∼ is an equivalence relation.
Suppose that s i ∼ t i , for i < n, and let f ∈ Σ be an n-ary function

symbol. In the same way as above we can show, by induction on i, that

f s0 . . . s i s i+1 . . . sn−1 = f t0 . . . t i s i+1 . . . sn−1 ∈ Φ .

It follows that f T[Σ ,∅](s0 , . . . , sn−1) ∼ f T[Σ ,∅](t0 , . . . , tn−1), as desired.◻
Lemma 4.4. Every =-closed set of atomic sentences Φ ⊆ FO0∞ℵ0

[Σ] has a
Herbrand model H such that

Φ = {φ ∣ φ atomic and H ⊧ φ } .
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Proof. By Lemma 4.3, the relation

s ∼ t : iff s = t ∈ Φ

is a congruence relation of the term algebra T[Σ,∅]. Hence, we can take
the quotient H0 ∶= T[Σ,∅]/∼. Let H be the expansion of H0 by relations

RH ∶= { ⟨[t0]∼ , . . . , [tn−1]∼⟩ ∣ Rt0 . . . tn−1 ∈ Φ } ,
for each n-ary relation R ∈ Σ. We claim that H is the desired model.
Clearly, every element of H is denoted by some term. Furthermore,

by definition of H, we have H ⊧ φ, for every φ ∈ Φ. Conversely, suppose
that H ⊧ φ, for some atomic sentence φ. If φ = s = t then we have[s]∼ = [t]∼ which, by definition of H, implies that s = t ∈ Φ. Similarly, if
φ = Rt0 . . . tn−1 then ⟨[t0]∼ , . . . , [tn−1]∼⟩ ∈ RH. Hence, there are terms
s i ∼ t i such that Rs0 . . . sn−1 ∈ Φ. Since Φ is =-closed it follows that
Rt0 . . . tn−1 ∈ Φ. ◻

We have shown how to construct a model for a set of atomic formulae.
Next we turn to the case of formulae with quantifiers.

Definition 4.5. A Hintikka set is a set Φ ⊆ FO0∞ℵ0
[Σ] of sentences with

the following closure properties:

(h1) Φ is =-closed.

(h2) If φ ∈ Φ then ¬φ ∉ Φ.

(h3) If ¬¬φ ∈ Φ then φ ∈ Φ.

(h4) If ⋀Ψ ∈ Φ then Ψ ⊆ Φ.

(h5) If ¬⋀Ψ ∈ Φ then there is some ψ ∈ Ψ such that ¬ψ ∈ Φ.

(h6) If ⋁Ψ ∈ Φ then there is some ψ ∈ Ψ such that ψ ∈ Φ.

(h7) If ¬⋁Ψ ∈ Φ then ¬ψ ∈ Φ, for all ψ ∈ Ψ .

(h8) If ∀xφ(x) ∈ Φ then φ(t) ∈ Φ, for all t ∈ T[Σ,∅].
(h9) If ¬∀xφ(x) ∈ Φ then there is some t ∈ T[Σ,∅] with ¬φ(t) ∈ Φ.
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(h10) If ∃xφ(x) ∈ Φ then there is some t ∈ T[Σ,∅] with φ(t) ∈ Φ.
(h11) If ¬∃xφ(x) ∈ Φ then ¬φ(t) ∈ Φ, for all t ∈ T[Σ,∅].
Remark. Every elementary diagram is a Hintikka set.

Lemma 4.6. Every Hintikka set Φ ⊆ FO0∞ℵ0
[Σ] has a Herbrand model.

Proof. Let Φ0 ⊆ Φ consist of all atomic sentences in Φ. By the definition
of a Hintikka set it follows that Φ0 is =-closed. Hence, we can apply
Lemma 4.4 to obtain a Herbrand model H of Φ0. We claim that H ⊧ Φ.
We prove by induction on the structure of a formula φ that

φ ∈ Φ implies H ⊧ φ and ¬φ ∈ Φ implies H ⊧ ¬φ .

If φ is atomic then the claim follows by Lemma 4.4.
Suppose that φ = ¬ψ. If φ ∈ Φ then we can apply the inductive

hypothesis to ψ and it follows that H ⊧ ¬ψ. Similarly, if ¬φ ∈ Φ then we
have ψ ∈ Φ, which implies that H ⊧ ψ and H ⊧ ¬φ.
Consider the case that φ = ⋀Ψ . If ⋀Ψ ∈ Φ then Ψ ⊆ Φ implies that

H ⊧ ψ, for all ψ ∈ Ψ , and we have H ⊧ ⋀Ψ . Analogously, if ¬⋀Ψ ∈ Φ
then there is some ψ ∈ Ψ with ¬ψ ∈ Φ. By inductive hypothesis it follows
that H ⊧ ¬ψ which implies that H ⊧ ¬⋀Ψ .

Suppose that φ = ∀xψ(x). If φ ∈ Φ then ψ(t) ∈ Φ, for all t ∈ T[Σ,∅].
Hence,H ⊧ ψ(t), for all t ∈ T[Σ,∅]. Since every element of H is denoted
by a term it follows that H ⊧ ψ(a), for all a ∈ H, that is, H ⊧ ∀xψ(x).
Finally, if¬∀xψ(x) ∈ Φ then there is some t ∈ T[Σ,∅] such that¬ψ(t) ∈
Φ. Therefore, we have H ⊧ ¬ψ(t) which implies that H ⊧ ¬∀xψ(x). The
remaining cases are proved analogously. ◻

It is quite tedious to check that a set Φ satisfies conditions (h1)–(h11).
The following lemma provides a simpler criterion for Φ being a Hintikka
set.

Lemma 4.7. Let Φ ⊆ FO0∞ℵ0
[Σ] be a set of sentences with the following

properties:
(1) Every finite subset Φ0 ⊆ Φ is satisfiable.
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(2) For every sentence φ ∈ FO0∞ℵ0
[Σ] we have φ ∈ Φ or ¬φ ∈ Φ.

(3) If ∃xφ(x) ∈ Φ then there exists some term t ∈ T[Σ,∅] such that
φ(t) ∈ Φ.

(4) If ⋁Ψ ∈ Φ where ∣Ψ ∣ ≥ ℵ0 then there is some ψ ∈ Ψ with ψ ∈ Φ.

(5) If ¬⋀Ψ ∈ Φ where ∣Ψ ∣ ≥ ℵ0 then there is some ψ ∈ Ψ with ¬ψ ∈ Φ.

Then Φ is a Hintikka set.

Proof. First we show that

(∗) if Φ0 ⊆ Φ is finite and Φ0 ⊧ φ then φ ∈ Φ.

Suppose otherwise. By (2), φ ∉ Φ implies ¬φ ∈ Φ. Hence, (1) implies that
Φ0 ∪ {¬φ} is satisfiable, and it follows that Φ0 ⊭ φ. A contradiction.

From (∗) we can conclude that Φ satisfies (h1), (h3), (h4), (h7), (h8),
and (h11). Furthermore, (1) implies (h2), and (3) and (∗) imply that
Φ satisfies (h9) and (h10).

It remains to prove (h5) and (h6). If Ψ = {ψ0 , . . . ,ψn−1} is finite
then ψ0 , . . . ,ψn−1 ∈ Φ implies, by (∗), that ⋀Ψ ∈ Φ. Hence, ¬⋀Ψ ∉ Φ.
Similarly, If ¬ψ0 , . . . ,¬ψn−1 ∈ Φ then it follows that ⋁Ψ ∉ Φ. If, on the
other hand, Ψ is infinite then (h5) and (h6) follow immediately from
(4) and (5). ◻

Hintikka sets can be used to prove the Compactness Theorem which
is the most fundamental result in first-order model theory. Most results
in the remainder of this book are based on this theorem. It is frequently
used to construct structures with some given properties. To do so, one de-
scribes the desired structure by a set of first-order formulae and then uses
the Compactness Theorem to prove that this set of axioms is satisfiable.

Theorem 4.8 (Compactness Theorem). Let Φ ⊆ FO[Σ, X] be a set of
first-order formulae and φ ∈ FO[Σ, X].

(a) Φ is satisfiable if and only if every finite subset Φ0 ⊆ Φ is satisfiable.

(b) Φ ⊧ φ if and only if there exists a finite subset Φ0 ⊆ Φ such that
Φ0 ⊧ φ.
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Proof. Let us first prove that (a) implies (b). We have

Φ ⊧ φ iff Φ ∪ {¬φ} is inconsistent
iff there exists a finite subset Φ0 ⊆ Φ such that

Φ0 ∪ {¬φ} is inconsistent
iff there exists a finite subset Φ0 ⊆ Φ such that Φ0 ⊧ φ .

It remains to prove (a). For the nontrivial direction, suppose that every
finite subset of Φ is satisfiable. By replacing every free variable in Φ by a
constant symbol we may assume that every formula in Φ is a sentence.
We have to construct a model of Φ. By Lemma 4.6, it is sufficient to find
a Hintikka set Ψ ⊇ Φ.
We construct Ψ in stages. Let κ ∶= ∣FO0[Σ]∣ = ∣Σ∣ ⊕ ℵ0. Let C be a set

containing κ+ constant symbols of each sort and set ΣC ∶= Σ ∪ C. We fix
an enumeration (φα)α<κ+ of FO0[ΣC] such that, for every ψ ∈ FO0[ΣC],
the set { α < κ+ ∣ φα = ψ } is cofinal in κ+.
We construct an increasing sequence (Ψα)α<κ+ of sets Φ ⊆ Ψα ⊆

FO0[ΣC] such that every finite subset of Ψα is satisfiable and such that
the limit Ψ ∶= ⋃α Ψα is a Hintikka set. By Lemma 4.7 it is sufficient to
ensure that◆ φα ∈ Ψα+1 or ¬φα ∈ Ψα+1,◆ If φα = ∃xϑ and φα ∈ Ψα+1 then ϑ(c) ∈ Ψα+1, for some constant

c ∈ C.
Set Ψ0 ∶= Φ. For limit ordinals δ, we set Ψδ ∶= ⋃α<δ Ψα . For the

successor step, suppose that Ψα has already been defined. If every finite
subset of Ψα ∪ {φα} is satisfiable then set ψ ∶= φα else set ψ ∶= ¬φα . We
claim that every finite subset of Ψα∪{ψ} is satisfiable. If ψ = φα then this
holds by choice of ψ. Hence, suppose that ψ = ¬φα and there is a finite
subset Γ0 ⊆ Ψα ∪ {¬φα} that is inconsistent. By construction there is
also a finite subset Γ1 ⊆ Ψα ∪{φα} which is inconsistent. Hence, Γ0 ⊧ φα
and Γ1 ⊧ ¬φα . It follows that Γ ∶= Γ0 ∪ Γ1 is a finite subset of Ψα with
Γ ⊧ φα ∧¬φα . Thus, Γ is inconsistent in contradiction to our assumption
on Ψα .
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We have found a set Ψα ∪ {ψ} that satisfies the first of our conditions.
If ψ is not of the form ∃xϑ then we can set Ψα+1 ∶= Ψα ∪ {ψ} and we
are done. Hence, suppose that ψ = ∃xϑ(x). Since ∣Ψα ∣ ≤ κ we can
find a constant symbol c ∈ C that does not appear in Ψα . We define
Ψα+1 ∶= Ψα∪{ψ, ϑ(c)}. Note that, since every finite subset of Ψα∪{∃xϑ}
is satisfiable so is every finite subset of Ψα+1. ◻
Exercise 4.1. Let φ ∈ FO and Φ, T ⊆ FO. Prove that, if φ ≡ Φ modulo T
then there exists a finite subset Φ0 ⊆ Φ such that φ ≡ ⋀Φ0 modulo T .

Exercise 4.2. LetKi , i ∈ I, be a family of first-order axiomatisable classes
such that,⋂i∈I0 Ki ≠ ∅, for every finite set I0 ⊆ I. Show that⋂i∈I Ki ≠ ∅.

Exercise 4.3. Let T be a first-order theory and A a structure. Prove that
A can be embedded into some model of T if, and only if, every finitely
generated substructure of A can be embedded into some model of T .

We conclude this section with some simple applications of the Com-
pactness Theorem. First, we show that first-order logic is not able to
count.

Lemma 4.9. Let Σ be an S-sorted signature and s ∈ S a sort. There exists
no set Φ ⊆ FO0[Σ] such that

A ⊧ Φ iff ∣As ∣ < ℵ0 , for all Σ-structures A .

Proof. For a contradiction, suppose that there is such a set Φ. Let

ψn ∶= ∃x0⋯∃xn−1⋀
i<k

x i ≠ xk

be the sentence expressing that there are at least n elements of sort s. We
claim that

Γ ∶= Φ ∪ {ψn ∣ n < ω }
is satisfiable. This yields the desired contradiction.
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By the Compactness Theorem, we only need to check that every finite
subset of Γ is satisfiable. If Γ0 ⊆ Γ is finite then there exists a number
k < ω such that

Γ0 ⊆ Φ ∪ {ψn ∣ n < k } .

Choose any finite Σ-structure A with ∣As ∣ ≥ k. Since A is finite we have
A ⊧ Φ. Furthermore,A ⊧ ψn , for all n < k. Hence,A is amodel of Γ0. ◻
Example. Let us show that there is no set of first-order formulae ex-
pressing that a graph is connected. Suppose that Φ ⊆ FO[E] is a set of
formulae such that

G ⊧ Φ iff G is a connected undirected graph .

We define formulae φn(x , y) saying that there exists a path of length at
most n from x to y by

φ0(x , y) ∶= x = y
and φn+1(x , y) ∶= φn(x , y) ∨ ∃z(Exz ∧ φn(z, y)) .

Let c, d be new constant symbols and set

Ψ ∶= Φ ∪ {¬φn(c, d) ∣ n < ω } .

Then Ψ is inconsistent since any model would be a connected graph that
does not contain a path from c to d. Let Ψ0 ⊆ Ψ be a finite subset. There
is some number k such that

Ψ0 ⊆ Φ ∪ {¬φn(c, d) ∣ n < k } .

Let Pk be the graph consisting of a single path with k edges where the
endpoints are denoted by c and d.

c Ð ● Ð ⋅ ⋅ ⋅ Ð ● Ð d

Then we have Pk ⊧ Ψ0. Hence, every finite subset of Ψ is satisfiable and,
by the Compactness Theorem, it follows that Ψ has a model. A contra-
diction.
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Exercise 4.4. (a) Show that the class of all undirected, acyclic graphs is
first-order axiomatisable. (A graph is acyclic if it does not contain a path
v0 , v1 , . . . , vn−1 , vn , v0 where all the v i are distinct.)

(b) Show that the class of all undirected graph that are not acyclic is
not first-order axiomatisable.

(c) Use (b) to prove that the class of all undirected acyclic graphs is
not finitely first-order axiomatisable.

Lemma 4.10. The Compactness Theorem fails for FOκℵ0[Σ] if κ > ℵ0.

Proof. Let φn ∶= ∃x0⋯∃xn−1⋀i≠k x i ≠ xk and

φfin ∶= ⋁{¬φn ∣ n < ω } .

The set Φ ∶= {φfin} ∪ {φn ∣ n < ω } is unsatisfiable but each of its finite
subsets has a model. ◻
Lemma 4.11. Let K be a class of Σ-structures. If both K and Str[Σ] ∖ K
are first-order axiomatisable then the class K is finitely axiomatisable.

Proof. Let Φ+ and Φ− be sets such that

K =Mod(Φ+) and Str[Σ] ∖ K =Mod(Φ−) .

Then Φ+ ∪ Φ− is inconsistent. Hence, there are finite subsets Φ+
0 ⊆ Φ+

and Φ−
0 ⊆ Φ− such that Φ+

0 ∪ Φ−
0 is inconsistent. Setting φ ∶= ⋀Φ−

0 it
follows that Φ+ ⊧ ¬φ−. Hence,

A ⊧ ¬φ− , for all A ∈ K .

Conversely, we have

A ⊧ φ− , for all A ∉ K .

Consequently, Mod(¬φ−) = K, as desired. ◻
Generalising the idea behind Lemma 4.9 we obtain a converse to the

Downward Löwenheim-Skolem Theorem.
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Theorem 4.12 (Upward Löwenheim-Skolem-Tarski Theorem).
Let T ⊆ FO0[Σ]. If there exists a sort s such that, for every n < ℵ0, T has
a model A with ∣As ∣ ≥ n then T has models A where ∣As ∣ has arbitrarily
large cardinality.

Proof. Suppose that T has, for every n < ℵ0, a model whose domain
of sort s has size at least n. Let κ be an arbitrary cardinal and fix a set
C ∶= { cα ∣ α < κ } of κ constant symbols of sort s such that Σ and C are
disjoint. We claim that the set

Φ ∶= T ∪ { c ≠ d ∣ c, d ∈ C , c ≠ d }
has a model. By the Compactness Theorem, it is sufficient to show that
every finite subset Φ0 ⊆ Φ is satisfiable. Since Φ0 is finite, there exists a
finite set C0 ⊆ C such that

Φ0 ⊆ T ∪ { c ≠ d ∣ c, d ∈ C0 , c ≠ d } .

By assumption, there exists a model A ⊧ φ with ∣As ∣ ≥ ∣C0∣. We can turn
it into a model of Φ0 by interpreting the constant symbols c ∈ C0 by
distinct elements of As . ◻

The next example shows that, again, the above theorem fails for FOκℵ0

with κ > ℵ0. (Another counterexample is given by Lemma c1.1.7.)

Example. Let φ ∈ FO be a sentence axiomatising the class of ordered
fields. The FOℵ1ℵ0 -sentence

ψ ∶= φ ∧ ∀x ⋁
n<ω

x < 1 +⋯ + 1

axiomatises the class of all archimedian ordered fields. It follows that
ψ has only models of cardinality κ with ℵ0 ≤ κ ≤ 2ℵ0 .

As an immediate consequence of the Upward Löwenheim-Skolem-
Tarski Theorem we obtain the result that infinite structures cannot be
characterised up to isomorphism in first-order logic.
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Corollary 4.13. If A is a structure with at least one infinite domain then
there exists no set Φ ⊆ FO such that

B ⊧ Φ iff B ≅ A .

5. Amalgamation
We can use the Upward Löwenheim-Skolem-Tarski Theorem to con-
struct elementary extensions of a single structure. In this section we
present a way to find a common elementary extension of several struc-
tures.

Definition 5.1. Let L be a logic.
(a) For sets Φ, ∆ ⊆ L of formulae, we define the set of all ∆-conse-

quences of Φ by

Φ⊧∆ ∶= Φ⊧ ∩ ∆ .

(b) Suppose that L is algebraic. For structures A and B and tuples
ā ⊆ A and b̄ ⊆ B, we write

⟨A, ā⟩ ≤∆ ⟨B, b̄⟩ : iff A ⊧ φ(ā) implies B ⊧ φ(b̄) ,
for all φ ∈ ∆ .

Theorem 5.2 (Amalgamation Theorem). Let B and C be Σ-structures,
∆ ⊆ FO, and ā ⊆ B, c̄ ⊆ C sequences such that

⟨C, c̄⟩ ≤∃∆ ⟨B, ā⟩ .

There exists an elementary extensions D ⪰ B and a ∆-map g ∶ C → D
with g(c̄) = ā.

⟪ā⟫B

B C

D

⊆ ā ↦ c̄

⪯ g
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Proof. By taking an isomorphic copy of C we may assume that ā = c̄ and
B ∩ C = ā. To find the desired structure D we prove that

T ∶=Th(BB) ∪Th∆(CC)
is satisfiable. By the Compactness Theorem, it is sufficient to show that
every finite subset T0 ⊆ T has a model. Given T0 ⊆ T set

φ(ā, d̄) ∶= ⋀(T0 ∩Th∆(CC))
where d̄ ⊆ C ∖ ā. Suppose, for a contradiction, that

Th(BB) ⊧ ¬∃ ȳφ(ā, ȳ) .

Then we have ⟨B, ā⟩ ⊧ ¬∃ ȳφ(ā, ȳ) and, since ∃ ȳφ ∈ ∃∆, it follows
that ⟨C, ā⟩ ⊧ ¬∃ ȳφ(ā, ȳ). Consequently, we have Th∆(CC) ⊧ ¬φ(ā, d̄).
Contradiction.

Since Th(BB) is complete it follows that Th(BB) ⊧ ∃ ȳφ(ā, ȳ). Thus,
there exists some tuple b̄ ⊆ B such that BB ⊧ φ(ā, b̄). The structure⟨BB , b̄⟩ ⊧ T0 is our desired model.
We have shown that there exists a model D ⊧ T . Since D ⊧Th(BB)

there exists an elementary embedding h ∶ B → D and, by taking iso-
morphic copies, we may assume that D ⪰ B. We define a function
g ∶ C → D by setting g(d) ∶= dD, for d ∈ C. (dD is the value of the
constant symbol d in D.) Since D ⊧Th∆(CC) it follows that g ∶ C → D
is a ∆-map. Furthermore, we have g(c̄) = c̄D = ā. ◻
Corollary 5.3. If A ≡ B then there exists a structure C such that A ⪯ C
and B ⪯ C.

Let us record a special instance of the Amalgamation Theorem that
will be used in the next section.

Corollary 5.4. Let B and C be Σ-structures and ā ⊆ B a sequence of
elements. If f ∶ ⟨ā⟩ → C is a homomorphism such that

⟨C, f ā⟩ ≤∃ ⟨B, ā⟩ ,
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then there exists an elementary extension D ⪰ B and an embedding
g ∶ C → D such that g f (ā) = ā.

Lemma 5.5. Let T , ∆ ⊆ FO where ∆ is closed under disjunctions. Then
A ⊧ T⊧∆ if, and only if, there exists a model B ⊧ T such that B ≤∆ A.

Proof. (⇐) Obviously, B ⊧ T⊧∆ and B ≤∆ A implies that A ⊧ T⊧∆ .(⇒) Set Φ ∶=Th∆¬(A) where ∆¬ ∶= {¬φ ∣ φ ∈ ∆ }. It is sufficient to
find a model B of Ψ ∶= Φ ∪ T . If Ψ is unsatisfiable then there exists a
finite subset {φ0 , . . . , φk} ⊆ Φ such that

T ⊧ ¬φ0 ∨⋯ ∨ ¬φk .

Suppose that φ i = ¬ψ i , for ψ i ∈ ∆. Then T ⊧ ψ0 ∨ ⋅ ⋅ ⋅ ∨ ψk implies that
ψ0 ∨ ⋅ ⋅ ⋅ ∨ ψk ∈ T⊧∆ and, hence, A ⊧ ψ0 ∨ ⋅ ⋅ ⋅ ∨ ψk in contradiction to
A ⊧ φ i , for all i ≤ k. ◻
Corollary 5.6. Let T , ∆ ⊆ FO where ∆ is closed under disjunctions, and
set ∆¬ ∶= {¬φ ∣ φ ∈ ∆ }. For every model A ⊧ T⊧∀∆ , there exists a model
B ⊧ T and a ∆¬-map g ∶ A→ B.

Proof. Suppose that A ⊧ T⊧∀∆ . By Lemma 5.5, we can find a model C ⊧ T
such that A ≤∃∆¬ C. By the Amalgamation Theorem, it follows that there
exists some elementary extension B ⪰ C and a ∆¬-map g ∶ A→ B. ◻

We can amalgamate several structures by iterating the Amalgamation
Theorem.

Lemma 5.7. Let Bi , i < α, be a family of structures and suppose that
A ⊆ Bi , for all i < α, is a common substructure with universe A = B i ∩Bk ,
for all i ≠ k. There exists a structure C such that Bi ⪯ C, for all i < α.

Proof. We construct an elementary chain (Ci)i<α such that Bi ⪯ Ci ,
for i < α. The structure C ∶= ⋃i<α Ci has the desired properties since
Bi ⪯ Ci ⪯ C.
We define Ci by induction on i. We start with C0 ∶= B0 and, for limit

ordinals δ, we set Cδ ∶= ⋃i<δ Ci . For the successor step, we can apply the
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Amalgamation Theorem to obtain a common elementary extension Ci+1
of Ci and Bi+1.

A

Ci Bi+1

Ci+1

⪯ ⪯
⪯ ⪯

◻
We conclude this section with an amalgamation theorem for expan-

sions instead of extensions. We also record two applications.

Theorem 5.8. Let Γ0 and Γ1 be signatures and set Σ ∶= Γ0 ∩ Γ1. Suppose
that Ai is a Γi -structure, for i < 2, and let ā ⊆ A0 ∩ A1 be a sequence such
that

⟨A0∣Σ , ā⟩ ≡ ⟨A1∣Σ , ā⟩ .

Then there exists a (Γ0∪Γ1)-structureBwith A0 ⪯ B∣Γ0 and an elementary
embedding g ∶ A1 → B∣Γ1 with g(ā) = ā.

Proof. We construct structures An
i for i < 2 and n < ω as follows. We

start with A0
i ∶= Ai . If An

0 and An
1 are already defined then we apply the

Amalgamation Theorem twice. First, we use it to obtain an elementary
extension An+1

0 ⪰ An
0 and an elementary embedding An

1 ∣Σ → An+1
0 ∣Σ .

Thenwe construct an elementary extension An+1
1 ⪰ An

1 and an elementary
embedding An+1

0 ∣Σ → An+1
1 ∣Σ .

⟪ā⟫
A0
0

A0
1

A1
0

A1
1

A2
0

A2
1

⋯

⋯

⪯

⪯

⪯

⪯
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Let Bi ∶= ⋃n An
i . The elementary embeddings induce an isomorphism

h ∶ B0∣Σ → B1∣Σ . We use h to expand the Γ0-structure B0 to a (Γ0 ∪ Γ1)-
structure B by setting

ξB ∶= h−1[ξB1] , for ξ ∈ Γ1 ∖ Σ .

Since B∣Γ0 ⪰ A0 the claim follows. ◻
Corollary 5.9. Let T ⊆ FO0[Σ] and A a Σ0-structure where Σ0 ⊆ Σ. We
have A ⊧ T⊧ ∩ FO0[Σ0] if and only if A ⪯ B∣Σ0 for some model B of T.

Proof. (⇐) is trivial. For (⇒), we set ∆ ∶= FO0[Σ0] and we assume that
A ⊧ T⊧∆ . We can use Lemma 5.5 to find a model C ⊧ T such that C ≤∆ A.
By choice of ∆ this implies that C∣Σ0 ≡ A∣Σ0 . Applying Theorem 5.8 we
obtain an elementary extension B ⪰ C and the desired elementary map
g ∶ A→ B∣Σ0 . ◻

The second application is the Interpolation Theorem of Craig. We will
prove a much more general version in Section c5.5.

Theorem 5.10 (Craig). Let Γ0 and Γ1 be signatures and set Σ ∶= Γ0 ∩ Γ1.
Suppose that φ0 ⊧ φ1 where φ0 ∈ FO0[Γ0] and φ1 ∈ FO0[Γ1]. Then there
exists a formula ψ ∈ FO0[Σ] such that

φ0 ⊧ ψ and ψ ⊧ φ1 .

Proof. If φ0 is inconsistent, we can set ψ ∶= false. Hence, suppose that
φ0 has a model A0 and set Ψ ∶=Th(A0∣Σ).

If Ψ ⊧ φ1, then we can use the Compactness Theorem to find a finite
subset Ψ0 ⊆ Ψ with Ψ0 ⊧ φ1. Hence, ψ ∶= ⋀Ψ0 is the desired formula.

Suppose that Ψ ⊭ φ1. Then Ψ ∪ {¬φ1} has a model A1. Since

Th(A1∣Σ) = Ψ =Th(A0∣Σ) ,
we can use Theorem 5.8, to find a (Γ0 ∪ Γ1)-structure B with

Th(B∣Γ0) =Th(A0) and Th(B∣Γ1) =Th(A1) .

In particular, we have B ⊧ φ0 and B ⊧ ¬φ1. Consequently, φ0 ⊭ φ1.
A contradiction. ◻
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1. Types

In the same way that we can classify structures by their theory, we can
distinguish elements of a structure by the formulae they satisfy. Such
theories of elements are called types.

Definition 1.1. Let L be a logic.

(a) A (partial) L-type is a satisfiable set of L-formulae.

(b) An L-type p is complete if it is a complete L-theory.

(c) We denote by S(L) the set of all complete L-types.

(d) For Φ ⊆ L, we define the set

⟨Φ⟩L ∶= { p ∈ S(L) ∣ Φ ⊆ p}
of all types containing Φ. Usually we will omit the index L and
just write ⟨Φ⟩. Furthermore, for single formulae φ we write ⟨φ⟩
instead of ⟨{φ}⟩.

Example. For boolean logic BL(B) introduced in Section c1.1, interpret-
ations are ultrafilters and the theory of an ultrafilter u is u itself. Hence,

S(BL(B)) = {Th(u) ∣ u ∈ spec(B) }= { u ∣ u ∈ spec(B) } = spec(B) .

Definition 1.2. Let L be an algebraic logic and s̄ a sequence of sorts.
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(a) Let M be a Σ-structure. The L-type of a tuple ā ∈ M s̄ is the set

tpL(ā/M) ∶= {φ(x̄) ∈ L s̄[Σ] ∣M ⊧ φ(ā) } .

If the structure M is known from the context we will omit it and simply
write tpL(ā). Similarly, we omit the index L in case L = FO.

(b) Let T ⊆ L0[Σ] be an L-theory. An s̄-type of T is an L-type p ⊆ L s̄[Σ]
such that p ∪ T is consistent. The set of all complete s̄-types of T is

S s̄
L(T) ∶= { p ∈ S(L s̄[Σ]) ∣ T ⊆ p} .

An α-type of T, for an ordinal α, is an s̄-type of T where ∣s̄∣ = α. The set
of all complete α-types is

Sα
L(T) ∶= ⋃{ S s̄

L(T) ∣ ∣s̄∣ = α } .

(c) We also need types with parameters. If M is a model of T and
U ⊆ M then we say that a type of T(U) is a type over U. In particular,
the set tpL(ā/U) ∶= tpL(ā/MU) is the L-type of ā over U . We set

S s̄
L(U) ∶= S s̄

L(T(U)) .

To simplify notation, we define S<ω
L (U) ∶= ⋃n<ω Sn

L(U). Again, we usu-
ally omit the index if L = FO.

(d) An s̄-type p over U is realised in M if there is some tuple ā ∈ M s̄

such that p ⊆ tpL(ā/U). Otherwise, we say that M omits p.

Example. Let N = ⟨ω, s, 0⟩ where s(n) ∶= n + 1 is the successor function.
We have

S1(∅) = {p0 , p1 , . . . , p∞}
where, for n < ω,

pn ∶= tp(n) ⊧ x0= sn(0) ,
and p∞ ⊧ x0 ≠ sn(0), for all n. Hence, p∞ is not realised in N.
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Example. Consider ⟨Q, <⟩. The elements of S1(Q) correspond to the set
of cuts. For every cut ⟨A, B⟩ ofQ, i.e., every partition A∪B = Q such that
A is an initial segment and B is a final one, there exists a non-realised
type p such that

p ⊧ x > a for all a ∈ A ,
and p ⊧ x < b for all b ∈ B .

It follows that ∣S1(Q)∣ = 2ℵ0 . Depending on whether A has a maximal
element or B has a minimal one, we obtain the following classification.

(realised) For each a ∈ Q, we have a type p ⊧ x = a, i.e., p = tp(a/Q).
(a+) For each a ∈ Q, there exists a type p of an element ‘immediately

above a’. That is,

p ⊧ x > b for all b ≤ a ,
and p ⊧ x < b for all b > a .

(a−) Similarly, for each a ∈ Q, we have the type of an element ‘imme-
diately below a’.

(+∞) We have one type p of an infinite positive element. That is,

p ⊧ x > a for all a ∈ Q.

(−∞) Similarly, there is the type of an infinite negative element.
(irrational) Finally, for each cut ⟨A, B⟩ such that A has no maximal

element and B has no minimal one, there is one type p such that

p ⊧ x > a for all a ∈ A ,
and p ⊧ x < b for all b ∈ B .

Exercise 1.1. Let T ∶=Th(Z) where Z ∶= ⟨Z, s⟩ and s ∶ x ↦ x + 1 is the
successor function. Determine Sn(T), for every n < ω. In particular,
compute ∣Sn(T)∣. Hint. Note that, modulo T , every formula is equivalent
to a quantifier-free one.

The set of types of L∣Φ and L/Φ can be computed as follows.
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Lemma 1.3. Let L be a logic and Φ ⊆ L.

(a) S(L/Φ) = ⟨Φ⟩L ⊆ S(L) .

(b) S(L∣Φ) = { p ∩ Φ ∣ p ∈ S(L) } .

Proof. (a) We have

p ∈ S(L/Φ) iff p =ThL/Φ(J) for some J ∈ModL(Φ)
iff p =ThL(J) for some J ⊧ Φ
iff p ∈ S(L) and Φ ⊆ p .

(b) We have

S(L∣Φ) = {ThL∣Φ(J) ∣ J an L-interpretation}
= {ThL(J) ∩ Φ ∣ J an L-interpretation}
= { p ∩ Φ ∣ p ∈ S(L) } . ◻

The relationship between a logic L and its set of types S(L) is similar
to that between a boolean algebra B and its spectrum spec(B). In fact,
if L is boolean closed there exists an embedding S(L) → spec(Lb(L)).
Lemma 1.4. Let L be a logic that is closed under disjunction and conjunc-
tion and that contains an unsatisfiable formula.

(a) If Φ ⊆ L then Φ⊧ is a filter of ⟨L,⊧⟩ and Φ⊧/≡ is a filter of Lb(L).
(b) Every complete L-theory T is an ultrafilter of ⟨L,⊧⟩.

Proof. Since (a) is obvious, we only need to prove (b). By (a), we know
that T = T⊧ is a filter. Since there is an unsatisfiable formula, this filter
is proper.

To prove that T is an ultrafilter consider a disjunction φ∨ψ ∈ T . Since
T is complete there exists an interpretation J with ThL(J) = T . Hence,
J ⊧ φ ∨ ψ implies that J ⊧ φ or J ⊧ ψ. In the former case we have φ ∈ T
and, otherwise, we have ψ ∈ T . ◻
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Remark. If u is a proper filter of Lb(L) then the finite intersection prop-
erty implies that every finite subset of u is satisfiable.

In general the converse of statement (b) is not true, but there are some
logics where every ultrafilter is a type. We have already seen in Section 1
that this is the case for boolean logic. A more important example of this
phenomenon is first-order logic.

Lemma 1.5. Every ultrafilter u of ⟨FO[Σ, X],⊧⟩ is a complete type.

Proof. If u is an ultrafilter, it has the finite intersection property. Hence,
every finite subset Φ ⊆ u is satisfiable. By the Compactness Theorem it
follows that u is satisfiable. Consequently, u is a type. Since FO is boolean
closed we can use Theorem b2.4.11 and Lemma c1.3.4 (d) to show that
u is complete. ◻
Corollary 1.6. We have

S(FO[Σ, X]) = spec(⟨FO[Σ, X],⊧⟩) .

Remark. In the next section we will see that the Stone topology on the
spectrum induces a topology on the type space where the closed sets are
precisely those of the form ⟨Φ⟩, for Φ ⊆ FO. The name ‘Compactness
Theorem’ stems from the fact that this theorem implies that the topology
obtained in this way is compact.

For logics where the Compactness Theorem fails, there are ultrafilters
that do not correspond to types. In fact, the Compactness Theorem is
equivalent to the statement of Lemma 1.5.

Example. There are ultrafilters of Lb(FOℵ1ℵ0[Σ]) which are not types.
Let ψ ∶= ⋀n<ω φn where φn is the formula stating that there are at least n
elements. The formula ¬ψ ∧ φn is satisfiable, for every n. Hence, the
set {¬ψ} ∪ {φn ∣ n < ω } has the finite intersection property and there
exists an ultrafilter

u ⊇ {¬ψ} ∪ {φn ∣ n < ω } .

This ultrafilter is not a type since it is not satisfiable.
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This example shows that, for κ > ℵ0, the inclusion S(FOκℵ0[Σ, X]) ⊂
spec(⟨FOκℵ0[Σ, X],⊧⟩) is proper. We can describe the subset of the
spectrum corresponding to S(FOκℵ0[Σ, X]) as follows. Using Chang’s
reduction we can find a signature Σ+ ⊇ Σ and a first-order theory T ⊆
FO[Σ+ , X] such that

spec(⟨FOκℵ0[Σ, X],⊧⟩) ≅ S(T) .

Then we can characterise S(FOκℵ0) as a subset of S(T) by describing
the types in S(T) ∖ S(FOκℵ0).
Lemma 1.7. Let φ ∈ FOκ+ℵ0[Σ, X] and ∣Σ∣ ≤ κ. There exists a signature
Σ+ ⊇ Σ and set C of (partial) FO[Σ+ , X]-types such that

M ⊧ φ iff there is some Σ+-expansion of M that omits
every type in C.

Furthermore, we can choose Σ+ and C of size at most κ.

Proof. By Lemma c1.4.12, there exists an FOκℵ0 -theory Tφ such that
M ⊧ φ if, and only if, some expansion of M satisfies Tφ . We define a
set C of types such that M+ ⊧ Tφ iff M+ omits all types in C.

For every first-order formula ϑ ∈ Tφ , we define the type

pϑ ∶= {¬ϑ} .

Every formula ϑ ∈ Tφ ∖ FO is of the form ϑ = ∀x̄⋁i<λ ψ i . For these
formulae, we set

pϑ ∶= {¬ψ i ∣ i < λ } .

By construction, a structure satisfies ϑ ∈ Tφ if, and only if, it omits pϑ .
Consequently, we can set C ∶= { pϑ ∣ ϑ ∈ Tφ } . ◻
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2. Type spaces
In this section we investigate the analogy between type spaces and spec-
tra. We start by defining a topology on the set of type S(L) that is ana-
logous to the Stone topology of a spectrum.

Definition 2.1. The type space of a logic L is the topological space S(L)
with universe S(L) where the basic closed sets are of the form

⟨φ0⟩L ∪ ⋅ ⋅ ⋅ ∪ ⟨φn−1⟩L , for n < ω and φ0 , . . . , φn−1 ∈ L .

If L is closed under disjunctions, the closed sets can be written in the
simpler form ⟨Φ⟩L , for Φ ⊆ L.

Lemma 2.2. If L is closed under disjunctions, every nonempty closed set
of S(L) is of the form ⟨Φ⟩L , for Φ ⊆ L.

Proof. Let C ∶= {∅} ∪ { ⟨Φ⟩L ∣ Φ ⊆ L }. Since ⟨Φ⟩L = ⋂φ∈Φ⟨φ⟩L , every
set of C is closed in S(L). To prove the converse, it is sufficient to show
that C forms a topology. Since ⋂i⟨Φ i⟩L = ⟨⋃i Φ i⟩L , C is closed under
arbitrary intersections. Furthermore, note that ∅ ∈ C and S(L) = ⟨∅⟩L ∈C.

Hence, it remains to show that C is closed under finite unions. We
claim that

⟨Φ⟩L ∪ ⟨Ψ⟩L = ⟨{φ ∨ ψ ∣ φ ∈ Φ, ψ ∈ Ψ }⟩L .

For the non-trivial inclusion, let p ∈ ⟨{φ ∨ ψ ∣ φ ∈ Φ, ψ ∈ Ψ }⟩L . We
have to show that p ∈ ⟨Φ⟩L ∪ ⟨Ψ⟩L . If p ∈ ⟨Ψ⟩L , we are done. Hence,
suppose there is some formula ψ ∈ Ψ ∖ p. For every φ ∈ Φ, we have
φ ∨ ψ ∈ p. Since ψ ∉ p it follows as in the proof of Lemma 1.4 that φ ∈ p.
Therefore, Φ ⊆ p. ◻

For first-order logic, we have seen in Corollary 1.6 that types and
ultrafilters coincide. Since the definitions of the respective topologies
are also the same, it follows that the type space of a first-order logic is
just its spectrum.
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Theorem 2.3. We have

S(FO[Σ, X]) = spec(⟨FO[Σ, X],⊧⟩) .

In particular, the type space S(FO[Σ, X]) is a Stone space.

Proof. By Corollary 1.6 both spaces have the same universe and, accord-
ing to Lemma 2.2, the closed sets are also the same. ◻
Example. Let T ∶=Th(C) where C ∶= ⟨2ω , (Pn)n<ω⟩ and

Pn ∶= { α ∈ 2ω ∣ α(n) = 1} .

Then S1(T) = { pα ∣ α ∈ 2ω } where

pα ⊧ Pnx for n ∈ α−1(1) ,
pα ⊧ ¬Pnx for n ∈ α−1(0) .

The basic closed sets of S1(T) are of the form

⟨Pi0x ∧ ⋅ ⋅ ⋅ ∧ Pik x ∧ ¬Pj0x ∧ ⋅ ⋅ ⋅ ∧ ¬Pjm x⟩ .

Since these sets are clopen it follows that the open sets are of the form

OW ∶= { pα ∣ there is some w ≺ α with w ∈W }
with W ⊆ 2<ω . Consequently, the type space S1(T) is homeomorphic
to the Cantor discontinuum.

For logics different from first-order logic, the type spaces usually are
not Stone spaces.

Definition 2.4. A topological space X is a T0-space if, for every pair
x , y ∈ X of distinct points, there exists a closed set C such that

x ∈ C and y ∈ X ∖ C , or x ∈ X ∖ C and y ∈ C .

Lemma 2.5. Let L be a logic. The type space S(L) is a T0-space.
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Proof. If p, q ∈ S(L) are distinct types, there exists a formula φ such that
φ ∈ p ∖ q or φ ∈ q ∖ p. Consequently, p ∈ ⟨φ⟩ and q ∈ S(L) ∖ ⟨φ⟩, or
p ∈ S(L) ∖ ⟨φ⟩ and q ∈ ⟨φ⟩. ◻

As an application of the Stone topology of the type space, consider the
question of whether a first-order theory T has a model that realises all
types in a given set X but no other ones. This is not possible for every set
of types. The next lemma provides a first, topological condition X has to
satisfy.

Lemma 2.6. Let T be a complete first-order theory, M a model of T,
U ⊆ M, s̄ a sequence of sorts, and let X be the set of all s̄-types over U that
are realised in M. Then X is dense in Ss̄(U).
Proof. For a contradiction, suppose that there exists a type p ∈ S s̄(U)
with p ∉ cl(X). Then we can find some formula φ(x̄) over U with p ∈ ⟨φ⟩
and ⟨φ⟩ ∩ X = ∅. It follows that M ⊧ ¬φ(ā), for all ā ∈ M s̄ . Hence,
M ⊧ ∀x̄¬φ(x̄) which implies that ∀x̄¬φ(x̄) ∈ T ⊆ p. Consequently,
φ(x̄) ∧ ∀x̄¬φ(x̄) ∈ p and p is inconsistent. Contradiction. ◻
Example. Let N ∶= ⟨ω, s, 0⟩ where s ∶ n ↦ n+ 1 is the successor function.
We have seen on page 528 that the types of Th(N) are pn ∶= tp(n),
for n < ω, and the type p∞ of an infinite element. The set of realised
types is X ∶= { pn ∣ n < ω }, while p∞ is not realised. Note that a set
C ⊆ S(∅) with p∞ ∉ C is closed if, and only if, it is finite. Hence, p∞ is
an accumulation point of X and X is dense in S1(∅).

For most logics, the type space is not a spectrum. But, for a boolean
closed logic L, we can at least prove the existence of an embedding
S(L) → spec(Lb(L)). It turns out that this map is a homeomorphism
if, and only if, the type space is compact.

Lemma 2.7. Let L be a boolean closed logic. The type space S(L) is
compact if, and only if, every ultrafilter of ⟨L,⊧⟩ is a complete type.

Proof. (⇐) If every ultrafilter is a type, then S(L) = spec(⟨L,⊧⟩). Since
the topologies of both spaces also coincide, they are homeomorphic.
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Consequently, the compactness of spec(⟨L,⊧⟩) implies the compactness
of S(L).(⇒) Let u be an ultrafilter of ⟨L,⊧⟩. First, we show that u is satisfiable.
For a contradiction, suppose otherwise. Then

∅ = ⟨u⟩L = ⋂
φ∈u⟨φ⟩L .

Since S(L) is compact, there is a finite subset Φ0 ⊆ u such that

∅ = ⋂
φ∈Φ0

⟨φ⟩L .

Hence, ⋀Φ0 ≡ � and Φ0 ⊆ u implies � ∈ u. A contradiction.
Consequently, there is some model J ⊧ u. Since L is boolean closed, it

follows that ThL(J) = u. Therefore, u is a complete type. ◻
Lemma 2.8. Let L be a boolean closed logic.

(a) The function

h ∶ S(L) → spec(Lb(L)) ∶ p↦ p/≡
is continuous and injective.

(b) h is a homeomorphism if, and only if, S(L) is compact.

Proof. (a) First, note that, according to Lemma 1.4, for every p ∈ S(L),
h(p) = p/≡ is indeed an ultrafilter of Lb(L).

For injectivity, consider types p ≠ q. By symmetry, we may assume
that there is some formula φ ∈ p ∖ q. If h(p) = h(q) then

[φ]≡ ∈ p/≡ = h(p) = h(q) = q/≡
would imply that φ ∈ q. A contradiction.

To show that h is continuous, let Φ ⊆ Lb(L). Then

h−1[⟨Φ⟩Lb(L)] = { p ∈ S(L) ∣ Φ ⊆ p/≡}
= { p ∈ S(L) ∣ ⋃Φ ⊆ p} = ⟨⋃Φ⟩L
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is closed.
(b) (⇒) If h is a homeomorphism, then S(L) ≅ spec(Lb(L)) is a

Stone space and, hence, compact.(⇐) By (a), it remains to show that h is closed and surjective. For
surjectivity, fix an ultrafilter u ∈ spec(Lb(L)). Then ⋃ u is an ultrafilter
of ⟨L,⊧⟩. Hence, Lemma 2.7 implies that ⋃ u ∈ S(L). Consequently,

h(⋃ u) = (⋃ u)/≡ = u ,

as desired.
It remains to prove that h is closed. By Lemma b5.2.3, it is sufficient to

show that h[⟨Φ⟩L] is closed, for every Φ ⊆ L. For Φ ⊆ L, it follows that

h[⟨Φ⟩L] = { p/≡ ∣ p ∈ S(L), Φ ⊆ p}
= { p/≡ ∣ p ∈ S(L), Φ/≡ ⊆ p/≡}
= ⟨Φ/≡⟩Lb(L) ∩ rng h= ⟨Φ/≡⟩Lb(L)

is closed. ◻
Corollary 2.9. Let L be a boolean closed logic. The following conditions
are equivalent:

(1) S(L) is compact.
(2) S(L) ≅ spec(Lb(L)) .
(3) Every ultrafilter of ⟨L,⊧⟩ is a complete type.

Many results of Section b5.6 on spectra generalise to type spaces. In
particular, the type space operation L ↦ S(L) is a functor form the
category of logics to the category of topological spaces.

Definition 2.10. Let µ ∶= ⟨α, β⟩ ∶ L0 → L1 be a morphism of logics. We
define a function S(µ) by setting

S(µ)(p) ∶= α−1[p] , for p ∈ S(L1) .
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Example. For the inclusion morphism i ∶ L∣Φ → L and the localisation
morphism λ ∶ L → L/Φ from Lemma c1.6.14, we obtain

S(i)(p) = p ∩ Φ and S(λ)(p) = p .

Proposition 2.11. Let µ ∶= ⟨α, β⟩ ∶ ⟨L0 ,K0 ,⊧⟩ → ⟨L1 ,K1 ,⊧⟩ be a morph-
ism of logics.

(a) S(µ) is the unique function that makes the following diagram
commute:

K1 K0

S(L1) S(L0)

β

ThL1 ThL0

S(µ)
(b) S(µ) ∶ S(L1) → S(L0) is continuous.

(c) If µ is an embedding then S(µ) is surjective.

(d) If α is surjective then S(µ) is injective.

(e) If α is surjective and rng β = ModL0(Φ), for some Φ ⊆ L0, then
S(µ) is closed and injective.

(f) If S(µ) is surjective, then Lb(µ) ∶ Lb(L0) → Lb(L1) is injective.

Proof. (a) We have seen in Lemma c1.5.12 (c) that S(µ)○ThL1 =ThL0 ○β.
In particular, rng S(µ) ⊆ rng ThL0 = S(L0) and the above diagram
commutes. For uniqueness, note that ThL1 ∶ K1 → S(L1) is surjective.
Hence, for every function f making the above diagram commute,

S(µ) ○ThL1 =ThL0 ○ β = f ○ThL1 implies S(µ) = f ,

by Lemma a2.1.10.
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(b) For every φ ∈ L0, we have

p ∈ S(µ)−1[⟨φ⟩L0] iff S(µ)(p) = α−1[p] ∈ ⟨φ⟩L0

iff φ ∈ α−1[p]
iff α(φ) ∈ p iff p ∈ ⟨α(φ)⟩L1 .

Hence, S(µ)−1[⟨φ⟩L0] = ⟨α(φ)⟩L1 . The claim follows by Lemma b5.2.3
since the sets ⟨φ⟩L0 , for φ ∈ L0, form a closed subbase of the topology
of S(L0).

(c) Since β and ThL0 are surjective, so is ThL0 ○ β = S(µ) ○ ThL1 .
Consequently, S(µ) is also surjective.

(d) Suppose that α is surjective and let p, q ∈ S(L1) be types such that
S(µ)(p) = S(µ)(q). Then α−1[p] = α−1[q] implies, by Lemma a2.1.10,
that

p = α[α−1[p]] = α[α−1[q]] = q .

(e) We have already seen in (d) that S(µ) is injective. To show that it
is closed, it is sufficient, by Lemma b5.2.3, to prove that S(µ)[⟨φ⟩L1] is
closed, for every φ ∈ L1. We claim that

S(µ)[⟨φ⟩L1] = ⟨Φ ∪ α−1(φ)⟩L0 .

(⊆) Let p ∈ ⟨φ⟩L1 and fix an L1-interpretation J with ThL1(J) = p.
Then β(J) ∈ rng β = ModL0(Φ) implies Φ ⊆ ThL0(β(J)) = S(µ)(p).
Furthermore, φ ∈ p implies α−1(φ) ⊆ α−1[p] = S(µ)(p). Consequently,
S(µ)(p) ∈ ⟨Φ ∪ α−1(φ)⟩L0 .(⊇) Let p ∈ ⟨Φ ∪ α−1(φ)⟩L0 and let J0 be an L0-interpretation with
ThL0(J0) = p. Then J0 ⊧ Φ and rng β = ModL0(Φ) implies that there
is some L1-interpretation J with β(J) = J0. Set q ∶=ThL1(J). Since α is
surjective, we have

α−1(φ) ⊆ p ⇒ β(J) ⊧ α−1(φ)⇒ J ⊧ α[α−1(φ)] = {φ} ⇒ φ ∈ q .
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Hence, q ∈ ⟨φ⟩L1 and S(µ)(q) = p.
(f) Let φ,ψ ∈ L0 be formulae with α(φ) ≡L1 α(ψ). We claim that

φ ≡L0 ψ. By symmetry, it is sufficient to show that φ ⊧ ψ.
Let J be an L0-interpretation with J ⊧ φ. Since S(µ) is surjective,

there is some type p ∈ S(L1) with S(µ)(p) =ThL0(J). Consequently,

φ ∈ThL0(J) = S(µ)(p) = α−1[p] implies α(φ) ∈ p .

Since α(ψ) ≡L1 α(φ), it follows that α(ψ) ∈ p. Hence, ψ ∈ α−1(p) =
ThL0(J) and J ⊧ ψ. ◻
Corollary 2.12. S is a contravariant functor from Logi$ to Top0, the cat-
egory of all T0-spaces.

Corollary 2.13. Let µ ∶ L0 → L1 be a morphism of logics.
(a) If µ is an embedding then S(µ) is a continuous surjection.
(b) If µ is an epimorphism then S(µ) is a continuous injection.
(c) If µ is an isomorphism then S(µ) is a homeomorphism.

We can strengthen statement (c) of this corollary as follows.

Corollary 2.14. Let µ = ⟨α, β⟩ ∶ L0 → L1 be a morphism of logics where
α and β are surjective. Then S(µ) ∶ S(L1) → S(L0) is a homeomorph-
ism.

Proof. As µ is an embedding, Corollary 2.13 (a) implies that S(µ) is
continuous and surjective. Furthermore, rng β =ModL0(∅). Therefore,
we can use Proposition 2.11 (e) to show that S(µ) is closed and injective.◻
Corollary 2.15. Let L be a logic, Φ ⊆ L, and λ ∶ L → L/Φ the localisation
morphism. The function

S(λ) ∶ S(L/Φ) → S(L) ∶ p↦ p

is continuous, closed, and injective.
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Proof. Note that λ = ⟨id, j⟩ where j ∶ ModL(Φ) → ModL(∅) is the
inclusion map. Since rng j = ModL(Φ), the claim follows by Proposi-
tion 2.11 (e). ◻
Example. In analogy to boolean logic, we define the Lindenbaum quo-
tient Q(L) of a logic L by

Q(L) ∶= ⟨Lb(L),S(L),⊧⟩
where, for p ∈ S(L) and φ ∈ L,

p ⊧ [φ]≡ : iff φ ∈ p .

We can turn Q into a functor Q ∶ Logi$ → Logi$ by setting, for a
morphism µ ∶ L0 → L1,

Q(µ) ∶= ⟨Lb(µ),S(µ)⟩ ∶ Q(L0) → Q(L1) .

The functorQ is idempotent in the sense that there exists a natural
isomorphism η ∶ Q ○ Q → Q. This natural isomorphism is defined as
follows. For p ∈ S(L), we have

ThQ(L)(p) = { [φ]≡ ∣ φ ∈ p} = p/≡ .

Hence,

S(Q(L)) = {ThQ(L)(p) ∣ p ∈ S(L) } = { p/≡ ∣ p ∈ S(L) } .

Since p/≡ = q/≡ implies p = q, it follows that the function

β ∶ S(L) → S(Q(L)) ∶ p↦ p/≡
is a homeomorphism. Furthermore, since [[φ]≡]≡ = {[φ]≡}, the map

α ∶ Lb(Q(L)) → Lb(L) ∶ [[φ]≡]≡ ↦ [φ]≡
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is a well-defined isomorphism of partial orders. Consequently, we obtain
an isomorphism of logics

ηL ∶= ⟨α, β⟩ ∶ Q(Q(L)) → Q(L) .

Since, for every morphism µ ∶ L0 → L1, we have

ηL1 ○ Q(Q(µ)) = Q(µ) ○ ηL0 ,

it follows that (ηL)L is a natural isomorphism.

For boolean closed logics where the type space is compact and, hence,
homeomorphic to the spectrum of the Lindenbaum algebra, we can
strengthen Corollary 2.13 (a) as follows.

Lemma 2.16. Let L0 and L1 be boolean closed logics where S(L1) is
compact. If µ ∶ L0 → L1 is an embedding, S(µ) ∶ S(L1) → S(L0) is
continuous, closed, and surjective.

Proof. We have already seen in Corollary 2.13 that S(µ) is continuous
and surjective. Hence, it remains to prove that it is closed. Note that it
follows by Lemma b5.3.10 that S(L0) = S(µ)[S(L1)] is also compact.
By Lemma 2.8, there exist homeomorphisms

h i ∶ S(L i) → spec(Lb(L i)) ∶ p↦ p/≡ , for i ∈ [2] .

Furthermore, we have seen in Lemma c1.6.10 that Lb(µ) is injective.
Hence, Lemma b5.6.7 implies that the function g ∶= spec(Lb(µ)) is
continuous, closed, and surjective.

S(L1) S(L0)

spec(Lb(L1)) spec(Lb(L0))

S(µ)

h1 h2

g
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Since S(µ) = h−1
0 ○ g ○ h1, it follows that S(µ) is closed. ◻

Lemma 2.17. Let L be a logic and Φ ⊆ L. If S(L) is compact, then so are
S(L∣Φ) and S(L/Φ).
Proof. Let λ ∶ L → L/Φ and i ∶ L∣Φ → L be the canonical morphisms.We
have seen in Corollary 2.13 that S(i) ∶ S(L) → S(L∣Φ) is continuous
and surjective. Since S(L) is compact, it follows by Lemma b5.3.10 that
S(i)[S(L)] = S(L∣Φ) is also compact.

By Corollary 2.15, S(λ) ∶ S(L/Φ) → S(L) is continuous, closed, and
injective. Consequently, S(L/Φ) is homeomorphic to a closed subset
rng S(λ) ⊆ S(L) of S(L). By Lemma b5.3.9, it follows that S(L/Φ) is
compact. ◻
As a consequence, we obtain the following generalisation of The-

orem 2.3.

Theorem 2.18. For all first-order theories T ⊆ FO0[Σ],
Ss̄(T) ≅ spec(Lb(FOs̄[Σ]/T))

is a Stone space.

Proof. By Lemma 2.17, Ss̄(T) = S(FOs̄[Σ]/T) is compact. Hence, the
claim follows by Lemma 2.8 (b). ◻

For algebraic logics L, every map µ ∶ Σ → Γ between signatures gives
rise to amorphism L[µ] ∶ L[Σ] → L[Γ] and a corresponding continuous
map S(L[µ]) ∶ S(L[Γ]) → S(L[Σ]). In the lemma below, we take a
closer look at such amap, where µ ∶ ΣU → ΣV corresponds to a renaming
of parameters.

Definition 2.19. Let L be an algebraic logic. For a type p over U and a
function f ∶ U → V , we write

f (p) ∶= {φ(x̄; f (ā)) ∣ φ(x̄; ā) ∈ p} .
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Remark. Suppose that f is a strict L-map and let p ∶= tpL(ā/U) where
ā,U ⊆ dom f . Then

f (p) = tpL( f (ā) / f [U]) .

Lemma 2.20. Suppose that L is an algebraic logic, let A and B be Σ-struc-
tures, and U ⊆ A. Every injective, strict L-map h ∶ U → B induces a
homeomorphism

Ss̄
L(U) → Ss̄

L(h[U]) ∶ p↦ h(p) .

Proof. Set V ∶= h[U]. Let µ ∶ ΣU → ΣV be the morphism of signatures
with µ ↾ Σ = idΣ and µ ↾U = h, and let

⟨α, β⟩ ∶= L s̄[µ] ∶ L s̄[ΣU] → L s̄[ΣV ]
be the corresponding morphism of logics. Since µ is bijective so are
α and β and we have L s̄[µ−1] = ⟨α−1 , β−1⟩.
We claim that β induces a bijection ModL(T(V)) →ModL(T(U)).

Let M ⊧ T(V), φ(x̄) ∈ L[Σ, X], and c̄ ⊆ U . As h is a strict L-map, it
follows that

β(M) ⊧ φ(c̄) iff M ⊧ α(φ(c̄)) = φ(h(c̄))
iff φ(h(c̄)) ∈ T(V)
iff B ⊧ φ(h(c̄))
iff A ⊧ φ(c̄)
iff φ(c̄) ∈ T(U) .

Similarly, it follows that β−1(M) ∈ Mod(T(V)), for every model M
of T(U). Therefore, ⟨α, β⟩ induces a morphism

⟨α, β0⟩ ∶ L s̄/T(U) → L s̄/T(V)
where β0 = β ↾ModL(T(V)) is bijective. As α is also bijective, it follows
by Corollary 2.13 that the induced map

Ss̄
L⟨α, β0⟩ ∶ Ss̄

L(V) → Ss̄
L(U) ∶ h(p) ↦ p

is a homeomorphism. ◻
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2. Type spaces

For first-order type spaces, we can say more on the dependence of a
type space on the signature.

Proposition 2.21. Let Σ0 ⊆ Σ be signatures, T ⊆ FO0[Σ] a theory, and set
T0 ∶= T ∩ FO0[Σ0].

(a) For every ∆ ⊆ FO0[Σ0], we have

S((FO0[Σ0]/T0)∣∆) = S((FO0[Σ]/T)∣∆) .

(b) The function

h ∶ S(FO0[Σ]/T) → S(FO0[Σ0]/T0) ∶ p↦ p ∩ FO0[Σ0]
is continuous, closed, and surjective.

Proof. To simplify notation, set L ∶= FO0[Σ] and L0 ∶= FO0[Σ0].
(a) We start by showing that both type spaces have the same universe.
Let p ∈ S((L/T)∣∆). Then there is some M ∈ ModL(T) with p =

Th∆(M). Setting M0 ∶=M∣Σ0 we obtain a model M0 ∈ModL0(T0) with
p =Th∆(M0). It follows that p ∈ S((L0/T0)∣∆).
Conversely, let p ∈ S((L0/T0)∣∆). Then there is some model M0 ∈

ModL0(T0) with p = Th∆(M0). We can use Corollary c2.5.9 to find a
model M ∈ModL(T) such that M0 ⪯M∣Σ . It follows that p =Th∆(M).
Hence, p ∈ S((L/T)∣∆).

It remains to show that the two topologies coincide. For Φ ⊆ ∆, it
follows by definition that

⟨Φ⟩(L0/T0)∣∆ = { p ∈ S((L0/T0)∣∆) ∣ Φ ⊆ p}
= { p ∈ S((L/T)∣∆) ∣ Φ ⊆ p} = ⟨Φ⟩(L/T)∣∆ .

(b) Consider the inclusion map i ∶ (L/T)∣L0 → L/T . By Lemma 2.16,
the map

S(i) ∶ S(L/T) → S((L/T)∣L0) ∶ p↦ p ∩ L
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is continuous, closed, and surjective. Furthermore, we have seen in (a)
that the identity map

id ∶ S((L/T)∣L0) → S(L0/T0)
is a homeomorphism. It follows that the composition h = id ○S(i) is
continuous, closed, and surjective. ◻

A special case of Proposition 2.21 (b) is worth singling out.

Corollary 2.22. Let T ⊆ FO0[Σ] be a first-order theory, U ⊆ V sets of
parameters, and

i ∶ FOs̄[ΣU]/T(U) → FOs̄[ΣV ]/T(V)
the inclusion morphism. The induced map

S(i) ∶ Ss̄(V) → Ss̄(U)
is continuous, closed, and surjective.

3. Retracts
For every fragment ∆ of a logic L, we have seen above that the inclusion
morphism i ∶ ∆ → L induces a surjective, continuous map

S(i) ∶ S(L) → S(∆) ∶ p↦ p ∩ ∆ .

It follows that the type space of ∆ is a quotient of the type space of L. In
this section we take a closer look at the relationship between these two
type spaces.

Definition 3.1. Let L be a logic, L0 ⊆ L a fragment, and i ∶ L0 → L the
inclusion morphism.

(a) A morphism r ∶ L → L0 is a retraction if r ○ i = id.
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3. Retracts

(b) L0 is a retract of L if there exists a retraction L → L0.

The type space of a retract is homeomorphic to the type space of the
full logic.

Lemma 3.2. Let r = ⟨α, β⟩ ∶ L → L0 be a retraction and i ∶ L0 → L the
inclusion morphism.

(a) β = id.
(b) α(φ) ≡L φ, for every φ ∈ L.
(c) S(r) = S(i)−1.

Proof. (a) Note that i = ⟨ι, id⟩, where ι ∶ L0 → L is the inclusion function.
Hence, r ○ i = id implies that id ○ β = id.

(b) To show that α(φ) ≡L φ, let J be an L-interpretation. We have
seen in (a) that β(J) = J. Since r is a morphism of logics, it follows that

J ⊧ φ iff J ⊧ α(φ) .

(c) Note that r ○ i = id implies S(i) ○S(r) = id. Hence, it remains to
show that S(r) ○S(i) = id. Consider p ∈ S(L). By (b), it follows that

φ ∈ p iff α(φ) ∈ p , for all φ ∈ L .

Hence, p = α−1[p] = S(i ○ r)(p) = (S(r) ○S(i))(p). ◻
Corollary 3.3. Let r ∶ L → L0 be a retraction and i ∶ L0 → L the inclusion
morphism.

(a) S(i) ∶ S(L) → S(L0) is a homeomorphism.
(b) S(r) ∶ S(L0) → S(L) is a homeomorphism.

Proof. Both statements follow from Lemma 3.2 (c). ◻
Lemma 3.4. Let L be a logic, L0 ⊆ L a fragment, and i = ⟨ι, id⟩ ∶ L0 → L
the inclusion morphism. The following statements are equivalent:

(1) L0 is a retract of L.
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(2) For every formula φ ∈ L, there is a formula φ0 ∈ L0 such that
φ ≡L φ0.

(3) The function Lb(i) ∶ Lb(L0) → Lb(L) is an isomorphism.

Proof. (1) ⇒ (2) follows immediately by Lemma 3.2 (b).(2) ⇒ (3)Wehave seen in Lemma c1.6.10 that Lb(i) is an embedding.
Hence, it remains to show that it is surjective. Let [φ]≡ ∈ Lb(L). By (2),
there is some formula φ0 ∈ L0 with φ0 ≡L φ. It follows that

Lb(i)([φ0]≡) = [φ0]≡ = [φ]≡ .

(3) ⇒ (1)We define a function α ∶ L → L0 as follows. For φ ∈ L0, we
set α(φ) ∶= φ. For φ ∈ L ∖ L0, we choose an arbitrary formula ψ such
that [ψ]≡ ∈ Lb(i)−1([φ]≡) and set α(φ) ∶= ψ. Note that, for every φ ∈ L,

α(φ) ∈ Lb(i)−1([φ]≡)
implies that

[φ]≡ = Lb(i)([α(φ)]≡) = [α(φ)]≡ .

Hence, α(φ) ≡L φ, for all φ ∈ L. By definition of α, we further have

(α ○ ι)(φ) = α(φ) = φ , for all φ ∈ L0 .

Hence, to show that r ∶= ⟨α, id⟩ is a left inverse of i it remains to prove
that r is a morphism of logics. Let φ ∈ L be a formula and J an L-
interpretation. Since φ ≡L α(φ), we have

J ⊧ φ iff J ⊧ α(φ) ,
as desired. ◻
Below we will present several results that assume ∆ to be boolean

closed. The following lemma can sometimes be used to replace this
restriction by the requirement that ∆ is closed under negation.
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Lemma 3.5. Let L be a boolean closed logic, ∆ ⊆ L closed under negation,
and let i ∶ ∆ → L be the inclusion morphism. If every formula in L is
equivalent to a finite boolean combination of formulae in ∆, then

S(i) ∶ S(L) → S(∆)
is a homeomorphism.

Proof. By Corollary 2.13, S(i) is continuous and surjective.
For injectivity, suppose that S(i)(p) = S(i)(q). Then p ∩ ∆ = q ∩ ∆.

Since every formula in L is equivalent to a boolean combination of
formulae in ∆, it follows that p = q.

It remains to show that S(i) is closed. By Lemma b5.2.3, it is suffi-
cient to prove that S(i)[⟨φ⟩L] is closed, for every φ ∈ L. Fix φ ∈ L.
By assumption on ∆ and L, there are sets Ψ0 , . . . , Ψn−1 ⊆ ∆ such that
φ ≡L ⋁k<n ⋀Ψk . Since, trivially, Ψk ≡L Ψk , it follows by Lemma 3.9 that

S(i)[⟨Ψk⟩L] = ⟨Ψk⟩∆ .

Consequently,

S(i)[⟨φ⟩L] = S(i)[⋃
k<n
⟨Ψk⟩L] = ⋃

k<n
S(i)[⟨Ψk⟩L] = ⋃

k<n
⟨Ψk⟩∆

is closed. ◻
Exercise 3.1. Show that the preceding lemma may fail if ∆ is not closed
under negation.

Corollary 3.6. Let L be a boolean closed logic such that S(L) is compact,
let ∆0 ⊆ ∆ ⊆ L be closed under negation, and let i ∶ ∆0 → ∆ be the
inclusion morphism. The induced map

S(i) ∶ S(∆) → S(∆0)
is continuous, closed, and surjective.
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Proof. Let ∆+0 ⊆ ∆+ ⊆ L be the boolean closures of ∆0 and ∆, and let
j0 ∶ ∆0 → ∆+0 , j ∶ ∆ → ∆+, and i+ ∶ ∆+0 → ∆+ be the corresponding inclu-
sion morphisms. By Lemma 3.5, S( j0) and S( j) are homeomorphisms.
Hence,

j ○ i = i+ ○ j0 implies S(i) = S( j0) ○S(i+) ○S( j)−1 .

Since, by Lemma 2.16, the functions on the right-hand side are continu-
ous, closed, and surjective, so is S(i). ◻

In the remainder of this section we consider to which extend the
reverse of Corollary 3.3 (a) holds: in which cases is S(i) being a homeo-
morphism sufficient for ∆ to have the same expressive power as L.

Lemma 3.7. Let L0 and L1 be logics and µ ∶ S(L0) → S(L1) a homeo-
morphism. Then

p ⊆ q iff µ(p) ⊆ µ(q) , for all p, q ∈ S(L0) .

Proof. It is sufficient to prove that p ⊆ q implies µ(p) ⊆ µ(q). Thenwe can
prove the converse implication, by considering the homeomorphism µ−1.
Note that we have

p ⊆ q iff for all Φ , p ∈ ⟨Φ⟩L0 ⇒ q ∈ ⟨Φ⟩L0 ,
and µ(p) ⊆ µ(q) iff for all Ψ , µ(p) ∈ ⟨Ψ⟩L1 ⇒ µ(q) ∈ ⟨Ψ⟩L1 .

Let us show that the condition

p ∈ ⟨Φ⟩L0 ⇒ q ∈ ⟨Φ⟩L0 , for all Φ ⊆ L0

is equivalent to

p ∈ C ⇒ q ∈ C , for all closed C ⊆ S(L0) .

Clearly, if the implication holds for all closed sets C, it in particular
holds for closed sets of the form ⟨Φ⟩L0 . Hence, it is sufficient to prove the
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converse. Suppose that every set ⟨Φ⟩L0 containing p also contains q and
let C be a closed set with p ∈ C. By definition, there is a family (Ψi)i∈I of
finite sets Ψi ⊆ L0 such that

C = ⋂
i∈I ⋃ψ∈Ψi

⟨ψ⟩L0 .

Since p ∈ C, there are formulae ψ i ∈ Ψi , for i ∈ I, such that p ∈ ⟨ψ i⟩L0 . By
assumption, this implies that q ∈ ⟨ψ i⟩L0 . Hence,

q ∈ ⋂
i∈I ⟨ψ i⟩L0 ⊆ ⋂

i∈I ⋃ψ∈Ψi

⟨ψ⟩L0 = C .

To prove the lemma, suppose that p ⊆ q. We have just seen that this
implies that

p ∈ C ⇒ q ∈ C , for all closed C ⊆ S(L0) .

Hence,

µ(p) ∈ µ[C] ⇒ µ(q) ∈ µ[C] , for all closed C ⊆ S(L0) .

Since µ is a homeomorphism, it follows that

µ(p) ∈ D⇒ µ(q) ∈ D , for all closed D ⊆ S(L1) .

As we have seen above, this implies that

p ∈ ⟨Ψ⟩L1 ⇒ q ∈ ⟨Ψ⟩L1 , for all Ψ ⊆ L1 .

Consequently, we have µ(p) ⊆ µ(q). ◻
Corollary 3.8. Let L be a logic, ∆ ⊆ L, and i ∶ ∆ → L the inclusion
morphism. If S(i) ∶ S(L) → S(∆) is a homeomorphism, then

p ∩ ∆ ⊧ p , for all p ∈ S(L) .
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Proof. Suppose that J ⊧ p∩∆. To show that J ⊧ p, consider q ∶=ThL(J).
Since S(i) is bijective we have

S(i)−1(p ∩ ∆) = S(i)−1(S(i)(p)) = p

and S(i)−1(q ∩ ∆) = S(i)−1(S(i)(q)) = q .

Hence, p ∩ ∆ ⊆Th∆(J) = q ∩ ∆ implies, by Lemma 3.7, that

p = S(i)−1(p ∩ ∆) ⊆ S(i)−1(q ∩ ∆) = q =ThL(J) .

Consequently, J ⊧ p. ◻
Below we will provide several characterisations of when ∆ has the

same expressive power as L. We start with a technical lemma containing
a condition on when two sets Φ, Ψ of formulae are equivalent.

Lemma 3.9. Let L be a logic, ∆ ⊆ L, and i ∶ ∆ → L the inclusion morphism.
If S(i) ∶ S(L) → S(∆) is bijective, we have

Φ ≡L Ψ iff S(i)[⟨Φ⟩L] = ⟨Ψ⟩∆ ,
for all sets Φ ⊆ L and Ψ ⊆ ∆.

Proof. (⇒) Suppose that Φ ≡L Ψ . For (⊆), let p ∈ ⟨Φ⟩L . Then Φ ⊆ p
implies

Ψ ⊆ Φ⊧ ∩ ∆ ⊆ p ∩ ∆ = S(i)(p) .

Hence, S(i)(p) ∈ ⟨Ψ⟩∆ .
For (⊇), let p ∈ ⟨Ψ⟩∆ . Since S(i) is surjective, there is some q ∈ S(L)

with S(i)(q) = p. Hence,

Ψ ⊆ p = S(i)(q) = q ∩ ∆ ⊆ q .

Since Ψ ⊧ Φ, it follows that Φ ⊆ q. Consequently, we have q ∈ ⟨Φ⟩L ,
which implies that p = S(i)(q) ∈ S(i)[⟨Φ⟩L].
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(⇐)We have to show that Φ ≡L Ψ . First, suppose that J ⊧ Φ and let
p ∶=Th∆(J). Then p ∈ ⟨Φ⟩L implies that

Th∆(J) = p ∩ ∆ = S(i)(p) ∈ S(i)[⟨Φ⟩L] = ⟨Ψ⟩∆ .

Hence, J ⊧ Ψ . Conversely, suppose that J ⊧ Ψ and let p ∶=ThL(J). Then
S(i)(p) = p ∩ ∆ ∈ ⟨Ψ⟩∆ . Since S(i) is injective, we have

p ∈ S(i)−1(p ∩ ∆) ⊆ S(i)−1[⟨Ψ⟩∆] = ⟨Φ⟩L
and, therefore, J ⊧ Φ. ◻

For fragments ∆ ⊆ L that are closed under disjunctions, we obtain the
following characterisation of when every L-formula is equivalent to a
set of ∆-formulae.

Proposition 3.10. Let L be a logic, ∆ ⊆ L, and let i ∶ ∆ → L be the inclusion
morphism. If ∆ is closed under disjunctions, the following statements are
equivalent.

(1) For every Φ ⊆ L, there is some Ψ ⊆ ∆ such that Φ ≡L Ψ.

(2) Φ ≡L Φ⊧ ∩ ∆, for all Φ ⊆ L.

(3) S(i) ∶ S(L) → S(∆) is a homeomorphism.

Proof. (1)⇒ (2) Let Φ ⊆ L. Clearly, Φ ⊧ Φ⊧ ∩ ∆. Hence, we only need
to prove that Φ⊧ ∩ ∆ ⊧ Φ. By (1), there is a set Ψ ⊆ ∆ such that Ψ ≡L Φ.
Hence, Φ ⊧ Ψ implies that Ψ ⊆ Φ⊧∩∆. Since Ψ ⊧ Φ, it therefore follows
that Φ⊧ ∩ ∆ ⊧ Φ.

(2)⇒ (3) Suppose that every Φ ⊆ L is equivalent to Φ⊧ ∩ ∆. We have
to prove that S(i) is continuous, closed, and bijective. Continuity and
surjectivity follow from Corollary 2.13.

For injectivity, suppose that p, q ∈ S(L) are two types with S(i)(p) =
S(i)(q). By (2), p ≡L p ∩ ∆ and q ≡L q ∩ ∆. Consequently, we have

p ≡L p ∩ ∆ = S(i)(p) = S(i)(q) = q ∩ ∆ ≡L q .
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It follows that p = q, as desired.
It remains to prove that S(i) is closed. Since S(i) is injective, it is

sufficient, by Lemma b5.2.3, to prove that S(i)[⟨Φ⟩L] is closed, for every
Φ ⊆ L. By (2), Φ ≡L Φ⊧ ∩ ∆. Hence, it follows by Lemma 3.9 that the set
S(i)[⟨Φ⟩L] = ⟨Φ⊧ ∩ ∆⟩∆ is closed.

(3)⇒ (1) Suppose that S(i) is a homeomorphism. To show that every
Φ ⊆ L is equivalent to some Ψ ⊆ ∆, we fix Φ ⊆ L. Since ⟨Φ⟩L is closed
in S(L), it follows that C ∶= S(i)[⟨Φ⟩L] is a closed subset of S(∆).
By Lemma 2.2, there exists a set Ψ ⊆ ∆ such that C = ⟨Ψ⟩∆ . Hence,
S(i)[⟨Φ⟩L] = ⟨Ψ⟩∆ implies, by Lemma 3.9, that Φ ≡L Ψ . ◻
Exercise 3.2. Show that the preceding lemma may fail if ∆ is not closed
under disjunctions.

For logics with compact type space, we can strengthen this proposition
as follows.

Proposition 3.11. Let L be a boolean closed logic such that S(L) is com-
pact, let ∆ ⊆ L, and let i ∶ ∆ → L be the inclusion morphism. The following
statements are equivalent:

(1) For every φ ∈ L, there is some ψ ∈ ∆ with ψ ≡L φ.

(2) ∆ is a retract of L.

(3) ∆ is boolean closed and

spec(Lb(i)) ∶ spec(Lb(L)) → spec(Lb(∆))
is a homeomorphism.

(4) ∆ is boolean closed andS(i) ∶ S(L) → S(∆) is a homeomorphism.

Proof. (1) ⇔ (2) was already proved in Lemma 3.4.(3) ⇒ (2) According to Lemma b5.6.7, Lb(i) ∶ Lb(∆) → Lb(L) is an
isomorphism. Hence, the claim follows by Lemma 3.4.(1) ⇒ (4)S(i) is a homeomorphism by Corollary 3.3 (a). Therefore,
we only need to show that ∆ is boolean closed. Let φ, ϑ ∈ ∆. Then φ ∧ ϑ,
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φ ∨ ϑ, and ¬φ are L-formulae. By (1), there are formulae ψ0 ,ψ1 ,ψ2 ∈ ∆
with

ψ0 ≡L φ ∧ ϑ , ψ1 ≡L φ ∨ ϑ , and ψ2 ≡L ¬φ .

Hence, ∆ is boolean closed.(4) ⇒ (3) According to Lemma 2.17, S(L) and S(∆) are both com-
pact. Therefore, we can use Lemma 2.8 to obtain homeomorphisms

h ∶ S(L) → spec(Lb(L)) and h0 ∶ S(∆) → spec(Lb(∆)) .

If S(i) is a homeomorphism, then so is spec(Lb(i)) = h0 ○S(i) ○ h−1.◻
Corollary 3.12. Let L be a boolean closed logic such that S(L) is compact,
and let ∆ ⊆ Φ ⊆ L. The following statements are equivalent.

(1) Every formula in Φ is equivalent to a finite boolean combination of
formulae in ∆.

(2) p ∩ ∆ = q ∩ ∆ implies p ∩ Φ = q ∩ Φ, for all p, q ∈ S(L).
Proof. (1)⇒ (2) is obvious. For (2)⇒ (1), let ∆+ and Φ+ be the boolean
closures of, respectively, ∆ and Φ and let i ∶ ∆+ → Φ+ be the inclu-
sion morphism. By Proposition 3.11, it is sufficient to show that S(i) ∶
S(Φ+) → S(∆+) is a homeomorphism.
According to Lemma 2.16, S(i) is continuous, closed, and surjective.

Hence, it remains to prove that it is injective. Suppose that S(i)(p) =
S(i)(q). Fix models J0 ⊧ p and J1 ⊧ q, and set p+ ∶= ThL(J0) and
q+ ∶=ThL(J1). Then

p+ ∩ ∆+ = p ∩ ∆+ = S(i)(p) = S(i)(q) = q ∩ ∆+ = q+ ∩ ∆+ .

In particular, we have p+ ∩∆ = q+ ∩∆. By (2), we obtain p+ ∩Φ = q+ ∩Φ,
which implies that

p = p+ ∩ Φ+ = q+ ∩ Φ+ = q . ◻
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As an application we prove the intuitively obvious fact that, if there
are more formulae than types, many formulae have to be equivalent.

Proposition 3.13. Let L be a boolean closed logic such that S(L) is com-
pact. There exists a retract L0 of L of size ∣L0∣ ≤ ∣S(L)∣ ⊕ ℵ0.

Proof. Let (pα)α<κ be an enumeration of S(L) without repetitions. For
every pair of indices α, β < κ, α ≠ β, fix a formula ψαβ ∈ pα ∖ pβ .
Set Ψ ∶= {ψαβ ∣ α, β < κ } and let L0 be the set of all finite boolean
combinations of formulae in Ψ . Then ∣L0∣ ≤ κ ⊗ κ ⊗ ℵ0 ≤ κ ⊕ ℵ0 and

pα ∩ Ψ = pβ ∩ Ψ implies pα = pβ .

Therefore, Corollary 3.12 implies that L0 is a retract of L. ◻
Corollary 3.14. Let T ⊆ FO0[Σ] be a first-order theory. There exists a
subset Σ0 ⊆ Σ of size ∣Σ0∣ ≤ ∣S<ω(T)∣ and a family of formulae φξ(x̄), for
ξ ∈ Σ ∖ Σ0, such that, for every model M of T,

ξM = φM∣Σ0
ξ , for all ξ ∈ Σ ∖ Σ0 .

Proof. For each finite tuple s̄ of sorts, we can use Proposition 3.13 to
obtain a retract ∆ s̄ of FOs̄[Σ]/T such that ∣∆ s̄ ∣ ≤ ∣S s̄(T)∣. Let Σ0 be the
set of all symbols from Σ that appear in some ∆ s̄ . Note that S s̄(T) ≠ ∅
implies that

∣S<ω(T)∣ = ∣⋃̄
s

S s̄(T)∣ ≥ ℵ0 .

Hence,

∣Σ0∣ ≤ ∑̄
s
∣∆ s̄ ∣ ⊕ ℵ0 = ∣S<ω(T)∣ ⊕ ℵ0 = ∣S<ω(T)∣ .

Furthermore, for every relation symbol R ∈ Σ ∖ Σ0 of type s̄, there exists
a formula φR(x̄) ∈ ∆ s̄ ⊆ FOs̄[Σ0] such that Rx̄ ≡ φR(x̄). Similarly, for
every function symbol f ∈ Σ ∖ Σ0 of type s̄ → t, there exists a formula
φ f (x̄ , y) ∈ ∆ s̄ t ⊆ FOs̄ t[Σ0] such that f x̄ = y ≡ φ f (x̄ , y). ◻
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4. Local type spaces
For technical reasons we will consider in the next section certain quo-
tients of first-order type spaces Ss̄(U). To define these quotients we
consider a restriction L∣∆ of some logic L and we equip the correspond-
ing set of types S(L∣∆) with a topology that is finer than the usual one.
Our aim is to show that, for first-order logic, this topology coincides
with the usual one. For simplicity, we only consider logics L that are
closed under disjunction.

Definition 4.1. Let L be a logic that is closed under disjunction, ∆ ⊆ L
a fragment, and let i ∶ ∆ → L be the inclusion morphism. We denote
by S∆(L) the topological space with universe S(∆) where the topology
consists of all sets

⟨Φ⟩∆ ∶= S(i)[⟨Φ⟩L] , for Φ ⊆ L .

Lemma 4.2. Let L be a logic that is closed under disjunctions, ∆ ⊆ L, and
let i ∶ ∆ → L be the inclusion morphism.

(a) The restriction function

ρ∆ ∶ S(L) → S∆(L) ∶ p↦ p ∩ ∆

is closed and surjective.
(b) The identity function

h ∶ S∆(L) → S(∆) ∶ p↦ p

is continuous and bijective.
(c) S∆(L) = S(∆) if, and only if, S(i) ∶ S(L) → S(∆) is closed and

ρ∆ is continuous.

S(L)
S∆(L)

S(∆)

ρ∆

S(i)
h
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Proof. First, note that S(i) = h ○ ρ∆ since

h(ρ∆(p)) = h(p ∩ ∆) = p ∩ ∆ = S(i)(p) , for every p ∈ S(L) .

(a) Since L is closed under disjunctions, each closed set of S(L) is
of the form ⟨Φ⟩L , for some Φ ⊆ L. The function ρ∆ is closed since, for
every Φ ⊆ L,

ρ∆[⟨Φ⟩L] = { p ∩ ∆ ∣ p ∈ ⟨Φ⟩L } = {S(i)(p) ∣ p ∈ ⟨Φ⟩L } = ⟨Φ⟩∆
is a closed set of S(∆).

For surjectivity, note that h−1 and S(i) are both surjective. Therefore,
so is ρ∆ = h−1 ○S(i).

(b) h is clearly bijective. For continuity, note that h ○ ρ∆ = S(i). Since
S(i) is surjective, it follows by Lemma a2.1.10 for a closed set C ⊆ S(∆)
that

h−1[C] = h−1[S(i)[S(i)−1[C]]]= h−1[h[ρ∆[S(i)−1[C]]]] = ρ∆[S(i)−1[C]] .

This set is closed, since S(i) is continuous and ρ∆ is closed.
(c) (⇒) If S∆(L) = S(∆), then h is a homeomorphism. Hence, ρ∆ =

h−1 ○ S(i) is a composition of continuous functions and, therefore,
continuous. Similarly,S(i) = h○ρ∆ is a composition of closed functions
and, therefore, closed.(⇐) It is sufficient to show that the identity function

h ∶ S∆(L) → S(∆) ∶ p↦ p

is a homeomorphism. We have already seen in (b) that it is bijective and
continuous. Hence, it remains to prove that h is closed.

By assumption, ρ∆ is continuous andS(i) is closed. It follows as in (b)
that

h[C] = S(i)[ρ−1
∆ [C]]

is closed, for every closed set C ⊆ S∆(L). ◻
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In the applications below we are interested in the case where S(L) is
compact and ∆ closed under negation. In this situation the topologies of
S∆(L) and S(∆) coincide.

Theorem 4.3. Let L be a boolean closed logic such that S(L) is compact
and let ∆ ⊆ L.

(a) The restriction function

ρ∆ ∶ S(L) → S∆(L) ∶ p↦ p ∩ ∆

is continuous, closed, and surjective.

(b) If ∆ is closed under negation, then S∆(L) = S(∆).
Proof. (a) We have already seen in Lemma 4.2 (a) that ρ∆ is closed and
surjective. Hence, it remains to prove that it is continuous.

Let ∆+ be the set of all finite boolean combinations of formulae in ∆.
We claim that

ρ−1
∆ [⟨Φ⟩∆] = ⟨Φ⊧ ∩ ∆+⟩L .

(⊆) Let p ∈ ρ−1
∆ [⟨Φ⟩∆]. Then p ∩ ∆ = ρ∆(p) ∈ ⟨Φ⟩∆ and there is some

type q ∈ ⟨Φ⟩L with q ∩ ∆ = p ∩ ∆. Since every formula in q ∩ ∆+ is a
boolean combination of formulae in q∩∆, it follows that q∩∆+ = p∩∆+.
Hence,

Φ⊧ ⊆ q implies Φ⊧ ∩ ∆+ ⊆ q ∩ ∆+ = p ∩ ∆+ .

Consequently, p ∈ ⟨Φ⊧ ∩ ∆+⟩L .(⊇) Let p ∈ ⟨Φ⊧ ∩ ∆+⟩L and set p0 ∶= p ∩ ∆+. If there is some q ∈ S(L)
with Φ ∪ p0 ⊆ q, then

q ∩ ∆+ = p0 implies ρ∆(p) = p ∩ ∆ = p0 ∩ ∆ = q ∩ ∆ ∈ ⟨Φ⟩∆ .

Hence, p ∈ ρ−1
∆ [⟨Φ⟩∆]. Consequently, it remains to show that Φ ∪ p0 is

satisfiable.
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For a contradiction, suppose otherwise. Then

⟨Φ⟩L ∩ ⋂
ψ∈p0⟨ψ⟩L = ⟨Φ ∪ p0⟩L = ∅ .

Since S(L) is compact, we can find a finite subset Ψ ⊆ p0 such that

⟨Φ⟩L ∩ ⋂
ψ∈Ψ⟨ψ⟩L = ∅ .

Hence, Φ ⊧ ¬⋀Ψ . Note that Ψ ⊆ ∆+ implies ¬⋀Ψ ∈ ∆+. Hence,¬⋀Ψ ∈ Φ⊧ ∩ ∆+ ⊆ p0 and p0 is inconsistent. A contradiction.
(b) We have seen in (a) that ρ∆ is continuous. By Lemma 4.2 (c), it

is therefore sufficient to show that S(i) ∶ S(L) → S(∆) is closed. Let
∆+ ⊆ L be the set of all finite boolean combinations of formulae in ∆,
and let i0 ∶ ∆ → ∆+ and i+ ∶ ∆+ → L be the corresponding inclusion
morphisms. Then S(i+) is closed by Lemma 2.16, and S(i0) is closed
by Lemma 3.5. Hence, S(i) = S(i0) ○S(i+) is also closed. ◻
We will mainly use type spaces of the form S∆(L) in the case of

first-order logic. In this case the definitions are as follows.

Definition 4.4. Let T ⊆ FO0[Σ] be a theory and ∆ ⊆ FO[Σ, X ∪ Y] a set
of formulae where X and Y are disjoint sets of variables. For a set U of
parameters, we set

∆¬U ∶= {φ(x̄; c̄) ∣ φ(x̄; ȳ) ∈ ∆, x̄ ⊆ X , ȳ ⊆ Y , c̄ ⊆ U }∪ {¬φ(x̄; c̄) ∣ φ(x̄; ȳ) ∈ ∆, x̄ ⊆ X , ȳ ⊆ Y , c̄ ⊆ U } .

(a) A partial type p over a set U is a ∆-type if p ⊆ ∆¬U . For ∆ = {φ} we
simply speak of a φ-type.

(b) The restriction of a partial type p is the type

p∣∆ ∶= p ∩ ∆¬U .

(c) Let M be a structure. The ∆-type of a tuple ā ⊆ M over a set U ⊆ M
is

tp∆(ā/U) ∶= tp(ā/U)∣∆ .
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(d) A ∆-type p over U is complete if, for every formula φ(x̄; ȳ) ∈ ∆
and each tuple c̄ ⊆ U , we have φ(x̄; c̄) ∈ p or ¬φ(x̄; c̄) ∈ p.

(e) The space of all complete ∆-types over U is

S∆(U) ∶= S∆¬U (FO[ΣU , X]/T(U)) .

As usual we also write S∆(T) for S∆(∅).
Since first-order type spaces are compact, it follows by the above

results that S∆(U) is equal to S((FO[ΣU , X]/T(U))∣∆¬U ). Our aim is
to show that this definition does not depend on the signature Σ.

Theorem 4.5. Let T ⊆ FO0[Σ] be a theory and ∆ ⊆ FO[Σ, X ∪ Y] a set
of formulae where X and Y are disjoint sets of variables. For a set U of
parameters, set

∆¬U ∶= {φ(x̄; c̄) ∣ φ(x̄; ȳ) ∈ ∆, c̄ ⊆ U }∪ {¬φ(x̄; c̄) ∣ φ(x̄; ȳ) ∈ ∆, c̄ ⊆ U } .

(a) S∆(U) = S((FO[ΣU , X]/T(U)) ∣∆¬U ) .

(b) If ∆ ⊆ FO[Σ0 , X0 ∪ Y], for some Σ0 ⊆ Σ and X0 ⊆ X, then

S∆(T) = S∆(T ∩ FO0[Σ0]) ,
where the local type space on the left-hand side is with respect to the
logic FO[Σ, X] and the one one the right-hand side with respect to
FO[Σ0 , X0].

Proof. (a) follows by Theorem 4.3 (b), while (b) follows from (a) and
Proposition 2.21 (a) (treating the free variables from X and X0 as constant
symbols). ◻
Corollary 4.6. Let T ⊆ FO0[Σ] be a theory, ∆ ⊆ FO[Σ, X ∪ Y] a set of
formulae, U a set of parameters, and ∆¬U the set from Definition 4.4. Then

S∆(U) ≅ spec(Lb(∆¬U)) ,
where Lb(∆¬U) denotes the subalgebra of Lb(FO[ΣU , X]/T(U)) generated
by ∆¬U .
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Proof. Set L ∶= FO[ΣU , X]/T(U) and let ∆+ be the boolean closure
of ∆¬U . By Theorems 4.5 (a) and 2.18 and Lemma 3.5, it follows that

S∆(U) = S(∆¬U) ≅ S(∆+)≅ spec(Lb(∆+)) = spec(Lb(∆¬U)) . ◻
5. Stable theories
In this section we consider the size of first-order type spaces. First, let us
state two trivial bounds.

Lemma 5.1. Let T be a complete first-order theory and s̄ a sequence of
sorts. Then

∣U ∣ ≤ ∣S s̄(U)∣ ≤ 2∣T∣⊕∣U ∣⊕∣s̄∣ , for every set U of parameters.

One situation where the size of a type space is important is when we
want to construct a model realising all types. First note that we can use
the Compactness Theorem to show that, for every structure A, we can
add a tuple realising any given type p over a subset U ⊆ A.

Lemma 5.2. Let A be a Σ-structure, U ⊆ A, and p ∈ Sα(U). There exists
an elementary extension B ⪰ A of size ∣B∣ ≤ ∣A∣ ⊕ ∣Σ∣ ⊕ ∣α∣ ⊕ ℵ0 in which
p is realised.

Proof. Let Φ ∶= p∪Th(AA). We regard the free variables x i , i < α, of p as
constant symbols. If Φ is satisfiable then, by the Theorem of Löwenheim
and Skolem, there exists a model B ⊧ Φ of size ∣B∣ ≤ ∣A∣ ⊕ ∣Σ∣ ⊕ ∣α∣ ⊕ ℵ0.
Furthermore, we have B ⪰ A, by Lemma c2.2.3, and there exists some
ā ∈ Bα with tp(ā/U) = p.

Hence, it is sufficient to show that Φ is satisfiable. Let Φ0 ⊆ Φ be finite.
We write

⋀Φ0 = φ(x̄ , ā) ∧ ψ(ā, b̄)
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where ā ⊆ U , b̄ ⊆ A∖U , p ⊧ φ(x̄ , ā), andA ⊧ ψ(ā, b̄). The last statement
implies that ∃ ȳψ(ā, ȳ) ∈Th(AU). By definition of a type, there exists a
model C ⊧ p ∪Th(AU). In particular, we have

C ⊧ φ(x̄ , ā) ∧ ∃ ȳψ(ā, ȳ) .

Choose a tuple c̄ ⊆ C such that C ⊧ ψ(ā, c̄). We obtain a model of Φ0 by
interpreting the constant symbol b i by the element c i , for every i. ◻
Corollary 5.3. For every Σ-structure A, there exists an elementary exten-
sion B ⪰ A of size at most ∣S<ω(A)∣ in which every type p ∈ S<ω(A) is
realised.

Proof. According to Corollary 3.14, we can find a signature Σ0 ⊆ ΣA of
size ∣Σ0∣ ≤ ∣S<ω(A)∣ such that there exists a retraction

⟨α, β⟩ ∶ FO<ω[ΣA]/T(A) → FO<ω[Σ0]/T0 ,

where T0 ∶= T(A)∩FO0[Σ0]. If we can show that there exists a model B
of T0 realising every type in S<ω(T0), it follows that its expansion β(B)
is a model of T(A) realising every type in S<ω(A). Therefore, we may
assume without loss of generality that ∣Σ∣ ≤ ∣S<ω(A)∣.

Fix an enumeration (pα)α<κ of S<ω(A). We can use Lemma 5.2 to
find, for every α < κ, an elementary extension Cα ⪰ A realising pα . By
Lemma c2.5.7, there exists a common elementary extension C of all Cα .
It follows that C realises every type pα . By the Theorem of Löwenheim
and Skolem, we can find an elementary substructure A ⪯ B ⪯ C of size
at most ∣S<ω(A)∣ ⊕ ∣Σ∣ ⊕ ℵ0 such that every pα is realised in B. Since
S<ω(A) = ⋃n<ω Sn(A) is infinite, we have ∣S<ω(A)∣⊕∣Σ∣⊕ℵ0 = ∣S<ω(A)∣
and the claim follows. ◻

Thenumber of different types a theory possesses also serves as a rough
measure of its complexity. Intuitively, if there are only a few types the
number of different configurations that can appear in a model is small.
Before considering full type spaces Ss̄(U), we start by looking at those
of the form Sφ(U).
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Definition 5.4. Let T be a complete first-order theory and κ an infinite
cardinal. A formula φ(x̄; ȳ) is κ-stable (with respect to T) if we have∣Sφ(U)∣ ≤ κ, for all sets U of size ∣U ∣ ≤ κ. We call φ(x̄; ȳ) stable if it is
κ-stable, for some infinite cardinal κ. Otherwise, φ(x̄; ȳ) is unstable.

Example. If ∼ is an equivalence relation with infinitely many classes,
then the formula x ∼ y is κ-stable, for all infinite κ, since

∣Sx∼y(U)∣ = ∣U/∼∣ ⊕ 1 ≤ ∣U ∣ ⊕ 1 .

The definition does not tell us much about stable formulae. We will
therefore present three equivalent characterisations, two combinatorial
ones that can be checked more easily, and one logical characterisation.

The equivalence proofs rest on two combinatorial results. The first
one is a special case of the Theorem of Ramsey. We will prove the full
version in Section e5.1 below.

Lemma 5.5. Let (an)n<ω be a sequence of elements and let (Bn)n<ω be a
sequence of sets. There exists an infinite set I ⊆ ω such that either

a i ∈ Bk , for all i < k in I ,
or a i ∉ Bk , for all i < k in I .

Proof. We construct an increasing sequence n0 < n1 < ⋯ of indices,
a sequence m0 ,m1 , . . . ∈ [2] of numbers, and a decreasing sequence
J0 ⊇ J1 ⊇ ⋯ of infinite sets such that, for every i < ω, we have n i ∈ J i and
either

m i = 0 and an i ∉ Bk , for all k ∈ J i+1 ,
or m i = 1 and an i ∈ Bk , for all k ∈ J i+1 .

We start with n0 ∶= 0 and J0 ∶= ω. By induction, suppose that we have
already defined n i and J i . Set

L0 ∶= { k ∈ J i ∣ an i ∉ Bk } and L1 ∶= { k ∈ J i ∣ an i ∈ Bk } .
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Then J i = L0 ∪ L1. As J i is infinite, at least one of L0 and L1 must also be
infinite. Choose m i < 2 such that Lm i is infinite. We set

J i+1 ∶= Lm i ∖ [n i + 1] and n i+1 ∶= min J i+1 .

Having defined (n i)i<ω , (m i)i<ω , and (J i)i<ω , we consider the sets

M0 ∶= { i < ω ∣ m i = 0} and M1 ∶= { i < ω ∣ m i = 1} .

Note that n j ∈ J j ⊆ J i implies that

an i ∉ Bn j , for all i < j in M0 ,
and an i ∈ Bn j , for all i < j in M1 .

Since M0 ∪ M1 = ω, at least one of M0 and M1 is infinite. If M0 is
infinite, we can therefore set I ∶= { n i ∣ i ∈ M0 }. Otherwise, we use
I ∶= { n i ∣ i ∈ M1 }. ◻
Theorem 5.6 (Erdős, Makkai). Let X be an infinite set and S ⊆ ℘(X) a
family of size ∣S∣ > ∣X∣. Then there are sequences (a i)i<ω in X and (B i)i<ω
in S such that either

a i ∈ Bk iff i ≤ k , for all i , k < ω ,
or a i ∈ Bk iff i ≥ k , for all i , k < ω .

Proof. For every pair of disjoint finite subsets Y , Z ⊆ X, choose, if pos-
sible, a set B ∈ S with Y ⊆ B and Z ⊆ X ∖ B. Let S0 ⊆ S be the set of
the chosen subsets B. As there are only ∣X<ω × X<ω ∣ = ∣X∣ pairs of finite
subsets, it follows that ∣S0∣ ≤ ∣X∣ < ∣S∣. Consequently, there exists a set
A ∈ S that cannot be expressed as a finite boolean combination of sets
from S0. (We allow empty boolean combinations, so that A is different
from ∅ and X.)
We inductively construct sequences (cn)n<ω in A, (dn)n<ω in X ∖ A,

and (Bn)n<ω in S0 such that, for all n,
◆ {c0 , . . . , cn} ⊆ Bn ,
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◆ {d0 , . . . , dn} ⊆ X ∖ Bn , and◆ c i ∈ Bn ⇔ d i ∈ Bn , for all i > n.
For the inductive step, suppose that we have already defined elements
c0 , . . . , cn−1, d0 , . . . , dn−1, and sets B0 , . . . , Bn−1. Since A is not a boolean
combination of B0 , . . . , Bn−1, there are elements cn ∈ A and dn ∈ X ∖ A
such that

cn ∈ Bk iff dn ∈ Bk , for all k < n .

Then {c0 , . . . , cn} ⊆ A and {d0 , . . . , dn} ⊆ X ∖ A. By choice of S0, it
follows that we can choose a set Bn ∈ S0 with {c0 , . . . , cn} ⊆ Bn and{d0 , . . . , dn} ⊆ X ∖ Bn . This concludes the inductive step.

We have constructed sequences such that

c i ∈ Bk and d i ∉ Bk , for i ≤ k ,

c i ∈ Bk ⇔ d i ∈ Bk , for i > k .

By Lemma 5.5, there exists an infinite subset I ⊆ ω such that either◆ c i ∉ Bk , for all indices i > k in I, or
◆ c i ∈ Bk , for all indices i > k in I.

In the first case, the sequences (cn)n∈I and (Bn)n∈I satisfy

c i ∈ Bk iff i ≤ k , for all i , k ∈ I .

In the second case, the sequences (dn)n∈I and (Bn)n∈I satisfy

d i ∈ Bk iff i > k , for all i , k ∈ I .

Shifting the sequence (d i)i∈I by one, we obtain the desired sequences(a i)i<ω and (B i)i<ω . ◻
Using these two results, we can present our characterisations. We

introduce each in turn, before proving that they are all equivalent to
(un-)stability. The first combinatorial characterisation is based on the
non-existence of a definable linear order.
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Definition 5.7. Let T be a theory. A formula φ(x̄ , ȳ) has the order prop-
erty (with respect to T) if there exists a model M ⊧ T containing two
sequences (ān)n<ω and (b̄n)n<ω such that

M ⊧ φ(ā i , b̄k) iff i ≤ k .

Using compactness we obtain several equivalent definitions of the
order property.

Lemma 5.8. Let T be a complete first-order theory and φ(x̄ , ȳ) a formula.
The following statements are equivalent.

(1) φ has the order property with respect to T.
(2) For every linear order ⟨I, ≤⟩, there exists a model M of T that con-

tains sequences (ā i)i∈I and (b̄ i)i∈I such that

M ⊧ φ(ā i , b̄k) iff i ≤ k .

(3) For every model M of T and all finite linear orders ⟨I, ≤⟩, there are
sequences (ā i)i∈I and (b̄ i)i∈I in M such that

M ⊧ φ(ā i , b̄k) iff i ≤ k .

Proof. (2)⇒ (1) The claim follows from (2) if we set I = ω.
(3)⇒ (2) This is a direct application of the Compactness Theorem.

Given I, choose new constant symbols c̄ i and d̄ i , for i ∈ I, and define

Φ ∶= T ∪ {φ(c̄ i , d̄k) ∣ i , k ∈ I, i ≤ k }
∪ {¬φ(c̄ i , d̄k) ∣ i , k ∈ I, i > k } .

Clearly, everymodel of Φ contains two sequenceswith the desired proper-
ties. Hence, it remains to prove that Φ is satisfiable. By the Compactness
Theorem, we only have to show that every finite subset of Φ has a model.
Let Φ0 ⊆ Φ be finite. Then there exists a finite subset I0 ⊆ I such that

Φ0 ⊆ T ∪ {φ(c̄ i , d̄k) ∣ i , k ∈ I0 , i ≤ k }
∪ {¬φ(c̄ i , d̄k) ∣ i , k ∈ I0 , i > k } .
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Let M be an arbitrary model of T . By (3), we can find sequences (ā i)i∈I0
and (b̄ i)i∈I0 in M such that

M ⊧ φ(ā i , b̄k) iff i ≤ k .

Consequently, we can satisfy Φ0 in the structure M if we interpret the
constants c̄ i by ā i and the constants d̄ i by b̄ i .

(1)⇒ (3) Fix a model N of T that contains sequences (ān)n<ω and(b̄n)n<ω such that

N ⊧ φ(ā i , b̄k) iff i ≤ k .

Consider the formula

ψm ∶= ∃x̄0⋯∃x̄m−1∃ ȳ0⋯∃ ȳm−1⋀
i<k
[φ(x̄ i , ȳk) ∧ φ(x̄ i , x̄ i) ∧ ¬φ(x̄k , ȳ i)] .

Suppose that ∣I∣ = m < ω and let M be an arbitrarymodel of T . SinceN ⊧
φm we have T ⊧ φm which, in turn, implies that M ⊧ φm . Consequently,
M contains two finite sequences (ān)n<m and (b̄n)n<m with the desired
properties. ◻

The second combinatorial characterisation is based on the non-exist-
ence of certain trees.

Definition 5.9. Let T be a complete first-order theory, φ(x̄; ȳ) a formula,
U a set of parameters, and γ an ordinal. A φ-tree of height γ over U is a
family (c̄w)w∈2<γ of parameters c̄w ⊆ U such that, for every η ∈ 2γ , the
set

T(U) ∪ {φη(α)(x̄; c̄η↾α) ∣ α < γ }
is consistent, where

φ0(x̄; ȳ) ∶= φ(x̄; ȳ) and φ1(x̄; ȳ) ∶= ¬φ(x̄; ȳ) .
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Lemma 5.10. Let T be a first-order theory and φ(x̄; ȳ) a formula such
that, for every n < ω, there exists a model of T containing a φ-tree of
height n. Then, for every ordinal γ, there exists a model of T containing a
φ-tree of height γ.

Proof. Given γ, set

Φγ ∶= T ∪ {φη(α)(x̄η ; ȳη↾α) ∣ α < γ, η ∈ 2γ } .

If this set is satisfiable, there exists a model of T containing elements
āη and c̄w , for η ∈ 2γ and w ∈ 2<γ , such that every āη satisfies

T(⋃w c̄w) ∪ {φη(α)(x̄; c̄η↾α) ∣ α < γ } .

Hence, (c̄w)w∈2<γ is a φ-tree of height γ.
It therefore remains to show that Φγ is satisfiable. By the Compactness

Theorem, it is sufficient to prove that every finite subset is satisfiable.
Hence, consider a finite set Ψ ⊆ Φγ . Let α0 < ⋅ ⋅ ⋅ < αn−1 be an enu-
meration of all ordinals α such that Ψ contains a formula of the form
φη(α)(x̄η ; ȳη↾α) and let σ ∶ 2≤γ → 2≤n be the function mapping a se-
quence η ∈ 2β of length β ≤ γ to its restriction ⟨η(α0), . . . , η(αk)⟩,
where k < n is the maximal index such that αk < β. By assumption, there
exists a φ-tree (d̄w)w∈2<n of height n. For each branch ζ ∈ 2n , fix a tuple
āζ satisfying

T(⋃w dw) ∪ {φζ(i)(x̄; d̄ζ↾i) ∣ i < n } .

Then Ψ is satisfied if we assign the value āσ(η) to the variable x̄η and the
value d̄σ(w) to the variable ȳw . ◻

The existence of large φ-trees implies that the local type spaces are
also large. In particular, formulae with large φ-trees are unstable.

Lemma 5.11. Let T be a complete theory and φ(x̄; ȳ) a formula such that
there are φ-trees of height n, for all n < ω. For every infinite cardinal κ
there exists a set U of parameters such that ∣Sφ(U)∣ > κ = ∣U ∣.

569



c3. Types and type spaces

Proof. Let µ be the minimal cardinal such that 2µ > κ. By Lemma 5.10,
there exists a φ-tree (c̄w)w∈2<µ of height µ. Since 2<µ ≤ κ, we can choose
a set U of size ∣U ∣ = κ containing all parameters c̄w , for w ∈ 2<µ . For
every branch η ∈ 2µ , fix a tuple āη satisfying

{φη(α)(x̄; c̄η↾α) ∣ α < µ } .

For η ≠ ζ, it follows that tpφ(āη/U) ≠ tpφ(āζ/U). Hence,

∣Sφ(U)∣ ≥ 2µ > κ = ∣U ∣ . ◻
Before proving the converse, let us present a third, logical character-

isation of stability.

Definition 5.12. Let M be a structure, C ,U ⊆ M sets of parameters, ∆ a
set of formulae, and φ(x̄; ȳ) a formula.

(a) A φ-definition of a type p ∈ Sφ(U) over C is a formula δ( ȳ) over C
such that

φ(x̄; c̄) ∈ p iff M ⊧ δ(c̄) , for all c̄ ⊆ U .

(b) A complete type p ∈ S∆(U) is definable over C if, for every φ ∈ ∆,
the type p∣φ has a φ-definition over C.

Example. Recall the example on page 529, where we described S1(Q)
for the theory T ∶=Th(⟨Q, <⟩). The definable types are those of the form(a+), (a−), (+∞), (−∞), and all realised types. The irrational types are
not definable. For instance, for (a+) and φ(x; y) ∶= x < y, we can use
the definition δ(y) ∶= y > a.

The number of definable types is always small.

Lemma 5.13. Let φ(x̄; ȳ) ∈ FO[Σ, X ∪ Y]. Then Sφ(U) contains at most

∣Σ∣ ⊕ ∣C∣ ⊕ ℵ0

types that are definable over C.
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Proof. W.l.o.g. we may assume that X and Y are finite. Then there are∣Σ∣ ⊕ ∣C∣ ⊕ ℵ0 first-order formulae over C and, hence, at most that many
φ-definitions. Furthermore, if p, q ∈ Sφ(U) are types with the same
φ-definition then p = q. ◻
Lemma 5.14. Let U be a set of parameters and let φ(x̄; ȳ) be a first-order
formula that has no φ-tree of height N < ω. Then every φ-type in Sφ(U)
is definable over U.

Proof. For a formula ψ(x̄) over U , let Dφ(ψ) be the maximal number n
such that there exists a φ-tree (c̄w)w∈2<n of height n such that, for every
η ∈ 2n , the set

T(U) ∪ {ψ(x̄)} ∪ {φη(i)(x̄; c̄η↾i) ∣ i < n }
is consistent. By assumption, Dφ(ψ) < N . In particular, the maximum
is well-defined. Furthermore, Dφ is monotone in the sense that

ψ ⊧ ϑ implies Dφ(ψ) ≤ Dφ(ϑ) .

Given p ∈ Sφ(U), choose a finite subset Φ ⊆ p such that Dφ(⋀Φ) is
minimal. By choice of Φ and monotonicity of Dφ , it follows for every
c̄ ⊆ U that

φ(x̄; c̄) ∈ p iff Dφ(⋀Φ(x̄) ∧ φ(x̄; c̄)) = Dφ(⋀Φ(x̄)) .

Since the non-existence of a φ-tree of height n with the above property
is definable in first-order logic, it follows that, for every n < ω and every
formula ψ(x̄; ȳ) over U , there is a formula δn

ψ( ȳ) over U such that

M ⊧ δn
ψ(c̄) iff Dφ(ψ(x̄; c̄)) < n .

Hence, we can use the formula δn⋀Φ∧φ with n ∶= Dφ(⋀Φ)+ 1 to define p.◻
After having introduced three properties of formulae, we can show

that they are all equivalent to (un-)stability.
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Theorem 5.15. Let T be a complete first-order theory and φ(x̄; ȳ) a for-
mula. The following statements are equivalent:

(1) φ is stable.

(2) φ is κ-stable, for all infinite cardinals κ.

(3) φ does not have the order property.

(4) There exists some n < ω such that there is no φ-tree of height n.

(5) Every complete φ-type is definable over its domain.

Proof. (2)⇒ (1) is trivial and (1)⇒ (4)⇒ (5)⇒ (1) were already proved
in, respectively, Lemmas 5.11, 5.14, and 5.13.

(4)⇒ (3) Suppose that φ has the order property. Let ≤ be the infix
ordering on I ∶= 2≤ω , which is defined by

u < v : iff v = u1x , for some x ∈ 2≤ω ,
or u = w0x and v = w1y , for some w ∈ 2<ω and

x , y ∈ 2≤ω .

By Lemma 5.8, we can find a model M of T that contains sequences(āw)w∈I and (b̄w)w∈I such that

M ⊧ φ(āu , b̄v) iff u ≤ v .

For η ∈ 2ω and n < ω, it follows that

M ⊧ φ(āη , b̄η↾n) iff η ≤ η ↾ n iff η(n) = 0 .

Consequently, for every η ∈ 2ω and every n < ω, the tuple āη satisfies

T(U) ∪ {φη(i)(x̄; b̄η↾i) ∣ i < n } ,
and (b̄w)w∈2<n is a φ-tree of height n.

(3)⇒ (2) Suppose that there is an infinite set U with ∣Sφ(U)∣ > ∣U ∣.
Fix a model M containing realisations of every φ-type over U . Let s̄ be
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the sorts of those variables in x̄ that actually appear in φ and let t̄ be
those in ȳ. For ā ∈ M s̄ , we set

S(ā) ∶= { c̄ ∈ U t̄ ∣M ⊧ φ(ā; c̄) } .

Note that tpφ(ā/U) ≠ tpφ(b̄/U) implies S(ā) ≠ S(b̄). Hence,

S ∶= { S(ā) ∣ ā ∈ M s̄ } ⊆ ℘(U t̄)
is a family of size ∣S∣ = ∣Sφ(U)∣ > ∣U ∣ = ∣U t̄ ∣. By Theorem 5.6, there exist
sequences (c̄ i)i<ω in U t̄ and (ā i)i<ω in M s̄ such that either

c̄ i ∈ S(āk) iff i ≤ k ,
or c̄ i ∈ S(āk) iff i ≥ k .

It follows that

M ⊧ φ(ā i ; c̄k) iff i ≤ k
or M ⊧ φ(ā i ; c̄k) iff i ≥ k .

In the first case, φ has the order property and we are done. In the second
case, we can take, for every n < ω, a prefix of length n of these two
sequences and reverse their ordering to obtain sequences (ā′i)i<n and(c̄′i)i<n such that

M ⊧ φ(ā′i ; c̄′k) iff i ≤ k .

Consequently, it follows by Lemma 5.8 (3) that φ has the order property.◻
Having characterised stable formulae, we turn to theories and their

type spaces.

Definition 5.16. (a) A complete first-order theory T is κ-stable if we
have ∣S s̄(U)∣ ≤ κ, for all finite tuples of sorts s̄ and every set U of size
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∣U ∣ ≤ κ. We call T stable if it is κ-stable, for some infinite cardinal κ.
Otherwise, T is unstable.

(b) A complete first-order theory T is totally transcendental if

rkCB(Ss̄(U)) < ∞ for all sets U and all finite tuples s̄ .

We obtain equivalent characterisations to those of Theorem 5.15.

Theorem 5.17. Let T be a complete first-order theory. The following state-
ments are equivalent:

(1) T is stable.
(2) T is κ-stable, for every cardinal κ such that κ∣T∣ = κ.
(3) Every first-order formula is stable.
(4) Every complete type is definable over its domain.
(5) rkCB(S∆(U)) < ∞, for all sets U and all finite sets ∆.
(6) ∣S∆(U)∣ ≤ κ, for all infinite cardinals κ, all finite sets ∆, and all

sets U of size ∣U ∣ ≤ κ.

Proof. (2)⇒ (1) is trivial.
(1)⇒ (3) Suppose that some formula φ(x̄ , ȳ) is not stable. By The-

orem 5.15, it follows that, for every infinite cardinal κ, there exists a set U
of size ∣U ∣ ≤ κ such that

κ < ∣Sφ(U)∣ ≤ ∣S s̄(U)∣ ,
where s̄ are the sorts of x̄. Consequently, T is not κ-stable, for any κ ≥ ℵ0.

(3)⇒ (4) Every type p ∈ S s̄(U) is definable over its domain since, by
Theorem 5.15, all of its restrictions p∣φ are definable.

(4)⇒ (6) Let ∆ be a finite set of formulae and U a set of size ∣U ∣ ≤ κ.
There exists an injective function S∆(U) → ∏φ∈∆ Sφ(U) mapping a
∆-type p to the tuple of its restrictions (p∣φ)φ∈∆ . If every type is definable
over its domain, it follows by Theorem 5.15 that

∣S∆(U)∣ ≤ ∏
φ∈∆∣Sφ(U)∣ ≤ κ∣∆∣ = κ .
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(6)⇒ (2) Let κ be a cardinal with κ∣T∣ = κ and let U be a set of size∣U ∣ ≤ κ. Since there exists an injective function

S<ω(U) → ∏φ Sφ(U) ∶ p↦ (p∣φ)φ ,

it follows that

∣S<ω(U)∣ ≤ ∏φ ∣Sφ(U)∣ ≤ κ∣T∣ = κ .

(6)⇒ (5) Suppose that rkCB(S∆(U)) = ∞. We have seen in Corol-
lary 4.6 that

S∆(U) ≅ spec(Lb(∆¬U)) .

By Lemma b2.5.15, there exists an embedding (ψw)w∈2<ω of 2<ω into
Lb(∆¬U). Let U0 ⊆ U be the set of all parameters appearing in these
formulae ψw . Then U0 is countable and (ψw)w∈2<ω is an embedding
of 2<ω into Lb(∆¬U0

). Consequently,

rkCB(S∆(U0)) = rkCB(spec(Lb(∆¬U0
))) = ∞ .

It follows by Corollary b5.7.4 that ∣S∆(U0)∣ ≥ 2ℵ0 > ∣U0∣. This contra-
dicts (6).

(5)⇒ (6) Suppose that there is some infinite set U with ∣S∆(U)∣ > ∣U ∣.
We have seen in Corollary 4.6 that

S∆(U) ≅ spec(Lb(∆¬U)) .

Consequently, ∣spec(Lb(∆¬U))∣ > ∣Lb(∆¬U)∣ implies, by Corollary b2.5.22,
that

rkCB(S∆(U)) = rkCB(spec(Lb(∆¬U))) = ∞ . ◻
ℵ0-stable theories are particularly simple. They are κ-stable, for every

cardinal κ, and not only the local type spaces S∆(U), but even the full
type space S<ω(U) has a Cantor-Bendixson rank.
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Theorem 5.18. Let T be a complete theory over a countable signature. The
following statements are equivalent:

(1) T is ℵ0-stable.

(2) T is κ-stable, for all infinite cardinals κ.

(3) T is totally transcendental.

Proof. By Theorem 2.18, we have

Ss̄(U) ≅ spec(B(U)) where B(U) ∶= Lb(FOs̄[ΣU]/T(U)) .

(2)⇒ (1) is trivial.
(3)⇒ (2) Suppose that there is some infinite cardinal κ such that T is

not κ-stable, that is, we have ∣S s̄(U)∣ > ∣U ∣, for some set U of size ∣U ∣ = κ.
By Corollary b2.5.22 there is some type p ∈ S s̄(U) with rkP(φ) = ∞.
Hence, Theorem b5.7.8 implies that rkCB(Ss̄(U)) = ∞.

(1)⇒ (3) Suppose that rkCB(Ss̄(U)) = ∞, for some set U and some
finite tuple s̄. By Theorem b5.7.8, there is some formula φ ∈ B(U) with
rkP(φ) = ∞. Hence, we an use Lemma b2.5.15 to find an embedding(ψw)w∈2<ω of 2<ω into B(U). Let U0 ⊆ U be the set of all parameters
appearing in these formulae ψw . Then U0 is countable and (ψw)w∈2<ω is
an embedding of 2<ω into B(U0). By Lemma b5.7.3, it follows that

∣S s̄(U0)∣ = ∣spec(B(U0))∣ ≥ 2ℵ0 > ∣U ∣ .
Hence, T is not ℵ0-stable. ◻
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1. Partial isomorphisms
In many constructions and proofs we will have to find two sequences
ā and b̄ that cannot be told apart by any formula of a given logic, i.e., we
are interested in the relation ⟨A, ā⟩ ≡L ⟨B, b̄⟩. In the present chapter we
take a closer look at such relations for L = FO∞ℵ0 and L = FO.

Definition 1.1. Let A and B be Σ-structures, ā ⊆ A and b̄ ⊆ B sequences
of the same length, and α an ordinal.

(a) We write ⟨A, ā⟩ ≡α ⟨B, b̄⟩ iff
A ⊧ φ(ā) iff B ⊧ φ(b̄) ,

for all formulae φ ∈ FO∞ℵ0[Σ] of quantifier rank qr(φ) ≤ α. If A ≡α B
we say that A is α-equivalent to B.

(b) We write ⟨A, ā⟩ ≡∞ ⟨B, b̄⟩ iff ⟨A, ā⟩ ≡α ⟨B, b̄⟩, for all ordinals α.
Hence, we have

⟨A, ā⟩ ≡∞ ⟨B, b̄⟩ iff ⟨A, ā⟩ ≡FO∞ℵ0 ⟨B, b̄⟩ .

The relations ≡α can be computed by induction on α. Note that we
have ⟨A, ā⟩ ≡0 ⟨B, b̄⟩ if and only if the function a i ↦ b i induces an
isomorphism ⟪ā⟫A ≅ ⟪b̄⟫B.

Definition 1.2. Let A and B be Σ-structures. A partial isomorphism
from A to B is a function p with dom p ⊆ A and rng p ⊆ B such that
p can be extended to an isomorphism

⟪dom p⟫A ≅ ⟪rng p⟫B .
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We denote the set of all partial isomorphisms from A to B whose
domains have cardinality less than κ by pIsoκ(A,B). The union for all
cardinals κ is pIso(A,B) ∶= ⋃κ pIsoκ(A,B).

For sequences (a i)i<α and (b i)i<α we simplify notation by writing
p ∶ ā ↦ b̄ for the function p = { ⟨a i , b i⟩ ∣ i < α }. (Note that, if we
reorder the sequences ā and b̄ then we obtain the same function p.)

Remark. (a) Note that, by Theorem b3.1.9, in the above definition the
isomorphism

π ∶ ⟪dom p⟫A → ⟪rng p⟫B

extending p is unique, if it exists.
(b) If Σ is a relational signature then ⟪X⟫A = X and a function p is a

partial isomorphism iff p ∶ dom p ≅ rng p.
(c) Finally, note that ⟨⟩ ↦ ⟨⟩ = ∅ is the unique function p with

dom p = ∅ and rng p = ∅. It is a partial isomorphism iff ⟪∅⟫A ≅ ⟪∅⟫B,
that is, if the substructures generated by the constants of A and B are
isomorphic and if the same relations of arity 0 hold in A and B.

Definition 1.3. Let A and B be Σ-structures.
(a) A partial isomorphism p ∈ pIso(A,B) has the back-and-forth

property with respect to a set I ⊆ pIso(A,B) of partial isomorphisms if
the following conditions are satisfied:
Forth. For all a ∈ A, there is some q ∈ I such that p ⊆ q and a ∈ dom q.
Back. For all b ∈ B, there is some q ∈ I such that p ⊆ q and b ∈ rng q.

A set J ⊆ pIso(A,B) of partial isomorphisms has the back-and-forth
property with respect to I if every element of J has the back-and-forth
property.

(b) A back-and-forth system between A and B is a sequence (Iα)α of
sets Iα ⊆ pIso(A,B) such that◆ for every α, Iα+1 has the back-and-forth property with respect

to Iα , and◆ Iδ ⊆ ⋂α<δ Iα , for limit ordinals δ.
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The canonical back-and-forth system (Iα(A,B))α between A and B is
defined inductively by

I0(A,B) ∶= pIso(A,B) ,
Iα+1(A,B) ∶= { p ∈ Iα(A,B) ∣ p has the back-and-forth

property w.r.t. Iα(A,B) } ,
and Iδ(A,B) ∶= ⋂

α<δ Iα(A,B) , for limit ordinals δ .

We will also need the restrictions

Iκ
α(A,B) ∶= Iα(A,B) ∩ pIsoκ(A,B)

to domains of size less than κ.

Example. Let A = ⟨Z, <⟩ and B = ⟨Q, <⟩. We have

I0(A,B) = { ā ↦ b̄ ∣ a i < ak ⇔ b i < bk } ,
I1(A,B) = { ā ↦ b̄ ∣ a i < ak ⇔ b i < bk and ∣a i − ak ∣ ≠ 1}
I2(A,B) = {⟨⟩ ↦ ⟨⟩} ,
I3(A,B) = ∅ .

Recall that an open dense linear order is a linear order without first
and last element such that between any two elements there is a third one.

Lemma 1.4. If A = ⟨A, <⟩ and B = ⟨B, <⟩ are open dense linear orders
then pIsoℵ0

(A,B) has the back-and-forth property with respect to itself.

Proof. Suppose that ā ↦ b̄ ∈ pIsoℵ0
(A,B)wherew.l.o.g. wemay assume

that a0 ≤ ⋅ ⋅ ⋅ ≤ an−1. By symmetry it is sufficient to prove the forth
property. Let c ∈ A. If c = a i , for some i, then āc ↦ b̄b i is a partial
isomorphism and we are done. Suppose that there is some i such that
a i < c < a i+1. Since B is dense we can select an arbitrary element
b i < d < b i+1 and the mapping āc ↦ b̄d is a partial isomorphism.
Similarly, if c < a0 or c > an−1 then we can take any element d < b0 or
d > bn−1 to obtain a partial isomorphism āc ↦ b̄d. ◻
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Theorem 1.5 (Cantor). Any two countable open dense linear orders are
isomorphic.

Proof. Let A = ⟨A, <⟩ and B = ⟨B, <⟩ be countable open dense linear
orders and fix enumerations (a i)i<ω and (b i)i<ω ofA and B, respectively.
Let I ∶= pIsoℵ0

(A,B). We construct an increasing chain p0 ⊆ p1 ⊆ . . . of
partial isomorphisms p i ∈ I such that a i ∈ dom p2i+1 and b i ∈ dom p2i+2.
Their union p ∶= ⋃i p i is a partial isomorphism with domain dom p = A
and range rng p = B, that is, it is the desired total isomorphism p ∶ A ≅ B.
We define p i by induction on i. Let p0 ∶= ∅. Suppose that p i ∈ I

has already been defined and that i = 2n is even. Since I has the forth
property with respect to itself we can find some p i+1 ∈ I extending p i
such that an ∈ dom p i+1. Similarly, if i = 2n + 1 is odd then we use the
back property to find a partial isomorphism p i+1 ∈ I extending p i with
bn ∈ rng p i+1. ◻
Exercise 1.1. Let R = ⟨R,+⟩ be the additive group of real numbers. Show
that pIsoℵ0

(R,R) has the back-and-forth property with respect to itself.

Exercise 1.2. Prove that any two countable atomless boolean algebras
are isomorphic.

Remark. (a) The canonical back-and-forth system (Iα(A,B))α is max-
imal, that is, for any back-and-forth system (Iα)α we have Iα ⊆ Iα(A,B),
for all α.

(b) Obviously, a back-and-forth system forms a descending chain

I0 ⊇ I1 ⊇ ⋅ ⋅ ⋅ ⊇ Iα ⊇ . . . .

Furthermore, if there is some ordinal α such that

Iα(A,B) = Iα+1(A,B)
then Iα(A,B) = Iβ(A,B), for all β ≥ α. Hence, there always exists an
ordinal α < ∣I0(A,B)∣+ such that

Iα(A,B) = Iβ(A,B) , for all β ≥ α .
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Definition 1.6. Let α be the minimal ordinal such that

Iα(A,B) = Iα+1(A,B) .

We denote this limit by I∞(A,B) ∶= Iα(A,B) and the corresponding
restrictions by Iκ∞(A,B) ∶= Iκ

α(A,B).
Remark. I∞(A,B) has the back-and-forth property with respect to
itself.

Exercise 1.3. Let A and B be finite structures with ∣A∣, ∣B∣ ≤ n. Prove
that In(A,B) = I∞(A,B).
Lemma 1.7. If p ∈ Iα(A,B) and q ⊆ p then q ∈ Iα(A,B).
Proof. The claim follows by a straightforward induction on α. ◻
Corollary 1.8. Iα(A,B) ≠ ∅ iff ⟨⟩ ↦ ⟨⟩ ∈ Iα(A,B) .

Lemma 1.9. Let A and B be structures and κ an infinite cardinal. The
sequence (Iκ

α(A,B))α is a back-and-forth system.

Proof. The claim follows by induction on α since, if

ā ↦ b̄ ∈ Iκ
α+1(A,B) and āc ↦ b̄d ∈ Iα(A,B)

then the set āc has cardinality less than κ. Therefore,

āc ↦ b̄d ∈ pIsoκ(A,B)
which implies that āc ↦ b̄d ∈ Iκ

α(A,B). ◻
Definition 1.10. Let A and B be Σ-structures, ā ⊆ A, b̄ ⊆ B, and α an
ordinal. We define

⟨A, ā⟩ ≅α ⟨B, b̄⟩ : iff ā ↦ b̄ ∈ Iα(A,B) ,⟨A, ā⟩ ≅∞⟨B, b̄⟩ : iff ā ↦ b̄ ∈ I∞(A,B) .

If A ≅α B we say that A is α-isomorphic to B. For an arbitrary back-and-
forth system (Iβ)β we write

(Iβ)β ∶ ⟨A, ā⟩ ≅α ⟨B, b̄⟩ : iff ā ↦ b̄ ⊆ p , for some p ∈ Iα .
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Example. Let Σ = { Pi ∣ i < n } be a signature consisting of n unary
predicates. For a Σ-structure A = ⟨A, P̄⟩ and a set I ⊆ [n], we set

PA
I ∶= { a ∈ A ∣ a ∈ PA

i iff i ∈ I } .

For k, l ,m < ω, define

k =m l : iff k = l or k, l ≥ m .

We claim that ⟨A, ā⟩ ≅m ⟨B, b̄⟩ if and only if ā ↦ b̄ ∈ pIso(A,B) and
∣PA

I ∖ ā∣ =m ∣PB
I ∖ b̄∣ , for all I ⊆ [n] .

We prove the claim by induction on m. If m = 0 then ā ↦ b̄ ∈ I0(A,B)
iff ā ↦ b̄ is a partial isomorphism. Suppose that m > 0.

For one direction, assume that there is some I such that

∣PA
I ∖ ā∣ ≠m ∣PB

I ∖ b̄∣ .
By symmetry we may assume that ∣PA

I ∖ ā∣ > ∣PB
I ∖ b̄∣. If c ∈ PA

I ∖ ā then
we have

∣PA
I ∖ āc∣ ≠m−1 ∣PB

I ∖ b̄d∣ , for every d ∈ PB
I ∖ b̄ .

By inductive hypothesis it follows that āc ↦ b̄d ∉ Im−1(A,B), for all
d ∈ B. Consequently, ā ↦ b̄ ∉ Im(A,B).

For the other direction, let ā ↦ b̄ be a partial isomorphism such that

∣PA
I ∖ ā∣ =m ∣PB

I ∖ b̄∣ , for all I ⊆ [n] ,
and let c ∈ A ∖ ā. Set I ∶= { i < n ∣ c ∈ PA

i } and choose an arbitrary
element d ∈ PB

I ∖ b̄. It follows that

∣PA
I ∖ āc∣ =m−1 ∣PB

I ∖ b̄d∣ .
By inductive hypothesis, this implies that āc ↦ b̄d ∈ Im−1(A,B), as
desired. The back property follows by symmetry.
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We will show below that the relations ≅α and ≡α coincide. Hence,
we can determine whether A ≡α B holds by defining a back-and-forth
system (Iβ)β ∶ A ≅α B with Iα ≠ ∅.

Lemma 1.11. We have A ≅∞ B if and only if there exists a nonempty set
I ⊆ pIsoℵ0

(A,B) that has the back-and-forth property with respect to
itself.

Proof. (⇒) By Lemma 1.9, we can set I ∶= Iℵ0∞ (A,B).(⇐)We prove by induction on α that I ⊆ Iα(A,B), for all α. Then
we have I ⊆ I∞(A,B) which implies that I∞(A,B) ≠ ∅.

Clearly, I ⊆ pIso(A,B) = I0(A,B). Suppose that I ⊆ Iα(A,B). Each
p ∈ I has the back-and-forth property with respect to I and, therefore,
also with respect to Iα(A,B) ⊇ I. Hence, p ∈ Iα+1(A,B). Finally, if δ is
a limit ordinal and I ⊆ Iα(A,B), for all α < δ, then

I ⊆ ⋂
α<δ Iα(A,B) = Iδ(A,B) . ◻

As an application we consider discrete linear orders.

Definition 1.12. Let A = ⟨A, ≤⟩ be a linear order.
(a) A is discrete if every element of A that is not the least one has an

immediate predecessor, and every element that is not the greatest one
has an immediate successor. We say that A is bounded if it has a least
and a greatest element.

(b) We define the distance d(a, b) of two elements a, b ∈ A by

d(a, b) ∶= ∣{ c ∈ A ∣ a ≤ c < b or b ≤ c < a }∣ .
Furthermore, we set

d(−∞, b) ∶= ∣⇓b∣ ,
d(a,∞) ∶= ∣⇑a∣ ,

and d(−∞,∞) ∶= ∣A∣ ⊕ 1 .

(c) For numbers m, n, k < ω, we define

m =k n : iff m = n or m, n ≥ k .
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Lemma 1.13. Let A = ⟨A, ≤⟩ and B = ⟨B, ≤⟩ be bounded discrete linear
orders, ā ∈ Am and b̄ ∈ Bm , and n < ω. We have

⟨A, ā⟩ ≅n ⟨B, b̄⟩
if and only if ā ↦ b̄ is a partial isomorphism such that, for all i , k,

d(a i , ak) =2n d(b i , bk) , d(a i ,∞) =2n d(b i ,∞) ,
d(−∞, ak) =2n d(−∞, bk) , d(−∞,∞) =2n d(−∞,∞) .

Proof. (⇒)We prove the claim by induction on n. Let m ∶= ∣ā∣. To avoid
case distinctions we add new least and greatest elements −∞ and ∞
to A and B and we set a−1 ∶= −∞ and am ∶= ∞, and similarly for
b−1 and bm .

For n = 0, we have

⟨A, ā⟩ ≅0 ⟨B, b̄⟩ iff ā ↦ b̄ ∈ pIso(A,B) .

Note that every partial automorphism trivially satisfies the condition
d(a i , ak) =1 d(b i , bk).
Consider the case that n > 0 and suppose that ⟨A, ā⟩ ≅n ⟨B, b̄⟩.

Clearly, the first condition is satisfied since ā ↦ b̄ is a partial isomorph-
ism. Therefore, it remains to show that

d(a i , ak) =2n d(b i , bk) , for all −1 ≤ i , k ≤ m .

For a contradiction, suppose that there are i and k such that

d(a i , ak) ≠2n d(b i , bk) .

By symmetry we may assume that a i < ak and d(a i , ak) < d(b i , bk). In
particular, we have d(a i , ak) < 2n . Furthermore, by inductive hypothesis,
we have

d(a i , ak) =2n−1 d(b i , bk) ,
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which is only possible if d(a i , ak) ≥ 2n−1. Hence, there exists some ele-
ment b i < d ≤ bk with d(b i , d) = 2n−1. By the back-and-forth property,
we can find an element c ∈ A such that

⟨A, āc⟩ ≅n−1 ⟨B, b̄d⟩ .

By inductive hypothesis, we have d(a i , c) =2n−1 d(b i , d) which implies
that d(a i , c) ≥ 2n−1 = d(b i , d). Consequently, we have

d(c, ak) = d(a i , ak) − d(a i , c) ≤ 2n − 1 − 2n−1 = 2n−1 − 1

which implies that d(c, ak) = d(d , bk). Together, it follows that that

d(a i , ak) = d(a i , c) + d(c, ak)≥ d(b i , d) + d(d , bk) = d(b i , bk) .

A contradiction.(⇐) Let In be the set of all partial functions ā ↦ b̄ where the tuples
ā and b̄ satisfy the above conditions. We claim that (In)n<ω is a back-
and-forth system. Clearly, every ā ↦ b̄ ∈ I0 is a partial isomorphism. It
remains to check the back-and-forth property. By symmetry, we only
need to prove one direction. Let ā ↦ b̄ ∈ In and c ∈ A. Fix indices i and k
such that a i ≤ c ≤ ak and there is no index l with a i < a l < ak .
We distinguish three cases. If d(a i , c) < 2n−1 then let d ∈ B be the

element such that b i ≤ d ≤ bk and d(b i , d) = d(a i , c). If d(a i , ak) =
d(b i , bk) then we clearly have d(c, ak) = d(d , bk). If, on the other hand,
d(a i , ak), d(b i , bk) ≥ 2n then d(c, ak) ≥ 2n−1 and d(d , bk) ≥ 2n−1.
Hence, in both cases we have d(d , bk) =2n−1 d(c, ak).

Similarly, if d(a i , c) ≥ 2n−1 but d(c, ak) < 2n−1 then we choose d ∈ B
such that b i ≤ d ≤ bk and d(d , bk) = d(c, ak). As above it follows that
d(a i , c) =2n−1 d(b i , d).

Finally, suppose that d(a i , c), d(c, ak) ≥ 2n−1. Then we select an ele-
ment b i < d < bk such that d(b i , d) = 2n−1. Since d(a i , ak), d(b i , bk) ≥
2n it follows that d(d , bk) = d(b i , bk) − d(b i , c) ≥ 2n−1. ◻
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Corollary 1.14. For discrete linear orders A and B and n < ω, we have

A ≅n B iff ∣A∣ =2n−1 ∣B∣ .
Lemma 1.15. Let Ai = ⟨A i , <, P̄⟩ andBi = ⟨B i , <, P̄⟩, for i ∈ [2], be linear
orders expanded by unary predicates P̄.

A0 ≅α B0 and A1 ≅α B1 implies A0 + A1 ≅α B0 +B1 .

Proof. Fix back-and-forth systems (I i
β)β≤α ∶ Ai ≅α Bi . We claim that

(Jβ)β≤α ∶ A0 + A1 ≅α B0 +B1

where

Jβ ∶= { āc̄ ↦ b̄d̄ ∣ ā ↦ b̄ ∈ I0β and c̄ ↦ d̄ ∈ I1
β } .

We have Jα ≠ ∅ since I i
α ≠ ∅, for both i. Furthermore, Jδ = ⋂β<δ Jβ ,

for limit ordinals δ. It remains to prove the back-and-forth property.
Suppose that āc̄ ↦ b̄d̄ ∈ Jβ+1 and e ∈ A. If e ∈ A0 then there is some
f ∈ B0 with āe ↦ b̄ f ∈ I0β . Hence, it follows that āec̄ ↦ b̄ f d̄ ∈ Jβ . If
e ∈ A1 then the same argument provides a suitable element f ∈ B1. The
back property follows analogously. ◻
2. Hintikka formulae
The relations ≅α are definable in FO∞ℵ0 by a formula of quantifier rank α.
Consequently, we have ≡α ⊆ ≅α . The other inclusion will be shown in
Section 3.

Lemma 2.1. Let A be a Σ-structure, ā ⊆ A, and α an ordinal. There exists
a formula φα

A, ā(x̄) ∈ FO∞ℵ0[Σ] of quantifier rank qr(φα
A, ā) = α such that

B ⊧ φα
A, ā(b̄) iff ā ↦ b̄ ∈ Iα(A,B) ,

for all Σ-structures B and every b̄ ⊆ B.
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Proof. We construct φα
A, ā by induction on α.(α = 0) Let Φ be the set of all literals ψ(x̄) such that A ⊧ ψ(ā). We

set φ0
A, ā ∶= ⋀Φ.(α = β + 1)We have to express the back-and-forth property.

φβ+1
A, ā (x̄) ∶= φβ

A, ā(x̄) ∧ ⋀
c∈A∃yφβ

A, āc(x̄ y) ∧ ∀y⋁
c∈A φβ

A, āc(x̄ y) .

(α limit)We take the conjunction over all β < α.

φα
A, ā(x̄) ∶= ⋀

β<α φβ
A, ā(x̄) . ◻

Remark. Formulae of the form φα
A, ā are called Hintikka formulae. Note

that φα
A, ā ∈ FOκ+ℵ0[Σ] where κ ∶= ∣A∣ ⊕ ∣Σ∣ ⊕ ∣α∣ ⊕ ℵ0. If Σ, ā, and α

are finite then it follows by induction on α that there are only finitely
many formulae of the form φα

A, ā and that we can choose them to be in
FO<ω[Σ].

Since ≅∞ = ≅α , for some ordinal α, we can also define the relation ≅∞.

Definition 2.2. Let A be a structure. The Scott height of A is the least
ordinal α such that Iℵ0∞ (A,A) = Iℵ0

α (A,A). The Scott sentence φ∞A of A
is defined by

φ∞A ∶= φα
A,⟨⟩ ∧ ⋀

ā∈A<ω
∀x̄[φα

A, ā(x̄) → φα+1
A, ā (x̄)] ,

where α is the Scott height of A.

Lemma 2.3. The Scott height of A is less than ∣A∣+.

Proof. If A is finite then I∣A∣(A,A) = I∞(A,A) and the Scott height is at
most ∣A∣ < ℵ0. Similarly, if A is infinite then there exists some ordinal

α < ∣Iℵ0
0 (A,A)∣+ ≤ (∣A∣<ℵ0)+ = ∣A∣+

such that Iℵ0
α (A,A) = Iℵ0∞ (A,A). ◻
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Exercise 2.1. Compute the Scott height of ⟨ω, ≤⟩.
Theorem 2.4. For all structures A and B, we have

B ⊧ φ∞A iff B ≅∞ A .

Proof. Let α be the Scott height of A.(⇒) If B ⊧ φ∞A then ā ↦ b̄ ∈ Iℵ0
α (A,B) implies ā ↦ b̄ ∈ Iℵ0

α+1(A,B).
Hence,

Iℵ0
α+1(A,B) = Iℵ0

α (A,B) = Iℵ0∞ (A,B) .

Furthermore, Iℵ0∞ (A,B) is not empty since B ⊧ φα
A,⟨⟩ implies ⟨⟩ ↦ ⟨⟩ ∈

Iα(A,B).(⇐) Suppose that B ≅∞ A. Then we have B ⊧ φα
A,⟨⟩. To see that

B also satisfies the second part of the formula φ∞A we have to show that

ā ↦ b̄ ∈ Iℵ0
α (A,B) implies ā ↦ b̄ ∈ Iℵ0

α+1(A,B) .

Let ā ↦ b̄ ∈ Iℵ0
α (A,B). We claim that ā ↦ b̄ has the back-and-forth

property with respect to Iℵ0
α (A,B).

For the forth property let c ∈ A. Since A ≅∞ B there exist some tuple
b̄′ ⊆ Awith ⟨A, b̄′⟩ ≅∞ ⟨B, b̄⟩. Hence,

⟨A, b̄′⟩ ≅α ⟨B, b̄⟩ ≅α ⟨A, ā⟩ .

Since α is the Scott height of A is follows that

⟨A, b̄′⟩ ≅α+1 ⟨A, ā⟩ .

Hence, we can find some d′ ∈ Awith

⟨A, b̄′d′⟩ ≅α ⟨A, āc⟩ .

Since ⟨A, b̄′⟩ ≅∞ ⟨B, b̄⟩ there is some d ∈ B such that

⟨A, b̄′d′⟩ ≅∞ ⟨B, b̄d⟩ .
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Consequently, we have

⟨A, āc⟩ ≅α ⟨A, b̄′d′⟩ ≅α ⟨B, b̄d⟩ ,
and āc ↦ b̄d ∈ Iα(A,B). The back property follows analogously. ◻
Corollary 2.5. A ≡∣A∣+ B implies A ≅∞ B.

Proof. If α is the Scott height of A then qr(φ∞A ) ≤ α + ω < ∣A∣+. ◻
3. Ehrenfeucht-Fraïssé games
Ehrenfeucht-Fraïssé games provide an intuitive way of describing back-
and-forth systems.

Definition 3.1. Let A and B Σ-structures, ā0 ⊆ A, b̄0 ⊆ B, and let α be
an ordinal.

(a) The Ehrenfeucht-Fraïssé game EFα(A, ā0 ,B, b̄0) is played by two
players (spoiler and duplicator) according to the following rules:

◆ A position in the game is a tuple ⟨β, ā, b̄⟩ where β ≤ α, ā ⊆ A,
b̄ ⊆ B, and ∣ā∣ = ∣b̄∣.

◆ The initial position is ⟨α, ā0 , b̄0⟩.◆ In the position ⟨β, ā, b̄⟩ spoiler chooses an ordinal γ < β and
either an element c ∈ A or some d ∈ B. Duplicator responds by
selecting an element of the other structure, i.e., either d ∈ B or
c ∈ A. The new position is ⟨γ, āc, b̄d⟩.

◆ Spoiler loses if he cannot choose γ because β = 0. Duplicator loses
if a position ⟨β, ā, b̄⟩ is reached where ā ↦ b̄ ∉ pIso(A,B).

(b) The infinite version EFκ∞(A, ā0 ,B, b̄0) of the Ehrenfeucht-Fraïssé
game is played in the same way as EFα(A, ā0 ,B, b̄0) with the exception
that the first component of all positions is omitted and every play has
length κ. Hence, duplicator wins if she can continue the game for κ steps
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while, as before, spoiler wins if a position ⟨ā, b̄⟩ is reached such that
ā ↦ b̄ is not a partial isomorphism.

(c) A winning strategy of one of the players is a function mapping
positions to moves such that, regardless of the moves of his opponent,
the player wins if he always plays the moves given by the strategy. We say
that a player wins the game EFα(A, ā,B, b̄) if he has a winning strategy.

Example. Let A = ⟨Z, <⟩ and B = ⟨Q, <⟩. Spoiler wins the 3 round game
EF3(A,B). The game starts in position

⟨3, ⟨⟩, ⟨⟩⟩ .

In the first round, spoiler chooses 2 < 3 and 0 ∈ Z. Duplicator has to
answer with some number a ∈ Q. The new position is

⟨2, ⟨0⟩, ⟨a⟩⟩ .

In the second round, spoiler chooses 1 < 2 and 1 ∈ Z. Duplicator replies
with some b ∈ Q such that b > a. The new position is

⟨1, ⟨0, 1⟩, ⟨a, b⟩⟩ .

Finally, spoiler chooses 0 < 1 and (a + b)/2 ∈ Q. Duplicator has to
respond with some element z ∈ Z such that 0 < z < 1. Since there is no
such element she loses.

Exercise 3.1. Let A be the tree consisting of one path of length n, for
every n < ω, and let B be the tree consisting of one path of length α, for
every α ≤ ω.

A B

⋯ ⋯

Find the least ordinal α such that Spoiler wins EFα(A,B).
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Immediately from the definition we obtain the following connection
between Ehrenfeucht-Fraïssé games and the back-and-forth property.

Lemma 3.2. Duplicator wins EFα(A, ā,B, b̄) if and only if
◆ for all β < α and every c ∈ A there is some d ∈ B such that she wins

EFβ(A, āc,B, b̄d), and
◆ for all β < α and every d ∈ B there is some c ∈ A such that she wins

EFβ(A, āc,B, b̄d).
By induction it follows that the winning positions in the game form a

back-and-forth system.

Lemma 3.3. Duplicator wins EFα(A, ā,B, b̄) iff ā ↦ b̄ ∈ Iα(A,B).
Proof. We show the claim by induction on α.(α = 0) By definition, duplicator wins EF0(A, ā,B, b̄) iff ā ↦ b̄ ∈
pIso(A,B) = I0(A,B).(α = β + 1) Duplicator wins EFβ+1(A, ā,B, b̄)
iff for all c ∈ A there is d ∈ B such that she wins EFβ(A, āc,B, b̄d)
and for all d ∈ B there is c ∈ A such that she wins EFβ(A, āc,B, b̄d)

iff for all c ∈ A there is d ∈ B such that āc ↦ b̄d ∈ Iβ(A,B)
and for all d ∈ B there is c ∈ A such that āc ↦ b̄d ∈ Iβ(A,B)

iff ā ↦ b̄ has the back-and-forth property w.r.t Iβ(A,B)
iff ā ↦ b̄ ∈ Iβ+1(A,B) .

(α limit) Duplicator wins EFα(A, ā,B, b̄)
iff she wins EFβ(A, ā,B, b̄) for all β < α
iff ā ↦ b̄ ∈ Iβ(A,B) for all β < α
iff ā ↦ b̄ ∈ Iα(A,B) . ◻
We have seen that the relation ≡α refines ≅α . The following lemma

establishes the converse.
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Lemma 3.4. Let A and B be structures with elements ā ⊆ A and b̄ ⊆ B. If
there exists a formula φ(x̄) ∈ FO∞ℵ0[Σ, X] of quantifier rank qr(φ) ≤ α
such that

A ⊧ φ(ā) and B ⊭ φ(b̄)
then spoiler wins EFα(A, ā,B, b̄).
Proof. W.l.o.g. we may assume that φ is in negation normal form. We
prove the claim by induction on φ.(φ literal) As ā and b̄ are distinguished by an atomic formula the
mapping ā ↦ b̄ cannot be a partial isomorphism. Hence, spoiler wins
the game EF0(A, ā,B, b̄) immediately.(φ = ⋀Φ)There is some formula ψ ∈ Φ such that

A ⊧ ψ(ā) and B ⊭ ψ(b̄) .

Since qr(ψ) ≤ α spoiler wins EFα(A, ā,B, b̄), by inductive hypothesis.(φ = ⋁Φ) follows in the same way.(φ = ∃xψ) Let β ∶= qr(ψ) < α. There is some element c ∈ A such that
A ⊧ ψ(ā, c), but B ⊭ ψ(b̄, d), for all d ∈ B. In the first move spoiler
can choose β and the element c ∈ A. Duplicator responds with some
element d ∈ B. By inductive hypothesis, spoiler can win the resulting
game EFβ(A, āc,B, b̄d). Therefore, he also wins EFα(A, ā,B, b̄).(φ = ∀xψ) analogously by choosing some d ∈ B. ◻
Theorem 3.5 (Karp). Let A and B be structures and α an ordinal.

(a) The following statements are equivalent:

(1) ⟨A, ā⟩ ≡α ⟨B, b̄⟩ .
(2) ⟨A, ā⟩ ≅α ⟨B, b̄⟩ .
(3) ⟨B, b̄⟩ ⊧ φα

A, ā .
(4) Duplicator wins EFα(A, ā,B, b̄).

(b) The following statements are equivalent:
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3. Ehrenfeucht-Fraïssé games

(1) ⟨A, ā⟩ ≡∞ ⟨B, b̄⟩ .
(2) ⟨A, ā⟩ ≅∞ ⟨B, b̄⟩ .
(3) ⟨B, b̄⟩ ⊧ φ∞A, ā .
(4) Duplicator wins EFℵ0∞ (A, ā,B, b̄).

Proof. (a) We have already shown in Lemmas 2.1 and 3.3 that (2), (3),
and (4) are equivalent.

(1)⇒ (3) follows directly from the definition of ≡α since qr(φα
A, ā) ≤ α.

(4)⇒ (1) If ⟨A, ā⟩ ≢α ⟨B, b̄⟩ then there is some formula φ ∈ FO∞ℵ0

of quantifier rank qr(φ) ≤ α such that A ⊧ φ(ā) and B ⊭ φ(b̄). By
Lemma 3.4, spoiler wins EFα(A, ā,B, b̄).

(b) The equivalence (2)⇔ (3) was proved in Theorem 2.4, and the
implication (1)⇒ (3) is trivial.

(2)⇒ (4) Duplicator can win if she ensures that only positions ⟨c̄, d̄⟩
are reached where c̄ ↦ d̄ ∈ I∞(A,B) ⊆ pIso(A,B). But this is easily
done since I∞(A,B) has the back-and-forth property with respect to
itself. If spoiler chooses some element c ∈ A then there exists an element
d ∈ B with āc ↦ b̄d ∈ I∞(A,B). Similarly, if spoiler plays in B then
duplicator can respond in A.

(4)⇒ (1) If ⟨A, ā⟩ ≢∞ ⟨B, b̄⟩ then there is some formula φ ∈ FO∞ℵ0

such that A ⊧ φ(ā) and B ⊭ φ(b̄). Let α ∶= qr(φ). By Lemma 3.4,
spoiler wins EFα(A, ā,B, b̄). He can use the same strategy to win the
infinite game EFℵ0∞ (A, ā,B, b̄). ◻
Corollary 3.6 (Ehrenfeucht, Fraïssé). Let Σ be a relational signature
and A and B Σ-structures. For m < ω, let ∆m ⊆ FO[Σ] be the set of all
first-order formulae of quantifier rank at most m.

(a) A ≡∆m B iff A∣Σ0 ≅m B∣Σ0 for all finite Σ0 ⊆ Σ ,
(b) A ≡FO B iff A∣Σ0 ≅ω B∣Σ0 for all finite Σ0 ⊆ Σ .

Exercise 3.2. Find structures A and B such that A ≡FO B but A ≇ω B.

Corollary 3.7. Every formula ψ ∈ FO∞ℵ0[Σ, X] of quantifier rank α is
equivalent to a disjunction of Hintikka formulae of quantifier rank α. For
ψ ∈ FO[Σ, X] and relational Σ, we can choose this disjunction in FO[Σ, X].
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c4. Back-and-forth equivalence

Proof. We have ψ ≡ ⋁Φ where

Φ ∶= {φα
A, ā ∣ A ⊧ ψ(ā) }

is the set of all Hintikka formulae corresponding to models of ψ.
If ψ ∈ FO[Σ, X] then α < ω and there exist finite subsets Σ0 ⊆ Σ and

X0 ⊆ X such that ψ ∈ FO[Σ0 , X0]. Hence, we have ψ ≡ ⋁Φ0 where
Φ0 ∶= Φ ∩ FO[Σ0 , X0] is finite. ◻
We conclude this section with several applications of Ehrenfeucht-

Fraïssé games.

Lemma 3.8. There exists no first-order formula φ such that, for every
finite structure A, we have

A ⊧ φ iff ∣A∣ is even.

Proof. Suppose that such a formula φ exists and let m ∶= qr(φ). By
Corollary 1.14, we have

⟨[2m], ≤⟩ ⊧ φ iff ⟨[2m + 1], ≤⟩ ⊧ φ .

A contradiction. ◻
Let us apply Ehrenfeucht-Fraïssé games to equivalence relations. Re-

call that we write m =k n iff m = n or m, n ≥ k. If E is an equivalence
relation then we denote by N=k (E) the number of E-classes [a]E of size∣[a]E ∣ = k and N>k (E) denotes the number of classes of size ∣[a]E ∣ > k.

Lemma 3.9. Let E and F be equivalence relations on the sets A and B,
respectively. We have ⟨A, E⟩ ≅m ⟨B, F⟩ if and only if

N=k (E) =m−k N=k (F) and N>k (E) =m−k N>k (F) ,
for all k ≤ m.
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3. Ehrenfeucht-Fraïssé games

Proof. (⇒) First, suppose that N=k (E) > N=k (F) =∶ s. We claim that
spoiler wins EFs+k+1(A,B). Since N=k (E) > s we can find s + 1 different
E-classes [a0]E , . . . , [as]E of size ∣[a i]E ∣ = k. In the first part of the
game spoiler plays their representatives a0 , . . . , as . Duplicator has to
answer with elements b0 , . . . , bs of different F-classes in B. Since we
have N=k (F) < s + 1 there is an index i such that l ∶= ∣[b i]F ∣ ≠ k. If l < k
then spoiler continues by playing k − 1 different elements

c0 , . . . , ck−2 ∈ [a i]E ∖ {a i} .

Since ∣[b i]F ∖ {b i}∣ < k − 1 duplicator cannot answer all of them. Con-
sequently, spoiler wins after at most s+ 1+ k − 1 = s+ k rounds. Similarly,
if l > k then spoiler plays k different elements

d0 , . . . , dk−1 ∈ [b i]F ∖ {b i} ,
and again duplicator cannot answer all of them. In this case spoiler wins
after at most s + 1 + k rounds.

It remains to consider the case that N>k (E) > N>k (F) =∶ s. By a sim-
ilar argument as above we show that spoiler wins EFs+k+1(A,B). Since
N>k (E) > s we can find s + 1 different E-classes [a0]E , . . . , [as]E of size∣[a i]E ∣ > k. In the first part of the game spoiler plays their represent-
atives a0 , . . . , as . Duplicator has to answer with elements b0 , . . . , bs of
different F-classes in B. Since we have N>k (F) < s + 1 there is an index i
such that ∣[b i]F ∣ ≤ k. In the second part of the game spoiler plays k
different elements

c0 , . . . , ck−1 ∈ [a i]E ∖ {a i} .

Since ∣[b i]F ∖ {b i}∣ < k duplicator cannot answer all of them. Con-
sequently, spoiler wins after at most s + 1 + k rounds.(⇐) For k ≤ m, let Ik be the set of all partial isomorphisms ā ↦ b̄
with ā ∈ Am−k and b̄ ∈ Bm−k such that

∣[a i]E ∖ ā∣ =k ∣[b i]F ∖ b̄∣ , for all i < m − k .
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c4. Back-and-forth equivalence

We claim that (Ik)k ∶ ⟨A, E⟩ ≅m ⟨B, F⟩. Clearly, we have ⟨⟩ ↦ ⟨⟩ ∈ Im .
By symmetry, it is therefore sufficient to prove the forth property.

Let ā ↦ b̄ ∈ Ik+1, and c ∈ A. We have to find some d ∈ B such that
āc ↦ b̄d ∈ Ik . We consider several cases. If c = a i , for some i, then
āc ↦ b̄b i ∈ Ik . If c ∈ [a i]E ∖ ā, for some i, then

∣[a i]E ∖ ā∣ =k+1 ∣[b i]E ∖ b̄∣
implies that there is some d ∈ [b i]E ∖ b̄. It follows that āc ↦ b̄d ∈ Ik .

It remains to consider the case that c ∉ [a i]E , for all i. Set s ∶= ∣[c]E ∣.
We are looking for an element d ∈ B with s =k+1 ∣[d]F ∣ and [d]F ∩ b̄ = ∅.
First, consider the case that s ≤ k. Then we have

∣[a i]E ∣ = s iff ∣[b i]F ∣ = s .

Let l be the number of indices i with ∣[a i]E ∣ = s. Since

N=s (E) =m−s N=s (F) and l + 1 ≤ m − k − 1 + 1 ≤ m − s ,

it follows that N=s (E) ≥ l + 1 implies N=s (F) ≥ l + 1. Consequently, we
can choose some element d ∈ B such that ∣[d]F ∣ = s and [d]F ∩ b̄ = ∅.

The proof for the case that s > k is analogous. Then we have

∣[a i]E ∣ > k iff ∣[b i]F ∣ > k ,

and we denote by l the number of indices i with ∣[a i]E ∣ > k. Since

N>k (E) =m−k N>k (F) and l + 1 ≤ m − k ,

it follows that N>k (E) ≥ l+1 implies N>k (F) ≥ l+1. Consequently, we can
choose some element d ∈ B such that ∣[d]F ∣ > k and [d]F ∩ b̄ = ∅. ◻

We have seen in Lemma c1.1.7 that we can define every ordinal α < κ
in FOκℵ0[<]. Nevertheless there is no FO∞ℵ0[<]-formula that axiomat-
ises the class of all well-orders.
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3. Ehrenfeucht-Fraïssé games

Lemma 3.10. For every ordinal α, there exists an ordinal δ > α such that
δ ≡δ δ + δ ⋅ τ, for each linear order τ.

Proof. By Lemma a4.5.6, we can choose δ > α such that ω(δ) = δ. Then
δ is a limit ordinal such that δ = ω(β)δ, for all β < δ. Hence, for each
β < δ, we can write δ as sum of δ copies of the order ω(β). We call such
a summand a ω(β)-interval of δ.

δ∶ δ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ——
ω(β) ——

ω(β) ——
ω(β) ——

ω(β)⋯
In the same way we can write linear orders of the form δ + δτ as a sum
of ω(β)-intervals.

For β < δ, let Iβ be the set of all finite partial isomorphisms ā ↦
b̄ ∈ pIsoℵ0

(δ, δ + δτ) satisfying the following conditions. For notational
simplicity we assume that a0 < ⋯ < an−1.

(1) a i and a i+1 belong to the same ω(β)-interval iff b i and b i+1 belong
to the same ω(β)-interval.

(2) a i is the α-th element of the ω(β)-interval containing a i if and
only if b i is the α-th element of the ω(β)-interval containing b i .

(3) a0 is in the first ω(β)-interval if and only if b0 is in the first ω(β)-
interval.

Further, we set Iδ ∶= {⟨⟩ ↦ ⟨⟩}. We claim that (Iβ)β<δ ∶ δ ≅δ δ + δτ .
To prove the back property, suppose that ā ↦ b̄ ∈ Iβ+1 where a0 <⋯ < an−1, and let d ∈ δ + δτ.
If d belongs to the ω(β)-interval of some b i then let c be the corres-

ponding element in the ω(β)-interval of a i . It follows that āc ↦ b̄d ∈ Iβ .
If d belongs to the first ω(β)-interval or if d > bn−1 then we can easily
find a suitable element c ∈ δ such that āc ↦ b̄d ∈ Iβ .

It remains to consider the case that the ω(β)-interval of d lies strictly
between those of b i and b i+1. Since a i and a i+1 do not belong to the
same ω(β)-interval we can choose some ω(β)-interval between those
containing a i and a i+1. Let c be the α-th element of this interval, where
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α is the position of d in its ω(β)-interval. Again, it follows that āc ↦
b̄d ∈ Iβ .

In the same way, we can prove the forth property. Since ⟨⟩ ↦ ⟨⟩ ∈ Iβ ,
for all β < δ, it follows that (Iβ)β<δ ∶ δ ≅δ δ + δτ. ◻
Theorem 3.11. There is no sentence φ ∈ FO∞ℵ0[≤] such that

A ⊧ φ iff A is a well-order.

Proof. Suppose there is such a formula φ. Let α ∶= qr(φ). By the preced-
ing lemma we can find an ordinal δ > α such that δ ≡δ δ + δζ where
ζ ∶= ⟨Z, ≤⟩. Since δ is a well-order we have δ ⊧ φ. This implies that
δ + δζ ⊧ φ. Contradiction. ◻
4. κ-complete back-and-forth systems
Sometimes the partial isomorphisms of a back-and-forth systems can
be used to construct a total isomorphism between two structures.

Definition 4.1. Let κ be an infinite cardinal and I ⊆ pIso(A,B).
(a) The set I is κ-complete if, for every increasing chain (p i)i<α ⊆ I

and every subset X ⊆ ⋃i<α p i of size ∣X∣ < κ, there is some q ∈ I with⋃i<α p i ↾ X ⊆ q.
(b) I is κ-bounded if, for every p ∈ I and each subset X ⊆ dom p,

there is a partial isomorphism q ∈ I of size ∣q∣ < ∣X∣+ ⊕ κ such that
p ↾ X ⊆ q ⊆ p.

(c) We call I κ-finitary if, for every p ∈ pIsoκ(A,B), we have

p ∈ I iff p ↾ X ∈ I for all finite X ⊆ dom p .

Remark. Note that every κ-finitary set is κ-complete and ℵ0-bounded.

Definition 4.2. For structures A and B and a cardinal κ, we set

Iκ
FO(A,B) ∶= { ā ↦ b̄ ∈ pIsoκ(A,B) ∣ ⟨A, ā⟩ ≡FO ⟨B, b̄⟩ } .
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Remark. Since every first-order formula refers only to finitely many
constants it follows that the sets Iκ

FO(A,B) are κ-finitary and, hence,
κ-complete.

Definition 4.3. Let A and B be structures and κ an infinite cardinal.
(a) For a set I ⊆ pIso(A,B), we write I ∶ ⟨A, ā⟩ ⊑κ

iso ⟨B, b̄⟩ if◆ ā ↦ b̄ ⊆ p, for some p ∈ I with ∣dom p ∖ ā∣ < κ,◆ I is κ-complete and κ-bounded,◆ I has the forth property with respect to itself. (We do not require
the back property.)

Similarly, we define I ∶ ⟨A, ā⟩ ≅κ
iso ⟨B, b̄⟩ if◆ ā ↦ b̄ ⊆ p, for some p ∈ I with ∣dom p ∖ ā∣ < κ,◆ I is κ-complete and κ-bounded,◆ I has the back-and-forth property with respect to itself,

that is, if

I ∶ ⟨A, ā⟩ ⊑κ
iso ⟨B, b̄⟩ and I ∶ ⟨A, ā⟩ ⊒κ

iso ⟨B, b̄⟩ .

We write A ≅κ
iso B if there exists some set I with I ∶ A ≅κ

iso B, and
similarly for ⊑κ

iso.
(b) Of particular interest are the following special cases.

⟨A, ā⟩ ⊑κ
0 ⟨B, b̄⟩ : iff Iκ

0(A,B) ∶ ⟨A, ā⟩ ⊑κ
iso ⟨B, b̄⟩ ,⟨A, ā⟩ ≅κ

0 ⟨B, b̄⟩ : iff Iκ
0(A,B) ∶ ⟨A, ā⟩ ≅κ

iso ⟨B, b̄⟩ ,⟨A, ā⟩ ⊑κ
FO ⟨B, b̄⟩ : iff Iκ

FO(A,B) ∶ ⟨A, ā⟩ ⊑κ
iso ⟨B, b̄⟩ ,⟨A, ā⟩ ≅κ

FO ⟨B, b̄⟩ : iff Iκ
FO(A,B) ∶ ⟨A, ā⟩ ≅κ

iso ⟨B, b̄⟩ ,⟨A, ā⟩ ⊑κ∞ ⟨B, b̄⟩ : iff Iκ∞(A,B) ∶ ⟨A, ā⟩ ⊑κ
iso ⟨B, b̄⟩ ,⟨A, ā⟩ ≅κ∞ ⟨B, b̄⟩ : iff Iκ∞(A,B) ∶ ⟨A, ā⟩ ≅κ
iso ⟨B, b̄⟩ .

Remark. (a) Iℵ0∞ (A,B) is trivially ℵ0-complete and ℵ0-bounded. Hence,
we have

A ≅ℵ0∞ B iff A ≅∞ B .
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(b) The sets Iκ
0(A,B) and Iκ

FO(A,B) are κ-finitary and, hence, κ-com-
plete and κ-bounded. Consequently, we have

A ⊑κ
0 B iff Iκ

0(A,B) is nonempty and it has the forth
property with respect to itself.

and similarly for the relations ≅κ
0, ⊑κ

FO, and ≅κ
FO.

(c) Note that we have

Iκ∞(A,B) ⊆ Iκ
FO(A,B) ⊆ Iκ

0(A,B) .

Furthermore, we have shown in Lemma 1.11 that

I ∶ A ≅κ
iso B implies I ⊆ I∞(A,B) .

Let us summarise these remarks in the following lemma.

Lemma 4.4. Let κ be a cardinal and x ∈ {0, FO}.
(a) The following statements are equivalent:

(1) A ⊑κ
x B.

(2) The set Iκ
x(A,B) is nonempty and it has the forth property

with respect to itself.
(b) The following statements are equivalent:

(1) A ≅κ
x B.

(2) Iκ
x(A,B) = Iκ∞(A,B) ≠ ∅.

(3) The set Iκ
x(A,B) is nonempty and it has the back-and-forth

property with respect to itself.

As an example we consider dense linear orders.

Definition 4.5. Let A = ⟨A, <⟩ be a linear order.
(a) For C ,D ⊆ A, we write C < D if c < d, for all c ∈ C and d ∈ D.
(b) A is κ-dense if, for all sets C ,D ⊆ A of size ∣C∣, ∣D∣ < κ with C < D,

there exists an element a ∈ A such that C < a < D. Note that we allow
C = ∅ or D = ∅.
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Lemma 4.6. If B = ⟨B, <⟩ is a κ-dense linear order then we have

A ⊑κ
0 B , for every linear order A .

Proof. We have already noted that pIsoκ(A,B) is κ-complete. Further-
more, since linear orders are relational structures we have

⟨⟩ ↦ ⟨⟩ ∈ pIsoκ(A,B) ≠ ∅ .

Consequently, it remains to prove the forth property.
Let p ∈ pIsoκ(A,B) and a ∈ A. If a ∈ dom p then we are done.

Otherwise, we can partition the domain of p into

C ∶= { c ∈ dom p ∣ c < a } and D ∶= { d ∈ dom p ∣ a < d } .

Then C < D which implies that p[C] < p[D]. Since B is κ-dense and∣C∣, ∣D∣ ≤ ∣dom p∣ < κ we can find some element b ∈ B with

p[C] < b < p[D] .

Hence, p∪{⟨a, b⟩} is the desired partial isomorphism extending p. ◻
Corollary 4.7. If A and B are κ-dense linear orders then A ≅κ

0 B.

The relation ≅κ
iso can also be characterised via Ehrenfeucht-Fraïssé

games. The proof is completely analogous to that of Lemma 3.3.

Theorem 4.8. Let A and B be structures and κ a cardinal. The following
statements are equivalent:

(1) ⟨A, ā⟩ ≅κ
iso ⟨B, b̄⟩.

(2) Duplicator wins EFκ∞(A, ā,B, b̄).
κ-complete sets with the back-and-forth property can be used to

construct embeddings and isomorphisms.

Lemma 4.9. Let A and B be structures and κ an infinite cardinal.
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(a) Suppose that I ∶ A ≅κ
iso B. For all sequences ā ∈ Aκ and b̄ ∈ Bκ ,

there exist sequences c̄ ∈ Aκ and d̄ ∈ Bκ such that, for all α < κ,

I ∶ ⟨A, (a i)i<α , (c i)i<α⟩ ≅κ
iso ⟨B, (d i)i<α , (b i)i<α⟩ .

In particular, we have ⟨A, āc̄⟩ ≅0 ⟨B, d̄b̄⟩.
(b) Suppose that I ∶ A ⊑κ

iso B. For every sequence ā ∈ Aκ , there exist a
sequence b̄ ∈ Bκ such that

I ∶ ⟨A, (a i)i<α⟩ ⊑κ
iso ⟨B, (b i)i<α⟩ , for all α < κ .

In particular, we have ⟨A, ā⟩ ≅0 ⟨B, b̄⟩.
Proof. (a) We construct an increasing chain (p i)i<κ of partial isomorph-
isms p i ∈ I with ∣p i ∣ < κ such that a i ∈ dom p i+1 and b i ∈ rng p i+1, for
all i < κ. Then we obtain the desired sequences c̄ and d̄ by setting

c i ∶= (p i+1)−1(b i) and d i ∶= p i+1(a i) .

Since I ∶ A ⊑κ
iso B there is some p0 ∈ I with ∣p0∣ < κ. Suppose that we

have already defined p i ∈ I, for i < α. If α is a limit ordinal then, I being
κ-complete, there is some pα ∈ I such that

⋃
i<α p i ↾ [{ a i ∣ i < α } ∪ { p−1

i+1(b i) ∣ i < α }] ⊆ pα .

Finally, suppose that α = γ + 1 is a successor. By the forth property we
can find some q ∈ I extending pγ with aγ ∈ dom q. Analogously, there is
some pα ∈ I extending q with bγ ∈ rng pα .

(b) is proved in the same way as (a). We define an increasing chain(p i)i<κ of partial isomorphisms such that a i ∈ dom p i+1. For every a i ,
we can use the forth property to find a suitable b i . ◻
Lemma 4.10. Let A and B be structures generated by A0 ⊆ Aand B0 ⊆ B,
respectively.

(a) If κ ≥ ∣A0∣ ⊕ ∣B0∣ and I ∶ A ≅κ
iso B then A ≅ B.
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(b) If κ ≥ ∣A0∣ and I ∶ A ⊑κ
iso B then there exists an embedding A→ B.

Proof. (a) Let ā be an enumeration of A0 and b̄ one of B0. By the pre-
ceding lemma, there are sequences c̄ ⊆ A and d̄ ⊆ B such that

⟨A, āc̄⟩ ≅0 ⟨B, d̄b̄⟩ .

In particular, themap p ∶ āc̄ ↦ d̄b̄ is a partial isomorphism. By definition,
there exists an isomorphism

π ∶ ⟪dom p⟫A ≅ ⟪rng p⟫B

extending p. Since dom p ⊇ ā = A0 and rng p ⊇ b̄ = B0 it follows that
π is a total isomorphism between A and B.

(b) Given an enumeration ā of A0 we can find a sequence b̄ ⊆ B such
that ⟨A, ā⟩ ≅0 ⟨B, b̄⟩. Hence, ā ↦ b̄ is a partial isomorphism that can
be extended to an isomorphism

π ∶ ⟪ā⟫A ≅ ⟪b̄⟫B .

Since ⟪ā⟫A = A it follows that π is the desired embedding. ◻
Corollary 4.11. If A and B are countable structures with A ≡ω1 B then
A ≅ B.

Proof. Let α be the Scott height of A. Then α < ∣A∣+ ≤ ℵ1. Hence,A ≡ω1 B
implies that B ⊧ φ∞A where φ∞A is the Scott sentence of A. ByTheorem 2.4,
it follows that A ≅∞ B. This is equivalent to A ≅ℵ0∞ B since Iℵ0∞ (A,B) is
always ℵ0-complete. Hence, Lemma 4.10 (a) implies that A ≅ B. ◻
Corollary 4.12. (a) If A and B are κ-dense linear orders of size at most κ
then A ≅ B.

(b) If B is a κ-dense linear order then every linear order A of size at
most κ can be embedded into B.

Proof. Immediately from Lemma 4.6 and Corollary 4.7. ◻
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c4. Back-and-forth equivalence

We can show that the relation ≅κ
iso is reflexive and symmetric, but it is

unknown whether it is also transitive. The relations ≅κ
0, ≅κ

FO, and ≅κ∞, on
the other hand, are transitive and symmetric but not reflexive.

Lemma 4.13. If A ≅ B then A ≅κ
iso B, for all κ.

Proof. Fix an isomorphism π ∶ A ≅ B. The set

I ∶= { p ∈ pIsoκ(A,B) ∣ p ⊆ π }
is nonempty, κ-finitary, and it has the back-and-forth property with
respect to itself. Hence, we have I ∶ A ≅κ

iso B. ◻
Remark. The above lemma fails for the relations ≅κ

0, ≅κ
FO, and ≅κ∞. In

fact, we can even find structures A such that A ≇ℵ0
0 A or A ≇ℵ0

FO A. For
instance, if we take A ∶= ⟨ω, ≤⟩ then 0 ↦ 1 ∈ Iℵ0

0 (A,A) but there exists
no element a ∈ ω with ⟨0, a⟩ ↦ ⟨1, 0⟩ ∈ Iℵ0

0 (A,A). Structures such that
A ≅κ

FO A are called κ-homogeneous. They are the subject of Section e1.1.

Lemma 4.14. Let κ be a cardinal and x ∈ {0, FO,∞}.
A ⊑κ

x B ⊑κ
x C implies A ⊑κ

x C .

Proof. Let Lx ⊆ FO∞ℵ0 be the logic such that

ā ↦ b̄ ∈ Iκ
x(A,B) iff ⟨A, ā⟩ ≡Lx ⟨B, b̄⟩ .

We start by showing that

Iκ
x(A,C) = { q ○ p ∣ p ∈ Iκ

x(A,B) , q ∈ Iκ
x(B,C) } .

Clearly, if p and q preserve all Lx -formulae then so does q ○ p. Therefore,
we only have to show that, for every ā ↦ c̄ ∈ Iκ

x(A,C), there is some
tuple b̄ such that ā ↦ b̄ ∈ Iκ

x(A,B) and b̄ ↦ c̄ ∈ Iκ
x(B,C).

Given ā of length ∣ā∣ < κ, we can find, by Lemma 4.9, some tuple b̄
such that ā ↦ b̄ ∈ Iκ

x(A,B). Since the maps b̄ ↦ ā and ā ↦ c̄ preserve
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5. The theorems of Hanf and Gaifman

all Lx -formulae it follows that so does b̄ ↦ c̄. Consequently, we also have
b̄ ↦ c̄ ∈ Iκ

x(B,C), as desired.
To prove the lemma, first note that the claim implies that ⟨⟩ ↦ ⟨⟩ ∈

Iκ
x(A,C) ≠ ∅. Therefore, it remains to check that Iκ

x(A,C) has the forth
property with respect to itself. Let π ∈ Iκ

x(A,C) and a ∈ A. Then π = q○ p,
for some p ∈ Iκ

x(A,B) and q ∈ Iκ
x(B,C). Since these sets have the forth

property, we can find elements b ∈ B and c ∈ C such that

p′ ∶= p ∪ {⟨a, b⟩} ∈ Iκ
x(A,B)

and q′ ∶= q ∪ {⟨b, c⟩} ∈ Iκ
x(B,C) .

It follows that π ∪ {⟨a, c⟩} = q′ ○ p′ ∈ Iκ
x(A,C). ◻

Since the relations ≅κ
x are clearly symmetric we have the following

corollaries.

Corollary 4.15. Let κ be a cardinal and x ∈ {0, FO,∞}.
(a) If A ≅κ

x B then A ≅κ
x A.

(b) The relation ⊑κ
x is a preorder on the class

C ∶= {A ∣ A ≅κ
x A} .

5. The theorems of Hanf and Gaifman
In nontrivial applications the combinatorics involved in playing Ehren-
feucht-Fraïssé games quickly become unmanageable. Therefore, it is
desirable to develop methods to simplify such games.

Definition 5.1. Let A be a relational Σ-structure. The Gaifman graph
of A is the graph G(A) ∶= ⟨A, E⟩ with edge relation

E ∶= { ⟨a, b⟩ ∈ A2 ∣ a ≠ b and a, b ∈ c̄ for some c̄ ∈ RA , R ∈ Σ } .

Definition 5.2. Let A be a relational structure. The following definitions
will only be used in this section.
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c4. Back-and-forth equivalence

(a) We denote by d(a, b) the distance between a and b in G(A).
(b) For X ,Y ⊆ A, we set d(X ,Y) ∶= min{ d(a, b) ∣ a ∈ X , b ∈ Y }.
(c) The r-neighbourhood of a ∈ A is the set

N(r, a) ∶= { b ∈ A ∣ d(a, b) < r } .

For ā ∈ An , we set N(r, ā) ∶= ⋃i N(r, a i). In particular, we have
N(r, ⟨⟩) ∶= ∅. Finally,

N(r, ā) ∶= ⟨A∣N(r , ā) , ā⟩
is the substructure induced by N(r, ā).

(d) The N(r)-type of ā ⊆ A is the isomorphism type of N(r, ā), i.e.,
the ≅-class of this structure.

(e) For a N(r)-type τ, let #τ(A) be the number of tuples ā ⊆ A that
have N(r)-type τ.

(f) Finally, for k,m, n < ω, recall that

m =k n : iff m = n or m, n ≥ k .

Theorem 5.3 (Hanf). Let m < ω and let A and B be relational structures
such that every 3m-neighbourhood in A andB has at most k < ℵ0 elements.
If

#τ(A) =mk #τ(B) , for every N(n)-type τ with n ≤ 3m ,

then A ≡m B.

Proof. Let In be the set of all partial isomorphisms ā ↦ b̄ with ā ∈ Am−n

and b̄ ∈ Bm−n such that N(3n , ā) ≅ N(3n , b̄). We claim that (In)n ∶ A ≅m
B.
We have ⟨⟩ ↦ ⟨⟩ ∈ Im . By symmetry, we therefore only need to prove

the forth property. Suppose that ā ↦ b̄ ∈ In+1. By definition, there exists
an isomorphism

π ∶ N(3n+1 , ā) ≅ N(3n+1 , b̄) .
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5. The theorems of Hanf and Gaifman

Let c ∈ A. If c ∈ N(2 ⋅ 3n , ā) then N(3n , āc) ⊆ N(3n+1 , ā) and setting
d ∶= π(c) we have

π ∶ N(3n , āc) ≅ N(3n , b̄d) , that is, āc ↦ b̄d ∈ In .

If, on the other hand, c ∉ N(2 ⋅ 3n , ā) then d(N(3n , ā), N(3n , c)) > 1.
Let τ be the N(3n)-type of c. Since π is an isomorphismwe have the same
number of elements of 3n-type τ in N(2 ⋅ 3n , ā) and N(2 ⋅ 3n , b̄). This
number is at most ∣ā∣ ⋅ k = (m− n− 1) ⋅ k < mk. Since #τ(A) =mk #τ(B)
there exists some d ∈ B∖N(2 ⋅ 3n , b̄) of N(3n)-type τ. Let σ ∶ N(3n , c) ≅
N(3n , d) be the corresponding isomorphism of neighbourhoods. It fol-
lows that

π ∪ σ ∶ N(3n , āc) ≅ N(3n , b̄d) ,
which implies that āc ↦ b̄d ∈ In . ◻
Example. (a) We have already seen in the example on page 518 that
there is no first-order formula expressing that a graph is connected. The
Theorem of Hanf allows an easy alternate proof. For a contradiction,
suppose that there is such a formula φ and let m be its quantifier rank.

C3m+1 C3m+1 C2⋅3m+1≡m

Let A ∶= C3m+1 ⊍ C3m+1 be the graph consisting of two disjoint copies of
the cycle of length 3m+1 and let B ∶= C2⋅3m+1 be the cycle of length 2 ⋅ 3m+1.
Then we have

#τ(A) = #τ(B) , for every N(r)-type τ with r ≤ 3m .

By the Theorem of Hanf, it follows that A ≡m B. In particular, A ⊧ φ iff
B ⊧ φ. Contradiction.
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c4. Back-and-forth equivalence

(b) In the same way we can prove that planarity of a graph is not
expressible in first-order logic. If φ is a formula of quantifier rank m
then, by the Theorem of Hanf, it cannot distinguish between the graphs

where each line represents a path of length 3m+1. Since one of the graphs
if planar while the other one is not it follows that φ does not define the
class of planar graphs.

With the help of the Theorem of Hanf we can avoid playing Ehren-
feucht-Fraïssé games, but the theorem can only be applied to structures
where the r-neighbourhoods are finite. If we want to drop this restriction
we have to replace the isomorphism type of a neighbourhood by its α-
equivalence type. This is the idea behind the Theorem of Gaifman below.

Remark. Let Σ be a finite signature. For all n < ω, there exists a formula
φn(x , y) ∈ FO[Σ] such that

A ⊧ φn(a, b) iff d(a, b) < n , for every Σ-structure A .

Definition 5.4. (a) A set X ⊆ A is r-scattered if d(a, b) ≥ r, for all distinct
elements a, b ∈ X.

(b) For φ(x̄) ∈ FO[Σ, X], we denote by φ(r)(x̄) the relativisation of φ
to the (definable) set N(r, x̄).

(c) A sentence of the form

∃x0⋯∃xn−1⋀
i<k
(d(x i , xk) ≥ 2r ∧ ψ(r)(x i))

is called basic local. A boolean combination of basic local sentences is
called local.
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5. The theorems of Hanf and Gaifman

Lemma 5.5. Let A and B be Σ-structures. We have A ≡FO B if and only if

A ⊧ φ iff B ⊧ φ for all basic local sentences φ .

Proof. We have to show that A∣Σ0 ≡m B∣Σ0 , for all m < ω and all finite
Σ0 ⊆ Σ. Fix m and Σ0 and let In be the set of all partial isomorphisms
ā ↦ b̄ ∈ pIso(A∣Σ0 ,B∣Σ0) with ∣ā∣ ∈ Am−n and ∣b̄∣ ∈ Bm−n such that

N(7n , ā) ≡g(n) N(7n , b̄) ,
where g ∶ ω → ω is some function that will be specified below. We claim
that (In)n ∶ A∣Σ0 ≡m B∣Σ0 .

Since ⟨⟩ ↦ ⟨⟩ ∈ Im it remains to prove the forth property. Let ā ↦ b̄ ∈
In+1 and c ∈ A. By Lemma 2.1, there exist formulae φn

D,d̄ such that

C ⊧ φn
D,d̄(c̄) iff ⟨C, c̄⟩ ≡n ⟨D, d̄⟩ .

If we define

ψn
d̄ ∶= (φg(n)

N(7n ,d̄))(7n)

then we have

C ⊧ ψn
d̄(c̄) iff N(7n , d̄) ≡g(n) N(7n , c̄) .

We distinguish two cases. If c ∈ N(2 ⋅ 7n , ā) then

N(7n+1 , ā) ⊧ ∃z(d(ā, z) < 2 ⋅ 7n ∧ ψn
āc(āz)) .

Choose g(n + 1) such that it is larger than the quantifier rank of this
formula. Then it follows that

N(7n+1 , b̄) ⊧ ∃z(d(b̄, z) < 2 ⋅ 7n ∧ ψn
āc(b̄z)) .

Therefore, there is some d ∈ N(7n+1 , b̄) such that

N(7n , āc) ≡g(n) N(7n , b̄d) , that is, āc ↦ b̄d ∈ In .
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c4. Back-and-forth equivalence

It remains to consider the case that c ∉ N(2 ⋅ 7n , ā). Then

d(N(7n , ā), N(7n , c)) > 1 .

The formula

δs(x̄) ∶= ⋀
l<k<s

d(x l , xk) ≥ 4 ⋅ 7n ∧⋀
l<s

ψn
c (x l)

says that the set {x0 , . . . , xs−1} is (4 ⋅ 7n)-scattered and the 7n-neigh-
bourhood of every x l is g(n)-equivalent to N(7n , c). Choose e maximal
such that

N(7n+1 , ā) ⊧ χe ∶= ∃x0⋯∃xe−1(δe(x̄) ∧ ⋀
k<e d(ā, xk) < 2 ⋅ 7n) .

Note that e is well-defined since N(2 ⋅ 7n , ā) does not contain a (4 ⋅ 7n)-
scattered set of size greater than ∣ā∣ = m − n − 1. If we choose g(n + 1)
large enough such that qr(χe ∧ ¬χe+1) ≤ g(n + 1) it follows that

N(7n+1 , b̄) ⊧ χe ∧ ¬χe+1 .

Since the sentence ϑ i ∶= ∃x0⋯∃x i−1δ i(x̄) is basic local we have

B ⊧ ϑ i iff A ⊧ ϑ i .

If B ⊧ ϑe+1 then there exists some d ∈ B ∖ N(2 ⋅ 7n , b̄) such that
B ⊧ ψn

c (d). It follows that N(7n , c) ≡g(n) N(7n , d) and āc ↦ b̄d ∈ In .
It remains to consider the case that B ⊭ ϑe+1. Then the distance

between ā and every element satisfying ψn
c (x) is less than

4 ⋅ 7n + 2 ⋅ 7n = 6 ⋅ 7n < 7n+1 .

Since c ∉ N(2 ⋅ 7n , ā) we have

N(7n+1 , ā) ⊧ ∃z[2 ⋅ 7n ≤ d(ā, z) < 6 ⋅ 7n ∧ ψn
c (z) ∧ ψn

ā(ā)]
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5. The theorems of Hanf and Gaifman

which implies that

N(7n+1 , b̄) ⊧ ∃z[2 ⋅ 7n ≤ d(b̄, z) < 6 ⋅ 7n ∧ ψn
c (z) ∧ ψn

ā(b̄)]
if we choose g(n + 1) larger than the quantifier rank of this formula.
Therefore, there exists some element d ∈ N(7n+1 , b̄) with

2 ⋅ 7n ≤ d(b̄, d) < 6 ⋅ 7n

such that

N(7n , c) ≡g(n) N(7n , d) .

It follows that N(7n , āc) ≡g(n) N(7n , b̄d) and āc ↦ b̄d ∈ In , as desired.◻
The preceding lemma implies that every sentence is equivalent to a

local one.

Theorem 5.6 (Gaifman). Every sentence φ ∈ FO0 is equivalent to some
local sentence.

Proof. Let Φ ∶= {ψ ∣ ψ is local and φ ⊧ ψ }. We claim that Φ ⊧ φ. By
the Compactness Theorem, it then follows that Φ0 ⊧ φ, for some finite
subset Φ0 ⊆ Φ. This implies that φ ≡ ⋀Φ0.

Suppose that A ⊧ Φ. We have to show that A ⊧ φ. Set

Ψ ∶= {ψ ∣ ψ is local and A ⊧ ψ } .

If Ψ ∪{φ} has some model B then, since B ⊧ Ψ and local sentences are
closed under negation, it follows by the preceding lemma that B ≡FO A
and

B ⊧ φ implies A ⊧ φ .

Therefore, it is sufficient to show that Ψ ∪ {φ} is satisfiable. Suppose
otherwise. Then, by the Compactness Theorem, there are finitely many
formulae ψ0 , . . . ,ψn ∈ Ψ such that

ψ0 ∧⋯ ∧ ψn ⊧ ¬φ .
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c4. Back-and-forth equivalence

Hence, we have¬ψ0∨⋯∨¬ψn ∈ Φ which implies that A ⊧ ¬ψ0∨⋯∨¬ψn .
It follows that there is some i ≤ n with ψ i ∉ Ψ . Contradiction. ◻
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1. Classifying logical systems
In this chapterwe start with amore systematic investigation of the various
extensions of first-order logic. Let us isolate some desirable properties a
logic may have.

Definition 1.1. Let L and L′ be logics. We write L ≤ L′ if, for every φ ∈ L,
there exists a formula φ′ ∈ L′ such that ModL′(φ′) =ModL(φ).

Similarly, if L ∶ S → Logi$ and L′ ∶ S′ → Logi$ are logical systems
then we write L ≤ L′ if there exists a functor F ∶ S→ S′ such that

L[s] ≤ L′[F(s)] , for all s ∈ S .

We write L ≡ L′ if L ≤ L′ and L ≥ L′. By L < L′ we denote the fact that
L ≤ L′ and L ≢ L′. The same notation is used for logical systems.

Definition 1.2. Let L be a logical system.
(a) L has the finite occurrence property if L is algebraic and, for every

φ ∈ L[Σ], there exists a finite set S of sorts and a finite S-sorted signature
Σ0 ⊆ Σ such that φ is equivalent to some formula in L[Σ0].

(b) L is compact if every inconsistent set Φ ⊆ L[s] has a finite subset
that is already inconsistent. Similarly, we call L countably compact if every
countable inconsistent set Φ ⊆ L[s] has a finite inconsistent subset.

(c) L has the Löwenheim-Skolem property if it is algebraic and every
formula φ ⊆ L[Σ] that is satisfiable has a countable model.

(d) L has the Karp property if it is algebraic and

A ≅∞ B implies A ≡L B .
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c5. General model theory

(e) L is closed under relativisations if it is algebraic and, for all formulae
φ ∈ L[Σ] and χ i ∈ Ls i [Σ∪Γ], for i < n, there exists a formula φ( χ̄) ∈ L[Σ]
such that we have

A ⊧ φ( χ̄) iff (A∣Σ)∣⋃i χA
i
⊧ φ ,

whenever A is a (Σ ∪ Γ)-structure such that the set ⋃i χA
i induces a

substructure of A∣Σ .
(f) L is closed under substitutions if it is algebraic and, for all formulae

φ ∈ L[Σ ∪ {R}] and χ ∈ L s̄[Σ] where R is a relation symbol of type s̄,
there exists a formula φ′ ∈ L[Σ] such that

A ⊧ φ′ iff ⟨A, χA⟩ ⊧ φ , for every Σ-structure A .

(g) L has the Tarski union property if it is algebraic and, for every
L-chain (Aα)α<δ , we have Aβ ⪯L ⋃α<δ Aα , for all β < δ.

(h) Let us define the following abbreviations:

(a) L is algebraic.
(b) L is boolean closed.
(b+) L is closed under finite conjunctions and disjunctions.
(c) L is compact.
(cc) L is countably compact.
(fop) L has the finite occurrence property.
(kp) L has the Karp property.
(lsp) L has the Löwenheim-Skolem property.
(rel) L is closed under relativisations.
(sub) L is closed under substitutions.
(tup) L has the Tarski union property.

(i) L is called weakly regular if it satisfies (a), (b+), and (fop). If L sat-
isfies (a), (b), (fop), (rel), and (sub) then it is called regular.

Example. FO0 has all of the above properties but, if κ > ℵ0 then FO0
κℵ0

satisfies only (a), (b), (b+), (kp), (rel), and (sub).
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Exercise 1.1. Prove that SO does not have the Karp property.

Lemma 1.3. Suppose that L0 ≤ L1. If L1 satisfies (c), (cc), (lsp), or (kp)
then so does L0.

Exercise 1.2. (a) Suppose that L is closed under disjunction. Prove that
L is compact if and only if the type space S(L) is compact.

(b) Suppose that the logic L is compact and closed under negation.
Let Φ ⊆ L and φ ∈ L. Prove that Φ ⊧ φ if and only if Φ0 ⊧ φ, for some
finite subset Φ0 ⊆ Φ.

The following lemmas summarise some consequences of compactness.

Lemma 1.4. Let L be a logic with (b) and (c). If

φ ≡ ⋁
i∈I⋀Φ i , for φ ∈ L and Φ i ⊆ L , i ∈ I ,

then there exist finite sets I0 ⊆ I and Φ0
i ⊆ Φ i such that

φ ≡ ⋁
i∈I0⋀Φ0

i .

Proof. For every i ∈ I, we have Φ i ⊧ φ which implies that Φ i ∪ {¬φ}
is inconsistent. Since L is compact it follows that there exists a finite
subset Φ0

i ⊆ Φ i such that Φ0
i ∪ {¬φ} is inconsistent, i.e., Φ0

i ⊧ φ. Set
ψ i ∶= ⋀Φ0

i and let Ψ ∶= {ψ i ∣ i ∈ I }. If the set

Γ ∶= {φ} ∪ {¬ψ ∣ ψ ∈ Ψ }
has a model J then J ⊧ φ implies that J ⊧ Φ i , for some i. In particular,
we have J ⊧ ψ i in contradiction to J ⊧ ¬ψ i .

Consequently, Γ is inconsistent and there exists a finite subset Ψ0 ⊆ Ψ
such that

{φ} ∪ {¬ψ ∣ ψ ∈ Ψ0 }
is inconsistent. Set ϑ ∶= ⋁Ψ0. It follows that φ ⊧ ϑ.

615



c5. General model theory

Conversely, if J ⊧ ϑ then J ⊧ ψ i , for some i, and ψ i ⊧ φ implies that
J ⊧ φ. Hence, we also have ϑ ⊧ φ. Let I0 ∶= { i ∈ I ∣ ψ i ∈ Ψ0 }. Then we
have

φ ≡ ϑ ≡ ⋁
i∈I0⋀Φ0

i . ◻
Lemma 1.5. Let L0 ≤ L1 be logics where L0 satisfies (b+) and L1 satisfies
(b) and (c). If

A ≡L0 B implies A ≡L1 B

then L0 ≡ L1.

Proof. Let φ be an L1-formula. Then

φ ≡ ⋁{⋀ThL0(J) ∣ J ∈ModL1(φ) } .

By Lemma 1.4, we can find finitely many interpretations J0 , . . . , Jn and
finite subsets Φ i ⊆ThL0(Ji) such that

φ ≡ ⋀Φ0 ∨ ⋅ ⋅ ⋅ ∨⋀Φn .

Since L0 satisfies (b+) it follows that there is an L0-formula ψ ≡ φ. ◻
Lemma 1.6. Let L be an algebraic logic with (b) and ∀ ≤ L. If L has the
compactness property then it has the finite occurrence property.

Proof. Suppose that φ ∈ L[Σ]. Let Σ′ ∶= { ξ′ ∣ ξ ∈ Σ } be a disjoint copy
of Σ and let µ ∶ Σ → Σ′ ∶ ξ ↦ ξ′ be the corresponding bijection. Consider
the set of first-order formulae

Φ ∶={∀x̄(Rx̄ ↔ R′ x̄) ∣ R ∈ Σ a relation symbol}∪ {∀x̄( f x̄ = f ′ x̄) ∣ f ∈ Σ a function symbol} .

Since ∀ ≤ L there exists an equivalent set Φ̃ ⊆ L[Σ ∪ Σ′] of L-formulae.
If φ′ ∶= L[µ](φ) then

Φ̃ ∪ {φ} ⊧ φ′ and Φ̃ ∪ {φ′} ⊧ φ .
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By (c), we can find finite subsets Φ̃0 , Φ̃1 ⊆ Φ̃ such that

Φ̃0 ∪ {φ} ⊧ φ′ and Φ̃1 ∪ {φ′} ⊧ φ .

Let Φ0 and Φ1 be the subsets of Φ corresponding to Φ̃0 and Φ̃1. Fix a
finite signature Γ such that Φ0 , Φ1 ⊆ FO[Γ ∪ Γ′]. For a Σ-structure A,
we denote by A+ the (Σ ∪ Γ′)-expansion of A where (ξ′)A+ = ξA, for all
ξ ∈ Γ. We claim that

A∣Γ ≡L B∣Γ implies A ⊧ φ⇔ B ⊧ φ ,

for all Σ-structures A and B. Suppose that A ⊧ φ. Then A+ ⊧ Φ̃0 ∪ φ,
which implies that A+ ⊧ φ′. Note that A∣Γ ≡L B∣Γ implies that A+∣Γ′ ≡L
B+∣Γ′ . Consequently, it follows that B+ ⊧ φ′. Since B+ ⊧ Φ̃1 we obtain
B ⊧ φ, as desired.

For A ∈ Str[Σ], let ΦA ∶=ThL[Γ](A∣Γ). By the above claim it follows
that

φ ≡ ⋁{⋀ΦA ∣ A ∈ModL[Σ](φ) } .

By Lemma 1.4, there are finitely many structures A0 , . . . ,An and finite
subsets Ψi ⊆ ΦAi such that

φ ≡ ⋀Ψ0 ∨ ⋅ ⋅ ⋅ ∨⋀Ψn ∈ L[Γ] . ◻
2. Hanf and Löwenheim numbers
The Compactness Theorem and the Upward and Downward Löwen-
heim-Skolem Theorems are central results in first-order model theory.
While the Compactness Theorem fails for many natural logics, we can
generalise the Löwenheim-Skolem theorems to most of them. The Hanf
and the Löwenheim number of a logic measure the extend to which a
logic satisfies these theorems. For their definition we need the following
notions.
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Definition 2.1. Let L be an algebraic logic and Φ ⊆ L[Σ] a set of L-
formulae.

(a) We say that Φ pins down a cardinal κ if there is a unary predicate
P ∈ Σ such that Φ has a model A with ∣PA∣ = κ but Φ does not have
models A where PA has arbitrarily high cardinality.

(b) Φ pins down an ordinal α if there exists a binary relation < ∈ Σ
such that◆ in every model of Φ the relation < is a well-order of its field and◆ there exists a model of Φ such that < is of order type α.

Definition 2.2. Let L be an algebraic logic and κ a cardinal.
(a) The Hanf number hnκ(L) of L is the supremum of all cardinals

that can be pinned down by a set of L-formulae of size at most κ. If the
supremum is undefined we set hnκ(L) ∶= ∞.

(b) The Löwenheim number lnκ(L) of L is the least cardinal λ such
that every satisfiable set of L-formulae of size at most κ has a model of
cardinality at most λ. If there is no such cardinal then we set lnκ(L) ∶= ∞.

(c) The well-ordering number wnκ(L) of L is the supremum of all
ordinals α that can be pinned down by a set of L-formulae of size at
most κ. If the supremum is undefined we set wnκ(L) ∶= ∞. If wn1(L) <∞ then L is called bounded.

(d) The occurrence number occ(L) of L is the least cardinal κ such that,
for every signature Σ and all formulae φ ∈ L[Σ], there exists a signature
Σ0 ⊆ Σ and a formula ψ ∈ L[Σ0] such that ∣Σ0∣ ≤ κ and ψ ≡ φ. Again, if
there is no such cardinal then we set occ(L) ∶= ∞.

Remark. A logic L has (lsp) iff ln1(L) = ℵ0.
Hanf and Löwenheim numbers for first-order logic were already com-

puted in Theorems c2.4.12 and c2.3.7.

Theorem 2.3. hnκ(FO) = ℵ0 and lnκ(FO) = κ ⊕ ℵ0, for all κ.

Theorem 2.4. lnκ(FOκ+ℵ0) = κ .

Lemma 2.5. For every regular cardinal κ, we have wn1(FOκℵ0) ≥ κ and
occ(FOκℵ0) = κ− ∶= sup{ λ ∣ λ < κ }.
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2. Hanf and Löwenheim numbers

Proof. We have already seen in Lemma c1.1.7 that every ordinal α < κ is
finitely FOκℵ0 -axiomatisable.

For the occurrence number note that occ(FOκℵ0) < κ since each
FOκℵ0 -formula has less than κ subformulae. Conversely, for every λ < κ,
we have the formula

⋀
i<λ

Pix

with λ different relation symbols. ◻
Lemma 2.6. wn1(MSO) = ∞ .

Proof. The example on page 484 shows that the class of all well-orders is
finitely MSO-axiomatisable. ◻

In general the Hanf numbers of FOκ+ℵ0 depend on the model of set
theory. In ZFC we can only prove the following bounds.

Theorem 2.7. ℶκ+ ≤ hn1(FOκ+ℵ0) < ℶ(2κ)+ .

For the special case of FOℵ1ℵ0 the exact value can be computed. (The
proof is based on the study of Borel subsets of the type space and employs
Corollary c4.2.5.)

Theorem 2.8 (Hanf). hn1(FOℵ1ℵ0) = ℶω1 .

(Note that hn1(FOκ+ℵ0) = hnκ(FOκ+ℵ0) since we can take conjunctions
over sets of size κ.)Wewill prove the lower bound in Corollary 2.12 below.
The computation of the upper bound is deferred to Corollary e7.1.13
(where we only prove the weaker statement that hn1(FOκ+ℵ0) ≤ ℶ(2κ)+).

Lemma 2.9. Let L be a logical system with ∀∃ ≤ L.
(a) If hnκ(L) < ∞ then hnκ(L) is a limit cardinal and a cardinal λ can

be pinned down by a set Φ ⊆ L of size κ if and only if λ < hnκ(L).
(b) If wnκ(L) < ∞ then wnκ(L) is a limit ordinal and an ordinal α

can be pinned down by a set Φ ⊆ L of size κ if and only if α < wnκ(L).
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c5. General model theory

Proof. (a) Let Φ be a set of size at most κ pinning down the cardinal µ
via the relation symbol P. We construct a set Ψ of the same size pinning
down µ+. Let S be the set of sorts appearing in Φ. Choose new binary
relation symbols < and Rs , for s ∈ S, a new unary relation symbol Q, and
a new binary function symbol f . Ψ consists of formulae expressing the
following properties.

◆ < is a linear order of the set Q.

◆ For every u ∈ Q, the set R(u) ∶= { x ∣ ⟨u, x⟩ ∈ Rs for some s ∈ S }
induces a substructure satisfying Φ.

◆ For every u ∈ Q, the function x ↦ f (u, x) is an injective map
from ⇓u into R(u) ∩ P.

It follows that Ψ has a model where < has the order type µ+. To see
that ∣Q∣ cannot become arbitrarily large let λ be some cardinal such
that Φ has no models with ∣P∣ = λ. Given any model of Ψ fix a strictly
increasing cofinal map f ∶ α → Q. By the third condition above we have∣⇓ f (i)∣ < λ, for all i < α. Consequently,

Q = ⋃
i<α ⇓ f (i)

implies that ∣Q∣ ≤ λ.
(b) The statement that A = ⟨A, ≤⟩ is a linear order with exactly n < ω

elements can be expressed in∀. Since∀∃ ≤ L it follows that wnκ(L) ≥ ω.
To prove the claim we show that if α is pinned down by some Φ ⊆ L

of size ∣Φ∣ ≤ κ then so is α + 1 and every ordinal β ≤ α.
Suppose that Φ ⊆ L pins down α ≥ ω via the relation symbol <. Let

P be a new unary relation symbol and ⊏ a new binary one.
We can construct a set Φ ∪ {ψ} pinning down every ordinal β ≤ α

via ⊏ by defining

ψ ∶= ∀x∀y(x ⊏ y↔ (Px ∧ Py ∧ x < y)) ,
which expresses that ⊏ = <∣P .

620
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Similarly, we can define a set Φ ∪ {ψ} pinning down α + 1 via ⊏ by
defining

ψ ∶= ∀x∀y[x ⊏ y↔ [(x < y ∧ ∃z(z < x))
∨ (y < x ∧ ¬∃z(z < y))]] ,

which states that ⊏ is the order obtained from < by moving the least
element to the end. ◻

Under very general conditions, we can show that a logical system L
has a Hanf number and a Löwenheim number.

Proposition 2.10. Let L be an algebraic logic such that L[Σ] is a set, for
all Σ. If occ(L) < ∞ then we have hnκ(L) < ∞ and lnκ(L) < ∞, for
all κ.

Proof. Set µ ∶= κ⊗occ(L) and fix an universal signature Σ of size µ, that
is, Σ is S-sorted, for some set of sorts with ∣S∣ = µ, and Σ contains, for
all sorts s̄ and t, µ relation symbols of type s̄ and µ function symbols of
type s̄ → t. It is sufficient to consider sets Φ ⊆ L[Σ] since every signature
of size µ can be embedded into Σ and, by definition of a logical system,
L-formulae are invariant under such changes of the signature.

For every set Φ ⊆ L[Σ] of size ∣Φ∣ ≤ κ and every unary predicate
P ∈ Σ, we define two cardinals νΦ ,P and λΦ as follows. If Φ has models A
where PA can be arbitrarily large then we set νΦ ,P ∶= 0. Otherwise, let
νΦ ,P be the least cardinal such that Φ has only models A with ∣PA∣ ≤ νΦ .
Similarly, if Φ is satisfiable then we set

λΦ ∶= min{ ∣A∣ ∣ A ⊧ Φ } .

Otherwise, we let λΦ undefined. It follows that

hnκ(L) = sup{ νΦ ,P ∣ P ∈ Σ, Φ ⊆ L[Σ] of size ∣Φ∣ ≤ κ } ,
and lnκ(L) = sup{ λΦ ∣ Φ ⊆ L[Σ] satisfiable and of size ∣Φ∣ ≤ κ } .

Note that the supremum on the right-hand side exists since, by the
Axiom of Replacement, it is taken over a set of cardinals. ◻
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Theorem 2.11. Let L be a regular logical system with FO ≤ L such that, for
every ordinal α < wnκ(L), there exists a set Φα ⊆ L[Σα] of size ∣Φα ∣ < κ
pinning down α in a model of size at most hnκ(L). Then we have

hnκ(L) ≥ ℶwnκ(L)(λ) , for all λ < hnκ(L) .

Proof. Let X be a set of size λ. We define inductively a variant of the
cumulative hierarchy by

P0(X) ∶= X ,
Pα+1(X) ∶= ℘(Pα(X)) ,

Pδ(X) ∶= ⋃
α<δ Pα(X) , for limit ordinals δ .

Then ∣Pα(X)∣ = ℶα(λ).
Since λ < hnκ(L) we can find a set Ψ ⊆ L[Γ] of size ∣Ψ ∣ ≤ κ pinning

down λ via a predicate Q. Suppose that Σα is S-sorted and Γ is T-sorted
with S ∩ T = ∅ and let p ∉ S ∪ T be a new sort. Choose new unary
predicates O ,U , a binary relation symbol E, unary functions ρ, ζ, and
a constant 0. We define a set Θα of formulae that is meant to describe
a structure A of the following form. We have A∣S ⊧ Φα and A∣T ⊧ Ψ .
Furthermore, U ⊆ Ap ⊆ Pα(U) for the ordinal α encoded in A∣S . The
relation E is the membership relation of sets, ρ ∶ Ap → O maps every
set in Pβ(U) to the ordinal β, and ζ ∶ Q → U is a bijection. Formally,
Θα consists of the union Ψ ∪ Φα together with the following formulae.◆ The domains with sort T form a model of Φα and 0 is the least

element of <.

∀x(Ox ↔ x ≤ x)(∀x .Ox)(0 ≤ x)
◆ ζ ∶ Q → U is a bijection and ρ maps Ap to the field of <.

∀x(Qx ↔ Uζx)∀x∀y(ζx = ζ y → x = y)∀xOρx
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(In the last formula x is of sort p.)
◆ ρ−1(α) ⊆ Pα(U) and E is the element relation.

∀x(Ux ↔ ρx = 0)(∀x .¬Ux)[∀y.¬Uy)(∀z(Ezx ↔ Ezy) → x = y]
∀x(∀u.Ou)[ρx = u↔ [(∀y.Eyx)(ρy < ρx)

∧ (∀v .v < u)(∃y.Eyx)(ρy ≥ v)]]
If A is a model of Θα then <A is a well-order of type β < wnκ(L) and

there exists an injective function A→ Pβ(UA). Consequently,

∣Ap ∣ ≤ ℶβ(∣UA∣) .

Since Ψ pins down a cardinal we further have

∣UA∣ = ∣QA∣ ≤ hnκ(L) .

Therefore, Θα does not have models where Ap is arbitrarily large, but it
does have a model A with ∣Ap ∣ = ℶα(λ). ◻
We have shown in Lemma c1.1.7 that every ordinal α < κ+ can be

defined in FOκ+ℵ0 . Consequently, we obtain the following lower bound
on the Hanf number.

Corollary 2.12. hnκ(FOκ+ℵ0) ≥ ℶκ+

Lemma 2.13. Suppose that L is a regular logical system with FO ≤ L. Then
L is countably compact if and only if wnℵ0(L) = ω.

Proof. A standard compactness argument shows that if L is countably
compact and Φ ⊆ L has a model such that < is of order type ω then
there also is a model where < contains an infinite descending chain.
Consequently, (cc) implies wnℵ0(L) ≤ ω.

For the converse, assume that there exists a countable inconsistent
set {φn ∣ n < ω } ⊆ L every finite subset of which is satisfiable. By
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Lemma 2.9 (b) we can prove that wnℵ0(L) > ω by constructing a count-
able set Φ ⊆ L pinning down ω.

Let S be the set of sorts appearing in some φn and choose new binary
relation symbols < and Rs , for s ∈ S. The set Φ consists of the following
statements all of which can be expressed in first-order logic:

◆ < is a linear ordering of its field.

◆ For all elements a of the field of < there is some element b with⟨a, b⟩ ∈ R.

◆ If there are at least n elements <-less than a then the set { b ∣⟨a, b⟩ ∈ Rs for some s ∈ S } induces a substructure satisfying φn .

It follows that if A is a model of Φ then every element in the field of <A

has only finitely many elements below. Consequently, Φ pins down all
ordinals α ≤ ω. ◻
3. The Theorem of Lindström

We have seen that first-order logic has many pleasant properties like
compactness and the Löwenheim-Skolem property. On the other hand,
its expressive power is rather restricted as far as certain aspects like
counting and recursion are concerned. The question naturally arises
of whether there is a stronger logic that shares the good properties of
first-order logic. Surprisingly, it turns out that one can prove that such a
logic does not exist.

In many of the following proofs we consider a structure containing
two other structures, say, specified by unary predicates P and Q. We use
additional relations to encode a back-and-forth systems between these
substructures.

Definition 3.1. Suppose that Σ and Γ are signatures and µ ∶ Σ → Γ is an
isomorphism of Sig. Let A be a (Σ ∪ Γ)-structure and P, Q ⊆ A subsets
of A.
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3. The Theorem of Lindström

(a) A partial isomorphism modulo µ from P to Q is a function p ∶ ā ↦ b̄
with ā ⊆ P and b̄ ⊆ Q such that, for all term-reduced atomic first-order
formulae φ(x̄), we have

A ⊧ φ(ā) iff A ⊧ FO[µ](φ)(b̄) .

(b) A pseudo back-and-forth system (modulo µ from P to Q) is a se-
quence (Iα)α∈U where

◆ each Iα is a set of partial isomorphisms modulo µ from P to Q,
◆ U is a nonempty linear order such that every element α ∈ U has

an immediate successor α + 1, except possibly for the last element,
◆ we have Iδ ∶= ⋂α<δ Iα , for elements δ ∈ U without immediate

predecessor, and
◆ every Iα+1 has the back-and-forth property restricted to P and Q

with respect to Iα , that is,
– if ā ↦ b̄ ∈ Iα+1 and c ∈ P then there is some d ∈ Q with

āc ↦ b̄d ∈ Iα , and
– if ā ↦ b̄ ∈ Iα+1 and d ∈ Q then there is some c ∈ P with

āc ↦ b̄d ∈ Iα .
(c) We say that a tuple ⟨U , <, P̄, Q̄ , I, F , Ḡ⟩ encodes a pseudo back-and-

forth system (Iα)α∈X modulo µ from P to Q if there exist a finite set of
sorts S and sorts u and f such that

◆ P̄ = (Ps)s∈S , Q̄ = (Qs)s∈S , and Ḡ = (Gs)s∈S ,◆ P = ⋃s Ps and Q = ⋃s Qs ,◆ U ⊆ Au , F ⊆ A f , Ps ⊆ As , Qs ⊆ Aµ(s) ,
I ⊆ U × F , < ⊆ U ×U , Gs ⊆ F × Ps × Qs ,◆ there exists an isomorphism ι ∶ ⟨U , <⟩ ≅ ⟨X , <⟩,

◆ there exists a bijection π ∶ F → ⋃α Iα ,◆ I = { ⟨u, p⟩ ∈ U × F ∣ πp ∈ Iιu } ,
◆ Gs = { ⟨p, a, b⟩ ∈ F × Ps × Qs ∣ (πp)(a) = b } .
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Lemma 3.2. Suppose that Σ and Γ are finite signatures and µ ∶ Σ → Γ an
isomorphism of Sig. There exists a first-order formula

βµ(U , <, P̄, Q̄ , I, F , Ḡ)
that holds if and only if ⟨U , <, P̄, Q̄ , I, F , Ḡ⟩ encodes a pseudo back-and-
forth system modulo µ from P to Q.

Proof. We have to express the following properties:
(a) ⟨U , <⟩ is a nonempty linear order and every element has an imme-

diate successor, except for the last one.

∃uUu∀u∀v(u < v → Uu ∧Uv)∀u(¬u < u)∀u∀v∀w(u < v ∧ v < w → u < w)(∀u.Uu)(∀v .Uv)(u < v ∨ u = v ∨ u > v)∀u[∃v(u < v) → ∃v(u < v ∧ ¬∃w(u < w ∧w < v))]
(b) Gs ⊆ F × Ps ×Qs encodes a set of partial isomorphisms modulo µ.

∀p∀a∀b(Gs pab → F p ∧ Psa ∧ Qsb)∀p∀a0∀a1∀b0∀b1[Gs pa0b0 ∧Gs pa1b1 → (a0 = a1 ↔ b0 = b1)]
For all n-ary relation symbols R ∈ Σ,

∀p∀ā∀b̄[Gs0 pa0b0 ∧ ⋅ ⋅ ⋅ ∧Gsn−1 pan−1bn−1 → (Rā↔ µ(R)b̄)] .

For all n-ary function symbols f ∈ Σ,

∀p∀ā∀c∀b̄∀d[Gs0 pa0b0 ∧ ⋅ ⋅ ⋅ ∧Gsn−1 pan−1bn−1 ∧Gt pcd →
( f ā = c↔ µ( f )b̄ = d)] .
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(c) I ⊆ U × F encodes a sequence of nonempty sets with the back-and-
forth property.

∀u∀p(Iup → Uu ∧ F p)∀u∃pIup∀u∀v∀p[Iup ∧ v < u → (∀c.Psc)∃d∃qηs)]∀u∀v∀p[Iup ∧ v < u → (∀d .Qsd)∃c∃qηs)]
where ηs ∶= Ivq ∧Gs qcd ∧⋀t ∀a∀b(Gt pab → Gt qab) . ◻
Lemma 3.3. Let Σ and Γ be finite signatures and µ ∶ Σ → Γ an isomorph-
ism of Sig. Let A be a (Σ ∪ Γ)-structure and P, Q ⊆ A. Suppose that
P and Q induce substructures of, respectively, A∣Σ and A∣Γ .

If there exists a pseudo back-and-forth system (Iα)α∈U modulo µ from
P to Q where U is not well-ordered then

A∣Σ ∣P ≅∞ A∣Γ ∣Q ∣µ .

Proof. Fix an infinite descending sequence α0 > α1 > . . . in U . We claim
that J = ⋃n Iαn has the back-and-forth property with respect to itself. If
p ∈ J then p ∈ Iαn , for some n. Hence, for every c ∈ P or d ∈ Q, we can
find a suitable extension q ∈ Iαn+1 ⊆ J with, respectively, c ∈ dom q or
d ∈ rng q. Consequently,

J ∶ A∣Σ ∣P ≅∞ A∣Γ ∣Q ∣µ . ◻
Definition 3.4. Let L and L′ be logical systems and φ,ψ ∈ L[s].

(a) φ and ψ are contradictory if

ModL(φ) ∩ModL(ψ) = ∅ .

(b) A formula χ ∈ L′[t] separates φ from ψ if

ModL′(χ) ⊇ModL(φ) and ModL′(χ) ∩ModL(ψ) = ∅ .

627



c5. General model theory

We start by investigating logical systems containing first-order logic
that have the Löwenheim-Skolem property. First, we show that if the
logic is strictly more expressive than first-order logic then it can express
finiteness.

Lemma 3.5. Let L be a weakly regular logical system with FO0 ≤ L and
(lsp).

If there are contradictory formulae φ,ψ ∈ L[Σ] that are not separated
by any first-order formula χ ∈ FO[Σ] then there exists a signature Γ, a
unary predicate U ∈ Γ, and a formula ϑ ∈ L[Γ] satisfying the following
conditions:

(1) If A ⊧ ϑ then UA is finite and nonempty.
(2) For every 0 < n < ω, there exists a model A ⊧ ϑ with ∣UA∣ = n.

Proof. For a contradiction, suppose that φ,ψ ∈ L[Σ] are not separated
by any first-order formula but there is no formula ϑ satisfying (1) and (2).
By (fop), we may assume that Σ is finite. We proceed in several steps.

(a) First, we prove that every formula χ ∈ L[Γ] that is not equivalent
to a first-order formula has a model of cardinality ℵ0. Let χ be such
a formula. If χ has infinite models then choose a new unary function
symbol f ∉ Γ and consider the formula

χ′ ∶= χ ∧ “ f is injective but not surjective” .

Since χ has infinite models it follows that χ′ is satisfiable. By (lsp), there
exists a countable model of χ′. Since there are no finite models of χ′ it
follows that this model is countably infinite.

It remains to consider the case that χ has only finite models. By (fop),
we may assume that Γ is finite. Thus, for every n < ω, there are only
finitely many non-isomorphic Γ-structures A of cardinality n and each
of them can be axiomatised by a first-order formula ηA. Consequently,
χ must have models of arbitrarily large finite cardinality since, otherwise,
χ would be equivalent to a finite disjunction of first-order formulae ηA.
If U ∉ Γ is a new unary relation symbol then the formula

ϑ ∶= χ ∧ ∃xUx
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satisfies (1) and (2). A contradiction.
(b) Second, we prove that, for every n < ω, there are countably infinite

structures An and Bn such that

An ⊧ φ , Bn ⊧ ψ , and An ≡n Bn .

Let ηn
A be the Hintikka-formula of A of quantifier-rank n and set

χn ∶= ⋁{ ηn
A ∣ A ⊧ φ } .

Since Σ is finite we have ηn
A ∈ FO[Σ] and there are only finitely many

different Hintikka-formulae of quantifier rank n. Consequently, χn ∈
FO[Σ].

Since φ ⊧ χn we have Mod(φ) ⊆ Mod(χn). As φ and ψ cannot be
separated it follows that

Mod(χn) ∩Mod(ψ) ≠ ∅ .

Hence, ψ ∧ χn is satisfiable and it is not equivalent to any first-order
formula. By (a), there exists a countably infinite model Bn ⊧ ψ ∧ χn .
In particular, we have Bn ⊧ ηA, for some A ⊧ φ. Moreover, φ ∧ ηA is
satisfiable and not equivalent to any first-order formula. Thus, by (a), we
can find a countably infinite model An ⊧ φ ∧ ηA. Note that An ≡n Bn
because both An and Bn satisfy ηA. Hence, An and Bn have the desired
properties.

(c) Finally, we derive a contradiction as follows. Let Σ′ be a disjoint
copy of Σ and let µ ∶ Σ → Σ′ be the corresponding bijection. If C is a
model of the L-formula

ϑ ∶= φ ∧ L[µ](ψ)∧ βµ(U , <, P̄, Q̄ , I, F , Ḡ)∧ ⋀s ∀x(Psx ∧ Qsx)∧ ∃x(∀y.Uy)(y = x ∨ x < y)∧ ∃x(∀y.Uy)(y = x ∨ y < x)∧ ∀x[∃y(y < x) → (∃y.y < x)¬∃z(y < z ∧ z < x)]
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then ⟨U , <, P̄, Q̄ , I, F , Ḡ⟩ encodes a pseudo back-and-forth system mod-
ulo µ from C to C where ⟨U , <⟩ is a discrete linear order with a least
and greatest element. Furthermore, the Σ-reduct of C satisfies φ and its
Σ′-reduct satisfies µ(ψ).

For every n < ω, we can find a model Cn of ϑ with ∣UCn ∣ = n + 1 as
follows. By (b), there are countably infinite structures An and Bn with
An ≡n Bn such that An ⊧ φ and Bn ⊧ ψ. Since ∣An ∣ = ∣Bn ∣ we may
w.l.o.g. assume that An = Bn . We form the structure Cn with universe
An = Bn where, for every ξ ∈ Σ, we have two relations or functions

ξCn ∶= ξAn and µ(ξ)Cn ∶= ξBn .

Hence, the Σ-reduct of Cn equals An and its Σ′-reduct equals µ(Bn).
Furthermore, since An ≡n Bn we can add relations U , <, I, P̄, Q̄ , F , Ḡ
encoding some back-and-forth system modulo µ where ∣U ∣ = n + 1.

Consequently, the formula ϑ ∧ ∣U ∣ = n is satisfiable, for all 0 < n < ω.
This concludes the proof of (2). For (1), assume that ϑ has models where
U is infinite. If f is a new unary function symbol then it follows that the
formula

ϑ′ ∶= ϑ ∧ “ f is injective but not surjective”

is satisfiable. By (lsp), ϑ′ has a countable model C. Let u0 be the greatest
element of UC. Since every element of UC has an immediate prede-
cessors we obtain an infinite descending sequence u0 > u1 > . . . . Hence,
Lemma 3.3 implies that

A ≅ C∣Σ ≅∞ Str[µ](C∣Σ′) ≅ B .

Since A and B are countable structures it follows by Corollary c4.4.11
that A ≅ B. But A ⊧ φ and B ⊧ ψ. This contradicts the fact that φ and ψ
are contradictory. ◻
Lemma 3.6. If L is a regular logic with FO0 ≤ L then (lsp) implies (kp).
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Proof. For a contradiction, suppose that L is a regular logic with the
Löwenheim-Skolem property but there are structures A ≅∞ B such that
A ⊧ φ and B ⊭ φ, for some L-formula φ. By (fop) we may assume that
the signature of φ is finite.

Let U , <, P̄, Q̄ , I, F , Ḡ be new relation symbols. By Lemma 3.2, there
exists a formula βid(U , <, P̄, Q̄ , I, F , Ḡ) saying that ⟨U , <, P̄, Q̄ , I, F , Ḡ⟩
encodes a pseudo back-and-forth system from P ∶= ⋃s Ps to Q ∶= ⋃s Qs .
The formula

χ ∶= βid ∧ φ(P̄) ∧ (¬φ)(Q̄) ∧ (∀x .Ux)∃y(y < x)
has a model C where ⟨U , <⟩ is an arbitrary discrete order without least
element, C∣P ≅ A, and C∣Q ≅ B. (Note that, if there exists a pseudo
back-and-forth system (Iu)u∈U from P to Q and the ordering U has
arbitrarily large finite increasing chains then P and Q are closed under
the functions of Σ. Hence, the formula implies that the sets P and Q
induce substructures of C∣Σ .)
By (lsp), it follows that χ has a countable model C. Since ⟨UC , <C⟩

is not well-ordered we have C∣P ≅∞ C∣Q , by Lemma 3.3. Because these
substructures are countable it follows that C∣P ≅ C∣Q . But C∣P ⊧ φ and
C∣Q ⊭ φ. Contradiction. ◻
Lemma 3.7. Let L be a weakly regular logical system with FO0 ≤ L.

If L is countably compact and L has the Löwenheim-Skolem property
then every pair of contradictory L-formulae can be separated by some
FO0-formula.

Proof. Suppose that L satisfies (lsp) but there exists a pair of contradict-
ory L-formulae that cannot be separated by any first-order formula. By
Lemma 3.5, there exists a formula ϑ ∈ L[Γ] and a unary predicate U ∈ Γ
such that in models A of ϑ the set UA can have any finite cardinality,
but no infinite one. Let φn ∈ L[Γ] be the L-formula equivalent to the
first-order formula

∃x0⋯∃xn−1(⋀
i

Ux i ∧ ⋀
i≠k

x i ≠ xk)
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which expresses that ∣U ∣ ≥ n. By construction, the set

{ϑ} ∪ {φn ∣ n < ω }
is inconsistent, but each of its finite subsets is satisfiable. Consequently,
L is not countably compact. ◻
Combining the preceding technical lemmas we can prove that there

does not exist a proper extension of first-order logic that has the Löwen-
heim-Skolem property and that is countably compact.

Theorem 3.8 (Lindström). Let L be a weakly regular logical system with
(b) and FO0 ≤ L. If L has the Löwenheim-Skolem property and L is
countably compact then L ≡ FO0.

Proof. Let φ ∈ L[Σ]. By Lemma 3.7, there exists a first-order formula χ
separating φ from ¬φ. It follows that Mod(χ) =Mod(φ). ◻
We conclude this section with several variants of the Theorem of

Lindström where (lsp) and (cc) are replaced by other properties.

Lemma 3.9. Let L be a regular logical system with FO0 < L. If L has the
Karp property then there exists a satisfiable formula φ(U , <) ∈ L such
that, for all models A ⊧ φ, we have

⟨UA , <A⟩ ≅ ⟨ω, <⟩ .

Proof. Fix a formula φ ∈ L[Σ] that is not equivalent to any first-order
formula. By (fop), we may assume that Σ is finite. For every n < ω, there
are structures An ≡n Bn such that

An ⊧ φ and Bn ⊭ φ .

Let U , <, P̄, Q̄ , I, F , Ḡ ∉ Σ be new relation symbols where U is unary,<, P̄, Q̄ , F are binary, I is ternary, and Ḡ are of arity four. We modify
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3. The Theorem of Lindström

the formula βid(U , <, P̄, Q̄ , I, F , Ḡ) of Lemma 3.2 as follows. Let x be a
variable not occurring in βid and set

α(x ,U , <, P̄, Q̄ , I, F , Ḡ) ∶=
βid(U , <, (Psx )s , (Qsx )s , Ix , Fx , (Gsx )s) ,

that is, we add x as new argument to every atom containing Ps , Qs , I,
F, Gs . The formula α states that these relations encode a sequence of
pseudo back-and-forth systems indexed by x. Define

χ ∶= ∃x .Ux ∧ (∀x .Ux)[ϑ(x) ∧ α(x) ∧ φ(P̄x ) ∧ (¬φ)(Q̄x )] ,
where

ϑ(x) ∶= ∃y(x < y)∧ (∃y(y < x) → (∃y.y < x)¬∃z(y < z ∧ z < x))
says that x has a successor and, if it is not the first element then it also
has an immediate predecessor. The formula χ says that

◆ U is a nonempty discrete linear order without last element,

◆ for every u ∈ U , there is a pseudo back-and-forth system (Iα)α<u
from Au ∶= { a ∣ ⟨u, a⟩ ∈ ⋃s Ps } to Bu ∶= { b ∣ ⟨u, b⟩ ∈ ⋃s Qs } of
length ↓u,

◆ Au induces a substructure that satisfies φ while Bu induces a sub-
structure that does not satisfy φ.

Consequently, χ has a model where ⟨U , <⟩ ≅ ⟨ω, <⟩ and the substruc-
tures induced by An and Bn , for n < ω, are isomorphic to An and Bn ,
respectively. Let C be an arbitrary model of χ. We have to show that
the order type of ⟨UC , <C⟩ is ω. Suppose otherwise. Then there exists
some element u ∈ U such that ↓u is infinite. Since every element except
for the first one has an immediate predecessor it follows that < is not a
well-order. By Lemma 3.3, we can conclude that C∣Au ≅∞ C∣Bu . Hence,
C∣Au ⊧ φ and C∣Bu ⊭ φ contradicts (kp). ◻
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Theorem 3.10. Let L be a regular logical system with FO0 ≤ L. If L has
the Karp property and L is countably compact then L ≡ FO0.

Proof. The claim follows immediately from the Lemma 3.9 since ⟨ω, <⟩
cannot be axiomatised in a countably compact logic. ◻

For the next theorem we need the following variant of the Diagram
Lemma.

Lemma 3.11. Suppose that L is a regular logical system such that L is
compact and FO ≤ L. Let A be a structure and Φ ⊆ L.

There exists an elementary extension B ⪰FO A with B ⊧ Φ if and only
if ThFO(A) ∪ Φ is satisfiable.

Proof. (⇒) Clearly, B ⪰FO A and B ⊧ Φ implies that B ⊧ThFO(A)∪Φ.(⇐) Let Γ ∶=ThFO(AA). If B ⊧ Γ∪Φ then B is the desired elementary
extension of A. Hence, it is sufficient to show that Γ ∪ Φ is satisfiable.
For a contradiction, suppose otherwise. Since L is compact there exist
finite subsets Γ0 ⊆ Γ and Φ0 ⊆ Φ such that Γ0 ∪ Φ0 is inconsistent. Let
γ(ā) ∶= ⋀ Γ0 where ā are the constant symbols appearing in Γ0. Then
A ⊧ ∃x̄γ(x̄). Hence, Φ0 ∪ {∃x̄γ(x̄)} ⊆ThFO(A) ∪ Φ. This contradicts
the assumption that the latter set is satisfiable. ◻
Theorem 3.12. Let L be a regular logical system with FO0 ≤ L. If L has the
Tarski union property and L is compact then L ≡ FO0.

Proof. Suppose that FO0 < L. By Lemma 1.5, there are structures A ≡ B
such that A ⊧ φ and B ⊧ ¬φ, for some L-formula φ. We construct an
elementary chain (An)n<ω such that

◆ An ⪯L An+2, for all n, and
◆ An ⊧ φ iff n is even.

Then, C ∶= ⋃n An = ⋃n A2n = ⋃n A2n+1. By (tup) it follows that A0 ⪯L C
and A1 ⪯L C. Consequently, we have

A0 ⊧ φ iff C ⊧ φ iff A1 ⊧ φ .
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3. The Theorem of Lindström

A contradiction.
It remains to define the chain (An)n . Let A0 ∶= A. Since

ThFO(A) ∪ {¬φ} =ThFO(B) ∪ {¬φ}
is satisfiable we can use Lemma 3.11 to find an elementary extension
A1 ⪰ A0 with A1 ⊧ ¬φ. Suppose that An has already been defined. Since

ThFO(An
An−1
) =ThFO(An−1

An−1
) ⊆ThL(An−1

An−1
)

it follows that

ThFO(An
An−1
) ∪ThL(An−1

An−1
)

is a satisfiable set of L-formulae. By Lemma 3.11, there exists an element-
ary extension An+1 ⪰ An with An+1 ⪰L An−1, as desired. ◻
Theorem 3.13. Let L be a regular logical system with FO0 ≤ L. If L has the
Karp property and L is bounded then L ≤ FO∞ℵ0 .

Proof. For a contradiction, suppose that there exists an L-formula φ that
is not equivalent to any FO∞ℵ0 -formula.

First, we show that there are structures Aα ≡α Bα , for α ∈ On, such
that Aα ⊧ φ and Bα ⊭ φ. Set

ψα ∶= ⋁{ ηα
A ∣ A ⊧ φ } ,

where ηα
A is the Hintikka-formula of A of quantifier rank α. Then φ ⊧ ψα

and, by assumption, ψα ⊭ φ. Hence, there exist structures Bα ⊧ ψα with
Bα ⊭ φ. By definition of ψα , it follows that Bα ≡α Aα , for some Aα ⊧ φ.
As in Lemma 3.9 we can define a formula χ stating that,

◆ U is a discrete linear order without last element,

◆ for every u ∈ U , there exists a pseudo back-and-forth system from
Au ∶= { a ∣ ⟨u, a⟩ ∈ ⋃s Ps } to Bu ∶= { b ∣ ⟨u, b⟩ ∈ ⋃s Qs } of
length ↓u,
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◆ Au induces a substructure that satisfies φ while Bu induces a sub-
structure that does not satisfy φ.

For every ordinal α, we can define a model Cα of χ where ⟨U , <⟩ is of
order type α, Cα ∣Aβ ≅ Aβ , and Cα ∣Bβ ≅ Bβ . Since L is bounded it follows
that χ has a model C where ⟨U , <⟩ is not well-founded. By Lemma 3.3, it
follows that C∣Au ≅∞ C∣Bu , for some u ∈ U . But C∣Au ⊧ φ and C∣Bu ⊭ φ
contradicts (kp). ◻
4. Projective classes

The common idea behind Skolemisation and Chang’s Reduction consists
in constructing a theory T such that every structure in a given class has
an expansion to a model of T . This section contains a more systematic
investigation of such reductions.

Definition 4.1. (a) Let K be a class of Σ-structures and let Γ ⊆ Σ be a
subsignature. The Γ-projection ofK is the class

prΓ(K) ∶= {A∣Γ ∣ A ∈ K}
of all Γ-reducts of structures inK.

(b) Let L be an algebraic logic and κ either a cardinal or ∞. A classK
of Σ-structures is a κ-projective L-class if there exists a signature Σ+ ⊇ Σ
and a set Ψ ⊆ L[Σ+] of size ∣Ψ ∣ ≤ κ such that

K = prΣ(ModL[Σ+](Ψ)) .

The class of all such classesK is denoted by PCκ(L, Σ). Furthermore, we
set

PC<κ(L, Σ) ∶= ⋃
λ<κ

PCλ(L, Σ) .

Projective FO-classes are also called pseudo-elementary.
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4. Projective classes

(c) Let L0 and L1 be algebraic logics and κ a cardinal or ∞. We say
that L0 is κ-projectively reducible to L1 and we write L0 ≤κ

pc L1 if

ModL0[Σ](φ) ∈ PCκ(L1 , Σ) , for all Σ and every φ ∈ L0[Σ] .

Example. The class of all ordered abelian groups is first-order axiomatis-
able. It follows that the class of all abelian groups that can be ordered is
pseudo-elementary.

Exercise 4.1. Prove that L ≤1
pc SOκℵ0 implies L ≤ SOκℵ0 .

The results of Section c2.3 can be restated in the following form.

Lemma 4.2. FOκℵ0 ≤1
pc ∀κℵ0 .

Proof. For every formula φ ∈ FOκℵ0[Σ, X] we can use Lemma c2.3.3 to
find a formula φ∗ ∈ ∀κℵ0[Σ∗ , X] with φ∗ ⊧ φ such that we can expand
every model A of φ to a model A∗ of φ∗. Consequently,

Mod(φ) = prΣ(Mod(φ∗)) . ◻
Lemma 4.3. If L0 ≤κ

pc L1 then

ModL0[Σ](Φ) ∈ PCκ⊕∣Φ∣(L1 , Σ) , for all Φ ⊆ L0[Σ] .

Proof. For every φ ∈ Φ, there exists a signature Σ(φ) ⊇ Σ and a set
Ψ(φ) ⊆ L1[Σ(φ)] of size at most κ such that

Mod(φ) = prΣ(ModL[Σ(φ)](Ψ(φ))) .

We can choose these signatures such that Σ(φ) ∩ Σ(ψ) = Σ, for φ ≠ ψ.
Setting Ψ ∶= ⋃φ∈Φ Ψ(φ) it follows that

Mod(Φ) = prΣ(Mod(Ψ)) . ◻
Lemma 4.4. L0 ≤κ

pc L1 implies that
(a) hnκ(L0) ≤ hnκ(L1) ,
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(b) wnκ(L0) ≤ wnκ(L1) ,
(c) lnκ(L0) ≤ lnκ(L1) .

Proof. For (a) and (b), note that if there is a set Φ ⊆ L0[Σ] of size ∣Φ∣ ≤ κ
that pins down a cardinal λ or an ordinal α then we can find a signature
Σ+ ⊇ Σ and a set Φ+ ⊆ L1[Σ+] of size ∣Φ+∣ ≤ ∣Φ∣ ⊕ κ = κ that does the
same.

(c) Let λ be a cardinal such that every set Φ of L1-formulae of size∣Φ∣ ≤ κ has a model of size at most λ. We claim that lnκ(L0) ≤ λ. For
each Ψ ⊆ L0[Σ] of size at most κ we can find a set Ψ+ ⊆ L1[Σ+] of size∣Ψ+∣ ≤ ∣Ψ ∣ ⊕ κ = κ such that Mod(Ψ) = prΣ(Mod(Ψ+)). Consequently,
Mod(Φ) contains a structure of size at most λ. ◻
Lemma 4.5. Let L0 and L1 be algebraic logics.

(a) If L0 ≤∞pc L1 and L1 is compact then so is L0.
(b) If L0 ≤ℵ0

pc L1 and L1 is countably compact then so is L0.

Proof. Both claims can be proved in the same way. Suppose that every
finite subset of Φ ⊆ L0[Σ] is satisfiable. For every finite Φ0 ⊆ Φ, fix a
signature Σ(Φ0) ⊇ Σ and a set Φ+

0 ⊆ L1[Σ(Φ0)] such that

Mod(Φ0) = prΣ(Mod(Φ+
0)) .

For (b), we can choose Φ+
0 to be countable. By replacing

Σ(Φ0) by ⋃{Σ(Ψ) ∣ Ψ ⊆ Φ0 }
and Φ+

0 by ⋃{Ψ+ ∣ Ψ ⊆ Φ0 }
we may assume that Φ0 ⊆ Φ1 implies Σ(Φ0) ⊆ Σ(Φ1) and Φ+

0 ⊆ Φ+
1 .

We claim that the set

Φ+ ∶= ⋃{Φ+
0 ∣ Φ0 ⊆ Φ finite}

is satisfiable. Note that, in case (b), Φ+ is a countable union of count-
able sets. Since L1 is, respectively, compact and countably compact it is
sufficient to prove that every finite subset of Φ+ is satisfiable.
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For every finite subset Ψ ⊆ Φ+ we can find finitely many finite subsets
Φ0 , . . . , Φn ⊆ Φ such that Ψ ⊆ Φ+

0 ∪ ⋅ ⋅ ⋅ ∪Φ+
n . Setting Γ ∶= Φ0 ∪ ⋅ ⋅ ⋅ ∪Φn

it follows that Ψ ⊆ Γ+. Hence, Mod(Γ) ≠ ∅ implies that Mod(Ψ) ≠ ∅,
as desired.

Consequently, there exists a model A+ ⊧ Φ+. Let A ∶= A+∣Σ . Then we
have A ⊧ Φ0, for all finite subsets Φ0 ⊆ Φ. This implies that A ⊧ Φ. ◻
Lemma 4.6. Let L0 , L1 be algebraic logics and ⟨α, β⟩ ∶ L0[Σ0] → L1[Σ1]
a comorphism such that, for every signature Γ0 ⊇ Σ0, there exist a signature
Γ1 ⊇ Σ1 an epimorphism ⟨α+ , β+⟩ ∶ L1[Γ1] → L0[Γ0], and a set Ψ ⊆ L1[Γ1]
such that

β+(A)∣Σ1 = β(A∣Σ1) , for all Γ0-sructures A ,

and rng β+ =ModL1[Γ1](Ψ).
Str[Γ0] Str[Γ1]

Str[Σ0] Str[Σ1]

β+

prΣ0
prΣ1

β

Then K ∈ PCκ(L0 , Σ0) implies β[K] ∈ PCκ(L1 , Σ1).
Proof. Suppose that K = prΣ0

(Mod(Φ0)), for some Φ0 ⊆ L0[Γ0]. Let⟨α+ , β+⟩ ∶ L1[Γ1] → L0[Γ0] be the corresponding epimorphism of the
expansion and ⟨γ, δ⟩ ∶ L0[Γ0] → L1[Γ1] its right inverse. We set

Φ1 ∶= γ[Φ0] ∪ Ψ .

Then we have

B ⊧ Φ1 iff B ⊧ γ[Φ0] and B = β+(A) for some A

iff B = β+(A) for some A with β+(A) ⊧ γ[Φ0]
iff B = β+(A) for some A with A ⊧ (α ○ γ)[Φ0]
iff B = β+(A) for some A with A ⊧ Φ0 .
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Hence, ModL1(Φ1) = β+[ModL0(Φ0)] and it follows that

A ∈ β[K] iff A = β(A′∣Σ0) for some A′ ⊧ Φ0

iff A = β+(A′)∣Σ1 for some A′ ⊧ Φ0

iff A = A′∣Σ1 for some A′ ⊧ Φ1 .

Consequently, we have β[K] = prΣ1
(Mod(Φ1)). ◻

Corollary 4.7. Suppose that Σ0 ⊆ Σ1 are signatures and (φξ)ξ∈Σ1∖Σ0 is
a sequence of FOκℵ0[Σ0]-formulae. Let ⟨α, β⟩ ∶ FOκℵ0[Σ0] → FOκℵ0[Σ1]
be the comorphism where β maps a structure A to its expansion defined
by (φξ)ξ . If K ∈ PCκ(FOκℵ0 , Σ0) then β[K] ∈ PCκ(FOκℵ0 , Σ1).
Proof. We have to show that ⟨α, β⟩ satisfies the condition of the preced-
ing lemma. Given Γ0 set Γ1 ∶= Σ1 ⊍ Γ0. We define ⟨α+ , β+⟩ as follows.
The function β+ maps a Γ0-structure A to the Γ1-structure B such that
B∣Γ0 = A and B∣Σ1 = β(A∣Σ0). Then ⟨α+ , β+⟩ is an epimorphism whose
right inverse is given by the reduct operation. By definition, it satisfies
β+(A)∣Σ1 = β(A∣Σ0). Furthermore, we can define the range of β+ by
formulae of the form

∀x̄[Rx̄ ↔ φR(x̄)] and ∀x̄∀y[ f x̄ = y↔ φ f (x̄ , y)] . ◻
We can generalise the notion of a projective class by replacing the

reduct operation by a combination of a reduct and a domain restriction.

Definition 4.8. Let Σ be an S-sorted signature.
(a) Let A be a Σ-structure. A relativised reduct of A is a structure of

the form A∣Σ0 ∣P where Σ0 ⊆ Σ and P ⊆ A induces a substructure of A∣Σ0 .
(b) Let L be an algebraic logic and κ either a cardinal or∞. A classK of

Σ-structures is a relativised κ-projective L-class if there exists a signature
Σ+ ⊇ Σ, a set Ψ ⊆ L[Σ+] of size ∣Ψ ∣ ≤ κ, and unary predicates Ps ∈ Σ+,
for s ∈ S, such that

K = {A∣Σ ∣⋃s PA
s
∣ A ∈ModL[Σ+](Ψ) } .
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The class of all such classes is denoted by RPCκ(L, Σ).
(c) Let L0 and L1 be algebraic logics and κ a cardinal or∞. We say that

L0 is relativised κ-projectively reducible to L1 and we write L0 ≤κ
rpc L1, if

ModL0[Σ](φ) ∈ RPCκ(L1 , Σ) , for all Σ and every φ ∈ L0[Σ] .

Lemma 4.9. L0 ≤κ
rpc L1 implies that lnκ(L0) ≤ lnκ(L1).

Proof. Let λ be a cardinal such that each satisfiable set Φ of L1-formulae
of size ∣Φ∣ ≤ κ has a model of size at most λ. We claim that lnκ(L0) ≤ λ.
For each Φ ⊆ L0[Σ] of size at most κ we can find a set Φ+ ⊆ L1[Σ+] of
size ∣Φ+∣ ≤ ∣Φ∣ ⊕ κ = κ such that

Mod(Φ) = {A∣Σ ∣⋃s PA
s
∣ A ∈ModL[Σ+](Φ+) } .

Consequently, if Φ is satisfiable then Mod(Φ) contains a structure of
size at most λ. ◻
Example. Let us show that SO ≤1

rpc MSO. Suppose that φ ∈ SO[Σ, X]
where Σ is S-sorted for a finite set S. W.l.o.g. we may assume that φ con-
tains no quantifiers over functions. Fix a number n < ω such that every
second-order quantifier in φ ranges over a relation of arity at most n.
For every sequence s̄ ∈ S≤n of sorts of length at least 2, we add to Σ a new
sort p s̄ and a function g s̄ of type s̄ → p s̄ . Let χ s̄ be the formula stating
that g s̄ ∶ As0 × ⋅ ⋅ ⋅ × Ask−1 → Ap s̄ is bijective. We construct a formula φ′
by replacing in φ◆ every second-order quantifier over a relation R of type s̄ by a

quantifier over a set XR of sort p s̄ ,◆ every atom Rt̄ where R is such a relation by the formula XR g s̄ t̄.
Setting ψ ∶= φ′ ∧⋀s̄∈S≤n χ s̄ it follows that

Mod(φ) = {A∣Σ ∣S ∣ A ∈Mod(ψ) } .

Exercise 4.2. State and prove a version of Lemma 4.6 for relativised pro-
jective classes and use it to show that the image of a relativised projective
classK under an interpretation is again a relativised projective class.
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Below we will show that for first-order logic there is no difference
between projective and relativised projective classes. To do so we need
some technical results about recovering a structure from a substructure.

Definition 4.10. Let A be a Σ-structure and C ⊆ A.
(a) Let Γ0(Σ) be the signature consisting of n-ary relation symbols Rφ ,

for every atomic formula φ ∈ FO<ω[Σ] with free(φ) = {x0 , . . . , xn−1}.
We assume that Γ0(Σ) ∩ Σ = ∅ and we set Γ(Σ) ∶= Σ ⊍ Γ0(Σ).

(b) By ⟪C⟫+A we denote the Γ(Σ)-expansion of ⟪C⟫A by the relations

Rφ ∶= { ā ∈ Cn ∣ A ⊧ φ(ā) } ,
and we define

⟪C⟫0A ∶= ⟪C⟫+A∣Γ0(Σ)∣C .

(c) Let Ξ(Σ) be the first-order theory of the class

K(Σ) ∶= {⟪C⟫0A ∣ A a Σ-structure with C ⊆ A} .

Remark. Note that

⟪C⟫0A ≅ ⟪D⟫0B implies ⟪C⟫+A ≅ ⟪D⟫+B .

Lemma 4.11. If C ⊧ Ξ(Σ)⊧∀ then there exists a Σ-structure A with A ⊇ C
such that C generates A and C = ⟪C⟫0A.

Proof. We define an equivalence relation ∼ on the set

Z ∶= { t(c̄) ∣ t a Σ-term and c̄ ⊆ C }
by s(ā) ∼ t(b̄) : iff āb̄ ∈ RC

φ where φ ∶= s(x̄)= t( ȳ) .

Note that C ⊆ Z since we can choose t = x. Set A ∶= Z/∼. If a, b ∈ C are
elements with a ≠ b then ⟨a, b⟩ ∉ RC

x=y since

∀x∀y(Rx=yxy → x = y) ∈ Ξ(Σ)∀ .
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This implies that [a]∼ ≠ [b]∼. Hence, the function e ∶ C → A ∶ a ↦ [a]∼
is an embedding. Let D be the range of this function. We construct a
Γ(Σ)-structure A with universe A such that ⟪D⟫0A ≅ C.

For Rφ ∈ Γ(Σ)0, we define

RA
φ ∶= { e(ā) ∣ ā ∈ RC

φ } .

For atomic formulae ψ ∈ FO<ω[Σ], we define

A ⊧ ψ([t0(ā0)]∼ , . . . , [tn−1(ān−1)]∼) : iff ā0 . . . ān−1 ∈ RC
φ ,

where φ(x̄0 , . . . , x̄n−1) ∶= ψ(t0(x̄0), . . . , tn−1(x̄n−1)).
It remains to show that D generates A and that ⟪D⟫0A ≅ C. Let t(x̄) be

a Σ-term and ā ∈ Cn . Then

tA(e(ā)) = [t(ā)]∼
since setting ψ(x̄ , y) ∶= t(x̄) = y and φ ∶= t(x̄) = t( ȳ) we have

A ⊧ t(e(ā)) = [t(ā)]∼
iff A ⊧ ψ([a0]∼ , . . . , [an−1]∼ , [t(ā)]∼)
iff āā ∈ RC

φ ,

and ∀x̄Rφ x̄ x̄ ∈ Ξ(Σ)∀. In particular, D generates A.
If φ(x̄) ∈ FO[Σ] is an atomic formula and ā ∈ Cn then

⟪D⟫0A ⊧ Rφe(ā) iff A ⊧ Rφe(ā) iff C ⊧ Rφ ā

implies that e ∶ C ≅ ⟪D⟫0A. By taking isomorphic copies we may assume
that D = C ⊆ A. ◻
Definition 4.12. For every model C ⊧ Ξ(Σ)⊧∀, we denote by Ĉ some
structure as in the preceding lemma. Note that, up to isomorphism, Ĉ is
unique.

643



c5. General model theory

Lemma 4.13. For every theory T ⊆ ∀[Σ], there exists a theory T̂ ⊆
FO[Γ(Σ)0] such that

Â ⊧ T iff A ⊧ T̂ .

Proof. For every universal sentence φ we will construct a set Φ(φ) of
FO<ω[Γ(Σ)0]-sentences such that

Â ⊧ φ iff A ⊧ Φ(φ) .

Then we can set T̂ ∶= ⋃{Φ(φ) ∣ φ ∈ T }.
W.l.o.g. assume that φ = ∀x̄⋀i ⋁k ϑ i k where the quantifier-free part

is in conjunctive normal form. For an atomic formula ϑ(x0 , . . . , xn−1),
we have

Â ⊧ ϑ([t0(ā0)]∼ , . . . , [tn−1(ān−1)]∼)
iff A ⊧ Rψ(ā0 , . . . , ān−1)
where ψ ∶= ϑ(t0(x̄0), . . . , tn−1(x̄n−1)). Consequently, if, for each tuple t̄
of Σ-terms, we define

ϑ̂ i k[t̄] ∶= ⎧⎪⎪⎨⎪⎪⎩
Rψ ik x̄0 . . . x̄n−1 if ϑ i k is an atom ,¬Rψ ik x̄0 . . . x̄n−1 if ϑ i k is a negated atom ,

where ψ i k ∶= ϑ i k(t0(x̄0), . . . , tn−1(x̄n−1)), then it follows that

Â ⊧ ⋀
i
⋁
k

ϑ i k([t0(ā0)]∼ , . . . , [tn−1(ān−1)]∼)
iff A ⊧ ⋀

i
⋁
k

ϑ̂ i k[t̄](ā0 , . . . , ān−1) .

Hence, we can set

Φ(φ) ∶= {∀x̄⋀i ⋁k ϑ̂[t̄] ∣ t̄ a tuple of Σ-terms} .

(Note that every element of Â is denoted by a term with parameters
from A.) ◻
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Exercise 4.3. Let κ be an infinite cardinal with κ > ∣Σ∣. Prove that,
for every ∀κℵ0[Σ]-theory T , there exists an FOκℵ0[Γ(Σ)0]-theory T̂ as
above.

Theorem 4.14. Let Σ− ⊆ Σ+ be signatures and P ∈ Σ+ a unary predicate.
Suppose that

K = {A∣Σ− ∣⋃s PA
s
∣ A ∈Mod(Φ) } , for some Φ ⊆ FO0[Σ+] .

(a) There exists a signature Γ ⊇ Σ− of size ∣Γ∣ ≤ ∣Σ+∣ ⊕ ℵ0 and a theory
Ψ ⊆ FO0[Γ] such that

K = prΣ−(Mod(Ψ)) .

(b) If Φ is finite and every structure in K is infinite then we can choose
a finite set Ψ as above.

(c) K is a pseudo-elementary class.

Proof. W.l.o.g. we may assume that Σ− = Σ+. Hence, we drop the sub-
scripts and just write Σ.

(b) Since Φ is finite wemay assume that the signature Σ is finite. By the
Theorem of Löwenheim and Skolem, it follows that, for every structure
A ∈ K, we can find a structure B ∈Mod(Φ) of cardinality ∣B∣ = ∣A∣ such
that A = B∣⋃s PB

s
. Let Σ′ = { ξ′ ∣ ξ ∈ Σ } be a disjoint copy of Σ, and set

Γ ∶= Σ ⊍ Σ′ ⊍ { f }, where f is a new unary function symbol. Since Φ is
finite there exists a sentence ψ ∈ FO[Γ] expressing that◆ the Σ′-reduct of the given structure is a model of Φ,

◆ f is a bijection between the whole universe and P.
It follows thatK = {A∣Σ ∣ A ⊧ ψ } .

(c) follows immediately from (a).
(a) By Skolemising we may assume that Φ ⊆ ∀. Let Ψ ⊆ FO0[Γ(Σ)]

consist of Φ̂ ∪ Ξ(Σ)⊧∀ together with with the sentences

∀x̄[φ(x̄) ↔ Rφ(x̄)] for atomic φ ∈ FO<ω[Σ] ,∀x̄[RP tx̄ x̄ → ∃yRt x̄=y x̄ y] , for every Σ-term t .
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We claim that

K = {A∣Σ ∣ A ∈Mod(Ψ) } .

(⊆) If C ∈ K then C = A∣⋃s PA
s
, for some A ⊧ Φ. Since Φ is a Skolem

theory we can assume that PA generates A. Hence, ⟪X⟫+A is defined and
C ≅ ⟨X⟩0A∣Σ . Furthermore, ⟪X⟫0A ⊧ Ψ , as desired.(⊇) Let A ⊧ Ψ . Since A ⊧ Φ ∪ Ξ(Σ)⊧∀ it follows that Â exists and⟪X⟫0

Â
= A. Since A ⊧ Φ̂ we have Â ⊧ Φ. Consequently, Â∣PÂ ∈ K. We

claim that Â∣PÂ = A. On the one hand, Ξ(Σ)⊧∀ ⊧ ∀xRPxx implies that
A ⊧ Pa, for every a ∈ A. Hence, A ⊆ PÂ. Conversely, suppose that a ∈ PÂ.
Then a = t(b̄), for some term t and parameters b̄ ⊆ A. Then

A ⊧ RP tx̄ b̄ ∧ ∃yRt x̄=y b̄y
which implies that a ∈ A. ◻
Corollary 4.15. L ≤∞rpc FO iff L ≤∞pc FO.

5. Interpolation
For most logics L there are projective L-classes that are not L-axioma-
tisable. In this section we study how this additional power affects the
entailment relation. Surprisingly we can find many logics where it has
no effect at all.

Definition 5.1. Let L be an algebraic logic.
(a) L has the interpolation property if, for all finite sets Φ i ⊆ L[Σ i],

i < 2, with Φ0 ⊧ Φ1, there exists a finite set Ψ ⊆ L[Σ0 ∩ Σ1] such that

Φ0 ⊧ Ψ and Ψ ⊧ Φ1 .

(b) L has the ∆-interpolation property if every classK ∈ PC<ℵ0(L, Σ)
with Str[Σ] ∖ K ∈ PC<ℵ0(L, Σ) is finitely L-axiomatisable.
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5. Interpolation

Remark. If L is boolean closed then the interpolation property implies
the ∆-interpolation property since, if

K = prΣ(Mod(Φ+)) and Str[Σ] ∖ K = prΣ(Mod(Φ−))
then we have

Φ+ ⊧ ¬⋀Φ−
and any set Ψ ⊆ L[Σ] with

Φ+ ⊧ Ψ and Ψ ⊧ ¬⋀Φ−
is an axiom system forK.

Theorem 5.2. FO has the interpolation property.

Proof. Since FO is closed under conjunctions it is sufficient to consider
single formulae. Hence, suppose that φ0 ⊧ φ1 where φ i ∈ FO0[Γi], for
i < 2. Let

Ψ ∶= (φ0)⊧ ∩ FO0[Σ] , where Σ ∶= Γ0 ∩ Γ1 .

We claim that Ψ ∪{¬φ1} is inconsistent. By compactness, it then follows
that there is a finite subset Ψ0 ⊆ Ψ such that Ψ0 ∪ {¬φ1} is inconsistent.
Setting ψ ∶= ⋀Ψ0 we have φ0 ⊧ ψ and ψ ⊧ φ1, as desired.

It remains to prove the claim. For a contradiction, suppose that the set
Ψ ∪ {¬φ1} has a model A. By Corollary c2.5.9, there exists a model B
of φ0 such that A∣Σ ⪯ B∣Σ . Since A∣Σ ≡ B∣Σ we can apply Theorem c2.5.8
to obtain a (Γ0 ∪ Γ1)-structure C with B ⪯ C∣Γ0 and an elementary
embedding g ∶ A→ C∣Γ1 . In particular, we have C∣Γ0 ⊧ φ0 and C∣Γ1 ⊧ ¬φ1.
Hence, C ⊧ φ0 ∧ ¬φ1 and φ0 ⊭ φ1. Contradiction. ◻
Definition 5.3. Let L be an algebraic logic, Σ a signature, R ∉ Σ an n-ary
relation symbol, and Φ(R) ⊆ L0[Σ ∪ {R}] a set of formulae.

(a) We say that R is implicitly defined by Φ if, for all models A and B
of Φ with A∣Σ = B∣Σ , we have RA = RB.
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c5. General model theory

(b) We say that R is explicitly defined by a set Ψ ⊆ Ln[Σ] with respect
to Φ if RA = ΨA, for every model A of Φ.

(c) L has the Beth property if, for all finite sets Φ ⊆ L0[Σ ∪ {R}]
that define R implicitly, there exists a finite set Ψ ⊆ Ln[Σ] explicitly
defining R with respect to Φ.

Lemma 5.4. Every boolean closed logic L with the interpolation property
has the Beth property.

Proof. Suppose that R is implicitly defined by Φ(R) ⊆ L0[Σ ∪ {R}]. Let
R′ be a new relation symbol. It follows that

⋀Φ(R) → Rx̄ ⊧ ⋀Φ(R′) → R′ x̄ .

By the interpolation property we can find a finite set Ψ(x̄) such that

⋀Φ(R) → Rx̄ ⊧ ⋀Ψ(x̄) and ⋀Ψ(x̄) ⊧ ⋀Φ(R′) → R′ x̄ .

It follows that

Φ(R) ⊧ Rx̄ ↔⋀Ψ(x̄) ,
that is, Ψ explicitly defines R with respect to Φ. ◻

There is a general way to extend a given logic to one that has the
∆-interpolation property.

Definition 5.5. Let L be an algebraic logic. The interpolation closure
∆(L) of L is the logic where ∆(L)[Σ] consists of all pairs

⟨φ0 , φ1⟩ ∈ L[Σ0] × L[Σ1]
with Σ i ⊇ Σ and

prΣ(Mod(φ1)) = Str[Σ] ∖ prΣ(Mod(φ0)) .

The semantics of such a formula is defined by

A ⊧ ⟨φ0 , φ1⟩ : iff A ∈ prΣ(Mod(φ0)) .
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Lemma 5.6. Let L be an algebraic logic.

(a) If L satisfies (b+) then ∆(L) is boolean closed.

(b) If L0 is closed under negation and L0 ≤1
pc L1, then L0 ≤ ∆(L1).

(c) If L is closed under negation then L ≤ ∆(L).
(d) L0 ≤1

pr L1 implies ∆(L0) ≤ ∆(L1).
(e) ∆(∆(L)) ≤ ∆(L).
(f) ∆(L) has the ∆-interpolation property.

(g) If L1 has the ∆-interpolation property then

L0 ≤1
pr L1 implies ∆(L0) ≤ L1 .

(h) occ(∆(L)) = occ(L) ,
lnκ(∆(L)) = lnκ(L) ,
wnκ(∆(L)) = wnκ(L) .

Proof. (a) We have

⟨φ,ψ⟩ ∧ ⟨φ′ ,ψ′⟩ ≡ ⟨φ ∧ φ′ , ψ ∨ ψ′⟩ ,⟨φ,ψ⟩ ∨ ⟨φ′ ,ψ′⟩ ≡ ⟨φ ∨ φ′ , ψ ∧ ψ′⟩ ,
and ¬⟨φ,ψ⟩ ≡ ⟨ψ, φ⟩ .

(b) For every φ ∈ L0[Σ], there exist a signature Σ0 ⊇ Σ and a formula
ψ0 ∈ L1[Σ0] such that

Mod(φ) = prΣ(Mod(ψ0)) .

Similarly, there exist a signature Σ1 ⊇ Σ and a formula ψ1 ∈ L1[Σ1] such
that

Mod(¬φ) = prΣ(Mod(ψ1)) .

It follows that φ ≡ ⟨ψ0 ,ψ1⟩ ∈ ∆(L1).
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c5. General model theory

(c) follows immediately from (b).
(d) Let ⟨φ0 ,ψ0⟩ ∈ ∆(L0) where φ0 ∈ L0[Σ0] and ψ0 ∈ L0[Γ0]. Since

L0 ≤1
pr L1 we can find formulae φ1 ∈ L1[Σ1] and ψ1 ∈ L1[Γ1] such that

Mod(φ0) = prΣ0
(Mod(φ1))

and Mod(ψ0) = prΓ0(Mod(ψ1)) .

Hence, ⟨φ0 ,ψ0⟩ ≡ ⟨φ1 ,ψ1⟩ ∈ ∆(L1).
(e) Let ⟨⟨φ0 ,ψ0⟩, ⟨φ1 ,ψ1⟩⟩ ∈ ∆(∆(L))[Σ]. Then

prΣ(Mod(φ0)) = prΣ(prΣ0
(Mod(φ0)))= prΣ(Mod(⟨φ0 ,ψ0⟩))= Str[Σ] ∖ prΣ(Mod(⟨φ1 ,ψ1⟩))= Str[Σ] ∖ prΣ(prΣ1

(Mod(φ1)))= Str[Σ] ∖ prΣ(Mod(φ1)) .

Consequently, ⟨⟨φ0 ,ψ0⟩, ⟨φ1 ,ψ1⟩⟩ ≡ ⟨φ0 , φ1⟩ ∈ ∆(L)[Σ].
(f) Let ⟨φ0 ,ψ0⟩, ⟨φ1 ,ψ1⟩ ∈ ∆(L) be formulae such that

prΣ(Mod(⟨φ0 ,ψ0⟩)) = Str[Σ] ∖ prΣ(Mod(⟨φ1 ,ψ1⟩)) .

Then ⟨⟨φ0 ,ψ0⟩, ⟨φ1 ,ψ1⟩⟩ ∈ ∆(∆(L)) and, by (e), there is a formula⟨ϑ , χ⟩ ∈ ∆(L) such that

⟨ϑ , χ⟩ ≡ ⟨⟨φ0 ,ψ0⟩, ⟨φ1 ,ψ1⟩⟩ .

(g) Let ⟨φ0 ,ψ0⟩ ∈ ∆(L0)[Σ] where φ0 ∈ L0[Γ0] and ψ0 ∈ L0[Γ′0].
Since L0 ≤1

pr L1 we can find formulae φ1 ∈ L1[Γ1] and ψ1 ∈ L1[Γ′1 ] such
that

Mod(φ0) = prΓ0(Mod(φ1))
and Mod(ψ0) = prΓ′0(Mod(ψ1)) .
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5. Interpolation

Since

prΣ(Mod(φ1)) = prΣ(Mod(φ0))= Str[Σ] ∖ prΣ(Mod(ψ0))= Str[Σ] ∖ prΣ(Mod(ψ1))
and L1 has the ∆-interpolation property we can find a formula ϑ ∈ L1[Σ]
such that

Mod(ϑ) = prΣ(Mod(φ1)) .

It follows that ϑ ≡ ⟨φ0 ,ψ0⟩.
(h) We only prove the first equation. The other ones are left as an exer-

cise. Let ⟨φ,ψ⟩ ∈ ∆(L)[Σ] where φ ∈ L[Σ0] and ψ ∈ L[Σ1]. Then there
exist formulae φ′ ∈ L[Γ0] and ψ′ ∈ L[Γ1]where Γi ⊆ Σ i are subsignatures
of size ∣Γi ∣ ≤ occ(L) such that φ′ ≡ φ and ψ′ ≡ ψ. Let Γ ∶= Σ ∩ (Γ0 ∪ Γ1).
It follows that ⟨φ,ψ⟩ ≡ ⟨φ′ ,ψ′⟩ ∈ L[Γ] where ∣Γ∣ ≤ occ(L). ◻
Proposition 5.7. FOκ+ℵ0(∃κ) ≤κ

pr FOκ+ℵ0 .

Proof. Let φ ∈ FOκ+ℵ0(∃κ). Following Chang’s Reduction we introduce
a new relation symbol Rψ , for every subformula ψ(x̄) of φ, and we write
down formulae ensuring that Rψ is the set of all tuples satisfying ψ. For
the operations of FOκ+ℵ0 this can be done in the same way as in Chang’s
reduction. For a subformula ∃κ yψ(x̄ , y), we introduce a new relation
symbol <ψ and κ new function symbols f αψ , α < κ, and we add the
formulae

∀x̄(R∃κ yψ x̄ ↔ ⋀
α≠β f αψ x̄ ≠ f βψ x̄) ∧ ∀x̄ ⋀

α<κ
Rψ x̄ f αψ x̄ ,

∀x̄(¬R∃κ yψ x̄ ↔ ⋁
α<κ

χα(x̄)) ,
where χα(c̄) is the formula of Lemma c1.1.7 stating that the relation{ ⟨a, b⟩ ∣ c̄a <ψ c̄b } is a well-order of order type α on the set defined
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c5. General model theory

by ψ(c̄, y). Note that the first formula ensures that R∃κ yψ contains only
tuples c̄ such that there are at least κ elements satisfying ψ(c̄, y), while
the second formula ensures that all such tuples c̄ are contained in R∃κ yψ .
Finally, note that we have introduced at most κ formulae since φ has at
most that many subformulae. ◻
Proposition 5.8. FOℵ2ℵ0(∃ℵ1) does not have the Karp property.

Proof. We consider the structures A ∶= ⟨A⟩ and B ∶= ⟨B⟩ over the empty
signature with ∣A∣ = ℵ0 and ∣B∣ = ℵ1. Then we have

pIsoℵ0
(A,B) ∶ A ≅∞ B .

But A ⊭ ∃ℵ1x(x = x) and B ⊧ ∃ℵ1x(x = x)
implies that A ≢FOℵ2ℵ0 (∃ℵ1 ) B. ◻
Corollary 5.9. ∆(FOℵ2ℵ0) does not have the Karp property.

Proof. Note that

FOκ+ℵ0(∃κ) ≤κ
pr FOκ+ℵ0 implies FOκ+ℵ0(∃κ) ≤1

pr FOκ+ℵ0

since FOκ+ℵ0 is closed under conjunctions of size κ. By Lemma 5.6 (b), it
follows that FOℵ2ℵ0(∃ℵ1) ≤ ∆(FOℵ2ℵ0). Since the former does not have
the Karp property it follows that the latter does not have it either. ◻

For many logics that can be characterised via a preservation theorem
we can derive the interpolation property from a general theorem which
we will present below. Instead of considering the entailment relation
Φ0 ⊧ Φ1 for a single logic, we allow Φ0 and Φ1 to belong to different
logics L1 and L2, and we look for an interpolant Φ0 ⊧ Ψ ⊧ Φ1 in a third
logic L0.

Definition 5.10. (a) A weak amalgamation square is a commuting dia-
gram
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⟨L0 , C0 ,⊧⟩

⟨L1 , C1 ,⊧⟩ ⟨L2 , C2 ,⊧⟩

⟨L12 , C12 ,⊧⟩

⟨α− , β−⟩ ⟨γ− , δ−⟩

⟨α+ , β+⟩ ⟨γ+ , δ+⟩

in the category Logi$ such that, for every pair J1 ∈ C1 and J2 ∈ C2 of inter-
pretations with β−(J1) = δ−(J2), there exists an L12-interpretation J12
with

β+(J12) = J1 and δ+(J12) = J2 .

(b) Given a weak amalgamation square as in (a) and sets Φ1 ⊆ L1 and
Φ2 ⊆ L2 of formulae with α+[Φ1] ⊧ γ+[Φ2], we call a set Φ0 ⊆ L0 an
interpolant of Φ1 and Φ2 if

Φ1 ⊧ α−[Φ0] and γ−[Φ0] ⊧ Φ2 .

(c) Similarly, given a weak amalgamation square and classesK1 ⊆ C1
and K2 ⊆ C2 of interpretations with β−1+ [K1] ⊆ δ−1+ [K2] we call a classK0 ⊆ C0 an interpolant ofK1 andK2 if

K1 ⊆ β−1− [K0] and δ−1− [K0] ⊆ K2 .

Lemma 5.11. Φ0 is an interpolant of Φ1 and Φ2 if and only if Mod(Φ0)
is an interpolant of Mod(Φ1) and Mod(Φ2).

The next lemma shows that each pair of classes in a weak amalgama-
tion square has an interpolant. For the interpolation property to hold
we have to strengthen this result by proving that a pair of axiomatisable
classes has an axiomatisable interpolant.

Lemma 5.12. Consider a weak amalgamation square as above.
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(a) K0 is an interpolant of K1 and K2 if and only if

β−[K1] ⊆ K0 ⊆ C0 ∖ γ−[C2 ∖K2] .

(b) K1 and K2 have an interpolant.

Proof. (a) We have

K1 ⊆ β−1− [K0] iff β−[K1] ⊆ K0 ,

and C2 ∖K2 ⊆ γ−1− [C0 ∖K0] iff γ−[C2 ∖K2] ⊆ C0 ∖K0 .

(b) By (a) it is sufficient to show that

β−[K1] ⊆ C0 ∖ γ−[C2 ∖K2] .

For a contradiction, suppose that there is some interpretation

J0 ∈ β−[K1] ∖ (C0 ∖ γ−[C2 ∖K2]) = β−[K1] ∩ γ−[C2 ∖K2] .

Choose interpretations J1 ∈ K1 and J2 ∈ C2 ∖K2 with

β−(J1) = J0 = γ−(J2) .

Since the diagram is a weak amalgamation square we can find an in-
terpretation J12 ∈ C12 with β+(J12) = J1 and γ+(J12) = J2. It follows
that

J12 ∈ β−1+ (J1) ⊆ β−1+ [K1] ⊆ γ−1+ [K2] .

Consequently, we have J2 = γ+(J12) ∈ K2. Contradiction. ◻
If a logic can be characterised by a preservation theorem then a class

of interpretation is axiomatisable if and only if it is a fixed point for the
operations the logic is preserved under. Hence, to prove our interpolation
theorem we consider fixed points of operations.
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Definition 5.13. Let A and B be sets and α ∶ ℘(A) → ℘(A) and β ∶℘(B) → ℘(B) functions on their power sets.
(a) A function f ∶ A→ B preserves fixed points of α and β if

C ∈ fix α implies f [C] ∈ fix β .

(b) A function f ∶ A→ B lifts α to β if

( f −1 ○ β)[X] ⊆ (α ○ f −1)[X] , for all X ⊆ B .

Theorem 5.14 (Popescu, Roşu, Şerbănuţă). Consider a weak amalgama-
tion square

⟨L0 , C0 ,⊧⟩

⟨L1 , C1 ,⊧⟩ ⟨L2 , C2 ,⊧⟩

⟨L12 , C12 ,⊧⟩

⟨α− , β−⟩ ⟨γ− , δ−⟩

⟨α+ , β+⟩ ⟨γ+ , δ+⟩

Suppose that there are functions

µ i ∶ ℘(Ci) → ℘(Ci) , for i ∈ {0, 1} ,
and ν j ∶ ℘(C j) → ℘(C j) , for j ∈ {0, 2} ,
satisfying the following conditions:

(1) µ0 ○ ν0 ○ µ0 = ν0 ○ µ0 .
(2) ν0 and ν2 are closure operators.
(3) β− preserves fixed points of µ1 and µ0.
(4) γ− lifts ν2 to ν0.

Every pair of fixed points K1 ∈ fix µ1 and K2 ∈ fix ν2 with

β−1+ [K1] ⊆ γ−1+ [K2]
has an interpolant K0 ∈ fix µ0 ∩ fix ν0.
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Proof. We claim thatK0 ∶= (ν0 ○ β−)[K1] is the desired interpolant. We
have K0 ∈ fix ν0 since ν0 ○ ν0 = ν0. Furthermore, β−[K1] ∈ fix µ0 asK1 ∈ fix µ1 and β− preserves fixed points. It follows that

µ0[K0] = (µ0 ○ ν0 ○ β−)[K1]= (µ0 ○ ν0 ○ µ0 ○ β−)[K1]= (ν0 ○ µ0 ○ β−)[K1]= (ν0 ○ β−)[K1] = K0 ,

and, therefore,K0 ∈ fix µ0.
It remains to prove that K0 is an interpolant. Since ν0 is a closure

operator we have β−[K1] ⊆ (ν0 ○ β−)[K1] = K0 which implies thatK1 ⊆ β−1− [K0]. For the other inclusion, note that we have

γ−1− [K0] = (γ−1− ○ ν0 ○ β−)[K1] ⊆ (ν2 ○ γ−1− ○ β−)[K1]
since γ− lifts ν2 to ν0. Furthermore, (γ−1− ○ β−)[K1] ⊆ K2 since we have
shown in Lemma 5.12 that β−[K1] is an interpolant of K1 and K2. As
ν2 is a closure operator it follows that

(ν2 ○ γ−1− ○ β−)[K1] ⊆ ν2[K2] = K2 .

Consequently, we have

γ−1− [K0] ⊆ (ν2 ○ γ−1− ○ β−)[K1] ⊆ K2 ,

as desired. ◻
We can use this theorem to obtain interpolation results for logics that

can be characterised via preservation theorems.

Corollary 5.15. Consider a weak amalgamation square as above and
functions

µ i ∶ ℘(Ci) → ℘(Ci) , for i ∈ {0, 1} ,
and ν j ∶ ℘(C j) → ℘(C j) , for j ∈ {0, 2} ,
satisfying the conditions of the preceding theorem. Furthermore, suppose
that
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(1) a class K1 ⊆ C1 is L1-axiomatisable if and only if K1 ∈ fix µ1 ;

(2) a class K2 ⊆ C2 is L2-axiomatisable if and only if K2 ∈ fix ν2 ;

(3) a class K0 ⊆ C0 is L0-axiomatisable iff K0 ∈ fix µ0 ∩ fix ν0.

Then every pair of sets Φ1 ⊆ L1 and Φ2 ⊆ L2 with

α+[Φ1] ⊧ δ+[Φ2]
has an interpolant Φ0 ⊆ L0.

Unfortunately applications of this theoremwill have towait till Chapter d2
since at the moment we still lack the required preservation theorems.

6. Fixed-point logics
As an example we investigate extensions of first-order logic by fixed-
point operators. Let A be a structure and f ∶ ℘(An) → ℘(An) a function.
A fixed point of f is an n-ary relation on A.We are interested in operators
that compute such fixed points for definable functions f .

Note that the partial order℘(An) is complete. Hence, if f is increasing
then, byTheorema2.4.3, it has a least fixed point lfp f and a greatest fixed
point gfp f . Similarly, if f is inflationary thenwe can useTheorema3.3.14
to obtain the inductive fixed point ifp f of f over ∅.

If f is neither increasing nor inflationary then none of these fixed
points need to exist. But we still would like to define a fixed point operator
for such functions. Instead of asking for a real fixed point we will present
two ways to compute an approximate one.

Firstly, we can artificially make f inflationary by replacing it with
the function x ↦ x ∪ f (x). Secondly, we can compute the ‘fixed-point
induction’ ∅, f (∅), f 2(∅), . . . (which generally is not increasing) and
take some kind of limit.

Definition 6.1. Let X be a set and f ∶ ℘(X) → ℘(X) an arbitrary
function.
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(a) The inductive fixed point ifp f of f is the inductive fixed point
of the function f ′ ∶ x ↦ x ∪ f (x) over ∅. Correspondingly, by the
inductive fixed-point induction of f we mean the fixed-point induction
F ∶ On→ ℘(X) of f ′ over ∅.

(b) The lower fixed-point induction of f is the map F− ∶ On→ ℘(X)
defined by

F−(0) ∶= ∅ ,
F−(α + 1) ∶= f (F−(α)) ,

F−(δ) ∶= ⋃
α<δ ⋂α≤β<δ F−(β) , for limits δ .

Analogously, we define the upper fixed-point induction F+ by
F+(0) ∶= ∅ ,

F+(α + 1) ∶= f (F+(α)) ,
F+(δ) ∶= ⋂

α<δ ⋃α≤β<δ F+(β) , for limits δ .

(c) The least partial fixed point lim inf f of f is the set

F−(∞) ∶= ⋃
α
⋂
α≤β F−(β) .

and its greatest partial fixed point lim sup f is

F+(∞) ∶= ⋂
α
⋃
α≤β F+(β) .

Remark. Note that, in general, ifp f , lim inf f , and lim sup f are no fixed
points of f . But, if f is increasing then ifp f = lim inf f = lim sup f =
lfp f .

Before defining logics with these fixed-point operators let us compute
their closure ordinals.
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Definition 6.2. Let f ∶ ℘(X) → ℘(X) be a function.
(a) The closure ordinal for the inductive fixed-point induction F of f

is the least ordinal α such that F(α) = F(α + 1).
(b) The closure ordinal for the lower fixed-point induction F− of f is

the least ordinal α such that

F−(α) = F−(∞) and F−(β) ⊇ F−(α) , for all β ≥ α .

Similarly, we define the closure ordinal for the upper fixed-point induc-
tion F+ as the least ordinal α such that

F+(α) = F+(∞) and F+(β) ⊆ F+(α) , for all β ≥ α .

Since the inductive fixed-point induction of a function is increasing
we obtain the same bound on the closure ordinal as for least fixed points.

Lemma 6.3. Let f ∶ ℘(X) → ℘(X). The closure ordinal of ifp f is less
than ∣X∣+.

For partial fixed points the situation is different. The following se-
quence of lemmas shows that in this case the bound is (2∣X∣)+. We will
only consider the case of upper fixed-point inductions. The closure or-
dinal of a least partial fixed point can be computed in exactly the same
way.

Lemma 6.4. Let F+ be the upper fixed-point induction of the function
f ∶ ℘(X) → ℘(X).

(a) If F+(α) = F+(β) then F+(α + γ) = F+(β + γ), for all γ.
(b) If F+(α) = F+(α + β) then

F+(α + βn) = F+(α) , for all n < ω ,
and F+(α + βω) = ⋃

γ<β F+(α + γ) .

(c) If F+(α) = F+(α + β) = F+(α + γ) and β ≤ γ then

F+(α + βω) ⊆ F+(α + γω) .
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(d) If F+(α) = F+(α + β) = F+(α + βω) then

F+(α + βγ) = F+(α) , for all γ ,
and F+(∞) = F+(α) .

Proof. (a) is proved by a straightforward induction on γ. For γ = 0, there
is nothing to do. If γ = η + 1 then

F+(α + η + 1) = f (F+(α + η)) = f (F+(β + η)) = F+(β + η + 1) .

Finally, for limit ordinals γ we have

F+(α + γ) = ⋂
i<α+γ

⋃
i≤k<α+γ

F+(k)
= ⋂

α≤i<α+γ
⋃

i≤k<α+γ
F+(k)

= ⋂
i<γ
⋃

i≤k<γ
F+(α + k)

= ⋂
i<γ
⋃

i≤k<γ
F+(β + k)

= ⋂
i<β+γ

⋃
i≤k<β+γ

F+(k) = F+(β + γ) .

(b) The first equation follows by induction on n. For n = 0 there is
nothing to do. For n > 0, it follows from (a) and the inductive hypothesis
that

F+(α + βn) = F+(α + β(n − 1) + β) = F+(α + β) = F+(α) .

For the second equation, we have

F+(α + βω) = ⋂
n<ω

⋃
n≤k<ω

⋃
γ<β F+(α + βk + γ)

= ⋂
n<ω

⋃
n≤k<ω

⋃
γ<β F+(α + γ) = ⋃

γ<β F+(α + γ) .

660



6. Fixed-point logics

(c) By (b), we have

F+(α + βω) = ⋃
i<β F+(α + i) ⊆ ⋃

i<γ
F+(α + i) = F+(α + γω) .

(d) Again, we use induction on γ. For γ = 0 there is nothing to do and
the inductive step follows as in (b). If γ is a limit ordinal then we have

F+(α + βγ) = ⋂
i<γ
⋃

i≤k<γ
⋃
l<β F+(α + βk + l)

= ⋂
i<γ
⋃

i≤k<γ
⋃
l<β F+(α + l)

= ⋃
l<β F+(α + l) = F+(α + βω) = F+(α) ,

by inductive hypothesis and (b).
The second claim follows from (b) and the first claim. For one direc-

tion, note that we have

F+(α) = F+(α + βηω) = ⋃
γ<βη

F+(α + γ) ⊇ F+(η) ,
which implies that

F+(∞) = ⋂
γ≥α ⋃η≥γ

F+(η) ⊆ ⋂
γ≥α ⋃η≥γ

F+(α) = F+(α) .

Conversely, F+(α + βγ) ⊆ ⋃η≥γ F+(η) implies that

F+(α) = ⋂
γ

F+(α + βγ) ⊆ ⋂
γ
⋃
η≥γ

F+(η) = F+(∞) . ◻
In order to prove that there exist ordinals α and β with F+(α) =

F+(α + β) = F+(α + βω) we need some results about closed unbounded
sets.

Lemma 6.5. Let F+ be the upper fixed-point induction of the function
f ∶ ℘(X) → ℘(X). Set κ ∶= ∣X∣ and λ ∶= (2κ)+ ⊕ ℵ1.
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(a) Suppose that α < λ and S ⊆ λ is a cofinal set such that

F+(α + β) = F+(α) , for all β ∈ S .

If there is no β ∈ S such that F+(α + βω) = F+(α) then there exists
an ordinal α′ and a cofinal set S′ ⊆ λ such that

F+(α′) ⊃ F+(α) and F+(α′ + β′) = F+(α′) for all β′ ∈ S′ .

(b) There exist ordinals α, β < λ such that

F+(α) = F+(α + β) = F+(α + βω) .

Proof. (a) Since λ is regular we have ∣S∣ = λ. Let (β i)i<λ be an increasing
enumeration of S ∖{0}. By Lemma 6.4 (c) it follows that F+(α + β i ω) ⊆
F+(α + βkω), for all i ≤ k. Consequently, there is some index m < λ
such that F+(α + β i ω) = F+(α + βmω), for all i ≥ m. Set α′ ∶= α + βmω
and

S′ ∶= { β i ω ∣ i ≥ m } .

By assumption, we have

F+(α) ≠ F+(α + βmω) = ⋃
γ<βm

F+(α + γ) ⊇ F+(α) ,
which implies that F+(α′) ⊃ F+(α).

(b) For Z ⊆ X, let

S(Z) ∶= { α < λ ∣ Z ⊆ F+(α) } .

We construct a strictly increasing sequence of sets (Z i)i<η such that each
set S(Z i) is closed unbounded in λ. Let Z0 ∶= ∅. Then S(Z0) = λ. For
limit ordinals δ, set Zδ ∶= ⋃i<δ Z i . By Proposition a4.6.4, it follows that
S(Zδ) = ⋂i<δ S(Z i) is closed unbounded.
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For the successor step, suppose that we have already defined Z i . Since∣℘(X)∣ < λ we can find a set Y ⊇ Z i such that the set

P ∶= { α < λ ∣ F+(α) = Y }
is cofinal. Let α be the minimal element of P and set

Q ∶= { β ∣ α + β ∈ P, β > 0} .

If there is some β ∈ Q with F+(α + βω) = F+(α) then we are done.
Otherwise, we can use (a) to find an ordinal α′ and a cofinal subset
Q′ ⊆ λ such that F+(α′) ⊃ F+(α) and F+(α′ + β′) = F+(α′), for all
β′ ∈ Q′. We set Z i+1 ∶= F+(α′). It remains to show that S(Z i+1) is closed
unbounded.
By construction the set S(Z i+1) ⊇ { α + β ∣ β ∈ Q′ } is cofinal. Let

X ⊆ S(Z i+1) be a subset with sup X < λ. If sup X ∈ X then we are done.
Otherwise, δ ∶= sup X is a limit ordinal and F+(δ) = ⋂α<δ ⋃α≤β<δ F+(β).
Since, for every β < δ, there is some ordinal β ≤ γ < δ with F+(γ) ⊇ Z i+1
it follows that F+(δ) ⊇ Z i+1. Hence, δ ∈ S(Z i+1).
We continue this construction until we either find indices α and β

such that F+(α) = F+(α + β) = F+(α + βω) or we have defined Z i , for
all i < λ. In the former case we are done. The latter case cannot happen
since Z i ⊂ Zk , for i < k and there are less than λ subsets of X. ◻
Corollary 6.6. Let X be a set of size κ ∶= ∣X∣ and let F+ be the upper
fixed-point induction of f ∶ ℘(X) → ℘(X). Set λ ∶= (2κ)+ ⊕ ℵ1.

(a) There exists some ordinal α < λ such that F+(∞) = F(α).
(b) F+(∞) = F(λ).

Proof. By the preceding lemma, we can find ordinals α, β < (2κ)+ such
that F+(α) = F+(α + β) = F+(α + βω). It follows by Lemma 6.4 (d)
that F+(∞) = F+(α). Furthermore, since λ ∶= (2κ)+ is regular we have
F+(λ) = F+(α + βλ) = F+(α) = F+(∞). ◻

In order to add these fixed-point operators to first-order logic we start
by looking at definable functions ℘(An) → ℘(An).
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Definition 6.7. Let φ(R, x̄ , ȳ) ∈ L[Σ ∪ {R}, X] be a formula where R is
an n-ary relation symbol and x̄ a tuple of n variables.

(a) Given a Σ-structureA and parameters c̄ ⊆ A, φ defines the function

fφ ∶ ℘(An) → ℘(An) ∶ R ↦ { ā ∈ An ∣ A ⊧ φ(R, ā, c̄) } .

(b) We say that the relation symbol R occurs positively in φ if every
occurrence of R is in the scope of an even number of negation symbols.
If R only appears in the scope of odd numbers of negation symbols, we
say that it occurs negatively in φ.

Depending on which fixed-point operators we add we obtain several
extensions of first-order logic.

Definition 6.8. (a) Least fixed-point logic FOκℵ0(LFP) is the extension
of FOκℵ0 by formulae of the form

[lfp Rx̄ ∶ φ(R, x̄ , ȳ)](z̄) and [gfp Rx̄ ∶ φ(R, x̄ , ȳ)](z̄)
wherewe require that the relation R appears positively in φ. The semantics
is defined by

A ⊧ [lfp Rx̄ ∶ φ(R, x̄ , c̄)](ā) : iff ā ∈ lfp fφ ,
A ⊧ [gfp Rx̄ ∶ φ(R, x̄ , c̄)](ā) : iff ā ∈ gfp fφ .

(b) Inflationary fixed-point logic FOκℵ0(IFP) is the extension of FOκℵ0

by formulae of the form

[ifp Rx̄ ∶ φ(R, x̄ , ȳ)](z̄)
with the semantics

A ⊧ [ifp Rx̄ ∶ φ(R, x̄ , c̄)](ā) : iff ā ∈ ifp fφ .

(c) Partial fixed-point logic FOκℵ0(PFP) is the extension of FOκℵ0 by
formulae of the form

[lim inf Rx̄ ∶ φ(R, x̄ , ȳ)](z̄)
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and [lim sup Rx̄ ∶ φ(R, x̄ , ȳ)](z̄)
with the semantics

A ⊧ [lim inf Rx̄ ∶ φ(R, x̄ , c̄)](ā) : iff ā ∈ lim inf fφ ,
A ⊧ [lim sup Rx̄ ∶ φ(R, x̄ , c̄)](ā) : iff ā ∈ lim sup fφ .

The requirement on φ in the definition of [lfp R̄x ∶ φ] ensures that
the least fixed point of fφ does exist.

Lemma 6.9. If φ(R, x̄ , ȳ) ∈ FOκℵ0(LFP) is a formula where the relation
symbol R appears only positively then fφ is increasing.

Proof. One can show by a trivial induction on φ that, if R ⊆ R′ then

A ⊧ φ(R, ā, c̄) implies A ⊧ φ(R′ , ā, c̄) . ◻
Example. We can express in FO(LFP) that a relation < is well-founded
by the formula

φwf ∶= ∀x[lfp Px ∶ (∀y.y < x)Py](x) .

The α-th stage of the fixed-point induction of this formula contains all
elements of foundation rank less than α.

Remark. Note that, by duality, we have

[gfp Rx̄ ∶ φ(R, x̄)](z̄) ≡ ¬[lfp Rx̄ ∶ ¬φ(¬R, x̄)](z̄) ,
where φ(¬R) is the formula obtained form φ by negating every atom of
the form Rt̄.

Lemma 6.10. FOκℵ0 ≤ FOκℵ0(LFP) ≤ FOκℵ0(IFP) ≤ FOκℵ0(PFP)
Proof. Clearly, FOκℵ0(LFP) is as least as expressive as FOκℵ0 . For the
second inclusion note that, if f is an increasing function then ifp f =
lfp f . Hence, we can simulate each least fixed point [lfp Rx̄ ∶ φ] by the
formula [ifp Rx̄ ∶ φ]. Similarly, we have

[ifp Rx̄ ∶ φ](z̄) ≡ [lim inf Rx̄ ∶ Rx̄ ∨ φ](z̄) ,
since the fixed-point inductions of both fixed points coincide. ◻
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In order to compare fixed-point logics with infinitary first-order logic
we construct formulae defining the various stages of a fixed point.

Definition 6.11. Let φ(R, x̄) be a formula and α an ordinal.
(a) The α-th lfp-approximation of φ is defined by induction on α as

φ0(x̄) ∶= false ,
φα+1(x̄) ∶= φ[R/φα] ,

φδ(x̄) ∶= ⋁
α<δ φ[R/φα] , for limits δ ,

where φ[R/ψ] denotes the formula obtained from φ by replacing every
atom Rt̄ by the formula ψ(t̄).

(b) The α-th ifp-approximation of φ is the same as the α-th lfp-ap-
proximation of the formula Rx̄ ∨ φ.

(c) The α-th lim inf-approximation of φ is the formula defined by

φ0(x̄) ∶= false ,
φα+1(x̄) ∶= φ[R/φα] ,

φδ(x̄) ∶= ⋁
α<δ⋀i<α φ[R/φ i] , for limits δ .

(d) The α-th lim sup-approximation of φ is the formula defined by

φ0(x̄) ∶= false ,
φα+1(x̄) ∶= φ[R/φα] ,

φδ(x̄) ∶= ⋀
α<δ⋁i<α φ[R/φ i] , for limits δ .

Lemma 6.12. Let φα be the α-th fp-approximation of a formula φ where
fp is one of lfp, ifp, lim inf , or lim sup. Let A be a structure and F the
fixed-point induction of [fpRx̄ ∶ φ] on A. Then we have

(φα)A = F(α) .
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Lemma 6.13. Let φ ∈ FOκℵ0(PFP). For every regular cardinal µ, there
exists a formula ψ ∈ FOλℵ0 where λ ∶= (2µ)++ ⊕ κ ⊕ ℵ2 such that

A ⊧ φ↔ ψ , for every structure A of size ∣A∣ ≤ µ .

Proof. We prove the claim by induction on φ. Hence, we may assume
that φ = [lim sup Rx̄ ∶ χ](x̄) with χ ∈ FOλℵ0 . Let χα be the α-th lim sup-
approximation of χ. Let λ0 ∶= (2µ)+ ⊕ ℵ1. By Corollary 6.6 and the
preceding lemma it follows that the formula χλ0 defines the partial fixed
point of χ on all structures of cardinality ∣A∣ < µ. Finally, note that
χλ0 ∈ FOλℵ0 . ◻
Corollary 6.14. FO∞ℵ0(PFP) has the Karp property.

In some cases the closure ordinal of a least fixed point is independent
of the size of the structure.

Lemma 6.15. Let φ(R, x̄ , ȳ) be an existential first-order formula where
R occurs only positively. On every structureA the least fixed point [lfp Rx̄ ∶
φ(R, x̄ , ȳ)] is reached after at most ω steps.

Proof. The corresponding function fφ ∶ ℘(A)n → ℘(A)n is continuous
since fφ(R) = ⋃{ fφ(R0) ∣ R0 ⊆ R finite} . Hence, the claim follows
from Lemma a3.3.12 (c). ◻

In Chapter e1 we will study saturated structures. One of their many
properties is the fact that, for such structures, the preceding lemma holds
for all first-order formulae, not only for existential ones.

Definition 6.16. A structure A is ℵ0-saturated if A realises every type
p ∈ S1(U) where U ⊆ A is finite.

Lemma 6.17. Let φ(R, x̄) be a first-order formula where R occurs only
positively and let A be an ℵ0-saturated structure. The least fixed point of φ
on A is reached after at most ω steps.
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Proof. Let F be the fixed-point induction of φ on A. If we can show that

φ(F(ω))A = ⋃
n<ω

φ(F(n))A
then it follows that

F(ω + 1) = φ(F(ω))A = ⋃
n<ω

F(n + 1) = F(ω) ,
as desired. Note that each set F(n) with n < ω is definable by the n-th
approximation of φ.

For the induction below we prove a slightly more general statement.
We consider formulae φ(R, x̄) where the relation R occurs only pos-
itively, but where we do not require the arity of R to be equal to the
number of variables x̄. With every such formula φ(R, x̄) we associate
the function

fφ(R) ∶= { ā ⊆ A ∣ A ⊧ φ(R, ā) } ,
and we prove by induction on φ that

fφ(⋃n<ω Rn) = ⋃
n<ω

fφ(Rn) ,
for every increasing sequence (Rn)n<ω of FO-definable relations.
W.l.o.g. we may assume that φ is in negation normal form. As φ is

monotone in R we have

fφ(Rn) ⊆ fφ(⋃n Rn) , for all n < ω .

This implies that

⋃n fφ(Rn) ⊆ fφ(⋃n Rn) .

Hence, we only need to prove the converse inclusion.
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First, suppose that φ is atomic. If R does not occur in φ then there is
nothing to do. Hence, assume that φ = Rt0 . . . tm−1. Then we have

ā ∈ fφ(⋃n Rn)⇒ ⟨t0(ā), . . . , tm−1(ā)⟩ ∈ ⋃n Rn⇒ ⟨t0(ā), . . . , tm−1(ā)⟩ ∈ Rn , for some n < ω⇒ ā ∈ ⋃n fφ(Rn) .

If φ is the negation of an atom the proof is analogous.
For φ = ψ ∧ ϑ or φ = ψ ∨ ϑ the claim follows immediately from

inductive hypothesis.
Suppose that φ = ∃yψ(R, x̄ , y). Then we have

ā ∈ fφ(⋃n Rn)⇒ āb ∈ fψ(⋃n Rn) , for some b ∈ A⇒ āb ∈ ⋃n fψ(Rn) , for some b ∈ A⇒ ā ∈ ⋃n fφ(Rn) .

Finally, we consider the case that φ = ∀yψ(R, x̄ , y). For a contradic-
tion, suppose that there is some tuple

ā ∈ fφ(⋃n Rn) ∖⋃
n

fφ(Rn) .

Since A ⊭ ∀yψ(Rn , ā, b) we can find elements bn ∈ A such that

A ⊭ ψ(Rn , ā, bn) .

Let ϑn(z̄) be the formula defining Rn . We define

Φ ∶= {¬ψ(ϑn , ā, y) ∣ n < ω } ,
where ψ(ϑn , x̄ , y) is the formula obtained from ψ by replacing every
atom Rt̄ by ϑn(t̄). Since Rk ⊆ Rn , for k ≤ n, we have ϑk ⊧ ϑn . As ψ is
monotone in R it follows that

¬ψ(ϑn , ā, y) ⊧ ¬ψ(ϑk , ā, y) , for all k ≤ n .
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Therefore, every finite subset of Φ is satisfiable. Hence, Φ is a partial
type over ā. Since A is ℵ0-saturated we can find some element b∗ ∈ A
realising Φ. Consequently, we have

āb∗ ∉ ⋃n fψ(Rn) = fψ(⋃n Rn) .

Hence, A ⊧ ∃y¬ψ(⋃n Rn , ā, y) which implies that ā ∉ fφ(⋃n Rn). Con-
tradiction. ◻
Theorem 6.18 (Barwise, Moschovakis). Suppose thatK is a pseudo-ele-
mentary class and φ(R, x̄) a first-order formula. The following statements
are equivalent:

(1) There exists a formula ψ(x̄) ∈ FO such that

A ⊧ ∀x̄[ψ(x̄) ↔ [lfp Rx̄ ∶ φ](x̄)] , for all A ∈ K .

(2) For every A ∈ K, there exists a formula ψ(x̄) ∈ FO such that

A ⊧ ∀x̄[ψ(x̄) ↔ [lfp Rx̄ ∶ φ](x̄)] .

(3) On every A ∈ K the least fixed-point of φ is reached after finitely
many steps.

(4) There is a contant n < ω such that, on each A ∈ K the least fixed-
point of φ is reached after at most n steps.

Proof. Let K+ be a class such that K = prΣ(K+) and fix a first-order
theory T axiomatisingK+. Let φn be the n-th approximation of φ.

(4)⇒ (1) If, on every structure ofK, the fixed point is reached after at
most n steps then we have

A ⊧ φn(ā) ↔ [lfp Rx̄ ∶ φ](ā) , for all A ∈ K and all ā ⊆ A .

Hence, we can set ψ ∶= φn .
(1)⇒ (2) is trivial.
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(2)⇒ (3) For a contradiction, suppose that on some structure A ∈ K+
the fixed point of φ is not reached in finitely many steps. Fix some ℵ0-
saturated elementary extension B ⪰ A. Since

A∣Σ ⊧ ∃x̄[φn+1(x̄) ∧ ¬φn(x̄)] , for all n < ω ,

it follows that, on the structure B, the fixed point is also not reached in
finitely many steps. By assumption there is a first-order formula ψ(x̄)
defining the fixed point on B. Hence,

B∣Σ ⊧ ∃x̄[ψ(x̄) ∧ ¬φn(x̄)] , for all n < ω .

As B is ℵ0-saturated we can find some tuple b̄ ⊆ B such that

B∣Σ ⊧ ψ(b̄) ∧ ⋀
n<ω

¬φn(b̄) .

Note that B ∈ K+. Hence, ψB is the fixed point of φ. Since the tuple b̄
enters the fixed point at an infinite stage it follows that the fixed point
is not reached in ω steps. (Note that no tuple enters the fixed point at
stage ω.) This contradicts Lemma 6.17.

(3)⇒ (4) For a contradiction, suppose that, for each n < ω, there is a
structure An ∈ K+ such that on An the fixed-point of φ is reached after
more than n steps. Setting

ϑn ∶= ∃x̄[φn+1(x̄) ∧ ¬φn(x̄)]
we have

An ∣Σ ⊧ ϑn .

It follows that T ⊭ ¬ϑn , for all n < ω. Let Θ ∶= { ϑn ∣ n < ω }. The theory
T ∪ Θ is consistent since, for every finite subset Θ0 ⊆ Θ, we can find
some n such that An ∣Σ ⊧ T ∪ Θ0. Let B be a model of T ∪ Θ. It follows
that on B the fixed-point of φ is not reached after finitely many steps.
Contradiction. ◻
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As an example of the expressive power of fixed-point logics we con-
sider linear orders.

Lemma 6.19. There exists a formula φ(x , y, z) ∈ FO3(LFP)[<] such that,
for every infinite cardinal κ, φ defines in the structure ⟨κ, <⟩ a bijection
κ × κ → κ.

Proof. We have shown in the proof of Theorem a4.3.8 that the formula

ψ(x0x1 , y0 y1) ∶= [(x0 < y0 ∨ x0 < y1) ∧ (x1 < y0 ∨ x1 < y1)]∨ [x0 < y0 ∧ x1 = y1 ∧ y0 ≤ y1]∨ [x0 < y0 ∧ x1 = y0 ∧ y1 ≤ y0]∨ [x0 = y0 ∧ x1 < y1 ∧ y1 ≤ y0]
defines a linear order on κ × κ of order type κ. The fixed-point formula

φ(x , y, z) ∶=[lfp Ru0u1w ∶ (∀v0v1 .ψ(v̄ , ū))(∃w′ .w′ < w)Rv̄w′
∧ (∀w′ .w′ < w)(∃v0v1 .ψ(v̄ , ū))Rv̄w′](x , y, z) .

defines the corresponding bijection. ◻
Exercise 6.1. Let N = ⟨N, <⟩. Construct FO(LFP)-formulae φ+(x , y, z)
and φ⋅(x , y, z) defining addition and multiplication on N.

To facilitate the investigation of model theoretic properties of fixed
point logics we reduce them to a simpler logic, the extension of first-order
logic by well-ordering quantifiers.

Lemma 6.20. FOκℵ0(LFP) =1
pc FOκℵ0(wo).

Proof. We have seen in the example above that, for every FOκℵ0(LFP)-
formula φ(x̄ , ȳ, z̄), we can construct a formula ψ(z̄) ∈ FOκℵ0(LFP) ex-
pressing that φ defines a well-order. Hence, FOκℵ0(wo) ≤ FOκℵ0(LFP).
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6. Fixed-point logics

For the converse, let φ ∈ FOκℵ0(LFP). For every subformula ψ of φ, we
introduce a new relation symbol Rψ andwe construct a set of sentences Φ
such that

RA
ψ = ψA , for every model A ⊧ Φ .

The construction of Φ proceeds by induction on φ. For atomic subfor-
mulae ψ, we add the formula

∀x̄(Rψ x̄ ↔ ψ(x̄))
to Φ. For the inductive step we use the same formulae as in the proof of
Chang’s Reduction (Lemma c1.4.12), e.g., for conjuctions we use

∀x̄(R⋀Ψ x̄ ↔ ⋀
ψ∈Ψ Rψ x̄) .

The only nontrivial case is the case that ψ = [lfp Px̄ ∶ ϑ](x̄) is a fixed-
point formula.

Let < be a new binary relation symbol, s a new unary function symbol,
and 0 a new constant symbol. We add to Φ the sentences

∀u(u = 0 ∨ 0 < u)∀u(u < su ∧ ¬∃v(u < v ∧ v < su))
Wuv(u < v)

which express that < is a well-order of the universe, s is the successor
function, and 0 is the minimal element. Furthermore, we add the formu-
lae

∀x̄(¬Sφ0x̄)∀u∀x̄(Sφsux̄ ↔ χ[P/Sφu]) ,
∀u∀x̄[∀v(sv ≠ u) → (Sφux̄ ↔ ∃v(v < u ∧ Sφvx̄))] ,∀x̄(Rφ x̄ ↔ ∃uSφux̄) ,
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which express that Sφ = { ⟨α, ā⟩ ∣ ā ∈ F(α) }. Finally, we need the
formula

∃u∀x̄(Sφsux̄ ↔ Sφux̄) ,
which expresses that the fixed point is actually reached. For the cor-
rectness of this construction note that the closure ordinal α of every
FO∞ℵ0(LFP)-induction on a structure A is less than ∣A∣+. Hence, we can
really choose an ordering < of A of order type α. ◻

For partial fixed points we have an analogous result where the project-
ive reduction is replaced by a relativised reduct.

Lemma 6.21. FOκℵ0(PFP) =1
rpc FOκℵ0(wo).

Proof. We can basically use the same construction as in the proof of
Lemma 6.20. The only difference is that the closure ordinal for partial
fixed points is not bounded by the size of the structure. Therefore, we
cannot choose a sufficiently long well-ordering of the universe. Instead,
we add a new sort w to the given structure A and we choose the do-
main Aw large enough to contain a well-ordering < of length (2∣A∣)+.
After performing the same construction as above in the larger structure
we can take a relativised reduct to obtain the original structure A. ◻

Using this reduction we can use the Löwenheim-Skolem theorem for
FOκℵ0(wo) to derive a corresponding theorem for FOκℵ0(PFP).
Theorem 6.22. Let ∆ ⊆ FO<ω

κℵ0
(PFP)[Σ], for a regular cardinal κ, and set

µ ∶= ∣Σ∣ ⊕ ∣∆∣ ⊕ κ− where κ− ∶= sup{ λ ∣ λ < κ }.
For each Σ-structure A, every subset X ⊆ A, and all cardinals λ with∣X∣ ⊕ µ ≤ λ ≤ ∣A∣, there exists a ∆-substructure B ⪯∆ A of size ∣B∣ = λ

with X ⊆ B.

Proof. This follows immediately by Theorem c2.3.10 and Lemma 6.21.◻
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6. Fixed-point logics

We conclude this section with a proof that the logics FOκℵ0(LFP) and
FOκℵ0(IFP) have the same expressive power.

Definition 6.23. Let A be a structure, φ(R, x̄) an FO∞ℵ0(IFP)-formula,
and F the fixed-point induction of [ifp Rx̄ ∶ φ].

(a) The inductive fixed-point rank rkφ(ā) of a tuple ā ∈ [ifp Rx̄ ∶ φ]A
is the ordinal α such that ā ∈ F(α + 1) ∖ F(α). For ā ∉ [ifp Rx̄ ∶ φ]A, we
set rkφ(ā) ∶= ∞.

(b) The stage comparison relation ⊲φ of φ is defined by

ā ⊲φ b̄ : iff rkφ(ā) < rkφ(b̄) .

Lemma 6.24. Let φ(P, x̄) be an FOκℵ0(IFP)-formula. The stage compar-
ison relation ⊲φ for [ifp Px̄ ∶ φ] is FOκℵ0(IFP)-definable.

Proof. Let φ̂(x̄ , z̄) be the formula obtained from Px̄ ∨ φ(P, x̄) by repla-
cing every atom of the form Pt̄ by the formula Rt̄z̄. We claim that ⊲φ is
defined by the formula where

[ifp Rx̄ ȳ ∶ φ̂(x̄ , x̄) ∧ ¬φ̂( ȳ, x̄)](x̄ ȳ) .

Let (Rα)α be the fixed-point induction of this formula. A straightforward
induction on α shows that

⟨ā, b̄⟩ ∈ Rα iff ā ⊲φ b̄ and rkφ(ā) < α .

Hence, the result follows. ◻
Proposition 6.25. Let φ(P, x̄) be an FOκℵ0(LFP)-formula. The stage com-
parison relation ⊲φ for [ifp Px̄ ∶ φ] is FOκℵ0(LFP)-definable.

Proof. By φ[Pz̄/ψ(z̄)/ϑ(z̄)] we denote the formula obtained from the
formula Px̄ ∨ φ(P, x̄) by replacing every atom of the form Pt̄ by

◆ ψ(t̄), if this atom occurs positively in φ,

◆ ϑ(t̄), if it occurs negatively in φ.
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As in the proof of the preceding lemma we would like to compute ⊲φ by
the formula

[lfp Rx̄ ȳ ∶ φ[Pz̄/Rz̄x̄/Rz̄x̄](x̄) ∧ ¬φ[Pz̄/Rz̄x̄/Rz̄x̄]( ȳ)](x̄ ȳ) .

Unfortunately, this does not work since we can use R only positively
in φ and only negatively in ¬φ. Instead, we construct another formula ψ
computing ⊲φ that we can substitute for R at those places where we
cannot use it. Again the obvious definition

ψ(x̄ , ȳ) ∶= [lfp Sx̄ ȳ ∶ φ[Pz̄/Sz̄x̄/Sz̄x̄](x̄)
∧ ¬φ[Pz̄/Sz̄x̄/Sz̄x̄]( ȳ)](x̄ ȳ)

does not work. But, since ψ is used in the above formula at those places
where R occurs negatively we can use R inside of ψ provided its occur-
rence is also negative. These considerations lead to following attempt to
define ⊲φ :

[lfp Rx̄ ȳ ∶ φ[Pz̄/Rz̄x̄/ψ(z̄, x̄)](x̄)∧
∧ ¬φ[Pz̄/ψ(z̄, x̄)/Rz̄x̄]( ȳ)](x̄ ȳ) ,

where ψ(x̄ , ȳ) is the formula

[lfp Sx̄ ȳ ∶ φ[Pz̄/Sz̄x̄/Rz̄x̄](x̄) ∧ ¬φ[Pz̄/Rz̄x̄/Sz̄x̄]( ȳ)](x̄ ȳ) .

This definition is still not correct but we can repair it as follows. We claim
that ⊲φ is defined by the formula [lfp Rx̄ ȳ ∶ χ](x̄ ȳ) where

χ(x̄ , ȳ) ∶= φ[Pz̄/Rz̄x̄/ψ(z̄, x̄)](x̄)∧ ¬φ[Pz̄/ψ(z̄, x̄)/Rz̄x̄]( ȳ)∧ ∀z̄(ψ(z̄, x̄) → Rz̄x̄) ,
ψ(x̄ , ȳ) ∶= [lfp Sx̄ ȳ ∶ ϑ](x̄ ȳ) ,
ϑ(x̄ , ȳ) ∶= φ[Pz̄/Sz̄x̄/Rz̄x̄](x̄)∧ ¬φ[Pz̄/Rz̄x̄/Sz̄x̄ ∧ Sz̄ ȳ]( ȳ)∧ (∀z̄.Rz̄x̄)(Sz̄x̄ ∧ Sz̄ ȳ) .
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First, note that [lfp Rx̄ ȳ ∶ χ] ∈ FO(LFP) since S occurs only positively
in ϑ and R occurs only negatively in ψ. Let (Pα)α be the fixed-point
induction of [ifp Px̄ ∶ φ]. For α ∈ On, define

Rα ∶= { ⟨ā, b̄⟩ ∣ ā ⊲φ b̄ and rkφ(ā) < α } .

We will show that the sequence (Rα)α is the fixed-point induction of χ.

Claim. Let (Sβ)β be the fixed-point induction of ψ where R is interpreted
by Rα , and set S∞ ∶= ⋃β Sβ .

(a) For β ≤ α, we have

⟨ā, b̄⟩ ∈ Sβ iff ā ⊲φ b̄ and rkφ(ā) < β .

(b) For all tuples b̄ with rank rkφ(b̄) > α, there exist a tuple ā with
rkφ(ā) = α such that ⟨ā, b̄⟩ ∈ S∞.

(c) If Rα+1 = Rα then S∞ = Rα .
(d) If rkφ(ā) < α or rkφ(b̄) < α then we have

⟨ā, b̄⟩ ∈ S∞ iff ā ⊲φ b̄ .

(a) We prove the claim by induction on β. The case that β = 0 is trivial
and the limit step follows immediately from the inductive hypothesis.
For the successor step, note that

⟨ā, b̄⟩ ∈ Sβ+1 iff ⟨A, Rα , Sβ⟩ ⊧ ϑ(ā, b̄) .

First, suppose that γ ∶= rkφ(ā) < β. By inductive hypothesis, it follows
that

⟨c̄, ā⟩ ∈ Sβ iff c̄ ⊲φ ā iff c̄ ∈ Pγ .

Since β ≤ α we further have that

⟨c̄, ā⟩ ∈ Rα iff c̄ ⊲φ ā iff c̄ ∈ Pγ .
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Consequently, A ⊧ φ(Pγ , ā) implies that

⟨A, Rα , Sβ⟩ ⊧ φ[Pz̄/Sz̄ā/Rz̄ā](ā) .

If rkφ(ā) < rkφ(b̄) then, by inductive hypothesis, ⟨c̄, ā⟩ ∈ S implies⟨c̄, b̄⟩ ∈ S. Since β ≤ α it follows that we have ⟨c̄, ā⟩ ∈ Sβ iff ⟨c̄, ā⟩ ∈ Rα .
Consequently, there is no tuple c̄ such that

⟨A, Rα , Sβ⟩ ⊧ Rc̄ā ∧ ¬(Sc̄ā ∧ Sc̄b̄) .

Finally, we have

⟨A, Rα , Sβ⟩ ⊭ φ[Pz̄/Rz̄ā/Sz̄ā ∧ Sz̄b̄](b̄)
since, otherwise, rkφ(b̄) ≤ rkφ(ā). It follows that ⟨ā, b̄⟩ ∈ Sβ+1.

Next, consider the case that rkφ(ā) > rkφ(b̄). By inductive hypothesis,
Sc̄ā ∧ Sc̄b̄ is equivalent to Sc̄b̄. Consequently, choosing c̄ ∶= b̄ we can
find a tuple c̄ with

⟨A, Rα , Sβ⟩ ⊧ Rc̄ā ∧ ¬(Sc̄ā ∧ Sc̄b̄) .

Hence, ⟨ā, b̄⟩ ∉ Sβ+1.
Finally, suppose that rkφ(ā) = rkφ(b̄). Then

⟨A, Rα , Sβ⟩ ⊧ φ[Pz̄/Rz̄ā/Sz̄ā ∧ Sz̄b̄](b̄)
and ⟨ā, b̄⟩ ∉ Sβ+1.

It remains to consider the case that rkφ(ā) ≥ β. By inductive hypo-
thesis, we have ⟨c̄, ā⟩ ∈ Sβ iff rk(c̄) < β. Since A ⊭ φ(Pβ , ā) it follows
that

⟨A, Sβ⟩ ⊭ φ[Pz̄, Sz̄ā, Sz̄ā](ā) .

Note that

⟨c̄, ā⟩ ∈ Sβ implies ⟨c̄, ā⟩ ∈ Rα .
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Since P′′ occurs only negatively in φ[Pz̄/P′z̄/P′′z̄] it therefore follows
that

⟨A, Rα , Sβ⟩ ⊭ φ[Pz̄/Sz̄ā/Rz̄ā](ā) .

(b) By (a), we have Sα = Rα . Let rkφ(ā) ≤ α. Then ā ∈ Pα+1 implies
that

⟨A, Rα , Sα⟩ ⊧ φ[Pz̄/Sz̄ā/Rz̄ā](ā) .

If rkφ(b̄) ≥ rkφ(ā) then Sc̄ā ∧ Sc̄b̄ is equivalent to Sc̄ā and, hence,
to Rc̄ā. Consequently, it follows in this case that

⟨A, Rα , Sα⟩ ⊧ ¬φ[Pz̄, Rz̄b̄, Sz̄ā ∧ Sz̄b̄](b̄)
iff rkφ(b̄) > rkφ(ā) .

If, on the other hand, rkφ(b̄) < rkφ(ā) then rkφ(b̄) < α and setting
c̄ ∶= b̄ we obtain a tuple such that

⟨A, Rα , Sα⟩ ⊧ Rc̄ā ∧ ¬(Sc̄ā ∧ Sc̄b̄) .

Consequently, ⟨A, Rα , Sα⟩ ⊭ ϑ(ā, b̄) .
Finally, suppose that rkφ(ā) > α. Then

⟨A, Rα , Sα⟩ ⊭ φ[Pz̄/Sz̄ā/Rz̄ā](ā)
since ⟨c̄, ā⟩ ∈ Sα iff rkφ(c̄) < α and ⟨c̄, ā⟩ ∈ Rα iff rkφ(c̄) < α.

It follows that Sα+1 contains all pairs ⟨ā, b̄⟩ with rkφ(ā) ≤ α and
rkφ(ā) < rkφ(b̄). If rkφ(b̄) > α then there exists some tuple ā with
rkφ(ā) = α and it follows that ⟨ā, b̄⟩ ∈ Sα+1.

(c) If Rα+1 = Rα then there are no tuples ā with rkφ(ā) = α. By (b) it
follows that Sα+1 = Sα . Consequently, Sα = S∞.

(d) If Rα+1 = Rα then the claim follows from (c). Hence, we may as-
sume that Rα ⊂ Rα+1. We show that, for every γ ≥ α, if rkφ(ā), rkφ(b̄) <
α then ⟨ā, b̄⟩ ∈ Sγ+1 implies ⟨ā, b̄⟩ ∈ Sα+1. Suppose otherwise and let
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γ be the minimal ordinal such that there exists a counterexample. Then
we obtain a contradiction as in the proof of (a).

It remains to show that there are no tuples with rkφ(ā) ≥ α and
rkφ(b̄) < α such that ⟨ā, b̄⟩ ∈ Sβ+1, for some β ≥ α. Suppose otherwise
and let β be the minimal ordinal such that there exists a counterexample⟨ā, b̄⟩ ∈ Sβ+1. Then

⟨A, Rα , Sβ⟩ ⊧ ϑ(ā, b̄) .

Since rkφ(ā) ≥ α, we have ⟨c̄, ā⟩ ∈ Rα iff rkφ(c̄) < α. By minimality of β,
it follows that we have

⟨A, Rα , Sβ⟩ ⊧ Sc̄ā ∧ Sc̄b̄ iff rkφ(c̄) < rkφ(b̄) .

If rkφ(b̄) < α then setting c̄ ∶= b̄ we obtain a tuple c̄ such that

⟨A, Rα , Sβ⟩ ⊧ Rc̄ā ∧ ¬(Sc̄ā ∧ Sc̄b̄) .

Consequently, ⟨A, Rα , Sβ⟩ ⊭ ϑ(ā, b̄). Contradiction.
Similarly, if rkφ(b̄) = α then

⟨A, Rα , Sβ⟩ ⊧ φ[Pz̄/Rz̄ā/Sz̄ā ∧ Sz̄b̄](b̄) ,
and again ⟨A, Rα , Sβ⟩ ⊭ ϑ(ā, b̄). This contradiction concludes the proof
of the claim.

To finish the proof of the lemmawe still have to show that (Rα)α is the
fixed-point induction of χ. We prove this statement by induction on α.
For α = 0 and for limit ordinals the proof is trivial. For the successor
step we show that

⟨A, Rα⟩ ⊧ χ(ā, b̄) iff ā ⊲φ b̄ and rkφ(ā) ≤ α .

First, we consider the case that rkφ(ā) ≤ α. Then we have ⟨c̄, ā⟩ ∈ Rα

iff c̄ ⊲φ ā. By statement (d) above, it follows that ⟨c̄, ā⟩ ∈ Rα iff ψ(c̄, ā).
Consequently, we have

⟨A, Rα⟩ ⊧ φ[Pz̄/Rz̄ā/ψ(z̄, ā)](ā)
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and every tuple c̄ satisfies ψ(c̄, ā) → Rα c̄ ā. Since

⟨A, Rα⟩ ⊧ ¬φ[Pz̄/ψ(z̄, ā)/Rz̄ā](b̄)
it follows that

⟨A, Rα⟩ ⊧ χ(ā, b̄) iff ā ⊲φ b̄ .

It remains to consider the case that rkφ(ā) > α. Then we have ⟨c̄, ā⟩ ∈
Rα iff rkφ(c̄) < α. If Pα = Pα+1 then, by statement (c) above, it follows
that ψ(x̄ , ȳ) defines Rα and

⟨A, Rα⟩ ⊭ φ[Pz̄/Rz̄ā/ψ(z̄, ā)](ā) .

Hence, ⟨A, Rα⟩ ⊭ χ(ā, b̄).
If, on the other hand, Pα ⊂ Pα+1 then, by (b), there is a tuple c̄ ⊲φ ā

with rkφ(c̄) = α. Consequently,

⟨A, Rα⟩ ⊭ ∀z̄(ψ(z̄, ā) → Rz̄ā) . ◻
Theorem 6.26 (Gurevich, Kreutzer, Shelah). FOκℵ0(LFP) = FOκℵ0(IFP) .

Proof. Let [ifp Rx̄ ∶ φ] be an FOκℵ0(IFP)-formula. By induction we may
assume that φ ∈ FOκℵ0(LFP). By Proposition 6.25, there is an FOκℵ0(LFP)-
formula defining the stage comparison relation ⊲φ . Note that we have

ifp f = f (dom⊲ f ) ∪ dom⊲ f , for every function f .

Hence, it follows that

[ifp Rx̄ ∶ φ](x̄) ≡ φ[Rz̄/∃ ȳ(z̄ ⊲φ ȳ)](x̄) ,
where φ[Rz̄/ϑ(z̄)] denotes the formula obtained from Rx̄ ∨ φ(R, x̄) by
replacing every atom of the form Rt̄ by the formula ϑ(t̄). ◻
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cf α cofinality, 123ℶα beth alpha, 126(<κ)λ supµ µλ , 127
κ<λ supµ κµ , 127

Chapter b1

RA relation of A, 149
f A function of A, 149
As̄ As0 × ⋅ ⋅ ⋅ × Asn , 151
A ⊆ B substructure, 152
Sub(A) substructures of A, 152
Sub(A) substructure lattice, 152
A∣X induced substructure, 152⟪X⟫A generated substructure, 153
A∣Σ reduct, 155
A∣T restriction to sorts in T , 155
A ≅ B isomorphism, 156
ker f kernel of f , 157
h(A) image of h, 162Cobj class of objects, 162C(a, b) morphisms a→ b, 162
g ○ f composition of morphisms,

162
ida identity, 163Cmor class of morphisms, 163
Set category of sets, 163
Hom(Σ) category of

homomorphisms, 163
Homs(Σ) category of strict

homomorphisms, 163
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Emb(Σ) category of embeddings,
163

Set∗ category of pointed sets, 163
Set2 category of pairs, 163Cop opposite category, 166
Fop opposite functor, 168(F ↓G) comma category, 170
F ≅ G natural isomorphism, 172
Cong(A) set of congruence relations,

176
Cong(A) congruence lattice, 176
A/∼ quotient, 179

Chapter b2

∣x∣ length of a sequence, 187
x ⋅ y concatenation, 187⪯ prefix order, 187≤lex lexicographic order, 187∣v∣ level of a vertex, 190
frk(v) foundation rank, 192
a ⊓ b infimum, 195
a ⊔ b supremum, 195
a∗ complement, 198
Lop opposite lattice, 204
cl↓(X) ideal generated by X, 204
cl↑(X) filter generated by X, 204
B2 two-element boolean

algebra, 208
ht(a) height of a, 215
rkP(a) partition rank, 220
degP(a) partition degree, 224

Chapter b3

T[Σ, X] finite Σ-terms, 227
tv subterm at v, 228
free(t) free variables, 231
tA[β] value of t, 231
T[Σ, X] term algebra, 232
t[x/s] substitution, 234
SigVar category of signatures and

variables, 235
Sig category of signatures, 236
Var category of variables, 236
Term category of terms, 236
A∣µ µ-reduct of A, 237
Str[Σ] class of Σ-structures, 237
Str[Σ, X] class of all Σ-structures

with variable
assignments, 237

StrVar category of structures and
assignments, 237

Str category of structures, 237∏i Ai direct product, 239⟦φ⟧ set of indices, 241
ā ∼u b̄ filter equivalence, 241
u∣J restriction of u to J, 242∏i Ai/u reduced product, 242
Au ultrapower, 243
limÐ→D directed colimit, 251
limÐ→D colimit of D, 253
lim←ÐD directed limit, 256
f ∗ µ componentwise

composition for cocones,
258

G[µ] image of a cocone under a
functor, 260

Zn partial order of an
alternating path, 271
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Z�n partial order of an
alternating path, 271

f ⩕ g alternating-path
equivalence, 272[ f ]⩕F alternating-path
equivalence class, 272

s ∗ t componentwise
composition of links, 275

πt projection along a link, 276
inD inclusion link, 276
D[t] image of a link under a

functor, 279
IndP(C) inductive P-completion,

280
Indall(C) inductive completion, 280

Chapter b4

Indλ
κ(C) inductive(κ, λ)-completion, 291

Ind(C) inductive completion, 292↺ loop category, 313∥a∥ cardinality in an accessible
category, 329

SubK(a) category ofK-subobjects,
337

Subκ(a) category of κ-presentable
subobjects, 337

Chapter b5

cl(A) closure of A, 343
int(A) interior of A, 343
∂A boundary of A, 343

rkCB(x/A) Cantor-Bendixson rank,
365

spec(L) spectrum of L, 370⟨x⟩ basic closed set, 370
clop(S) algebra of clopen subsets,

374

Chapter b6

Aut M automorphism group, 386
G/U set of cosets, 386
G/N factor group, 388
Sym Ω symmetric group, 389
ga action of g on a, 390
Gā orbit of ā, 390
G(X) pointwise stabiliser, 391
G{X} setwise stabiliser, 391⟨ā ↦ b̄⟩ basic open set of the group

topology, 395
deg p degree, 399
Idl(R) lattice of ideals, 400
R/a quotient of a ring, 402
Ker h kernel, 402
spec(R) spectrum, 402⊕i Mi direct sum, 405

M(I) direct power, 405
dim V dimension, 409
FF(R) field of fractions, 411
K(ā) subfield generated by ā, 414
p[x] polynomial function, 415
Aut (L/K)automorphisms over K, 423∣a∣ absolute value, 426
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ZL[K, X] Zariski logic, 443⊧ satisfaction relation, 444
BL(B) boolean logic, 444
FOκℵ0 [Σ, X] infinitary first-order

logic, 445¬φ negation, 445⋀Φ conjunction, 445⋁Φ disjunction, 445∃xφ existential quantifier, 445∀xφ universal quantifier, 445
FO[Σ, X] first-order logic, 445
A ⊧ φ[β] satisfaction, 446
true true, 447
false false, 447
φ ∨ ψ disjunction, 447
φ ∧ ψ conjunction, 447
φ → ψ implication, 447
φ↔ ψ equivalence, 447
free(φ) free variables, 450
qr(φ) quantifier rank, 452
ModL(Φ) class of models, 454
Φ ⊧ φ entailment, 460≡ logical equivalence, 460
Φ⊧ closure under entailment,

460
ThL(J) L-theory, 461≡L L-equivalence, 462
dnf(φ) disjunctive normal form,

467
cnf(φ) conjunctive normal form,

467
nnf(φ) negation normal form, 469
Logi$ category of logics, 478∃λxφ cardinality quantifier, 481

FOκℵ0(wo) FO with well-ordering
quantifier, 482

W well-ordering quantifier,
482

QK Lindström quantifier, 482
SOκℵ0 [Σ, Ξ] second-order logic, 483
MSOκℵ0 [Σ, Ξ] monadic

second-order logic, 483
PO category of partial orders,

488
Lb Lindenbaum functor, 488¬φ negation, 490
φ ∨ ψ disjunction, 490
φ ∧ ψ conjunction, 490
L∣Φ restriction to Φ, 491
L/Φ localisation to Φ, 491⊧Φ consequence modulo Φ,

491≡Φ equivalence modulo Φ, 491

Chapter c2

EmbL(Σ) category of L-embeddings,
493

QFκℵ0 [Σ, X] quantifier-free
formulae, 494∃∆ existential closure of ∆, 494∀∆ universal closure of ∆, 494∃κℵ0 existential formulae, 494∀κℵ0 universal formulae, 494∃+κℵ0 positive existential
formulae, 494⪯∆ ∆-extension, 498⪯ elementary extension, 498

Φ⊧∆ ∆-consequences of Φ, 521
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≤∆ preservation of ∆-formulae,
521

Chapter c3

S(L) set of types, 527⟨Φ⟩ types containing Φ, 527
tpL(ā/M)L-type of ā, 528
S s̄

L(T) type space for a theory, 528
S s̄

L(U) type space over U , 528
S(L) type space, 533
f (p) conjugate of p, 543
S∆(L) S(L∣∆) with topology

induced from S(L), 557⟨Φ⟩∆ closed set in S∆(L), 557
p∣∆ restriction to ∆, 560
tp∆(ā/U) ∆-type of ā, 560

Chapter c4

≡α α-equivalence, 577≡∞ ∞-equivalence, 577
pIsoκ(A,B) partial isomorphisms,

578
ā ↦ b̄ map a i ↦ b i , 578∅ the empty function, 578
Iα(A,B) back-and-forth system, 579
I∞(A,B) limit of the system, 581≅α α-isomorphic, 581≅∞ ∞-isomorphic, 581
m =k n equality up to k, 583
φα

A, ā Hintikka formula, 586
EFα(A, ā,B, b̄)

Ehrenfeucht-Fraïssé

game, 589
EFκ∞(A, ā,B, b̄)

Ehrenfeucht-Fraïssé
game, 589

Iκ
FO(A,B)partial FO-maps of size κ,

598⊑κ
iso ∞κ-simulation, 599≅κ
iso ∞κ-isomorphic, 599

A ⊑κ
0 B Iκ

0(A,B) ∶ A ⊑κ
iso B, 599

A ≡κ
0 B Iκ

0(A,B) ∶ A ≡κ
iso B, 599

A ⊑κ
FO B Iκ

FO(A,B) ∶ A ⊑κ
iso B, 599

A ≡κ
FO B Iκ

FO(A,B) ∶ A ≡κ
iso B, 599

A ⊑κ∞ B Iκ∞(A,B) ∶ A ⊑κ
iso B, 599

A ≡κ∞ B Iκ∞(A,B) ∶ A ≡κ
iso B, 599G(A) Gaifman graph, 605

Chapter c5

L ≤ L′ L′ is as expressive as L, 613
(a) algebraic, 614
(b) boolean closed, 614
(b+) positive boolean closed, 614
(c) compactness, 614
(cc) countable compactness, 614
(fop) finite occurrence property,

614
(kp) Karp property, 614
(lsp) Löwenheim-Skolem

property, 614
(rel) closed under relativisations,

614
(sub) closed under substitutions,

614
(tup) Tarski union property, 614
hnκ(L) Hanf number, 618
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lnκ(L) Löwenheim number, 618
wnκ(L) well-ordering number, 618
occ(L) occurrence number, 618
prΓ(K) Γ-projection, 636
PCκ(L, Σ)projective L-classes, 636
L0 ≤κ

pc L1 projective reduction, 637
RPCκ(L, Σ) relativised projective

L-classes, 641
L0 ≤κ

rpc L1 relativised projective
reduction, 641

∆(L) interpolation closure, 648
ifp f inductive fixed point, 658
lim inf f least partial fixed point, 658
lim sup f greatest partial fixed point,

658
fφ function defined by φ, 664
FOκℵ0(LFP) least fixed-point logic,

664
FOκℵ0(IFP) inflationary fixed-point

logic, 664
FOκℵ0(PFP) partial fixed-point

logic, 664⊲φ stage comparison, 675

Chapter d1

tor(G) torsion subgroup, 704
a/n divisor, 705
DAG theory of divisible

torsion-free abelian
groups, 706

ODAG theory of ordered divisible
abelian groups, 706

div(G) divisible closure, 706
F field axioms, 710

ACF theory of algebraically
closed fields, 710

RCF theory of real closed fields,
710

Chapter d2

(<µ)λ ⋃κ<µ κλ , 721
HO∞[Σ, X] infinitary Horn

formulae, 735
SH∞[Σ, X] infinitary strict Horn

formulae, 735
H∀∞[Σ, X] infinitary universal

Horn formulae, 735
SH∀∞[Σ, X] infinitary universal

strict Horn formulae, 735
HO[Σ, X] first-order Horn formulae,

735
SH[Σ, X] first-order strict Horn

formulae, 735
H∀[Σ, X] first-order universal Horn

formulae, 735
SH∀[Σ, X] first-order universal

strict Horn formulae, 735⟨C; Φ⟩ presentation, 739
Prod(K) products, 744
Sub(K) substructures, 744
Iso(K) isomorphic copies, 744
Hom(K) weak homomorphic

images, 744
ERP(K) embeddings into reduced

products, 744
QV(K) quasivariety, 744
Var(K) variety, 744
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( f , g) open cell between f and g,
757[ f , g] closed cell between f and g,
757

B(ā, b̄) box, 758
Cn(D) continuous functions, 772
dimC dimension, 773

Chapter e2

dclL(U) L-definitional closure, 815
aclL(U) L-algebraic closure, 815
dclAut(U)Aut-definitional closure,

817
aclAut(U) Aut-algebraic closure, 817
M the monster model, 825
A ≡U B having the same type

over U , 826
Meq extension by imaginary

elements, 827
dcleq(U) definable closure in Meq ,

827
acleq(U) algebraic closure in Meq ,

827
T eq theory of Meq , 829
Gb(p) Galois base, 837

Chapter e3

Icl(A,B) elementary maps with
closed domain and range,
873

Chapter e4

pMorK(a, b) category of partial
morphisms, 894

a ⊑K b forth property for objects
inK, 895

a ⊑κ
pres b forth property for

κ-presentable objects,
895

a ≡κ
pres b back-and-forth equivalence

for κ-presentable objects,
895

Subκ(a) κ-presentable subobjects,
906

atp(ā) atomic type, 917
ηpq extension axiom, 918
T[K] extension axioms forK, 918
Tran[Σ] random theory, 918
κn(φ) number of models, 920
Prn

M[M ⊧ φ] density of models, 920

Chapter e5

[I]κ increasing κ-tuples, 925
κ → (µ)νλ partition theorem, 925
pf(η, ζ) prefix of ζ of length ∣η∣, 930
T∗(κ<α) index tree with small

signature, 930
Tn(κ<α) index tree with large

signature, 930⟪X⟫n substructure generated in
Tn(κ<α), 930

Lvl(η̄) levels of η̄, 931≈∗ equal atomic types in T∗,
931
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≈n equal atomic types in Tn ,
931≈n ,k refinement of ≈n , 932≈ω ,k union of ≈n ,k , 932

ā[ı̄] ā i0 . . . ā in−1 , 941
tp∆(ā/U) ∆-type, 941
Av((ā i)i/U) average type, 943⟦φ(ā i)⟧ indices satisfying φ, 952
Av1((ā i)i/C) unary average type,

962

Chapter e6

Emb(K) embeddings between
structures inK, 965

pF image of a partial
isomorphism under F,
968

ThL(F) theory of a functor, 971
Aα inverse reduct, 975R(M) relational variant of M, 977
Av(F) average type, 986

Chapter e7

ln(K) Löwenheim number, 995
A ⪯K B K-substructure, 996
hn(K) Hanf number, 1003Kκ structures of size κ, 1004
IκK(A,B) K-embeddings, 1008
A ⊑κK B IκK(A,B) ∶ A ⊑κ

iso B, 1008
A ≡κK B IκK(A,B) ∶ A ≡κ

iso B, 1008

Chapter f1

⟪X⟫D span of X, 1031
dimcl(X) dimension, 1037
dimcl(X/U) dimension over U ,

1037

Chapter f2

rk∆(φ) ∆-rank, 1073
rks̄

M(φ) Morley rank, 1073
degs̄

M(φ) Morley degree of φ, 1075
(mon) Monotonicity, 1084
(nor) Normality, 1084
(lrf) Left Reflexivity, 1084
(ltr) Left Transitivity, 1084
(fin) Finite Character, 1084
(sym) Symmetry, 1084
(bmon) Base Monotonicity, 1084
(srb) Strong Right Boundedness,

1085
cl√ closure operation

associated with
√
, 1090

(inv) Invariance, 1097
(def) Definability, 1097
(ext) Extension, 1097
A df
√

U B definable over, 1098
A at
√

U B isolated over, 1098
A s
√

U B non-splitting over, 1098
p t√ q √

-free extension, 1103
A u
√

U B finitely satisfiable, 1104
Av(u/B) average type of u, 1105
(lloc) Left Locality, 1109
(rloc) Right Locality, 1109
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loc(√) right locality cardinal of
√
,

1109
loc0(√) finitary right locality

cardinal of
√
, 1109

κreg regular cardinal above κ,
1110

fc(√) length of
√

-forking chains,
1111

(sfin) Strong Finite Character, 1111
∗√ forking relation to

√
, 1113

Chapter f3

A d
√

U B non-dividing, 1125

A f
√

U B non-forking, 1125

A i
√

U B globally invariant over, 1134

Chapter f4

altφ(ā i)i∈I φ-alternation number,
1153

rkalt(φ) alternation rank, 1153
in(∼) intersection number, 1164
ā ≈ls

U b̄ indiscernible sequence
starting with ā, b̄, . . . ,
1167

ā ≡ls
U b̄ Lascar strong type

equivalence, 1168
CF((ā i)i∈I) cofinal type, 1194
Ev((ā i)i∈I) eventual type, 1199
rkdp(ā/U) dp-rank, 1211

Chapter f5

(lext) Left Extension, 1228
A fli
√

U B combination of li
√

and f
√
,

1239
A sli
√

U B strict Lascar invariance,
1239

(wind) Weak Independence
Theorem, 1253

(ind) Independence Theorem,
1253

Chapter g1

ā ⫝!U B unique free extension, 1274
mult√(p)√-multiplicity of p, 1279
mult(√) multiplicity of

√
, 1279

st(T) minimal cardinal T is
stable in, 1290

Chapter g2

(rsh) Right Shift, 1297
lbm(√) left base-monotonicity

cardinal, 1297
A[I] ⋃i∈I A i , 1306
A[<α] ⋃i<α A i , 1306
A[≤α] ⋃i≤α A i , 1306
A ⊥do

U B definable orthogonality,
1328

A si
√

U B strong independence, 1332
Υκλ unary signature, 1338
Un(κ, λ) class of unary structures,

1338
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Lf(κ, λ) class of locally finite unary structures, 1338
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abelian group, 385
abstract elementary class, 995
abstract independence relation, 1084
κ-accessible category, 329
accumulation, 12
accumulation point, 364
action, 390
acyclic, 519
addition of cardinals, 116
addition of ordinals, 89
adjoint functors, 234
affine geometry, 1037
aleph, 115
algebraic, 149, 815
algebraic class, 996
algebraic closure, 815
algebraic closure operator, 51
algebraic diagram, 499
algebraic elements, 418
algebraic field extensions, 418
algebraic logic, 487
algebraic prime model, 694
algebraically closed, 815
algebraically closed field, 418, 710
algebraically independent, 418
almost strongly minimal theory, 1056
alternating path in a category, 271

alternating-path equivalence, 272
φ-alternation number, 1153
alternation rank of a formula, 1153
amalgamation class, 1005
amalgamation property, 910, 1004
amalgamation square, 652
Amalgamation Theorem, 521
antisymmetric, 40
arity, 28, 29, 149
array, 1221
array property, 1221
array-dividing, 1227
associative, 31
asynchronous product, 752
atom, 445
atom of a lattice, 215
atomic, 215
atomic diagram, 499
atomic structure, 855
atomic type, 917
atomless, 215
automorphism, 156
automorphism group, 386
average type, 943
average type of an

Ehrenfeucht-Mostowski
functor, 986
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average type of an indiscernible
system, 949

average type of an ultrafilter, 1105
Axiom of Choice, 109, 458
Axiom of Creation, 19, 458
Axiom of Extensionality, 5, 458
Axiom of Infinity, 24, 458
Axiom of Replacement, 132, 458
Axiom of Separation, 10, 458
axiom system, 454
axiomatisable, 454
axiomatise, 454

back-and-forth property, 578, 893
back-and-forth system, 578
Baire, property of —, 363
ball, 342√

-base, 1228
base monotonicity, 1084
base of a partial morphism, 894
base projection, 894
base, closed —, 344
base, open —, 344
bases for a stratification, 1336
basic Horn formula, 735
basis, 110, 1034, 1037
beth, 126
Beth property, 648, 822
bidefinable, 885
biindiscernible family, 1219
biinterpretable, 891
bijective, 31
boolean algebra, 198, 455, 490
boolean closed, 490
boolean lattice, 198
boolean logic, 444, 462
bound variable, 450

boundary, 343, 758
κ-bounded, 598
bounded equivalence relation, 1172
bounded lattice, 195
bounded linear order, 583
bounded logic, 618
box, 758
branch, 189
branching degree, 191

canonical base, 834
canonical definition, 831

weak —, 847
canonical diagram, 337
canonical parameter, 831

weak —, 846
canonical projection from theP-completion, 309
Cantor discontinuum, 351, 534
Cantor normal form, 100
Cantor-Bendixson rank, 365, 377
cardinal, 113
cardinal addition, 116
cardinal exponentiation, 116, 126
cardinal multiplication, 116
cardinality, 113, 329
cardinality quantifier, 482
cartesian product, 27
categorical, 877, 909
category, 162
δ̄-cell, 773
cell decomposition, 775
Cell Decomposition Theorem, 776
chain, 42
L-chain, 501
chain condition, 1247
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chain condition for Morley sequences,
1257

chain in a category, 267
chain topology, 350
chain-bounded formula, 1168
Chang’s reduction, 532
character, 105
characteristic, 710
characteristic of a field, 413
choice function, 106
Choice, Axiom of —, 109, 458
class, 9, 54
clopen set, 341=-closed, 512
closed base, 344
closed function, 346
closed interval, 757
closed set, 51, 53, 341
closed subbase, 344
closed subset of a construction, 871,

1307
closed unbounded set, 135
closed under relativisations, 614
closed under substitutions, 614
closure operator, 51, 110
closure ordinal, 81
closure space, 53
closure under reverse ultrapowers, 734
closure, topological —, 343
co-chain-bounded relation, 1172
cocone, 253
cocone functor, 258
codomain of a partial morphism, 894
codomain projection, 894
coefficient, 398
cofinal, 123
cofinality, 123

Coincidence Lemma, 231
colimit, 253
comma category, 170
commutative, 385
commutative ring, 397
commuting diagram, 164
comorphism of logics, 478
compact, 352, 613
compact, countably —, 613
Compactness Theorem, 515, 531
compactness theorem, 718
compatible, 473
complement, 198
complete, 462
κ-complete, 598
complete partial order, 43, 50, 53
complete type, 527
completion of a diagram, 306(λ, κ)-completion of a diagram, 307(λ, κ)-completion of a partial order,

300
composition, 30
composition of links, 275
concatenation, 187
condition of filters, 721
cone, 257
confluence property, 1197
confluent family of sequences, 1197
congruence relation, 176
conjugacy class, 391
conjugate, 817
conjugation, 391
conjunction, 445, 490
conjunctive normal form, 467
connected category, 271
connected, definably —, 761
consequence, 460, 488, 521
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consistence of filters with conditions,
721

consistency over a family, 1221
consistent, 454
constant, 29, 149
constructible set, 869√

-constructible set, 1306
construction, 869√

-construction, 1306
continuous, 46, 133, 346
contradictory formulae, 627
contravariant, 168
convex equivalence relation, 1164
coset, 386
countable, 110, 115
countably compact, 613
covariant, 167
cover, 352
Creation, Axiom of —, 19, 458
cumulative hierarchy, 18
cut, 22

deciding a condition, 721
definability of independence relations,

1097
definable, 815
definable expansion, 473
definable orthogonality, 1329
definable Skolem function, 842
definable structure, 885
definable type, 570, 1098
definable with parameters, 759
definably connected, 761
defining a set, 447
definition of a type, 570
definitional closed, 815
definitional closure, 815

degree of a polynomial, 399
dense class, 1256
dense linear order, 600
κ-dense linear order, 600
dense order, 454
dense set, 361
dense sets in directed orders, 246
dense subcategory, 281
dependence relation, 1031
dependent, 1031
dependent set, 110
derivation, 398
diagonal functor, 253
diagonal intersection, 137
diagram, 251, 256
L-diagram, 499
Diagram Lemma, 499, 634
difference, 11
dimension, 1037
dimension function, 1038
dimension of a cell, 773
dimension of a vector space, 409
direct limit, 252
direct power, 405
direct product, 239
direct sum of modules, 405
directed, 246
directed colimit, 251
directed diagram, 251
κ-directed diagram, 251
directed limit, 256
discontinuum, 351
discrete linear order, 583
discrete topology, 342
disintegrated matroid, 1044
disjoint union, 38
disjunction, 445, 490
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disjunctive normal form, 467
distributive, 198
dividing, 1125
dividing chain, 1136
dividing κ-tree, 1144
divisible closure, 706
divisible group, 705
domain, 28, 151
domain of a partial morphism, 894
domain projection, 894
dp-rank, 1211
dual categories, 172

Ehrenfeucht-Fraïssé game, 589, 592
Ehrenfeucht-Mostowski functor, 986,

1002
Ehrenfeucht-Mostowski model, 986
element of a set, 5
elementary diagram, 499
elementary embedding, 493, 498
elementary extension, 498
elementary map, 493
elementary substructure, 498
elimination

uniform — of imaginaries, 840
elimination of finite imaginaries, 853
elimination of imaginaries, 841
elimination set, 690
embedding, 44, 156, 494
∆-embedding, 493K-embedding, 995
elementary —, 493
embedding of a tree into a lattice, 222
embedding of logics, 478
embedding of permutation groups,

886
embedding, elementary —, 498

endomorphism ring, 404
entailment, 460, 488
epimorphism, 165
equivalence class, 54
equivalence formula, 826
equivalence of categories, 172
equivalence relation, 54, 455
L-equivalent, 462
α-equivalent, 577, 592
equivalent categories, 172
equivalent formulae, 460
Erdős-Rado theorem, 928
Euklidean norm, 341
even, 922
exchange property, 110
existential, 494
existential closure, 699
existential quantifier, 445
existentially closed, 699
expansion, 155, 998
expansion, definable —, 473
explicit definition, 648
exponentiation of cardinals, 116, 126
exponentiation of ordinals, 89
extension, 152, 1097
∆-extension, 498
extension axiom, 918√

-extension base, 1228
extension of fields, 414
extension, elementary —, 498
Extensionality, Axiom of —, 5, 458

factorisation, 180
Factorisation Lemma, 158
factorising through a cocone, 317
faithful functor, 167
family, 37

1367



Index

field, 397, 457, 498, 710
field extension, 414
field of a relation, 29
field of fractions, 411
field, real —, 426
field, real closed —, 429
filter, 203, 207, 530
κ-filtered category, 285
κ-filtered colimit, 285
κ-filtered diagram, 285
final segment, 41
κ-finitary set of partial isomorphisms,

598
finite, 115
finite character, 51, 105, 1084

strong —, 1111
finite equivalence relation, 1164
finite intersection property, 211
finite occurrence property, 613
finite, being — over a set, 775
finitely axiomatisable, 454
finitely branching, 191
finitely generated, 154
finitely presentable, 317
finitely satisfiable type, 1104
first-order interpretation, 446, 475
first-order logic, 445
fixed point, 48, 81, 133, 657
fixed-point induction, 77
fixed-point rank, 675
Fodor

Theorem of —, 139
follow, 460
forcing, 721
forgetful functor, 168, 234
forking chain, 1136√

-forking chain, 1110

√
-forking formula, 1103

forking relation, 1097√
-forking type, 1103

formal power series, 398
formula, 444
forth property for partial morphisms,

895
foundation rank, 192
founded, 13
Fraïssé limit, 912
free algebra, 232
free extension of a type, 1103√

-free extension of a type, 1103
free model, 739
free structures, 749√

-free type, 1103
free variables, 231, 450
full functor, 167
full subcategory, 169
function, 29
functional, 29, 149
functor, 167

Gaifman graph, 605
Gaifman, Theorem of —, 611
Galois base, 834
Galois saturated structure, 1011
Galois stable, 1011
Galois type, 997
game, 79
generalised product, 751
κ-generated, 255, 965
generated substructure, 153
generated, finitely —, 154
generating, 41
generating a sequence by a type, 1158
generating an ideal, 400
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generator, 154, 739
geometric dimension function, 1038
geometric independence relation, 1084
geometry, 1036
global type, 1114
graduated theory, 698, 783
graph, 39
greatest element, 42
greatest fixed point, 657
greatest lower bound, 42
greatest partial fixed point, 658
group, 34, 385, 456
group action, 390
group, ordered —, 705
guard, 447

Hanf number, 618, 637, 1003
Hanf ’s Theorem, 606
Hausdorff space, 351
having κ-directed colimits, 253
height, 190
height in a lattice, 215
Henkin property, 858
Henkin set, 858
Herbrand model, 511, 858
hereditary, 12
κ-hereditary, 910, 965
hereditary finite, 7
Hintikka formula, 586, 587
Hintikka set, 513, 858, 859
history, 15
hom-functor, 258
homeomorphism, 346
homogeneous, 787, 925≈-homogeneous, 931
κ-homogeneous, 604, 787
homogeneous matroid, 1044

homomorphic image, 156, 744
homomorphism, 156, 494
Homomorphism Theorem, 183
homotopic interpretations, 890
honest definition, 1157
Horn formula, 735

ideal, 203, 207, 400
idempotent link, 313
idempotent morphism, 313
identity, 163
image, 31
imaginaries

uniform elimination of —, 840
imaginaries, elimination of —, 841
imaginary elements, 826
implication, 447
implicit definition, 647
inclusion functor, 169
inclusion link, 276
inclusion morphism, 491
inconsistent, 454
k-inconsistent, 1125
increasing, 44
independence property, 952
independence relation, 1084
independence relation of a matroid,

1083
Independence Theorem, 1253
independent, 1031√

-independent family, 1289
independent set, 110, 1037
index map of a link, 275
index of a subgroup, 386
indiscernible sequence, 941
indiscernible system, 949, 1337
induced substructure, 152
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inductive, 77
inductive completion, 291
inductive completion of a category,

280
inductive fixed point, 81, 657, 658
inductively ordered, 81, 105
infimum, 42, 195
infinitary first-order logic, 445
infinitary second-order logic, 483
infinite, 115
Infinity, Axiom of —, 24, 458
inflationary, 81
inflationary fixed-point logic, 664
initial object, 166
initial segment, 41
injective, 31
κ-injective structure, 1008
inner vertex, 189
insertion, 39
inspired by, 950
integral domain, 411, 713
interior, 343, 758
interpolant, 653
interpolation closure, 648
interpolation property, 646
∆-interpolation property, 646
interpretation, 444, 446, 475
intersection, 11
intersection number, 1164
interval, 757
invariance, 1097
invariant class, 1256
invariant over a subset, 1325
U-invariant relation, 1172
invariant type, 1098
inverse, 30, 165
inverse diagram, 256

inverse limit, 256
inverse reduct, 975
irreducible polynomial, 416
irreflexive, 40√

-isolated, 1297
isolated point, 364
isolated type, 855, 1098
isolation relation, 1297
isomorphic, 44
α-isomorphic, 581, 592
isomorphic copy, 744
isomorphism, 44, 156, 165, 172, 494
isomorphism, partial —, 577

joint embedding property, 1005
κ-joint embedding property, 910
Jónsson class, 1005

Karp property, 613
kernel, 157
kernel of a ring homomorphism, 402

label, 227
large subsets, 825
Lascar invariant type, 1178
Lascar strong type, 1168
lattice, 195, 455, 490
leaf, 189
least element, 42
least fixed point, 657
least fixed-point logic, 664
least partial fixed point, 658
least upper bound, 42
left extension, 1228
left ideal, 400
left local, 1109
left reflexivity, 1084

1370



Index

left restriction, 31
left transitivity, 1084
left-narrow, 57
length, 187
level, 190
level embedding function, 931
levels of a tuple, 931
lexicographic order, 187, 1024
lifting functions, 655
limit, 59, 257
limit stage, 19
limiting cocone, 253
limiting cone, 257
Lindenbaum algebra, 489
Lindenbaum functor, 488
Lindström quantifier, 482
linear independence, 406
linear matroid, 1037
linear order, 40
linear representation, 687
link between diagrams, 275
literal, 445
local, 608
local character, 1109
local enumeration, 772
κ-local functor, 965
local independence relation, 1109
localisation morphism, 491
localisation of a logic, 491
locality, 1109
locality cardinal, 1306
locally compact, 352
locally finite matroid, 1044
locally modular matroid, 1044
logic, 444
logical system, 485
Łoś’ theorem, 715

Łoś-Tarski Theorem, 686
Löwenheim number, 618, 637, 641, 995
Löwenheim-Skolem property, 613
Löwenheim-Skolem-Tarski Theorem,

520
lower bound, 42
lower fixed-point induction, 658

map, 29
∆-map, 493
map, elementary —, 493
mapping, 29
matroid, 1036
maximal element, 42
maximal ideal, 411
maximal ideal/filter, 203
maximally φ-alternating sequence,

1153
meagre, 362
membership relation, 5
minimal, 13, 57
minimal element, 42
minimal polynomial, 419
minimal rank and degree, 224
minimal set, 1049
model, 444
model companion, 699
model of a presentation, 739
model-complete, 699
κ-model-homogeneous structure,

1008
modular, 198
modular lattice, 216
modular law, 218
modular matroid, 1044
modularity, 1094
module, 403
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monadic second-order logic, 483
monoid, 31, 189, 385
monomorphism, 165
monotone, 758
monotonicity, 1084
monster model, 825
Morley degree, 1075
Morley rank, 1073
Morley sequence, 1118
Morley-free extension of a type, 1076
morphism, 162
morphism of logics, 478
morphism of matroids, 1044
morphism of partial morphisms, 894
morphism of permutation groups, 885
multiplication of cardinals, 116
multiplication of ordinals, 89
multiplicity of a type, 1279
mutually indiscernible sequences,

1206

natural isomorphism, 172
natural transformation, 172
negation, 445, 489
negation normal form, 469
negative occurrence, 664
neighbourhood, 341
neutral element, 31
node, 189
normal subgroup, 387
normality, 1084
nowhere dense, 362

o-minimal, 760, 956
object, 162
occurrence number, 618
oligomorphic, 390, 877

omitting a type, 528
omitting types, 532
open base, 344
open cover, 352
open dense order, 455
open interval, 757
Open Mapping Theorem, 1276
open set, 341
open subbase, 345
opposite category, 166
opposite functor, 168
opposite lattice, 204
opposite order, 40
orbit, 390
order, 454
order property, 567
order topology, 349, 758
order type, 64, 941
orderable ring, 426
ordered group, 705
ordered pair, 27
ordered ring, 425
ordinal, 64
ordinal addition, 89
ordinal exponentiation, 89
ordinal multiplication, 89
ordinal, von Neumann —, 69

pair, 27
parameter equivalence, 831
parameter-definable, 759
partial fixed point, 658
partial fixed-point logic, 664
partial function, 29
partial isomorphism, 577
partial isomorphism modulo a filter,

727
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partial morphism, 894
partial order, 40, 454
partial order, strict —, 40
partition, 55, 220
partition degree, 224
partition rank, 220
partitioning a relation, 775
path, 189
path, alternating — in a category, 271
Peano Axioms, 484
pinning down, 618
point, 341
polynomial, 399
polynomial function, 416
polynomial ring, 399
positive existential, 494
positive occurrence, 664
positive primitive, 735
power set, 21
predicate, 28
predicate logic, 444
prefix, 187
prefix order, 187
preforking relation, 1097
prelattice, 207
prenex normal form, 469
preorder, 206, 488
κ-presentable, 317
presentation, 739
preservation by a function, 493
preservation in products, 734
preservation in substructures, 496
preservation in unions of chains, 497
preserving a property, 168, 262
preserving fixed points, 655√

-κ-prime, 1314
prime field, 413

prime ideal, 207, 402
prime model, 868
prime model, algebraic, 694
primitive formula, 699
principal ideal/filter, 203
Principle of Transfinite Recursion, 75,

133
product, 27, 37, 744
product of categories, 170
product of linear orders, 86
product topology, 357
product, direct —, 239
product, generalised —, 751
product, reduced —, 242
product, subdirect —, 240
projection, 37, 636
projection along a functor, 260
projection along a link, 276
projection functor, 170
projective class, 636
projective geometry, 1043
projectively reducible, 637
projectively κ-saturated, 804
proper, 203
property of Baire, 363
pseudo-elementary, 636
pseudo-saturated, 807

quantifier elimination, 690, 711
quantifier rank, 452
quantifier-free, 453
quantifier-free formula, 494
quantifier-free representation, 1338
quasi-dividing, 1231
quasivariety, 743
quotient, 179
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Rado graph, 918
Ramsey’s theorem, 926
random graph, 918
random theory, 918
range, 29
rank, 73, 192
∆-rank, 1073
rank, foundation –, 192
real closed field, 429, 710
real closure of a field, 429
real field, 426
realising a type, 528
reduced product, 242, 744
reduct, 155
µ-reduct, 237
refinement of a partition, 1336
reflecting a property, 168, 262
reflexive, 40
regular, 125
regular filter, 717
regular logic, 614
relation, 28
relational, 149
relational variant of a structure, 976
relativisation, 474, 614
relativised projective class, 640
relativised projectively reducible, 641
relativised quantifiers, 447
relativised reduct, 640
Replacement, Axiom of —, 132, 458
replica functor, 979
representation, 1338
restriction, 30
restriction of a filter, 242
restriction of a Galois type, 1015
restriction of a logic, 491
restriction of a type, 560

retract of a logic, 547
retraction, 165
retraction of logics, 546
reverse ultrapower, 734
right local, 1109
right shift, 1297
ring, 397, 457
ring, orderable —, 426
ring, ordered —, 425
root, 189
root of a polynomial, 416
Ryll-Nardzewski Theorem, 877

satisfaction, 444
satisfaction relation, 444, 446
satisfiable, 454
saturated, 793
κ-saturated, 667, 793√

-κ-saturated, 1314
κ-saturated, projectively —, 804
Scott height, 587
Scott sentence, 587
second-order logic, 483
section, 165
segment, 41
semantics functor, 485
semantics of first-order logic, 446
semi-strict homomorphism, 156
semilattice, 195
sentence, 450
separated formulae, 627
Separation, Axiom of —, 10, 458
sequence, 37
shifting a diagram, 313
signature, 149, 151, 235, 236
simple structure, 412
simple theory, 1135
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simply closed, 694
singular, 125
size of a diagram, 251
skeleton of a category, 265
skew embedding, 938
skew field, 397
Skolem axiom, 505
Skolem expansion, 999
Skolem function, 505
definable —, 842
Skolem theory, 505
Skolemisation, 505
small subsets, 825
sort, 151
spanning, 1034
special model, 807
specification of a dividing chain, 1137
specification of a dividing κ-tree, 1144
specification of a forking chain, 1137
spectrum, 370, 531, 534
spectrum of a ring, 402
spine, 981
splitting type, 1098
stabiliser, 391
stability spectrum, 1290
κ-stable formula, 564
κ-stable theory, 573
stably embedded set, 1156
stage, 15, 77
stage comparison relation, 675
stationary set, 138
stationary type, 1272
Stone space, 374, 531, 534√

-stratification, 1306
strict homomorphism, 156
strict Horn formula, 735
strict ∆-map, 493

strict order property, 958
strict partial order, 40
strictly increasing, 44
strictly monotone, 758
strong γ-chain, 1017
strong γ-limit, 1017
strong finite character, 1111
strong limit cardinal, 808
strong right boundedness, 1085
strongly homogeneous, 787
strongly κ-homogeneous, 787
strongly independent, 1332
strongly local functor, 981
strongly minimal set, 1049
strongly minimal theory, 1056, 1149
structure, 149, 151, 237
subbase, closed —, 344
subbase, open —, 345
subcategory, 169
subcover, 352
subdirect product, 240
subdirectly irreducible, 240
subfield, 413
subformula, 450
subset, 5
subspace topology, 346
subspace, closure —, 346
substitution, 234, 465, 614
substructure, 152, 744, 965
∆-substructure, 498K-substructure, 996
substructure, elementary —, 498
substructure, generated —, 153
substructure, induced —, 152
subterm, 228
subtree, 190
successor, 59, 189
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successor stage, 19
sum of linear orders, 85
superset, 5
supersimple theory, 1294
superstable theory, 1294
supremum, 42, 195
surjective, 31
symbol, 149
symmetric, 40
symmetric group, 389
symmetric independence relation,

1084
syntax functor, 485
system of bases for a stratification,
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T0-space, 534
Tarski union property, 614
tautology, 454
term, 227
term algebra, 232
term domain, 227
term, value of a —, 231
term-reduced, 466
terminal object, 166
L-theory, 461
theory of a functor, 971
topological closure, 343, 758
topological closure operator, 51, 343
topological group, 394
topological space, 341
topology, 341
topology of the type space, 533
torsion element, 704
torsion-free, 705
total order, 40
totally disconnected, 351

totally indiscernible sequence, 942
totally transcendental theory, 574
transcendence basis, 418
transcendence degree, 418
transcendental elements, 418
transcendental field extensions, 418
transfinite recursion, 75, 133
transitive, 12, 40
transitive action, 390
transitive closure, 55
transitive dependence relation, 1031
transitivity, left —, 1084
translation by a functor, 260
tree, 189
φ-tree, 568
tree property, 1143
tree property of the second kind, 1221
tree-indiscernible, 950
trivial filter, 203
trivial ideal, 203
trivial topology, 342
tuple, 28
Tychonoff, Theorem of —, 359
type, 560
L-type, 527
Ξ-type, 804
α-type, 528
s̄-type, 528
type of a function, 151
type of a relation, 151
type space, 533
type topology, 533
type, average —, 943
type, average — of an indiscernible

system, 949
type, complete —, 527
type, Lascar strong —, 1168
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types of dense linear orders, 529

ultrafilter, 207, 530
κ-ultrahomogeneous, 906
ultrapower, 243
ultraproduct, 243, 797
unbounded class, 1003
uncountable, 115
uniform dividing chain, 1137
uniform dividing κ-tree, 1144
uniform elimination of imaginaries,

840
uniform forking chain, 1137
uniformly finite, being — over a set,

776
union, 21
union of a chain, 501, 688
union of a cocone, 293
union of a diagram, 292
unit of a ring, 411
universal, 494
κ-universal, 793
universal quantifier, 445
universal structure, 1008
universe, 149, 151
unsatisfiable, 454
unstable, 564, 574
upper bound, 42
upper fixed-point induction, 658

valid, 454
value of a term, 231
variable, 236

variable symbols, 445
variables, free —, 231, 450
variety, 743
Vaughtian pair, 1057
vector space, 403
vertex, 189
von Neumann ordinal, 69

weak γ-chain, 1017
weak γ-limit, 1017
weak canonical definition, 847
weak canonical parameter, 846
weak elimination of imaginaries, 847
weak homomorphic image, 156, 744
Weak Independence Theorem, 1252
weakly bounded independence

relation, 1189
weakly regular logic, 614
well-founded, 13, 57, 81, 109
well-order, 57, 109, 132, 598
well-ordering number, 618, 637
well-ordering quantifier, 482, 483
winning strategy, 590
word construction, 972, 977

Zariski logic, 443
Zariski topology, 342
zero-dimensional, 351
zero-divisor, 411
Zero-One Law, 922
ZFC, 457
Zorn’s Lemma, 110
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The Roman and Fraktur alphabets

A a A a N n N n
B b B b O o O o
C c C $ P p P p
D d D d Q q Q q
E e E e R r R r
F f F f S s S s +
G g G g T t T t
H h H h U u U u
I i I i V v V v
J j J j W w W w
K k K k X x X x
L l L l Y y Y y
M m M m Z z Z z

The Greek alphabet

A α alpha N ν nu
B β beta Ξ ξ xi
Γ γ gamma O o omicron
∆ δ delta Π π pi
E ε epsilon P ρ rho
Z ζ zeta Σ σ sigma
H η eta T τ tau
Θ ϑ theta Υ υ upsilon
I ι iota Φ ϕ phi
K κ kappa X χ chi
Λ λ lambda Ψ ψ psi
M µ mu Ω ω omega
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