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e1. Saturation

1. Homogeneous structures
Recall the relations ⊑κ

FO introduced in Section c4.4. We have seen that,
in general, they are not reflexive. In this section wewill take a closer look
at those structures A that satisfy A ≅κ

FO A.

Definition 1.1. Let A be a Σ-structure and κ a cardinal.
(a) A is κ-homogeneous if A ≅κ

FO A, that is, whenever ā, b̄ ∈ A<κ are
sequences of length less than κ with ⟨A, ā⟩ ≡ ⟨A, b̄⟩ and c ∈ A is another
element, then there exists an element d ∈ A such that ⟨A, āc⟩ ≡ ⟨A, b̄d⟩.
We call A homogeneous if it is ∣A∣-homogeneous.

(b) A is strongly κ-homogeneous if, whenever ā, b̄ ∈ A<κ are sequences
of length less than κ with ⟨A, ā⟩ ≡ ⟨A, b̄⟩ then there exists an automorph-
ism π of A such that π(ā) = b̄. We call A strongly homogeneous if it is
strongly ∣A∣-homogeneous.

Example. (a) The structures ⟨Z, <⟩ and ⟨Q, <⟩ are strongly homogen-
eous.

(b) The theory of ⟨ω, ≤⟩ has exactly three countable (strongly) homo-
geneous models whose order types are ω, ω+ ζ , and ω+ ζ ⋅η, respectively,
where ζ is the order type of the integers and η is the order type of the
rationals.

Exercise 1.1. Show that ⟨R,+⟩ is strongly ℵ0-homogeneous.

Lemma 1.2. Every strongly κ-homogeneous structure is κ-homogeneous.

Proof. Let A be strongly κ-homogeneous. Suppose that ā, b̄ ∈ A<κ are
sequences with ⟨A, ā⟩ ≡ ⟨A, b̄⟩ and let c ∈ A. By assumption, there exists
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e1. Saturation

an isomorphism π ∶ ⟨A, ā⟩→ ⟨A, b̄⟩. If we set d ∶= π(c) then we have

π ∶ ⟨A, āc⟩ ≅ ⟨A, b̄d⟩ .

This implies ⟨A, āc⟩ ≡ ⟨A, b̄d⟩. ◻
Lemma 1.3. Every homogeneous structure is strongly homogeneous.

Proof. Let A be a homogeneous structure of size κ ∶= ∣A∣. If ā, b̄ ∈ A<κ

are sequences with ⟨A, ā⟩ ≡ ⟨A, b̄⟩ then A ≅κ
FO A implies, by definition

of ≅κ
FO, that

⟨A, ā⟩ ≅κ
FO ⟨A, b̄⟩ .

By Lemma c4.4.10, it follows that ⟨A, ā⟩ ≅ ⟨A, b̄⟩. ◻
Lemma 1.4. Let T be a first-order theory that admits quantifier elimina-
tion for FO∞ℵ0 . Every model of T is ℵ0-homogeneous.

Proof. If A is a model of T then we have A ≅ℵ0
0 A, by Theorem d1.2.9.

This implies that A ≅ℵ0
FO A. ◻

We have shown in Section c4.4 that ≅κ
FO is an equivalence relation on

the class of all κ-homogeneous structures. In the following lemmas we
will study the corresponding equivalence classes. We will show that we
have A ≅κ

FO B if and only if both structures realise the same types.

Lemma 1.5. Let B be κ-homogeneous and suppose that A is a structure
such that, for all n < ω, every n-type realised in A is also realised in B.
For each ā ∈ A<κ , there exists a sequence b̄ ∈ B<κ such that

⟨A, ā⟩ ≡ ⟨B, b̄⟩ .

Proof. Let ā ∈ Aα , for α < κ. We prove the statement by induction on α.
If α < ω then, since A and B realise the same α-types, we can find
some tuple b̄ with tp(b̄/B) = tp(ā/A). If λ ∶= ∣α∣ < α then we can fix

788
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a bijection g ∶ λ → α and the claim follows if we apply the inductive
hypothesis to the reordered sequence (ag(i))i<λ .

It therefore remains to consider the case that α is an infinite cardinal.
We construct (b i)i<α by induction on i such that, at every step β ≤ α we
have

⟨A, (a i)i<β⟩ ≡ ⟨B, (b i)i<β⟩ .

For β = 0, we have A ≡ B since the unique complete 0-type Th(A)
realised in A is also realised in B. If β is a limit ordinal then there is
nothing to do. Suppose that β = γ + 1 is a successor and we have already
defined (b i)i<γ . Since α is a limit we have β < α. Therefore,we can apply
the inductive hypothesis for α and it follows that there is some sequence(c i)i<β such that

⟨A, (a i)i<β⟩ ≡ ⟨B, (c i)i<β⟩ .

In particular, we have

⟨B, (b i)i<γ⟩ ≡ ⟨A, (a i)i<γ⟩ ≡ ⟨B, (c i)i<γ⟩ ,
and, since B is κ-homogeneous, we can find some element bγ ∈ B such
that

⟨B, (b i)i<γ , bγ⟩ ≡ ⟨B, (c i)i<γ , cγ⟩ ≡ ⟨A, (a i)i<γ , aγ⟩ . ◻
Proposition 1.6. Let B be κ-homogeneous and suppose that A is a struc-
ture such that, for all n < ω, every n-type realised in A is also realised
in B. Then A ⊑κ

FO B.

Proof. Since Iκ
FO(A,B) is always κ-complete we only need to prove the

forth property. Let ā ↦ b̄ ∈ Iκ
FO(A,B) and c ∈ A. By the preceding

lemma, we can find a sequence b̄′d′ ⊆ B such that

⟨A, āc⟩ ≡ ⟨B, b̄′d′⟩ .
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e1. Saturation

In particular, we have ⟨B, b̄⟩ ≡ ⟨B, b̄′⟩. Since B is κ-homogeneous we
can therefore find some element d ∈ B such that

⟨B, b̄d⟩ ≡ ⟨B, b̄′d′⟩ ≡ ⟨B, b̄⟩ .

Hence, āc ↦ b̄d ∈ Iκ
FO(A,B). ◻

Corollary 1.7. Let A and B be κ-homogeneous structures. We have

A ≅κ
FO B iff A and B realise the same n-types, for all n < ω.

Corollary 1.8. If A and B are ℵ0-homogeneous structures that realise the
same n-types, for all n < ω, and ā ∈ A<ω , b̄ ∈ B<ω are finite tuples then

⟨A, ā⟩ ≡FO ⟨B, b̄⟩ implies ⟨A, ā⟩ ≡∞ ⟨B, b̄⟩ .

Proof. This follows by Proposition 1.6 and Theorem d1.2.13. ◻
Theorem 1.9. Let A and B be homogeneous structures of the same size∣A∣ = ∣B∣. If, for every n < ω, A and B realise the same n-types then A ≅ B.

Proof. Let κ ∶= ∣A∣ = ∣B∣. By Proposition 1.6, we have A ⊑κ
FO B and

A ⊒κ
FO B. Hence, the claim follows from Lemma c4.4.10 (a). ◻

Corollary 1.10. A complete first-order theory T has, up to isomorphism,
for every cardinal κ at most 22∣T∣ homogeneous models of size κ.

Proof. For every set X ⊆ S<ω(T), there is, according to the preceding
theorem, at most one homogeneous model of size κ that realises exactly
the types in X. Since ∣S<ω(T)∣ ≤ 2∣T∣ the claim follows. ◻

To build κ-homogeneous structures we can use the following lemma.
We will defer the proof of the fact that every structure has a κ-homo-
geneous elementary extension to Section 3 where it will follow from a
much stronger result.

Lemma 1.11. Let A be a Σ-structure and ā, b̄ ∈ Aα tuples with ⟨A, ā⟩ ≡⟨A, b̄⟩.

790

1. Homogeneous structures

(a) There exists an elementary extension B ⪰ A such that

⟨B, ā⟩ ≡∞ ⟨B, b̄⟩ and ∣B∣ ≤ ∣A∣⊕ ∣Σ∣⊕ ∣α∣⊕ ℵ0 .

(b) There exists an elementary extension B ⪰ A and an automorphism
π ∈ Aut B with π(ā) = b̄.

Proof. (a) For 0 ≤ k < ω, let Ik be a new 2k-ary relation symbol and set

βk ∶= (∀x̄ ȳ.Ik x̄ ȳ)[∀u∃vIk+1 x̄u ȳv ∧ ∀v∃uIk+1 x̄u ȳv] ,
and ψφ

k ∶= (∀x̄ ȳ.Ik x̄ ȳ)[φ(ā, x̄)↔ φ(b̄, ȳ)] .

The formula βk says that Ik has the back-and-forth property with respect
to Ik+1, and the ψφ

k hold if every tuple ⟨c̄, d̄⟩ ∈ Ik corresponds to a partial
isomorphism c̄ ↦ d̄ from ⟨A, ā⟩ to ⟨A, b̄⟩. Setting

Φ ∶=Th(AA) ∪ {I0} ∪ { βk ∧ ψφ
k ∣ k < ω, φ an atomic formula} ,

we have

B ⊧ Φ iff B ⪰ A and ⟨⟩↦ ⟨⟩ ∈ I∞(⟨B, ā⟩, ⟨B, b̄⟩) .

If Φ is satisfiable then we can, therefore, use the Theorem of Löwenheim
and Skolem to find the desired structure B. To prove that Φ is satisfiable
let Φ0 ⊆ Φ be finite. There is some m < ω and a finite set ∆ of atomic
formulae such that

Φ0 ⊆Th(AA) ∪ {I0} ∪ { βk ∧ ψφ
k ∣ k < m, φ ∈ ∆ } .

Let ā′ and b̄′ be the subsequences of, respectively, ā and b̄ that appear
in ∆. Since tp(ā′) = tp(b̄′) we can obtain a model ⟨AA, (Ik)k<m⟩ ⊧ Φ0
by setting

Ik ∶= { c̄d̄ ∈ A2k ∣ ⟨A, ā′ c̄⟩ ≡m−k ⟨A, b̄′d̄⟩ } .
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e1. Saturation

(b) Let f be a new unary function symbol and set

Φ ∶=Th(AA) ∪ { f a i = b i ∣ i < α }∪ {∀x∃y f y = x}∪ {∀x̄(φ(x̄)↔ φ( f x̄)) ∣ φ an atomic formula} .

If B ⊧ Φ then f B is the desired automorphism. Therefore, it is sufficient
to prove that Φ is satisfiable.

Let Φ0 ⊆ Φ be finite. There are finitely many indices k0 , . . . , kn−1 < α,
a finite set C ⊆ A, a finite signature Σ0 ⊆ Σ, and a finite set ∆ of atomic
formulae over Σ0 such that

Φ0 ⊆Th(AC) ∪ { f ak i = bk i ∣ i < n }∪ {∀x∃y f y = x}∪ {∀x̄(φ(x̄)↔ φ( f x̄)) ∣ φ ∈ ∆ } .

To simplify notation, set ā′ = ak0 . . . akn−1 and b̄′ = bk0 . . . bkn−1 . By the
Theorem of Löwenheim and Skolem,we can find a countable elementary
substructure A0 ⪯ A∣Σ0 with C ∪ ā′b̄′ ⊆ A0.
By (a), there exists a countable elementary extension B0 ⪰ A0 such

that

⟨B0 , ā′⟩ ≡∞ ⟨B0 , b̄′⟩ .

Hence, by Lemma c4.4.10, it follows that

⟨B0 , ā′⟩ ≅ ⟨B0 , b̄′⟩ ,
and there is some automorphism π ∈ Aut B0 with π(ā′) = b̄′. Con-
sequently, ⟨B0 , π⟩ is the desired model of Φ0. ◻
Exercise 1.2. Let κ be an infinite cardinal. Prove that every structure has
a κ-homogeneous elementary extension.
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2. Saturated structures
We have shown in the previous section that κ-homogeneous structures
can be orderedwith respect to the set of types they realise. In this section
we consider structures that are maximal in this ordering, i.e., homogen-
eous structures realising every type.

Definition 2.1. Let A be a Σ-structure and κ a cardinal.
(a) A is κ-saturated if, for all sets C ⊆ A of size ∣C∣ < κ, every type

p ∈ S<ω(C) is realised in A. A structure A is called saturated if it is∣A∣-saturated.
(b) A is κ-universal if there exist elementary embeddings B→ A, for

all Σ-structures B of size ∣B∣ < κ such that B ≡ A.

Similarly to homogeneous structures we can characterise κ-saturated
structures in terms of the relation ⊑κ

FO.

Lemma 2.2. A structure B is κ-saturated if and only if

⟨A, ā⟩ ≡ ⟨B, b̄⟩ implies ⟨A, ā⟩ ⊑κ
FO ⟨B, b̄⟩ ,

for all sequences ā ∈ A<κ and b̄ ∈ B<κ .

Proof. (⇒) Suppose that ⟨A, ā⟩ ≡ ⟨B, b̄⟩. We have ā ↦ b̄ ∈ Iκ
FO(A,B)

and Iκ
FO(A,B) is κ-complete. Therefore, we only need to prove the forth

property. Suppose that c̄ ↦ d̄ ∈ Iκ
FO(A,B) and e ∈ A. Set p ∶= tp(e/Ac̄)

and let q be the type obtained from p by replacing the constants c̄ by d̄.
Note that q really is a type since ⟨A, c̄⟩ ≡ ⟨B, d̄⟩. As ∣d̄∣ < κ and B is
κ-saturated we can find some element f ∈ B realising q. Therefore,

⟨A, c̄e⟩ ≡ ⟨B, d̄ f ⟩ , that is, c̄e ↦ d̄ f ∈ Iκ
FO(A,B) .

(⇐) Let C ⊆ B be a set of size ∣C∣ < κ and p ∈ Sn(C). There exists an
elementary extension A ⪰ B in which p is realised by some tuple ā. Let
c̄ be an enumeration of C. Since ⟨A, c̄⟩ ≡ ⟨B, c̄⟩ we have

⟨A, c̄⟩ ⊑κ
FO ⟨B, c̄⟩ .
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Hence, by Lemma c4.4.9 we can find a tuple b̄ ∈ Bn such that

⟨A, c̄ ā⟩ ⊑κ
FO ⟨B, c̄b̄⟩ .

Consequently, b̄ is a realisation of p in B. ◻
Corollary 2.3. For κ-saturated structures A and B, we have

⟨A, ā⟩ ≅κ
FO ⟨B, b̄⟩ iff ⟨A, ā⟩ ≡ ⟨B, b̄⟩ ,

for all ā ∈ A<κ and b̄ ∈ B<κ .

We will prove below that every κ-saturated structure is κ-homoge-
neous. Hence, the next corollary is a special case of Corollary 1.8.

Corollary 2.4. If A and B are ℵ0-saturated then

A ≡ B implies A ≅∞ B .

For an example let us take a look at saturated linear orders.

Lemma 2.5. Every ℵ1-saturated dense linear order is incomplete.

Proof. Let a0 < a1 < . . . be a strictly increasing sequence of length ω
and set A ∶= { an ∣ n < ω }. We claim that supA does not exist. For a
contradiction, suppose that the supremum c exists. Choose a type p over
A∪ {c} containing the formulae

x < c and an < x for n < ω .

Any realisation b of p is an upper bound of A. Hence, b < c = supA
yields the desired contradiction. ◻
Lemma 2.6. A linear order is κ-saturated if, and only if, it is κ-dense.

Proof. We have already shown in Lemma c4.4.6 that every κ-dense
linear order is κ-saturated. For the converse, suppose that A = ⟨A, ≤⟩
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is κ-saturated and let C ,D ⊆ A sets of size ∣C∣, ∣D∣ < κ with C < D. Let
p ∈ S1(C ∪ D) be any type with

p ⊇ { c < x ∣ c ∈ C } ∪ { x < d ∣ d ∈ D } .

Since A is κ-saturated there is some element a ∈ A realising p. Hence,
C < a < D and A is κ-dense. ◻
Lemma 2.7. Let (Ai)i<λ be an elementary chain of κ-saturated structures.
If κ ≤ cf λ then the union ⋃i Ai is also κ-saturated.

Proof. Let C ⊆ ⋃i Ai be a set of size ∣C∣ < κ and suppose that p ∈ S<ω(C)
is a type overC. Since ∣C∣ < κ ≤ cf λ there is some α < λ such thatC ⊆ Aα .
Hence, there is a tuple ā ⊆ Aα ⊆ ⋃i Ai realising p. ◻
By definition a structure is κ-saturated if it realises every n-type, for

n < ω, with less than κ-parameters. In fact, it is sufficient to realise all
1-types.

Lemma 2.8. Let κ ≥ ℵ0. A structure A is κ-saturated if, and only if,
whenever C ⊆ A is of size ∣C∣ < κ then every 1-type in S1(C) is realised
in A.

Exercise 2.1. Prove the preceding lemma.

Theorem 2.9. Let A be a Σ-structure. The following statements are equi-
valent :

(1) A is κ-saturated.

(2) A is κ-homogeneous and it realises every type in Sκ(∅).
(3) A is κ-homogeneous and it realises every type in S<κ(∅).

If κ ≥ ∣Σ∣⊕ ℵ0 then the following statement is also equivalent to the ones
above.

(4) A is κ-homogeneous and κ+-universal.
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Proof. (1) ⇒ (2) Let A be κ-saturated. By Lemma 2.2, A ≡ A implies
A ⊑κ

FO A. Therefore, we have A ≅κ
FO A, that is, A is κ-homogeneous.

It remains to prove that A realises every type p ∈ Sκ(∅). For α < κ, let
pα ∶= p ∩ FOα[Σ] be the restriction of p to the first α variables. By induc-
tion on α, we construct a sequence (aα)α<κ such that the subsequence(a i)i<α realises pα . Suppose we have already defined a i , for i < α. Let

qα ∶= {φ(a i0 , . . . , a ik−1 , xα) ∣ φ(x i0 , . . . , x ik−1 , xα) ∈ p for

i0 , . . . , ik−1 < α } .

Since A is κ-saturated we can find some element aα such that

tp(aα/{ a i ∣ i < α }) = qα .

Hence, (a i)i≤α realises pα+1.
(2)⇒ (3) is trivial.
(3)⇒ (1) Let p ∈ Sn(U) where ∣U ∣ < κ. Let (c i)i<λ be an enumeration

of U and let q ∈ Sλ+n(∅) be the type

q ∶= {φ(x i0 , . . . , x ik−1 , xλ , . . . , xλ+n−1) ∣
φ(c i0 , . . . , c ik−1 , x0 , . . . , xn−1) ∈ p} .

By assumption we can find sequences ā ∈ Aλ and b̄ ∈ An such that
tp(āb̄) = q. Since

⟨A, c̄⟩ ≡ ⟨A, ā⟩
and A is κ-homogeneous it follows that there is some tuple d̄ ∈ An such
that

⟨A, c̄d̄⟩ ≡ ⟨A, āb̄⟩ .

Consequently tp(d̄/c̄) = p.
(2)⇒ (4) Suppose that A realises every type in Sκ(∅). We claim that

A is κ+-universal. Let B be a structure of size ∣B∣ ≤ κ with B ≡ A. Choose
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an enumeration b̄ of B and let p ∶= tp(b̄/B). Then p ∈ S≤κ(∅). Hence,
there exists a sequence ā ⊆ A realising p. The function b̄ ↦ ā is the
desired elementary embedding.

(4) ⇒ (1) Suppose that A is κ+-universal. We show that A realises
every type p ∈ Sκ(∅). For each such p we can find a structure B ≡ A
and a tuple b̄ ⊆ B with tp(b̄/B) = p. By the Theorem of Löwenheim and
Skolem we may assume that ∣B∣ ≤ κ. Hence, there exists an elementary
embedding h ∶ B→ A. The sequence h(b̄) is a realisation of p in A. ◻
Theorem 2.10. If A ≡ B are saturated structures of the same size ∣A∣ = ∣B∣
then A ≅ B.

Proof. Let κ ∶= ∣A∣ = ∣B∣. By Lemma 2.2, we have A ≅κ
FO B. Therefore,

the claim follows from Lemma c4.4.10 (a). ◻
Every structure has a κ-saturated elementary extension. There are two

ways to construct such extensions : (i) we can form an ultrapower, or
(ii) we can take the union of an infinite elementary chain where each
structure realises every type over the universe of the preceding structure.
In the following proofs we will employ the first method. Below, where
we construct saturated structures and projectively κ-saturated ones, we
will choose the second method.

Proposition 2.11. Let u be a regular ultrafilter over an infinite set I and
let (Ai)i∈I be a family of structures. Every countable partial type p over∏i A i/u is realised in∏i Ai/u.

Proof. Let (φn)n<ω be an enumeration of p. Since u is regular, we can
find sets (sn)n<ω in u such that, for every i ∈ I, the set

{ n < ω ∣ i ∈ sn }
is finite. Setting wn ∶= s0 ∩ ⋅ ⋅ ⋅ ∩ sn ∈ u we obtain a strictly decreasing
sequence w0 ⊃ w1 ⊃ w2 ⊃ ⋯ of sets wn ∈ u. By choice of (sn)n we have

⋂
n<ω

wn = ⋂
n<ω

sn = ∅ .
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Set ψn ∶= φ0 ∧ ⋅ ⋅ ⋅ ∧ φn and let [c̄n]u be the parameters appearing in ψn .
According to the Theorem of Łoś,

∏
i

Ai/u ⊧ ∃x̄ψn(x̄; [c̄n]u) implies ⟦∃x̄ψn(x̄; c̄n)⟧ ∈ u .

Hence, the sets

w0
n ∶= { i ∈ wn ∣ Ai ⊧ ∃x̄ψn(x̄; c̄n

i ) } = wn ∩ ⟦∃x̄ψn⟧
are in u. We define a sequence (ā i)i∈I as follows. If i ∉ w0

0 , we choose an
arbitrary tuple ā i ⊆ A i . Otherwise, let n be the maximal number such
that i ∈ w0

n and let ā i ⊆ A i be a tuple such that Ai ⊧ ψn(ā i ; c̄n
i ).

We claim that [ā]u realises p. Consider φn ∈ p. Then

⟦φn(ā i)⟧ ⊇ ⟦ψn(ā i)⟧ ⊇ w0
n ∈ u implies ⟦φn(ā i)⟧ ∈ u .

By the Theorem of Łoś it follows that∏i Ai/u ⊧ φn([ā]u) . ◻
Corollary 2.12. Let u be a regular ultrafilter of an infinite set I and let
Σ be a countable signature. For every sequence (Ai)i∈I of Σ-structures, the
ultraproduct∏i∈I Ai/u is ℵ1-saturated.

Proposition 2.13. Let u be an ultrafilter over a set I of size κ ∶= ∣I∣. The
following statements are equivalent :

(1) u is regular.

(2) For each theory T and every family (Ai)i∈I of models of T , the ultra-
product∏i Ai/u realises every partial type p over ∅ with ∣p∣ ≤ κ.

(3) For every structure M, the ultrapower Mu realises every partial
type p over M with ∣p∣ ≤ κ.

Proof. (1)⇒ (2) Since ∣p∣ ≤ ∣I∣ and u is regular we can find sets (sφ)φ∈p
in u such that the sets

Φ i ∶= {φ ∈ p ∣ i ∈ sφ }
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are finite. For every i ∈ I, there exists a tuple ā i ⊆ A i realising the finite
type Φ i . We claim that ā ∶= (ā i)i realises p. Let φ ∈ p. For every k ∈ sφ ,
we have k ∈ ⟦φ(ā i)⟧i . Hence, sφ ⊆ ⟦φ(ā i)⟧i ∈ u which implies, by the
Theorem of Łoś, that∏i Ai/u ⊧ φ([ā]u).

(2)⇒ (3) follows by setting Ai ∶=MM , for each i ∈ I.
(3)⇒ (1) We consider the structure M ∶= ⟨M , ⊆⟩ where

M ∶= {X ⊆ I ∣ ∣X∣ < ℵ0 } ,
and the type

p ∶= {{k} ⊆ x ∣ k ∈ I } ,
which is finitely satisfiable in M. By (3), there is an element [a]u of Mu

realising p. For k ∈ I, we set

sk ∶= { i ∈ I ∣ {k} ⊆ a i } = ⟦{k} ⊆ a i⟧ .

Since Mu ⊧ {k} ⊆ [a]u it follows by the Theorem of Łoś that sk ∈ u.
Furthermore, each a i being finite there are only finitely many sk with
i ∈ sk . Hence, the family (sk)k∈I witnesses that u is regular. ◻
Proposition 2.14. Let I be an infinite set, u a regular ultrafilter on I,
κ ∶= ∣I∣, and Σ a signature of size ∣Σ∣ ≤ κ. If Ai and Bi , for i ∈ I, are
Σ-structures such that Ai ≡ Bi , for all i ∈ I, then

∏
i∈I Ai/u ≅κ

iso ∏
i∈I Bi/u .

Proof. Below we need our structures to be relational. Therefore, we
replace Ai and Bi by their relational variants A∗

i and B∗
i as follows. Let

Σrel ⊆ Σ be the set of relation symbols and Σfun ⊆ Σ the set of function
symbols. We replace every function symbol f ∈ Σfun of type s̄ → t by a
new relation symbol R f of type s̄t. The resulting signature is

Σ∗ ∶= Σrel ⊍ {R f ∣ f ∈ Σfun } .
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To every Σ-structure M, we associate a Σ∗-structure M∗ by expanding
M∣Σrel by the graphs

RM∗
f ∶= { āb ∣ f M(ā) = b }

of the functions f ∈ Σfun.
Since u is regular there exists a sequence (sα)α<κ of sets sα ∈ u such

that, for every i ∈ I, the set { α < κ ∣ i ∈ sα } is finite. Fix an enumeration⟨Σ∗α , kα⟩α<κ of all pairs ⟨Σ∗α , kα⟩ consisting of finite subsets Σ∗α ⊆ Σ∗ and
kα ⊆ κ. For i ∈ I and γ < κ, set

Γi ∶=⋃{Σ∗α ∣ i ∈ sα } ,
K i ∶=⋃{ kα ∣ i ∈ sα } ,
mγ

i ∶= ∣{ α ∈ K i ∣ α ≥ γ }∣ .
We claim that

J ∶∏
i∈I Ai/u ≅κ

iso ∏
i∈I Bi/u ,

where J ⊆ pIsoκ(∏i Ai/u,∏i Bi/u) is the following set of partial iso-
morphisms ā ↦ b̄. Let ā = (av)v<γ and b̄ = (bv)v<γ where γ < κ and
av = [(a i

v)i∈I]u and bv = [(b i
v)i∈I]u. Then ā ↦ b̄ ∈ J if, and only if,

⟨A∗
i ∣Γi , (a i

v)v∈K i ⟩ ≅mγ
i
⟨B∗

i ∣Γi , (b i
v)v∈K i ⟩ , for all i ∈ I .

It is straightforward to check that J is κ-complete and κ-bounded. To
show that ⟨⟩ ↦ ⟨⟩ ∈ J, note that each Γi is finite and relational. Hence,
we can use Corollary c4.3.6 to show that

A∗
i ∣Γi ≡ B∗

i ∣Γi implies A∗
i ∣Γi ≅ω B∗

i ∣Γi .

It remains to prove that J has the back-and-forth property with respect
to itself. By symmetry, it is sufficient to prove the forth property. Let
ā ↦ b̄ ∈ J and c = [(c i)i∈I]u ∈ ∏i A i/u. To find a matching element
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d = [(d i)i∈I]u ∈∏i B i/u we consider each component d i separately. Let
ā = (av)v<γ and b̄ = (bv)v<γ as above. By definition, ā ↦ b̄ ∈ J implies
that

⟨A∗
i ∣Γi , (a i

v)v∈K i ⟩ ≅mγ
i
⟨B∗

i ∣Γi , (b i
v)v∈K i ⟩ .

If γ ∉ K i , we take an arbitrary element d i ∈ B i . Otherwise, there exists
some d i ∈ B i such that

⟨A∗
i ∣Γi , (a i

v)v∈K i , c
i⟩ ≅mγ

i −1 ⟨B∗
i ∣Γi , (b i

v)v∈K i , d
i⟩ .

Since γ ∈ K i implies mγ+1
i = mγ

i − 1, it follows in both cases that

⟨A∗
i ∣Γi , (a i

v)v∈K i , c
i⟩ ≅mγ+1

i
⟨B∗

i ∣Γi , (b i
v)v∈K i , d

i⟩ . ◻
We have seen that we can find κ-saturated elementary extensions,

for all cardinals κ. For saturated elementary extensions the situation is
different. The next results give conditions on when such extensions exist.

Proposition 2.15. Let T be a countable complete first-order theory with
infinite models. The following statements are equivalent :

(1) T has a countable saturated model.
(2) T has a countable ℵ1-universal model.
(3) ∣S s̄(T)∣ ≤ ℵ0, for all finite tuples s̄.

Proof. (1)⇒ (2) follows from Theorem 2.9.
(2)⇒ (3) Let M be a countable ℵ1-universal model of T . Each type

p ∈ S s̄(T) is realised in some countable model. Hence, it is also realised
in M. Since M is countable it follows that ∣S s̄(T)∣ ≤ ℵ0.

(3)⇒ (1) First, let us show that ∣S<ω(A)∣ ≤ ℵ0, for every finite set A.
Let ā be an enumeration of A and t̄ the sorts of ā. For every finite tuple
of sorts s̄ there exists an injective function f ∶ S s̄(A)→ S s̄ t̄(T) sending
a type p ∈ S s̄(A) to the type

f (p) ∶= {φ(x̄ , ȳ) ∣ φ(x̄ , ā) ∈ p} .

801



e1. Saturation

Consequently, ∣S s̄(A)∣ ≤ ∣S s̄ t̄(T)∣ ≤ ℵ0. Since T is countable there are
only countably many sorts. Therefore it follows that S<ω(A) is countable
as well.

To find the desired saturated model of T we construct an elementary
chain (Mn)n<ω of countable models of T such that each Mn+1 realises
every type over a finite subset A ⊆Mn . Then the union Mω ∶= ⋃n<ω Mn
will be the desired countable ℵ0-saturated model of T .
We start with an arbitrary countable model M0 of T . Given Mn we

construct Mn+1 as follows. Let F be the class of all finite subsets of Mn
and set P ∶= ⋃A∈F S<ω(A). By the above remarks it follows that P is
countable. Fix an enumeration (pk)k<ω of P. Using Lemma c3.5.2 we
construct an elementary chain (Ak

n)k<ω of countable structures with
A0

n ∶= Mn such that pk is realised in Ak+1
n . Their union ⋃k Ak

n is the
desired structure Mn+1. ◻

For the existence of uncountable saturated structures we can only give
a sufficient condition at the moment. A more precise characterisation
will be presented in Theorem ?? below.

Theorem 2.16. Let T be a complete theory with infinite models. If T is
κ-stable, for a regular cardinal κ ≥ ∣T ∣, then T has a saturated model of
size κ.

Proof. We construct an elementary chain (Ai)i≤κ of models Ai ⊧ T
with ∣A i ∣ = κ. We start with an arbitrary model A0 of size κ. For limit
ordinals δ, we set Aδ ∶= ⋃i<δ Ai . For the successor step, suppose that we
have already defined Ai . Since T is κ-stable we have ∣Ss(A i)∣ ≤ κ, for all
sorts s. Furthermore, there are at most ∣T ∣ ≤ κ sorts. Hence, we can use
Corollary c3.5.3 to find an elementary extension Ai+1 ⪰ Ai of size κ that
realises every type in ⋃s Ss(A i).
We claim that the limit Aκ is saturated. It is sufficient to prove that

every 1-type over a set U ⊆ Aκ of size ∣U ∣ < κ is realised in Aκ . Since κ is
regular there exists an index α < κ with U ⊆ Aα . Consequently, every
1-type over U is realised in Aα+1 ⪯ Aκ . ◻
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We conclude this section with a closer look at definable relations in
κ-saturated structures. We have already proved in Lemma c5.6.17 that
the closure ordinal of a least fixed point on an ℵ0-saturated structure is
at most ω.

Lemma 2.17. Suppose that A is κ-saturated and let φ(x̄) be a first-order
formula with ∣x̄∣ < ω. Either ∣φA∣ < ℵ0 or ∣φA∣ ≥ κ.

Proof. Suppose that φA is infinite. We construct a sequence (ā i)i<κ of
distinct tuples satisfying φ. Suppose that we have already defined ā i , for
i < α. The set

Γα(x̄) ∶= {φ(x̄)} ∪ { x̄ ≠ ā i ∣ i < α }
is a partial type since φA is infinite. SinceA is κ-saturatedwe can therefore
find a tuple āα realising Γα(x̄). ◻
Proposition 2.18. A first-order theory T admits quantifier elimination if
and only if we have

A ≡0 B implies A ≅ℵ0
0 B ,

for all ℵ0-saturated models A,B of T.

Proof. (⇐) follows from Corollary d1.2.12. For (⇒), note that, accord-
ing to Theorem d1.2.6, if A and B are models of T then we have

Iℵ0
0 (A,B) = Iℵ0

FO(A,B) .

Furthermore, if A and B are ℵ0-saturated then we have

Iℵ0
FO(A,B) = Iℵ0∞ (A,B) ,

by Corollary 2.3. Since A ≡0 B implies ⟨⟩ ↦ ⟨⟩ ∈ Iℵ0∞ (A,B), it follows
that A ≅ℵ0

0 B. ◻
Proposition 2.19. If A is κ-saturated then so is I(A), for every first-order
interpretation I .
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Proof. Recall that interpretations are comorphisms, that is, for every
formula φ(x̄), there is a formula φI(x̄) such that

I(A) ⊧ φ(I(ā)) iff A ⊧ φI(ā) .

Suppose that p ∈ Sn(U) where U ⊆ I[A] is of size ∣U ∣ < κ. Then there is
some set V ⊆ A of size ∣V ∣ = ∣U ∣ with U = I[V]. Since A is κ-saturated
we can find a tuple ā ∈ An realising the partial type

pI ∶= {φI(x̄ , c̄) ∣ φ(x̄ , I(c̄)) ∈ p, c̄ ⊆ V }
over V . It follows that I(ā) realises p. ◻
3. Projectively saturated structures
In a saturated structure every type over sets of a certain size is realised.
We can extend this requirement by also including types with second-
order variables. Structures that realise also all types of this form are
called projectively saturated.

Definition 3.1. Let Σ and Ξ be disjoint signatures and T ⊆ FO0[Σ] a
first-order theory.

(a) A Ξ-type is a subset p ⊆ FO0[Σ ∪ Ξ] such that T ∪ p is consistent.
p is complete if p =Th(A) for some (Σ∪Ξ)-structure A satisfying T . The
set of all complete Ξ-types is denoted by SΞ(T).

(b) A Σ-structure A realises a Ξ-type p if it has a (Σ∪Ξ)-expansion A+
with A+ ⊧ p.

(c) We call a structure A projectively κ-saturated if it realises every{ξ}-type over a set of less than κ parameters, for all relation symbols
and function symbols ξ.

Lemma 3.2. Every projectively κ-saturated structure is κ-saturated and
strongly κ-homogeneous.

Proof. Let M be a projectively κ-saturated Σ-structure.

804

3. Projectively saturated structures

First, we show that M is κ-saturated. Let A ⊆ M be a subset of size∣A∣ < κ and let p ∈ Sn(A). We have to find some c̄ ∈ Mn with tp(c̄/A) = p.
Let N be some elementary extension of M that realises p and fix a tuple
d̄ ∈ Nn of type p. Let R ∉ Σ be a new n-ary relation symbol and set
RN = {d̄}. Since M is projectively κ-saturated there exists a relation RM

such that

⟨M, RM , ā⟩ ≡ ⟨N, RN , ā⟩ ,
where ā is some enumeration of A. It follows that RM contains exactly
one tuple c̄ and we have tp(c̄/A) = tp(d̄/A) = p.

It remains to show that M is strongly κ-homogeneous. Let ā, b̄ ∈ Mα ,
for α < κ, be sequences such that ⟨M, ā⟩ ≡ ⟨M, b̄⟩. Set

Φ( f ) ∶=Th(M, ā, b̄)∪ { f a i = b i ∣ i < α }∪ {∀x∃y f y = x}∪ {∀x̄(φ(x̄)↔ φ( f x̄)) ∣ φ ∈ FO} ,
where f ∉ Σ is a new unary function symbol. By Lemma 1.11, we know
that Φ( f ) is satisfiable. Hence, Φ( f ) is an { f }-type over āb̄ and there
exist a function π ∶ M → M such that ⟨M, āb̄⟩ ⊧ Φ(π). In particular,
π is an automorphism of M with π(ā) = b̄. ◻
Theorem 3.3. Let A be a Σ-structure and κ > ∣Σ∣⊕ ℵ0 a regular cardinal.
There exists a projectively κ-saturated elementary extension B ⪰ A of size∣B∣ ≤ ∣A∣<κ .

Proof. If A is finite then it is already projectively κ-saturated, for all κ.
Therefore, we may assume that A is infinite. Let us write C ⊑ D if D is an
expansion of some elementary extension of C. If (Ci)i<α is a ⊑-chain then
we can form its union ⋃i<α Ci and, by the same proof as for elementary
chains, it follows that Ck ⊑ ⋃i<α Ci .

Set µ ∶= ∣Σ∣ ⊕ ℵ0 and λ ∶= (∣A∣ ⊕ µ+)<κ . Then λ<κ = λ ≥ κ. We will
construct a ⊑-chain (Cα)α<λκ of length λκ where the structure Cα is of
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size ∣Cα ∣ = λ ⊗ (α ⊕ 1). For simplicity, we assume that Cα is the set of
ordinals less than λ(α + 1). The Σ-reduct of the union ⋃α<λκ Cα will be
the desired structure B ⪰ A. Note that B = λκ has size ∣B∣ = λ ⊗ κ = λ.

For every finite tuple s̄ of sorts and each sort t fix a new relation
symbol R s̄ of type s̄ and a new function symbol f s̄ t of type s̄ → t. Let Ξ be
the set of these symbols. For U ⊆ B we can consider T ∶=Th(A) as an
incomplete theory over the signature ΣU . Hence, we have the type space
SΞ(U) ∶= S(FO[ΣU ∪ Ξ]/T). Fix an enumeration (pi)i<λκ of all {ξ}-
types pi ∈ S{ξ}(U i), for all possible ξ ∈ Ξ and all subsets U i ⊆ B of size∣U i ∣ < κ. For every ν < κ, there are ∣B∣ν = λν ≤ λ<κ = λ subsets of size ν
and 2µ⊕ν ≤ λ<κ = λ different {ξ}-types with ν parameters. Therefore,
the above enumeration contains λ⊗ λ = λ different types. Consequently,
we can choose the sequence ⟨pi⟩i<λκ such that, for every α < κ, each{ξ}-type p appears at least once with some index λα ≤ i < λ(α + 1).
In particular, we assume that every type appears cofinally often in our
enumeration.
We start the construction of (Ci)i with an arbitrary elementary exten-

sion C0 ⪰ A of size ∣C0∣ = λ. For limit ordinals δ, we set Cδ ∶= ⋃α<δ Cα .
For the successor step, suppose that Cα has already been defined.

If Uα ⊈ Cα = λ(α + 1) or if pα is inconsistent with Th((Cα)Cα) then
we choose an arbitrary elementary extension Cα+1 ⪰ Cα with universe
λ(α+2). Otherwise, let D be amodel of pα∪Th((Cα)Cα).By theTheorem
of Löwenheim and Skolem we can choose D of size ∣D∣ = λ. Hence, we
may assume that D = λ(α + 2). By construction, we have Cα ⊑ D and
we can set Cα+1 ∶= D.

This concludes the construction of (Cα)α . Let D ∶= ⋃α<λκ Cα . We
claim that B ∶= D∣Σ is a projectively κ-saturated elementary extension
of A. Since A ⪯ C0 ⊑ D we have A ⪯ B. Let V ⊆ B be a set of size ∣V ∣ < κ
and let p be a {ξ}-type over V . We have to find a relation or function ξB

such that ⟨BV , ξB⟩ ⊧ p. Since V ⊆ λκ, ∣V ∣ < κ, and κ is regular there is
some ordinal α such that V ⊆ λα. By construction, there is some index i
in the range λα ≤ i < λ(α+1) such that p = pi andV = U i . Consequently,(Ci+1)U i ⊧ pi implies ⟨BV , ξCi+1⟩ ⊧ p. ◻
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Corollary 3.4. Let κ ≥ ∣Σ∣⊕ ℵ0. Every Σ-structure A has a projectively
κ+-saturated elementary extension of size at most ∣A∣κ .

In the definition of a projectively saturated structure we only require
that every type with one free second-order variable is realised. In fact,
we can add several relations at the same time.

Proposition 3.5. Let A be a projectively κ-saturated Σ-structure. Then
A realises every Ξ-type over less than κ parameters with ∣Ξ∣ < κ.

Proof. Let p be a Ξ-type andB ⊧ p a structure of size κ realising p. Fix an
arbitrary bijection f ∶ B×B → B and let (ξ i)i<α be an enumeration of Ξ.
We choose α different elements c i ∈ B, i < α. Using the pairing function f
we can replace each relation or function ξ i by a unary relation Pi . Finally,
we define a 4-ary relation R by

R ∶= { ⟨a, a, b, f (a, b)⟩ ∣ a, b ∈ B }∪ { ⟨c i , a, a, b⟩ ∣ b ∈ Pi , a ∈ B, a ≠ c i } .

Note that B is definable in the structure B′ ∶= ⟨B∣Σ , R, (Pi)i , (c i)i⟩.
Since A is projectively κ-saturated it has an expansion A′ ≡ B′. We can
apply the definition of B in B′ to the structure A′ to obtain the desired(Σ ∪ Ξ)-expansion A+ of A with A+ ≡ B. ◻
4. Pseudo-saturated structures
Depending on the model of set theory there can be first-order theories
without saturated models. But if we slightly weaken the definition of
saturation then we can prove that such models always exist.

Definition 4.1. A structure A is pseudo-saturated, or special, if there
exists an elementary chain (Aκ)κ<∣A∣, indexed by cardinals κ, such that
A = ⋃κ Aκ and every Aκ is κ+-saturated.

Lemma 4.2. Every saturated structure is pseudo-saturated.
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Proof. If A is saturated then it is κ+-saturated, for all κ < ∣A∣. Therefore,
we can obtain the desired chain (Aκ)κ be setting Aκ ∶= A for all κ. ◻

By a strong limit cardinal we mean a cardinal of the form ℶδ where
δ is either 0 or a limit ordinal.

Theorem 4.3. Let A be an infinite Σ-structure and κ a strong limit cardinal
with κ > ∣A∣⊕ ∣Σ∣. Then A has a pseudo-saturated elementary extensions
of size κ.

Proof. Suppose that κ = ℶδ . Fix a strictly increasing sequence (λ i)i<cf δ
of cardinals λ i < ℶδ such that

ℶδ = sup{ λ i ∣ i < cf δ } = sup{ 2λ i ∣ i < cf δ } .

By removing some elements of this sequence, we may assume that λ0 >∣A∣⊕ ∣Σ∣. We construct an elementary chain (Bi)i<cf δ such that
◆ B0 = A,
◆ each Bi+1 is a λ+i -saturated structure of size ∣B i+1∣ = 2λ i , and
◆ ∣Bγ ∣ ≤ 2λγ , for limit ordinals γ.

The first structure B0 is already defined. If i = j + 1 is a successor then∣B j ∣ ≤ 2λ j implies that we can apply Corollary 3.4 to find a λ+i -saturated
elementary extension B j+1 ⪰ B j of size ∣B i ∣ = ∣B j ∣λ i = 2λ i . Finally, for
limit ordinals γ, we can set Bγ ∶= ⋃i<γ Bi since

∣Bγ ∣ = sup{ 2λ i ∣ i < γ } ≤ 2λγ .

The structure B ∶= ⋃i Bi is an elementary extension of B0 = A of
size ∣B∣ = sup{ 2λ i ∣ i < cf δ } = κ. We claim that B ∶= ⋃i Bi is pseudo-
saturated. Let g be an increasing function from the set of all cardinals
less than κ to the ordinal cf δ such that λg(µ) ≥ µ, for all µ < κ. Then
Bg(µ)+1 is λ+g(µ)-saturated and the chain (Bg(µ)+1)µ<κ witnesses that
B is pseudo-saturated. ◻
Corollary 4.4. Let T ⊆ FO[Σ] be a consistent first-order theory.
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(a) T has a pseudo-saturated model.
(b) If T has infinite models and κ > ∣FO[Σ]∣ is a strong limit cardinal

then T has a pseudo-saturated model of size κ.

Proof. (b) By the Theorem of Löwenheim and Skolem T has a model A
of size ∣A∣ = ∣FO[Σ]∣. Therefore, we can apply the preceding theorem to
obtain a pseudo-saturated elementary extension B ⪰ A of size κ.

(a) If T has infinitemodels then the claim follows from (b). Otherwise,
T has a finite model and every finite structure is saturated. ◻
Theorem 4.5. If A ≡ B are pseudo-saturated structures of the same size∣A∣ = ∣B∣ then A ≅ B.

Proof. Suppose that A = ⋃κ Aκ and B = ⋃κ Bκ . Choose subsets Cκ ⊆
Aκ and Dκ ⊆ Bκ of size ∣Cκ ∣ = ∣Dκ ∣ = κ such that

⋃κ Cκ = A and ⋃κ Dκ = B .

By induction on κ, we construct an increasing chain of partial isomorph-
isms (pκ)κ with pκ ∈ Iκ

FO(A,B) such that

Cκ ⊆ dom pκ ⊆ Aκ and Dκ ⊆ rng pκ ⊆ Bκ .

The union p ∶= ⋃κ pκ is the desired isomorphism.
Let p0 ∶= ⟨⟩ ↦ ⟨⟩. If κ is a limit cardinal then we set pκ ∶= ⋃λ<κ pλ .

Since Iκ
FO(A,B) is κ-complete, we have pκ ∈ Iκ

FO(A,B). Finally, suppose
that κ = λ+ and pλ = ā ↦ b̄ ∈ Iλ

FO(A,B) has already been defined.
Let c̄ be an enumeration of Cκ and d̄ one of Dκ . Since Aκ and Bκ are
κ+-saturated, we have

⟨A, ā⟩ ≅κ+
FO ⟨B, b̄⟩ .

As ∣c̄∣ = ∣d̄∣ = κ < κ+ we can apply Lemma c4.4.9 to find sequences
ē ∈ (Aκ)κ and f̄ ∈ (Bκ)κ such that

⟨A, āc̄ ē⟩ ≅κ+
FO ⟨B, b̄ f̄ d̄⟩ .

In particular, pκ ∶= āc̄ ē ↦ b̄ f̄ d̄ ∈ Iκ
FO(A,B). ◻
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Lemma 4.6. Let A be a pseudo-saturated Σ-structure of size ∣A∣ = κ.
(a) The expansion ⟨A, ā⟩ is pseudo-saturated, for every sequence ā ∈ Aα

of length α < cf κ.
(b) The reduct A∣Γ is pseudo-saturated, for every Γ ⊆ Σ.

Proof. (b) follows immediately from the definition.
(a) Let A = ⋃λ<κ Aλ where Aλ is λ+-saturated. Since α < cf κ there is

some index µ < κ with ā ⊆ Aµ . It follows that ⟨Aλ , ā⟩ is λ+-saturated, for
every λ ≥ µ. Consequently, ⟨A, ā⟩ = ⋃λ<κ⟨Aλ⊕µ , ā⟩ is pseudo-saturated.◻
As an easy corollary of Theorem 4.5 we see that every pseudo-satu-

rated structure A is cf(∣A∣)-homogeneous. In fact, we will show below
that it is even projectively cf(∣A∣)-saturated.

Proposition 4.7. Every pseudo-saturated structure A of size ∣A∣ = κ is
strongly cf(κ)-homogeneous.

Proof. Suppose that ⟨A, ā⟩ ≡ ⟨A, b̄⟩, for ā, b̄ ∈ Aα with α < cf κ. The
expansions ⟨A, ā⟩ and ⟨A, b̄⟩ are pseudo-saturated, by Lemma 4.6 (a).
Consequently, it follows by Theorem 4.5 that they are isomorphic. ◻
Every pseudo-saturated structure of size κ is projectively cf(κ)-sat-

urated and κ+-universal. To prove this fact we need some technical
lemmas.

Lemma 4.8. Let A be a Σ-structure and B a Σ+-structure with Σ ⊆ Σ+.
If A and B are pseudo-saturated, A ≡ B∣Σ , and ∣Σ+∣ ≤ ∣A∣ ≤ ∣B∣ then
there exists an elementary embedding h ∶ A→ B∣Σ such that the set rng h
induces a substructure of B.

Proof. Suppose that A = ⋃λ Aλ and B = ⋃λ Bλ . Let (aα)α<κ be an
enumeration of A such that aα ∈ A∣α∣, for all α. We choose a bijection
τ ∶ κ → T[Σ+ ,A] such that

τ(α) = t(a i0 , . . . , a in−1) implies i0 , . . . , in−1 < α .
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To define h we construct an increasing sequence (pα)α<κ of partial
elementary maps pα ∈ IFO(A,B) such that, for all α < κ,◆ dom pα ⊆ A∣α∣ and rng pα ⊆ B∣α∣ ,◆ ∣pα ∣ ≤ ∣2α∣ ,◆ aα ∈ dom pα+1 ,◆ if τ(α) = t(ā) then tB[pα(ā)] ∈ rng pα+1 .
The limit h ∶= ⋃α pα will be the desired elementary embedding.

We start the construction with p0 ∶= ∅. For limit ordinals δ, we set
pδ ∶= ⋃α<δ pα . For the successor step, suppose that pα = c̄ ↦ d̄ has
already been defined. Suppose that τ(α) = t(ā) and let y ∶= tB[pα(ā)].
As A∣α∣ is ∣α∣+-saturated there is some element x ∈ A∣α∣ such that

⟨A, c̄x⟩ ≡ ⟨B, d̄y⟩ .

Similarly, since B∣α∣ is ∣α∣+-saturated we can find an element z ∈ B∣α∣
with

⟨A, c̄xaα⟩ ≡ ⟨B, d̄yz⟩ .

We set pα+1 ∶= c̄xaα ↦ d̄yz. ◻
Theorem 4.9. Let A be a pseudo-saturated Σ-structure and Ξ a signature
disjoint from Σ. If ∣A∣ ≥ ∣Σ∣⊕ ∣Ξ∣ then A realises every Ξ-type p ∈ SΞ(∅).
Proof. Let p∗ ⊆ FO0[Γ] be a Skolemisation of p and fix a pseudo-sat-
urated model B realising p∗ such that B∣Σ ≡ A and ∣B∣ ≥ ∣A∣. We can
use Lemma 4.8 to find exists an elementary embedding h ∶ A → B∣Σ
whose range B0 ∶= rng h induces a substructure B0 of B. We define a
Γ-expansion A∗ of A by setting

ξA∗ ∶= h−1[ξB0] , for ξ ∈ Γ ∖ Σ .

It follows that h ∶ A∗ ≅ B0. Since p∗ is a Skolem theory we have B0 ⪯ B.
This implies that A∗ ≅ B0 ⊧ p∗. Consequently, A+ ∶= A∗∣Σ∪Ξ is the
desired model of p. ◻
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Corollary 4.10. Let A be a pseudo-saturated structure of size ∣A∣ = κ
and let ∆ be a set of first-order formulae that is closed under conjunctions.
If B is any structure of size ∣B∣ ≤ κ with B ≤∃∆ A then there exists a
∆-embedding B→ A.

Proof. Let Φ ∶=Th∆(BB). If we can show that Φ ∪Th(A) is consistent
then we can use Theorem 4.9 to find an expansion AC of A satisfying Φ.
Hence, the Diagram Lemma implies that there exists a ∆-embedding
B→ A.

It remains to prove that Φ ∪Th(A) is consistent. Suppose otherwise.
Then there are finitely many formulae φ0(b̄0), . . . , φn−1(b̄n−1) ∈ Φ with
parameters b̄ i ⊆ B such that

Th(A) ⊧ ¬φ0(b̄0) ∨ ⋅ ⋅ ⋅ ∨ ¬φn−1(b̄n−1) .

Since Φ is closed under conjunction we may assume w.l.o.g. that n = 1.
Consequently,

A ⊧ ¬∃x̄φ0(x̄) .

But B ⊧ ∃x̄φ0(x̄) and B ≤∃∆ A implies that A ⊧ ∃x̄φ0(x̄). Contradic-
tion. ◻
Theorem 4.11. A pseudo-saturated structure of size κ is κ+-universal and
projectively cf(κ)-saturated.

Proof. Let A be pseudo-saturated. If B ≡ A is a structure of size ∣B∣ ≤ κ
then we can use Corollary 4.10 to find an elementary embedding B→ A.
Consequently, A is κ+-universal.

For the second claim suppose that ā ∈ Aα is a sequence of α < cf κ
elements. Then ⟨A, ā⟩ is pseudo-saturated by Lemma 4.6 (a). It follows
by Theorem 4.9 that ⟨A, ā⟩ is projectively 1-saturated. Consequently, A is
projectively cf(κ)-saturated. ◻
Corollary 4.12. If A is pseudo-saturated and ∣A∣ is regular then A is
saturated.
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Corollary 4.13. Every saturated structure of size κ is projectively κ-satu-
rated.

Proof. Suppose that A is saturated. Then so is ⟨A, ā⟩, for every ā ∈ A<κ .
Since saturated structures are pseudo-saturated it follows that every
expansion ⟨A, ā⟩ by less than κ constants is projectively 1-saturated.
Consequently, A is projectively κ-saturated. ◻

We conclude this section with a few results about definable relations
in pseudo-saturated and projectively saturated structures. We start with
an analogue of Lemma 2.17.

Lemma 4.14. Suppose that A is pseudo-saturated and let φ(x̄ , c̄) be a
first-order formula with parameters c̄ ⊆ Awhere ∣x̄∣ < ω. Then φ(x̄ , c̄)A
is either finite or ∣φ(x̄ , c̄)A∣ = ∣A∣.
Proof. Suppose that A = ⋃λ Aλ . If φA is infinite then, by Lemma 2.17, we
have ∣φAλ ∣ ≥ λ+. Consequently,

∣φA∣ ≥ ∣φAλ ∣ ≥ λ+ , for all λ < ∣A∣ ,
implies that ∣φA∣ = ∣A∣. ◻
Lemma 4.15. If A is pseudo-saturated then so is I(A), for every first-order
interpretation I .

Proof. Suppose that A = ⋃κ Aκ where each Aκ is κ+-saturated. Note that

Aκ ⪯ Aλ implies I(Aκ) ⪯ I(Aλ) , for κ ≤ λ .

Hence, the structures I(Aκ) form an elementary chain with limit

⋃
κ<∣A∣I(Aκ) = I(A) .

Furthermore, according to Proposition 2.19, each structure I(Aκ) is
κ+-saturated. Hence, I(A) is pseudo-saturated. ◻
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Lemma 4.16. Let I be a first-order interpretation from Σ to Γ and let
κ > ∣Σ∣⊕ ∣Γ∣ be a cardinal. If A is projectively κ-saturated then so is I(A).
Proof. Let ā ⊆ I(A) be a sequence of less than κ-parameters and sup-
pose that p is a {ξ}-type over ā. We can find parameters c̄ ⊆ A and an
interpretation J with J (A, c̄) = ⟨I(A), ā⟩. Replacing A by ⟨A, c̄⟩ andI by J we can therefore simplify notation by omitting the parameters.

To show that p is realised in I(A) fix a (Γ ∪ {ξ})-structure B ⊧ p
realising p. Let λ be a strong limit cardinal with λ > ∣Σ∣⊕ ∣Γ∣ and choose
pseudo-saturated structures A+ and B+ of size λ such that A+ ≡ A and
B+ ≡ B. Then I(A+) ≡ B+∣Γ implies, by Theorem 4.5, that I(A+) ≅
B+∣Γ . Let ξI(A+) be the relation on I(A+) induced by this isomorphism
and let ξA+ be its preimage under I . Similarly, for every ζ ∈ Γ, let ζA+ be
the preimage of ζI(A+) under I . W.l.o.g. assume that Σ and Γ are disjoint.
Let A∗ be the (Σ∪ Γ ∪{ξ})-expansion of ⟨A+ , ξA+⟩ by all these relations
and functions ζA+ . We can extend I to an interpretation J with

J (A∗) = ⟨I(A+), ξI(A+)⟩ .

Since κ > ∣Σ∣ ⊕ ∣Γ∣ we can use Proposition 3.5 to find a (Σ ∪ Γ ∪ {ξ})-
expansion A′ of A with A′ ≡ A∗. It follows that J (A′) is an (Γ ∪ {ξ})-
expansion of I(A) with J (A′) ≡ J (A∗) ≡ B+ ≡ B. ◻
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1. Definability in projectively saturated models
As an application of the notions introduced in the previous chapter we
study the relationship between definable relations and automorphisms.

Definition 1.1. Let L be an algebraic logic, M a structure, and U ⊆ M a
set of parameters.

(a)A tuple ā ⊆ M is L-definable over U if there is an L-formula φ(x̄; c̄)
with parameters c̄ ⊆ U such that φ(x̄; c̄)M = {ā}.

(b) The L-definitional closure of U is the set

dclL(U) ∶= { a ∈ M ∣ a is L-definable over U } .

The set U is L-definitional closed if it is a fixed point of dclL .
(c) We say that an L-formula φ(x̄; c̄) with parameters c̄ ⊆ M is algeb-

raic if φ(x̄; c̄)M is finite. An L-type p is algebraic if it implies an algebraic
formula.
We call a tuple ā ⊆ M L-algebraic over U if there is an algebraic

L-formula φ(x̄; c̄) with parameters c̄ ⊆ U such that M ⊧ φ(ā; c̄).
(d) The L-algebraic closure of U is the set

aclL(U) ∶= { a ∈ M ∣ a is L-algebraic over U } .

The set U is L-algebraically closed if it is a fixed point of aclL .
(e) For L = FO we simply say that ā is definable or algebraic over U

and we write dcl(U) and acl(U) without the index L.

Lemma 1.2. Let M be a structure. The operators dclFO and aclFO are closure
operators on M with finite character.
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Proof. Every element a ∈ U is definable over U by the formula x = a.
Consequently, U ⊆ dclFO(U) ⊆ aclFO(U).

If a is definable or algebraic over U by the formula φ(x; c̄), the same
formula can be used to show that a is definable or algebraic over any
set V ⊇ c̄. Consequently, U ⊆ V implies dcl(U) ⊆ dcl(V) and acl(U) ⊆
acl(V). Furthermore, it follows that a ∈ dcl(c̄) or a ∈ acl(c̄), respectively.
Hence, these operators have finite character.

Finally, suppose that a is definable over dcl(U). Let φ(x; c̄, d̄) be the
corresponding formula where d̄ ⊆ U and c̄ ⊆ dcl(U) ∖ U . For every
element c i , there is a formula ψ i over U with ψM

i = {c i}. We can define a
over U by the formula

φ′(x; d̄) ∶= ∃ ȳ[⋀
i

ψ i(y i) ∧ φ(x; ȳ, d̄)] .

The proof for acl is analogous. Suppose that a is algebraic over acl(U)
and let φ(x; c̄, d̄) be the formula witnessing this fact where d̄ ⊆ U and
c̄ ⊆ acl(U) ∖U . For every element c i , fix a formula ψ i over U such that
ψM

i is a finite set containing c i . Set m ∶= ∣φ(x , c̄, d̄)M∣. The following
formula shows that a is algebraic over U .

φ′(x; d̄) ∶= ∃ ȳ[⋀
i

ψ i(y i) ∧ ϑ( ȳ) ∧ φ(x; ȳ, d̄)] ,
where

ϑ( ȳ) ∶= ∀z0⋯∀zm[⋀
i

φ(z i ; ȳ, d̄)→ ⋁
i<k

z i = zk]
states that there are at most m elements z satisfying φ(z; ȳ, d̄). ◻

For strongly κ-homogeneous structures there is a tight relationship
between types and automorphisms.

Lemma 1.3. Let M be strongly κ-homogeneous and U ⊆ M a set of size∣U ∣ < κ. For ā, b̄ ∈ M<κ , the following statements are equivalent :
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(1) tp(ā/U) = tp(b̄/U)
(2) There is some automorphism π ∈ Aut M with

π ↾U = idU and π(ā) = b̄ .

Proof. (1) ⇒ (2) follows from the definition of a strongly κ-homoge-
neous structure, while (2)⇒ (1) follows from the fact that isomorphisms
preserve first-order formulae. ◻
As a consequence we can express the definitional closure and the

algebraic closure in terms of automorphisms.

Definition 1.4. Let M be a structure and U ⊆ M.
(a) Let ξ and ζ be two tuples or two relations in M. We say that ζ is a

conjugate of ξ over U if ξ is mapped to ζ by an automorphism of M that
fixes U pointwise.

For a sets of formulae Φ and Ψ we similarly say that Ψ is a conjugate
of Φ over U if there exists an automorphism π fixing U pointwise such
that

Ψ = {φ(x̄; π(c̄)) ∣ φ(x̄; c̄) ∈ Φ } .

(b) We define the following two closure operators on M :

dclAut(U) ∶= { a ∈ M ∣ a has exactly one conjugate over U } ,
aclAut(U) ∶= { a ∈ M ∣ a has only finitely many conjugates

over U } .

Exercise 1.1. Let M be a structure. Prove that dclAut and aclAut are closure
operators on M.

Example. Let V be a vector space and let U ⊆ V . Then

dclAut(U) = ⟪U⟫V .
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Remark. Let M be a structure and U ⊆ M. We can write the pointwise
stabiliser of U in Aut M and its setwise stabiliser as

(Aut M)(U) = Aut MU and (Aut M){U} = Aut ⟨M,U⟩ .

In arbitrary structures the relationship between dclL and dclAut and
between aclL and aclAut is as follows.

Lemma 1.5. Let L be an algebraic logic, M a structure, and U ⊆ M.
(a) dclL(U) ⊆ dclAut(U)
(b) aclL(U) ⊆ aclAut(U)

Proof. (a) If there is an automorphism π with π ↾U = idU and π(a) = b,
for a ≠ b, then

M ⊧ φ(a; c̄)↔ φ(b; c̄) ,
for all L-formulae φ and all parameters c̄ ⊆ U . Consequently, a is not
L-definable over U .

(b) Similarly, if the orbit of a under Aut MU is infinite then every
formula satisfied by a is also satisfied by infinitely many other elements.
Hence, a is not L-algebraic over U . ◻

For sufficiently saturated structures the two closure operators coincide.

Theorem 1.6. Let M be κ-saturated and strongly κ-homogeneous, a ∈ M
an element, and let U ⊆ M be a set of size ∣U ∣ < κ.

(a) The following statements are equivalent :
(1) a ∈ dclFO(U)
(2) a ∈ dclAut(U)
(3) tp(a/U) has exactly one realisation in M.

(b) The following statements are equivalent :
(1) a ∈ aclFO(U)
(2) a ∈ aclAut(U)
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(3) tp(a/U) has only finitely many realisations in M.

Proof. (a) (2)⇔ (3) follows by Lemma 1.3.
(1)⇒ (3) Fix a formula φ(x) over U that defines a. Since φ ∈ tp(a/U),

it follows that a is the only realisation of tp(a/U).
(3)⇒ (1) Suppose that a ∉ dclFO(U). It follows that, for every finite

set Φ of first-order formulae over U , there is some element b ≠ a such
that

M ⊧⋀Φ(a)↔⋀Φ(b) .

By the Compactness Theorem and the fact that M is κ-saturated, it
follows that we can find some element b ≠ a with

tp(a/U) = tp(b/U) .

(b) (2)⇔ (3) follows by Lemma 1.3.
(1)⇒ (3) Fix a formula φ(x) over U such that φM is a finite set contain-

ing a. Since φ ∈ tp(a/U) it follows that there are at most ∣φM∣ realisations
of tp(a/U).

(3)⇒ (1) We can use an analogous argument as in (a) to show that a ∉
aclFO(U) implies that there are infinitely many realisations of tp(a/U).◻
Corollary 1.7. Let M be a structure and U ⊆ M. Then

π[acl(U)] = acl(U) , for all π ∈ Aut MU .

Proof. Let a ∈ acl(U). To show that π(a) ∈ acl(U) we consider the set
A ⊆ M of all realisations of tp(a/U). By Theorem 1.6, A is a finite set
with A ⊆ acl(U). Consequently, π(a) ∈ A ⊆ acl(U). ◻
Corollary 1.8. Let M be κ-saturated and strongly κ-homogeneous, and
let A, B ⊆ M be sets of size ∣A∣, ∣B∣ < κ.

(a) The following statements are equivalent :
(1) A ⊆ dcl(B)
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(2) dcl(A) ⊆ dcl(B)
(3) Aut MA ⊇ Aut MB .

(b) The following statements are equivalent :
(1) A ⊆ dcl(B) and B ⊆ dcl(A)
(2) dcl(A) = dcl(B)
(3) Aut MA = Aut MB .

Proof. (b) follows from (a).
(a) (1)⇔ (2) Clearly, dcl(A) ⊆ dcl(B) implies A ⊆ dcl(A) ⊆ dcl(B).

Conversely, A ⊆ dcl(B) implies dcl(A) ⊆ dcl(dcl(B)) = dcl(B).
(1)⇒ (3) Suppose that A ⊆ dcl(B) and let π ∈ Aut MB . Then it follows

by Theorem 1.6 and definition of dclAut(B) that

π(a) = a , for all a ∈ dclAut(B) = dcl(B) ⊇ A .

Hence, π ∈ Aut MA.
(3)⇒ (1) Suppose that Aut MA ⊇ Aut MB and let a ∈ A. Then a ∈

dclAut(A) implies that

π(a) = a , for all π ∈ Aut MA .

In particular, we have

π(a) = a , for all π ∈ Aut MB .

By Theorem 1.6 and definition of dclAut(B), it follows that

a ∈ dclAut(B) = dcl(B) . ◻
As an application of Theorem 1.6, we present the following character-

isation of the algebraic closure.

Lemma 1.9. Let M be a Σ-structure that is κ-saturated and strongly κ-
homogeneous, for some cardinal κ > ∣Σ∣, and let U ⊆ M be a set of size∣U ∣ < κ. Then

acl(U) =⋂{A ∣ A ⪯M with U ⊆ A} .
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Proof. (⊆) Let A ⪯M be an elementary substructure containing U . To
show that acl(U) ⊆ A, consider an element a ∈ acl(U). There exists an
algebraic formula φ(x) over U with a ∈ φM. Let m ∶= ∣φM∣. Then

M ⊧ ∃mxφ(x) implies A ⊧ ∃mxφ(x) .

Since φA ⊆ φM it follows that φA = φM. Hence, a ∈ φA ⊆ A.(⊇) Suppose that a ∉ acl(U). We have to find an elementary sub-
structure A ⪯M containing U such that a ∉ A. By Theorem 1.6 and the
fact that M is κ-saturated, there exists a sequence (bα)α<κ of distinct
elements such that

tp(bα/U) = tp(a/U) , for all α < κ .

Using theTheorem of Löwenheim and Skolem,we can find an elementary
substructure A0 ⪯M containing U with

∣A0∣ ≤ ∣U ∣⊕ ∣Σ∣ < κ .

There exists an index α < κ with bα ∉ A0. Since M is strongly κ-homoge-
neous, we can find an automorphism π with π ↾U = idU and π(bα) = a.
Set A ∶= π[A0]. Then A ⪯M contains U but not a. ◻

After considering the definability of single elements we now study the
relationship between automorphisms and definable relations. Our first
result gives a characterisation of those relations that are definable over a
set U of parameters.

Lemma 1.10. Suppose that M is κ-saturated and strongly κ-homogeneous
and let U ⊆ M be a set of size ∣U ∣ < κ. An M-definable relation R ⊆ Mn

is U-definable if, and only if, π[R] = R, for all π ∈ Aut MU .

Proof. Clearly, a U-definable relation is invariant under all automorph-
isms of M that fix U pointwise. For the converse, suppose that R is
defined by the formula φ(x̄; c̄) with c̄ ⊆ M. Consider the set

Φ ∶= {φ(x̄; c̄) ∧ ¬φ(x̄′; c̄)}∪ {ψ(x̄)↔ ψ(x̄′) ∣ ψ a formula over U } .
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If Φ(x̄ , x̄′)∪Th(MM) is satisfiable then Φ is a partial type and, sinceM is
κ-saturated, there are elements ā, b̄ ∈ Mn satisfying Φ. Let π0 ∶ U ∪ ā →
U ∪ b̄ be the function with π0 ↾ U = idU and π0(ā) = b̄. By choice
of ā and b̄ this is an elementary partial function. Since M is strongly
κ-homogeneous, we can extend it to an automorphism π ∶ M → M. But
we have ā ∈ φM = R and π(ā) = b̄ ∉ φM = R. Hence, R is not invariant
under automorphisms of Aut MU . A contradiction.

Consequently, Φ∪Th(MM) is not satisfiable. Hence, there are finitely
many formulae ψ0 , . . . ,ψm−1 over U such that

M ⊧ ∀x̄∀x̄′[⋀
i
[ψ i(x̄)↔ ψ i(x̄′)]→ [φ(x̄; c̄)↔ φ(x̄′; c̄)]] .

For I ⊆ [m], define

χI(x̄) ∶=⋀
i∈I ψ i(x̄) ∧⋀

i∉I ¬ψ i(x̄) ,
and let

S ∶= { I ⊆ [m] ∣M ⊧ χI(ā) for some ā ∈ R } .

It follows that

ā ∈ R iff M ⊧⋁
I∈S χI(ā) .

Consequently, the formula ⋁I∈S χI(x̄) defines R over U . ◻
An analogous result for relations with finitely many conjugates will

be given in Lemma 3.11 below.
If the structure M is even projectively saturated, we can drop the

assumption that the relation R is M-definable. In particular, the following
result implies that FO has the Beth property.

Theorem 1.11. Let Σ, Ξ be disjoint signatures, κ > ∣Ξ∣, and T ⊆ FO0[Σ]
a first-order theory. For a complete Ξ-type p ∈ SΞ(T) and a relation
symbol R ∈ Ξ, the following statements are equivalent :
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(1) There is an FO<ω[Σ]-formula φ(x̄) such that

p ⊧ ∀x̄[Rx̄ ↔ φ(x̄)] .

(2) If M is a model of T and N0 ,N1 are realisations of p in M then
RN0 = RN1 .

(3) There is a model M of T which is either projectively κ-saturated, or
saturated and of cardinality at least ∣Σ ∪ Ξ∣, such that

RN0 = RN1 , for every pair N0 ,N1 of realisations of p in M.

(4) There is a model M of T which is either projectively κ-saturated, or
saturated and of cardinality at least ∣Σ ∪ Ξ∣, such that

π[RM+] = RM+ , for every realisation M+ of p in M and
each automorphism π ∈ Aut M.

Proof. The implications (1)⇒ (2) and (3)⇒ (4) are trivial. (2)⇒ (3)
is also trivial, except for the existence of M which follows by Corol-
lary e1.3.4.

(4)⇒ (1) The proof is similar to that of the preceding lemma. Let s̄ be
the type of R. We choose new constant symbols c̄ and d̄ and we set

Φ ∶= p ∪ {Rc̄,¬Rd̄} ∪ {ψ(c̄)↔ ψ(d̄) ∣ ψ ∈ FOs̄[Σ] } .

If Φ is inconsistent, there are finitely many formulae ψ0 , . . . ,ψm−1 ∈
FOs̄[Σ] such that

p ⊧ ∀x̄ ȳ[⋀
i<m
[ψ i(x̄)↔ ψ i( ȳ)]→ (Rx̄ ↔ R ȳ)] .

As above we define

χI(x̄) ∶=⋀
i∈I ψ i(x̄) ∧⋀

i∉I ¬ψ i(x̄) , for I ⊆ [m] .
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For every I ⊆ [m], it follows that we either have

p ⊧ χI(x̄)→ Rx̄ or p ⊧ χI(x̄)→ ¬Rx̄ .

Consequently, we can define R by the formula

φ(x̄) ∶=⋁
I∈S χI(x̄) where S ∶= { I ⊆ [m] ∣ p ⊧ χI(x̄)→ Rx̄ } .

It remains to consider the case where Φ has a model A. We claim that
this is impossible. Since p is complete it follows that A∣Σ ≡ M∣Σ . Con-
sequently, we can use Proposition e1.3.5 to expand M∣Σ to a model M+
of Φ. Let ā and b̄ be the values of the constants c̄ and d̄ in M+, respectively.
Then

⟨M∣Σ , ā⟩ ≡ ⟨M∣Σ , b̄⟩ .

Since M∣Σ is strongly ℵ0-homogeneous it follows that there is some
automorphism π ∈ Aut M∣Σ with π(ā) = b̄. But ā ∈ RM+

and π(ā) = b̄ ∉
RM+

contradicts our choice of M. ◻
Corollary 1.12. Let Σ, Ξ be disjoint signatures, R ∈ Ξ a relation symbol,
and T ⊆ FO0[Σ] a complete first-order theory. If p ∈ SΞ(T) is a complete
Ξ-type such that, for every realisation M of p and all automorphisms
π ∈ Aut M∣Σ , we have

π[RM] = RM ,

then there is an FO<ω[Σ]-formula φ(x̄) such that

p ⊧ ∀x̄[Rx̄ ↔ φ(x̄)] .

Proof. Since T has a projectively ∣Ξ∣+-saturated model, the claim follows
from Theorem 1.11. ◻
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Corollary 1.13. Let Σ, Ξ be disjoint signatures, R ∈ Ξ a relation symbol,
and T ⊆ FO0[Σ] a first-order theory. If p is a Ξ-type such that, for every
realisation M of p and all automorphisms π ∈ Aut M∣Σ , we have

π[RM] = RM ,

then there are finitely many formulae φ0(x̄), . . . , φn−1(x̄) ∈ FO<ω[Σ]
such that

p ⊧ ⋁
i<n

∀x̄[Rx̄ ↔ φ i(x̄)] .

Proof. If q ⊇ p is a complete Ξ-type, we can use the preceding corollary
to find a formula φq(x̄) defining R modulo q. Consequently,

p ⊧⋁{Rx̄ ↔ φq(x̄) ∣ q ⊇ p complete} .

By compactness, it follows that there are finitely many complete types
q0 , . . . , qn−1 ⊇ p with

p ⊧ ⋁
i<n
[Rx̄ ↔ φqi (x̄)] . ◻

Below we will frequently work in projectively saturated elementary
extensions of a given model. In order to simplify the presentation and to
avoid having to include phrases like ‘there exists an elementary extension
such that’, it turned out to be a good idea to fix such an extension once
and for all. If this structure is sufficiently saturated, we can use the
Amalgamation Theorem and Theorem e1.2.9 to embed all other models
we consider into it.

Thus, let us fix aprojectively κ-saturatedmodelM of T where κ is some
very large cardinal. We call M the monster model of T . All models M
of T we will consider are tacitly assumed to be elementary substructures
of M of size ∣M∣ < κ.

We call a relation R ⊆Mn small if ∣R∣ < κ. Otherwise, it is large. To dis-
tinguish small and large relations we denote the latter by blackboard bold
symbols A,B,C, . . . . Note that, by Lemma e1.2.17, definable relations are
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either finite or large. Mostly, we will only consider types p ∈ S s̄(U) over
small sets U of parameters. Note that every such type is realised in M.
Similarly, we will tacitly assume that all parameter-definable relations
are defined over a small set of parameters.

To simplify notation, we will drop the model M and write just ā ≡U b̄
instead of ⟨MU , ā⟩ ≡ ⟨MU , b̄⟩. By Lemma 1.3, it follows that ā ≡U b̄ if,
and only if, there exists a U-automorphism π of M mapping ā to b̄. We
extend this notation to sequences of sets A0 , . . . ,An , B0 , . . . , Bn ⊆M by
defining

A0 . . . An ≡U B0 . . . Bn

if there are enumerations ā i of A i and b̄ i of B i such that

tp(ā0 . . . ān/U) = tp(b̄0 . . . b̄n/U) .

2. Imaginary elements and canonical parameters
In this section we present a construction adding to a given structure
new elements representing all definable relations. More generally, we
add elements for every class of a definable equivalence relation.

Definition 2.1. Let M be an S-sorted structure. An equivalence formula
is a formula χ(x̄ , ȳ)without parameters defining an equivalence relation
on M s̄ , for some s̄ ∈ S<ω . The tuple s̄ is called the type of χ. We denote the
equivalence class of a tuple ā ∈ M s̄ by [ā]χ . The elements of the quotient
M s̄/χM are called imaginary elements.

Given M we construct a new structure Meq by adding all imaginary
elements.

Definition 2.2. Let M be an S-sorted Σ-structure.
(a) Set

Seq ∶= { χ ∣ χ an equivalence formula} ,
Σeq ∶= Σ ⊍ { pχ ∣ χ ∈ Seq } .
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We regard S as a subset of Seq via the identification of s ∈ S with the
formula (x = y) ∈ Seq, where x and y are variables of sort s.
We construct an Seq-sorted Σeq-structure Meq as follows. For every

equivalence formula χ of type s̄, the domain of sort χ is

Meq
χ ∶= M s̄/χM .

By the identification of s ∈ S with (x = y) ∈ Seq,we obtain an embedding
of M into Meq. We interpret the symbols of Σ ⊆ Σeq in Meq according
to this embedding. The new function symbols pχ are interpreted as the
canonical projections M s̄ → M s̄/χM.

(b) To avoid ambiguities we denote the definable closure and the
algebraic closure of a subset U ⊆ Meq by dcleq(U) and acleq(U), re-
spectively, while dcl(U) and acl(U) are the closures of U in the original
structure M.

Remark. (a) Every finite tuple ā ∈ M s̄ is encoded in Meq as a single
element [ā]χ ∈ Meq of sort

χ(x̄ , ȳ) ∶= x0 = y0 ∧ ⋅ ⋅ ⋅ ∧ xn−1 = yn−1 ,

where the variables x i and y i have sort s i .
(b) For each formula φ(x̄), we can define the equivalence formula

χ(x̄ , ȳ) ∶= φ(x̄)↔ φ( ȳ) .

There are two imaginary elements of sort χ : one representing φM, the
other one representing ¬φM. Consequently, Meq contains imaginary
elements for all relations definable without parameters.

The next proposition shows that, when considering the logical proper-
ties of a structure, the transition from M to Meq does not change much.
But we will see below that, when studying automorphisms, this construc-
tion allows us in certain cases to replace setwise stabilisers by pointwise
ones.

Proposition 2.3. Let M be a structure.
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(a) M is a relativised reduct of Meq.
(b) There exists a first-order interpretation mapping M to Meq.
(c) For every formula φ(x̄) ∈ FOs̄[Σeq], we can construct a formula

φ′(x̄) ∈ FOs̄[Σ] such that

Meq ⊧ φ(ā) iff M ⊧ φ′(ā) , for all ā ∈ M s̄ .

(d) A ≡ B implies Aeq ≡ Beq.
(e) Meq = ⟪M⟫Meq .
(f) Every element of Meq is definable over M.
(g) Every elementary embedding g ∶ A → B can be extended to an

elementary embedding Aeq → Beq in a unique way.
(h) The restriction map

ρ ∶ Aut Meq → Aut M ∶ π ↦ π ↾M

is a group isomorphism.
(i) For every U ⊆ M, we have

dcl(U) = dcleq(U) ∩ M and acl(U) = acleq(U) ∩ M .

Proof. (a) and (b) follow immediately from the definition of Meq.
(c) and (d) follow from (b) via Lemma c1.5.9 and Corollary c1.5.13,

respectively.
(e) Every imaginary element [ā]χ ∈ Meq is denoted by a term pχ ā

with parameters ā ⊆ M.
(f) follows immediately from (e).
(g) Let g ∶ A → B be an elementary embedding. It follows by (b)

and Lemma c2.2.10 that the map [ā]χ ↦ [g(ā)]χ is an elementary
embedding Aeq → Beq extending g. For uniqueness, suppose that there
are elementary embeddings h0 , h1 ∶ Aeq → Beq with h0 ↾ A = h1 ↾ A.
By Theorem b3.1.9, it follows that h0 ↾ ⟪A⟫Aeq = h1 ↾ ⟪A⟫Aeq . Hence,
(e) implies that h0 = h1.
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(h) First, note that ρ is well-defined since it follows by Lemma c2.2.10
and (a) that, for all π ∈ Aut Meq, the restriction π ↾M is indeed an auto-
morphism of M. Furthermore, ρ is obviously a group homomorphism.
Hence, it remains to show that it is bijective. For surjectivity, note that,
by (b), every automorphism of M can be extended to one of Meq. For
injectivity, note that, by (g), every automorphism of M can be extended
to at most one of Meq.

(i) To see that acl(U) ⊆ acleq(U) note that, if there is a formula φ
over U defining a finite set X in M then the same formula can be used
to define X in Meq. For the converse, suppose that φ is a formula over U
defining a finite set X ⊆ M in Meq. By (c), we can find a formula φ′
over U defining the same set in M. The claim for the definable closure is
proved analogously. ◻

According to the preceding proposition, the first-order theory of Meq

only depends on the theory of M. Consequently, we can extend the
operation eq to theories.

Definition 2.4. For a complete first-order theory T ,we denote the theory
Th(Meq) by Teq.

It also follows that adding imaginary elements does not change the
structure of the type spaces.

Corollary 2.5. Let U ⊆Meq and U0 ⊆M be sets.

dcleq(U) = dcleq(U0) implies Ss̄(Teq(U)) ≅ Ss̄(T(U0)) .

Proof. Since dcleq(U) = dcleq(U0), it follows by Proposition 2.3 and
Lemma c3.3.4 that FOs̄[ΣU0]/T(U0) is a retract of FOs̄[Σeq

U ]/Teq(U).
Consequently, the claim follows by Corollary c3.3.3. ◻
As a consequence, many logical properties of M and T transfer to

Meq and Teq. We give two examples.

Lemma 2.6. Let T be a complete first-order theory, M a structure, and
κ an infinite cardinal.
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(a) M is κ-saturated if, and only if, Meq is κ-saturated.
(b) T is κ-stable if, and only if, Teq is κ-stable.

Proof. (a) We have seen in Proposition e1.2.19 that κ-saturation is pre-
served under interpretations.

(b) (⇐) Suppose that Teq is κ-stable. To show that T is κ-stable,
consider a set U ⊆M of size ∣U ∣ ≤ κ. By Corollary 2.5, we have

Ss̄(T(U)) ≅ Ss̄(Teq(U)) .

Consequently, ∣S s̄(T(U))∣ = ∣S s̄(Teq(U))∣ ≤ κ.(⇒) Suppose that T is κ-stable and let U ⊆Meq be a set of size ∣U ∣ ≤ κ.
There exists a set C ⊆ M of size ∣C∣ ≤ ∣U ∣ ⊕ ℵ0 ≤ κ with U ⊆ dcleq(C).
By Corollary 2.5, we have

Ss̄(T(C)) ≅ Ss̄(Teq(U ∪ C)) .

Consequently, ∣S s̄(Teq(U))∣ ≤ ∣S s̄(Teq(U∪C))∣ = ∣S s̄(T(C))∣ ≤ κ. ◻
We have seen that the operation of adding imaginary elements is

well-behaved. But what do we gain by it? As an example, consider the
following problem. Suppose that a relation R is defined by a formula
φ(x̄; c̄) with parameters c̄. There might be many other parameters d̄
such that φ(x̄; d̄) defines the same relation R. Sometimes, we would like
the parameter c̄ to be unique. Using imaginary elements, this can be
done. We start by defining the equivalence formula

χ( ȳ, ȳ′) ∶= ∀x̄[φ(x̄; ȳ)↔ φ(x̄; ȳ′)] .

Then two tuples ā and b̄ are equivalent if φ(x̄; ā) and φ(x̄; b̄) define
the same relation. Consequently, the tuples in [c̄]χ are precisely those
defining R. The imaginary element e ∶= [c̄]χ is a unique representative
of this set. We obtain a formula

ψ(x̄; z) ∶= ∃y[φ(x̄; ȳ) ∧ pχ ȳ = z]
such that e is the unique element such that ψ(x̄; e) defines R. Let us
formalise this construction.
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Definition 2.7. Let φ(x̄; ȳ) be a formula.
(a) The parameter equivalence for φ is the formula

χ( ȳ, ȳ′) ∶= ∀x̄[φ(x̄; ȳ)↔ φ(x̄; ȳ′)] .

(b) A tuple c̄ is a canonical parameter of a relation R if there exists a
formula ψ(x̄; ȳ) such that c̄ is the unique tuple satisfying

ψ(x̄; c̄)M = R .

In this case, we call the formula ψ(x̄; c̄) a canonical definition of R.

In this terminology we can state the above remark as follows.

Lemma 2.8. Let χ be the parameter equivalence of a formula φ(x̄; ȳ). For
every tuple c̄, the imaginary element [c̄]χ ∈Meq

χ is a canonical parameter
of φ(x̄; c̄)M.

Proof. The formula

ψ(x̄; [c̄]χ) ∶= ∃ ȳ[φ(x̄; ȳ) ∧ pχ ȳ = [c̄]χ]
is a canonical definition of φ(x̄; c̄)M. ◻
Corollary 2.9. Every relation R ⊆Ms̄ that is definable over a set U ⊆M
has a canonical parameter e ∈ dcleq(U).

Thus, all parameter-definable relations R ⊆Ms̄ have canonical para-
meters in Meq. We will see in Corollary 2.12 below that the same is
true for parameter-definable relations in Meq. The reason for this is
that performing the operation eq twice does not offer any additional
benefit : according to the following proposition there exist, for every sort
χ ∈ (Seq)eq, a sort η ∈ Seq and a definable bijection (Meq)eq

χ → Meq
η .

Hence, every doubly imaginary element is already present as a singly
imaginary one.
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Proposition 2.10. For every equivalence formula χ(x̄ , ȳ) with type ζ̄ ∈(Seq)n , there exist a sort η ∈ Seq and a definable, surjective function

f ∶ (Meq)ζ̄ → (Meq)η
such that ker f = χMeq

.

Proof. Each sort ζ i ∈ Seq is itself an equivalence formula of some type
s̄ i ∈ S<ω . We set

η(x̄0 . . . x̄n−1 , ȳ0 . . . ȳn−1) ∶=
χ(pζ0 x̄0 , . . . , pζn−1 x̄n−1 , pζ0 ȳ0 , . . . , pζn−1 ȳn−1) .

Then η ∈ Seq is an equivalence formula of type s̄0 . . . s̄n−1. We claim that
the desired function f ∶ (Meq)ζ̄ → (Meq)η is defined by the formula

φ(x̄ , y) ∶= ∃z̄0⋯∃z̄n−1[⋀
i<n

x i = pζ i z̄ i ∧ pη z̄0 . . . z̄n−1 = y] .

Note that

Meq ⊧ φ(ᾱ, b)
if, and only if, there are tuples ā0 , . . . , ān−1 such that

ᾱ = ⟨[ā0]ζ0 , . . . , [ān−1]ζn−1⟩ and b = [ā0 . . . ān−1]η .

Since the equivalence class [ā0 . . . ān−1]η does not depend on the par-
ticular choice of representatives ā i ∈ [ā i]ζ i , the element b is uniquely
determined by ᾱ. Thus, φ defines a function f ∶ (Meq)ζ̄ → (Meq)η .

To see that f is surjective, note that, for every element [ā0 . . . ān−1]η ∈(Meq)η , we have

[ā0 . . . ān−1]η = f ([ā0]ζ0 , . . . , [ān−1]ζn−1) ∈ rng f .
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Hence, it remains to compute the kernel. Let ᾱ, ᾱ′ ∈ (Meq)ζ̄ and sup-
pose that ᾱ = ⟨[ā0]ζ0 , . . . , [ān−1]ζn−1⟩ and ᾱ′ = ⟨[ā′0]ζ0 , . . . , [ā′n−1]ζn−1⟩.
Then

f (ᾱ) = f (ᾱ′) iff Meq ⊧ ∃y[φ(ᾱ, y) ∧ φ(ᾱ′ , y)]
iff [ā0 . . . ān−1]η = [ā′0 . . . ā′n−1]η
iff Meq ⊧ η(ā0 . . . ān−1 , ā′0 . . . ā′n−1)
iff Meq ⊧ χ(ᾱ, ᾱ′) . ◻

We obtain the following generalisation of Lemma 2.8.

Corollary 2.11. Let M be a structure. For every formula φ(x̄; ȳ), there
exists a formula ψ(x̄; z̄) such that, for every tuple b̄ ⊆ Meq, there is a
unique tuple c̄ ⊆ Meq with

φ(x̄; b̄)Meq = ψ(x̄; c̄)Meq
.

Proof. Let φ(x̄; ȳ) be a formula with parameter equivalence χ( ȳ, ȳ′).
According to Proposition 2.10 there exists a definable and surjective
function f ∶ (Meq)ζ̄ → (Meq)η such that ker f = χM. We claim that the
formula

ψ(x̄; z̄) ∶= ∃ ȳ[φ(x̄; ȳ) ∧ f ( ȳ) = z̄]
has the desired properties.
We start by proving that φ(x̄; b̄)Meq = ψ(x̄; c̄)Meq

where c̄ ∶= f (b̄).
Clearly, every tuple satisfying φ(x̄; b̄) also satisfies ψ(x̄; c̄). Conversely,
suppose that ā satisfies ψ(x̄; c̄). Then there is some tuple b̄′ ∈ f −1(c̄)
such that ā ∈ φ(x̄; b̄′)Meq

. By definition of f , it follows that b̄′ ∈ [b̄]χ .
Hence, φ(x̄; b̄′)Meq = φ(x̄; b̄)Meq

. Consequently, ā satisfies φ(x̄; b̄).
It remains to show that c̄ is unique. Hence, suppose that c̄′ is some

tuple with φ(x̄; b̄)Meq = ψ(x̄; c̄′)Meq
. As f is surjective, there exists an

element b̄′ ∈ f −1(c̄′). Since

φ(x̄; b̄′)Meq = ψ(x̄; c̄′)Meq = φ(x̄; b̄)Meq
,

it follows that M ⊧ χ(b̄, b̄′). Consequently, c̄′ = f (b̄′) = f (b̄) = c̄. ◻
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Corollary 2.12. Every parameter-definable relation inMeq has a canonical
parameter.

3. Galois bases
We can characterise canonical parameters also in a more algebraic way
via automorphisms.

Definition 3.1. A Galois base, or canonical base, of a relation R ⊆Ms̄ is
a set B ⊆M such that

π[R] = R iff π ↾ B = idB , for all π ∈ AutM .

Remark. According to the definition, B is a Galois base or R if, and
only if, in AutM the setwise stabiliser of R coincides with the pointwise
stabiliser of B, i.e., if Aut⟨M,R⟩ = AutMB .

From the results of Section 1 it follows that, for parameter-definable
relations, Galois bases are the same as canonical parameters. But note
that the notion of a Galois base also applies to relations that are not
definable. Before giving the proof, let us present some technical lemmas.
The first one is an immediate consequence of Lemma 1.10.

Lemma 3.2. If B is a Galois base of a parameter-definable relation R, then
R is definable over B.

Lemma 3.3. Let R ⊆ Ms̄ be a relation and B ⊆ M a set. The following
statements are equivalent :

(1) B is a Galois base of R in the structureM.
(2) B is a Galois base of R in the structureMeq.

Proof. As the restriction map π ↦ π ↾M is an isomorphism between
AutMeq and AutM, the following two statements are equivalent :

◆ π[R] = R ⇔ π ↾ B = idB , for all π ∈ AutM .
◆ π[R] = R ⇔ π ↾ B = idB , for all π ∈ AutMeq .
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◻
Lemma 3.4. Let R be a relation and A, B sets.

(a) If dcl(A) = dcl(B), then A is a Galois base of R if, and only if, B is
a Galois base of R.

(b) If A and B are both Galois bases of R, then dcl(A) = dcl(B).
Proof. (a) Suppose that A is aGalois base ofR.ByCorollary 1.8, it follows
that

AutMB = AutMA = Aut⟨M,R⟩ .

Hence, B is a Galois base of R.
(b) Since both A and B are Galois bases, we have

AutMB = Aut⟨M,R⟩ = AutMA .

Therefore it follows by Corollary 1.8 that dcl(A) = dcl(B). ◻
With these preparations we can prove that, for parameter-definable

relations, Galois bases and canonical parameters are the same.

Proposition 3.5. Let R be a parameter-definable relation and b̄ a tuple.
The following statements are equivalent :

(1) b̄ is a Galois base of R.

(2) b̄ is a canonical parameter of R.

(3) dcleq(b̄) is the least dcleq-closed set over which R is definable.

Proof. (2)⇒ (1) Suppose that ψ(x̄; b̄) is a canonical definition of R. To
show that b̄ is a Galois base of R, consider an automorphism π of M.
Then

π(b̄) = b̄ implies π[R] = ψ(x̄; π(b̄))M = ψ(x̄; b̄)M = R .
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Conversely,

π[R] = R implies ψ(x̄; π(b̄))M = ψ(x̄; b̄)M .

By uniqueness of b̄, it follows that π(b̄) = b̄.
(1)⇒ (2) Suppose that b̄ is a Galois base of R. By Lemma 3.2, there

exists a formula φ(x̄; z̄) such that

R = φ(x̄; b̄)M .

First, let us show that there is no tuple b̄′ ≠ b̄ with

b̄′ ≡∅ b̄ and φ(x̄; b̄′)M = φ(x̄; b̄)M .

For a contradiction, suppose otherwise. Since b̄ and b̄′ have the same
type, there exists an automorphism π with π(b̄) = b̄′. It follows that

π[R] = π[φ(x̄; b̄)M] = φ(x̄; π(b̄))M = φ(x̄; b̄′)M = R .

Since b̄ is a Galois base of R, this implies that π(b̄) = b̄. Hence, b̄′ = b̄.
Contradiction.

Set Φ(x̄) ∶= tp(b̄). We have shown that

Φ( ȳ) ∪ Φ( ȳ′) ∪ {∀x̄[φ(x̄; ȳ)↔ φ(x̄; ȳ′)]} ⊧ ȳ = ȳ′ .

By compactness, there exists a finite subset Φ0 ⊆ Φ such that

Φ0( ȳ) ∪ Φ0( ȳ′) ∪ {∀x̄[φ(x̄; ȳ)↔ φ(x̄; ȳ′)]} ⊧ ȳ = ȳ′ .

Consequently, we obtain a canonical definition of R by setting

ψ(x̄; b̄) ∶= φ(x̄; b̄) ∧⋀Φ0(b̄) .

(2)⇒ (3) Let b̄ be a Galois base of R. We have seen in Lemma 3.2 that
R is definable over b̄. Suppose that R is definable over a dcleq-closed set
A ⊆Meq. For π ∈ AutMeq, it follows that

π ↾ A = idA implies π[R] = R implies π(b̄) = b̄ .
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Consequently, AutMeq
A ⊆ AutMeq

b̄ and it follows by Corollary 1.8 that
b̄ ⊆ dcleq(A).

(3)⇒ (1) We have seen in Corollary 2.9 that R has a canonical para-
meter e ∈Meq. By (3), this implies that dcleq(b̄) ⊆ dcleq(e). Conversely,
since R is definable over b̄, it follows by the already proved implication
(2)⇒ (3) that dcleq(e) ⊆ dcleq(b̄). Consequently, dcleq(e) = dcleq(b̄).
Note that, by the already established implication (1)⇒ (2), e is a Galois
base of R. Therefore, we can use Lemma 3.4 (a) to show that b̄ is also a
Galois base of R. ◻

Relations that are not definable still might have a Galois base. Of
particular interest are relations that are definable by types.

Definition 3.6. A Galois base of a type p ∈ S s̄(M) is a Galois base of the
relation pM defined by it.

For types, Galois bases do not necessarily exists. But if they do, they
are unique up to definable equivalence.

Definition 3.7. For a type p with Galois base B, we set

Gb(p) ∶= dcleq(B) .

Remark. By the Lemma 3.4, it follows that Gb(p) is the maximal Galois
base of p and that it does not depend on the choice of B.

Lemma 3.8. Let T be a complete first-order theory and p ∈ S s̄(M) a type.
If p is definable over U ⊆ M, it has a Galois base B ⊆ dcleq(U) of size∣B∣ ≤ ∣T ∣.
Proof. Let φ(x̄; ȳ) be a formula without parameters and let δφ( ȳ) be
a φ-definition of p over U . By Corollary 2.9, the relation Rφ ∶= (δφ)M
has a Galois base bφ ∈ dcleq(U). Set B ∶= { bφ ∣ φ a formula}. Then∣B∣ ≤ ∣T ∣ and B ⊆ dcleq(U). To show that B is a Galois base of p, consider
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an automorphism π ∈ AutMeq. Then

π(p) = p iff π[Rφ] = Rφ , for all φ
iff π(bφ) = bφ , for all φ
iff π ↾ B = idB ,

as desired. ◻
Corollary 3.9. In a stable first-order theory T , every complete type over a
set U has a Galois base in dcleq(U).
Proof. Let p be a complete type over U . According to Theorem c3.5.17,
p is definable over U . Hence, the claim follows by Lemma 3.8. ◻
Lemma 3.10. Let p ∈ S s̄(M) be a definable type and U ⊆ M a set of
parameters. Then p is definable over U if, and only if, Gb(p) ⊆ dcleq(U).
Proof. (⇒) follows by Lemma 3.8.(⇐)According to Lemma 3.8, p has aGalois baseB. Since p isdefinable
we can find, for every formula φ(x̄; ȳ), a definable relation Rφ such that

φ(x̄; c̄) ∈ p iff c̄ ∈ Rφ .

Since B ⊆ Gb(p) ⊆ dcleq(U), it is sufficient to show that Rφ is defin-
able over B. For each automorphism π ∈ AutMeq

B , we have π[p] = p.
Consequently, π[Rφ] = Rφ . Therefore, Lemma 3.2 implies that Rφ is
definable over B. ◻

We conclude this section with a characterisation of the algebraic clos-
ure in Meq. We start with an analogue of Lemma 1.10 for the algebraic
closure.

Lemma 3.11. A parameter-definable relation R has finitely many conjug-
ates over a set U ⊆M if, and only if, R is definable over acleq(U).
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Proof. (⇐) Suppose that R is definable over c̄ ⊆ acleq(U). Then

∣{ π[R] ∣ π ∈ AutMeq
U }∣ ≤ ∣{ π(c̄) ∣ π ∈ AutMeq

U }∣ < ℵ0 .

Hence, R has only finitely many conjugates over U .(⇒) Suppose that R has only finitely many conjugates over U and let
b̄ be a Galois base of R. Then

∣{ π(b̄) ∣ π ∈ AutMeq
U }∣ ≤ ∣{ π[R] ∣ π ∈ AutMeq

U }∣ < ℵ0 .

By Theorem 1.6, it follows that b̄ ⊆ acleq(U). Furthermore, we have seen
in Lemma 3.2 that R is definable over b̄. ◻

The algebraic closure of a set U inMeq can be characterised as follows.

Definition 3.12. Let U ⊆M be a set of parameters and s̄ a finite tuple of
sorts. We denote by FEs̄(U) the set of all formulae χ(x̄ , ȳ) over U where
x̄ and ȳ have sort s̄ such that χM is an equivalence relation on Ms̄ with
finitely many classes.

Lemma 3.13. Let ā, b̄ ∈Ms̄ be finite tuples and U ⊆M a set of parameters.
Then

ā ≡acleq(U) b̄ iff M ⊧ χ(ā, b̄) for all χ ∈ FEs̄(U) .

Proof. (⇒) Let χ ∈ FEs̄(U) and let B ∶= [b̄]χM ⊆ Ms̄ be the χM-class
of b̄. The conjugates of B over U are χM-classes. Since there are only
finitelymany such classes, it follows by Lemma 3.11 (b) that B is definable
over acleq(U). Therefore, we can use Proposition 3.5 and Corollary 2.9
to find a canonical definition ψ(x̄; e) of B where e ∈ dcleq(acleq(U)) =
acleq(U). Since

ā ≡acleq(U) b̄ ,
it follows that

M ⊧ ψ(b̄; e) implies M ⊧ ψ(ā; e) .
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Hence, ā ∈ B implies M ⊧ χ(ā, b̄).(⇐) Suppose that M ⊧ φ(ā; c̄), for c̄ ⊆ acleq(U). We have to show
that M ⊧ φ(b̄; c̄). There exists a formula ψ(x̄) over U such that ψM is a
finite set containing c̄. The formula

χ(x̄ , ȳ) ∶= (∀z̄.ψ(z̄))[φ(x̄; z̄)↔ φ( ȳ; z̄)]
defines an equivalence relation with finitely many classes. Therefore,
χ ∈ FEs̄(U) andM ⊧ χ(ā, b̄). Since c̄ ∈ ψM, it follows that

M ⊧ φ(ā; c̄) implies M ⊧ φ(b̄; c̄) . ◻
4. Elimination of imaginaries

In the abstract we can capture the property of Meq exhibited in Proposi-
tion 2.10 by the following definition.

Definition 4.1. A structure M has uniform elimination of imaginaries if,
for every equivalence formula χ(x̄ , ȳ) of type s̄, there exist sorts t̄ and a
definable function f ∶ M s̄ → M t̄ such that ker f = χM.

We say that a theory T has uniform elimination of imaginaries if every
model of T does.

We have shown in Proposition 2.10 that structures of the form Meq

have uniform elimination of imaginaries.

Proposition 4.2. Every structure of the form Meq has uniform elimination
of imaginaries.

Exercise 4.1. Show that the structure ⟨N,+, ⋅ ⟩ has uniform elimination
of imaginaries.

Frequently, the following weaker condition is equivalent to having
uniform elimination of imaginaries.
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Definition 4.3. A structure M has elimination of imaginaries if, for each
equivalence formula χ(x̄ , ȳ) of type s̄ and all tuples ā ∈ M s̄ , the equival-
ence class [ā]χ has a canonical parameter.
We say that a theory T has elimination of imaginaries if every model

of T does.

For structures where dcl(∅) is non-trivial, elimination of imaginaries
already implies uniform elimination of imaginaries.

Lemma 4.4. Let M be a structure. The following statements are equivalent :
(1) M has uniform elimination of imaginaries.
(2) M has elimination of imaginaries and at least one of the following

conditions holds :
◆ There is some sort u with ∣dcl(∅) ∩ Mu ∣ > 1.◆ ∣M s ∣ ≤ 1, for all sorts s.

Proof. (1)⇒ (2) To show that M has elimination of imaginaries, consider
an equivalence formula χ(x̄ , ȳ) and a tuple ā in M. By (1), there exists
a definable function f with ker f = χM. Then [ā]χ has the canonical
definition

ψ(x̄; b̄) ∶= ( f (x̄) = b̄) where b̄ ∶= f (ā) .

To conclude the proof, suppose that there is some sort s with ∣M s ∣ > 1.
We have to find a sort u with ∣dcl(∅)∩Mu ∣ > 1.Consider the equivalence
formula

χ(xx′ , yy′) ∶= (x = x′)↔ (y = y′)
of type ss. By (1), there exists a definable function f with ker f = χM. Fix
distinct elements c, d ∈ M s . It follows that the tuples ā ∶= f (c, c) and
b̄ ∶= f (c, d) are definable and distinct. Fixing an index i with a i ≠ b i ,
we obtain distinct elements a i and b i in dcl(∅) of the same sort.

(2)⇒ (1) If ∣M s ∣ ≤ 1, for all sorts s, every equivalence formula χ defines
the equality relation. Hence, the identity function has kernel χM and we
are done.
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It therefore remains to consider the case where ∣dcl(∅) ∩ Mu ∣ > 1, for
some sort u. Let χ(x̄ , ȳ) be an equivalence formula of type s̄. For every
tuple ā ∈ M s̄ , fix a canonical definition δ ā(x̄; b̄ ā) of [ā]χ . Let t̄ ā be the
sorts of b̄ ā . We obtain a formula

ψ ā(x̄; ȳ) ∶= δ ā(x̄ , ȳ) ∧ ∀z̄[δ ā(z̄; ȳ)↔ χ(x̄ , z̄)]
that defines a partial function f ā ∶ U ā → M t̄ ā with kernel χM∣U ā . Note
that the domain U ā of f ā is a union of χ-classes and that it is definable
by the formula

ϑ ā(x̄) ∶= ∃ ȳψ ā(x̄ , ȳ) .

Hence,

M s̄ = ⋃
ā∈M s̄

U ā implies Th(M) ⊧ ⋁
ā∈M s̄

ϑ ā .

By compactness, there are finitely many tuples ā0 , . . . , ān ∈ M s̄ such
that M s̄ = U ā0 ∪ ⋅ ⋅ ⋅ ∪U ān . Fix distinct elements c, d ∈ dcl(∅)∩Mu . The
formula

φ(x̄; ȳ0 , . . . , ȳn , z̄) ∶=
⋁
i≤n
[ψ ā i (x̄; ȳ i) ∧ x̄ ∈ U ā i ∖ (U ā0 ∪ ⋅ ⋅ ⋅ ∪U ā i−1)

∧⋀
j≠i

ȳ j = ⟨c, . . . , c⟩
∧ z̄ = ⟨c, . . . , c´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

i times

, d . . . , d⟩]
defines a function f ∶ M s̄ → M t̄ ā0 . . . t̄ ān u . . .u with ker f = χM. ◻
As an example, we consider o-minimal structures and, in particular,

real closed fields. We say that a theory T has definable Skolem functions
if, for every formula φ(x̄ , y), there exists a definable function f such
that

T ⊧ ∀x̄[∃yφ(x̄ , y)→ φ(x̄ , f (x̄))] .
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Proposition 4.5. Every o-minimal structure M with definable Skolem
functions has elimination of imaginaries.

Proof. We start by proving that every parameter-definable set P ⊆ M
has a canonical definition. Suppose that P ⊆ M is parameter-definable.
By o-minimality, P is of the form

P = (a0 , b0) ∪ ⋅ ⋅ ⋅ ∪ (am−1 , bm−1) ∪ {c0 , . . . , cn−1} ,
for elements a i , b i , c i ∈ M satisfying

a0 < b0 < a1 < b1 < ⋅ ⋅ ⋅ < am−1 < bm−1 and c0 < ⋅ ⋅ ⋅ < cn−1 .

Fix such a decomposition of P where m and n are minimal. Then

ψ(x; ā, b̄, c̄) ∶= [⋁
i<m
(a i < x ∧ x < b i) ∨⋁

i<n
x = c i]

∧ [⋀
i<m

a i < b i ∧ ⋀
i<m−1

b i < a i+1 ∧ ⋀
i<n−1

c i < c i+1]
is a canonical definition of P.

To show that M has elimination of imaginaries, let χ(x̄ , ȳ) be an equi-
valence formula of type s̄ and let ā ∈ M s̄ . To find a canonical definition
of [ā]χ , we define, by induction on i < n ∶= ∣s̄∣, a formula ψ i(y i ; z̄ i),
parameters b̄ i , and a definable function s i such that

◆ ψ i(y i ; b̄ i) is a canonical definition of the relation defined by

ϑ i(y i ; ā, b̄0 , . . . , b̄ i−1) ∶=∃y i+1⋯∃yn−1 χ(ā, s0(b̄0), . . . , s i−1(b̄ i−1),
y i , y i+1 , . . . , yn−1) ,

◆ M ⊧ ψ i(s i(b̄ i); b̄ i).
Suppose that we have already defined the formulae ψ0(y0; b̄0), . . . ,

ψ i−1(y i−1; b̄ i−1) and the functions s0 , . . . , s i−1. Since ϑ i defines a set, we
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can use the statement we have proved above to find a canonical defin-
ition ψ i(y i ; b̄ i) of ϑM

i (y i ; ā, b̄0 , . . . , b̄ i−1). Let s i be a definable Skolem
function for the formula ψ i(y i ; z̄ i). This concludes the inductive step.

We claim that the formula

ψ(x̄; b̄0 , . . . , b̄n−1) ∶=
χ(x̄ , s0(b̄0), . . . , sn−1(b̄n−1))∧ ⋀
i<n

∀y i[ψ i(y i ; b̄ i)↔ ϑ i(y i ; x̄ , b̄0 , . . . , b̄ i−1)]
is a canonical definition of [ā]χ . By construction, we have

ψ(x̄; b̄0 , . . . , b̄n−1)M = [ā]χ .

Suppose that b̄′0 , . . . , b̄′n−1 are tuples such that

ψ(x̄; b̄′0 , . . . , b̄′n−1)M = [ā]χ .

Then

ψ i(y i ; b̄′i)M = ϑ i( ȳ i ; ā, b̄′0 , . . . , b′i−1)M .

By choice of ψ i we can use induction on i to show that b̄′i = b̄ i . ◻
Corollary 4.6. The theory RCF of real closed fields has uniform elimination
of imaginaries.

Proof. After we have shown that RCF has definable Skolem functions,we
can use Proposition 4.5 to show that RCF has elimination of imaginaries.
Since 0, 1 ∈ dcl(∅), it therefore follows by Lemma 4.4 that it even has
uniform elimination of imaginaries.

Hence, it remains to show that RCF has definable Skolem functions.
Let φ(x̄ , y) be a formula. By o-minimality, for every choice of values c̄
for the variables x̄, the relation φ(ā, y)M is of the form

φ(c̄, y)M = (a0 , b0) ∪ ⋅ ⋅ ⋅ ∪ (am−1 , bm−1) ∪ {d0 , . . . , dn−1} ,
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for elements a i , b i , c i ∈ M satisfying

a0 < b0 < a1 < b1 < ⋅ ⋅ ⋅ < am−1 < bm−1 and d0 < ⋅ ⋅ ⋅ < dn−1 .

Furthermore, it follows by Theorem d3.3.11 that there exists a bound
k < ω such that, for every tuple c̄, we can choose a decomposition as
above where the numbers m and n are less than k.

Let ψ(x̄; y) be a formula stating that, for the given value of x̄, there
are numbers m, n < k and tuples ā, b̄, d̄ such that

◆ φ(x̄ , y′)M = (a0 , b0) ∪ ⋅ ⋅ ⋅ ∪ (am , bm) ∪ {d0 , . . . , dn},◆ m and n are the minimal numbers such that φ(x̄ , y′)M can be
written in this form,

◆ a0 < b0 < a1 < b1 < ⋅ ⋅ ⋅ < am−1 < bm−1 and d0 < ⋅ ⋅ ⋅ < dn−1,

◆ y =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d0 if n > 0 ,(a0 + b0)/2 if n = 0 , m > 0 , and −∞ < a0 < b0 <∞ ,
b0 − 1 if n = 0 , m > 0 , and −∞ = a0 < b0 <∞ ,
a0 + 1 if n = 0 , m > 0 , and −∞ < a0 < b0 =∞ ,
0 otherwise .

Then ψ(x̄ , y) defines a Skolem function for φ(x̄ , y). ◻
We can use Galois bases to characterise theories with elimination of

imaginaries.

Proposition 4.7. Let T be a complete first-order theory. The following
statements are equivalent :

(1) T has elimination of imaginaries.

(2) Every parameter-definable relation has a canonical parameter.

(3) Every parameter-definable relation has a finite Galois base.

(4) For every parameter-definable relation R, there exists a least dcleq-
closed set B ⊆M over which R is definable.
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(5) For every imaginary element e ∈ Meq, there is a finite set B ⊆ M
with dcleq(e) = dcleq(B).

Proof. (3)⇒ (4)⇔ (2) follows by Proposition 3.5.
(2)⇒ (1) Let χ(x̄ , ȳ) be an equivalence formula. If every parameter-

definable relation has a canonical parameter then, in particular, this is
true for every relation of the form [ā]χ .

(1)⇒ (5) Let e ∈Meq
χ be an imaginary element and E ∶= p−1

χ (e) the
corresponding equivalence class. Since T has elimination of imaginar-
ies, there exists a canonical definition ψ(x̄; b̄) of E. Obviously, we can
choose the tuple b̄ to be finite. According to Proposition 3.5, b̄ is a Galois
base of E. Note that, in the structure Meq, {e} is a Galois base of E.
Consequently, it follows by Lemmas 3.3 and 3.4 that

dcleq(e) = dcleq(b̄) .

(5)⇒ (3) Let R be a parameter-definable relation. We fix a formula
φ(x̄; c̄) with parameters c̄ defining R. Let χ( ȳ, ȳ′) be the parameter
equivalence for φ(x̄; ȳ) and set e ∶= [c̄]χ . By assumption, there exists
a finite set B ⊆ M such that dcleq(e) = dcleq(B). We claim that B is a
Galois base of R. Note that, by Lemma 3.3, it is sufficient to prove that
B is a Galois base of R in the structureMeq. Furthermore, it follows by
Lemma 2.8 and Proposition 3.5 that e is a Galois base of R. Therefore,
Lemma 3.4 (a) implies that B is also a Galois base of R. ◻
5. Weak elimination of imaginaries
In this section we take a look at a weaker condition than elimination of
imaginaries.

Definition 5.1. (a) A tuple c̄ is aweak canonical parameter of a relationR
if there exist a formula ψ(x̄; ȳ) such that c̄ is one of only finitely many
tuples satisfying

ψ(x̄; c̄)M = R .
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In this case, we call the formula ψ(x̄; c̄) a weak canonical definition of R.
(b) A complete first-order theory T has weak elimination of imagin-

aries if, for each equivalence formula χ(x̄ , ȳ) of type s̄ and all tuples
ā ∈Ms̄ , the equivalence class [ā]χ has a weak canonical parameter.

We start with an analogue of Proposition 3.5.

Lemma 5.2. Let R be a parameter-definable relation and U a set. The
following statements are equivalent :

(1) R has a weak canonical parameter c̄ with acl(c̄) = acl(U).
(2) acl(U) is the least algebraically closed set over which R is definable.

Proof. (1)⇒ (2) Let ψ(x̄; c̄) be a weak canonical definition of R. We
claim that acl(c̄) is the least algebraically closed set over which R is
definable. Obviously, R is definable over acl(c̄). To show that acl(c̄) is
the least such set, let φ(x̄; b̄) be an arbitrary formula defining R. We
have to prove that acl(c̄) ⊆ acl(b̄). The formula

ϑ( ȳ; b̄) ∶= ∀x̄[ψ(x̄; ȳ)↔ φ(x̄; b̄)]
defines the finite set { c̄′ ∣ ψ(x̄; c̄′)M = R}. This implies that c̄ ⊆ acl(b̄),
as desired.

(2)⇒ (1) Suppose that acl(U) is the least algebraically closed set over
which R is definable. Fix a formula ψ(x̄; c̄) with parameters c̄ ⊆ acl(U)
defining R. Note that, by assumption on U , it follows that acl(c̄) =
acl(U).
We start by proving that there are only finitely many tuples c̄′ such

that

c̄′ ≡∅ c̄ and ψ(x̄; c̄′)M = R .

For a contradiction, suppose otherwise. By compactness, we can then
find a tuple c̄′ such that

c̄′ ⊈ acl(c̄) , c̄′ ≡∅ c̄ , and ψ(x̄; c̄′)M = R .
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Since R is definable over c̄′ it follows by assumption on U that

c̄ ⊆ acl(U) ⊆ acl(c̄′) .

As c̄′ ≡∅ c̄, there exists an automorphism π with π(c̄′) = c̄. Setting
c̄′′ ∶= π(c̄) it follows that

c̄ ⊈ acl(c̄′′) and c̄′′ ⊆ acl(c̄) ,
Since, for every tuple ā,

M ⊧ φ(ā; c̄′′) iff M ⊧ φ(ā; π(c̄))
iff M ⊧ φ(π−1(ā); c̄)
iff M ⊧ φ(π−1(ā); c̄′)
iff M ⊧ φ(ā; π(c̄′)) iff M ⊧ φ(ā; c̄′) ,

it furthermore follows that ψ(x̄; c̄′′)M = R. But, by assumption on U ,
this implies that c̄ ⊆ acl(U) ⊆ acl(c̄′′). A contradiction.

Set Φ( ȳ) ∶= tp(c̄). We have shown that there exists a number n < ω
such that

Φ( ȳ0) ∪ ⋅ ⋅ ⋅ ∪ Φ( ȳn) ∪ {∀x̄[ψ(x̄; ȳ i)↔ ψ(x̄; ȳk)] ∣ i , k ≤ n }
is inconsistent. By compactness, we can find a finite subset Φ0 ⊆ Φ such
that

Φ0( ȳ0) ∪ ⋅ ⋅ ⋅ ∪ Φ0( ȳn) ∪ {∀x̄[ψ(x̄; ȳ i)↔ ψ(x̄; ȳk)] ∣ i , k ≤ n }
is already inconsistent. Consequently, the formula

ψ(x̄; c̄) ∧⋀Φ0(c̄)
is a weak canonical definition of R with acl(c̄) = acl(U). ◻
Corollary 5.3. If ā and b̄ are weak canonical parameters of a relation R,
then acl(ā) = acl(b̄).
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For relations that do have a Galois base, we can be more precise.

Lemma 5.4. Let R be a parameter-definable relation with Galois base b̄.
A tuple c̄ is a weak canonical parameter of R if, and only if,

b̄ ⊆ dcl(c̄) and c̄ ⊆ acl(b̄) .

Proof. By Proposition 3.5, we can fix a canonical definition ψ̂(x̄; b̄) of R.(⇒) Suppose that ψ(x̄; c̄) is a weak canonical definition of R. Then
b̄ ⊆ dcl(c̄) since b̄ is the unique tuple satisfying

ϑ(z̄; c̄) ∶= ∀x̄[ψ(x̄; c̄)↔ ψ̂(x̄; z̄)] .

Furthermore, c̄ ⊆ acl(b̄) since the formula

φ( ȳ; b̄) ∶= ∀x̄[ψ(x̄; ȳ)↔ ψ̂(x̄; b̄)]
defines a finite set containing c̄.(⇐) Let us first consider the special case where R = ∅. Then ∅ is a
Galois base of R and it follows by Lemma 3.4 that b̄ ⊆ dcl(∅). Hence,
c̄ ⊆ acl(∅) and there exists a formula ϑ( ȳ) that defines a finite relation
containing the tuple c̄. It follows that the formula

ψ(x̄; c̄) ∶= ¬ϑ(c̄)
is a weak canonical definition of R = ∅.

It remains to consider the casewhereR ≠ ∅. Fix formulae ϑ(z̄; ȳ) and
φ( ȳ; z̄) such that ϑ(z̄; c̄)M = {b̄} and φ( ȳ; b̄)M is a finite set containing c̄.
We claim that the formula

ψ(x̄; c̄) ∶= ∃z̄[ϑ(z̄; c̄) ∧ ψ̂(x̄; z̄) ∧ φ(c̄; z̄)]
is a weak canonical definition of R. Clearly, ψ(x̄; c̄)M = R. Furthermore,
suppose that c̄′ is a tuple such that ψ(x̄; c̄′)M = R. Fix a tuple ā ∈ R and
let b̄′ be a tuple such that

M ⊧ ϑ(b̄′; c̄′) ∧ ψ̂(ā; b̄′) ∧ φ(c̄′; b̄′) .
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Then R = ψ(x̄; c̄′)M = ψ̂(x̄; b̄′)M implies that b̄′ = b̄. Hence, we have
M ⊧ φ(c̄′; b̄). Since there are only finitely many such tuples c̄′, it follows
that ψ(x̄; c̄)M is a weak canonical definition of R. ◻
We obtain a characterisation of theories with weak elimination of

imaginaries along the same lines as Proposition 4.7.

Proposition 5.5. Let T be a complete first-order theory. The following
statements are equivalent :

(1) T has weak elimination of imaginaries.

(2) All parameter-definable relations have weak canonical parameters.

(3) For every parameter-definable relation R, there is a least algebrai-
cally closed set over which R is definable.

(4) For every element e ∈Meq, there is a finite set B ⊆M such that

e ∈ dcleq(B) and B ⊆ acleq(e) .

(5) For every imaginary element e ∈Meq, there exists a finite tuple s̄ of
sorts and a finite relation C ⊆Ms̄ such that

dcleq(e) = dcleq(B) , for every Galois base B of C .

Proof. (4)⇒ (1) Let e ∈Meq
χ be an imaginary element and E ∶= p−1

χ (e)
its equivalence class. By assumption, there exists a finite tuple c̄ ⊆ M
such that e ∈ dcleq(c̄) and c̄ ⊆ acleq(e). Since e is a Galois base of E it
follows by Lemma 5.4 that c̄ is a weak canonical parameter of E.

(1)⇒ (3) Let R be a relation defined by the formula φ(x̄; b̄) and let
χ be the parameter equivalence of φ. By assumption, there exists a finite
relation C and a formula ψ(z̄; ȳ) such that

ψ(z̄; c̄)M = [b̄]χ iff c̄ ∈ C .

We claim that acl(⋃C) is the desired algebraically closed set.
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First, note that R is defined over c̄ ⊆ acl(⋃C) by the formula

ϑ(x̄; c̄) ∶= ∃z̄[ψ(z̄; c̄) ∧ φ(x̄; z̄)] .

Next, suppose that A is an algebraically closed set such that R is
definable over A. For every π ∈ AutM, it follows that

π ↾ A = idA ⇒ π[R] = R
⇒ φ(x̄; π(b̄′))M = φ(x̄; b̄′)M , for all b̄′ ∈ [b̄]χ⇒ π[b̄]χ = [b̄]χ⇒ π[ψ(x̄; c̄)M] = ψ(x̄; c̄)M , for all c̄ ∈ C⇒ π[C] = C .

Since C is finite, it follows that every tuple c̄ ∈ C has finitely many
conjugates over A. Consequently, Theorem 1.6 implies that⋃C ⊆ acl(A).

(3) ⇒ (2) Let R be a parameter-definable relation. By assumption,
there exists a least algebraically closed set U over which R is definable.
Hence, we can apply Lemma 5.2 to obtain a weak canonical parameter
c̄ ⊆ U of R.

(2)⇒ (5) Let e ∈ Meq
χ be an imaginary element and E ∶= p−1

χ (e) its
equivalence class. By assumption, E has a weak canonical definition
ψ(x̄; c̄). Obviously, we may assume that c̄ is a finite tuple. Set

C ∶= { c̄′ ∣ ψ(x̄; c̄′)M = E} .

For an automorphism π ∈ AutMeq, it follows that

π(e) = e iff π[E] = E
iff ψ(x̄; π(c̄))M = ψ(x̄; c̄)M , for all c̄ ∈ C
iff π[C] = C .

Hence, e is a Galois base of C. Therefore, it follows by Lemma 3.4 (b)
that

dcleq(e) = dcleq(B) , for every Galois base B of C .
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(5)⇒ (4) Suppose that C = {c̄0 , . . . , c̄n} is a finite relation such that
dcleq(e) = dcleq(B), for every Galois base B of C. SinceMeq has elim-
ination of imaginaries, there exists a Galois base B ⊆ Meq of C. Con-
sequently, Lemma 3.4 (a) implies that e is also a Galois base of C.

Let π be an automorphisms of Meq. Then

π(c̄0 . . . c̄n) = c̄0 . . . c̄n implies π[C] = C
implies π(e) = e .

By Corollary 1.8, it follows that e ∈ dcleq(c̄0 . . . c̄n). Similarly,

π(e) = e implies π[C] = C
implies π(c̄0 . . . c̄n) = c̄σ(0) . . . c̄σ(n) ,

for some permutation σ .

Therefore, there are only finitely many conjugates of c̄0 . . . c̄n over e.
According to Theorem 1.6 this implies that c̄0 . . . c̄n ⊆ acleq(e). ◻

In later chapters we will present several conditions implying that a
theory has weak elimination of imaginaries. Here, we give only one
example.

Lemma 5.6. A theory T satisfying the following two conditions has weak
elimination of imaginaries :

◆ There is no strictly decreasing sequence A0 ⊃ A1 ⊃ . . . of sets of the
form A i = acl(B i) where each B i is finite.

◆ If A and B are algebraic closures of finite sets, then AutMA∩B is
generated by AutMA ∪AutMB .

Proof. By Proposition 5.5 it is sufficient to show that, for every para-
meter-definable relation R, there is a least algebraically closed set over
which R is definable.

Hence, letR beparameter-definable. First, let us show that, ifR isdefin-
able over two algebraically closed sets A and B of the form A = acl(A0)
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and B = acl(B0), for finite A0 and B0, then it is also definable over their
intersection A ∩ B. If R is definable over both A and B, Lemma 1.10
implies that

AutMA ∪AutMB ⊆ Aut⟨M,R⟩ .

Consequently, the second condition implies that

AutMA∩B = ⟪AutMA ∪AutMB⟫ ⊆ Aut⟨M,R⟩ .

Hence, it follows by Lemma 1.10 that R is definable over A∩ B.
By the first condition, it therefore follows that there is a least algebrai-

cally closed set over which R is definable. ◻
The following property is what is missing from weak elimination of

imaginaries in order to obtain full elimination of imaginaries.

Definition 5.7. A complete first-order theory T has elimination of finite
imaginaries if every finite relation has a finite Galois base in M.

As an example, we consider the theory of algebraically closed fields.
We will show later in Corollary ?? that this theory actually has uniform
elimination of imaginaries.

Lemma 5.8. The theory of algebraically closed fields of characteristic p
has elimination of finite imaginaries.

Proof. Let R = {c̄0 , . . . , c̄n−1} be a finite relation consisting of m-tuples
c̄ i = ⟨c i

0 , . . . , c i
m−1⟩. We define the polynomial

p(x , y0 , . . . , ym−1) ∶=∏
i<n
(x − c i

0 y0 − ⋅ ⋅ ⋅ − c i
m−1 ym−1) .

Let Z be the set of roots of p. Then

π[Z] = Z iff π[R] = R , for every automorphism π .

Since p is the only polynomial with set of roots Z, it follows that an
automorphism fixes p if, and only if, it permutes R. Consequently, the
coefficients of p form a Galois base of R. ◻
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Proposition 5.9. A theory T has elimination of imaginaries if, and only
if, it has both, elimination of finite imaginaries and weak elimination of
imaginaries.

Proof. (⇒) Since every canonical parameter is a weak canonical para-
meter, elimination of imaginaries implies weak elimination of implies.
Moreover, it follows by Proposition 4.7 (3) that every theory with elimin-
ation of imaginaries has elimination of finite imaginaries.(⇐) Let e ∈Meq. By Proposition 5.5, there exists a finite set C ⊆Ms̄

such that

dcleq(e) = dcleq(B) , for every Galois base B of C .

As T has elimination of finite imaginaries, the set C has a finite Galois
base B0 ⊆M. Hence,

dcleq(e) = dcleq(B0) .

By Proposition 4.7, it follows that T has elimination of imaginaries. ◻
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1. Isolated types
The usualway to construct structures in model theory consists inwriting
down an appropriate theory and proving that it is consistent. In particular,
we can reconstruct from the elementary diagram of a structure the
structure itself, or we can use it to obtain an elementary extension. If
we want to construct rich models realising many types then, as we have
seen in Chapter e1, this approach works well.

In the present chapter, on the other hand, we are interested in models
realising few types. We start by studying those types that are unavoidable
in the sense that they are realised in every model.

Definition 1.1. Let T be a theory.
(a) A formula φ isolates a type p (w.r.t. T) if φ ⊧ p modulo T . We

call a type p over U isolated if it is isolated by a formula φ(x̄ , c̄) with
parameters c̄ ⊆ U . In particular, a complete type p ∈ S s̄(U) is isolated if
and only if ⟨φ⟩ = {p}, i.e., p is an isolated point in the topology of S s̄(U).

(b) A structureA is atomic if every realised type p ∈ S<ω(∅) is isolated.
More generally, if B,U ⊆ A then we call B atomic over U if only isolated
types p ∈ S<ω(U) are realised in B.

Lemma 1.2. If p is isolated by φ(x̄) then p is realised in every model of
T ∪ {∃x̄φ}.
Lemma 1.3. If ā ⊆ acl(U) then tp(ā/U) is isolated.

Proof. Let M be amodel containing U . Since ā is algebraic over U we can
choose a formula φ(x̄ , c̄) with parameters c̄ ⊆ U such that M ⊧ φ(ā, c̄)
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and the set φ(x̄ , c̄)M is finite and of minimal size. We claim that this
formula isolates tp(ā/U).

For a contradiction suppose that there is some formula ψ(x̄ , d̄) ∈
tp(ā/U) such that φ ⊭ ψ. Then we can find a tuple b̄ ⊆ M with

M ⊧ φ(b̄, c̄) ∧ ¬ψ(b̄, d̄) .

It follows that

[φ(x̄ , c̄) ∧ ψ(x̄ , d̄)]M ⊆ φ(x̄ , c̄)M ∖ {b̄} ⊂ φ(x̄ , c̄)M ,

in contradiction to our choice of φ. ◻
Lemma 1.4. Every isolated type p ∈ S s̄(U) is definable over a finite subset
U0 ⊆ U.

Proof. Let φ(x̄ , c̄) be a formula over U isolating p. We claim that p is
definable over U0 ∶= c̄. Let ψ(x̄ , ȳ) be a formula and b̄ ⊆ U . Then we
have

ψ(x̄ , b̄) ∈ p iff T(U) ∪ {φ(x̄ , c̄)} ⊧ ψ(x̄ , b̄)
iff T(U) ⊧ ∀x̄[φ(x̄ , c̄)→ ψ(x̄ , b̄)] .

Consequently, δψ( ȳ) ∶= ∀x̄[φ(x̄ , c̄) → ψ(x̄ , ȳ)] is a ψ-definition of p
over U0. ◻
Lemma 1.5. tp(āb̄/U) is isolated if and only if the types tp(ā/U) and
tp(b̄/U ∪ ā) are isolated.

Proof. (⇐) If φ(x̄) isolates tp(ā/U) and ψ( ȳ, ā) isolates tp(b̄/U ∪ ā)
then the formula φ(x̄) ∧ ψ( ȳ, x̄) isolates tp(āb̄/U).(⇒) Let φ(x̄ , ȳ) be a formula isolating tp(āb̄/U). Then the formula
φ(ā, ȳ) isolates tp(b̄/U ∪ ā). Furthermore, we claim that ∃ ȳ′φ(x̄ , ȳ)
isolates tp(ā/U) where ȳ′ ⊆ ȳ is the finite tuple of those variables that
actually appear in φ. Suppose that ∃ ȳ′φ ∈ tp(c̄/U). Then there is some
tuple d̄ with φ ∈ tp(c̄d̄/U). Consequently, tp(c̄d̄/U) = tp(āb̄/U) and
tp(c̄/U) = tp(ā/U). ◻
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We conclude this section with a collection of basic facts about atomic
models.

Lemma 1.6. If A is atomic over U and ā ∈ A<ω then A is atomic over
U ∪ ā.

Proof. For every finite tuple b̄ ∈ A<ω we know that tp(āb̄/U) is isolated.
By Lemma 1.5 it follows that tp(b̄/U ∪ ā) is also isolated. ◻
Lemma 1.7. Let A ⊆ B ⊆ C. If C is atomic over B and B is atomic over A
then C is atomic over A.

Proof. Let c̄ ⊆ C and suppose that tp(c̄/B) is isolated by φ(x̄ , b̄). Fix
some formula ψ( ȳ, ā) isolating tp(b̄/A). We claim that tp(c̄/A) is isol-
ated by the formula χ ∶= ∃ ȳ[φ(x̄ , ȳ) ∧ ψ( ȳ, ā)].

Suppose that χ ∈ tp(d̄/A). Then there is some tuple ē with

φ(d̄ , ē),ψ(ē , ā) ∈ tp(d̄ ē/A) .

Consequently, we have tp(ē/A) = tp(b̄/A) and there exists an A-auto-
morphism π with π(ē) = b̄. Let d̄′ ∶= π(d̄). Then tp(d̄′/b̄) = tp(d̄/ē)
and φ(x̄ , b̄) ∈ tp(d̄′/b̄) implies that tp(d̄′/B) = tp(c̄/B). It follows that

tp(d̄/A) = tp(d̄′/A) = tp(c̄/A) . ◻
The following two remarks follow immediately from the definition of

an atomic model.

Lemma 1.8. (a) Every elementary substructure of an atomic model is
atomic.

(b) The union of an elementary chain of atomic models is atomic.

2. The Omitting Types Theorem
We have seen in Section c2.4 how to build structures from a given set of
formulae. In order to find structures realising only certain types we take
a closer look at this construction. First, let us determine a minimal set
of sorts a model has to realise.
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Lemma 2.1. Let Σ be an S-sorted signature and T ⊆ FO0[Σ] a first-order
theory. There exists a minimal set S0 ⊆ S such that T has a model A with

As ≠ ∅ iff s ∈ S0 .

Proof. Let S be the class of all sets S0 ⊆ S such that T has a model A
with A = ⋃s∈S0 As . It is sufficient to show that the partial order ⟨S , ⊇⟩ is
inductively ordered. Let (S i)i∈I be a decreasing sequence of sets S i ∈ S
and set S∞ ∶= ⋂i S i . We claim that S∞ ∈ S . Let

Φ ∶= T ∪ { ηs ∣ s ∈ S ∖ S∞ } ,
where ηs ∶= ¬∃xs(xs = xs) states that there are no elements of sort s.
Every model of Φ witnesses that S∞ ∈ S .

To prove that Φ is satisfiable let Φ0 ⊆ Φ be finite. Then there are sorts
s0 , . . . , sn ∈ S∞ such that

Φ0 ⊂ T ∪ {ηs0 , . . . , ηsn} .

Hence, we can find some index i ∈ I with s0 , . . . , sn ∈ S ∖ S i . By assump-
tion there is some S i-sorted model A of T . It follows that A ⊧ Φ0. ◻

We have seen in Section c2.4 how to construct Herbrandmodels from
Hintikka sets. To refine this construction we introduce a special kind of
Hintikka set called a Henkin set.

Definition 2.2. Let Φ ⊆ FO0[Σ] be a set of sentences and C ⊆ Σ a set of
constant symbols.

(a) Φ has the Henkin property with respect to C if, for every formula
φ(x) ∈ FO1[Σ], there is some constant c ∈ C such that

∃xφ(x)→ φ(c) ∈ Φ .

(b) We say that Φ is a Henkin set for a set Φ0 ⊆ FO0[Σ] with respect
to C if Φ0 ⊆ Φ, Φ is complete, and Φ has the Henkin property with
respect to C.
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Lemma 2.3. Every Henkin set is a Hintikka set.

Corollary 2.4. Every Henkin set Φ with respect to C has a Herbrand
model H where every element is denoted by some constant from C.

Proof. We have seen in Lemma c2.4.6 that Φ has a Herbrand model H
where every element is denoted by some term. Since Φ is a Hintikka set,
we can find, for every term t a constant c ∈ C with

∃x(x = t)→ c = t ∈ Φ .

Therefore, every element is denoted by some constant in C. ◻
The class of all Henkin sets is in one-to-one correspondence with the

class of all Herbrand models. In the next lemma we prove that this class
forms a co-meagre set in the type topology.

Lemma 2.5. Suppose that Σ is a countable signature, T ⊆ FO0[Σ] a theory,
and, for every sort s, let Cs be a countably infinite set of constant symbols
of sort s with Cs ∩ Σ = ∅. Set C ∶= ⋃s Cs and

S0
C(T) ∶= S(FO0[ΣC]/T) .

(a) The complement of the set

H(T) ∶= { p ∈ S0
C(T) ∣ p is a Henkin set for T w.r.t. C }

is meagre in S0
C(T).

(b) If s̄ is a finite tuple of sorts and Φ ⊆ FOs̄[Σ] is a set such that ⟨Φ⟩S s̄(T)
is nowhere dense then the complement of

O(Φ) ∶= { p ∈ S0
C(T) ∣ for every c̄ ∈ C<ω , there is some φ ∈ Φ

with ¬φ(c̄) ∈ p}
is meagre in S0

C(T).
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Proof. (a) We have

H(T) = ⋂
φ∈FO1[ΣC]Hφ where Hφ = ⋃

c∈C ⟨∃xφ(x)→ φ(c)⟩S0
C(T) .

Since FO1[ΣC] is countable, we can show that the complement of H(T)
is meagre by proving that the complement of each Hφ is nowhere dense.
Because Hφ is open, it is sufficient to show that its complement has
empty interior, that is, that Hφ is dense.

Let ⟨ψ⟩S0
C(T) be a nonempty basic open set and fix some model

M ⊧ T ∪ {ψ} .

Choose some element a ∈ M with

M ⊧ ∃xφ(x)→ φ(a) .

Let D ⊆ C be the set of constant symbols appearing in ψ or φ. This set is
finite and we have

M∣ΣD ⊧ T ∪ {ψ, ∃xφ(x)→ φ(a)} .

Fix some constant symbol c ∈ C ∖ D of the same sort as a and let N be a
ΣC-expansion of M∣ΣD with cN = a. Then

N ⊧ T ∪ {ψ, ∃xφ(x)→ φ(c)} .

Hence, Th(N) ∈ ⟨ψ⟩S0
C(T) ∩Hφ ≠ ∅.

(b) We have

O(Φ) = ⋂
c̄∈C<ω

O c̄ where O c̄ = ⋃
φ∈Φ ⟨¬φ(c̄)⟩S0

C(T) .

As above it is sufficient to prove that each set O c̄ is dense. Consider a
nonempty basic open set ⟨ψ(c̄, d̄)⟩S0

C(T) where ψ ∈ FO[Σ] and d̄ ⊆ C ∖ c̄.
Fix some model M ⊧ T ∪ {ψ(c̄, d̄)}. Then

⟨M∣Σ , c̄⟩ ⊧ T ∪ {∃ ȳψ(x̄ , ȳ)} .
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Hence, ⟨∃ ȳψ(x̄ , ȳ)⟩S s̄(T) ≠ ∅. Since ⟨Φ⟩S s̄(T) is nowhere dense it follows
that

⟨∃ ȳψ(x̄ , ȳ)⟩S s̄(T) ∖ ⟨Φ⟩S s̄(T) ≠ ∅ .

Fix some model ⟨N0 , ā⟩ with

Th(N0 , ā) ∈ ⟨∃ ȳψ(x̄ , ȳ)⟩S s̄(T) ∖ ⟨Φ⟩S s̄(T) .

There is some formula φ ∈ Φ such that

N0 ⊭ φ(ā) .

Furthermore, we can find a tuple b̄ ⊆ N0 with

N0 ⊧ ψ(ā, b̄) .

Let N be a ΣC-expansion of N0 with c̄N = ā and d̄N = b̄. Then we have

Th(N) ∈ ⟨ψ⟩S0
C(T) ∩ O c̄ ≠ ∅ . ◻

After these preparations we can prove that every meagre set of types
is omitted in some model.

Theorem 2.6 (Omitting Types Theorem). Let Σ be a countable S-sorted
signature and T ⊆ FO[Σ] a countable first-order theory. For every s̄ ∈ S<ω ,
let X s̄ ⊆ S s̄(T) be a meagre set of types. There exists a model of T that
omits every type in ⋃s̄ X s̄ .

Proof. For every sort s, fix a countably infinite set Cs of constant symbols
disjoint from Σ. Each set X s̄ can bewritten as X s̄ = ⋃n<ω Xn

s̄ ,where Xn
s̄ is

nowhere dense. Let Φn
s̄ be a set of formulae such that ⟨Φn

s̄ ⟩ = cl(Xn
s̄ ). By

the preceding lemma, we know that

Y ∶= H(T) ∩ ⋂
s̄∈S<ω

⋂
n<ω

O(Φn
s̄ )
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is a countable intersection of sets whose complement is meagre. Hence,
the complement of Y is meagre. By Theorem b5.5.8 it follows that Y itself
is also dense. Fix some type p ∈ Y .
By Corollary 2.4, there exists a Herbrand model H of p where every

element is denoted by some constant in C. If ā ∈ H s̄ is a finite tuple
denoted by the constants c̄ ⊆ C then we have

tp(ā) = {φ(x̄) ∣ φ(c̄) ∈ p} ∉ X s̄ .

Hence, no tuple in H realises a type in X s̄ . ◻
Corollary 2.7. Let Σ be a countable signature and T ⊆ FO[Σ] a first-order
theory. Let pn , n < ω, be a sequence of non-isolated partial types over T.
There exists a model of T that omits every pn , n < ω.

Let us give a simple example showing that the Omitting Types The-
orem fails for uncountable theories.

Example. Let Σ ∶= { c i ∣ i < ω1 } ∪ { dn ∣ n < ω } be a signature of
constant symbols and let

T ∶= { c i ≠ ck ∣ i ≠ k } ∪ { d i ≠ dk ∣ i ≠ k }
be the theory stating that the values of the c i are distinct and that the
values of the dn are distinct. Consider the partial 1-type

Φ ∶= { x ≠ dn ∣ n < ω } .

This type is not isolated since there is no formula φ(x) implying that
x is different from all constants dn . On the other hand, every model of T
has uncountably many elements and, therefore, realises Φ.

Theorem 2.8. Let T be a countable complete theory with infinite models.
There exists a family (Mξ)ξ<2ℵ0 of models of T such that every complete
type that is realised in at least two of the models is isolated.
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Proof. For every sort s, fix a countably infinite set Cs of constant sym-
bols disjoint from Σ. Set C ∶= ⊍s Cs and let (φn)n be an enumera-
tion of FO1[ΣC]. We fix an enumeration ⟨un , c̄n , d̄n⟩n<ω of all triples
in 2<ω × C<ω × C<ω such that c̄n and d̄n have the same length and the
same sorts. We assume that the enumeration has been chosen such that
every triple appears infinitely often in the sequence.
We construct an increasing chain T0 ⊆ T1 ⊆ . . . of finite trees Tn ⊆ 2<ω

and, for each w ∈ 2<ω , we define a finite set Φw ⊆ FO0[ΣC] of formulae
such that Φu ⊆ Φw , for u ⪯ w.
We start with T0 ∶= {⟨⟩} and Φ⟨⟩ ∶= ∅. For the inductive step, suppose

that we have already defined Tn and Φw , for w ∈ Tn . To define Tn+1 we
distinguish two cases. If un ∉ Tn then we simply set

Tn+1 ∶= {w0 ∣ w a leaf of Tn } ,
and, for every leaf w of Tn ,

Φw0 ∶= Φw ∪ {∃xφn → φn(c)} ,
where c ∈ C is some new constant symbol not appearing in any formula
of Φw .

It remains to consider the case that un ∈ Tn . Let v0 , . . . , v l−1 be an
enumeration of all leaves v of Tn with un ⪯ v, and let w0 , . . . ,wm−1 be
an enumeration of all leaves w with un ⪯̸ w. We define sets

Φw i = Ψ i−1 ⊆ Ψ i
0 ⊆ ⋅ ⋅ ⋅ ⊆ Ψ i

l−1 , for i < m ,

Φv j = Θ j−1 ⊆ Θ j
0 ⊆ ⋅ ⋅ ⋅ ⊆ Θ j

m−1 , for j < l ,

as follows. We start with Ψ i−1 ∶= Φw i and Θ j−1 ∶= Φv j . Suppose that we
have already defined Ψ i

j and Θ j
i , for all pairs ⟨i , j⟩ lexicographically less

than ⟨i0 , j0⟩. To define Ψ i0
j0 and Θ j0

i0 we set

ψ(c̄n , ē) ∶=⋀Ψ i0
j0−1 and ϑ(d̄n , f̄ ) ∶=⋀Θ j0

i0−1 ,
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where ē ⊆ C contains all constants in Ψ i0
j0−1 different from c̄n , and f̄ ⊆ C

contains all constants in Θ j0
i0−1 different from d̄n . If ⟨∃ ȳψ(x̄ , ȳ)⟩S(T) is a

singleton then we set

Ψ i0
j0 ∶= Ψ i0

j0−1 and Θ j0
i0 ∶= Θ j0

i0−1 .

Otherwise, we choose some type q ∈ ⟨∃ ȳϑ(x̄ , ȳ)⟩S(T). By assumption,
we can find a type p ∈ ⟨∃ ȳψ(x̄ , ȳ)⟩S(T) different from q. We fix some
formula η(x̄) ∈ p ∖ q and set

Ψ i0
j0 ∶= Ψ i0

j0−1 ∪ {η(c̄n)} and Θ j0
i0 ∶= Θ j0

i0−1 ∪ {¬η(d̄n)} .

Having defined all Ψ i
j and Θ j

i we set

Φ′
w i
∶= Ψ i

l−1 ∪ {∃xφn → φn(c)} ,
Φ′

v j
∶= Θ j

m−1 ∪ {∃xφn → φn(c)} ,
where c ∈ C is some constant not appearing in any set Ψ i

j or Θ j
i . Let

z0 , . . . , zk−1 be an enumeration of all leaves z of Tn such that the set⟨Φ′
z⟩S(T(C)) contains at least two types, and let u0 , . . . , ur−1 be an enu-

meration of all other leaves of Tn . We define

Tn+1 ∶= Tn ∪ { z ib ∣ i < k, b ∈ [2] } ∪ {u i0 ∣ i < r } ,
and Φu i0 ∶= Φ′

u i
, for i < r. For each i < k, we chose distinct types

pi , qi ∈ ⟨Φ′
z i
⟩S(T(C)) and some formula η i ∈ pi ∖ qi . Then we set

Φz i0 ∶= Φ′
z i
∪ {¬η i} and Φz i 1 ∶= Φ′

z i
∪ {η i} .

This completes the construction of Tn+1. To define the models Mξ
let Tω ∶= ⋃n Tn . A sequence β ∈ 2ω is a branch of Tω if β ↾ n ∈ Tω , for
all n < ω. For each branch β of Tω , we define a sequence β∗ ∈ 2<ω as
follows. Let

I ∶= { n < ω ∣ (β ↾ n)0 ∈ Tω and (β ↾ n)1 ∈ Tω } ,
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and let n0 < n1 < . . . be an enumeration of I. We define β∗ ∈ 2∣I∣ by
β∗(i) ∶= β(n i) , for i < ∣I∣ .

For each ξ ∈ 2ω , there is a unique branch βξ with β∗ξ ⪯ ξ. We define

Ψξ ∶= ⋃
n<ω

Φβξ↾n .

It follows by compactness that each set Ψξ is satisfiable. Furthermore,
the above construction ensures that each of these sets has the Henkin
property with respect to C. Hence, we can use Corollary 2.4 to find a
Herbrand model Mξ of Ψξ .

It remains to prove that every type realised in two different models is
isolated. Suppose that

tp(c̄/Mξ) = tp(d̄/Mζ) where ξ ≠ ζ .

If β∗ξ is finite then ⟨Φβ∗ξ ⟩S(T(C)) = {p} is a singleton and every type
realised in Mξ ⊧ Φβ∗ξ is isolated. Similarly, if β∗ζ is finite then tp(d̄/Mζ)
is isolated.

Hence, suppose that β∗ξ and β∗ζ are both infinite. Then there is some
n < ω such that

c̄n = c̄ , d̄n = d̄ , un ∈ Tn , and βξ ⊓ βζ ≺ un ≺ βζ .

Let w be the leaf of Tn with w ≺ βξ and let v be the leaf with v ≺ βζ . By
construction of Tn+1 it follows that either there is a formula isolating
tp(c̄/Mξ), or there is some formula η(c̄) ∈ Φ′

w ⊆ Ψξ with ¬η(d̄) ∈ Φ′
v ⊆

Ψζ . In the first case we are done, whereas in the second case we obtain
tp(c̄/Mξ) ≠ tp(d̄/Mζ), a contradiction. ◻
3. Prime and atomic models
Not every theory has atomic models, but for countable signatures we
can use the Omitting Types Theorem to construct such models.
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Theorem 3.1. Let T be a countable complete theory. If S s̄(T) is countable,
for all finite tuples s̄, then there exists a countable atomic model of T.

Proof. For every s̄, there are at most countably many non-isolated s̄-
types.Consequently, they form ameagre set andwe can use theOmitting
Types Theorem to find a model of T that realises none of them. ◻
Lemma 3.2. Let T be a countable complete theory. If ∣S s̄(T)∣ < 2ℵ0 , for
all finite s̄, then T has an atomic model over A, for every finite set A of
parameters.

Proof. By Corollary b5.7.5, it follows that each type space S s̄(T) is count-
able. Let ā be an enumeration of A. Since tp(b̄/ā) is determined by
tp(b̄ā) it follows that S s̄(A) is also countable. Hence, according to the
preceding theorem T(A) has an atomic model. ◻

If the type space is too large, atomic models might not exist.

Example. Consider the theory T ∶= Th(C) where C ∶= ⟨2ω , (Pn)n<ω⟩
and

Pn ∶= { α ∈ 2ω ∣ α(n) = 1} .

As we have seen in the example on page 534, the type space S1(T) is
homeomorphic to the Cantor discontinuum 2ω , which does not contain
isolated points. Consequently, no type is isolated and T does not have
atomic models.

Theorem 3.3. Let T be a countable complete first-order theory. There exists
an atomic model of T if, and only if, the set of isolated s̄-types is dense
in S s̄(T), for every finite s̄.

Proof. Let X ⊆ S s̄(T) be the set of all isolated s̄-types. If T has an atomic
model M then X is the set of types realised in M. By Lemma c3.2.6 it
follows that X is dense. Conversely, if X is dense then its complement
Ys̄ ∶= S s̄(T)∖ X is closed and has empty interior. By the Omitting Types
Theorem, there exists a model M of T omitting all types in ⋃s̄ Ys̄ . This
model is atomic. ◻
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Corollary 3.4. Let T be a countable complete theory. If

rkCB(Sn(T)) <∞ , for all n < ω ,

then T has an atomic model.

Proof. Immediately by Theorem 3.3 and Proposition b5.5.12. ◻
Intuitively, an atomic model is the opposite of a saturated one. The

next lemma shows that these models also behave in the opposite way
with respect to the relation ⊑ℵ0

FO.

Lemma 3.5. (a) If A is atomic then we have A ⊑ℵ0
FO B, for all B ≡ A.

(b) If A is a structure with countable signature such that A ⊑ℵ0
FO B, for

all B ≡ A, then A is atomic.

Proof. (a) Suppose that

⟨A, ā⟩ ≡FO ⟨B, b̄⟩ .

We have to prove the forth property. Let c ∈ A and choose some formula
φ(x̄ , y) isolating p ∶= tp(āc/A). Then

A ⊧ ∃yφ(ā, y) implies B ⊧ ∃yφ(b̄, y) .

Consequently, there exists some d ∈ B such that B ⊧ φ(b̄, d). It follows
that tp(b̄d/B) = p and, hence,

⟨A, āc⟩ ≡FO ⟨B, b̄d⟩ .

(b) Suppose that A contains a finite tuple ā ⊆ Awhose type tp(ā) is
not isolated. By the Omitting Types Theorem there is a structure B ≡ A
omitting tp(ā). If A ⊑ℵ0

FO B then there would be some tuple b̄ ⊆ B
such that ⟨A, ā⟩ ≡ ⟨B, b̄⟩. Consequently, tp(b̄/B) = tp(ā/A) would be
realised in B. Contradiction. ◻
Corollary 3.6. If A ≡ B are atomic then A ≡ℵ0

FO B.
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Corollary 3.7. Every atomic model is ℵ0-homogeneous.

Proof. By the preceding corollary we have A ≡ℵ0
FO A, for every atomic

structure A. ◻
If a countable theory T has atomic models then it has a unique count-

able one. Furthermore, this countable atomic model can be embedded
into every other model of T .

Definition 3.8. A structure A is a prime model of a theory T if, for ever
model B ⊧ T , there exists an elementary embedding A→ B. Similarly,
we say that A is prime over a set U ⊆ A if it is a prime model of T(U).
Example. N = ⟨N,+, ⋅ , 0, 1⟩ is a prime model of arithmetic.

Remark. Only complete theories can have prime models.

Lemma 3.9. If M is a structure with M = acl(∅) then M is prime.

Exercise 3.1. Prove the preceding lemma.

Lemma 3.10. Every prime model with a countable signature is atomic.

Proof. Let M be a model of a theory T that realises a non-isolated type p.
By the Omitting Types Theorem, there exists some model N ⊧ T in
which p is not realised. Therefore, there exists no embedding M → N
and M cannot be prime. ◻
Lemma 3.11. Every countable atomic model is prime.

Proof. Let A be a countable atomic model and suppose that B ≡ A.
Let (a i)i<ω be an enumeration of A. Since A ⊑ℵ0

FO B we can find, by
Lemma c4.4.9, an enumeration (b i)i<ω such that

⟨A, (a i)i<n⟩ ≡FO ⟨B, (b i)i<n⟩ , for all n < ω .

Let pn ∶ (a i)i<n ↦ (b i)i<n ∈ IFO(A,B) be the corresponding partial
isomorphisms. Since IFO(A,B) is ℵ1-complete we have p ∶= ⋃n pn ∈
IFO(A,B). As dom p = A it follows that p is the desired elementary
embedding of A into B. ◻
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The next theorem summarises the relation between prime and atomic
models.

Theorem 3.12. Let T be a countable complete theory.

(a) Every prime model of T is countable and atomic.

(b) Every countable atomic model of T is prime.

(c) T has a prime model if and only if it has an atomic model.

(d) All prime models of T are isomorphic.

Proof. (a) and (b) were proved in Lemmas 3.10 and 3.11, respectively.
(c) By (a), every primemodel is atomic. Conversely, if T has an atomic

model then it also has a countable one, by the theorem of Löwenheim
and Skolem. Hence, the claim follows by (b).

(d) If A andB are primemodels of T thenwe haveA ≅ℵ0
FO B, by (a) and

Corollary 3.6. Since A and B are countable, Lemma c4.4.10 implies that
A ≅ B. ◻
4. Constructible models

For uncountable signatures we cannot use the Omitting Types Theorem
to construct prime models. In this section we present an alternative way
to obtain such models.

Definition 4.1. Let M be a structure and A,U ⊆ M.
(a) A construction of A over U is an enumeration (a i)i<γ of A such

that

tp(aα/U ∪ a[<α]) is isolated , for all α < γ ,

where a[<α] ∶= { a i ∣ i < α }.
(b) If there exists a construction of A over U we say that A is construct-

ible over U .
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Example. Let Teq be the theory of all infinite structures with empty
signature. This theory has exactly one model of every infinite cardinality.

The countable model Mℵ0 of Teq is constructible. If (an)n<ω is an
enumeration of Mℵ0 then tp(an/a0 . . . an−1) is isolated by the formula

x ≠ a0 ∧ ⋅ ⋅ ⋅ ∧ x ≠ an−1 .

Every uncountablemodel M of Teq is not constructible since, for every
enumeration (aα)α<γ of M, the type tp(aω/a[<ω]) is not isolated.

We start by showing that constructible models are prime and atomic.

Lemma 4.2. If A ⊆ M is constructible over U then A is atomic over U.

Proof. Let (aα)α<γ be a construction ofAover U .We prove by induction
on α that a[<α] is atomic over U . For α = 0 there is nothing to do. If
α is a limit ordinal then any finite tuple in a[<α] = ⋃β<α a[<β] belongs
to some a[<β] with β < α. Hence, the claim follows immediately by
inductive hypothesis.

For the inductive step, note that a[<α + 1] = a[<α] ∪ {aα} is atomic
over U∪a[<α] and U∪a[<α] is atomic over U . By Lemma 1.7, it follows
that a[<α + 1] is atomic over U . ◻
Proposition 4.3. Let M be a model of a complete theory T and let U ⊆ M
be a set such that M is constructible over U.

(a) M is a prime model over U.
(b) ∣M∣ ≤ ∣U ∣⊕ ∣T ∣.

Proof. (a) Let (aα)α<γ be a construction of M over U . Suppose that
N is a model of T(U). We construct a sequence (bα)α<γ as follows.
Suppose that b i has already been defined for all i < α. Since the type
tp(aα/U ∪ a[<α]) is isolated, there exists some element bα ∈ N with

bαb[<α] ≡U aαa[<α] .

The mapping aα ↦ bα is the desired elementary embedding M→ N.
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(b) By the Theorem of Löwenheim and Skolem, T(U) has a model N
of size ∣N ∣ ≤ ∣U ∣⊕ ∣T ∣. By (a), there exists an embedding M → N. Con-
sequently, ∣M∣ ≤ ∣N ∣ ≤ ∣U ∣⊕ ∣T ∣. ◻

Our next aim is to prove that constructible models are unique, up to
isomorphism.

Definition 4.4. Let (aα)α<γ be a construction of A over U . A set C ⊆ A
is closed (w.r.t. this construction) if, for every α < γ with aα ∈ C, the type
tp(aα/U ∪ a[<α]) is isolated by some formula φ(x; c̄) with parameters
c̄ ⊆ U ∪ (C ∩ a[<α]).
Lemma 4.5. Let (aα)α<γ be a construction of A over U.

(a) If C ,D ⊆ A are closed, then so is C ∪ D.

(b) Every element a ∈ A is contained in a finite closed set C ⊆ A.

(c) Every closed subset of A is constructible.

Proof. (a) is immediate.
(b) By induction on α < γ, we construct a finite closed set Cα con-

taining aα . For α = 0, we can set C0 ∶= {a0} since tp(a0/U) is isol-
ated by some formula with parameters in U . For the inductive step,
suppose that we have already defined C i , for all i < α. Fix a formula
φ(x; c̄) with parameters c̄ ⊆ U ∪ a[<α] isolating tp(aα/U ∪ a[<α]). Let
I ∶= { i < α ∣ a i ∈ c̄ }. The set

Cα ∶= {aα} ∪⋃
i∈I C i

is finite and closed.
(c) Let (aα)α<γ be a construction of A over U , C ⊆ A a closed set,

and set C<α ∶= C ∩ a[<α]. For aα ∈ C, the type tp(aα/U ∪ a[<α]) is
isolated by some formula φα(x , c̄) with c̄ ⊆ U ∪ (C ∩ a[<α]) = U ∪C<α .
Consequently, this formula also isolates the type tp(aα/U∪C<α). Hence,
tp(aα/U ∪ C<α) is isolated, for all aα ∈ C, and we obtain a construction
of C by omitting form (aα)α<γ all elements that are not in C. ◻
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Lemma 4.6. Let (aα)α<γ be a construction of A over U , C a closed subset
of A, c̄ an enumeration of C, and, for every aα ∈ C, let φα(xα ; b̄α) be a
formula isolating tp(aα/U ∪ a[<α]). Then

T(U) ∪ {φα(xα ; b̄α) ∣ aα ∈ C } ⊧ tp(c̄/U) .

Proof. Note that C<α ∶= C ∩ a[<α] is closed. Hence, we can prove the
claim by induction on α. For α = 0 we have tp(⟨⟩/U) = T(U). If α is
a limit ordinal then the claim follows by inductive hypothesis since
every formula refers only to finitely many elements of C<α . For the
successor step, suppose that c̄ = c̄′aα where c̄′ is an enumeration of C<α .
By inductive hypothesis, we know that

T(U) ∪ {φ i(x i ; b̄ i) ∣ i < α, a i ∈ C } ⊧ tp(c̄′/U) .

Furthermore,

T(U) ∪ {φα(xα ; b̄α)} ⊧ tp(aα/U ∪ a[<α]) ⊧ tp(aα/U ∪ c̄′) .

Combining these two implications, the claim follows. ◻
Proposition 4.7. Let C be a closed subset of a constructible set A. Then
A is constructible over C.

Proof. We start by showing that A is atomic over C. Let A0 ⊆ A be finite.
By Lemma 4.5 (b), we can find a finite closed set D containing A0. For
X ⊆ A, set

Φ(X) ∶= {φβ(xβ ; b̄β) ∣ aβ ∈ X } ,
where φβ(xβ ; b̄β) is some formula isolating tp(aβ/a[<β]). According
to Lemma 4.6 we have

T ∪ Φ(b̄) ⊧ tp(b̄) , for every closed set b̄ ⊆ A .

In particular, we have

T ∪ Φ(C ∪ D) ⊧ tp(c̄d̄) ,
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where c̄ is an enumeration of C and d̄ one of D. As Φ(C) ⊆ T(C), it
follows that

T(C) ∪ Φ(D) ⊧ tp(d̄/C) .

Hence, tp(d̄/C) is isolated by the formula ⋀Φ(D). In particular, the
type of A0 over C is isolated.

To conclude the proof, let (aα)α<γ be a construction of A. We prove
that it is also a construction over C. Let α < γ. Since a[<α] is closed, so
is C ∪ a[<α]. By the first part of the proof, it follows that aα is atomic
over C ∪ a[<α]. ◻
Lemma 4.8. If (aα)α<γ is a construction of A over U then it is also a
construction of A over U ∪ C, for every finite subset C ⊆ A.

Proof. By Lemma 4.2, A is atomic over U ∪ a[<α], for every α < γ. In
particular, C ∪ {aα} is atomic over U ∪ a[<α]. By Lemma 1.5, it follows
that aα is atomic over U ∪ a[<α] ∪ C. ◻

To prove the uniqueness of constructible models, we employ back-
and-forth arguments.

Definition 4.9. Let A and B be structures such that A and B are con-
structible over ∅. We define

Icl(A,B) ∶= { p ∈ IFO(A,B) ∣ dom p and rng p are closed} .

Lemma 4.10. Suppose that A and B are structures where A and B are
constructible over ∅. Then Icl(A,B) is ℵ1-bounded and it has the back-
and-forth property with respect to itself.

Proof. By symmetry, we only consider the forth property. Let ā ↦ b̄ ∈
Icl(A,B) and x ∈ A. By induction on n,we construct finite tuples c̄n ⊆ A
and d̄n ⊆ B such that āc̄0 c̄1 ⋅ ⋅ ⋅↦ b̄d̄0d̄1 ⋅ ⋅ ⋅ ∈ Icl(A,B), x ∈ c̄0, and

⟨A, āc̄0 . . . c̄n−1⟩ ≡ ⟨B, b̄d̄0 . . . d̄n−1⟩ , for all n < ω .
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We start with some finite closed set c̄0 containing x. For the inductive
step, suppose that we have already defined c̄0 , . . . , c̄n and d̄0 , . . . , d̄n−1
such that

⟨A, āc̄0 . . . c̄n−1⟩ ≡ ⟨B, b̄d̄0 . . . d̄n−1⟩ .

Since A is atomic over ā, we know that the type tp(c̄0 . . . c̄n−1 c̄/ā) is
isolated. By Lemma 1.5, it follows that the type tp(c̄n/āc̄0 . . . c̄n−1) is also
isolated. As

⟨A, āc̄0 . . . c̄n−1⟩ ≡ ⟨B, b̄d̄0 . . . d̄n−1⟩ ,
we can therefore find some tuple d̄n ⊆ B with

⟨A, āc̄0 . . . c̄n−1 c̄n⟩ ≡ ⟨B, b̄d̄0 . . . d̄n−1d̄n⟩ .

If b̄d̄0 . . . d̄n is closed then we can stop. Otherwise, let d̄n+1 be a finite
closed set containing d̄n . Again, since b̄d̄0 . . . d̄n−1 is closed and the type
tp(d̄n+1/b̄d̄0 . . . d̄n) is isolated, we can find a tuple c̄n+1 ⊆ A such that

⟨A, āc̄0 . . . c̄n c̄n+1⟩ ≡ ⟨B, b̄d̄0 . . . d̄n d̄n+1⟩ .

If āc̄0 . . . c̄n+1 is closedwe stop. Otherwise, choose a finite closed set c̄n+2
containing c̄n+1 and repeat the construction. ◻
Theorem 4.11 (Ressayre). All constructible models of a complete theory T
are isomorphic and strongly ℵ0-homogeneous.

Proof. Let A and B be constructible models of T . First, we show that
A and B are isomorphic. Since constructiblemodels are prime, it follows
that we can embed A into B and vice versa. Hence, A and B have the
same cardinality κ. It follows by Lemma 4.10 that Icl(A,B) ∶ A ≅κ⊕ℵ1

iso B.
Consequently, Lemma c4.4.10 implies that A ≅ B.

It remains to show that A is strongly ℵ0-homogeneous. Suppose that

⟨A, ā⟩ ≡ ⟨A, b̄⟩ ,
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for finite tuples ā, b̄ ⊆ A. By Lemma 4.8, these two expansions of A
are constructible models of the complete theory T(ā). As we have just
shown, this implies that they are isomorphic. Hence, there is an auto-
morphism of A mapping ā to b̄. ◻

We apply these tools to show that ℵ0-stable theories have prime mod-
els over all sets of parameters.

Lemma 4.12. Let T be a totally transcendental theory and U a set of
parameters. Then the isolated types are dense in S s̄(U).
Proof. Since rkCB(S s̄(U)) < ∞ the statement follows from Proposi-
tion b5.5.12 (d). ◻
Proposition 4.13. Let T be a totally transcendental theory. For every
model M of T and all parameters U ⊆ M, there exists an elementary
substructure A ⪯M such that A is constructible over U. In particular, A is
a prime model over U and atomic over U.

Proof. By induction on α, we construct a sequence (aα)α<γ of elements
of M as follows. Suppose that we have already defined (a i)i<α . If there
is some b ∈ M such that tp(b/U ∪ a[<α]) is isolated then we select one
such element and set aα ∶= b. Otherwise, we stop the construction.

Let A ∶= a[<γ] be the set of all elements chosen. Clearly, U ⊆ A and(aα)α<γ is a construction of A over U . Hence, it remains to show that
A ⪯M where A is the substructure induced by A.

We apply the Tarski-Vaught Test. Suppose that

M ⊧ φ(b̄, c) , for b̄ ⊆ A and c ∈ M .

By Lemma 4.12, there exists an isolated type p ∈ ⟨φ(b̄, y)⟩ ⊆ S1(A). Let
d ∈ M be an element realising p. Since p = tp(d/A) is isolated, it follows
by choice of a[<γ] that d ∈ a[<γ] ⊆ A. Thus, we have found an element
d ∈ Awith M ⊧ φ(b̄, d). ◻
Combining the preceding proposition with Theorem 4.11, we obtain

the following result.
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Theorem 4.14. Let T be a totally transcendental theory and let U be a
set of parameters. There exists a prime model over U that is also atomic
over U. Furthermore, all prime models over U are isomorphic over U.

Corollary 4.15. Let T be a totally transcendental theory and let U be a
set of parameters. Every model that is prime over U is also atomic over U.
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1. ℵ0-categorical theories and automorphisms
Model theory investigates axiomatisable classes of structures. One of
the most basic question one can ask is how many structures of a given
cardinality such a class contains.

Definition 1.1. A classK is κ-categorical if, up to isomorphism, it con-
tains exactly one structure of size κ. Similarly, we call a theory T κ-
categorical if Mod(T) is κ-categorical.

Example. (a) According to Theorem c4.1.5, the theory of open dense
linear orders is ℵ0-categorical.

(b) We have seen in Corollary b6.5.30 that the theory ACFp of algebra-
ically closed fields of characteristic p is κ-categorical for all uncountable
cardinals κ. It has ℵ0 different models of size ℵ0. Hence, it is not ℵ0-cate-
gorical.

(c) By Theorem d1.4.8, the same holds for the theory of divisible
torsion-free abelian groups.

In this chapter we study ℵ0-categorical theories. We start by showing
that, for models of such theories, there is a tight relationship between
definable relations and automorphisms. Recall that the automorphism
group Aut M of a structure M is oligomorphic if, for every finite tuple s̄
of sorts, there are only finitely many orbits of Aut M on the set M s̄ .

Theorem 1.2 (Engeler, Ryll-Nardzewski, Svenonius). Let T be a count-
able complete theory with infinite models. The following statements are
equivalent :
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(1) T is ℵ0-categorical.

(2) Aut M is oligomorphic, for every countable model M of T.

(3) T has a countable model M such that Aut M is oligomorphic.

(4) There exists a countable model M ⊧ T in which, for every finite
tuple of sorts s̄, only finitely many s̄-types (over ∅) are realised.

(5) ∣S s̄(T)∣ < ℵ0, for all finite s̄.

(6) For all finite sets x̄ of variables, there are only finitely many for-
mulae φ(x̄) with free variables x̄ that are pairwise non-equivalent
modulo T.

(7) Every type p ∈ S<ω(T) is isolated.

(8) T has a model that is atomic and ℵ0-saturated.

(9) Every model of T is atomic.

(10) Every model of T is ℵ0-saturated.

(11) A ≅ℵ0
FO B, for all models A and B of T.

(12) A ≅∞ B, for all models A and B of T.

Proof. (5)⇒ (6) If ⟨φ⟩ = ⟨ψ⟩ then φ ≡ ψ modulo T . If ∣S s̄(T)∣ = k < ℵ0
then there are at most 2k sets of the form ⟨φ⟩ and, hence, at most that
many non-equivalent formulae.

(6)⇒ (7) For all finite tuples of sorts s̄, fix a tuple of variables x̄ of
sort s̄ and a maximal family Φ s̄ of pairwise non-equivalent formulae
with free variables x̄. For p ∈ S s̄(T), let

ψp ∶=⋀{φ ∈ Φ s̄ ∣ p ∈ ⟨φ⟩ } .

Then T ∪ {ψp} ⊧ p and p is isolated.
(7)⇒ (5) If every type in S s̄(T) is isolated then S s̄(T) is finite, by

Lemma b5.5.10.
(7)⇒ (9) Each model can only realise isolated types since there are

no non-isolated ones.
(9)⇒ (8) Every consistent theory has ℵ0-saturated models.
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(8)⇒ (7) If there is a non-isolated type p ∈ S<ω(T) then it is realised
in all ℵ0-saturated models. Consequently, none of them can be atomic.

(7)⇒ (10) Suppose that M ⊧ T is a model, ā ∈ Mm a finite tuple, and
p ∈ Sn(ā). There is an elementary extension N ⪰M in which p is realised
by some tuple c̄ ∈ Nn . Set q ∶= tp(āc̄/N). Then q ∈ Sm+n(T) and, by
hypothesis, there is some formula φ(x̄ , ȳ) isolating q. Let ψ(x̄) be the
formula isolating r ∶= tp(ā/M). We claim that

T ⊧ ψ(x̄)→ ∃ ȳφ(x̄ , ȳ) .

Then it follows that M ⊧ ∃ ȳφ(ā, ȳ) and we can find some tuple b̄ ∈ Mn

realising p.
It remains to prove the claim. For a contradiction, suppose it does not

hold. Since r is complete it follows that ¬∃ ȳφ ∈ r and, therefore,

T ⊧ ψ(x̄)→ ∀ ȳ¬φ(x̄ , ȳ) .

On the other hand, r ⊆ q implies that

T ⊧ φ(x̄ , ȳ)→ ψ(x̄) .

Consequently, T ∪{φ(x̄ , ȳ)} is inconsistent. But this contradicts the fact
that q ∈ Sm+n(T).

(10)⇒ (11) follows from Corollary e1.2.3.
(11)⇒ (12) immediately, since A ≅ℵ0

FO B implies A ≅∞ B.
(12)⇒ (1) Since T is a countable theory with infinite models it fol-

lows that T has a model of cardinality ℵ0. Furthermore, by (12) and
Lemma c4.4.10, all such models are isomorphic.

(1) ⇒ (7) Suppose that there exists a type p ∈ S<ω(T) that is not
isolated. T has a model A in which p is not realised, and it has a model B
in which p is realised. By the Theorem of Löwenheim and Skolem, we
can assume that ∣A∣ = ∣B∣ = ℵ0. Since A ≇ B T cannot be ℵ0-categorical.

(5) ⇒ (2) Let A be a countable model of T and let p ∈ Sn(T). We
claim that all tuples realising p are in the same orbit of Aut A. Hence, the
number of orbits is bounded by the number of types which, by (5), is
finite.
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Suppose that ā, b̄ ∈ An realise p. We have already seen that (5) im-
plies (11). Hence, we have A ≅ℵ0

FO A, and ā ↦ b̄ ∈ Iℵ0
FO(A,A) implies

that ⟨A, ā⟩ ≅ℵ0
FO ⟨A, b̄⟩. By Corollary e1.2.3, it follows that there exists an

automorphism π with π(ā) = b̄.
(2)⇒ (3) is trivial since T is satisfiable.
(3) ⇒ (4) We have tp(πā) = tp(ā), for all π ∈ Aut M. Hence, the

number of realised types is bounded by the number of orbits.
(4)⇒ (5) Fix a countable model M ⊧ T in which only finitely many

s̄-types are realised, for all finite s̄. For a given s̄, let p0 , . . . , pk−1 be an
enumeration of these s̄-types. By Lemma c3.2.6, the set {p0 , . . . , pk−1} is
dense in S s̄(T). Consequently, it follows by Lemma b5.5.10 that S s̄(T)
is finite. ◻

Let us also mention a necessary condition for ℵ0-categoricity that
deals with the size of the algebraic closure of finite sets.

Lemma 1.3. Let T be a countable ℵ0-categorical theory with finitely many
sorts. There exists a function s ∶ ω → ω such that, for every model M of T
and every finite set U ⊆ M of parameters, we have

∣acl(U)∣ ≤ s(∣U ∣) .

In particular, acl(U) is finite for finite sets U.

Proof. Let n ∶= ∣U ∣. By Theorem 1.2, Sn+1(T) is finite. Let p0 , . . . , pk−1
be an enumeration of Sn+1(T) and set

I ∶= { i < k ∣ there are φ(x , ȳ) ∈ pi and m < ω such that

T ⊧ ¬∃mxφ(x , ȳ) } .

For i ∈ I, let m i < ω be the least number such that

¬∃m i xφ(x , ȳ) ∈ pi , for some formula φ(x , ȳ) .

We set s(n) ∶= ∑i∈I m i . Let a ∈ acl(U) and let b̄ ∈ Mn be an enumeration
of U . The tuple ab̄ realises some type pi with i ∈ I. Since there are at
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most m i elements c such that cb̄ realises pi , it follows that

∣acl(U)∣ ≤∑
i∈I m i = s(n) . ◻

As an application, we consider fields and groups.

Lemma 1.4. No infinite field has an ℵ0-categorical theory.

Proof. Let K be an infinite field. By compactness, there exists an ele-
mentary extension K+ ⪰ K that contains a transcendental element c.
The algebraic closure acl(c) is infinite since it contains the elements
c, c2 , c3 , . . . , which are all distinct. By Lemma 1.3, it follows that Th(K)
is not ℵ0-categorical. ◻
Lemma 1.5. Let G be an infinite group.

(a) If Th(G) is ℵ0-categorical then G is locally finite and there exists a
number n < ω such that gn = 1, for all g ∈ G.

(b) Conversely, if G is abelian and there exists a number n as in (a),
then Th(G) is ℵ0-categorical.

Proof. (a) Fix an element g ∈ G and let s ∶ ω → ω be the function from
Lemma 1.3. Since gn ∈ acl(g), for all n < ω, and ∣acl(g)∣ ≤ s(1), there is
some n < s(1) such that g s(1) = gn . Consequently, g s(1)−n = 1. Setting
m ∶= s(1)! it follows that gm = 1 for all g ∈ G.

(b) Let G be a countable abelian group such that gn = 1, for all g ∈ G.
There are prime numbers p0 , . . . , pm−1, numbers k0 , . . . , km−1 < ω, and
cardinals λ0 , . . . , λm−1 ≤ ℵ0 such that

G ≅⊕
i<m
(Z/pk i

i Z)(λ i) .
Set q i ∶= pk i

i . Note that, for λ i < ℵ0, the group (Z/q iZ)(λ i) has

r i ∶= pλ i k i
i − pλ i(k i−1)

i

elements of order exactly q i , and, for each element g ∈ (Z/q iZ)(λ i) of
order less than q i , there exists some element h such that g = hp i .

It follows that G satisfies the following formula:
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◆ the axioms of an abelian group;
◆ ∀x(xq0⋯qm−1 = 1)
◆ for each i < m such that λ i < ℵ0, the statement that there are

exactly r i elements of order exactly q i that cannot be written in
the form hp i , for some h ∈ G ;

◆ for each i < m such that λ i = ℵ0, the statement that there are
infinitelymany elements of order exactly q i that cannot bewritten
in the form hp i , for some h ∈ G.

Furthermore, every countable structure H satisfying these formulae is
isomorphic to G. Consequently, Th(G) is ℵ0-categorical. ◻

Having characterised the countable theories with exactly one count-
able model we turn to countable theories with several countable models.

Lemma 1.6. If T is a countable complete theory with less than 2ℵ0 count-
able models, up to isomorphism, then ∣S s̄(T)∣ ≤ ℵ0, for all finite s̄.

Proof. Assume that S s̄(T) is uncountable. Then we have ∣S s̄(T)∣ = 2ℵ0 ,
by Corollary b5.7.5. Each type p ∈ S s̄(T) is realised in some countable
model of T . Since each countable model of T realises only countably
many types it follows that T has 2ℵ0 models. ◻

Surprisingly there are no theories with exactly two countable models.

Theorem 1.7. Let T be a countable complete theory. If T is not ℵ0-cate-
gorical then it has at least 3 countable models.

Proof. If there is a finite tuple s̄ of sorts such that S s̄(T) is uncountable
then it follows by Lemma 1.6 that T has uncountably many countable
models. Hence, we may assume that S s̄(T) is countable, for all s̄. By
Theorem e3.3.1 and Proposition e1.2.15, it follows that T has a prime
model A and a countable saturated model B. If T is not ℵ0-categorical
then there is some s̄ such that S s̄(T) is infinite and there exists a non-
isolated type p ∈ S s̄(T). This type is realised in B but not in A which
implies that A ≇ B.
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Let ā ∈ B s̄ be a tuple of type p. We know that, for some k < ω, there
are infinitely many pairwise non-equivalent formulae with free variables
x0 , . . . , xk−1. These formulae are still non-equivalent modulo the theory
Th(Bā). Hence, Th(Bā) is not ℵ0-categorical and there exists a prime
model C of this theory. We have C ≇ A since p is realised in C. As C is notℵ0-saturated there is a non-isolated type q ∈ S<ω(ā). Since B realises q
and C does not, it follows that C ≇ B. Thus, we have found three non-
isomorphic models A, B, C. ◻
Lemma 1.8. There is a countable complete theory T which has exactly
three countable models.

Proof. Let T be the theory of open dense linear orders augmented by
the sentences c i < ck , for all i < k < ω. This theory is complete, it
admits quantifier elimination, and the only non-isolated type p is the
one containing all formulae x > c i , i < ω. There are three models.

(i) The prime model is M0 ≅ ⟨Q, <, (n)n<ω⟩ where the type p is not
realised since the sequence (c i)i is unbounded.

(ii) In M1 ≅ ⟨Q, <, ((1 + 1
n )n)n<ω⟩ the sequence (c i)i is bounded but

it has no least upper bound.
(iii) In M2 ≅ ⟨Q, <, (− 1

n )n<ω⟩ the sequence (c i)i has a least upper
bound. ◻

Exercise 1.1. For every 3 < n < ω, find a countable complete first-order
theory with exactly n models.

All possibilities for the number of countable models of a countable
theory are listed in the following theorem. Each of them is realised by
some theory. The question of whether there are really countable theories
with exactlyℵ1 countablemodelswas open for a long time.An affirmative
answer was recently given by Knight.

Theorem 1.9 (Morley). The number of nonisomorphic countably infinite
models of a countable complete theory is either a finite number n ≠ 2, or it
is one of ℵ0, ℵ1, or 2ℵ0 .
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We will not give the complete proof of this result. The next lemma
characterises those theories with at most ℵ1 countable models. Morley
has shown that all theories that do not satisfy the conditions of the lemma
have 2ℵ0 countable models.

Lemma 1.10. Let T be a countable complete theory and letK be the class
of all countable models of T. If we have

∣K/≡α ∣ ≤ ℵ0 , for every α < ω1 ,

then, up to isomorphism, T has at most ℵ1 countable models.

Proof. For A ∈ K, let χ(A) ∶= ⟨α, [A]α⟩ where α is the Scott height of A
and [A]α ∈ K/≡α+ω is the ≡α+ω-class of A. ByCorollary c4.4.11, it follows
that we have

χ(A) = χ(B) iff A ≅ B , for all A,B ∈ K .

Consequently, the number of countable models of T is at most

∣rng χ∣ ≤ ℵ1 ⊗ sup{ ∣K/≡α ∣ ∣ α < ω1 } ≤ ℵ1 ⊗ ℵ1 = ℵ1 . ◻
We conclude this section by an investigation of definable relations in

countable models of ℵ0-categorical theories.

Lemma 1.11. Let M be a countable model of a countable ℵ0-categorical
theory T.

(a) Let s̄ be a finite tuple of sorts. A relation R ⊆ M s̄ is definable in M if
and only if

π[R] = R , for all π ∈ Aut M .

(b) A partial function f ∶ Ms → Mt is definable in M if and only if

π ○ f = f ○ π , for all π ∈ Aut M .
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Proof. (a) For the nontrivial direction suppose that π[R] = R for all
automorphisms π. Since T is ℵ0-categorical there are only finitely many
orbits of Aut M on M s̄ . Hence, R is a finite union of such orbits and it is
sufficient to prove that every orbit S is definable.

Fix some tuple ā ∈ S. We have seen in Theorem 1.2 that M is saturated.
Hence, it follows by Lemma e1.4.2 and Proposition e1.4.7 that M is
strongly homogeneous. Consequently, tp(ā) = tp(b̄) implies that there
is some automorphism π mapping ā to b̄. It follows that

S = { b̄ ∈ M s̄ ∣ tp(b̄) = tp(ā) } .

Since every type is isolated there is some formula φ(x̄) with

M ⊧ φ(b̄) iff tp(b̄) = tp(ā) .

It follows that S = φM.
(b) By (a), a function f is definable if and only if it is invariant under

automorphisms, i.e., if and only if

b = f (a) iff π(b) = f (π(a)) , for all π ∈ Aut M .

We can rewrite this condition as π( f (a)) = f (π(a)). ◻
We can use these results to relate interpretations and automorphism

groups.

Definition 1.12. (a) Let A and B be structures. B is definable in A if it
is isomorphic to a structure C each domain Cs of which is a definable
subset of A such that all relations RC and functions f C are definable in A.
We call A and B bidefinable if each of them is definable in the other one
and the corresponding isomorphisms are inverses of each other.

Definition 1.13. Suppose that G and H are permutation groups with
actions α ∶ G→ Sym Ω and β ∶ H→ Sym∆, respectively.

(a) A morphism G → H (or, more precisely, α → β) is a pair ⟨h, i⟩
where h ∶ G→ H is a group homomorphism and i ∶ ∆ → Ω is a function
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such that

α(g) ○ i = i ○ β(h(g)) , for all g ∈ G .

(b)An embedding of permutation groups is amorphism ⟨h, i⟩ ∶ G→ H
where h and i are both injective.

Theorem 1.14. Let A be a countable model of a countable ℵ0-categorical
theory. A structure B is definable in A if and only if there exists an embed-
ding Aut A→ Aut B.

Proof. The claim follows from Lemma 1.11. If B is definable in A then
every relation RB of B is closed under Aut A. This implies that every
automorphism of A is also an automorphism of B. Conversely, each re-
lation RB of B is closed under all automorphisms of B. If Aut A ≤ Aut B
then it also closed under all automorphisms of A and, hence, it is defin-
able in A. ◻
Corollary 1.15. Let A and B be countable models of countable ℵ0-cate-
gorical theories. Then A and B are bidefinable if and only if Aut A and
Aut B are isomorphic as permutation groups.

Corollary 1.16. Let A be a countable model of a countable ℵ0-categorical
theory. If B is a structure with countable signature that is definable in A
then Th(B) is also ℵ0-categorical.

Proof. If Aut A is oligomorphic and Aut B ≥ Aut A then Aut B is also
oligomorphic. ◻

A similar characterisation holds for interpretations. Recall that every
structure interpretable in M can be seen as a definable substructure
of Meq.

Definition 1.17. Let I = ⟨α, (δs)s∈S , (εs)s∈S , (φξ)ξ∈Γ⟩ be a first-order
interpretation and π ∶ A→ B an isomorphism.

(a) We denote by πeq ∶ Aeq → Beq the unique isomorphism with
πeq ↾ A = π.
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(b) Set C ∶= I(A). For every sort s, the coordinate map of I induces a
bijection Is ∶ Ds → Cs where

Ds ∶= { [ā]εs ∣ ā ∈ δA
s } ⊆ Aeq

εs .

(c) We define

πI ∶=⋃
s
Is ○ πeq ○ I−1

s ,

where s ranges over all sorts of I(A). We denote the induced map on
automorphism groups by AutI ∶ Aut A→ AutI(A) ∶ π ↦ πI .

Lemma 1.18. Let I be a first-order interpretation. πI ∶ I(A)→ I(B) is
an isomorphism, for every isomorphism π ∶ A→ B.

Lemma 1.19. Every isomorphism h ∶ A → B induces an isomorphism
Aut h ∶ Aut A→ Aut B where

(Aut h)(π) ∶= h ○ π ○ h−1 .

Lemma 1.20. For every first-order interpretation I , the map AutI is a
continuous homomorphism

AutI ∶ Aut M→ AutI(M) .

Proof. It is straightforward to verify that AutI ∶ Aut M→ AutI(M) is a
homomorphism. To see that it is continuous let S ⊆ AutI(M) be a basic
open neighbourhood of 1. Then there is some finite tuple ā in I(M)
such that

S = (AutI(M))(ā) .

Suppose that the sorts of ā are s̄.We fix elements c i ∈ Ds i with I(c i) = a i .
There are finite tuples c̄∗i ⊆ M such that

dcleq(c i) = dcleq(c̄∗i ) .
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Setting S′ ∶= (AutI)−1[S] we have

π ∈ S′ iff AutI(π)(ā) = ā
iff (Is i ○ πeq ○ I−1

s i
)(a i) = a i , for all i

iff πeq(c i) = c i , for all i
iff π(c̄∗i ) = c̄∗i , for all i .

Consequently, S′ = (Aut M)(c̄∗0 . . . c̄∗m−1) is open. ◻
Let us call a function f ∶ M → M definable in the structure M if each

restriction f ↾Ms is definable, where s ranges over all sorts of M.

Lemma 1.21. Let φ ∶ Aut A → Aut B be a continuous homomorphism
and suppose that A is a countable model of an ℵ0-categorical theory. The
following statements are equivalent :

(1) φ = Aut π○AutI , for some interpretation I and some isomorphism
π ∶ I(A)→ B.

(2) The subgroup rng φ ≤ Aut B is oligomorphic.

Proof. (1)⇒ (2) For every finite tuple s̄ of sorts and every orbit S of rng φ
on B s̄ , we introduce a new relation RS of type s̄ containing all tuples in
the orbit S. Let B+ be the expansion of B by all these relations RS . Every
automorphism σ ∈ rng φ is still an automorphism of the expansion B+.
Hence, rng φ ≤ Aut B+. We claim that rng φ and Aut B+ have the same
orbits.

Since rng φ ≤ Aut B+ it is sufficient to check that tuples ā, b̄ ∈ B s̄ in
different orbits of rng φ belong to different orbits of Aut B+. Let S and S′
be the orbits under rng φ of ā and b̄, respectively. Then ā ∈ RS and b̄ ∈ RS′ .
If S ≠ S′ then RS and RS′ are disjoint and there is no automorphism
of B+ mapping ā to b̄.

Consequently, rng φ and Aut B+ have the same orbits. To prove (2) it
is therefore sufficient to show that Aut B+ is oligomorphic. For a con-
tradiction, suppose that some set B s̄ contains tuples b̄n , n < ω, from
pairwise distinct orbits. Fix tuples ān ⊆ A such that (π ○ I)(ān) = b̄n .
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Since A is ℵ0-categorical there are indices k < n such that āk and ān

belong to the same orbit under Aut A. Fix an automorphism σ ∈ Aut A
with σ(āk) = ān . Then

φ(σ)(b̄k) = (Aut π ○AutI)(σ)(b̄k)
= (π ○ Is̄ ○ σ eq ○ I−1

s̄ ○ π−1)(b̄k)
= (π ○ Is̄ ○ σ eq)(āk)
= (π ○ Is̄)(ān) = b̄n .

Hence, the automorphism φ(σ)maps b̄k to b̄n . Contradiction.
(2)⇒ (1) Let G ∶= Aut A and H ∶= Aut B. For each sort s, fix repres-

entatives bs
0 , bs

1 , . . . of the orbits of Bs under rng φ. The stabiliser H(bs
i)

of bs
i is a basic open neighbourhood of 1 in H. Since φ is continuous we

can find, for each bs
i , a basic open neighbourhood U s

i of 1 in G with

U s
i ⊆ φ−1[H(bs

i)] .

Every such neighbourhood is of the form U s
i = G(ās

i), for some ās
i ⊆ A.

Let Os
i be the orbit of ās

i . We define a map πs
i ∶ Os

i → Bs by

πs
i(σ(ās

i)) ∶= φ(σ)(bs
i) , for σ ∈ G .

It follows that rng πs
i is the orbit of bs

i under rng φ. Note that ker πs
i is

invariant under automorphisms since

πs
i(σ0(ās

i)) = πs
i(σ1(ās

i))
implies

πs
i((ρ ○ σ0)(ās

i)) = φ(ρ ○ σ0)(bs
i)= φ(ρ ○ σ1)(bs
i) = πs

i((ρ ○ σ1)(ās
i)) .

By Lemma 1.11 it follows that ker πs
i is definable. We obtain a definable

subset U s
i ∶= Os

i /ker πs
i ⊆ Aeq and an injective function

πs ∶ ⋃i U s
i → Bs .
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This map is also surjective since its range contains every orbit of Bs under
rng φ. Setting π ∶= ⋃s πs we obtain a bijection π ∶ ⋃s Us → B. We claim
that this bijection is an isomorphism between B and a structure of the
form I(A), for a suitable interpretation I .

If R is a definable relation in B then its preimage π−1[R] is invariant
under automorphisms. Hence, π−1[R] is definable in Aeq. It follows that
there exists an interpretation I such that π ∶ I(A) ≅ B.

It remains to check that φ = Aut π ○AutI . For every σ ∈ G we have

(Aut π ○AutI)(σ)(bs
i) = (π ○ Is ○ σ eq ○ I−1

s ○ π−1)(bs
i)= (π ○ Is ○ σ eq)(ās

i)= (π ○ Is)(σ(ās
i)) = φ(σ)(bs

i) ◻
Corollary 1.22. Let Σ and Γ be countable signatures and I a first-order
interpretation from Σ to Γ. If A is a countable Σ-structure with ℵ0-cate-
gorical theory then the theory of I(A) is also ℵ0-categorical.

Proof. AutI ∶ Aut A → AutI(A) is a continuous homomorphism. By
the preceding lemma it follows that rng(AutI) is oligomorphic. Since
rng(AutI) ≤ AutI(A) it follows that AutI(A) is also oligomorphic.◻
Definition 1.23. Let M be a structure and suppose that I and J are
interpretations such that there exists an isomorphism π ∶ I(M) ≅ J (M).
We call I and J homotopic (via π) if there exists a definable function
ρ ∶ M → M such that π ○ I = J ○ ρ.

M I(M)

M J (M)

I
ρ π

J
Lemma 1.24. Let M be a countable structure with ℵ0-categorical theory
and suppose that I and J are interpretations with I(M) ≅ J (M). Let
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π ∶ I(M) → J (M) be an isomorphism. Then I and J are homotopic
via π if and only if AutJ = Aut π ○AutI .

Proof. (⇒) Let ρ ∶ M → M be a definable function such that π ○ I =J ○ρ. For every element b ofJ (M) and every automorphism σ ∈ Aut M,
we have

(Aut π ○AutI)(σ)(b) = (π ○ Is ○ σ eq ○ I−1
s ○ π−1)(b)= (Js ○ ρ ○ σ eq ○ ρ−1 ○J −1

s )(b)= (Js ○ σ eq ○ ρ ○ ρ−1 ○J −1
s )(b)= (AutJ )(σ)(b)

Hence, Aut π ○AutI = AutJ .(⇐) For a ∈ M, we define

ρ(a) ∶= (J −1
s ○ π ○ Is)(a) .

We claim that ρ is definable. For σ ∈ Aut M and a ∈ M, we have

ρ(σ(a)) = (J −1
s ○ π ○ Is ○ σ)(a)= (J −1
s ○ π ○ Is ○ σ ○ I−1

s ○ π−1 ○ π ○ Is)(a)= (J −1
s ○ (Aut π ○AutI)(σ) ○ π ○ Is)(a)= (J −1
s ○ (AutJ )(σ) ○ π ○ Is)(a)= (σ ○J −1

s ○ π ○ Is)(a)= σ(ρ(a)) .

Hence, ρ is invariant under automorphisms and, thus, definable. ◻
Definition 1.25. Two structures A and B are biinterpretable if there exist
first-order interpretations I ,J and isomorphisms π ∶ I(A) → B and
ρ ∶ J (B)→ A such that J ○I is homotopic to idA via ρ ○ πJ and I ○J
is homotopic to idB via π ○ ρI .
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A I(A) JI(A)

B J (B) IJ (B)

A A I(A)

B B

I J
π πJ

J I
ρ ρI

id I
π

id

σ

τ

Theorem 1.26. Let A and B be countable models of countable ℵ0-categor-
ical theories. Then A and B are biinterpretable if and only if Aut A and
Aut B are isomorphic as topological groups.

Proof. (⇒) Let I ,J and π, ρ witness that A and B are biinterpretable.
There exist definable maps σ ∶ A→ A and τ ∶ B → B such that

ρ ○ πJ ○J ○ I = σ and π ○ ρI ○ I ○J = τ .

Set φ ∶= Aut π○AutI andψ ∶= Aut ρ○AutJ . Since σ and τ are definable
we have

Aut σ = id and Aut τ = id .

It follows that

φ ○ ψ = Aut ρ ○AutJ ○Aut π ○AutI= Aut(ρ ○J ○ π ○ I)
= Aut(ρ ○ πJ ○J ○ I)= Aut σ= id ,
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and, analogously,

ψ ○ φ = id .

Hence, ψ = φ−1 and φ ∶ Aut A→ Aut B is the desired isomorphism.(⇐) Let φ ∶ Aut A→ Aut B be an isomorphism. Since rng φ = Aut B
is oligomorphic it follows by Lemma 1.21 that φ = Aut π ○ AutI , for
some interpretation I and some isomorphism π ∶ I(A)→ B. Similarly,
rng φ−1 is oligomorphic and we have φ−1 = Aut ρ ○ AutJ , for someJ and ρ. It follows that

Aut(ρ ○J ○ π ○ I) = Aut ρ ○AutJ ○Aut π ○AutI= φ−1 ○ φ = id .

By Lemma 1.24, there exists a definable map σ ∶ A→ A such that

π ○ I ○ ρ ○J = σ .

Analogously, we obtain a definable map τ ∶ B → B such that

ρ ○J ○ π ○ I = τ .

Hence, J ○ I and id are homotopic via ρ ○ πJ and I ○ J and id are
homotopic via π ○ ρI . ◻
2. Back-and-forth arguments in accessible categories
In the next section, we will prove a result about accessible categories
using back-and-forth arguments. The necessary machinery for such
arguments is developed in the present section. We start by generalising
the notion of a partial isomorphism and the forth-property.

Definition 2.1. Let C be a category, K ⊆ Cobj a class of objects, and
a, b ∈ C.
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(a) A partial morphism from a to b is a pair p = ⟨ f , f ′⟩ of morphisms
f ∶ $→ a and f ′ ∶ $→ b, for some object $ ∈ C. We call a the domain of p,
b its codomain, and $ is its base.

(b) Let p = ⟨ f , f ′⟩ and q = ⟨g , g′⟩ be partial morphisms with bases
$ and d, respectively. A morphism p → q is a morphism h ∶ $ → d such
that

f = g ○ h and f ′ = g′ ○ h .
a

$

d

b

f

g

f ′

g′
h

(c) We denote by pMorK(a, b) the category of all partial morphisms p
from a to b whose base belongs toK. IfK is the class of all κ-presentable
objects, we will write pMorκ(a, b) instead.

(d) The domain projection is the functor

P ∶ pMorK(a, b)→ SubK(a)
that maps a partial morphism p = ⟨ f , f ′⟩ to its first component f and
a morphism h ∶ ⟨ f , f ′⟩ → ⟨g , g′⟩ of pMorK(a, b) to the underlying
morphism h ∶ f → g of SubK(a).

Analogously, the codomain projection is the functor

Q ∶ pMorK(a, b)→ SubK(b)
mapping ⟨ f , f ′⟩ to f ′ and h ∶ ⟨ f , f ′⟩→ ⟨g , g′⟩ to h ∶ f ′ → g′.

Finally, the base projection is the functor

B ∶ pMorK(a, b)→ C
mapping a partial morphism p to its base and a morphism h ∶ p → q to
the corresponding morphism h ∶ B(p)→ B(q) between the bases.

Definition 2.2. Let C be a category, K ⊆ Cobj a class of objects, and
a, b ∈ C.
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(a) A set I of partial morphisms from a to b has the forth property with
respect to K if, for every p = ⟨ f , f ′⟩ ∈ I with base $, every d ∈ K, and
every pair of morphisms g ∶ d → a and h ∶ $ → d with f = g ○ h, there
exists a morphism g′ ∶ d→ b such that ⟨g , g′⟩ ∈ I and

h ∶ ⟨ f , f ′⟩→ ⟨g , g′⟩ .
a

$

d

b

f

g

f ′

g′
h

(b) We write

a ⊑K b : iff pMorK(a, b) is nonempty and it has the forth
property with respect toK.

Furthermore, we write

a ⊑κ
pres b : iff a ⊑Kκ b ,

whereKκ ⊆ C is the class of all κ-presentable objects. The corresponding
equivalence relations are

a ≡K b : iff a ⊑K b and b ⊑K a ,
a ≡κ

pres b : iff a ⊑κ
pres b and b ⊑κ

pres a .

Remark. In the category Emb(Σ) we have

A ⊑κ
pres B iff A ⊑κ

0 B .

Note that, for an arbitrary category, the relation ⊑K is not very well-
behaved. For instance, in general it is neither reflexive nor transitive. The
next lemma collects some basic properties that hold in every category.

Lemma 2.3. Let C be a category and K ⊆ Cobj.
(a) If there exists a morphism φ ∶ a0 → a, then

a ⊑K b implies a0 ⊑K b .
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(b) If a ∈ K and a ⊑K b, then there exists a morphism a→ b.

(c) If a, b ∈ K and a ≡K b, then a ≅ b.

Proof. (a) Let ⟨ f , f ′⟩ ∈ pMorK(a0 , b) be a partial morphism with base $
and let h ∶ $ → d and g ∶ d → a0 be morphisms with f = g ○ h and
d ∈ K. Then ⟨φ ○ f , f ′⟩ ∈ pMorK(a, b) and h ∶ $→ d and φ ○ g ∶ d→ a are
morphisms such that φ ○ f = φ ○ g ○ h and d ∈ K. Consequently, a ⊑K b
implies that there exists a morphism g′ ∶ d→ b such that

⟨φ ○ g , g′⟩ ∈ pMorK(a, b) and h ∶ ⟨φ ○ f , f ′⟩→ ⟨φ ○ g , g′⟩ .

It follows that ⟨g , g′⟩ ∈ pMorK(a0 , b) and h ∶ ⟨ f , f ′⟩→ ⟨g , g′⟩.
(b) As a ⊑K b, there exists a partial morphism ⟨ f , f ′⟩ ∈ pMorK(a, b).

Since a ∈ K, we can use the forth-property to find a morphism g ∶ a→ b
such that

⟨ida , g⟩ ∈ pMorK(a, b)
and f ∶ ⟨ f , f ′⟩→ ⟨ida , g⟩ . a

$

a

b

f

ida

f

f ′

g

(c) As a ≡K b, there exists a partial morphism ⟨ f , f ′⟩ ∈ pMorK(a, b).
As in (b), we can use the forth-property to find a morphism g ∶ a → b
such that

⟨ida , g⟩ ∈ pMorK(a, b) and f ∶ ⟨ f , f ′⟩→ ⟨ida , g⟩ .

Similarly, we can use the back-property to find a morphism h ∶ b → a
such that
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⟨h, idb⟩ ∈ pMorK(a, b)
and g ∶ ⟨ida , g⟩→ ⟨h, idb⟩ .

Using the forth-property again, we
obtain a morphism g′ ∶ a → b such
that

⟨ida , g′⟩ ∈ pMorK(a, b)
and h ∶ ⟨h, idb⟩→ ⟨ida , g′⟩ .

a

$

a

b

b

a

f

ida

h

f

h

f ′

g′
idb

ida g

g

In particular, h ○ g = ida and g′ ○ h = idb. By Lemma b1.3.4, it follows
that g = g′ and h ∶ b ≅ a is an isomorphism. ◻

Our goal is to generalise Lemma c4.4.10 to relations of the form ⊑K.
We start with the forth-property.

Proposition 2.4. Let κ be an infinite cardinal or κ =∞, C a category with
colimits of nonempty chains of length less than κ, and let K ⊆ Cobj be a
class of objects that is closed under colimits of nonempty chains of length
less than κ. Let D ∶ γ → K be a chain of length 0 < γ ≤ κ with limiting
cocone µ ∈ Cone(D, a). Suppose that every morphism from some object
in K to a factorises essentially uniquely through µ.

If a ⊑K b, then there exists a chain E ∶ γ → pMorK(a, b) such that
D = B ○ E, where B is the base projection functor.

Proof. By induction on α < γ,we define morphisms να ∶ D(α)→ b such
that

⟨µα , να⟩ ∈ pMorK(a, b)
and D(α, β) ∶ ⟨µα , να⟩→ ⟨µβ , νβ⟩ ,
for α ≤ β < γ.
Then we can set

a

D(α)

D(β)
b

µα

µβ

D(α, β)
να

νβ
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E(α) ∶= ⟨µα , να⟩ and E(α, β) ∶= D(α, β) , for α ≤ β < γ .

For α = 0, we define να as follows. Since a ⊑K b, there exists a partial
morphism ⟨ f , f ′⟩ ∈ pMorK(a, b). Let $ be its base. By assumption on D,
f factorises as f = µα ○ f0, for some index α < γ and some morphism
f0 ∶ $ → D(α). As a ⊑K b, there exists a morphism να ∶ D(α) → b such
that ⟨µα , να⟩ ∈ pMorK(a, b) and

f0 ∶ ⟨ f , f ′⟩→ ⟨µα , να⟩ .

a

$

D(α)
b

f

µα

f0

f ′

να

Setting ν0 ∶= να ○ D(0, α) we obtain the desired morphism D(0)→ b.
For the inductive step, suppose that we have already defined να for

all α < β. Let λβ be a limiting cocone from D ↾ β to some object dβ . AsK is closed under colimits of chains of length β, we have dβ ∈ K. Since(µα)α<β and (να)α<β are cocones of D↾β, there exist uniquemorphisms
φ ∶ dβ → a and φ′ ∶ dβ → b such that

(µα)α<β = φ ∗ λβ and (να)α<β = φ′ ∗ λβ .

Similarly, (D(α, β))α<β is a cocone from D ↾ β to D(β) and there exists
a unique morphism ψ ∶ dβ → D(β) such that

(D(α, β))α<β = ψ ∗ λβ .

Since

µβ ○ ψ ○ λβ
α = µβ ○ D(α, β) = µα = φ ○ λβ

α , for all α < β ,
it follows by Lemma b3.4.2 that
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µβ ○ ψ = φ .

a

dβ

D(β)
b

φ

µβ

ψ

φ′

νβ

Therefore, a ⊑K b implies that there exists a morphism νβ ∶ D(β) → b
such that

⟨µβ , νβ⟩ ∈ pMorK(a, b) and ψ ∶ ⟨φ, φ′⟩→ ⟨µβ , νβ⟩ .

For α < β it follows that D(α, β) = ψ ○ λβ
α is a morphism

D(α, β) ∶ ⟨µα , να⟩→ ⟨µβ , νβ⟩ . ◻
Proposition 2.5. Let κ be an infinite cardinal or κ =∞, C a category with
colimits of nonempty chains of length at most κ, and letK ⊆ Cobj be a class
of objects that is closed under colimits of nonempty chains of length less
than κ. Let D ∶ γD → K and E ∶ γE → K be chains of length 0 < γD , γE ≤ κ
with limiting cocones λD ∈ Cone(D, a) and λE ∈ Cone(E , b). Suppose
that every morphism from some object inK to a or b factorises essentially
uniquely through, respectively, λD and λE .

If a ≡K b and p ∈ pMorK(a, b), there exists a morphism φ ∶ p → q of
pMorK(a, b) such that q = ⟨g , g′⟩ consists of two epimorphisms.

Proof. By induction on the ordinals γD and γE , we construct a chain
F ∶ δ → pMorK(a, b), two links s and t from B○F toD and E, respectively,
and two increasing functions ρ0 ∶ γD → δ and θ0 ∶ γE → δ such that

B(F(α)) = D(ρ(α)) , sα = idD(ρ(α)) , for α ∈ rng ρ0 ,

B(F(α)) = E(θ(α)) , tα = idE(θ(α)) , for α ∈ rng θ0 ,

where B is the base projection functor and ρ and θ are the index maps
of s and t, respectively.
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For γD , γE = 0, we start with δ ∶= 1 and F(0) ∶= p. To define s and t,
suppose that p = ⟨ f , f ′⟩. By assumption, f and f ′ factorise essentially
uniquely through λD and λE , respectively. Let f = λD

α ○ f0 and f ′ = λE
β ○ f ′0

be the corresponding factorisations. We set s0 ∶= f0 and t0 ∶= f ′0.
For the inductive step, suppose that, for the restrictions D ↾ βD and

E ↾ βE , we have already defined a chain F ∶ δ → pMorK(a, b) with
0 < δ < κ, links s and t from B ○ F to D ↾ βD and E ↾ βE , respectively,
and increasing functions ρ0 ∶ βD → δ and θ0 ∶ βE → δ.
We will show how to extend these definitions to D ↾ βD + 1. (The

extension to E ↾βE + 1works in the sameway.) Let µ be a limiting cocone
from B○F to some object $.AsK is closed under limits of chains of length
0 < δ < κ, it follows that $ ∈ K. Since λD ∗ s is a cocone of B ○ F, there
exists a unique morphism φD ∶ $→ a such that λD ∗ s = φD ∗ µ. In the
same way, we obtain a unique morphism φE ∶ $→ b with λE ∗ t = φE ∗ µ.
As $ ∈ K, there exists an essentially unique factorisation φD = λD

α ○ φ0,
for some morphism φ0 ∶ $ → D(α) with α ≥ βD . Since a ⊑K b, we can
find a morphism ψ ∶ $→ b such that

ψ ○ φ0 = φE .

a

$

D(α)
b

φD

λD
α

φE

ψ

φ0

As D(α) ∈ K, there exists an essentially unique factorisation ψ =
λE
β ○ ψ0, for some morphism ψ0 ∶ D(α)→ E(β) with β ≥ βD . We set

F(δ) ∶= ⟨λD
α ,ψ⟩ , F(i , δ) ∶= φ0 ○ µ i , for i < δ ,

sδ ∶= idD(α) , ρ0(βD) ∶= α ,
tδ ∶= ψ0 .

Let us show that these morphisms have the desired properties. First,
we check that the extension of s is a link from the extension of B ○F to D.
For every i < δ, it follows by choice of φD that

λD
α ○ D(ρ(i), α) ○ s i = λD

ρ(i) ○ s i = φD ○ µ i = λD
α ○ φ0 ○ µ i .
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Since B(F(i)) ∈ K, this morphism has an essentially unique factorisa-
tion through λD . Hence, the above two factorisations are a.p.-equivalent.

D(φ(i), α) ○ s i ⩕D φ0 ○ µ i .

By Lemma b3.5.3 (d), this implies that

s i ⩕D φ0 ○ µ i = sδ ○ F(i , δ) ,
as desired.

We also have to check that the extension of t is a link. Let i < δ. Then

λE
β ○ tδ ○ F(i , δ) = λE

β ○ ψ0 ○ φ0 ○ µ i

= ψ ○ φ0 ○ µ i = φE ○ µ i = λE
θ(i) ○ t i .

Since B(F(i)) ∈ K, this morphism has an essentially unique factorisa-
tion through λE . Hence, the above two factorisations are a.p.-equivalent.

tδ ○ F(i , δ) ⩕E t i ,

as desired.

Having defined F ∶ δ → pMorK(a, b), we construct the desired partial
morphism q = ⟨g , g′⟩ ∈ pMor(a, b) as follows. Let λF be a limiting
cocone from B ○ F to some object $ ∈ C. Since λD ∗ s and λE ∗ t are
cocones of F, there exist unique morphisms g ∶ $→ a and g′ ∶ $→ b such
that λD ∗ s = g ∗ λF and λE ∗ t = g′ ∗ λF . We claim that g and g′ are
epimorphisms. By symmetry, it is sufficient to give a proof for g. Hence,
let h, h′ ∶ a→ d be morphisms such that h ○ g = h′ ○ g. For every i < γD ,
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it follows that

h ○ λD
i = h ○ λD

ρ(ρ0(i)) ○ D(i , ρ(ρ0(i)))
= h ○ λD

ρ(ρ0(i)) ○ sρ0(i) ○ D(i , ρ(ρ0(i)))
= h ○ g ○ λF

ρ0(i) ○ D(i , ρ(ρ0(i)))
= h′ ○ g ○ λF

ρ0(i) ○ D(i , ρ(ρ0(i)))
= h′ ○ λD

ρ(ρ0(i)) ○ sρ0(i) ○ D(i , ρ(ρ0(i)))
= h′ ○ λD

ρ(ρ0(i)) ○ D(i , ρ(ρ0(i)))
= h′ ○ λD

i .

Consequently, Lemma b3.4.2 implies that h = h′.
Finally, note that λF

0 ∶ B(F(0)) → $ is the desired morphism p → q
since, by choice of g , g′ , s0 , t0, we have

g ○ λF
0 = λD

ρ(0) ○ s0 = f and g′ ○ λF
0 = λE

θ(0) ○ t0 = f ′ . ◻
The preceding two results are phrased in a quite general form. Their

statements can be simplified significantly if we assume that the category
is ℵ0-accessible, all morphisms are monomorphisms, and all epimorph-
isms are isomorphisms. Since in the applications below we will mainly
be working in Emb(Σ) and similar categories where these assumptions
are met, we record here the corresponding simplified versions. We start
by proving that, under these assumptions, every object can be written as
the colimit of a chain.

Lemma 2.6. Let C be a category where every morphism is a monomor-
phism. For every κ-filtered diagram D ∶ I → C of size λ that has a colimit,
there exists a κ-directed diagram E ∶ K → C of size at most λ with

limÐ→ E = limÐ→D and rng Eobj = rngDobj .

Proof. Fix a limiting cocone µ ∈ Cone(D, a). For the index order K of
the diagram E, we choose the set K ∶= Iobj where we define the order by

i ≤ j : iff I(i, j) ≠ ∅ .
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Since I is κ-filtered, this preorder is clearly κ-directed. We define the
diagram E by setting

Eobj(i) ∶= D(i)
and Emor(i, j) ∶= D( f ) , for an arbitrary f ∈ I(i, j) .

First, note that E is well-defined in the sense that the value of E(i, j)
does not depend on the choice of f : if f , f ′ ∈ I(i, j), then

µj ○ D( f ) = µi = µj ○ D( f ′) implies D( f ) = D( f ′) ,
as µj is a monomorphism. Furthermore, it follows immediately from the
definition that rng Eobj = rngDobj.

Hence, it remains to show that D and E have the same colimit. We
will prove below that Cone(E , b) = Cone(D, b), for every b ∈ C. Hence,
the identity maps provide a natural isomorphism

id ∶ Cone(D,−)→ Cone(E ,−)
and it follows by Lemma b3.4.3 that D and E have the same colimits.

To prove the claim, let ν ∈ Cone(D, b). For all i ≤ j and f ∈ I(i, j), it
follows that

νi = νj ○ D( f ) = νj ○ E(i, j) .

Hence, ν ∈ Cone(E , b). Conversely, let ν ∈ Cone(E , b). For all f ∶ i → j
in I , it follows that

νi = νj ○ E(i, j) = νj ○ D( f ) .

Hence, ν ∈ Cone(D, b). ◻
Corollary 2.7. Let C be an ℵ0-accessible category where every morphism
is a monomorphism. For every κ+-presentable object a ∈ C, there exists a
chain D ∶ κ → C such that
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◆ limÐ→D = a,

◆ every object D(α) is κ-presentable and,

◆ for each κ-presentable object b, every morphism f ∶ b→ a factorises
essentially uniquely through every limiting cocone from D to a.

Proof. If a is κ-presentable, we can take the constant diagram D ∶ κ → C
where D(α) = a and D(α, β) = ida, for all α ≤ β < κ. Hence, it remains
to consider the case where a is κ+-presentable, but not κ-presentable.
Thenwe can useTheorem b4.4.3 to find anℵ0-filtered diagram E ∶ I → C
of size at most κ with colimit a such that every object E(i) is ℵ0-present-
able. We use Lemma 2.6 to construct a ℵ0-directed diagram F ∶ K → C of
size at most κ with limÐ→ F = a such that every F(i) is ℵ0-presentable. By
Proposition b3.4.16, there exists a chain D ∶ γ → C of length γ ≤ ∣K∣ ≤ κ
with colimit a such that each object D(α) is a colimit of a directed
diagram of size less than ∣K∣. In particular, every D(α) is κ-presentable.
As a is not κ-presentable, it follows by Theorem b4.4.3 that γ = κ.

Finally, let µ ∈ Cone(D, a) be limiting. If κ is regular, the index order⟨κ, ≤⟩ of D is κ-directed and every morphism f ∶ b→ a from a κ-present-
able object b to a factorises essentially uniquely through µ. Hence, sup-
pose that κ is singular. Then it follows by Lemma b4.1.4 that an object
is κ-presentable if, and only if, it is κ+-presentable. This contradicts our
assumption that a is κ+-presentable but not κ-presentable. ◻

In the following theorem let us state the special cases of Propositions
2.4 and 2.5 that we will need below.

Theorem 2.8. Let C be an ℵ0-accessible category where every morphism
is a monomorphism and every epimorphism is an isomorphism.

(a) If a ∈ C is κ+-presentable and a ⊑κ
pres b, then there exists amorphism

f ∶ a→ b.

(b) Let a, b ∈ C be κ+-presentable objectswith a ≡κ
pres b. For every partial

morphism p = ⟨ f , f ′⟩ ∈ pMorκ(a, b), there exists an isomorphism
π ∶ a→ b with f ′ = π ○ f .
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Proof. We start by proving that C and the class K of all κ-presentable
objects satisfy the conditions of Propositions 2.4 and 2.5. Clearly, beingℵ0-accessible C has colimits of chains.

To show thatK is closed under colimits of nonempty chains of length
less than κ, let F ∶ γ → K be such a chain. As every object F(i), for i < γ,
is κ-presentable, it follows by Proposition b4.3.7 that the colimit of F is(κ ⊕ ∣γ∣+)-presentable, i.e., κ-presentable.

(a) We can use Corollary 2.7 to express a as the colimit of a chain
D ∶ κ → K of the form required by Proposition 2.4. Consequently, we
obtain a diagram F ∶ κ → pMorK(a, b) such that D = B ○ F. Let λ be a
limiting cocone from D to a and set µα ∶= Q(F(α)), for α < κ, where
Q is the codomain projection functor. Then µ ∶= (µα)α<κ is a cocone
from D to b. As λ is limiting, there exists a morphism f ∶ a→ b such that
µ = f ∗ λ.

(b) We can use Corollary 2.7 to express a and b as colimits of chains
D ∶ κ → K and E ∶ κ → K of the form required by Proposition 2.5.
Therefore, we obtain a morphism h ∶ p → q of pMorK(a, b) where
q = ⟨g , g′⟩ consists of two isomorphisms. It follows that π ∶= g′ ○ g−1 is
the desired isomorphism between a and b. ◻
3. Fraïssé limits
In this section we will present a method to construct structures with anℵ0-categorical theory. These structures will be approximated by a direc-
ted diagram of finitely generated substructures. Since this construction
has further applications, we will present it in the general setting of an
accessible category.

Ultrahomogeneous objects

As in the case of κ-saturated structures and atomic ones, we can charac-
terise the maximal objects of the order ⊑κ

pres. For the category Emb(Σ),
these structures will have an ℵ0-categorical theory.
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e4. ℵ0-categorical theories

Definition 3.1. Let C be a category. An object u ∈ C is κ-ultrahomo-
geneous if, for every κ-presentable object a and all pairs of morphisms
f , f ′ ∶ a→ u, there exists an automorphism π ∶ u→ u with f ′ = π ○ f .
We call an object u ultrahomogeneous if it is ∥u∥-ultrahomogeneous.

Example. (a) The order ⟨Q, ≤⟩ of the rationals is ultrahomogeneous in
Emb(≤).

(b) Let ⟨ω, p⟩ be the structure where p(0) ∶= 0 and p(n + 1) ∶= n.
This structure is ultrahomogeneous in Emb(p) since no two distinct
substructures are isomorphic.

(c) We have shown in Corollary b6.5.31 that algebraically closed fields
are ℵ0-ultrahomogeneous.

Exercise 3.1. Find a dense linear order that is not ℵ0-ultrahomogeneous
in Emb(≤). Can you find an open one?

One important parameter of an ultrahomogeneous structure is the
class of its substructures.

Definition 3.2. Let C be a category, κ an infinite cardinal, and a ∈ C. We
denote by Subκ(a) the class of all κ-presentable objects $ ∈ C such that
there exists a morphism $→ a.

For accessible categories this class is well-behaved.

Lemma 3.3. Let C be a κ-accessible category.

a ⊑κ
pres b implies Subκ(a) ⊆ Subκ(b) .

Proof. Let $ ∈ Subκ(a) and let g ∶ $ → a be a corresponding morphism.
Since a ⊑κ

pres b, there exists a partial morphism ⟨ f , f ′⟩ ∈ pMorκ(a, b).
According to Proposition b4.4.12, the category Subκ(a) is κ-filtered.
Therefore, there exist an object h ∶ e → a of Subκ(a) and morphisms
φ ∶ f → h and ψ ∶ g → h. Since a ⊑κ

pres b, we can find a morphism
h′ ∶ e→ b such that ⟨h, h′⟩ ∈ pMorκ(a, b) and
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φ ∶ ⟨ f , f ′⟩→ ⟨h, h′⟩ .

a

d

$

be

f

g

h

f ′
h′

φ

ψ

We obtain a morphism h′ ○ψ ∶ $→ b witnessing the fact that $ ∈ Subκ(b).◻
Corollary 3.4. Let C be an ℵ0-accessible category where every morphism
is a monomorphism, and let u be κ-ultrahomogeneous. Then

a ⊑κ
pres u iff Subκ(a) ⊆ Subκ(u) , for all objects a .

Proof. (⇒) Sinceℵ0-accessible categories are κ-accessible, for all infinite
cardinals κ, this direction follows from Lemma 3.3.(⇐) Let p = ⟨ f , f ′⟩ ∈ pMorκ(a, u) be a partial morphism with base $
and let h ∶ $→ d and g ∶ d→ a be morphisms with g ○ h = f where d is κ-
presentable. Since d ∈ Subκ(a) ⊆ Subκ(u), there exists some morphism
g′ ∶ d→ u. As u is κ-ultrahomogeneous, we can find an automorphism
π ∶ u→ u such that

f ′ = π ○ g′ ○ h .

a

$

d

u

u

f

g

h

f ′

g′

π

We obtain a partial morphism q ∶= ⟨g , π ○ g′⟩ ∈ pMorκ(a, u) such that
h ∶ p → q. ◻

The statement of the previous corollary can be used to characterise
ultrahomogeneous objects.
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Proposition 3.5. Let C be anℵ0-accessible category where everymorphism
is a monomorphism and every epimorphism an isomorphism. For a κ+-
presentable object u ∈ C, the following statements are equivalent :

(1) u is κ-ultrahomogeneous.
(2) a ⊑κ

pres u , for all a ∈ C with Subκ(a) ⊆ Subκ(u) .
(3) u ≡κ

pres u

Proof. (1)⇒ (2) was already proved in Corollary 3.4 and (2)⇒ (3) is
trivial. Hence, it remains to prove (3)⇒ (1). To show that u is κ-ultra-
homogeneous, consider morphisms f , f ′ ∶ $ → u with κ-presentable
domain $. By assumption, we have u ≡κ

pres u. Consequently, we can
use Theorem 2.8 (b) to find an isomorphism π ∶ u → u such that f ′ =
π ○ f . ◻
Corollary 3.6. Let C be an ℵ0-accessible category where every morphism
is a monomorphism and every epimorphism an isomorphism.

(a) Let u, v be κ+-presentable κ-ultrahomogeneous objects. Then

Subκ(u) = Subκ(v) implies u ≅ v .

(b) Let u be κ-ultrahomogeneous and a κ+-presentable. Then

Subκ(a) ⊆ Subκ(u) implies a ∈ Subκ+(u) .

Proof. (a) This follows by Theorem 2.8 (b) and Proposition 3.5.
(b) By Corollary 3.4, Subκ(a) ⊆ Subκ(b) implies a ⊑κ

pres u. Hence, the
claim follows by Theorem 2.8 (a) . ◻

We have claimed above that ultrahomogeneous structures in Emb(Σ)
have an ℵ0-categorical theory. We start by showing that they are existen-
tially closed.

Proposition 3.7. Let U be an ℵ0-ultrahomogeneous structure in Emb(Σ).
Then U is existentially closed in the class

C ∶= {M ∈ Str[Σ] ∣ Subℵ0(M) ⊆ Subℵ0(U) } .
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Proof. Suppose that U ⊆M for some structure M ∈ C. Let φ(x̄ , ȳ) be a
quantifier-free formula and ā ⊆ U parameters such that

M ⊧ ∃ ȳφ(ā, ȳ) .

We have to show that U ⊧ ∃ ȳφ(ā, ȳ). Fix a tuple b̄ ⊆ M with M ⊧
φ(ā, b̄). By Corollary 3.6 (b), there exists an embedding h ∶ ⟪āb̄⟫M → U.
Since U is ℵ0-ultrahomogeneous and

⟪ā⟫U ≅ ⟪h(ā)⟫U

we can find an automorphism π of U with π(h(ā)) = ā. Consequently,

M ⊧ φ(ā, b̄) iff ⟪āb̄⟫M ⊧ φ(ā, b̄)
iff U ⊧ φ(h(ā), h(b̄))
iff U ⊧ φ(ā, π(h(b̄))) .

Hence, U ⊧ ∃ ȳφ(ā, ȳ). ◻
With slightly stronger assumptions we obtain ℵ0-categoricity.

Proposition 3.8. Let Σ be a finite relational signature and let U be a
countable ultrahomogeneous structure in Emb(Σ). Then Th(U) is ℵ0-cate-
gorical.

Proof. Note that, for every finite tuple s̄ of sorts, there are only finitely
many substructures ⟪ā⟫U of U that are generated by a tuple ā ∈ U s̄ of
sort s̄. As U is ℵ0-ultrahomogeneous, it follows that any isomorphism
between two such substructures extends to an isomorphism of U. Con-
sequently, the automorphism group of U is oligomorphic and it follows
by Theorem 1.2 that Th(U) is ℵ0-categorical. ◻
Example. (a) We have seen above that ⟨Q, ≤⟩ is ℵ0-ultrahomogeneous.
Consequently, it follows by the proposition that Th(Q, ≤) is ℵ0-categori-
cal.

(b) That the restriction on the signature Σ is necessary, is shown by
the example ⟨ω, p⟩. We have seen above that this structures is ℵ0-ultra-
homogeneous, but its theory is not ℵ0-categorical.
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The theorems of Fraïssé
We have seen in Corollary 3.6 (a) that an ultrahomogeneous object u is
uniquely determined by the class Subκ(u). Therefore it is worthwhile
to characterise such classes. In the present section we will provide a
characterisation in terms of the following properties.

Definition 3.9. Let C be a category, κ a cardinal, andK ⊆ C.
(a) The classK is κ-hereditary if

a ∈ K implies Subκ(a) ⊆ K .

We callK hereditary if it is κ-hereditary, for all cardinals κ.
(b)K has the κ-joint embedding property if, for every set X ⊆ K of size∣X∣ < κ, there exist an object $ ∈ K and morphisms a→ $, for each a ∈ X.
(c)K has the κ-amalgamation property if, for every family of morph-

isms f i ∶ a → bi , i < γ, with a, bi ∈ K and γ < κ, there exist an object
$ ∈ K and morphisms g i ∶ bi → $, i < γ, such that

g i ○ f i = gk ○ fk , for all i , k < γ .

Remark. If the subcategory of C induced by a classK ⊆ Cobj is κ-filtered,
then Condition (f1) states that K has the κ-joint embedding property,
and Lemma b4.1.2 implies thatK has the κ-amalgamation property.

The converse fails in general. For instance, consider the class K ⊆
Emb(Σ) of all finitely generated structures. This class has the ℵ0-joint
embedding property and the ℵ0-amalgamation property, but it is notℵ0-filtered: take finitely generated structures A,B ∈ K such that there
are two different embeddings f , g ∶ A→ B. Then h ○ f ≠ h ○ g, for every
embedding h.

Exercise 3.2. For a suitable signature Σ, find a classK ⊆ Emb(Σ)with theℵ0-amalgamation property that does not have the ℵ0-joint embedding
property.

Exercise 3.3. Suppose that the classK is closed under unions of chains of
length less than κ. Prove that, ifK has the ℵ0-joint embedding property,
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it also has the κ-joint embedding property and that, if it has the ℵ0-
amalgamation property, it has the κ-amalgamation property.

Before giving a characterisation of classes of the form Subκ(a), we
start with a technical remark on such classes for κ-filtered colimits.

Lemma 3.10. Let a be the colimit of a κ-filtered diagram D ∶ I → C. Then

Subκ(a) =⋃
i∈I Subκ(D(i)) .

Proof. Let λ ∈ Cone(D, a) be a limiting cocone.(⊇) For every b ∈ Subκ(D(i)), there is some morphism f ∶ b→ D(i).
Hence, λi ○ f is a morphism b→ a.(⊆) Let b ∈ Subκ(a) and let f ∶ b→ a be the corresponding morphism.
Since b is κ-presentable,we can find a morphism f0 ∶ b→ D(i), for some
i ∈ I , such that f = λi ○ f0. Hence, b ∈ Subκ(D(i)). ◻

Let us characterisewhen a class is of the form Subκ(a), for an arbitrary
object a. We start with an obvious necessary condition.

Proposition 3.11. Let C be a κ-accessible category. For every object a ∈ C,
the class Subκ(a) is κ-hereditary and it has the κ-joint embedding property.

Proof. Clearly, if there are morphisms b → a and $ → b, there is also a
morphism $→ a. Hence, Subκ(b) ⊆ Subκ(a), for every b ∈ Subκ(a).

Furthermore, we have shown in Proposition b4.4.12 that Subκ(a) is
κ-filtered. This implies that Subκ(a) has the κ-joint embedding property.◻

The converse only holds for κ = ℵ0 and ifK is small enough.

Theorem 3.12 (Fraïssé). Let C be an ℵ0-accessible category and let K ⊆Cobj be a class of ℵ0-presentable objects that, up to isomorphism, contains
only countably many objects. If K is ℵ0-hereditary and if it has the ℵ0-
joint embedding property, then K = Subℵ0(a), for some ℵ1-presentable
object a ∈ C.
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Proof. Fix an enumeration ($n)n<ω of all objects inK up to isomorphism.
We define a diagram D ∶ ω → K by induction on n. Set D(0) ∶= $0. If
D(n) is already defined then, by the ℵ0-joint embedding property, we
can find an object D(n + 1) ∈ K with morphisms $n+1 → D(n + 1) and
fn ∶ D(n)→ D(n + 1). Setting

D(i , k) ∶= fk−1 ○ ⋅ ⋅ ⋅ ○ f i , for i < k < ω ,

we obtain a ℵ0-directed diagram D ∶ ω → K. Let a be its colimit. Accord-
ing to Proposition b4.3.7, a is ℵ1-presentable. SinceK is ℵ0-hereditary,

D(n) ∈ K implies Subℵ0(D(n)) ⊆ K , for every n < ω .

By Lemma 3.10, it follows that Subℵ0(a) ⊆ K. Conversely, we have

$n ∈ Subℵ0(D(n)) ⊆ Subℵ0(a) , for every n < ω .

Since Subℵ0(a) is closed under isomorphisms, this implies that K ⊆
Subℵ0(a). ◻

For a given classK theremay be several non-isomorphic objects a such
that K = Subℵ0(a). For instance, if K ⊆ Emb(≤) is the class of all finite
linear orders thenK = Subℵ0(L), for every infinite linear order L. We are
looking for an object a with Subℵ0(a) = K that is in a certain sense the
most general one. As we have seen in Corollary 3.6, ultrahomogeneous
objects u are uniquely determined by Subκ(u). Therefore, we can take
ultrahomogeneity as the required additional property.

Definition 3.13. Let C be a category and K ⊆ Cobj. An object f ∈ C is a
Fraïssé limit ofK if there is some cardinal κ such that f is κ+-presentable,
κ-ultrahomogeneous, and Subκ(f) = K.

Example. ⟨Q, ≤⟩ is the Fraïssé limit of the class of all finite linear orders
in Emb(≤).

Before considering their existence, let us prove that Fraïssé limits are
unique.
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Proposition 3.14. Let C be an ℵ0-accessible category where every morph-
ism is a monomorphism and every epimorphism an isomorphism. Up to
isomorphism, a class K ⊆ Cobj has at most one Fraïssé limit.

Proof. Suppose that f and g are Fraïssé limits ofK. By definition, there
are infinite cardinals κ and λ such that f is κ+-presentable and κ-ultra-
homogeneous, g is λ+-presentable and λ-ultrahomogeneous, and

Subκ(f) = K = Subλ(g) .

By symmetry, we may assume that κ ≤ λ. As every object in Subλ(g) =
Subκ(f) is κ-presentable, we have

Subκ(g) = Subλ(g) = K = Subκ(f)
and it follows by Corollary 3.6 (b) that there exists a morphism f → g.
Consequently,

Subλ(f) ⊆ Subλ(g) = K = Subκ(f) ⊆ Subλ(f) .

Hence, Subλ(f) = Subλ(g) and, if we can show that f is λ-ultrahomogen-
eous, it will follow by by Corollary 3.6 (a) that f ≅ g.

For λ-ultrahomogeneity of f, consider two morphisms f , f ′ ∶ a → f
with λ-presentable domain a. Then a ∈ Subλ(f) = Subλ(g) = Subκ(g)
implies that a is even κ-presentable. Hence, we can use κ-ultrahomogen-
eity of f to find the desired automorphism π ∶ f → f with f ′ = π ○ f . ◻

Next, let us describe Subκ(u) for a κ-ultrahomogeneous object u.

Lemma 3.15. Let C be an ℵ0-accessible category where every morphism
is a monomorphism. If u ∈ C is κ-ultrahomogeneous then Subκ(u) is κ-
hereditary, closed under colimits of nonempty chains of length less than κ,
and it has the κ-joint embedding property and the κ-amalgamation prop-
erty.

Proof. Note that every ℵ0-accessible category is also κ-accessible. There-
fore, it follows by Proposition 3.11 that the class Subκ(u) is κ-hereditary
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and that it has the κ-joint embedding property. To check the κ-amal-
gamation property, let f i ∶ a→ bi , i < γ, be a family of γ < κ morphisms
with a, bi ∈ Subκ(u). Fix morphisms h i ∶ bi → u, for i < γ. Since u is
κ-ultrahomogeneous, there exist automorphisms π i ∈ Aut(u) such that

π i ○ h i ○ f i = h0 ○ f0 , for all i < γ .

Consequently, f i ∶ h0 ○ f0 → π i ○ h i is a morphism of Subκ(u). We have
seen in Proposition b4.4.12 that Subκ(u) is κ-filtered. Therefore, we can
use Lemma b4.1.2 to find an object g ∈ Subκ(u) and morphisms

φ i ∶ π i ○ h i → g , for i < γ ,

such that

φ i ○ f i = φk ○ fk , for all i , k < γ .

This family witnesses the κ-amalgamation property.
It remains to check that Subκ(u) is closed under colimits of nonempty

chains of length less than κ. Let D ∶ γ → Subκ(u) be a chain of length
0 < γ < κ. As C is ℵ0-accessible, D has a colimit a which, according to
Theorem b4.4.3, is κ-presentable. Furthermore, Lemma 3.10 implies that

Subκ(a) = ⋃
α<κ

Subκ(D(α)) ⊆ Subκ(u) .

Hence, it follows by Corollary 3.4 that a ⊑κ
pres u. Consequently, we can

use Lemma 2.3 (b) to find a morphism a→ u. Thus, a ∈ Subκ(u). ◻
The converse is given by the following theorem, which can be used

to construct ultrahomogeneous structures by describing their class of
substructures. Again we have to requireK to be small enough.

Theorem 3.16 (Fraïssé). Let κ be a regular cardinal, let C be an ℵ0-access-
ible category where all morphisms are monomorphisms and all epimorph-
isms are isomorphisms, and let K ⊆ Cobj be a κ-hereditary class of κ-
presentable objects that is closed under nonempty chains of length less
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than κ and that has the ℵ0-joint embedding property and the ℵ0-amal-
gamation property, and such that the full subcategory of C induced byK
has a skeletonK0 with at most κ morphisms. ThenK has a Fraïssé limit f.

Proof. We will construct a diagram D ∶ κ → K0 satisfying the following
condition :

(∗) If f ∶ a→ b and g ∶ a→ D(α) are morphisms with a, b ∈ K0, there
is some index β > α and a morphism g′ ∶ b→ D(β) such that

g′ ○ f = D(α, β) ○ g .

a D(α)
b D(β)

g

f D(α, β)
g′

Let f be the colimit of this diagram. By Theorem b4.4.3, f is κ+-present-
able, and Lemma 3.10 implies that Subκ(f) ⊆ K. Conversely, if a ∈ K
then, by the ℵ0-joint embedding property, there are an object b ∈ K
and morphisms h ∶ a → b and f ∶ D(0) → b. By (∗), we can extend
the identity morphism id ∶ D(0) → D(0) to a morphism g′ ∶ b →
D(α), for some α > 0. Consequently, b ∈ Subκ(D(α)) ⊆ Subκ(f) and
a ∈ Subκ(b) ⊆ Subκ(f). It follows thatK = Subκ(f).

To show that f is ultrahomogeneous it is sufficient, by Proposition 3.5,
to prove that f ⊑κ

pres f. Consider morphisms f ∶ a→ f, f ′ ∶ a→ f, g ∶ b→ f,
h ∶ a→ b such that f = g ○h and a and b are κ-presentable. As κ is regular,
the order ⟨κ, ≤⟩ is κ-directed. Since a is κ-presentable, there therefore
exists an essentially unique factorisation f ′ = λα ○ f ′0, for some index
α < κ, some morphism f ′0 ∶ a→ D(α), and a limiting cocone λ from D
to f. Hence, we can use (∗) to find an index β > α and a morphism
g′ ∶ b→ D(β) such that
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g′ ○ h = D(α, β) ○ f ′0 .

Since

λβ ○ g′ ○ h = λβ ○ D(α, β) ○ f ′0 = λα ○ f ′0 = f ′ ,

f a f

b

D(β)
D(α)

f f ′
h

f ′0

g

λβ

λα D(α, β)

g′

it follows that ⟨g , λβ ○ g′⟩ is a partial morphism with

h ∶ ⟨ f , f ′⟩→ ⟨g , λβ ○ g′⟩ .

Consequently, f is a Fraïssé limit ofK.
It remains to construct a chain D ∶ κ → K0 satisfying (∗). Choose

a bijection π ∶ κ × κ → κ such that π(α, β) ≥ α, for all α, β < κ. (For
instance, the bijection constructed in the proof of Theorem a4.3.8 has
this property.)We construct D(α) by induction on α.We startwith an ar-
bitrary object D(0) ∈ K0. For the successor step, suppose that D(α) has
already been defined. Fix a list of all pairs ⟨ fαβ , gαβ⟩, for β < κ, where
fαβ ∶ aαβ → bαβ is a morphism inK0 and gαβ ∶ aαβ → D(α) is an arbit-
rary morphism. Let ⟨γ, β⟩ ∶= π−1(α). Note that we have chosen π such
that γ ≤ α. By the ℵ0-amalgamation property, we can find a structure
$ ∈ K and morphisms hγβ ∶ bγβ → $ and h′γβ ∶ D(α)→ $ such that

hγβ ○ fγβ = h′γβ ○ D(γ, α) ○ gγβ .

We set

D(α + 1) ∶= $ and D(i , α + 1) ∶= h′γβ ○ D(i , α) , for i ≤ α .

For the limit step, suppose that D(α) is already defined for all α < δ.
Let D(δ) ∶= limÐ→ (D ↾ δ) and let λ be a corresponding limiting cocone.
By assumption D(δ) ∈ K0 and we can set D(α, δ) ∶= λα , for α < δ.

We claim that the diagram D defined this way satisfies Condition (∗).
Let f ∶ a → b and g ∶ a → D(α) be morphisms with a, b ∈ K0. Then
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⟨ f , g⟩ = ⟨ fαβ , gαβ⟩, for some ordinal β < κ.Consequently, themorphism
hαβ ∶ bαβ → D(π(α, β) + 1) chosen in the inductive step above satisfies

hαβ ○ fαβ = h′αβ ○ D(α, π(α, β)) ○ gαβ= D(α, π(α, β) + 1) ○ gαβ . ◻
Example. (a) Let P ⊆ Emb(E) be the class of all finite planar graphs.
Clearly, P is hereditary. The class P does not have a Fraïssé limit since it
does not have the ℵ0-amalgamation property. Consider the following
graphs :

a

b

a

b

a

b

A :
B : C :

Let f ∶ A→ B and g ∶ A→ C be the embeddings with a ↦ a and b ↦ b.
There is no planar graph D such that we can find embeddings h ∶ B→ D
and k ∶ C → D with h ○ f = k ○ g.

(b) Similarly we can show that the class F ⊆ Emb(E) of all finite acyc-
lic graphs does not have the ℵ0-amalgamation property. The counter-
example is given by the graphs :

a

b

a

b

a

b

A :
B : C :

4. Zero-one laws
In this section we study Fraïssé limits by axiomatising their theories.

Definition 4.1. (a) Let M be a structure. The atomic type of ā ⊆ M is the
set

atp(ā) ∶= {φ ∣ φ a literal such that M ⊧ φ(ā) } .
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An atomic n-type p is a set of the form p = atp(ā), for ā ∈ Mn .
(b) Let p be an atomic n-type and q an atomic (n + 1)-type such that

p ⊆ q. The extension axiom associated with p and q is the sentence

ηpq ∶= ∀x̄[p(x̄)→ ∃yq(x̄ , y)] .

(We write p(x̄) for the formula ⋀ p.)
(c) Let K be a hereditary class of finitely generated structures. We

define

ΓK ∶= { atp(ā/M) ∣ ā is a finite tuple generating M ∈ K } ,
and T[K] ∶= { ηpq ∣ q ∈ ΓK } ∪ {∀x̄¬p(x̄) ∣ p ∉ ΓK }
The set of all extension axioms over a signature Σ is Tran[Σ] ∶= T[C],
where C is the class of all finitely generated Σ-structures.

Remark. Note that, in general, T[K] is an infinitary theory. It is a first-
order theory if the signature in question is finite and relational.

Example. An important example of a Fraïssé limit is the random graph,
also called the Rado graph. It can be defined as follows. R ∶= ⟨V , E⟩
where V ∶= HF is the set of all hereditary finite sets and the edge relation
is

E ∶= { ⟨a, b⟩ ∣ a ∈ b or b ∈ a } .

This graph satisfies the following extension axiom : for every pair X ,Y
of finite disjoint sets of vertices, there exists some vertex c ∈ V that is
adjacent to every vertex in X, but not adjacent to any in Y . For a proof,
note that, if X = {a0 , . . . , am−1} and Y = {b0 , . . . , bn−1} then we can
take c ∶= {a0 , . . . , am−1 , x} where the set x ∶= {b0 , . . . , bn−1} is needed
to ensure that c ∉ b i .

Let us investigate the relationship between the theories T[K] and
ultrahomogeneous structures.
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Lemma 4.2. If U is ultrahomogeneous then U ⊧ T[Subℵ0(U)].
Lemma 4.3. If A,B ⊧ T[K] then

A ≡0 B implies A ≅ℵ0
0 B .

Proof. Since A ≡0 B we have pIsoℵ0
(A,B) ≠ ∅. To check the forth

condition, let ā ↦ b̄ ∈ pIsoℵ0
(A,B) and c ∈ A. Set p ∶= atp(ā) and

q ∶= atp(āc). Then p ⊆ q and q ∈ ΓK. Hence, ηpq ∈ T[K] and B ⊧ ηpq.
Since atp(b̄) = p we can, therefore, find some d ∈ B with atp(b̄d) = q.
Consequently, āc ↦ b̄d ∈ pIsoℵ0

(A,B). ◻
Corollary 4.4. Every model of T[K] is ultrahomogeneous.

It follows that the theories T[K] axiomatise Fraïssé limits.

Theorem 4.5. Let K be a hereditary class of finitely generated structures
containing a unique 0-generated structure A0. A structure F is the Fraïssé
limit of K if and only if it is countable, ⟪∅⟫F ≅ A0, and F ⊧ T[K].
Proof. (⇒) A Fraïssé limit F is countable by definition. Furthermore,
Subℵ0(F) ⊆ K implies that F ⊧ ∀x̄¬p(x̄), for all p ∉ ΓK.

Finally, let ηpq ∈ T[K]. Then q ∈ ΓK and K ⊆ Subℵ0(F) implies that
there is some tuple c̄ ⊆ F with atp(c̄) = q. Since F is ultrahomogeneous it
follows that, for every tuple ā with atp(ā) = p, there is some element b ∈
F such that atp(āb) = atp(c̄) = q. Hence, F ⊧ ηpq.(⇐) By assumption, F is countable, and we have shown in Corol-
lary 4.4 that it is ultrahomogeneous. Furthermore, F ⊧ ∀x̄¬p(x̄), for
p ∉ ΓK implies that Subℵ0(F) ⊆ K. Hence, it remains to show thatK ⊆ Subℵ0(F). Let B ∈ K be generated by a finite tuple b̄ = b0 . . . bn−1.
Note that ⟪∅⟫B ≅ A0 ≅ ⟪∅⟫F ⊆ F. Since F satisfies the needed extension
axiomswe can, therefore, use induction to find elements a0 , . . . , an−1 ∈ F
such that

⟪b0 . . . bk−1⟫B ≅ ⟪a0 , . . . , ak−1⟫F , for all k ≤ n .

Consequently, we have B = ⟪b̄⟫B ≅ ⟪ā⟫F ⊆ F. ◻
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Proposition 4.6. T[K] admits quantifier elimination for FO∞ℵ0 .

Proof. This follows immediately from Theorem d1.2.9 and Lemma 4.3.◻
Corollary 4.7. Let K be a class of Σ-structures where the signature Σ is
finite and relational. Then T[K] admits quantifier elimination for FO.

Proof. Since T[K] is a first-order theory, the claim follows by Corol-
lary d1.2.10. ◻
Corollary 4.8. LetK be a class of Σ-structureswhere Σ is a finite, relational
signature without 0-ary relations. Then T[K] is complete.

Proof. Let φ ∈ FO0[Σ]. There exists a sentence ψ ∈ QF0[Σ] such that
T[K] ⊧ φ↔ ψ. Since Σ is relational and it contains no 0-ary relations,
the only quantifier-free sentences are true and false. If ψ ≡ true then
T[K] ⊧ φ and if ψ ≡ false then T[K] ⊧ ¬φ. ◻

The extension axioms have the surprising property that, asymptotically,
they hold with probability 1 in every finite structure. Let us make this
claim more precise.

Consider a finite signature Σ. For each finite number n < ω, we count
how many Σ-structures with universe [n] satisfy a given sentence. Note
that, for every n, there are only finitely many such structures.

Definition 4.9. For φ,ψ ∈ FO[Σ] we define

κn(φ) ∶= ∣{M ∣M ⊧ φ, M = [n] }∣ ,
Prn

M[M ⊧ φ ∣M ⊧ ψ ] ∶= κn(φ ∧ ψ)
κn(ψ) .

We use the shorthand Prn
M[M ⊧ φ ] ∶= Prn

M[M ⊧ φ ∣M ⊧ true ].
Lemma 4.10. Let Σ be a finite, relational signaturewithout 0-ary relations.
Then

lim
n→∞Prn

M[M ⊧ ηpq ] = 1 , for every ηpq ∈ Tran[Σ] .
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Proof. Suppose that p is an m-type and n > m. Since Σ is finite there
exists some constant p ∈ (0, 1) such that

Prn
M[M ⊭ q(0, . . . ,m − 1,m) ∣M ⊧ p(0, . . . ,m − 1) ] = p .

Hence,

Prn
M[M ⊭ ∃xmq(0, . . . ,m − 1, xm) ∣M ⊧ p(0, . . . ,m − 1) ]
= pn−m ,

which implies that Prn
M[M ⊭ ηpq ] ≤ nmkn−m . Since p < 1 we have

lim
n→∞ nmkn−m = 0 ,

and it follows that

lim
n→∞Prn

M[M ⊧ ηpq ] ≥ lim
n→∞(1 − nmkn−m) = 1 . ◻

Lemma 4.11. Tran[Σ] is satisfiable, for every finite relational signature Σ
without 0-ary relations.

Proof. For a contradiction suppose that Tran[Σ] is inconsistent. Then
there exists a finite inconsistent set Φ ⊆ Tran[Σ]. Suppose that Φ ={φ0 , . . . , φm−1}. By the preceding lemma, we have

lim
n→∞Prn

M[M ⊧ φ i ] = 1 , for all i < m .

Therefore, there exists some number n such that

Prn
M[M ⊧ ¬φ i ] < 1

m
.

It follows that

Prn
M[M ⊧ ⋀Φ ] = 1 − Prn

M[M ⊧ ⋁i ¬φ i ]
≥ 1 −∑

i
Prn

M[M ⊧ ¬φ i ] > 1 −m ⋅ 1
m
= 0 .

Consequently, Φ has a model of size n. Contradiction. ◻
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Theorem 4.12 (Zero-One Law). Let Σ be a finite, relational signature
without 0-ary relations. For every sentence φ ∈ FO[Σ], we have

lim
n→∞Prn

M[M ⊧ φ ] ∈ {0, 1} .

Proof. If Tran[Σ] ⊧ φ then there are axioms ηp0q0 , . . . , ηpkqk ∈ Tran[Σ]
such that ηp0q0 ∧⋯ ∧ ηpkqk ⊧ φ. Hence, we have

lim
n→∞Prn

M[M ⊧ φ ] ≥ lim
n→∞Prn

M[M ⊧ ηp0q0 ∧⋯ ∧ ηpkqk ] = 1 .

Now suppose that Tran[Σ] ⊭ φ. Since Tran[Σ] is complete, we have
Tran[Σ] ⊧ ¬φ. By the first case, it follows that

lim
n→∞Prn

M[M ⊧ φ ] = lim
n→∞(1 − Prn

M[M ⊧ ¬φ ]) = 1 − 1 = 0 . ◻
Exercise 4.1. Prove that the theorem fails for signatures with 0-ary
relations.

Lemma 4.13. The Zero-One Law fails for signatures with functions.

Proof. Let Σ = { f } be a signature consisting just of a unary function
symbol f , and define

φ ∶= ∀x( f x ≠ x) .

We have

Prn
M[M ⊧ φ ] = (n − 1)n

nn = (1 − 1
n )n

which implies that

lim
n→∞Prn

M[M ⊧ φ ] = lim
n→∞(1 − 1

n )n = 1
e

. ◻
Lemma 4.14. Let Σ be a finite relational signature. There exists no sentence
φ ∈ FO[Σ] such that

M ⊧ φ iff ∣M∣ is even , for all finite Σ-structures M .
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Proof. limn→∞ Prn
M[M ⊧ φ ] does not exist in contradiction to the Zero-

One Law. ◻
Remark. For every n < ω, we can extend the Zero-One Law to the logic
FO(n)∞ℵ0

consisting of all FO∞ℵ0 -formulae using at most n variables (both
free and bound). Note that every FO(PFP)-formula can be translated to
such a formula, for some suitable n. Hence, the Zero-One Law also holds
for FO(LFP) and FO(PFP).
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1. Ramsey Theory
In this chapter we introduce some technical tools to study properties of
sequences. This machinery is based on combinatorial results concerning
colourings of linear orders.

Definition 1.1. (a) For a linear order I and a cardinal ν, we define

[I]ν ∶= { ı̄ ∈ Iν ∣ ı̄ is increasing} .

For an unordered set X we abuse notation by defining

[X]ν ∶= { s ⊆ X ∣ ∣s∣ = ν } .

(This is consistent with our convention of identifying sequences with
their ranges.)

(b) Let c ∶ [A]ν → λ be a function. A subset C ⊆ A is homogeneous
with respect to c if we have c(ā) = c(ā′), for all ā, ā′ ∈ [C]ν .

(c) Let κ, λ, µ, ν be cardinals. We write κ → (µ)νλ if, for every set A of
size ∣A∣ ≥ κ and each function c ∶ [A]ν → λ, there exists a homogeneous
subset C ⊆ A of size ∣C∣ ≥ µ.

Example. 6→ (3)22 is equivalent to the statement that every undirected
graph G = ⟨V , E⟩ with at least 6 elements contains a triangle or an
independent set of size 3.

Exercise 1.1. Prove that 6→ (3)22.

Let us start with the simplest case, that of unary colourings.
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Theorem 1.2 (Pigeon Hole Principle). κ → (κ)1λ , for all infinite cardin-
als κ and every λ < cf κ.

Proof. Let A be a set of size ∣A∣ = κ and suppose that c ∶ A → λ is a
function. We have to show that there is some α < λ with ∣c−1(α)∣ = κ.
Suppose otherwise. Then λ < cf κ implies

∣A∣ = ∑
α<λ
∣c−1(α)∣ < κ .

A contradiction. ◻
The Theorem of Ramsey generalises the Pigeon Hole Principle to

colourings of higher arities. We present two versions : one for infinite
sets and one for finite sets.

Theorem 1.3 (Ramsey). ℵ0 → (ℵ0)nl , for all 0 < n, l < ℵ0.

Proof. Let A be a set of size ∣A∣ = ℵ0 and c ∶ [A]n → l a function. W.l.o.g.
we may assume that A = ω. By induction on n, we construct an infinite
subset C ⊆ ω that is homogeneous with respect to c.

For n = 1 the claim follows from the Pigeon Hole Principle. Hence, we
may assume that n > 1. In a first step, we define an infinite subset B ⊆ ω
such that the value of c(b̄), for b̄ ∈ [B]n , only depends on the minimal
element b0. For every a ∈ ω,we define a function c′a ∶ [ω∖{a}]n−1 → l by
c′a(b̄) ∶= c(b̄ ∪ {a}). We construct an increasing sequence a0 < a1 < . . .
of elements and a decreasing sequence A0 ⊇ A1 ⊇ . . . of subsets of ω
as follows. We start with a0 ∶= 0 and A0 ∶= ω. If a i and A i are already
defined then we can use the inductive hypothesis to find an infinite
subset A i+1 ⊆ A i ∖{a0 , . . . , a i}. that is homogeneous with respect to c′a i

.
Let a i+1 be the minimal element of A i+1.

Let B ∶= { a i ∣ i < ω } and set k i ∶= c(a ia i+1 . . . a i+n−1). Note that,
for i0 < ⋅ ⋅ ⋅ < in−1, we have a i1 , . . . , a in−1 ∈ A i0+1. Hence, the above
construction ensures that

c(a i0 . . . a in−1) = c′a i0
(a i1 . . . a in−1)= c′a i0
(a i0+1 . . . a i0+n−1) = c(a i0 . . . a i0+n−1) = k i0 .
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By the Pigeon Hole Principle, there exists an infinite subset C ⊆ B such
that k i = k j , for all a i , a j ∈ C. This set C is the desired homogeneous
subset of ω. ◻
Example. Let ⟨P, ≤⟩ be an infinite partial order. We can use the Ramsey
Theorem to prove that there exists an infinite set C ⊆ P such that C is
either linearly ordered or all elements of C are pairwise incomparable.

Let c ∶ [P]2 → 2 be the function such that

c({a, b}) ∶= ⎧⎪⎪⎨⎪⎪⎩
1 if a ≤ b or b ≤ a ,
0 otherwise .

By the theorem there exists an infinite homogeneous set C ⊆ P. If we
have c({a, b}) = 1, for all a, b ∈ C, then C is a chain. Otherwise, all
elements of C are pairwise incomparable.

The finite version of the Ramsey Theorem is as follows.

Theorem 1.4 (Ramsey). For all l ,m, n < ℵ0, there exists a finite cardinal
k < ℵ0 such that k → (m)nl .

Proof. For a contradiction, suppose that there exists no finite k with
k → (m)nl . Let Fk be the set of all functions c ∶ [k]n → l such that there
is no subset C ⊆ [k] of size ∣C∣ ≥ m that is homogeneous with respect
to c. It follows that each set Fk is finite and nonempty. Furthermore,
c ∈ Fk+1 implies that c ↾ [k]n ∈ Fk . Hence, if we order the set T ∶= ⋃k Fk
by inclusion then we obtain a tree ⟨T , ⊆⟩. This tree is infinite and finitely
branching. By the Lemma of Kőnig it therefore contains an infinite
branch (ck)k<ω with ck ∈ Fk . Set c ∶= ⋃k ck . Then c is a function c ∶[ℵ0]n → l . By the infinite version of theRamseyTheorem, there exists an
infinite subset C ⊆ ℵ0 that is homogeneous with respect to c. Fix a subset
Z ⊆ C of size ∣Z∣ = m and let k be the maximal element of Z. It follows
that Z is homogeneous with respect to ck+1. A contradiction. ◻

Next,we consider the case of infinitely many colours and uncountable
homogeneous sets. We start with a counterexample.
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Lemma 1.5. 2ℵ0 ↛ (3)2ℵ0

Proof. Let c ∶ [2ℵ0]2 → ℵ0 be the function mapping a pair { f , g} of
distinct functions f , g ∶ ℵ0 → 2 to the least number n with f (n) ≠
g(n). If { f , g , h} were homogeneous with respect to c, we would have
f (n) ≠ g(n), f (n) ≠ h(n), and g(n) ≠ h(h), for some n. Since
f (n), g(n), h(n) ∈ {0, 1} this is impossible. ◻
Theorem 1.6 (Erdős-Rado). For all cardinals κ ≥ ℵ0 and n < ℵ0,

ℶn(κ)+ → (κ+)n+1
κ .

Proof. We prove the claim by induction on n. By the Pigeon Hole Prin-
ciple, we have κ+ → (κ+)1κ . Hence, the claim holds for n = 1. For the
inductive step, suppose we have already proved the theorem for n. Set
λ ∶= ℶn+1(κ) and µ ∶= ℶn(κ), and let c ∶ [λ+]n+1 → κ be a colouring.
As a first step we define an increasing sequence of ordinals β i < λ+,

for i < κ+, with the following property :
(∗) For every set S ⊆ β i of size ∣S∣ ≤ µ and all ordinals γ < λ+, there

exists some ordinal η < β i+1 such that

η ∈ S iff γ ∈ S ,

and c(ᾱη) = c(ᾱγ) , for all ᾱ ∈ Sn .

The ordinals β i will be used as a measuring stick in the construction
below.We define β i by induction on i. Let β0 ∶= 0 and set βδ ∶= supi<δ β i ,
for limit ordinals δ. For the inductive step, we set

β i+1 ∶= sup{ η(S , γ) ∣ γ < λ+ , S ⊆ β i with ∣S∣ ≤ µ } ,
where η(S , γ) denotes the minimal ordinal η such that

η ∈ S iff γ ∈ S ,

and c(ᾱη) = c(ᾱγ) , for all ᾱ ∈ Sn .
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Note that there are at most ∣β i ∣µ = λµ = (2µ)µ = λ subsets of β i of size∣S∣ ≤ µ and there are at most κµ = 2µ = λ functions S → κ. Consequently,
the supremum above is taken over a set of at most λ ⊗ λ = λ ordinals
each of which is less than λ+. Since λ+ is regular it follows that the
supremum β i+1 is less than λ+.

Having defined the β i we set β∗ ∶= supi<µ+ β i and we define ordinals
α i < β i+1, for i < µ+, such that α i ≠ αk , for i ≠ k, and

c(αk0 , . . . , αkn−1 , α i) = c(αk0 , . . . , αkn−1 , β
∗) ,

for all k0 , . . . , kn−1 < i. We can find α i by induction on i using prop-
erty (∗) with S = { αk ∣ k < i } and γ ∶= β∗.

Define a colouring c′ ∶ [µ+]n → κ by

c′(ı̄) ∶= c(α i0 . . . α in−1β
∗) .

By inductive hypothesis, there exists a set I ⊆ µ+ of size ∣I∣ ≥ κ+ such
that

c′(ı̄) = c′(k̄) , for all ı̄ , k̄ ∈ [I]n .

Let J ∶= { α i ∣ i ∈ I }. For γ̄, η̄ ∈ [J]n+1 it follows that

c(γ0 . . . γn−1γn) = c(γ0 . . . γn−1β∗)= c(η0 . . . ηn−1β∗) = c(η0 . . . ηn−1ηn) .

Hence, J is the desired homogeneous subset of λ+. ◻
2. Ramsey Theory for trees
So far, we have considered homogeneous subsets of linear orders. A
special property of linear orders is that every subset again induces a
linear order. When considering colourings of other structures this is
no longer the case. In this section we prove variants of the Pigeon Hole
Principle and the Theorem of Ramsey for trees where the homogeneous
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sets we obtain again induce trees. There are two kinds of tree structures
we will be working with : trees of the form T∗(κ<α) are equipped with
the tree-order ⪯ and relations ≺p for the direction of the immediate
successors, while trees Tn(κ<α) also have functions pf to compare the
levels of elements.

Definition 2.1. Let κ be a cardinal and α an ordinal.
(a) We denote the tree order on κ<α by ⪯ and ⊓ is the infimum opera-

tion with respect to ⪯. For η, ζ ∈ κ<α and p ∈ κ, we further set

η ≺p ζ : iff ηp ⪯ ζ .

For ∣η∣ ≤ ∣ζ ∣, we denote by pf(η, ζ) the prefix of ζ of length ∣η∣. If ∣η∣ > ∣ζ ∣,
we set pf(η, ζ) ∶= ζ.

(b) We define

T∗(κ<α) ∶= ⟨κ<α ,⊓, ⪯, (≺p)p∈κ⟩ ,
and Tn(κ<α) ∶= ⟨κ<α ,⊓, ⪯, (≺p)p∈κ , pf , (η)η∈κ<n ⟩ , for n ≤ α .

We denote the substructure of Tn(κ<α) generated by a set X ⊆ κ<α by⟪X⟫n .

Remark. (a) Note that the substructure ⟪X⟫n generated by a set X ⊆ κ<α
has universe

⟪X⟫n = κ<n ∪ {pf(ξ ⊓ η, ζ) ∣ ξ, η, ζ ∈ X } .

Thus, it consists of (i) all elements of X ∪ κ<n , (ii) all elements of the
form η ⊓ ζ , with η, ζ ∈ X, and (iii) all prefixes of some element of X that
have the same length as an element of the form (i) or (ii).

(b) Note that we have

∣η∣ = ∣ζ ∣ iff pf(η, ζ) = ζ and pf(ζ , η) = η .

Hence, every embedding h ∶ Tn(κ<α)→ Tn(κ<α) has the property that

∣η∣ = ∣ζ ∣ implies h(∣η∣) = h(∣ζ ∣) , for all η, ζ ∈ κ<α .
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Definition 2.2. (a) The set of levels of a tuple η̄ ∈ (κ<α)d is

Lvl(η̄) ∶= { ∣η i ⊓ η j ∣ ∣ i , j < d } = { ∣ζ ∣ ∣ ζ ∈ ⟪η̄⟫0 } .

(b) Let h ∶ Tn(κ<α)→ Tn(κ<α) be an embedding. The level embedding
function associated with h is the function f ∶ α → α such that

∣h(η)∣ = f (∣η∣) , for all η ∈ κ<α .

Our first result is a generalisation of a strong version of the Pigeon
Hole Principle. We omit the proof, which is quite involved.

Theorem 2.3 (Halpern, Läuchli). Let m, d < ω and let C be a finite set.
For every function c ∶ (m<ω)d → C there exist embeddings

g i ∶ T0(m<ω)→ T0(m<ω) , for i < d ,
such that all g i have the same level embedding function and

c(g0(η0), . . . , gd−1(ηd−1)) = c(g0(ζ0), . . . , gd−1(ζd−1)) ,
for all tuples η̄, ζ̄ ∈ (m<ω)d with ∣η0∣ = ⋅ ⋅ ⋅ = ∣ηd−1∣ and ∣ζ0∣ = ⋅ ⋅ ⋅ = ∣ζd−1∣.

In the remainder of this section we generalise the Theorem of Ramsey
to trees. In the version for linear orders we required tuples to have the
same colour if they have the same order type. When dealing with other
kinds of structures we replace the order type of a tuple by its atomic type.

Definition 2.4. (a) Let c ∶ Ad → C a function, for d < ω, and let ≈ be
an equivalence relation on Ad . A subset X ⊆ A is ≈-homogeneous with
respect to c if

η̄ ≈ ζ̄ implies c(η̄) = c(ζ̄) , for all η̄, ζ̄ ∈ Xd .

(b) For tuples η̄, ζ̄ ⊆ κ<α , we define

η̄ ≈∗ ζ̄ : iff atp(η̄/T∗(κ<α)) = atp(ζ̄/T∗(κ<α)) ,
η̄ ≈n ζ̄ : iff atp(η̄/Tn(κ<α)) = atp(ζ̄/Tn(κ<α)) .
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Our goal is to prove the following variant of the Theorem of Ramsey
for trees.

Theorem 2.5 (Milliken). Let m, d < ω and let C be a finite set. For every
function c ∶ (m<ω)d → C there exists an embedding g ∶ T0(m<ω) →
T0(m<ω) such that rng g is ≈0-homogeneous with respect to c.

The proof of the Theorem of Ramsey was by induction on the length of
tuples. We prove the Theorem of Milliken by a similar argument where
the induction is on the number of levels of a tuple. The next lemma
contains the inductive step of this argument. It is based on the following
variant of the relation ≈n .

Definition 2.6. Let k, n < ω. For η̄, ζ̄ ⊆ m<ω , we set

η̄ ≈n ,k ζ̄ : iff η̄ = ζ̄ , or

η̄ ≈n ζ̄ and ∣Lvl(η̄) ∖ [n]∣ , ∣Lvl(ζ̄) ∖ [n]∣ ≤ k ,

and we denote by ≈ω ,k the transitive closure of the union ⋃n<ω ≈n ,k .

Remark. (a) Note that

η̄ ≈n ,0 ζ̄ iff η̄ = ζ̄ ,
and the fact that ∣Lvl(η̄)∣ ≤ 2∣η̄∣ implies that

η̄ ≈n ,2∣η̄∣ ζ̄ iff η̄ ≈n ζ̄ .

(b) A set X is ≈ω ,k-homogeneous if, and only if, it is ≈n ,k-homoge-
neous, for every n < ω.

Lemma 2.7. Let m, d < ω, let C be a finite set, and let c ∶ (m<ω)d → C
be a function such that m<ω is ≈ω ,k-homogeneous with respect to c. For
every n < ω, there exists an embedding

g ∶ Tn+1(m<ω)→ Tn+1(m<ω)
such that rng g is ≈n ,k+1-homogeneous with respect to c.
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η0

η1

η2

σ0 σ1

γ(η̄)(σ0) γ(η̄)(σ1)
n

λ(η̄)

µ

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

τλ(η̄)
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Figure 1.. The definition of µ, λ, τ l , and γ.

Proof. Given n < ω, set

Γ ∶= { η̄ ∈ (m<ω)d ∖ (m<n)d ∣ ∣Lvl(η̄) ∖ [n]∣ ≤ k + 1} .

For η̄ ∈ Γ, let

λ(η̄) ∶= min(Lvl(η̄) ∖ [n]) .

Set L ∶= mn and let

µ ∶ m<ω ∖m<n → L ∶ η ↦ η ↾ n

be the function mapping each element to its prefix of length n. For l ≥ n,
let τ l ∶ m<ω ∖m<l → m l−n be the function mapping an element η ∈ m<ω

of length ∣η∣ ≥ l to the unique sequence σ ∈ m<ω such that

∣σ ∣ = l − n and µ(η)σ ⪯ η .

Let H be the set of all functions h ∶ L → m<ω such that

∣h(ρ)∣ = ∣h(σ)∣ , for all ρ, σ ∈ L .
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For h, h′ ∈ H and η̄ ∈ Γ, we set

h ∼η̄ h′ : iff h(µ(η i)) = h′(µ(η i)) ,
for all i < d with ∣η i ∣ ≥ n .

We define a function γ ∶ Γ → H ∶ η̄ ↦ hη̄ where

hη̄(σ) ∶= ⎧⎪⎪⎨⎪⎪⎩
τλ(η̄)(η i) if η i ∈ µ−1(σ) ,⟨0, . . . , 0⟩ otherwise .

Note that, in the first case of the definition of hη̄(σ), the value does not
depend on the choice of i < d since

η i , η j ∈ µ−1(σ) implies τλ(η̄)(η i) = τλ(η̄)(η j) .

Finally, we define a function β ∶ H × Γ/≈n → C by

β(h, [η̄]≈n) ∶= c(ā[ζ̄]) where ζ̄ ∈ γ−1[[h]∼η̄] ∩ [η̄]≈n .

To prove that β is well-defined, we have to check that

γ−1[[h]∼η̄] ∩ [η̄]≈n ≠ ∅
and that the value of β does not depend on the choice of ζ̄.

For non-emptiness, fix h and [η̄]≈n . For i < d with ∣η i ∣ ≥ n, let ρ i ∈
m<ω be the sequence such that

η i = µ(η i)τλ(η̄)(η i)ρ i .

We set

ζ i ∶= µ(η i)h(µ(η i))ρ i .

For i < d with ∣η i ∣ < n, we set ζ i ∶= η i . Then ζ̄ ≈n η̄ and, since we have

λ(ζ̄) = n + ∣h(µ(η i))∣ , for any i < d with ∣η i ∣ ≥ n ,
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it also follows that γ(ζ̄) ∼η̄ h. Hence, ζ̄ ∈ γ−1[[h]∼η̄ ] ∩ [η̄]≈n .
To show that the value of β(h, [η̄]≈n) does not depend on the choice

of ζ̄, consider two tuples ξ̄, ζ̄ ∈ γ−1[[h]∼η̄ ] ∩ [η̄]≈n . First of all, note that
ξ̄ ≈n ζ̄ implies that µ(ξ i) = µ(ζ i), for all i with ∣ξ i ∣ ≥ n, since

σ ≺p ξ i iff σ ≺p ζ i , for all σ ∈ mn−1 and all p < m .

(For n = 0, we have µ(ξ i) = ⟨⟩ = µ(ζ i), for all i.) Consequently, γ(ξ̄) ∼η̄

h ∼η̄ γ(ζ̄) implies that

τλ( ξ̄)(ξ i) = h(µ(ξ i)) = h(µ(ζ i)) = τλ(ζ̄)(ζ i) ,
for all i < d with ∣ξ i ∣ ≥ n. In particular, λ(ξ̄) = λ(ζ̄) =∶ l and

ξ i ↾ l = µ(ξ i)τ l(ξ i) = µ(ζ i)τ l(ζ i) = ζ i ↾ l .

As ξ̄ ≈n ζ̄ it follows that ξ̄ ≈l+1 ζ̄. Since

∣Lvl(ξ̄) ∖ [l + 1]∣ = ∣Lvl(ζ̄) ∖ [l + 1]∣ ≤ k ,

we, therefore, have ξ̄ ≈l+1,k ζ̄ and, by assumption on c, it follows that
c(ξ̄) = c(ζ̄), as desired.

To conclude the proof, consider the function c0 ∶ H → CΓ/≈n mapping
a tuple h ∈ H to the function [η̄]≈n ↦ β(h, [η̄]≈n), and let c1 ∶ (m<ω)L →
CΓ/≈n be an arbitrary extension of c0.

Since CΓ/≈n is a finite set, we can use the Theorem of Halpern and
Läuchli to obtain embeddings gσ ∶ T0(m<ω)→ T0(m<ω), for σ ∈ L, such
that all gσ have the same level embedding function and the restriction
c1 ↾ H ∩∏σ∈L rng gσ is constant. We can define the desired embedding
g ∶ Tn+1(m<ω)→ Tn+1(m<ω) by setting

g(η) ∶= ⎧⎪⎪⎨⎪⎪⎩
η if ∣η∣ ≤ n ,
σ gσ(ξ) if η = σ ξ for σ ∈ L and ξ ∈ m<ω .

It remains to prove that rng g is ≈n ,k+1-homogeneous with respect to c.
Let η̄, ζ̄ ∈ Γ ∩ (rng g)d be tuples with η̄ ≈n ζ̄. To show that c(η̄) = c(ζ̄),
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set h ∶= γ(η̄) and h′ ∶= γ(ζ̄). For each σ ∈ L, fix some ξσ ∈ rng gσ and
set

h0(σ) ∶= ⎧⎪⎪⎨⎪⎪⎩
h(σ) if σ ⪯ η i for some i ,
ξσ otherwise .

Then h0 ∈ ∏σ∈L rng gσ and h0 ∼η̄ h. Similarly, we can find some h′0 ∈∏σ∈L rng gσ with h′0 ∼ζ̄ h′. Since c0(h0) = c0(h′0) and [η̄]≈n = [ζ̄]≈n it
follows that

c(η̄) = β(h, [η̄]≈n) = β(h0 , [η̄]≈n)= c0(h0)([η̄]≈n)= c0(h′0)([η̄]≈n)= c0(h′0)([ζ̄]≈n)= β(h′0 , [ζ̄]≈n) = β(h′ , [ζ̄]≈n) = c(ζ̄) . ◻
Lemma 2.8. Let m, d < ω, let C be a finite set, and let c ∶ (m<ω)d → C
be a function such that m<ω is ≈ω ,k-homogeneous with respect to c. There
exists an embedding g ∶ T0(m<ω)→ T0(m<ω) such that rng g is ≈ω ,k+1-
homogeneous with respect to c.

Proof. To simplify notation, we write c ○ g for the function mapping a
tuple η̄ ∈ (m<ω)d to the value c(g(η0), . . . , g(ηd−1)). We construct a
sequence of embeddings

gn ∶ Tn(m<ω)→ Tn(m<ω) , for n < ω ,

such that, for all i < n < ω, the set m<ω is ≈i ,k+1-homogeneous with
respect to the function cn ∶= c ○ g0 ○ . . . . . . gn .
We start with g0 ∶= id. Then c0 = c trivially satisfies the above condi-

tion. For the inductive step, suppose that we have already found func-
tions g0 , . . . , gn such that, for every i < n, m<ω is ≈i ,k+1-homogeneous
with respect to cn . We can use Lemma 2.7 to find an embedding gn+1 ∶
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Tn+1(m<ω)→ Tn+1(m<ω) such that m<ω is≈n ,k+1-homogeneouswith re-
spect to cn ○ gn+1 = cn+1. Furthermore, since m<ω is ≈i ,k+1-homogeneous
with respect to cn , for all i < n, it follows that it is also ≈i ,k+1-homoge-
neous with respect to cn ○ gn+1.

Having constructed the sequence g0 , g1 , . . . we obtain the desired
embedding g ∶ T0(m<ω) → T0(m<ω) as follows. For η ∈ mn , we set
g(η) ∶= (g0○⋅ ⋅ ⋅○gn+1)(η).Clearly, g is an embedding. Hence, it remains
to prove that rng g is ≈ω ,k+1-homogeneous. Fix n and consider two tuples
η̄, ζ̄ ⊆ m<ω such that

η̄ ≈n ζ̄ and ∣Lvl(η̄) ∖ [n]∣, ∣Lvl(ζ̄) ∖ [n]∣ ≤ k + 1 .

Choose n < l < ω such that η̄, ζ̄ ⊆ m<l . Then

g(η̄) = (g0 ○ ⋅ ⋅ ⋅ ○ g l)(η̄) and g(ζ̄) = (g0 ○ ⋅ ⋅ ⋅ ○ g l)(ζ̄) .

As rng(g0 ○ ⋅ ⋅ ⋅ ○ g l) is ≈n ,k+1-homogeneous with respect to c, it follows
that c(g(η̄)) = c(g(ζ̄)). ◻
Proof of Theorem 2.5. Note that, for every n < ω, the set m<ω is ≈n ,0-
homogeneous with respect to c. Hence, repeating Lemma 2.8 we obtain
embeddings

gk ∶ T0(m<ω)→ T0(m<ω) , for k ≤ 2d ,

such that rng(g0○⋅ ⋅ ⋅○gk) is ≈ω ,k-homogeneouswith respect to c. Setting
g ∶= g0 ○ ⋅ ⋅ ⋅ ○ g2d it follows that rng g is ≈0,2d -homogeneous with respect
to c. Since ∣Lvl(η̄)∣ ≤ 2d, for all η̄ ∈ (m<ω)d , this is the same as saying
that rng g is ≈0-homogeneous with respect to c. ◻
As for the Theorem of Ramsey, the Theorem of Milliken also has

a finitary version. The proof follows exactly the same lines as that of
Theorem 1.4.

Theorem 2.9. Let m, d , k < ω and let C be a finite set. There exists a
number n < ω such that, for every function c ∶ (m<n)d → C, there exists
an embedding g ∶ T0(m<k) → T0(m<n) such that rng g is ≈0-homoge-
neous with respect to c.
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Proof. For a contradiction, suppose that there exists no number n as
above. For n < ω, let Fn be the set of all functions c ∶ (m<n)d → C such
that there is no embedding g ∶ T0(m<k)→ T0(m<n) such that rng g is≈0-homogeneous with respect to c. Each set Fn is finite and nonempty.
Furthermore, c ∈ Fn+1 implies that c↾(m<n)d ∈ Fn . Hence, ifwe order the
set T ∶= ⋃n Fn by inclusion, we obtain a tree ⟨T , ⊆⟩. This tree is infinite
and finitely branching. By the Lemma of Kőnig it therefore contains
an infinite branch (cn)n<ω where cn ∈ Fn . Set c ∶= ⋃n cn . Then c is a
function c ∶ (m<ω)d → C. By Theorem 2.5, there exists an embedding
g ∶ T0(m<ω) → T0(m<ω) such that rng g is ≈0-homogeneous with
respect to c. Fix a number n < ω such that rng(g ↾m<k) ⊆ m<n . Then
g ↾ m<k ∶ T0(m<k) → T0(m<n) is an embedding such that rng g is≈0-homogeneous with respect to cn . A contradiction. ◻

Note that every ≈∗-homogeneous set is also ≈0-homogeneous. Hence,
wewould obtain a stronger version of theTheorem of Milliken ifwe could
replace the relation ≈0 by ≈∗. For the finitary version this is possible.

Theorem 2.10. Let m, d , k < ω and let C be a finite set. There exists a
number n < ω such that, for every function c ∶ (m<n)d → C, there exists
an embedding g ∶ T∗(m<k) → T∗(m<n) such that rng g is ≈∗-homoge-
neous with respect to c.

The proof consists in finding sets where the relations ≈∗ and ≈0 coin-
cide. To do so we introduce the following family of embeddings.

Definition 2.11. For 0 < k < ω, the k-th skew embedding

hk ∶ T∗(m<k)→ T∗(m<l(k))
is defined inductively as follows. We start with h1 ∶ ⟨⟩↦ ⟨⟩ and l(1) = 1.
If hk and l(k) are already defined, we set

hk+1(⟨⟩) ∶= ⟨⟩ and hk+1(pη) ∶= ⟨p, . . . , p´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
p+2+p l(k) times

⟩hk(η) ,
for η ∈ m<ω and p < m. Furthermore, l(k + 1) ∶= ml(k) +m + 1.
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l(k − 1)⎧⎪⎪⎨⎪⎪⎩

l(k − 1)⎧⎪⎪⎨⎪⎪⎩

l(k − 1)⎧⎪⎪⎨⎪⎪⎩

l(k − 1)⎧⎪⎪⎨⎪⎪⎩
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l(k)

Figure 2.. The k-th skew embedding hk .

Lemma 2.12. The k-th skew embedding hk ∶ T∗(m<k)→ T∗(m<l(k)) is
an embedding.

Proof. By an easy induction on ∣η∣, one can show that

η ⪯ ζ implies hk(η) ⪯ hk(ζ) ,
and η ≺p ζ implies hk(η) ≺p hk(ζ) .

Similarly, an induction on ∣η ⊓ ζ ∣ yields

hk(η ⊓ ζ) = hk(η) ⊓ hk(ζ) . ◻
A useful property of a skew embedding is that it upgrades ≈∗-equiva-

lence to ≈0-equivalence.

Lemma 2.13. Let η̄, ζ̄ ⊆ m<k . Then η̄ ≈∗ ζ̄ implies hk(η̄) ≈0 hk(ζ̄).
Proof. Let η̄, ζ̄ ∈ (m<k)d with η̄ ≈∗ ζ̄ . We start by proving the following
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claims :

(a) hk(η̄) ≈∗ hk(ζ̄) .

(b) ∣hk(η i)∣ < ∣hk(η j)∣ iff ∣hk(ζ i)∣ < ∣hk(ζ j)∣ , for all i , j < d .

(c) pf(hk(η i), hk(η j)) ≺p hk(η j)
iff pf(hk(ζ i), hk(ζ j)) ≺p hk(ζ j) , for all i , j < d .

(a) Since hk ∶ T∗(m<k)→ T∗(m<l(k)) is an embedding, it preserves
atomic types. Consequently, we have hk(η̄) ≈∗ η̄ ≈∗ ζ̄ ≈∗ hk(ζ̄).

(b) It follows by induction on ∣η i ⊓ η j ∣ that

∣hk(η i)∣ < ∣hk(η j)∣ iff η i <lex η j .

Hence, η̄ ≈∗ ζ̄ implies that

∣hk(η i)∣ < ∣hk(η j)∣ iff η i <lex η j

iff ζ i <lex ζ j iff ∣hk(ζ i)∣ < ∣hk(ζ j)∣ .
(c) By definition of hk , we have

pf(hk(η i), hk(η j)) ≺p hk(η j)
iff ∣hk(η i)∣ < ∣hk(η j)∣ and hk(η i ⊓ η j) ≺p hk(η j) .

Therefore, (c) follows from (a) and (b).
To conclude the proof, suppose that η̄ ≈∗ ζ̄. W.l.o.g. we may assume

that, for all i , j < d, there is some l < d such that η l = η i ⊓ η j . Then it
follows by (a), (b), and (c) that hk(η̄) ≈0 hk(ζ̄). ◻
Proof of Theorem 2.10. Let hk ∶ m<k → m<l(k) be the k-th skew embed-
ding. By Theorem 2.9, there exists a number n such that, for every func-
tion c ∶ (m<n)d → C, we can find an embedding g ∶ T0(m<l(k)) →
T0(m<n) such that rng g is ≈0-homogeneous with respect to c. We
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claim that g ○ hk ∶ T∗(m<k) → T∗(m<n) is the desired embedding.
For η̄, ζ̄ ∈ (m<k)d it follows by Lemma 2.13 that

η̄ ≈∗ ζ̄ ⇒ hk(η̄) ≈0 hk(ζ̄)⇒ g(hk(η̄)) ≈0 g(hk(ζ̄))⇒ c(g(hk(η̄))) = c(g(hk(ζ̄))) .

Hence, rng(g ○ hk) is ≈∗-homogeneous with respect to c. ◻
3. Indiscernible sequences
If we apply the Ramsey Theorem to sequences of elements in a structure
coloured by their types we obtain subsequences where each tuple has the
same type. Such sequences, called indiscernible, can be used to investigate
the structure of the given model. Let us fix some notation.

Definition 3.1. Let ⟨I, ≤⟩ be a linear order and (ā i)i∈I a sequence of
tuples ā i ∈ Aα , for some ordinal α.

(a) For ı̄ ∈ In , we set ā[ı̄] ∶= ā i0 . . . ā in−1 .
(b) The order type of a tuple ı̄ ∈ In is the atomic type of ı̄ in ⟨I, ≤⟩.

Definition 3.2. Suppose that X and Y are disjoint sets of variables and
∆ ⊆ FO[Σ, X ∪Y] a set of formulae. Let M be a Σ-structure, U ⊆ M, and(ā i)i∈I a sequence of tuples in M.

(a) The ∆-type of a tuple b̄ ⊆ M over U is the set

tp∆(b̄/U) ∶= {φ(x̄; c̄) ∣M ⊧ φ(b̄; c̄), c̄ ⊆ U , φ(x̄ , ȳ) ∈ ∆,
x̄ ⊆ X , ȳ ⊆ Y }

(b) We call (ā i)i∈I a ∆-indiscernible sequence over U , or a sequence of
∆-indiscernibles, if

tp∆(ā[ı̄]/U) = tp∆(ā[k̄]/U) , for all ı̄ , k̄ ∈ [I]<ω .
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For ∆ = FO[Σ, X ∪ Y] we drop the ∆ and simply speak of indiscernible
sequences.

(c) The sequence (ā i)i is totally ∆-indiscernible over U if

tp∆(ā[ı̄]/U) = tp∆(ā[k̄]/U) ,
for all finite sequences ı̄ , k̄ ∈ I<ω of distinct elements with ∣ı̄∣ = ∣k̄∣.
Example. (a) If ⟨A, <⟩ is an open dense linear order then every strictly
increasing sequence (a i)i∈I in A is indiscernible. Such a sequence is
obviously not totally indiscernible.

(b) Let K be an algebraically closed field. Every sequence of algebra-
ically independent elements is totally indiscernible. Similarly, if V is a
vector space then every sequence of linearly independent elements is
totally indiscernible.

For finite sets ∆, we can use the Ramsey Theorem to show that every
infinite sequence contains a ∆-indiscernible subsequence. For infinite ∆,
we need to apply the Compactness Theorem to find ∆-indiscernible
sequences.

Lemma 3.3. Let (ā i)i∈I be an infinite sequence. For every finite set ∆
of formulae there exists an infinite subset I0 ⊆ I such that (ā i)i∈I0 is
∆-indiscernible.

Proof. Let n be the maximal number such that ∆ contains a formula
φ(x̄0 , . . . , x̄n−1) with n tuples of variables. We define a colouring c ∶[I]n → ℘(∆) by

c(ı̄) ∶= {φ(x̄0 , . . . , x̄n−1) ∈ ∆ ∣M ⊧ φ(ā[ı̄]) } .

By the Ramsey Theorem there exists an infinite subset I0 ⊆ I that is
homogeneous with respect to c. By definition of c it follows that (ā i)i∈I0
is ∆-indiscernible. ◻

To find ∆-indiscernible sequences, for infinite sets ∆, we apply the
Compactness Theorem. Before doing so, let us introduce the average
type of a sequence.
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Definition 3.4. The average type of a sequence (ā i)i over U is the set

Av((ā i)i/U) ∶= {φ(x̄0 , . . . , x̄n−1; c̄) ∣
c̄ ⊆ U andM ⊧ φ(ā[ı̄]; c̄) for all ı̄ ∈ [I]n } .

Lemma 3.5. Let (ā i)i∈I be a sequence. Then Av((ā i)i/U) is a partial
type. If (ā i)i is indiscernible over U , it is complete.

Proposition 3.6. Let M be a Σ-structure and U ⊆ M a set of parameters.
For every infinite sequence (ā i)i∈I and every linear order J there exists an
elementary extension N ⪰M containing an indiscernible sequence (b̄ j) j∈J
over U such that

Av((ā i)i/U) ⊆ Av((b̄ j) j/U) .

Proof. For every j ∈ J, fix a tuple of new constant symbols c̄ j and set

Φ ∶= {φ(c̄[ ȷ̄]; d̄) ∣ φ(x̄; d̄) ∈ Av((ā i)i/U), ȷ̄ ∈ [J]<ω , d̄ ⊆ U }
Ψ ∶= {ψ(c̄[ı̄]; d̄)↔ ψ(c̄[ ȷ̄]; d̄) ∣ ψ a formula, ı̄ , ȷ̄ ∈ [J]<ω , and

d̄ ⊆ U } .

It is sufficient to prove that the set Γ ∶=Th(MM) ∪ Φ ∪ Ψ is satisfiable.
Consider a finite subset Γ0 ⊆ Γ. Since Th(MM) is closed under conjunc-
tions, we may assume that Γ0 = {ϑ(d̄)}∪Φ0 ∪Ψ0 for finite sets Φ0 ⊆ Φ
and Ψ0 ⊆ Ψ . By Lemma 3.3, there is an infinite subset I0 ⊆ I such that
we have

M ⊧ ψ(ā[ı̄]; d̄)↔ ψ(ā[ ȷ̄]; d̄) ,
for every formula ψ(x̄; d̄) ↔ ψ( ȳ; d̄) ∈ Ψ0 and all increasing ı̄ , ȷ̄ ⊆ I0.
For every formula φ(x̄; d̄) ∈ Φ0, there are only finitely many indices ı̄ ⊆
I0 such that M ⊭ φ(ā[ı̄]; d̄). Hence,we can find an infinite subset I1 ⊆ I0
containing no such tuple ı̄. Let J0 ⊆ J be the finite set of all indices j ∈ J
such that the constant c̄ j appears in Φ0 ∪ Ψ0, and fix an embedding
g ∶ J0 → I1. We can satisfy Γ0 by interpreting c̄ j by the tuple āg( j). ◻
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We can improve the preceding proposition as follows.

Theorem 3.7. Let M be a Σ-structure, U ⊆ M a set of parameters, s̄ a
sequence of sorts, and λ a cardinal such that λ ≥ ∣S s̄n(U)∣, for all n < ω.
Set µ ∶= ℶλ+ .

For every sequence (āα)α<µ with āα ∈ M s̄ and for every linear order I,
there exists an elementary extension N ⪰M containing an indiscernible
sequence (b̄ i)i∈I over U such that, for every ı̄ ∈ [I]n , there are indices
ᾱ ∈ [µ]n with

tp(b̄[ı̄]/U) = tp(ā[ᾱ]/U) .

Proof. It is sufficient to prove the claim for I = ω. Then the general state-
ment will follow by compactness. We define a sequence of types (pn)n<ω
with pn ∈ S s̄n(U) satisfying the following conditions :

(1) pn(x̄0 , . . . , x̄n−1) ⊧ pm(x̄ i0 , . . . , x̄ im−1), for all i0 < ⋅ ⋅ ⋅ < im−1 < n.
(2) For every cardinal ν < µ, there is some set I ⊆ µ of size ∣I∣ = ν

such that

tp(ā[ı̄]/U) = pn , for every tuple ı̄ ∈ [I]n .

Any sequence (b̄n)n<ω realising the limit pω ∶= ⋃n<ω pn has the desired
properties.
We start with p0 ∶=Th(MU). If we have already defined pn , we con-

sider the set X of all s̄n+1-types over U satisfying condition (1). If there
is some type q ∈ X that also satisfies condition (2), we are done. Suppose
there is no such type. Then we can choose, for every q ∈ X, a cardinal
νq < µ such that no subset I ⊆ µ of size νq satisfies the above condition.
Since ∣X∣ ≤ λ < λ+ = cf µ it follows that

ν∗ ∶= λ ⊕ sup{ νq ∣ q ∈ X } < µ .

By choice of ν∗ there exists, for every q ∈ X and all I ⊆ µ of size ∣I∣ = ν∗,
some increasing tuple ı̄ ∈ In+1 such that tp(ā[ı̄]/U) ≠ q. Since ν∗ < µ =ℶλ+ there is some ordinal α < λ+ with ν∗ < ℶα . Let ρ ∶= ℶα+n+1. Then

ℶn(ν∗)+ ≤ ρ < µ .
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By choice of pn there is some set I ⊆ µ of size ∣I∣ = ρ such that

tp(ā[ı̄]/U) = pn , for every ı̄ ∈ [I]n .

Since ∣S s̄n(U)∣ ≤ λ ≤ ν∗ we can use the Theorem of Erdős and Rado to
find a subset I0 ⊆ I of size ∣I0∣ = ν+∗ such that the types

tp(ā[ı̄]/U) , for ı̄ ∈ [I0]n+1 ,

are all equal. This contradicts the choice of ν∗. ◻
There is a close relationship between automorphisms and indiscernible

sequences. The next observation follows immediately from the defini-
tions of an indiscernible sequence and a strongly κ-homogeneous struc-
ture.

Lemma 3.8. Let M be strongly κ-homogeneous and let (ā i)i∈I be a se-
quence of indiscernible over U. Suppose that ∣U ∣⊕ ∣I∣⊕ ∣ā i ∣ < κ. For every
partial automorphism π ∈ pIso(I, I) of the index set I (considered as a
linear order), there exists an automorphism h ∈ Aut M such that

h ↾U = idU and h(ā i) = āπ(i) , for all i ∈ I .

In a sufficient saturated structure, we can extend every indiscernible
sequence to a longer one.

Lemma 3.9. Let M be κ-saturated. If (ā i)i∈I is indiscernible over U and
g ∶ I → J is an embedding with ∣J∣ ⊕ ∣U ∣ ⊕ ∣ā i ∣ < κ then there exists an
indiscernible sequence (b̄ j) j∈J such that ā i = b̄g(i), for i ∈ I.

Proof. We can use Proposition 3.6 to find an elementary extension N ⪰
M containing an indiscernible sequence (c̄ j) j∈J with Av((c̄ j) j/U) =
Av((ā i)i/U). This implies that

tp(⋃i c̄ g(i)/U) = tp(⋃i ā i/U) .
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W.l.o.g. we may assume that N is strongly κ-homogeneous. Therefore,
there exists an automorphism π of NU mapping c̄ g(i) to ā i . Since M is
κ-saturated it contains a sequence (b̄ j) j∈J such that

tp(⋃ j b̄ j/U ∪⋃i ā i) = tp(⋃ j π(c̄ j)/U ∪⋃i ā i) .

It follows that (b̄ j) j is the desired sequence of indiscernibles. ◻
Corollary 3.10. If (ā i)i∈I is indiscernible over U and g ∶ I → J an embed-
ding, then there exists an elementary extension N containing an indiscerni-
ble sequence (b̄ i)i∈J such that b̄g(i) = ā i , for i ∈ I.

Let us record the following consequence of Theorem 3.7.

Lemma 3.11. Let (ā i)i∈I be an indiscernible sequences over U. For every
set C ⊆ M, there exists a set C′ ≡U C such that (ā i)i∈I is indiscernible
over U ∪ C′.
Proof. Let κ ∶= ∣T ∣ ⊕ ∣U ∪ C∣ and λ ∶= ℶ(2κ)+ . By Corollary 3.10, there
exists an indiscernible sequence (b̄α)α<κ over U with

Av((b̄α)α/U) = Av((ā i)i/U) .

Furthermore, with the help of Theorem 3.7 we can find an indiscernible
sequence (c̄n)n<ω over U∪C such that, for every n < ω, there are indices
α0 < ⋅ ⋅ ⋅ < αn−1 with

c̄0 . . . c̄n−1 ≡U∪C b̄α0 . . . b̄αn−1 .

By Lemma 3.9, we can extend (c̄n)n<ω to an indiscernible sequence(c̄ i)i∈ω+I over U ∪ C. Since

Av((c̄ i)i/U) = Av((ā i)i/U) ,
there exists an automorphism π ∈ AutMU such that π(c̄ω+i) = ā i , for all
i ∈ I. Then π[C] ≡U C and (ā i)i∈I is indiscernible over U ∪ π[C]. ◻
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The following technical lemma can be used to simplify proofs of
indiscernibility. It states that, if some formula is a witness for the failure
of indiscernibility, we can detect this fact already by varying a single
element of the sequence.

Lemma 3.12. Let α = (ā i)i∈I be a sequence and φ(x̄) a formula such that

M ⊧ φ(ā[ı̄]) ∧ ¬φ(ā[ ȷ̄]) , for some ı̄ , ȷ̄ ∈ [I]n .

Then there are indices ū < s < t < v̄ in I such that

M ⊧ φ(ā[ūsv̄])↔ ¬φ(ā[ūtv̄]) .

Proof. We define a sequence k̄0 , . . . , k̄2n ∈ [I]n by setting

k l
m ∶=
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min{im , jm} if l ≤ n and m < l ,
im if l ≤ n and m ≥ l ,
min{im , jm} if l > n and m < 2n − l ,
jm if l > n and m ≥ 2n − l .

Then every k̄ l belongs to [I]n , k̄0 = ı̄, k̄2n = ȷ̄, and, for each l < 2n, the
tuples k̄ l and k̄ l+1 differ in at most one component. Let l < 2n be the
maximal index such that M ⊧ φ(ā[k̄ l ]). Then M ⊧ ¬φ(ā[k̄ l+1]) and
it follows by definition of k̄ l that k̄ l = ūsv̄ and k̄ l+1 = ūtv̄ for indices
ū < s < v̄ and ū < t < v̄. Interchanging k̄ l and k̄ l+1 if necessary, we may
assume that s < t. ◻

Recall that stable theories do not have the order property. This implies
that in a model of a stable theory every indiscernible sequence is totally
indiscernible.

Theorem 3.13. A theory T is stable if, and only if, every infinite indiscerni-
ble sequence in a model of T is totally indiscernible.
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Proof. (⇐) Suppose that there is a formula φ(x̄ , ȳ) with the order prop-
erty and let (ān)n<ω and (b̄n)n<ω be sequences such that

M ⊧ φ(ā i , b̄k) iff i ≤ k .

By Proposition 3.6, there exists an indiscernible sequence (c̄n d̄n)n<ω
with Av((ān b̄n)n) ⊆ Av((c̄n d̄n)n). Setting ψ(x̄ ȳ, x̄′ ȳ′) ∶= φ(x̄ , ȳ′) it
follows that

M ⊧ ψ(c̄ i d̄ i , c̄k d̄k) iff i ≤ k .

Hence, (c̄n d̄n)n is not totally indiscernible.(⇒) Suppose that (ā i)i∈I is an infinite indiscernible sequence over U
that is not totally indiscernible. By Corollary 3.10, we may assume that
the ordering I is dense. There are a formula φ and two tuples of indices
ı̄ , k̄ ∈ In such that both ı̄ and k̄ consist of distinct elements and we have

M ⊧ φ(ā[ı̄]) ∧ ¬φ(ā[k̄]) .

Set l̄ r ∶= i0 . . . ir−1kr . . . kn−1 and let r be the maximal number such that

M ⊧ ¬φ(ā[ l̄ r]) .

Note that r is well-defined since l̄0 = k̄ implies M ⊧ ¬φ(ā[ l̄0]). Repla-
cing ı̄ by l̄ r+1 and k̄ by l̄ r , we may assume that ı̄ and k̄ differ in exactly
one component. Hence, suppose that

ı̄ = sūv̄w̄ and k̄ = tūv̄w̄ , where ū < s < v̄ < t < w̄ .

(Reversing the order of I, if necessary, we may assume that s < t.)
By indiscernibility, we know that the tuple v̄ is not empty. We claim

that wemay assume that v̄ is a singleton. If v̄ = v0 . . . vn−1 with n > 1 then,
choosing some index v0 < v′ < vn−1, we may replace either s or t by v′,
depending on whether or not the formula φ(ā[v′ūv̄w̄]) holds. Hence,
the claim follows by induction. Thus, we have arrived at the situation
that

ı̄ = svūw̄ and k̄ = v tūw̄ , where ū < s < v < t < w̄ .
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By indiscernibility, it follows that

M ⊧ φ(ā[stūw̄]) ∧ ¬φ(ā[tsūw̄]) , for all ū < s < t < w̄ .

Fix an infinite increasing sequence of indices kn , n < ω, with

ū < k0 < k1 < ⋅ ⋅ ⋅ < w̄ ,

set b̄ i ∶= āk i , and define

ψ(x̄ , ȳ) ∶= x̄ = ȳ ∨ [φ(x̄ , ȳ, ā[ūw̄]) ∧ ¬φ( ȳ, x̄ , ā[ūw̄])] .

Then we have

M ⊧ ψ(b̄ i , b̄k) iff i ≤ k .

Hence, T is unstable. ◻
When considering the automorphism group of a structure, an indis-

cernible sequence looks like a linear order while a totally indiscernible
sequence looks like a set. We can generalise the definition of an indis-
cernible sequence to include automorphism groups of other structures.

Definition 3.14. Let L be an algebraic logic, J a Γ-structure, M a Σ-
structure, and U ⊆ M.

(a) A U-indiscernible system over J (w.r.t. L) is an injective function
ā ∶ I → Mα , for some ordinal α, such that, for every partial isomorphism
ı̄ ↦ k̄ ∈ pIsoℵ0

(J, J), we have

tpL(ā[ı̄]/U) = tpL(ā[k̄]/U) .

(b) The average type of a U-indiscernible system ā over J is the func-
tion AvL(ā) with

AvL(ā/U) ∶ atp(ı̄/J)↦ tpL(ā[ı̄]/U) , for ı̄ ∈ I<ω .

For L = FO, we drop the index and just write Av(ā/U).
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(c) Let J and K be two index structures and ā ∶ I → Mα , b̄ ∶ K → Mα

arbitrary families of α-tuples. We say that ā is inspired by b̄ over U if,
for every finite set of formulae ∆ and every finite tuple ı̄ ∈ I<ω , there is a
finite tuple k̄ ∈ K<ω such that

atp(ı̄/J) = atp(k̄/K) and tp∆(ā[ı̄]/U) = tp∆(b̄[k̄]/U) .

Remark. (a) Using the terminology of the previous definition we can
restate Proposition 3.6 as : for every infinite sequence (ā i)i∈I , every linear
order J, and every set U of parameters, there exists an indiscernible
sequence (b̄ i)i∈J over U inspired by (ā i)i∈I .

(b) Note that, for indiscernible systems ā and b̄ over U , ā is inspired
by b̄ over U if, and only if, Av(ā/U) = Av(b̄/U).

In the same way as in Proposition 3.6 we can use the Compactness
Theorem to show that we can extend every indiscernible system.

Lemma 3.15. Let M be a structure containing a U-indiscernible system ā
over J. If H is a structure with Subℵ0(H) ⊆ Subℵ0(J) then there exists
an elementary extension N ⪰ M containing a U-indiscernible system b̄
over H with Av(b̄/U) = Av(ā/U).

In general, it is hard to prove the existence of indiscernible systems
over structures that are not linear orders. For trees we can use the The-
orem of Milliken to show that such systems always exist. Recall the trees
T∗(κ<α) introduced in Section 2.

Definition 3.16. Let κ be a cardinal and α an ordinal. A family (āη)η∈κ<α
is called tree-indiscernible over a set U if it is a U-indiscernible system
over T∗(κ<α).
Theorem 3.17 (Džamonja, Shelah, B. Kim, H.-J. Kim). Let m < ω. For
every family ā = (āη)η∈m<ω and every set U , there exists a family of
tree-indiscernibles (b̄η)η∈m<ω over U inspired by ā.
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Proof. Fix variable symbols x̄η , for each η ∈ m<ω , and define

Ψη̄ ∶= {φ(x̄[ζ̄]) ∣ φ a formula over U , ζ̄ ≈∗ η̄ , and

M ⊧ φ(ā[ξ̄]) for all ξ̄ ≈∗ η̄ } ,
Ξ ∶= {φ(x̄[η̄])↔ φ(x̄[ζ̄]) ∣ φ a formula over U , η̄ ≈∗ ζ̄ } ,

and Φ ∶= Ξ ∪ ⋃
η̄⊆m<ω

Ψη̄ .

We claim that Φ is satisfiable. Let Φ0 ⊆ Φ be finite. There exists a finite
set ∆ of formulae such that every formula in Φ0 is of the form

φ(x̄[η̄])↔ φ(x̄[ζ̄]) or φ(x̄[ζ̄]) ,
for some φ(x̄0 , . . . , x̄n−1) ∈ ∆. Let d be thenumber of variables appearing
in ∆ and let c ∶ (m<ω)d → S(∆) be the function mapping each tuple
η̄ ∈ (m<ω)d to the type tp∆(ā[η̄]).

Let k < ω be some number such that Φ0 only contains variables x̄η

with η ∈ m<k . We can use Theorem 2.10 to find an embedding g ∶
T∗(m<k)→ T∗(m<ω) such that rng g is ≈∗-homogeneous with respect
to c. It follows that the family (āg(η))η∈m<k satisfies Φ0.
By the Compactness Theorem we conclude that Φ is satisfiable. Let

b̄ = (b̄η)η∈m<ω be a family realising Φ. Then b̄ is tree-indiscernible over U
since it satisfies Ξ. Hence, it remains to show that b̄ is inspired by ā.

For a contradiction, suppose otherwise. Then there exist a finite tuple
η̄ ⊆ m<ω and a finite set of formulae ∆ over U such that

tp∆(b̄[η̄]) ≠ tp∆(ā[ζ̄]) , for all ζ̄ ≈∗ η̄ .

W.l.o.g. we may assume that ∆ is closed under negation. Set

ϑ(x̄) ∶=⋀ tp∆(b̄[η̄]) .

Then

M ⊧ ¬ϑ(ā[ζ̄]) , for all ζ̄ ≈∗ η̄ .

Consequently, ¬ϑ(x̄[η̄]) ∈ Ψη̄ . Since b̄ satisfies Ψη̄ it therefore follows
that M ⊧ ¬ϑ(b̄[η̄]). A contradiction. ◻
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4. The independence and strict order properties
In this section we use indiscernible sequences to study concepts related
to the order property. Recall that

⟦φ(ā, b̄ i)⟧i∈I ∶= { i ∈ I ∣M ⊧ φ(ā, b̄ i) } .

Definition 4.1. Let T be a theory. A formula φ(x̄ , ȳ) has the independ-
ence property (with respect to T) if there exists amodel M ⊧ T containing
two sequences (āw)w∈℘(ω) and (b̄n)n<ω such that

M ⊧ φ(āw , b̄n) iff n ∈ w .

If some formula has the independence property with respect to T , we
also say that T has the independence property.

Proposition 4.2. Let T be a first-order theory and φ(x̄ , ȳ) a formula. The
following statements are equivalent :

(1) φ has the independence property.
(2) For every finite number m < ω, there exist sequences (āw)w∈℘[m]

and (b̄n)n<m such that

M ⊧ φ(āw , b̄n) iff n ∈ w .

(3) There exist a sequence (āw)w∈℘(ω) and an indiscernible sequence(b̄n)n<ω such that

M ⊧ φ(āw , b̄n) iff n ∈ w .

(4) There exist a tuple ā and an indiscernible sequence (b̄n)n<ω such
that

⟦φ(ā, b̄n)⟧n<ω = { 2n ∣ n < ω } .

(5) There exist a tuple ā and an indiscernible sequence (b̄ i)i∈I such that⟦φ(ā, b̄ i)⟧i∈I is not a finite union of segments.
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Proof. The implications (3)⇒ (4)⇒ (5) are trivial and (2)⇒ (1) follows
by compactness.

For (1)⇒ (3), let (āw)w∈℘(ω) and (b̄n)n<ω be sequences such that

M ⊧ φ(āw , b̄n) iff n ∈ w .

By Proposition 3.6, there exists an indiscernible sequence (d̄n)n<ω with
the same average type as (b̄n)n<ω . By compactness, we can find a se-
quence (c̄w)w∈℘(ω) such that

M ⊧ φ(c̄w , d̄n) iff n ∈ w .

It remains to prove (5)⇒ (2). Fix m < ω and let ā and (b̄ i)i∈I be such
that ⟦φ(ā, b̄ i)⟧i∈I is not a finite union of segments. We can find a strictly
increasing sequence i0 < ⋅ ⋅ ⋅ < i2m−1 of indices in I such that

M ⊧ φ(ā, b̄ ik) iff k is odd .

Set d̄k ∶= b̄ ik and let

χw(k) ∶= ⎧⎪⎪⎨⎪⎪⎩
0 if k ∉ w ,
1 if k ∈ w ,

be the characteristic function of w. Note that the sequence (d̄k)k<2m
is also indiscernible. For each w ⊆ [m], we can therefore find an auto-
morphism πw of M such that

πw(d̄k) = d̄2n+χw(k) , for k < m .

Setting c̄w ∶= π−1
w (ā) it follows that

M ⊧ φ(c̄w , d̄k) iff M ⊧ φ(πw(c̄w), πw(d̄k))
iff M ⊧ φ(ā, d̄2n+χw(k))
iff χw(k) = 1
iff k ∈ w . ◻
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We can generalise Condition (4) above as follows.

Corollary 4.3. Let φ(x̄; ȳ0 , . . . , ȳn−1) be a formula. If there exist a tuple c̄
and an indiscernible sequence (ā i)i∈I such that the order I has no last
element,

M ⊧ φ(c̄; ā[ı̄]) , for arbitrarily large ı̄ ∈ [I]n ,
and M ⊧ ¬φ(c̄; ā[ı̄]) , for arbitrarily large ı̄ ∈ [I]n ,
then φ has the independence property.

Proof. By assumption we can inductively choose tuples k̄0 < k̄1 < . . . in[I]n such that

M ⊧ φ(c̄; ā[k̄ i]) iff i is even.

Since the sequence (ā[k̄ i])i<ω is indiscernible, the claim follows by
Proposition 4.2 (4). ◻
Lemma 4.4. Let T be a first-order theory. If φ(x̄ , ȳ) has the independence
property then so does φ( ȳ, x̄).
Proof. We apply the characterisation in Proposition 4.2 (2). Let m < ω.
Since φ(x̄ , ȳ) has the independence property there are tuples āw and b̄n

for w ⊆ ℘(2m) and n < 2m such that

M ⊧ φ(āw , b̄n) iff n ∈ w .

We identify each number k < 2m with the function k ∶ [m]→ [2] such
that k = ∑i<m k(i)2i . For i < m and s ⊆ [m], we define

c̄s ∶= b̄ns and d̄ i ∶= āw i ,

where

ns ∶= ∑i∈s 2i and w i ∶= { k < 2m ∣ k(i) = 1} .
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It follows that

M ⊧ φ(d̄ i , c̄s) iff M ⊧ φ(āw i , b̄ns)
iff ns ∈ w i

iff i ∈ s . ◻
Lemma 4.5. Let T be a first-order theory and φ(x̄ , ȳ) a formula with
the independence property. There exist formulae ψ(x , ȳ) and ϑ(x̄ , y)
with, respectively, a single variable x and a single variable y that have the
independence property.

Proof. We construction ψ using Proposition 4.2 (3). Let ā and (b̄n)n<ω be
tuples such that ⟦φ(ā, b̄n)⟧n<ω = { 2n ∣ n < ω }. Suppose that ā = a0 ā′.
We define a new sequence c̄n ∶= b̄n ā′ and the formula ψ(x , ȳz̄) ∶=
φ(xz̄, ȳ). It follows that ⟦ψ(a, c̄n)⟧n<ω = { 2n ∣ n < ω }. Hence, ψ has
the independence property.

To find ϑ(x̄ , y) it is sufficient to note that, according to Lemma 4.4,
the formula φ( ȳ, x̄) also has the independence property. Hence, we can
apply the first part of the lemma. ◻

The independence property is closely related to the order property
which characterises unstable theories.

Lemma 4.6. Every formula with the independence property has the order
property.

Proof. Suppose that φ is a formula with the independence property and
let (āw)w⊆℘(ω) and (b̄n)n<ω be sequences such that

M ⊧ φ(āw , b̄n) iff n ∈ w .

Setting wn ∶= ω ∖ [n] and c̄n ∶= āwn it follows that

M ⊧ φ(c̄n , b̄k) iff n ≤ k .

Hence, φ has the order property. ◻
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Lemma 4.7. No o-minimal theory has the independence property.

Proof. Let T be a theory with the independence property. Then there
exist a model M of T , a formula φ(x , ȳ), parameters c̄ ⊆ M, and an
indiscernible sequence (an)n<ω such that

M ⊧ φ(an , c̄) iff n ≡ 0 (mod 2) .

Since (an)n is indiscerniblewe either have a0 < a1 < . . . or a0 > a1 > . . . .
In both cases it follows that the set φ(x , c̄)M is not a finite union of
intervals. Hence, T is not o-minimal. ◻
Lemma 4.8. Let φ(x̄ , ȳ) be a formula without the independence property.
Suppose that there exists a tuple c̄ and a sequence (ā i)i∈I such that the
sets ⟦φ(c̄, ā i)⟧i and ⟦¬φ(c̄, ā i)⟧i are both infinite. Then there exists a
formula χ( ȳ, ȳ′; d̄) with parameters d̄ such that

M ⊧ χ(ā i , āk ; d̄) iff i ≤ k .

Proof. Let J be an open dense linear order with I ⊆ J such that J contains
infinitely many elements above I and below I. By Lemma 3.9, we can
extend (ā i)i∈I to an indiscernible sequence (ā i)i∈J . Replacing φ by ¬φ
if necessary, we may assume that ⟦φ(c̄, ā i)⟧i contains a final segment
of J. By Proposition 4.2 (2), there exists a number m such that, for all
indices s̄ ∈ [I]m ,

M ⊧ ¬∃x̄ ⋀
i<m−1

[φ(x̄ , ās i )↔ ¬φ(x̄ , ās i+1)] .

Consequently, there exists a number 0 < n ≤ m, a set w ⊆ [n], and
indices s̄ ∈ [I]n such that there is no c̄′ with

↓s0 ∪ { s i ∣ i ∉ w } ⊆ ⟦¬φ(c̄′ , ā i)⟧i
and ↑sn−1 ∪ { s i ∣ i ∈ w } ⊆ ⟦φ(c̄′ , ā i)⟧i .

We choose n and w such that ⟨n,w⟩ is minimal with respect to the
lexicographic order (treating w ⊆ [n] as a word in [2]n). By minimality
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of n, it follows that 0 ∈ w and n− 1 ∉ w. Hence, there is some index k < n
with [k] ⊆ w and k ∉ w.

By compactness, there are finite sets J− ⊆ ↓s0 and J+ ⊆ ↑sn−1 such that
there is no c̄′ with

J− ∪ { s i ∣ i ∉ w } ⊆ ⟦¬φ(c̄′ , ā i)⟧i
and J+ ∪ { s i ∣ i ∈ w } ⊆ ⟦φ(c̄′ , ā i)⟧i .

By indiscernibility, we may assume that

J− ∪ { s i ∣ i < k } < I < J+ ∪ { s i ∣ i ≥ k } .

Let w+ ∶= w ∖ {k − 1} and w− ∶= [n] ∖ (w ∪ {k}). We define

ψ(x̄) ∶= ⋀
i∈J−∪w− ¬φ(x̄ , ā i) ∧ ⋀

i∈J+∪w+ φ(x̄ , ā i) .

Then

M ⊧ ¬∃x̄[ψ(x̄) ∧ φ(x̄ , āsk−1) ∧ ¬φ(x̄ , āsk)] .

Hence,

M ⊧ ∀x̄[ψ(x̄) ∧ φ(x̄ , āsk−1)→ φ(x̄ , āsk)] .

Moreover, (w ∖ {k − 1}) ∪ {k} <lex w implies, by choice of w, that

M ⊧ ∃x̄[ψ(x̄) ∧ ¬φ(x̄ , āsk−1) ∧ φ(x̄ , āsk)] .

Consequently, it follows by indiscernibility that, for all i , l ∈ [sk−1 , sk],
M ⊧ ∀x̄[ψ(x̄) ∧ φ(x̄ , ā i)→ φ(x̄ , ā l)] iff i ≤ l .

In particular, this holds for all i , l ∈ I. ◻
Lemma 4.7 shows that there are unstable theories without the inde-

pendence property. Such theories can be characterised as follows.
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Definition 4.9. Let T be a theory. A formula φ(x̄ , ȳ) has the strict order
property (with respect to T) if there exists a model M ⊧ T containing a
sequence (ān)n<ω such that

M ⊧ ∃x̄[¬φ(x̄ , ā i) ∧ φ(x̄ , āk)] iff i < k .

If some formula has the strict order property with respect to T then we
also say that T has the strict order property.

Lemma 4.10. A theory T has the strict order property if and only if there
exists a formula φ(x̄ , ȳ) such that φM is a preorder with infinite chains.

Proof. (⇐) Suppose that φ(x̄ , ȳ) defines a preorder with an infinite
chain (ā i)i∈I . By compactness, there exists an infinite ascending φM-
chain (b̄n)n<ω . It follows that

M ⊧ ∃x̄[¬φ(x̄ , b̄ i) ∧ φ(x̄ , b̄k)] iff i < k .

(⇒) Suppose that there exists a formula ψ(x̄ , ȳ) with the strict order
property and let (ān)n<ω be a sequence with

M ⊧ ∃x̄[¬ψ(x̄ , ā i) ∧ ψ(x̄ , āk)] iff i < k .

We set

φ( ȳ, ȳ′) ∶= ∀x̄[ψ(x̄ , ȳ)→ ψ(x̄ , ȳ′)] .

Clearly, φM is reflexive and transitive. Furthermore, we have

M ⊧ φ(ā i , āk) iff i ≥ k .

Hence, (ān)n<ω is an infinite descending φM-chain. ◻
Proposition 4.11. A first-order theory T is unstable if, and only if, it has
the independence property or the strict order property.
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Proof. (⇐) If there is a formula φ with the independence property then,
according to Lemma 4.6, φ has also the order property and T is unstable.

Similarly, suppose that there exists a formula φ with the strict order
property and let (ān)n<ω be a sequence with

M ⊧ ∃x̄[¬φ(x̄ , ā i) ∧ φ(x̄ , āk)] iff i < k .

Setting

ψ(x̄ , ȳ) ∶= x̄ = ȳ ∨ ∃z̄[¬φ(z̄, x̄) ∧ φ(z̄, ȳ)]
it follows that

M ⊧ ψ(ā i , āk) iff i ≤ k .

Hence, ψ has the order property and T is unstable.(⇒) Let φ(x̄ , ȳ) be a formula with the order property and suppose
that (ān)n<ω and (b̄n)n<ω are indiscernible sequences such that

M ⊧ ψ(ā i , b̄k) iff i ≤ k .

By compactness, there are indiscernible sequences (ā i)i∈Z and (b̄ i)i∈Z
such that

M ⊧ ψ(ā i , b̄k) iff i ≤ k .

If φ has the independence property we are done. Hence, suppose other-
wise. Since ⟦ψ(ā0 , b̄ i)⟧i and ⟦¬ψ(ā0 , b̄ i)⟧i are both infinite, we can use
Lemma 4.8 to construct a formula χ( ȳ, ȳ; d̄) such that

M ⊧ χ(b̄ i , b̄k ; d̄) iff i ≤ k .

It follows that

M ⊧ ∃x̄[¬χ(x̄ , b̄ i ; d̄) ∧ χ(x̄ , b̄k ; d̄)] iff i < k .

Consequently, the sequence (b̄ i d̄)i<ω witnesses that χ(x̄ , ȳ; z̄) has the
strict order property. ◻
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Proposition 4.12. Let φ(x̄ , ȳ) be a formula over a set U. The following
statements are equivalent :

(1) φ(x̄ , ȳ) has the order property.

(2) There exist an indiscernible sequence (ā i)i∈I over U and a tuple c̄
such that both the set ⟦φ(ā i , c̄)⟧i∈I and its complement are infinite.

(3) There exists an indiscernible sequence (ā i)i∈I such that, for every
number m < ω, there exists a tuple c̄ such that

∣⟦φ(ā i ; c̄)⟧i∈I ∣ > m and ∣⟦¬φ(ā i ; c̄)⟧i∈I ∣ > m .

Proof. (1)⇒ (3) By Proposition 3.6 and compactness, it is sufficient to
find, for every m < ω, a tuple c̄ and a sequence (ā i)i<ω such that

∣⟦φ(ā i , c̄)⟧i∈I ∣ ≥ m and ∣⟦¬φ(ā i , c̄)⟧i∈I ∣ ≥ m .

Since φ has the order property there are sequences (c̄n)n<ω and (d̄n)n<ω
such that

M ⊧ φ(c̄ i , d̄k) iff i ≤ k .

Given m < ω we consider the tuple c̄ ∶= d̄m and the sequence ā i ∶= c̄ i ,
i < ω. Then

⟦φ(ā i , c̄)⟧i∈I = ⟦φ(c̄ i , d̄m)⟧i∈I = {m,m + 1, . . . }
and ⟦¬φ(ā i , c̄)⟧i∈I = ⟦¬φ(c̄ i , d̄m)⟧i∈I = {0, . . . ,m − 1}
contain both at least m elements.(2)⇒ (1) Let c̄ and (ā i)i∈I be given. According to Proposition 4.2, if
neither

I0 ∶= ⟦¬φ(ā i , c̄)⟧i∈I nor I1 ∶= ⟦φ(ā i , c̄)⟧i∈I
can bewritten as a finite union of segments then φ has the independence
property. By Lemma 4.6, this implies that φ has the order property.
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Hence, it remains to consider the case that both I0 and I1 are finite
unions of segments. Since these sets are both infinite it follows that each
contains at least one infinite segment. By taking a suitable subsequence of(ā i)i∈I we may assume that both sets consist of a single infinite segment.
Reversing the sequence (ā i)i∈I if necessary, we may further assume that
I0 < I1.
By compactness it is sufficient to find, for every m < ω, sequences(c̄ i)i<m and (d̄ i)i<m such that

M ⊧ φ(c̄ i , d̄k) iff i ≤ k .

Given m < ω we pick indices k0 < ⋅ ⋅ ⋅ < km−1 in I0 and km < ⋅ ⋅ ⋅ < k2m−1
in I1. For i < m, let π i be an automorphism with π i(āk j) = āk j−i and
define

c̄ i ∶= ākm−i and d̄ i ∶= π i(c̄) .

For i , l < m, it then follows that

M ⊧ φ(c̄ i , d̄ l) iff M ⊧ φ(ākm−i , π l(c̄))
iff M ⊧ φ(π l(ākm−i+l ), π l(c̄))
iff M ⊧ φ(ākm−i+l , c̄)
iff m − i + l ≥ m
iff i ≤ l .

(3)⇒ (2) By Corollary 3.10, we may assume that the order I is dense.
Set

Φ ∶= Av((ā i)i/U) ∪ {φ(x̄n ; ȳ)↔ ¬φ(x̄n+1; ȳ) ∣ n < ω } .

If Φ is satisfiable, there exists an indiscernible sequence (b̄n)n<ω over U
and a tuple c̄ such that

⟦φ(b̄n ; c̄)⟧n<ω = { 2n ∣ n < ω }
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and ⟦¬φ(b̄n ; c̄)⟧n<ω = { 2n + 1 ∣ n < ω } .

In particular, both sets are infinite.
Hence, it remains to prove that Φ is satisfiable. Consider a finite subset

Φ0 ⊆ Φ. Let n < ω be the maximal number such that Φ0 contains a
formula of the form

φ(x̄n ; ȳ)↔ ¬φ(x̄n+1; ȳ) .

By (3), there exists a tuple c̄ such that

∣⟦φ(ā i ; c̄)⟧i∈I ∣ > n and ∣⟦¬φ(ā i ; c̄)⟧i∈I ∣ > n .

If both sets are infinite, we are done. Hence, suppose that one of them is
finite. Choose indices k0 < ⋅ ⋅ ⋅ < kn−1 in the finite set. As the other set is
dense and cofinite, it contains indices l0 < ⋅ ⋅ ⋅ < ln−1 such that

k0 < l0 < k1 < l1 < ⋅ ⋅ ⋅ < kn−1 < ln−1 .

Let K be this set of indices. Then (ā i)i∈K and c̄ satisfy Φ0. ◻
Corollary 4.13. A first-order theory T is stable if, and only if, for every
formula φ(x̄) with parameters and all indiscernible sequences (ā i)i∈I at
least one of the sets ⟦φ(ā i)⟧i∈I and ⟦¬φ(ā i)⟧i∈I is finite.

Corollary 4.14. Let T be a stable theory and (ā i)i∈I an indiscernible
sequence over U. For every set C ⊆M, the set

Av1((ā i)i/C) ∶= {φ(x̄) ∣ φ a formula over C such that

⟦φ(ā i)⟧i∈I is cofinite}
forms a complete type over C.

Proof. By the preceding corollary, we have

φ(x̄) ∈ Av1((ā i)i/C) iff ⟦φ(ā i)⟧i∈I is cofinite

iff ⟦¬φ(ā i)⟧i∈I is finite

iff ⟦¬φ(ā i)⟧i∈I is not cofinite

iff ¬φ(x̄) ∉ Av1((ā i)i/C) .
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Hence, it remains to prove that Av1((ā i)i/C) is consistent with T . Let
φ0 , . . . , φn ∈ Av1((ā i)i/C). Then

⟦φ0(ā i)⟧i∈I , . . . , ⟦φn(ā i)⟧i∈I are cofinite.

Hence, so is

⟦φ0(ā i) ∧ ⋅ ⋅ ⋅ ∧ φn(ā i)⟧i∈I = ⟦φ0(ā i)⟧i∈I ∩ ⋅ ⋅ ⋅ ∩ ⟦φn(ā i)⟧i∈I .

Fixing some index i in this set, it follows that

M ⊧ φ0(ā i) ∧ ⋅ ⋅ ⋅ ∧ φn(ā i) .

Consequently, every finite subset of Av1((ā i)i/C) is satisfiable. ◻
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1. Local functors
In this section we consider functors preserving back-and-forth equi-
valence. Recall that Subκ(M) denotes the class of all κ-generated sub-
structures of M, and that a class K is κ-hereditary if M ∈ K implies
Subκ(M) ⊆ K.

Definition 1.1. LetK be a class of Σ-structures. We denote the subcat-
egory of Emb(Σ) induced byK by Emb(K).

Belowwewill show that functors preserving direct limits also preserve∞-equivalence. We start by giving an alternative characterisation of such
functors.

Definition 1.2. A functor F ∶ Emb(C)→ Emb(K) is κ-local if, for every
embedding f ∶ B→ F(A) where B ∈ K is κ-generated and A ∈ C, there
exists an embedding g ∶ C → A where C ∈ C is κ-generated such that the
map f factors through F(g).

A F(A) B

C F(C)
g

f

F(g)

Example. The following operations are ℵ0-local functors.
(a) The function mapping a ring R to the polynomial ring R[x].
(b) The function mapping an integral domain R to its quotient field.
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(c) The function mapping a set X to the free group generated by X.
(d) The function mapping a structure M to the structure HF(M) con-

sisting of all hereditary finite sets with elements from M.

Lemma 1.3. If F ∶ Emb(C)→ Emb(D) and G ∶ Emb(D)→ Emb(K) are
κ-local then so is G ○ F.

Exercise 1.1. Prove the preceding lemma.

As a further, more involved example we show that quantifier-free
interpretations are ℵ0-local functors. While every interpretation is local
in an intuitive sense we need the restriction to quantifier-free formulae
to prove that the interpretation is a functor.

Lemma 1.4. Every QF∞ℵ0 -interpretation I ∶ Emb(K) → Emb(Σ) is anℵ0-local functor.

Proof. First, we show that quantifier-free interpretations are functors.
Suppose that

I = ⟨α, (δs)s∈S , (εs)s∈S , (φξ)ξ∈Σ⟩
is quantifier-free and let h ∶ A → B be an embedding. For ā ∈ δA

s , we
denote by [ā]s the element encoded by ā. We define I(h) by

I(h)[ā]s ∶= [h(ā)]s .

Since embeddings preserve quantifier-free formulae it follows that this
mapping is a well-defined embedding I(h) ∶ I(A)→ I(B). Obviously,
we have I( f ○ g) = I( f ) ○ I(g). Consequently, I is a functor.

To show that it is ℵ0-local let X ⊆ I(A) be finite. For each equivalence
class [ā]s ∈ X, fix a representative ā and let A0 be the set of these
representatives. Then A0 is finite and we have X ⊆ I(⟪A0⟫A). Note thatI(⟪A0⟫A) is defined since I is quantifier-free. ◻

Local functors can be characterised in purely category-theoretical
terms as those functors that preserve direct limits.
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Theorem 1.5. Let F ∶ Emb(C)→ Emb(K) be a functor where the classesC andK are κ-hereditary. The functor F is κ-local if and only if it preserves
κ-filtered colimits.

Proof. (⇐) Let f ∶ B → F(A) be an embedding where B ∈ K is κ-
generated. According to Lemma ?? we can write A = limÐ→D where D ∶I → Subκ(A) is the canonical κ-filtered diagram of all κ-generated
substructures. The corresponding cocone µ from D to A consists of all
inclusion maps µi ∶ D(i)→ A. Since F preserves κ-direct limits we have
F(A) = limÐ→(F ○ D) and the corresponding cone is F[µ].

To find the desired embedding g ∶ C → A we fix a set X ⊆ B of size∣X∣ < κ generating B. For each x ∈ X, we choose an index ix ∈ I such
that f (x) ∈ rng F(µix ). Since I is κ-filtered there is some index k ∈ I and
morphisms hx ∶ ix → k, for all x. Hence, we have

f [X] ⊆ rng F(µk) ,
which, by Lemma b1.2.8, implies that

rng f = f [⟪X⟫B] = ⟪ f [X]⟫F(A)⊆ ⟪rng F(µk)⟫F(A) = rng F(µk) .

Since f and F(µk) are injective and rng f ⊆ rng F(µk) we can define
a function g ∶ B → F(D(k)) by g ∶= F(µk)−1 ○ f . Since f and F(µk)
preserve all quantifier-free formulae so does g. Hence, g is an embedding.
Furthermore, we have F(µk) ○ g = f .(⇒) Let D ∶ I → Emb(C) be a κ-filtered diagram with A ∶= limÐ→D,
and suppose that µ is a limiting cocone from D to A. We claim that
limÐ→(F ○ D) = F(A). Let D ∶= limÐ→(F ○ D) and let λ be a limiting cocone
from F ○ D to D. Since F[µ] is a cocone from F ○ D to F(A) it follows
that there exists an embedding h ∶ D→ F(A) with h ∗ λ = F[µ].
We only have to show that h is surjective. Fix c ∈ F(A). There exists

some substructure B ∈ Subκ(F(A)) with c ∈ B. Let j ∶ B → F(A) be
the inclusion map. Since F is κ-local we can find a κ-generated structure
C ∈ C and an embedding g ∶ C → A such that j = F(g) ○ j0, for some
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j0 ∶ B→ F(C). In the same way as above we can show that there is some
index k ∈ I and an embedding g0 ∶ C → D(k) with g = µk ○ g0.

C D(k) A

F(C) F(D(k)) D F(A)

B

g0 µk

F(g0) λk h

j0 j

Since a = j(a) = (h ○ λk ○ F(g0) ○ j0)(a) it follows that a ∈ rng h. ◻
Let us show that local functors preserve back-and-forth equivalences.

Definition 1.6. Suppose that F ∶ Emb(C)→ Emb(K) is a functor where
the classes C and K are κ-hereditary. Let p = ā ↦ b̄ ∈ pIso(A,B) be
a partial isomorphism between A,B ∈ C and let π ∶ A0 → B0 be the
unique isomorphism extending p, where A0 ∶= ⟪ā⟫A and B0 ∶= ⟪b̄⟫B

are the structures induced by, respectively, the domain and range of p.
Let i ∶ A0 → A and j ∶ B0 → B be the corresponding inclusion maps
and suppose that F(π) = ā′ ↦ b̄′. We define

pF ∶= F(i)(ā′)↦ F( j)(b̄′) .

Proposition 1.7. Let F ∶ Emb(C)→ Emb(K) be anℵ0-local functorwhere
the classes C and K are ℵ0-hereditary.

p ∈ Iℵ0
ωα(A,B) implies pF ∈ Iα(F(A), F(B)) .

Proof. The claim follows by induction on α. Let p ∶= ā ↦ b̄ ∈ Iℵ0
ωα(A,B),

set A0 ∶= ⟪ā⟫A and B0 ∶= ⟪b̄⟫B, and let π ∶ A0 → B0 be the isomorph-
ism extending p. Let i ∶ A0 → A and j ∶ B0 → B be the corresponding
inclusion maps and suppose that F(π) = ā′ ↦ b̄′.
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For α = 0, we have to check that F(p) is a partial isomorphism. Since
F(i), F( j), and F(π) are embeddings it follows, for every quantifier-free
formula φ(x̄), that

F(A) ⊧ φ(F(i)(ā′)) iff F(A0) ⊧ φ(ā′)
iff F(B0) ⊧ φ(b̄′)
iff F(B) ⊧ φ(F( j)(b̄′)) .

If α is a limit ordinal then the claim follows immediately by inductive
hypothesis. Hence, suppose that α = β + 1. By symmetry, we only need
to check the forth property. Fix c ∈ F(A). Since F is ℵ0-local there exist
a finitely generated structure C and an embedding g ∶ C → A such
that the inclusion h ∶ ⟪c⟫F(A) → F(A) factors through F(g), i.e., h =
F(g) ○ h0. Choose a finite tuple ē0 of generators of C and set ē ∶= g(ē0)
and A1 ∶= ⟪āē⟫A. Since p = ā ↦ b̄ ∈ pIsoℵ0

ω(β+1)(A,B) we can find some
f̄ ⊆ B with q ∶= āē ↦ b̄ f̄ ∈ pIsoℵ0

ωβ(A,B). Set B1 ∶= ⟪b̄ f̄ ⟫B and let
ρ ∶ A1 → B1 be the unique isomorphism extending q. We claim that
qF is an extension of pF with c ∈ dom qF .

Let i0 , i1 , j0 , j1 , g0 be the inclusion maps as depicted in the following
diagram

A0 B0

A A1 B1 B

C

π

i i0 j0
j

i1 ρ j1

g g0

Applying F to this diagram we obtain
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F(A0) F(B0)

F(A) F(A1) F(B1) F(B)

F(C)⟪c⟫F(A)

F(π)
F(i)

F(i0) F( j0) F( j)

F(i1) F(ρ) F( j1)
F(g) F(g0)h

h0

First, let us show that c ∈ dom qF . We have

c = h(c) = (F(i1) ○ F(g0) ○ h0)(c)
which implies that c ∈ rng F(i1) = dom qF .

It remains to prove that pF ⊆ qF . Let x ∈ dom pF . Then x = F(i)(a′l),
for some l . Setting w ∶= F(i0)(a′l) we have

F(i1)(w) = (F(i1) ○ F(i0))(a′l) = F(i)(a′l) = x .

It follows that

qF(x) = (F( j1) ○ F(ρ))(w)= (F( j1) ○ F(ρ) ○ F(i0))(a′l)= (F( j1) ○ F( j0) ○ F(π))(a′l)= (F( j) ○ F(π))(a′l) = pF(x) . ◻
Corollary 1.8. Let F ∶ Emb(C)→ Emb(K) be an ℵ0-local functor where
the classes C and K are ℵ0-hereditary. For all A,B, we have

A ≅ωα B implies F(A) ≅α F(B) .

In particular,

A ≅∞ B implies F(A) ≅∞ F(B) .
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We conclude this section by showing that local functors are compatible
with universal theories.

Definition 1.9. Let F ∶ Emb(C) → Emb(K) be a functor and L a logic.
The L-theory of F is the set

ThL(F) ∶= {φ ∈ L ∣ F(A) ⊧ φ for all A ∈ C } .

Lemma 1.10. Let F ∶ Emb(C) → Emb(K) be an ℵ0-local functor where
the classes C and K are ℵ0-hereditary. If U ∈ C is ℵ0-universal then

Th∀∞ℵ0 (F(U)) =Th∀∞ℵ0 (F) .

Proof. (⊇) follows immediately from the definitions.(⊆)We prove by induction on ψ(x̄) ∈ ∀∞ℵ0 that

F(U) ⊧ ψ(c̄) , for all c̄ ⊆ F(U) ,
implies that

F(A) ⊧ ψ(ā) , for all A ∈ C and every ā ⊆ F(A) .

First, suppose that ψ is quantifier-free. Let A ∈ C and ā ⊆ F(A).
We have to show that F(A) ⊧ ψ(ā). Since F is ℵ0-local we can find a
finitely generated substructure A0 ⊆ A with ā ⊆ F(A0). Since U is ℵ0-
universal there exists an embedding f ∶ A0 → U. We set b̄ ∶= F( f )(ā).
By assumption F(U) ⊧ ψ(b̄). Since ψ is quantifier-free and F( f ) is an
embedding it follows that F(A0) ⊧ ψ(ā). Hence, F(A) ⊧ ψ(ā).

For the inductive step, we have to distinguish three cases. Either

ψ(x̄) =⋀Ψ , or ψ(x̄) =⋁Ψ , or ψ(x̄) = ∀yϑ(x̄ , y) .

In each of these cases the claim follows directly from the inductive
hypothesis. ◻
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2. Word constructions
Local functors can be characterised in terms of a certain family of co-
morphisms called word constructions. Instead of defining these opera-
tions as a single, complex construction we will introduce several simple
operations which, when combined with first-order interpretations, yield
the required expressive power.

We startwith themain ingredient in aword construction, the so-called
term-algebra operation.

Definition 2.1. Let Γ be a functional S-sorted signature and Σ a relational
one that is S0-sorted for some S0 ⊆ S. The Γ-term algebra T [Γ ,A] over
a Σ-structure A is the T[Γ , S0]-sorted structure whose universe T[Γ ,A]
consists of all Γ-terms over A.Every element t(ā) ∈ T[Γ ,A] has sort t(s̄),
where s̄ are the sorts of ā. For each relation symbol R ∈ Σ, we have the
relation

RT [Γ ,A] = RA ,

and, for each n-ary function symbol f ∈ Γ, we have an n-ary function
defined by

f T [Γ ,A](t0 , . . . , tn−1) ∶= f t0 . . . tn−1 .

Example. Let us give two simple examples showing the versatility of the
term algebra operation in conjunction with a first-order interpretation.

(a) First, we interpret the product A × A in the structure T [{ f },A]
where f is a binary function symbol. When we encode a pair ⟨a, b⟩ ∈
A× A by the term f (a, b), we can define the universe by the formula

δ(x) ∶= “x = f (a, b) for some a, b ∈ A.”

Then we define each relation R by

φR(x̄) ∶= “x i = f (a i , b i) for some a i , b i ∈ A such that ā, b̄ ∈ R.”
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(b) Similarly,we can interpret the disjoint union A∪A in the structureT [{ f },A] where f is a unary function symbol. The universe is the set

A∪ { f (a) ∣ a ∈ A}
which is obviously definable in T [{ f },A]. We can define the relations R
by

φR(x̄) ∶= “Either x̄ = ā or x̄ = f (ā), for some ā ∈ R.”

Lemma 2.2. Let Σ a relational signature and Γ a functional one. The
Γ-term-algebra operation

T [Γ ,−] ∶ Emb(Σ)→ Emb(Σ ∪ Γ)
is an ℵ0-local functor.

Proof. First, let us show that it is a functor. Let h ∶ A→ B be an embed-
ding of Σ-structures. We obtain an embedding

T [Γ , h] ∶ T [Γ ,A]→ T [Γ ,B]
by setting

T [Γ , h](t(ā)) ∶= t(h(ā)) .

To prove that T [Γ ,−] is ℵ0-local suppose that X ⊆ T[Γ ,A] is finite.
Then we have X ⊆ T[Γ ,A0] = ⟪A0⟫T [Γ ,A] where the set

A0 ∶=⋃{ ā ∣ t(ā) ∈ X }
is finite. ◻

It follows from the results of the previous section that T [Γ ,−] pre-
serves ∞-equivalence. The next lemma gives a more precise statement.
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Lemma 2.3. Suppose that Σ is a relational signature, Γ a functional one,
and κ an infinite cardinal. For each FOκℵ0 -formula φ(x0 , . . . , xn−1) and
all terms t i(x̄ i) ∈ T<ω[Γ], for i < n, we can construct an FOκℵ0 -formula
φt0 . . .tn−1(x̄0 , . . . , x̄n−1) such that

T [Γ ,A] ⊧ φ(t0(ā0), . . . , tn−1(ān−1))
iff A ⊧ φt0 . . .tn−1(ā0 , . . . , ān−1) .

Proof. W.l.o.g. we may assume that φ is term reduced. We construct φ t̄
inductively. First, suppose that φ is an atomic formula. If φ = Rx̄ with
R ∈ Σ then we can set

(Rx̄) t̄ ∶= ⎧⎪⎪⎨⎪⎪⎩
Rx0 . . . xn−1 if t i = x for all i ,
false otherwise .

For φ = x = y we set

(x = y)st ∶= ⎧⎪⎪⎨⎪⎪⎩
⋀i x i = y i if s = t ,
false otherwise .

Finally, if φ = f x̄ = y then we define

( f x̄ = y)s̄ t ∶= ⎧⎪⎪⎨⎪⎪⎩
⋀i , j x i

j = y i
j if f s̄ = t ,

false otherwise ,

where s i = s i(x̄ i) and t = t( ȳ0 , . . . , ȳn−1) . Boolean operations are
unchanged:

(¬φ) t̄ ∶= ¬φ t̄ and (⋀Φ) t̄ ∶=⋀{φ t̄ ∣ φ ∈ Φ } .

For a quantifier over a variable y of sort s ∈ T[Γ , S0], we have

(∃yφ(x̄ , y)) t̄ ∶= ∃ ȳφ t̄ s(x̄0 , . . . , x̄n−1 , ȳ) . ◻
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The term-algebra operation creates structures with many sorts. To
reduce the number of sorts we employ a second operation that merges
several sorts into a single one. Recall that with every morphism ⟨S , Σ⟩→⟨T , Γ⟩ of Sig we have associated a reduct mapping Str[Γ] → Str[Σ].
For relational signatures we can also define a mapping Str[Σ]→ Str[Γ]
in the other direction.

Definition 2.4. Let α = ⟨χ, µ⟩ ∶ ⟨S , Σ⟩ → ⟨T , Γ⟩ be a morphism of Sig
where the signatures Σ and Γ are relational. The inverse α-reduct of a
Σ-structure A is the Γ-structure Aα where the domain of sort t ∈ T is

Aα
t ∶=⊍{As ∣ s ∈ χ−1(t) } ,

and, for each relation symbol R ∈ Γ, we have

RAα ∶=⊍{QA ∣ Q ∈ µ−1(R) } .

Remark. We have defined inverse reducts only for relational signatures
in order to avoid the complications arising from the fact that we require
functions to be total. For instance, if V = ⟨V ,K ,+, ⋅⟩ is a {v , s}-sorted
vector space and α maps both sorts to the same value, then we get prob-
lems defining Vα since the operation + is a function V × V → V and
not a function (V ∪ K) × (V ∪ K)→ V ∪ K.

Lemma 2.5. Let α be a morphism of Sig. The operation A ↦ Aα is anℵ0-local functor.

Proof. Clearly the operation is ℵ0-local : for every finite subset X ⊆ Aα

we have X ⊆ (⟪X⟫A)α . It remains to show that it is a functor. Let h ∶
A→ B be an embedding. We define

hα ∶ Aα → Bα by setting hα(a) ∶= h(a) .

To show that this function is an embedding suppose that ā ∈ RAα
. Then

there is some relation Q ∈ α−1(R) with ā ∈ QA. Hence, h(ā) ∈ QB ⊆
RBα

. ◻
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It follows that inverse reducts preserve FO∞ℵ0 -equivalence. The next
lemma states that they also preserve FOκℵ0 -equivalence for sufficiently
large cardinals κ.

Lemma 2.6. Let α = ⟨χ, µ⟩ ∶ ⟨S , Σ⟩→ ⟨T , Γ⟩ be amorphism of Sigwhere
the signatures Σ and Γ are relational, and let κ be an infinite cardinal such
that

∣χ−1(t)∣ < κ and ∣µ−1(R)∣ < κ , for all t ∈ T and R ∈ Γ .

For every formula φ(x̄) ∈ FOκℵ0[Σ] where x i is of sort t i and for all sorts
s i ∈ χ−1(t i), there exists a formula φα

s̄ (x̄) ∈ FOκℵ0[Γ] such that

Aα ⊧ φ(ā) iff A ⊧ φα
s̄ (ā) ,

for every Σ-structure A and all a i ∈ As i .

Proof. We construct φα
s̄ by induction on φ. For atomic formulae we set

(x0 = x1)αs̄ ∶= x0 = x1 and (Rx̄)αs̄ ∶=⋁{Q ∈ µ−1(R) ∣ Q x̄ }
(where we consider x i now to be of sort s i). Boolean operations remain
unchanged:

(¬φ)αs̄ ∶= ¬φα
s̄ and (⋀Φ)αs̄ ∶=⋀{φα

s̄ ∣ φ ∈ Φ } .

A quantifier with a variable y of sort t ∈ T is replaced by a disjunction
over all sorts r ∈ χ−1(t)

(∃yφ)αs̄ ∶=⋁{∃yφα
s̄r ∣ r ∈ χ−1(t) } . ◻

We obtain an alternative characterisation of ℵ0-local functors by com-
bining these two operations with quantifier-free interpretations.

Definition 2.7. (a) Let Σ be a signature and let Σrel be the signature
obtained from Σ by replacing every function symbol f of type s̄ → t by a
relation symbol R f of type s̄t. The relational variant of a Σ-structureM is
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the Σrel-structureR(M) obtained from M by replacing every function f
by its graph.

(b) A κ-word construction is an operation of the form

F = I ○ S ○R ○ T ○R ,

where I is a QFκℵ0 -interpretation,R is the operation defined in (a), S is
an inverse reduct, and T is a Γ-term-algebra operation where ∣Γ∣ < κ.

Remark. Note thatR is a quantifier-free first-order interpretation.

Theorem 2.8. Let C be an ℵ0-hereditary class of Σ-structures and K a
class of Γ-structures. Suppose that κ is a cardinal such that

κ > 2∣Σ∣⊕ℵ0 and κ > ∣F(C)∣ , for all finitely generated C ∈ C .

A mapping F ∶ Emb(C)→ Emb(K) is an ℵ0-local functor if and only if it
is an κ-word construction.

Proof. (⇐)We have already seen that all operations aword construction
is built up from are ℵ0-local functors. Since ℵ0-local functors are closed
under composition the claim follows.(⇒)We have to express F as composition

F = I ○ S ○R ○ T ○R .

To define T we use Theorem 1.5 which tells us that F preserves direct
limits. LetD ∶ I → Subℵ0(A) be the canonicaldiagramwith limit limÐ→D =
A. We are looking for an operation mapping A to limÐ→(F ○D).

Fix an enumeration (Cα)α<λ of⋃A∈K Subℵ0(A). Note that each struc-
ture Cα has at most ∣Σ∣⊕ ℵ0 elements. Hence, there are at most 2∣Σ∣⊕ℵ0

of them and we have λ ≤ 2∣Σ∣⊕ℵ0 < κ.
For each α < λ, we choose a finite tuple c̄α ⊆ Cα generating Cα . Set

Ξ ∶= { f αb ∣ α < λ, b ∈ F(Cα) } ,

977



e6. Functors and embeddings

where f αb is a new function symbol of arity ∣c̄α ∣. Note that ∣Ξ∣ < κ since
λ < κ and ∣F(Cα)∣ < κ, for all α. For T we choose the Ξ-term-algebra
operation A↦ T [Ξ,A]. The inverse reduct S maps each element to the
correct sort.

Themainwork is done by the interpretation I . It creates the structures
F(Cα) and pastes them together. The domain formula δ(x) states that
x is a term of the form f αb (ā), for some α < λ and b ∈ F(Cα), such
that the substructure generated by ā is isomorphic to Cα . Each relation
R ∈ Γ can be defined by a formula φR(x̄) stating that x i = f α i

b i
(ā) and

the tuple b̄ is in the relation RF(Cα). The functions in Γ are defined in the
sameway. Two elements f αb (ā) and f α

′
b′ (ā′) are defined to be equal iffwe

have i(b) = i′(b′)where i ∶ Cα → ⟪c̄α c̄α′⟫A and i′ ∶ Cα′ → ⟪c̄α c̄α′⟫A are
the canonical inclusion maps. Since λ < κ and every Cα has less than κ
elements, it follows that each of the above statements can be expressed
in FOκℵ0 . ◻
Corollary 2.9. Let F ∶ Emb(C) → Emb(K) be ℵ0-local and let Σ be the
signature of C. If κ is a cardinal such that

κ > 2∣Σ∣⊕ℵ0 and κ > ∣F(C)∣ , for all finitely generated C ∈ C ,
then A ≅FOκℵ0 B implies F(A) ≅FOκℵ0 F(B) .

Remark. We have characterised ℵ0-local functors in terms of word oper-
ations and we have shown that they preserve FO∞ℵ0 -equivalence. These
results can be generalised to κ-local functors for arbitrary cardinals κ.
To do so we have to allow term algebras with operations of infinite arity
less than κ. It follows that these operations preserve equivalence for
the logic FO∞κ which extends FO∞ℵ0 by quantifiers ∃{ x i ∣ i < α } and∀{ x i ∣ i < α } over sets of α < κ variables. We can give a back-and-forth
characterisation of this logic if we replace the usual back-and-forth prop-
erty by the requirement that, for every tuple c̄ with ∣c̄∣ < κ, we can find a
corresponding tuple d̄ in the other structure.
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As an application of word constructions we consider varieties. With
each variety V we can associated a so-called replica functor that maps a
given structure to its closest approximation in V .

Definition 2.10. Let Σ ⊆ Σ+ be signatures, P ∈ Σ+ ∖ Σ a unary predicate,
and V a quasivariety of Σ+-structures.

The replica functor RV ∶ Hom(Σ) → Hom(V) of V maps an arbitrary
Σ-structure A to the free model of the V-presentation ⟨A; ΦA⟩ where

ΦA ∶= { Pa ∣ a ∈ A} ∪ {φ(ā) ∣ φ atomic, ā ⊆ A, A ⊧ φ(ā) } .

Remark. Note that replica functors differ from the functors considered
so far since, in general, they do not preserve embeddings. Hence, they
are functors Hom(Σ)→ Hom(Σ+), and not Emb(Σ)→ Emb(Σ+).
Lemma 2.11. The replica functor RV ∶ Hom(Σ)→ Hom(V) is a functor.

Proof. Let h ∶ A→ B be a homomorphism. By definition, the structure
RV(A) is the freemodel of ⟨A; ΦA⟩. Let ā be an enumeration of A and set
b̄ ∶= h(ā). Since homomorphisms preserve atomic formulae it follows
that

⟨RV(B), b̄⟩ ⊧ ΦA ,

that is, RV(B) is a model of ⟨A; ΦA⟩. Since RV(A) is the free model of
this presentation there exists a unique homomorphism g ∶ RV(A) →
RV(B) with g ↾ A = h. It is straightforward to check that we obtain a
functor if we define RV(h) ∶= g. ◻
Proposition 2.12. Each replica functor is a word construction.

Proof. Since the structure RV(A) is generated by the set A there exists a
homomorphism T[Σ+ ,A]→ RV(A) such that h ↾ A = idA. We define a
quantifier-free interpretation I such that

RV = I ○ S ○R ○ T ○R ,
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where T (A) ∶= T [Σ+ ,A] and S is the inverse reduct that maps every
sort t ∈ T[Σ+ , S0] of T [Σ+ ,A] to the sort s such that t ∈ Ts[Σ+ , S0].
According to Lemma d2.4.2, we have

RV(A) ⊧ ψ(ā) iff Th(V) ⊧⋀ΦA → ψ(ā) ,
for every atomic formula ψ(x̄) ∈ FO<ω[Σ+] and all ā ⊆ A.

Note that, by the interpolation theorem, we have

Th(V) ⊧⋀ΦA → ψ(ā) iff Th(V) ⊧⋀Φ⟪ā⟫A
→ ψ(ā) .

For each atomic formula ψ(x̄), we define

Dψ ∶= {⟪ā⟫A ∣Th(V) ⊧⋀ΦA → ψ(ā) } .

Let ηψ(x̄) be the FO∞ℵ0 -formula expressing that

⟪x̄⟫A ≅ C , for some C ∈ Dψ .

It follows that

RV(A) ⊧ ψ(ā) iff ⟪ā⟫A ∈ Dψ iff A ⊧ ηψ .

Consequently, we can define the desired interpretation

I = ⟨α, (δs)s∈S , (εs)s∈S , (φξ)ξ∈Σ+⟩
by setting

α ∶= true ,
δs(x) ∶= true ,

εs(x , y) ∶= “x = s(ā) and y = t(b̄) and A ⊧ ηs(x̄)=t( ȳ)(ā, b̄)” ,
φξ(x̄) ∶= “x i = t i(ā i) and A ⊧ ηRt̄(ā0 , . . . , ān−1)” . ◻
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3. Ehrenfeucht-Mostowski models
If a functor F is ℵ0-local then with every element c of F(A) we can
associate some finitely generated substructure A0 ⊆ A such that c is
contained in F(A0). We can think of the generators of A0 as a code for c.
In general, c can have several such codes and the connection between
c and its codes is rather loose. In order to obtain a tighter relationship
and a canonical way to encode elements of F(A), we add a function
s ∶ A→ F(A) assigning to every element a of A some element of F(A)
encoded by a.

Definition 3.1. LetK be a class of Γ-structures and Σ a signature. A func-
tor F ∶ Emb(K) → Emb(Σ) is strongly local if there exists a family of
injective functions sJ ∶ I → F(J), for J ∈ K, such that◆ F(J) is generated by rng sJ and◆ F(h) ○ sJ = sK ○ h, for every embedding h ∶ J→ K.
We call sJ the spine of F(J).
Remark. Translated into category-theoretical terms the second of the
above conditions on sJ simply means that (sJ)J is a natural transforma-
tion between the functors U and V ○ F, where

U ∶ Emb(K)→ Set and V ∶ Emb(Σ)→ Set

are the forgetful functors mapping a structure to its universe.
Every strongly local functor is ℵ0-local. For the proof we need a tech-

nical lemma.

Lemma 3.2. Let F ∶ Emb(K)→ Emb(Σ) be a strongly local functor and
h ∶ J→ K an embedding in K. Then

F(h) ∶ F(J) ≅ ⟪sK[rng h]⟫F(K) .

Proof. It is sufficient to show that rng F(h) = ⟪sK[rng h]⟫F(K). Note
that F(h) ○ sJ = sK ○ h implies

F(h)[rng sJ] = sK[rng h] .
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Therefore, ⟪rng sJ⟫F(J) = F(I) implies

rng F(h) = F(h)[⟪rng sJ⟫F(J)]= ⟪F(h)[rng sJ]⟫F(K) = ⟪sK[rng h]⟫F(K) . ◻
Proposition 3.3. Let F ∶ Emb(K)→ Emb(Σ) be a strongly local functor
where K is ℵ0-hereditary. Then F is ℵ0-local.

Proof. Fix J ∈ K and suppose that X ⊆ F(J) is finite. Then there is a
finite subset Z ⊆ rng sJ such that X ⊆ ⟪Z⟫F(J). Set

J0 ∶= ⟪s−1
J [Z]⟫J .

Note that J0 ∈ K sinceK is ℵ0-hereditary. By Lemma 3.2, it follows that

X ⊆ ⟪Z⟫F(J) = ⟪rng sJ0⟫F(J) ≅ F(J0) . ◻
By Corollary 2.9 it follows that strongly local functors preserve FOκℵ0 -

equivalence.

Corollary 3.4. Let F ∶ Emb(K) → Emb(Σ) be a strongly local functor
where K is an ℵ0-hereditary class of Γ-structures. For every cardinal κ ≥
2∣Γ∣⊕ℵ0 and all J,K ∈ K,

J ≡FOκℵ0 K implies F(J) ≡FOκℵ0 F(K) .

Strongly local functors also preserve QF-equivalence.

Lemma 3.5. Suppose that F ∶ Emb(K) → Emb(Σ) is a strongly local
functor where the class K is ℵ0-hereditary.

Let J,K ∈ K be structures and ā ⊆ I and b̄ ⊆ K finite tuples. Then

⟨J, ā⟩ ≡0 ⟨K, b̄⟩ implies ⟨F(J), sJ(ā)⟩ ≡0 ⟨F(K), sK(b̄)⟩ .

Proof. Set L ∶= ⟪ā⟫J and let sL be the spine of L. SinceK isℵ0-hereditary
we have L ∈ K. Since ⟨J, ā⟩ ≡0 ⟨K, b̄⟩, there are embeddings f ∶ L → J
and g ∶ L→ K with f (ā) = ā and g(ā) = b̄. Note that

(F( f ) ○ sL)(ā) = (sJ ○ f )(ā) = sJ(ā) ,
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and (F(g) ○ sL)(ā) = (sK ○ g)(ā) = sK(b̄) .

Since embeddings preserve every quantifier-free formula φ, it follows
that

F(J) ⊧ φ(sJ(ā)) iff F(L) ⊧ φ(sL(ā))
iff F(K) ⊧ φ(sK(b̄)) . ◻

Corollary 3.6. Let F ∶ Emb(K) → Emb(Σ) be a strongly local functor
where the classK is ℵ0-hereditary. For every J ∈ K, the spine sJ of F(J)
is a QF-indiscernible system over J.

Next we study the first-order theory of structures in the range of a
strongly local functor.

Proposition 3.7. Let F ∶ Emb(K)→ Emb(Σ) be a strongly local functor
and U ∈ K an ℵ0-universal structure. If Th(F(U)) is a Skolem theory
then Th(F) is complete. In particular,

F(J) ≡ F(K) , for all J,K ∈ K .

Furthermore, each spine sJ is an indiscernible system over J.

Proof. A Skolem theory is ∀-axiomatisable and admits quantifier elim-
ination. Let Φ ⊆ ∀ be an axiom system for Th(F(U)). By Lemma 1.10.
we have Φ ⊆Th(F). Hence,

Th(F(U)) = Φ⊧ ⊆Th(F) ⊆Th(F(U))
implies that F(J) ≡ F(U), for all J ∈ K.

To show that every spine sJ is indiscernible, fix J ∈ K and let c̄, d̄ ⊆ I
be tuples with atp(c̄) = atp(d̄). For every formula φ(x̄), there exists
a quantifier-free formula ψ(x̄) with F(J) ⊧ φ ↔ ψ. By Lemma 3.5, it
follows that

F(J) ⊧ φ(sJ[c̄]) iff F(J) ⊧ ψ(sJ[c̄])
iff F(J) ⊧ ψ(sJ[d̄])
iff F(J) ⊧ φ(sJ[d̄]) . ◻
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Existence and uniqueness of strongly local functors is proved in the
following proposition.

Proposition 3.8. Let A be a Σ-structure, U a Γ-structure, and set

K ∶= {J ∣ Subℵ0(J) ⊆ Subℵ0(U) } .

Suppose that A is generated by a QF-indiscernible system a ∶ U → A over U.
Up to natural isomorphism there exists a unique strongly local functor
F ∶ Emb(K)→ Emb(Σ) such that

F(U) ≅ A and AvQF(sU) = AvQF(a) .

Proof. For each J ∈ K, we define a set Φ(J) ⊆ QF0[ΣI] by
Φ(J) ∶= {φ(c̄) ∣ c̄ ⊆ I and φ(x̄) ∈ AvQF(a)(atp(c̄/J)) } .

We claim that Φ(J) is =-closed. Since every type q contains the equation
t(x̄) = t(x̄), we have

t(c̄) = t(c̄) ∈ Φ(J) , for every term t(c̄) ∈ T[ΣI ,∅] .

Furthermore, if Φ(J) contains the formulae φ(t(c̄), c̄) and t(c̄) = t′(c̄)
then

φ(t(x̄), x̄), t(x̄) = t′(x̄) ∈ AvQF(a)(atp(c̄/J))
implies

φ(t′(x̄), x̄) ∈ AvQF(a)(atp(c̄/J)) .

Consequently, φ(t′(c̄), c̄) ∈ Φ(J). Hence, we can use Lemma c2.4.4 to
construct a Herbrand model H(J) of Φ(J) such that

Φ(J) = {φ ∈ QF0[ΣI] ∣ H(J) ⊧ φ } .

We define the desired strongly local functor by setting

F(J) ∶= H(J)∣Σ and sJ(c) ∶= cH(J) , for c ∈ I .
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First, note that the mapping sJ is injective since we have x0 ≠ x1 ∈
tp(a[vv′]), for all elements v ≠ v′ of U. Furthermore, if h ∶ J→ K is an
embedding, c̄ ⊆ I, and φ(x̄) quantifier-free, then

F(J) ⊧ φ(sJ(c̄)) iff φ(x̄) ∈ AvQF(a)(atp(c̄/J))
iff φ(x̄) ∈ AvQF(a)(atp(h(c̄)/K))
iff F(K) ⊧ φ(sK(h(c̄))) .

By the Diagram Lemma it follows that the function

F(h) ∶ tF(J)(sJ(c̄))↦ tF(K)(sK(h(c̄)))
is an embedding F(h) ∶ F(J)→ F(K). Consequently, F is a functor. By
construction, it further follows that it is strongly local, that F(U) ≅ A,
and that AvQF(sU) = AvQF(a). Hence, it remains to check uniqueness.

Suppose that G is another strongly local functor such that G(U) ≅ A
and AvQF(s′U) = AvQF(a),where s′U is the spine of G(U). For every J ∈ K,
each finite tuple c̄ ⊆ I, and all quantifier-free formulae φ(x̄), it follows
that

G(J) ⊧ φ(s′J(c̄)) iff G(U) ⊧ φ((s′U ○ g)(c̄))
iff φ(x̄) ∈ AvQF(s′U)(atp(g(c̄)/U))
iff φ(x̄) ∈ AvQF(a)(atp(g(c̄)/U))
iff φ(x̄) ∈ AvQF(a)(atp(c̄/J))
iff F(J) ⊧ φ(sJ(c̄)) ,

where g ∶ ⟪c̄⟫J → U is an arbitrary embedding and s′J and s′U are the
spines of G(J) and G(U), respectively. Since F(J) and G(J) are gen-
erated by, respectively, rng sJ and rng s′J it follows that we obtain an
isomorphism π ∶ F(J)→ G(J) by setting

π(tF(J)(sJ(c̄))) ∶= tG(J)(s′J(c̄)) ,
for all terms t(x̄) and all c̄ ⊆ I. ◻
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Of particular importance are strongly local functors F ∶ Emb(L) →
Emb(Σ)whereL is the class of all linear orders. This is mainly due to the
fact that we always can find enough indiscernible sequences, whereas
arbitrary indiscernible systems do not need to exist. Note thatL is hered-
itary and every infinite linear order is ℵ0-universal.

Definition 3.9. Let Lin ∶= Emb(L) where L is the class of all linear
orders.

(a) A strongly local functor F ∶ Lin→ Emb(Σ) is called an Ehrenfeucht-
Mostowski functor. We say that F is an Ehrenfeucht-Mostowski functor
for a theory T if F is an Ehrenfeucht-Mostowski functor such that F(I) ⊧
T , for every linear order I.

(b) Let T be a first-order theory.An Ehrenfeucht-Mostowski model of T
is a model of the form F(I) where F is some Ehrenfeucht-Mostowski
functor for T and I is a linear order.

(c) Let F ∶ Lin→ Emb(Σ) be an Ehrenfeucht-Mostowski functor. The
average type of F is the set

Av(F) ∶= {φ(x̄) ∈ FO<ω[Σ] ∣
F(J) ⊧ φ(sJ(c̄)) for all J ∈ K and c̄ ∈ [I]<ω } .

Note that, by Proposition 3.7 and Lemma 3.5, the average type of an
Ehrenfeucht-Mostowski function is complete.

Lemma 3.10. If F ∶ Lin→ Emb(Σ) is an Ehrenfeucht-Mostowski functor,
then Av(F) is a complete type.

Theorem 3.11 (Ehrenfeucht-Mostowski). Let M be a model of a Skolem
theory T. For every sequence (a i)i∈I of distinct elements in M there exists
an Ehrenfeucht-Mostowski functor F for T such that

Av((a i)i/∅) ⊆ Av(F) .

Proof. ByProposition e5.3.6, there exists an elementary extension N ⪰M
containing an indiscernible sequence (cn)n<ω with

Av((a i)i∈I/∅) ⊆ Av((cn)n<ω/∅) .
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Let s ∶ ω → N be the function mapping n < ω to cn and set

U ∶= ⟪rng s⟫N .

Note that the function s is injective, since x0 ≠ x1 ∈ Av((a i)i/∅). Fur-
thermore, we have U ⪯ N since T is a Skolem theory. Hence, we can
use Proposition 3.8 to find an Ehrenfeucht-Mostowski functor F with
F(ω) = U and sω = s. It follows that Av((a i)i/∅) ⊆ Av((cn)n/∅) =
Av(F). ◻
Corollary 3.12. If a first-order theory T has infinite models then there
exists an Ehrenfeucht-Mostowski functor for T.

Proof. Let T+ be a Skolemisation of T . It is sufficient to find an Ehren-
feucht-Mostowski functor F for T+ since we can obtain the desired
Ehrenfeucht-Mostowski functor for T by composing F with a suitable
reduct functor.

Let M+ be an infinite model of T+ that contains an indiscernible
sequence (an)n<ω of distinct elements. By Theorem 3.11, there exists an
Ehrenfeucht-Mostowski functor F with Av((an)n) ⊆ Av(F). We claim
that F is the desired Ehrenfeucht-Mostowski functor for T+. As (an)n is
indiscernible, its average type Av((an)n) is complete and, therefore,
equal to Av(F). Consequently, F(ω) ⊧ T+. Since T+ is a Skolem theory,
it follows by Lemma 3.7 that F(I) ⊧ T+, for every I. ◻
We use Ehrenfeucht-Mostowski functors to construct models of a

theory with certain properties. As a first simple application, we build
models with many automorphisms.

Lemma 3.13. Let T be a complete first-order theory with infinite models.
For every cardinal κ ≥ ∣T ∣, there exists a model M of T of size ∣M∣ = κ
with 2κ automorphisms.

Proof. According to Corollary 3.12, there is an Ehrenfeucht-Mostowski
functor F ∶ Lin → Mod(T) for T . We will construct a linear order I of
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size ∣I∣ = κ with 2κ automorphisms. It follows that F(I) is the desired
model of T .

Let I ∶= Z ⋅ κ be the product of the order Z of the integers and the well-
order κ. For every set X ⊆ κ, we can define an automorphism πX ∶ I → I
by

πX⟨k, α⟩ ∶= ⎧⎪⎪⎨⎪⎪⎩
⟨k + 1, α⟩ if α ∈ X ,⟨k, α⟩ if α ∉ X .

Since πX ≠ πY , for X ≠ Y , it follows that I has at least 2κ automorphisms.◻
One important application of Ehrenfeucht-Mostowski models rests

on the fact that such models realise few types.

Theorem 3.14. Let T be a Skolem theory over the signature Σ and let M be
an Ehrenfeucht-Mostowski model of T.

(a) For every finite sequence of sorts s̄, M realises at most ∣Σ∣⊕ℵ0 types
in S s̄(T).

(b) Let s be a sort and U ⊆ M. If the spine of M is well-ordered then
M realises at most ∣Σ∣⊕ ∣U ∣⊕ ℵ0 types in Ss(U).

Proof. (a) Suppose that M = F(I) for some Ehrenfeucht-Mostowski
functor F. Fix a finite tuple s̄ of sorts and let ā ∈ M s̄ be a tuple of
elements of the corresponding sorts. For each index l there exists a term
t l(x̄) and an increasing tuple ı̄ l ⊆ I such that a l = tM

l (sI[ı̄ l ]). By adding
redundant variables we may assume that all the tuples ı̄ l are equal. We
denote this tuple by ı̄. If k̄ ⊆ I is another increasing tuple of the same
length then it follows from indiscernibility of the spine sI that

M ⊧ φ(t0(sI[ı̄]), . . . , tn−1(sI[ı̄]))
iff M ⊧ φ(t0(sI[k̄]), . . . , tn−1(sI[k̄])) ,
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for every formula φ. Setting b l ∶= t l(sI[k̄]) we obtain tp(ā) = tp(b̄).
Hence, the type of ā is uniquely determined by the terms t l . Since

∣T<ω
s l
[Σ]∣ = ∣Σ∣⊕ ℵ0

it follows that M realises at most ∣Σ∣⊕ ℵ0 types from S s̄(T).
(b) Suppose that M = F(α), for some ordinal α, and let U ⊆ M.

Each element c ∈ U can be written as c = tM
c (sα(ı̄c)), for some term tc

and indices ı̄c ⊆ α. The set W ∶= ⋃c∈U ı̄c has size ∣W ∣ ≤ ∣U ∣ ⊕ ℵ0. Let
u(x̄) ∈ T<ω[Σ] be a term and k̄ ⊆ α. By indiscernibility of sα the type
of uM(k̄) is determined by the relative position of k̄ with respect to the
elements of W . Since α is well-ordered, there are at most ∣W ∣⊕ℵ0 ways
in which k̄ can lie relative to W . Consequently, the elements uM(k̄) with
k̄ ⊆ α realise at most ∣W ∣⊕ℵ0 complete types over U . Therefore, at most

∣T<ω
s [Σ]∣⊕ ∣W ∣⊕ ℵ0 ≤ ∣Σ∣⊕ ∣U ∣⊕ ℵ0

complete s-types over U are realised in M. ◻
Corollary 3.15. Let T be a complete first-order theory with infinite models.
For every cardinal κ ≥ ∣T ∣, T has an Ehrenfeucht-Mostowski model M of
size ∣M∣ = κ such that, for every set U ⊆ M and every finite tuple s̄ of sorts,
M realises at most ∣U ∣⊕ ∣T ∣ types from S s̄(U).
Proof. According to Corollary 3.12, there is an Ehrenfeucht-Mostowski
functor F ∶ Lin → Mod(T) for T . Let M ∶= F(κ). Then ∣M∣ = κ and,
by Theorem 3.14 (b), M realises at most ∣U ∣ ⊕ ∣T ∣ types in Ss(U), for
every U ⊆ M. For a finite tuple s̄ = s0 . . . sn−1 it follows by induction that
M realises at most (∣U ∣⊕ ∣T ∣)n = ∣U ∣⊕ ∣T ∣ types in S s̄(U). ◻
Theorem 3.16. Let Σ be a signature. If a theory T over Σ is κ-categorical for
some κ ≥ ∣Σ∣⊕ ℵ0, then T is λ-stable, for every cardinal ∣Σ∣⊕ ℵ0 ≤ λ < κ.

Proof. Let M be the Ehrenfeucht-Mostowski model from Corollary 3.15.
For a contradiction, suppose that there is some set U of size ∣U ∣ = λ with∣Ss(U)∣ > λ. Let N be a model of T containing U that realises λ+ of these
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types. By the Theorem of Löwenheim and Skolem we can choose N to
be of size ∣N ∣ = λ+ ≤ κ. Hence, N has an elementary extension N+ of size∣N+∣ = κ. As T is κ-categorical this implies N+ ≅M and there exists an
elementary embedding h ∶ N → M. Hence, M contains a subset h[U]
of size λ such that more than λ types over h[U] are realised in M. This
contradicts our choice of M. ◻
Corollary 3.17. Let T be a theory over a countable signature. If T is
κ-categorical for some uncountable cardinal κ then T is ℵ0-stable.

The next proposition generalises Lemma e4.1.6.

Proposition 3.18. Let T be a countable, complete theory. If there is some
finite sequence s̄ of sorts such that S s̄(T) is uncountable then, for each
infinite cardinal κ, T has at least 2ℵ0 pairwise non-isomorphic models of
cardinality κ.

Proof. Let κ be an infinite cardinal and fix s̄ such that S s̄(T) is uncount-
able. By Corollary b5.7.5, it follows that ∣S s̄(T)∣ = 2ℵ0 . Note that this also
implies that T has infinite models. Let c̄ be a tuple of new constant sym-
bols of sorts s̄. For each p(x̄) ∈ S s̄(T) we form the theory Tp ∶= T ∪ p(c̄).
Let T+

p be a Skolemisation of Tp. We can use Theorem 3.11 to find an
Ehrenfeucht-Mostowski model Ap of T+

p with a spine sp ∶ κ → Ap. It
follows that

κ ≤ ∣Ap∣ ≤ κ ⊕ ∣T+
p ∣ = κ ⊕ ℵ0 = κ .

By Theorem 3.14 Ap realises only countably many s̄-types. Therefore, so
does Bp ∶= Ap∣Σ . Furthermore, the tuple c̄Ap realises the type p in Bp.
We claim that there are 2ℵ0 pairwise non-isomorphic models among

the Bp. Suppose otherwise. Then there exists a set I ⊆ S s̄(T) of size∣I∣ < 2ℵ0 such that every Bp is isomorphic to some Bq with q ∈ I. Since
every type in S s̄(T) is realised in some Bp, but each Bp realises only
countably many types, it follows that

∣S s̄(T)∣ ≤ ∣I∣⊗ ℵ0 < 2ℵ0 .

Contradiction. ◻
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Definable linear orders in an Ehrenfeucht-Mostowski model F(I)
are closely related to the order induced by I. We start with a technical
lemma.

Lemma 3.19. Let ⟨A, <⟩ be an infinite dense linear order and suppose
that ⊏ is a linear order on [A]n with the following property. For all tuples
ā, ā′ , b̄, b̄′ ∈ [A]n such that āb̄ and ā′b̄′ have the same order type with
respect to <, we have

ā ⊏ b̄ iff ā′ ⊏ b̄′ .

Then there exist a linear order ⊲ on [n] and a map σ ∶ [n]→ {−1, 1} such
that,

ā ⊏ b̄
iff there is some l ∈ [n] with a l <σ(l) b l and a i = b i , for i ⊲ l ,

where <1 ∶= < and <−1 ∶= >.

Proof. We start by defining linear orders ≺i on A, for i < n, by

a ≺i b : iff c̄[i/a] ⊏ c̄[i/b] , for some c̄ ∈ [A]n with
c i−1 < a < c i+1 and c i−1 < b < c i+1 .

(Recall that, according to Definition b3.1.12, c̄[i/a] denotes the tuple
obtained from c̄ by replacing c i by a.) Note that, by our assumption on⊏, if a ≺i b holds then we have c̄[i/a] ⊏ c̄[i/b] for all tuples c̄ satisfying
the above conditions. Furthermore, sincewe can always find such a tuple
and ⊏ is linear it follows that a ≺i b or b ≺i a. Finally, if a ≺i b holds
for some a < b then it holds for all a < b. Therefore, we have ≺i = < or≺i = <−1. Let σ ∶ [n]→ {1,−1} be the function with ≺i = <σ(i).
We define the ordering ⊲ on [n] by

i ⊲ j iff i ≠ j and there are a ≺i a′ , b ≺ j b′ , and c̄ such
that c̄[i/a, j/b′] ⊏ c̄[i/a′ , j/b] and these tuples
are increasing.
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By assumption on ⊏ it follows that the definition of i ⊲ j does not depend
on the choice of a, a′ , b, b′ and c̄. If there are some elements satisfying the
definition above thenwe have c̄[i/a, j/b′] ⊏ c̄[i/a′ , j/b] for all elements
as above. Consequently, i ⊲ j implies j ⋪ i. Furthermore, since ⊏ is linear
we have i ⊲ j or j ⊲ i, for all i , j. In order to show that ⊲ is a linear order
it therefore remains to prove that it is transitive.

Suppose that i ⊲ j ⊲ k. We have to show that i ⊲ k. If i = k we would
have i ⊲ j and j ⊲ i, which is impossible. Hence, i ≠ k. Choose elements
a ≺i a′, b ≺k b′, and c̄ such that the tuples c̄[i/a, k/b′] and c̄[i/a′ , k/b]
are increasing. We claim that c̄[i/a, k/b′] ⊏ c̄[i/a′ , k/b]. Since A is
dense we can find some element d ≺ j c j such that c̄[i/a′ , j/d , k/b] is
increasing. Then i ⊲ j implies that

c̄[i/a, k/b′] = c̄[i/a, j/c j , k/b′] ⊏ c̄[i/a′ , j/d , k/b′] .

Similarly, j ⊲ k implies

c̄[i/a′ , j/d , k/b′] ⊏ c̄[i/a′ , j/c j , k/b] = c̄[i/a′ , k/b] .

Therefore, we have

c̄[i/a, k/b′] ⊏ c̄[i/a′ , k/b] ,
as desired.

It remains to prove that the ordering ⊏ coincides with the ordering ⊏σ⊲
induced by ⊲ and σ as in the claim above. Since both relations are linear
orders it is sufficient to prove that ā ⊏σ⊲ b̄ implies ā ⊏ b̄.

For ā, b̄ ∈ [A]n , let d(ā, b̄) be the number of indices i with a i ≠ b i .
We prove the claim by induction on d ∶= d(ā, b̄). If d = 0 then ā ⊏̸σ⊲ b̄
and there is nothing to prove.

Suppose that d = 1 and let l be the unique index with a l ≠ b l . Then
we have

ā ⊏ b̄ iff a l ≺l b l iff a l <σ(l) b l iff ā ⊏σ⊲ b̄ .
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Suppose that d = 2. Let l and j be the indices where ā and b̄ differ
and suppose that l ⊲ j. By definition of ⊑σ⊲ we have a l ≺l b l . Hence, if
b j ≺ j a j then l ⊲ j implies that

ā = ā[l/a l , j/a j] ⊏ ā[l/b l , j/b j] = b̄ ,
and we are done. Suppose therefore that a j ≺ j b j . Let k0 ∶= min{l , j}
and k1 ∶= max {l , j} (with respect to the natural ordering on [n]). If
ak0 < bk0 then ā[k1/bk1] ∈ [A]n and, by inductive hypothesis, we have

ā ⊏ ā[k1/bk1] = b̄[k0/ak0] ⊏ b̄ .

Similarly, bk0 < ak0 implies that

ā ⊏ ā[k0/bk0] = b̄[k1/ak1] ⊏ b̄ .

Finally, suppose that d > 2. Let l be the ⊲-minimal index with a l ≠ b l
and let k be the <-maximal one. First, consider the case that k ≠ l . If
ak ≺k bk then we have

ā ⊏σ⊲ ā[k/bk] ⊏σ⊲ b̄ ,
and the claim follows by inductive hypothesis. Therefore, suppose that
bk ≺k ak . Since A is densewe can find some element c with a l ≺l c ≺l b l
and a l−1 , b l−1 < c < a l+1 , b l+1. Then

ā ⊏σ⊲ ā[l/c, k/bk] ⊏σ⊲ b̄ ,
and the claim follows by inductive hypothesis.

It remains to consider the case that k = l . Let k′ be the <-minimal
index with ak′ ≠ bk′ . Then k′ ≠ l and we can use a dual argument to
show that ā ⊏ b̄. ◻
Theorem 3.20. Let F ∶ Lin → Emb(Σ) be an Ehrenfeucht-Mostowski
functor and t(x0 , . . . , xn−1) a term over Σ. Suppose that χ(x , y) is a
quantifier-free formula such that Av(F) implies that χ linearly orders all
elements of the form t(sI[ı̄]) with ı̄ ∈ [I]n .
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Then there exist a linear order ⊲ on [n] and a map σ ∶ [n] → {−1, 1}
such that, for every linear order I and all tuples ı̄ , ȷ̄ ∈ In ,

F(I) ⊧ χ(t(sI[ı̄]), t(sI[ ȷ̄]))
iff there is some l ∈ [n] with i l <σ(l) j l and is = js , for s ⊲ l ,

where <1 ∶= < and <−1 ∶= >.

Proof. Note that we can embed every model F(I) into a model F(J)
where J is a dense order. Since χ is quantifier-free it is therefore sufficient
to consider the case of a dense order I. Define

ı̄ ⊏ ȷ̄ : iff F(I) ⊧ χ(t(sI[ı̄]), t(sI[ ȷ̄])) .

According to Lemma 3.19 the order ⊏ has the desired form. ◻
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1. Abstract elementary classes
For every algebraic logic L, we can form the category EmbL(Σ) of L-
embeddings. This is a subcategory of the category Emb(Σ) of all embed-
dings. It has the same objects but fewer morphisms. In this section we
investigate to which extend these two categories determine L.

Definition 1.1. Suppose thatK is a class of Σ-structures that is closed un-
der isomorphisms and let E be a class of embeddings between structures
inK.

(a) The pair ⟨K, E⟩ forms an abstract elementary class if it satisfies the
following conditions.

(i) E is closed under composition and it contains all isomorphisms
between structures inK.

(ii) f , f ○ g ∈ E implies g ∈ E , for all embeddings f and g.
(iii) The subcategory of Emb(K) induced by E has direct limits and,

for every directed diagram D ∶ I → E , the direct limits of D in E
and in Emb(Σ) coincide.

(iv) There exists a cardinal ln(K) ≥ ∣Σ∣⊕ℵ0 such that, for every struc-
ture M ∈ K and every set X ⊆ M, we can find a substructure
C ∈ K of size ∣C∣ ≤ ∣X∣⊕ ln(K) such that ⟪X⟫M ⊆ C ⊆M and the
inclusion map C →M belongs to E .

The cardinal ln(K) is called the Löwenheim number ofK.
(b) Let ⟨K, E⟩ be an abstract elementary class. The elements of E are

called K-embeddings. Usually, we drop the class E from our notation
and just writeK for ⟨K, E⟩.
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e7. Abstract elementary classes

(c) Let ⟨K, E⟩ be an abstract elementary class and let A ⊆ B be struc-
tures inK. We define

A ⪯K B : iff the inclusion map i ∶ A→ B belongs to E .

If A ⪯K B then we call A aK-substructure of B.
(d) The pair ⟨K, E⟩ forms an algebraic class if
(i) E = Emb(K) is the set of all embeddings and

(ii) K is closed under isomorphisms, substructures, and direct limits
of embeddings.

Example. (a) Every algebraic class ⟨K, E⟩ of Σ-structures is an abstract
elementary class with Löwenheim number ln(K) = ∣Σ∣⊕ ℵ0.

(b) Let L ∶= FOκℵ0 , let T ⊆ L0[Σ] be a theory, and let E be the class
of all L<ω-embeddings between models of T . Then ⟨Mod(T), E⟩ is an
abstract elementary class and the relation ⪯K coincides with the L<ω-
substructure relation ⪯L<ω . The same holds for many other algebraic
logics L.

Exercise 1.1. In (b) of the above example we have taken for E all em-
beddings that preserve every formula with finitely many free variables.
What goes wrong if we take only those embeddings that also preserve
formulae with infinitely many free variables?

Exercise 1.2. Let ⟨Ki , Ei⟩, i ∈ I, be a family of abstract elementary
classes over the signature Σ. Show that the intersection ⟨⋂i Ki ,⋂i Ei⟩ is
an abstract elementary class with Löwenheim number supi ln(Ki).
Remark. (a) We have defined theK-substructure relation ⪯K in terms
of the class E ofK-embeddings. Conversely, ⪯K determines E since an
embedding h ∶ A→ B belongs to E if and only if rng h ⪯K B.

(b) Let ⟨K, E⟩ be an abstract elementary class and letK0 ⊆ K be the
subclass of all structures of size at most ln(K). Every structure M ∈ K
can be written as a direct limit D ∶ I → E of its K-substructures in K0.
Hence,K is the class of all direct limits of structures inK0. In particular,K0 and the restriction of E toK0 completely determine ⟨K, E⟩.
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We have seen that many algebraic logics give rise to an abstract ele-
mentary class. Conversely, we can show that every such class arises from
an algebraic logic in this way. To do so, we need the notion of a Galois
type.

Definition 1.2. Let ⟨K, E⟩ be an abstract elementary class. Let M ∈ K
be a structure and U ⊆ M a set of parameters.

We define the Galois type of a tuple ā ⊆ M over U by

tpAut(ā/M,U) ∶= [ā,M,U]≈
where the equivalence relation ≈ is the transitive closure of the following
relation ∼ on triples ⟨ā,M,U⟩ with U , ā ⊆ M. We set

⟨ā,A,U⟩ ∼ ⟨b̄,B,V⟩
iff U = V and, for some M ∈ K, there are K-embeddings f ∶ A0 → M
and g ∶ B0 → M where A0 ⪯K A and B0 ⪯K B are K-substructures
with U ∪ ā ⊆ A0 and U ∪ b̄ ⊆ B0 such that

f ↾U = g ↾U and f (ā) = g(b̄) .

We write S s̄
Aut(U) for the set of all Galois types of s̄-tuples over U .

Remark. (a) Let T be afirst-order theory andMod(T) the corresponding
abstract elementary class. Then the Galois type of a tuple coincides with
its first-order type.

(b) If an abstract elementary classK stems from an algebraic logic L
then no L-formula can distinguish between tuples of the same Galois
type. Hence, tuples with the same Galois type also have the same L-type.
In general the converse fails.

(c) Below we will not consider Galois types over arbitrary paramet-
ers U . The set U will always be either empty or the universe of someK-substructure U.
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Proposition 1.3. Let ⟨K, E⟩ be an abstract elementary class of Σ-struc-
tures. There exists an algebraic logic L, a fragment ∆ ⊆ L<ω[Σ], and a
formula χ ∈ ∆ such that

K =ModL(χ) and E is the class of all ∆-embeddings.

Proof. For a set X of variables, we denote by ΦX the set of all Galois
types of X-tuples over the empty set. We start by defining the functor L.
For a signature Γ and a set X of variables, we set

L[Γ , X] ∶= ℘(ΦX) ×Sig(Σ, Γ) ,
and, for a morphism λ ∈ Sig(Γ , Γ′), we set

L[λ] ∶ ⟨Ψ , µ⟩↦ ⟨Ψ , λ ○ µ⟩ .

For a formula ⟨Ψ , µ⟩ ∈ L[Γ , X], a Γ-structure A, and a tuple ā ∈ AX , we
define the satisfaction relation by

A ⊧ ⟨Ψ , µ⟩(ā) : iff tpAut(ā/A∣µ ,∅) ∈ Ψ .

Finally, we set

∆ ∶= { ⟨Ψ , µ⟩ ∈ L<ω[Σ] ∣ µ = id} and χ ∶= ⟨Φ∅ , id⟩ . ◻
This proposition provides a syntax for each abstract elementary class.

But because of the high degree of generality in the definition of an
algebraic logic, this result is of little practical use. A more concrete way
of equipping an abstract elementary class with a kind of syntax is given
by the notion of a Skolem expansion.

Definition 1.4. Let ⟨K, E⟩ be an abstract elementary class of Σ-struc-
tures.

(a) An expansion of K is an abstract elementary class ⟨K+ , E+⟩ of
Σ+-structures, for some Σ+ ⊇ Σ, such that

prΣ(K+) = K , prΣ(E+) = E , and ln(K+) = ln(K) ,
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where prΣ ∶ Emb(Σ+)→ Emb(Σ) is the reduct functor.
(b) An expansion ⟨K+ , E+⟩ of ⟨K, E⟩ is a Skolem expansion if ⟨K+ , E+⟩

is an algebraic class.

Algebraic classes and, hence, Skolem expansions are very nicely be-
haved abstract elementary classes. For instance, the membership of a
structure in such a class only depends on its finitely generated substruc-
tures.

Lemma 1.5. Let K be an algebraic class and M a structure. Then

M ∈ K iff Subℵ0(M) ⊆ K .

Proof. (⇒) Suppose thatK is algebraic, M ∈ K, and A ⊆M. SinceK is
algebraic, we have A ⪯K M. This implies that A ∈ K.(⇐) Each structure M can bewritten as direct limit M = limÐ→D where
D ∶ I → Subℵ0(M) is the diagram of the finitely generated substructures
of M. By assumption we have D(i) ∈ K, for every i ∈ I. Since K is
algebraic it is closed under direct limits of embeddings. Consequently,
we have M = limÐ→D ∈ K. ◻

As a corollary it follows that every algebraic class is ∀∞ℵ0 -axiomatis-
able.

Proposition 1.6. Let Σ be a signature and set κ ∶= ∣Σ∣⊕ℵ0. Every algebraic
class K of Σ-structures is ∀(2κ)+ℵ0 -axiomatisable.

Proof. Let

Cn ∶= { ⟨A, ā⟩ ∣ A ∈ K is generated by ā ∈ An }
be the class of all structures inK that are generated by a set of size n. Note
that every structure in Cn has size at most κ = ∣Σ∣⊕ ℵ0. Consequently,Cn contains, up to isomorphism, at most 2κ structures. For every ⟨A, ā⟩ ∈Cn , we can write down a quantifier-free formula φA, ā(x̄) ∈ QFn

κ+ℵ0
[Σ]

such that

B ⊧ φA, ā(b̄) iff ⟨⟪b̄⟫B , b̄⟩ ≅ ⟨A, ā⟩ .
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By Lemma 1.5, it follows that the ∀0(2κ)+ℵ0
[Σ]-formula

⋀
n<ω

∀x0⋯∀xn−1 ⋁⟨A, ā⟩∈Cn

φA, ā(x̄)
axiomatisesK. ◻

If we can show that every abstract elementary class has a Skolem
expansion, it follows that each such class is a projective ∀∞ℵ0 -class.

Theorem 1.7. LetK be an abstract elementary class of Σ-structures. There
exists a Skolem expansion K+ of K over a signature Σ+ ⊇ Σ of size ∣Σ+∣ =
ln(K).
Proof. Let λ ∶= ln(K) and set Σ+ ∶= Σ ⊍ { f n

α ∣ n < ω, α < λ } where
the f n

α are new n-ary function symbols. We call a Σ+-expansion M+ of a
structure M ∈ K admissible if

A∣Σ ⪯K M , for every A ⊆M+ .

We claim that the desired Skolem expansion ⟨K+ , E+⟩ is given by

K+ ∶= {M+ ∣M+ an admissible expansion of some M ∈ K } ,E+ ∶= Emb(K+) .

Clearly, we have ln(K+) = ∣Σ+∣ = ln(K). Hence, it remains to prove the
following claims.

Claim. (a) For every pair A ⪯K B in K, there exist admissible ex-
pansions A+ and B+ such that A+ ⊆ B+. In particular, we have
prΣ(K+) = K.

(b) prΣ(E+) = E .
(c) K+ is closed under direct limits.

(a) By induction on n < ω, we can fix, for every subset X ⊆ B of size n,
aK-substructure BX ⪯K B of size at most λ containing X ∪⋃Y⊂X BY .
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Furthermore, if X ⊆ A thenwe chooseBX such that BX ⊆ A.By construc-
tion, we have BX ⊆ BY , for X ⊆ Y . Since BX ,BY ⪯K B this implies
that BX ⪯K BY .

For every ā ∈ Bn , n < ω, fix an enumeration (c āα)α<λ (possibly with
repetitions) of B ā . To obtain the desired expansion B+ we set f n

α (ā) ∶=
c āα , for ā ∈ Bn . Note that our construction ensures that A induces a
substructure of B+ since BX ⊆ A, for X ⊆ A, implies that ⟪X⟫B+ ⊆ A.
Therefore, we can set A+ ∶= B+∣A.

To see that A+ and B+ are admissible, note that, by construction, we
have BX ⊆ ⟪X⟫B+ ∣Σ , for every finite X ⊆ B. If C ⊆ B+ is an arbitrary
substructure then

C∣Σ = limÐ→
X⊆C finite

⟪X⟫C∣Σ = limÐ→
X⊆C finite

⟪X⟫B+ ∣Σ = limÐ→
X⊆C finite

BX .

We have already seen that the BX form a directed system ofK-embed-
dings such that BX ⪯K B. Hence, the limit also satisfies C∣Σ ⪯K B, as
desired. Furthermore, if C ⊆ A+ ⊆ B+ then C∣Σ ,A ⪯K B implies that
C∣Σ ⪯K A. Thus, A+ and B+ are admissible.

(b) (⊆) Let h ∶ A+ → B+ be a K+-embedding and set C ∶= rng h.
Then C induces a substructure C+ ⊆ B+ and h induces an isomorphism
h′ ∶ A+ ≅ C+. The structure B+ is an admissible expansion of some
structure B ∈ K. Hence, C+∣Σ ⪯K B and the inclusion map i ∶ C+∣Σ → B
belongs to E . Since E contains all isomorphisms and it is closed under
composition, it follows that prΣ(h) = i ○ prΣ(h′) ∈ E .(⊇) Let h ∶ C → B be a K-embedding. Setting A ∶= rng h we can
use (a) to find admissible expansions A+ ⊆ B+ of A and B. Let C+ be the
expansion of C that corresponds to A+ via the isomorphism h ∶ C ≅ A.
Then h induces an embedding h+ ∶ C+ → B+. SinceK+ is closed under
isomorphisms we have C+ ∈ K+. Hence, h+ ∈ E+.

(c) Let D ∶ I → K+ be a directed diagram with limit M+ ∶= limÐ→D. We
have to show that M+ ∈ K+. Let p ∶ K+ → K be the canonical projection
functor and set M ∶= M+∣Σ . Then p ○ D ∶ I → K is a directed diagram
with limit limÐ→ (p ○ D) = M+∣Σ = M. By (b), it follows that p ○ D is in
fact a diagram I → E . Hence, the limit M is in K. We claim that M+ is
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an admissible expansion of M. Let A ⊆M+ be a substructure. For every
finite set X ⊆ M, there exists some i with X ⊆ D(i). Since D(i) is an
admissible expansion it follows that

⟪X⟫D(i)∣Σ ⪯K D(i)∣Σ ⪯K limÐ→ (p ○ D) =M .

The substructure A is the direct limit of its finitely generated substruc-
tures X. We have just seen that X∣Σ ⪯K M, for all such X. By the definition
of a direct limit, it follows that A∣Σ = limÐ→X∣Σ ⪯K M. ◻

The existence of Skolem expansions enables us to apply the theory of
Ehrenfeucht-Mostowski functors to abstract elementary classes. We will
make extensive use of these functors in Section 4 below. As an example
we use them in the remainder of this section to compute theHanf number
of a class.

Lemma 1.8. LetK be an algebraic class of Σ-structures and set κ ∶= ∣Σ∣⊕ℵ0
and λ ∶= ℶ(2κ)+ . IfK contains a structure of size at least λ then there exists
an Ehrenfeucht-Mostowski functor F ∶ Lin→ Emb(K).
Proof. Fix a structure M ∈ K of size ∣M∣ ≥ λ and let (a i)i<λ be a se-
quence of distinct elements of M. Since ∣S<ω(∅)∣ ≤ 2κ we can apply
Theorem e5.3.7 to (a i)i to obtain an elementary extension M+ ⪰FO M
that contains an indiscernible sequence (b i)i<ω such that, for all n < ω
and every ı̄ ∈ [ω]n , there is some k̄ ∈ [λ]n with

tp(b[ı̄]) = tp(a[k̄]) .

Note that this implies in particular that ⟪b[ı̄]⟫M+ ≅ ⟪a[k̄]⟫M ∈ K. By
Proposition e6.3.8, there exists a unique strongly local functor F ∶ Lin→
Emb(Σ) such that F(ω) ≅ ⟪(b i)i⟫M+ . We claim that the range of F is
contained inK.

Let I be a linear order and consider a finitely generated substructure
A ⊆ F(I). Then there is a finite subset I0 ⊆ I such that A ⊆ F(I0).
Consequently, for some n < ω, A is isomorphic to a substructure of

F(n) ≅ ⟪b0 . . . bn−1⟫M+ ⊆M+ ∈ K .
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SinceK is closed under substructures and isomorphisms, it follows that
A ∈ K. Hence, we have Subℵ0(F(I)) ⊆ K which, by Lemma 1.5, implies
that F(I) ∈ K. Thus, F ∶ Lin → Emb(K) is the desired Ehrenfeucht-
Mostowski functor. ◻

Using Skolem expansionswe can extend this result to arbitrary abstract
elementary classes.
Remark. Let ⟨K, E⟩ be an abstract elementary class,K+ a Skolem expan-
sion ofK, and F+ ∶ Lin→ Emb(K+) an Ehrenfeucht-Mostowski functor.
Composing F+ with the reduct functor prΣ ∶ Emb(Σ+) → Emb(Σ) we
obtain a functor F ∶= prΣ ○F+ ∶ Lin→ Emb(Σ). By definition of a Skolem
expansion, F is actually a functor Lin→ E , i.e., it maps every embedding
I → J of linear orders to aK-embedding F(I)→ F(J).
Definition 1.9. Let K be an abstract elementary class of Σ-structures
and K+ a Skolem expansion of K. An Ehrenfeucht-Mostowski functor
for K is a functor F ∶ Lin → Emb(K) of the form F = prΣ ○ F+, where
F+ ∶ Lin→ Emb(K+) is an ordinary Ehrenfeucht-Mostowski functor.

Corollary 1.10. Let K be an abstract elementary class and set κ ∶= 2ln(K).
If K contains a structure of size at least ℶκ+ , then there exists an Ehren-
feucht-Mostowski functor for K.

As promised we apply these results to compute the Hanf number of
an abstract elementary class.

Definition 1.11. Let K be an arbitrary class of Σ-structures. The Hanf
number ofK is

hn(K) ∶= sup{ ∣M∣+ ∣M ∈ K } .

If this supremum does not exist then we set hn(K) ∶= ∞. In this case
the classK is called unbounded.

Proposition 1.12. Let K be an abstract elementary class of Σ-structures
and set κ ∶= 2ln(K). We either have

hn(K) ≤ ℶκ+ or hn(K) =∞ .
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Proof. Suppose that hn(K) > ℶκ+ . By Corollary 1.10, there exists an
Ehrenfeucht-Mostowski functor F ∶ Lin → Emb(K) for K. For every
cardinal λ, we have F(λ) ∈ K. This implies that

hn(K) > ∣F(λ)∣ = λ ⊕ ln(K) .

Consequently, hn(K) =∞. ◻
With this proposition we are finally able to provide the missing part

of the proof of Theorem c5.2.7. (Except that we do not obtain a strict
inequality hn1(FOκ+ℵ0) < ℶ(2κ)+ .)

Corollary 1.13. hn1(FOκ+ℵ0) ≤ ℶ(2κ)+ .

2. Amalgamation and saturation
In this section we consider saturated structures in abstract elementary
classes. As we have already seen in the first-order case, an important
ingredient in the construction of such structures is the amalgamation
property.

Definition 2.1. Let ⟨K, E⟩ be an abstract elementary class.
(a) For a cardinal κ, we set

Kκ ∶= {M ∈ K ∣ ∣M∣ = κ } and K<κ ∶= {M ∈ K ∣ ∣M∣ < κ } .

We defineK>κ ,K≤κ , andK≥κ analogously.
(b)K has the amalgamation property if, for allK-embeddings f ∶ A→

B and g ∶ A → C, there exist K-embeddings h ∶ B → D and k ∶ C → D
with h ○ f = k ○ g.

A

B C

D

f g

h k
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(c)K has the joint embedding property if, for all A0 ,A1 ∈ K, there areK-embeddings A0 → B and A1 → B, for some B ∈ K.

A0 A1

B

(d) An amalgamation class is an abstract elementary class with the
amalgamation property. A Jónsson class is an abstract elementary class
with the amalgamation property and the joint embedding property.

Example. Let T be an ∀∃-theory and K the class of all existentially
closed models of T . Then ⟨K, Emb(K)⟩ forms an abstract elementary
class with the amalgamation property.

In the same way that the class of all algebraically closed fields can
be decomposed into the classes of algebraically closed fields of charac-
teristic p, for the various p, we can write each amalgamation class as a
union of Jónsson classes.

Lemma 2.2. Every amalgamation class K is a disjoint union of at most
2ln(K) Jónsson classes.

Proof. We define an equivalence relation onK by

A ∼ B : iff there areK-embeddings A→ C and B→ C ,
for some C ∈ K .

Clearly, ∼ is reflexive and symmetric. For transitivity, let us assume that
A0 ∼ A1 ∼ A2. Then there are structures B0 ,B1 ∈ K andK-embeddings
f i ∶ Ai → B0, for i ∈ {0, 1}, and g i ∶ Ai → B1, for i ∈ {1, 2}.

A0 A1 A2

B0 B1

C

f0 f1 g1 g2

h0 h1
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By the amalgamation property, we can find some structure C ∈ K andK-embeddings h i ∶ Bi → C, for i < 2, such that h0 ○ f1 = h1 ○ g1.
Consequently, there are K-embeddings h0 ○ f0 ∶ A0 → C and h1 ○ g2 ∶
A2 → C. This implies that A0 ∼ A2.

By definition, every ∼-class is a Jónsson class. Furthermore, A ≁ B
implies that there is noK-embedding A→ B. Hence,K is the disjoint
union of all ∼-classes. Finally, every ∼-class contains a structure of size
at most ln(K). Consequently, there are at most 2ln(K) such classes. ◻

For amalgamation classes, the definition of a Galois type can be sim-
plified quite a bit.

Lemma 2.3. LetK be an amalgamation class, A,B,U ∈ K structures with
U ⪯K A,B, and let ā ⊆ A and b̄ ⊆ B. Then we have

tpAut(ā/A,U) = tpAut(b̄/B,U)
if and only if there exists a structure M ∈ K of size ∣M∣ ≤ ∣A∣⊕ ∣B∣⊕ ln(K)
and K-embeddings g ∶ A→M and h ∶ B→M such that

g ↾U = h ↾U and g(ā) = h(b̄) .

Proof. (⇐) is trivial. For (⇒), suppose that the Galois types are equal.
Recall the relation ∼ from Definition 1.2. There exists a finite sequence⟨C0 , c̄0⟩, . . . , ⟨Cn , c̄n⟩ of structures such that

⟨C0 , c̄0⟩ = ⟨A, ā⟩ , ⟨Cn , c̄n⟩ = ⟨B, b̄⟩ ,
and ⟨c̄ i ,Ci ,U⟩ ∼ ⟨c̄ i+1 ,Ci+1 ,U⟩ , for all i < n .

We prove the claim by induction on n. For n = 0, we have A = B
and ā = b̄, and there is nothing to do. Hence, suppose that n > 0. By
inductive hypothesis, there exist a structure N0 ∈ K andK-embeddings
g0 ∶ A→ N0 and h0 ∶ Cn−1 → N0 such that

g0 ↾U = h0 ↾U and g0(ā) = h0(c̄n−1) .
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Furthermore, by definition of ∼, we can find a structure N1 ∈ K, K-
substructures D ⪯K Cn−1 andB0 ⪯K Bwith U∪c̄n−1 ⊆ D andU∪b̄ ⊆ B0,
andK-embeddings g1 ∶ D→ N1 and h1 ∶ B0 → N1 such that

g1 ↾U = h1 ↾U and g1(c̄n−1) = h1(b̄) .

N5

N0

N4

A Cn−1 B

N2 N3

N1

D B0

g5

h5

g0 h0

g4 h4

⪯K ⪯K

g2 h2 g3 h3

g1 h1

By the amalgamation property, there exist structures N2 ,N3 ,N4 ,N5 ∈ K
such that we can complete the above diagram. Setting g ∶= g5 ○ g0 and
h ∶= h5 ○ h4 ○ h3 it follows that

g ↾U = h ↾U and g(ā) = h(b̄) .

Choosing a K-substructure M ⪯K N5 of size ∣M∣ ≤ ∣A∣ ⊕ ∣B∣ ⊕ ln(K)
with rng g ∪ rng h ⊆ M the claim follows. ◻

Next, we introduce a notion of saturation for abstract elementary
classes.

Definition 2.4. LetK be an abstract elementary class and let κ ≥ ln(K)
be a cardinal.

1007



e7. Abstract elementary classes

(a) A structure U ∈ K is κ-universal (for K) if, for all A ∈ K<κ , there
exists aK-embedding A→ U.We call UK-universal if it is ∣U ∣+-universal
forK.

(b) Similarly, we say that a structure U ∈ K is κ-universal over a
substructure A ⪯K U if, for all K-embeddings f ∶ A → B with ∣B∣ < κ,
there exists aK-embedding g ∶ B→ U such that g ○ f = idA.

UA

B

⪯
f g

(c) A structure J ∈ K is κ-injective (forK), or κ-model homogeneous,
if, for allK-embeddings f ∶ A→ J and g ∶ A→ B with ∣A∣, ∣B∣ < κ, there
exists aK-embedding h ∶ B→ J with h ○ g = f .

JA

B

f

g
h

J is calledK-injective if it is ∣I∣-injective.

Remark. Note that a structure M is κ-injective if and only if it is κ-
universal over every substructure A ⪯K M of size ∣A∣ < κ.
We can characterise κ-injective structures also by a back-and-forth

condition.

Definition 2.5. LetK be an abstract elementary class and A,B ∈ K.
(a) We denote by IκK(A,B) the set of allK-embeddings f ∶ A0 → B0

betweenK-substructures A0 ⪯K A and B0 ⪯K B of size ∣A0∣, ∣B0∣ < κ.
(b) We write

A ⊑κK B : iff IκK(A,B) ∶ A ⊑κ
iso B ,

and A ≅κK B : iff IκK(A,B) ∶ A ≅κ
iso B .
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In Lemma e1.2.2 we have characterised κ-saturated models in terms
of the relation ⊑κ

FO. The next lemma gives a similar characterisation of
κ-injective structures.

Lemma 2.6. Let K be an abstract elementary class and κ > ln(K) a
cardinal. A structure M ∈ K is κ-injective if and only if

A ⊑κK M , for all A ∈ K with IκK(A,M) ≠ ∅ .

Proof. (⇐) Suppose that A,B ∈ K<κ are structures with A ⪯K B, and
let f ∶ A→M be aK-embedding. Then f ∈ IκK(B,M). Since ∣B∣ < κ, we
can use Lemma c4.4.9 (b) to find a K-embedding g ∈ IκK(B,M) with
dom g = B and g ↾ A = f .(⇒) By assumption, IκK(A,M) is nonempty. It has the forth prop-
erty since M is κ-injective. Furthermore, IκK(M,A) is ln(K)+-bounded.
Finally, the closure of K-embeddings under direct limits implies that
IκK(A,M) is κ-complete. ◻
As usual we can use Lemma c4.4.9 to prove that, up to isomorphism,K-injective structures are uniquely determined by their cardinality.

Proposition 2.7. Let A,B ∈ K be twoK-injective structureswith ∣A∣ = ∣B∣.
Then

IK(A,B) ≠ ∅ implies A ≅ B .

The existence of κ-injective structures implies a weak form of the
amalgamation property.

Lemma 2.8. Let K be an abstract elementary class and suppose that
M ∈ K is κ-injective, for some κ > ln(K).

(a) The class of all K-substructures A ⪯K M with ∣A∣ < κ has the
amalgamation property.

(b) If K has the joint embedding property, then M is κ+-universal.
(c) If K has the joint embedding property, then the subclass K<κ has

the amalgamation property.

1009



e7. Abstract elementary classes

Proof. (a) Let f ∶ A → B and g ∶ A → C be K-embeddings with
A,B,C ⪯K M and ∣A∣, ∣B∣, ∣C∣ < κ. Replacing A by an isomorphic copy,
we may assume that g = idA. Since M is κ-injective, there exists a K-
embedding h ∶ B→M with h ○ f = idA. Let D ⪯K M be a substructure
containing C ∪ rng h. Then we can use h ∶ B → D and idC ∶ C → D to
complete the amalgamation diagram.

(b) As a first step, we show that M is κ-universal. Let A be some
structure of size ∣A∣ < κ. We can use the joint embedding property to
findK-embeddings f ∶ M→ N and g ∶ A→ N, for some N ∈ K.

N

M C A

U

f ⪯K g

h g

⪯K f ↾U

Choose a K-substructure U ⪯K M of size ∣U ∣ < κ and let C ⪯K N be
a K-substructure of size ∣C∣ < κ with f [U] ∪ g[A] ⊆ C. Since M is κ-
injective, there exists a K-embedding h ∶ C →M with h ○ f ↾U = idU .
The composition h ○ g is aK-embedding A→M.

It remains to show that M is even κ+-universal. Let A be a structure
of size ∣A∣ = κ. Fix an increasing chain (Cα)α<κ of K-substructures
Cα ⪯K A of size ∣Cα ∣ < κ such that A = ⋃α<κ Cα . By induction on α, we
construct K-embeddings fα ∶ Cα → M such that fβ ↾ Cα = fα , for all
α ≤ β. We have already shown that M is κ-universal. Hence, there exists
aK-embedding f0 ∶ C0 →M which we can start our induction with. For
limit ordinals δ, we set fδ ∶= ⋃α<δ fα . For the successor step, suppose
that we have already defined fα ∶ Cα →M. Since M is κ-injective, there
exists aK-embedding fα+1 ∶ Cα+1 →M such that fα+1 ↾ Cα = fα .

Having defined the family ( fα)α we can use the properties of a direct
limit to find aK-embedding h ∶ ⋃α Cα →M such that h ↾ Cα = fα , for
all α. This is the desiredK-embedding A→M.
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(c) Let f ∶ A→ B and g ∶ A→ C beK-embeddings with ∣A∣, ∣B∣, ∣C∣ <
κ. By (b), we may assume that A,B,C ⪯K M. Hence, we can use (a) to
complete f and g to an amalgamation diagram. ◻

κ-injective structures generalise the characterisation of κ-saturated
structures in terms of the relation ⊑κ

FO. We can also generalise the ori-
ginal definition of κ-saturation in terms of types. It turns out that, for
amalgamation classes, these two notions coincide.

Definition 2.9. LetK be an abstract elementary class.
(a) A structure M ∈ K is κ-Galois saturated if it realises every Galois

type in S<ω
Aut(U)where U ⪯K M is a substructure of size ∣U ∣ < κ. As usual

we say that M is Galois saturated if it is ∣M∣-Galois saturated.
(b)K is κ-Galois stable if ∣S<ω

Aut(U)∣ ≤ κ, for all U ∈ K≤κ .

Remark. Note that in the definition of κ-Galois stability we only count
the Galois types over K-substructures, not over arbitrary subsets. In
general, this does make a difference.

The following lemma is the main ingredient in showing that κ-Galois
saturated structures are κ-injective. We state it in a slightly more general
form than needed here, since we will use it again in Section 3.

Lemma 2.10. LetK be an amalgamation class and γ ≥ ln(K) an ordinal.
Suppose that (Mα)α<γ is an increasing chain such that each structureMα+1
realises every Galois type p ∈ S<ω

Aut(U) where U ⪯Mα is some substructure
of size ∣U ∣ ≤ ∣γ∣.

Then the limit M ∶= ⋃α<γ Mα is ∣γ∣+-universal over every substructure
A ⪯K M0 of size ∣A∣ ≤ ∣γ∣.
Proof. Let A ⪯K M0 be of size ∣A∣ ≤ ∣γ∣. To show that M is ∣γ∣+-universal
over A, we consider a K-embedding f ∶ A → B with ∣B∣ ≤ ∣γ∣. Set
λ ∶= ∣B∣⊕ ln(K) and fix an enumeration (bα)α<λ of B. We construct two
increasing chains (Aα)α<λ and (Cα)α<λ of structures with B ⪯K Cα and
A ⪯K Aα ⪯K Mα , and an increasing chain (hα)α<λ of K-embeddings
hα ∶ Aα → Cα such that

∣Aα ∣ ≤ λ , f ⊆ hα , and bα ∈ rng hα+1 .
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B

A

C0

A0

C1

A1

⋯

⋯

⋃α Cα

⋃α Aα

M0 M1 ⋯ M

f h0 h1 hλ

Then we obtain the desired embedding g ∶ B →M by taking the limit
hλ ∶= ⋃α<λ hα and setting g ∶= h−1

λ ↾ B.
We start with A0 ∶= A, C0 ∶= B, and h0 ∶= f . For limit ordinals δ, we

take limits :

Aδ ∶= ⋃
α<δ Aα , Cδ ∶= ⋃

α<δ Cα , and hδ ∶= ⋃
α<δ hα .

For the successor step, suppose that hα ∶ Aα → Cα has already been
defined. If bα ∈ rng hα , we simply set hα+1 ∶= hα . Otherwise, we use
amalgamation to find a K-extension N ⪰K M and a K-embedding g ∶
Cα → N with g ○ hα = id.

N

Cα M

B rng hα Aα

rng f A

hα

f

g

By assumption on Mα+1, there is some element c ∈ Mα+1 with

tpAut(c/N,Aα) = tpAut(g(bα)/N,Aα) .
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By Lemma 2.3, this implies that there is aK-extension N+ ⪰K N and aK-embedding σ ∶ N→ N+ such that

σ ↾ Aα = id and σ(g(bα)) = c .

We choose aK-substructureAα+1 ⪯K Mα+1 of size ∣Aα+1∣ ≤ λ containing
Aα and c. Let C′α+1 ⪯K N+ be a K-substructure containing rng(σ ○ g)
and Aα+1, and let Cα+1 be the isomorphic copy of C′α+1 where each ele-
ment of rng(σ ○ g) is replaced by its preimage. We denote the corres-
ponding isomorphism C′α+1 → Cα+1 by π. It follows that Cα ⪯K Cα+1. We
claim that the restriction hα+1 ∶= π ↾ Aα+1 is the desiredK-embedding
Aα+1 → Cα+1. Note that

bα = π((σ ○ g)(bα)) = π(c) ∈ rng hα+1 .

Furthermore, σ ↾ Aα = idAα = g ○ hα ↾ Aα implies for a ∈ Aα that

hα+1(a) = π(a) = π(σ(a)) = π(σ((g ○ hα)(a))) = hα(a) .

Hence, hα ⊆ hα+1. ◻
Theorem 2.11. LetK be an amalgamation class and κ > ln(K).A structure
M ∈ K is κ-Galois saturated if and only if it is κ-injective.

Proof. (⇐) Let U ⪯K M be a substructure of size ∣U ∣ < κ and let p ∈
S<ω
Aut(U) be a type. There exists an extension A ⪰K U realising p. We

can choose A of size ∣A∣ ≤ ∣U ∣ ⊕ ln(K) < κ. Since M is κ-injective,
we can extend the K-embedding U → M to a K-embedding A → M.
Consequently, p is realised in M.(⇒) Suppose that f ∶ A → B is a K-embedding with A ⪯K M and
λ ∶= ∣B∣ < κ. For α < λ, we set Mα ∶=M. Then (Mα)α<λ is an increasing
chain satisfying the hypothesis of Lemma 2.10. It follows that the limit⋃α<λ Mα = M is λ+-universal over A. Consequently, there exists a K-
embedding g ∶ B→M with g ○ f ↾ A = id. ◻

The next lemma shows that Galois saturated structures are strongly
homogeneous.
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Lemma 2.12. Let K be an amalgamation class, suppose that M ∈ K
is a Galois saturated structure of size ∣M∣ = κ, and let U ⪯K M be a
substructure of size ln(K) ≤ ∣U ∣ < κ. For ā, b̄ ∈ M<κ , we have

tpAut(ā/M,U) = tpAut(b̄/M,U)
if and only if there exists an automorphism π ∈ Aut M with π ↾U = idU
and π(ā) = b̄.

Proof. It is sufficient to find an embedding p ∈ IκK(M,M) with p ↾U =
idU and p(ā) = b̄. Since M ≅κK M we can then use Lemma c4.4.9 to
extend p to the desired isomorphism π ∶ M→M.

Fix K-substructures U ⪯K A ⪯K M and U ⪯K B ⪯K M of size∣A∣, ∣B∣ < κ with ā ⊆ A and b̄ ⊆ B. Since

tpAut(ā/M,U) = tpAut(b̄/M,U) ,
we can use Lemma 2.3 to findK-embeddings f , g ∶ M→ N with f ↾U =
g ↾U and f (ā) = g(b̄).

N

M C M

A B

U

f ⪯ g

⪯
f ↾ A g ↾ B ⪯

⪯ ⪯

h

Let C ⪯K M be a K-substructure of size ∣C∣ < κ with f [A] ∪ g[B] ⊆ C.
Since M is κ-injective, there exists a K-embedding h ∶ C → M with
h ○ g ↾ B = idB . Setting p ∶= h ○ f ↾ Awe have

p ↾U = h ○ f ↾U = h ○ g ↾U = idU ,
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and p(ā) = h( f (ā)) = h(g(b̄)) = b̄ . ◻
When amalgamation is available we can construct κ-Galois saturated

structures in the same way as κ-saturated ones. The main step in the
inductive construction is the following lemma.

Lemma 2.13. Let K be an amalgamation class. Every M ∈ K has an
extension M+ ⪰K M that realises every Galois type over M. If K is κ-
stable, for κ ∶= ∣M∣⊕ ln(K), then we can choose M+ of size ∣M+∣ ≤ κ.

Proof. Let (pi)i<λ be an enumeration of S<ω
Aut(M). For every i < λ, we

can find an extension Ai ⪰K M of size ∣A i ∣ ≤ ∣M∣⊕ln(K) = κ realising pi .
We construct M+ as the limit of an increasing chain (Bi)i<λ where the
structure Bα realises all types pi with i < α. We start with B0 ∶=M. For
limit ordinals δ, we set Bδ ∶= ⋃i<δ Bi . For successor ordinals α = β + 1,
we use the amalgamation property to find an extension Bα ⪰K Bβ of
size ∣Bα ∣ ≤ ∣Bβ ∣ ⊕ ∣Aβ ∣ ⊕ ln(K) such that there exists a K-embedding
h ∶ Aβ → Bα with h ↾M = id.
We obtain the desired extension of M by setting M+ ∶= ⋃i<λ Bi . By

induction on α, it follows that ∣Bα ∣ ≤ κ⊗∣α+1∣. In particular, ∣M+∣ ≤ κ⊗λ.
Hence, ifK is κ-stable then we have λ ≤ κ and ∣M+∣ = κ. ◻

Iterating the construction of the preceding lemma, we obtain the
desired Galois saturated extension. For the proof that the limit really is
Galois saturated, we need the following technical lemma.

Definition 2.14. Let p ∈ S<ω
Aut(B) be a Galois type and let f ∶ A→ B be aK-embedding. We define the restriction p∣ f of p along f as follows.

Fix a structure N ⪰K B containing a tuple ā ⊆ N with

p = tpAut(ā/N, B) .

Let M be the isomorphic copy of N obtained by replacing all elements of
rng f by their preimages in A, and let π ∶ N→M be the corresponding
isomorphism. We set

p∣ f ∶= tpAut(π(ā)/M,A) .

1015



e7. Abstract elementary classes

If A ⪯K B and f ∶ A→ B is the inclusion map, then we also write p∣A
for p∣ f .

Lemma 2.15. Let K be an amalgamation class and f ∶ A → B a K-
embedding. For every Galois type p ∈ S<ω

Aut(A), there is a Galois type
q ∈ S<ω

Aut(B) with q∣ f = p.

Proof. We fix an extension C ⪰K A and a tuple ā ⊆ C such that p =
tpAut(ā/C,A). By the amalgamation property, we can find an extension
D ⪰K B such that there exists aK-embedding h ∶ C → D with h ↾A = f .
We can set q ∶= tpAut(h(ā)/D, B). ◻
Lemma 2.16. LetK be an amalgamation class, γ an ordinal, and suppose
that (Aα)α<γ is an increasing chain of structures Aα ∈ K such that Aα+1
realises every type in S<ω

Aut(Aα), for all α. Then their union ⋃α<γ Aα is
cf(γ)-Galois saturated.

Proof. Let U ⪯K ⋃α<γ Aα be a substructure of size ∣U ∣ < cf(γ) and fix
a type p ∈ S<ω

Aut(U). There exists an index α < γ with U ⊆ Aα . Hence,
U ⪯K Aα and, by Lemma 2.15, we can find a type q ∈ S<ω

Aut(Aα) with
q∣U = p. By construction, q is realised in ⋃α<γ Aα ⪰K Aα+1. Hence, so
is p. ◻
Proposition 2.17. LetK be an amalgamation class and suppose that κ is a
regular cardinal. Every structureM ∈ K has a κ-Galois saturated extension
M+ ⪰K M.

Proof. We construct an increasing chain (Aα)α<κ as follows. We start
with A0 ∶= M. For limit ordinals δ, we set Aδ ∶= ⋃α<δ Aα . For the suc-
cessor step, we use Lemma 2.13 to find an extension Aα+1 ⪰K Aα real-
ising all Galois types over Aα . By Lemma 2.16, it follows that the limit
M+ ∶= ⋃α<κ Aα is κ-Galois saturated. ◻
As usual the existence of Galois saturated structures depends on an

additional hypothesis like stability.
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Theorem 2.18. Let K be a Jónsson class and suppose that κ is a regular
cardinal with ln(K) ≤ κ < hn(K). If K is κ-stable then every structure
M ∈ K of size ∣M∣ ≤ κ has a Galois saturated K-extension of size κ.

Proof. We construct an increasing chain (Aα)α<κ of structures Aα ∈ K
of size ∣Aα ∣ = κ as follows. Since κ < hn(K) we have Kκ ≠ ∅. Using
amalgamation and the joint embedding property,we can find a structure
A0 ∈ K of size ∣A0∣ = κ with M ⪯K A0. For limit ordinals δ, we set
Aδ ∶= ⋃α<δ Aα . Note that ∣Aδ ∣ ≤ ∣δ∣ ⊗ κ = κ. For the successor step,
suppose that Aα has already been defined. We use Lemma 2.13 to find an
extension Aα+1 ⪰K Aα of size ∣Aα+1∣ = κ that realises all types over Aα . By
Lemma 2.16, it follows that the limit ⋃α<κ Aα is κ-Galois saturated. ◻
3. Limits of chains
We have seen that we can inductively construct Galois saturated struc-
tures as limits of chains. In this sectionwe take a close look at such chains.
Our aim is Theorem 4.13,which states that, under certain conditions, the
union of a chain of Galois saturated structures is again Galois saturated.

Definition 3.1. LetK be an abstract elementary class and γ an ordinal.
(a) An increasing chain (Mα)α<γ is a weak γ-chain if each Mα+1 real-

ises every Galois type over Mα . In this case we say that M ∶= ⋃α Mα is
the weak γ-limit of the chain, or that M is a weak γ-limit over M0.

(b) An increasing chain (Mα)α<γ is a strong γ-chain if every Mα+1 is∣Mα+1∣+-universal over Mα . In this case we say that M ∶= ⋃α Mα is the
strong γ-limit of the chain, or that M is a strong γ-limit over M0.

The following observation is just a restatement of Lemma 2.16.

Lemma 3.2. LetK be an amalgamation class. Every weak γ-limit is cf(γ)-
Galois saturated.

Lemma 3.3. Suppose that K is an amalgamation class and γ ≥ ln(K) an
ordinal. Let M be a weak γ-limit over A ⪯K M. Then M is ∣γ∣+-universal
over every K-substructure A0 ⪯K A of size ∣A0∣ ≤ ∣γ∣.
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Proof. Let (Mα)α<γ be a weak γ-chain with limit M and M0 = A. This
chain satisfies the hypothesis of Lemma 2.10. ◻
Corollary 3.4. Suppose thatK is an amalgamation class, let κ ≥ ln(K)
be a cardinal, and γ an ordinal. Let (Mα)α<κγ be a weak κγ-chain with∣⋃α<κγ Mα ∣ ≤ κ. Then the subsequence (Mκα)α<γ is a strong γ-chain.

Proof. Let α < γ. The sequence (Mκα+β)β<κ is aweak κ-chain over Mκα
with limit N ∶= ⋃β<κ Mκα+β ⪯ Mκ(α+1). By the preceding lemma, N is
κ+-universal over Mκα . Hence, so is its extension Mκ(α+1) ⪰K N. As∣Mκ(α+1)∣ ≤ κ, the claim follows. ◻
Corollary 3.5. Suppose that K is an amalgamation class. Let A ∈ K be
a structure of size κ ∶= ∣A∣ ≥ ln(K) and let γ < κ+ be an ordinal. If K is
κ-Galois stable, then there exists a strong γ-limit M ∈ K over A of size∣M∣ = κ.

Proof. By Corollary 3.4, it is sufficient to construct a weak κγ-chain(Mα)α<κγ over A such that ∣Mα ∣ = κ, for all α. We define such a chain
by induction on α starting with M0 ∶= A. For the inductive step, note
that, given Mα , we can use Lemma 2.13 to find a structure Mα+1 with the
desired properties. ◻

The next lemma implies that, in the definition of a strong γ-chain(Mα)α , we could also require universality of Mα+1 over every K-sub-
structure of Mα .

Lemma 3.6. Suppose that K is an amalgamation class and let A ∈ K be a
structure of size ln(K) ≤ ∣A∣ < κ. If M is κ-universal over A ⪯K M, then
it is also κ-universal over every substructure A0 ⪯K A.

Proof. Let A0 ⪯K A and consider a K-embedding f ∶ A0 → C with∣C∣ < κ. By amalgamation, we can find a K-extension C+ ⪰K C of size∣C+∣ = ∣C∣⊕∣A∣ < κ and aK-embedding f+ ∶ A→ C+ such that f+↾A0 = f .
As M is κ-universal over A, there exists a K-embedding h+ ∶ C+ → M
with h+○ f+ = idA. Setting h ∶= h+↾C it follows that h○ f = h+○ f+↾A0 =
idA0 , as desired. ◻
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Lemma 3.7. LetK be an amalgamation class. If a structureM ∈ K realises
all Galois types over U ⪯K M, then it also realises all Galois type over every
U0 ⪯K U.

Proof. Let U0 ⪯K U and p ∈ S<ω
Aut(U0). By Lemma 2.15, there exists a type

q ∈ S<ω
Aut(U) with q∣U0 = p. By assumption, M realises q. Hence, it also

realises p. ◻
We conclude this section with a result stating that a strong limit is

unique up to isomorphism.

Theorem 3.8. Let K be an amalgamation class, A,A′ ∈ K structures of
size ∣A∣, ∣A′∣ ≥ ln(K), and let δ, δ′ be limit ordinals with cf(δ) = cf(δ′).

If M is a strong δ-limit over A and M′ is a strong δ′-limit over A′ with∣M∣ = ∣M′∣, then we can extend every isomorphism f ∶ A → A′ to an
isomorphism π ∶ M→M′.
Proof. Fix strong chains (Mα)α<δ and (M′

α)α<δ′ such that

⋃
α<δ Mα =M , ⋃

α<δ′ M
′
α =M′ , M0 = A , M′

0 = A′ .

Set β ∶= cf(δ) and let h ∶ β → δ and h′ ∶ β → δ′ be strictly increasing
functions with h(0) = 0 and h′(0) = 0. We can choose h and h′ such
that, for every α < β, h(α + 1) and h′(α + 1) are successor ordinals.

Since ∣M∣ = ∣M′∣ we can find increasing chains (Nα)α<β and (N′
α)α<β

ofK-substructures Nα ⪯K Mh(α) and N′
α ⪯K M′

h′(α) such that

⋃
α<β Nα =M , ⋃

α<β N′
α =M′ , N0 = A , N′

0 = A′ ,
and ∣Nα ∣ = ∣N ′

α ∣ = min{∣Mh(α)∣, ∣M′
h′(α)∣} .

We construct an increasing chain (pα)α<β of isomorphisms pα ∶ Bα →
B′

α such that

Nα ⪯K Bα ⪯K Mh(α) ,
N′

α ⪯K B′
α ⪯K M′

h′(α)+1 ,
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and ∣Bα ∣ = ∣Nα ∣ .
Then the limit π ∶= ⋃α<β pα is the desired isomorphism π ∶ M→M′.
We start with p0 ∶= f ∶ A → A′. For limit ordinals γ, we set pγ ∶=⋃α<γ pα . For the successor step, suppose that pα ∶ Bα → B′

α has already
been defined. We fix a substructure C′ ⪯K M′

h′(α+1) such that

N ′
α+1 ∪ B′α ⊆ C′ and ∣C′∣ = ∣N ′

α+1∣ .
By Lemma 3.6, Mh(α+1) is ∣Mh(α+1)∣+-universal over Bα ⪯K Mh(α).
Since ∣C′∣ ≤ ∣Mh(α+1)∣, it therefore follows that there is aK-embedding
g ∶ C′ → Mh(α+1) such that g ○ pα = idBα . Fix a K-substructure C ⪯K
Mh(α+1) such that

Nα+1 ∪ rng g ⊆ C and ∣C∣ = ∣Nα+1∣ .
As above, M′

h′(α+1)+1 is ∣M′
h′(α+1)+1∣+-universal over C′ ⪯K M′

h′(α+1),
and we have ∣C∣ ≤ ∣M′

h′(α+1)+1∣. Hence, we can find a K-embedding
g′ ∶ C →M′

h′(α+1)+1 such that g′ ○ g = idC′ . We take this embedding g′
for our isomorphism pα+1 ∶ Bα+1 → B′

α+1. Then

Nα+1 ⪯K Bα+1 ⪯K Mh(α+1) ,
N′

α+1 ⪯K B′
α+1 ⪯K M′

h′(α+1)+1 ,
and ∣Bα+1∣ = ∣Nα+1∣ .
Furthermore, for a ∈ Bα , we have

pα+1(a) = g′(a) = g′((g ○ pα)(a))= (g′ ○ g)(pα(a)) = pα(a) .

Hence, pα ⊆ pα+1. ◻
Corollary 3.9. Suppose that K is an amalgamation class with κ ≥ ln(K),
and let M be a weak κδ-limit over A of size ∣M∣ = κ where δ is a limit
ordinal with δ < κ+. Every strong κδ-limit over A is isomorphic to M.

Proof. By Corollary 3.4, M is a strong δ-limit over A. Since δ is a limit
ordinal we have cf(δ) = cf(κδ). Consequently, the claim follows from
Theorem 3.8. ◻
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4. Categoricity and stability
In this section we study the consequences of categoricity and stability for
an abstract elementary class. We will see that Ehrenfeucht-Mostowski
functors provide an invaluable tool in this context.

Lemma 4.1. Let K be a κ-categorical abstract elementary class with the
joint embedding property where κ ≥ ln(K). The structure M ∈ K of size κ
is K-universal.

Proof. Let A ∈ K be of size ∣A∣ ≤ κ. By the joint embedding property, we
can findK-embeddings f ∶ A→ N and g ∶ M→ N into some structure
N ∈ K of size ∣N ∣ ≤ ∣M∣⊕ ∣A∣⊕ ln(K) = κ. SinceK is κ-categorical, there
exits an isomorphism π ∶ N→M. It follows that π ○ f is aK-embedding
A→M. ◻

We start by showing that categoricity implies stability. This generalises
Theorem e6.3.16.

Lemma 4.2. Suppose that K is unbounded and κ-categorical, for κ ≥
ln(K), and let M ∈ K be the structure of size ∣M∣ = κ. For every U ⪯K M,
M realises at most ∣U ∣⊕ ln(K) Galois types over U.

Proof. By Corollary 1.10, there exists an Ehrenfeucht-Mostowski functor
F = prΣ ○ F+ forK. Then ∣F(κ)∣ = κ implies F(κ) ≅M. W.l.o.g. we may
assume that this isomorphism is the identity. Fix a substructure U ⪯K M.
There is some I ⊆ κ of size ∣I∣ ≤ ∣U ∣ such that U ⊆ F(I). Every finite
tuple ā ⊆ M = F+(κ)∣Σ is of the form a l = t l [ı̄] where t l is a term of the
expansion F+(κ)with parameters ı̄ ⊆ κ. By enlarging the tuples ı̄ wemay
assume that these parameters are the same for every a l . If a′l = t l [ı̄′] are
elements where ı̄ and ı̄′ have the same order type over I, then we can
find a linear order L extending κ and an automorphism π of L that fixes I
and maps ı̄ to ı̄′. Hence, F+(π) is an automorphism of F+(L) fixing U
and mapping ā to ā′. Consequently, tpAut(ā/M,U) = tpAut(ā′/M,U).

It follows that the number of Galois types over U realised in M is
bounded by the number of terms t(x̄), times the number of order types
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of finite tuples ı̄ ⊆ κ over I. There are at most ln(K) such terms and,
since κ is well-ordered, at most ∣I∣ such order types. ◻
Theorem 4.3. An unbounded κ-categorical Jónsson class K is λ-Galois
stable, for every cardinal ln(K) ≤ λ < κ.

Proof. For a contradiction, suppose that K is not λ-Galois stable, for
some ln(K) ≤ λ < κ. Fix a structure U ∈ K of size ∣U ∣ = λ such that∣S<ω

Aut(U)∣ > λ. By Proposition 2.17, we can find a K-extension A ⪰K U
of size ∣A∣ = λ+ realising λ+ types from S<ω

Aut(U).
Let M ∈ K be a structure of size κ. We have seen in Lemma 4.1 that

M is κ+-universal. Hence, there exists aK-embedding f ∶ A→M. It fol-
lows that M realises at least λ+ Galois types over f [U]. This contradicts
Lemma 4.2. ◻
Lemma 4.4. Let K be an amalgamation class. If K is κ-categorical for
κ > ln(K), then the structure M ∈ K of size κ is cf(κ)-Galois saturated.

Proof. Starting with an arbitrary structure A0 ∈ K<κ we use Lemma 2.13
to construct a strictly increasing chain (Aα)α<κ of structures Aα ∈ K of
size ∣Aα ∣ < κ such that Aα+1 realises every Galois type over Aα .
By Lemma 2.16, the union Aκ ∶= ⋃α<κ Aα is cf(κ)-Galois saturated.

Since ∣Aκ ∣ = κ and K is κ-categorical, we have Aκ ≅ M. Hence, M is
cf(κ)-Galois saturated. ◻
Corollary 4.5. LetK be an unbounded Jónsson class. IfK is κ-categorical,
for κ > ln(K), then K contains Galois saturated structures of size λ, for
every regular cardinal λ with ln(K) ≤ λ ≤ κ.

Proof. For λ = κ, we have already proved the claim in Lemma 4.4. For
λ < κ, it follows from Theorems 4.3 and 2.18. ◻

Next, we consider an analogue of the notion of an indiscernible se-
quence for abstract elementary classes. The following result is comparable
to Theorem e5.3.13.
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Lemma 4.6. Let K be an amalgamation class and let F ∶ Lin→ Emb(K)
be an Ehrenfeucht-Mostowski functor for K with spine s. Suppose that I is
a linear order, ı̄ ∈ [I]<ω a finite tuple, and σ ∶ ı̄ → ı̄ a permutation such
that

tpAut(sI(ı̄) / F(I),∅) ≠ tpAut(sI(σ(ı̄)) / F(I),∅) .

Then K is not κ-stable, for any κ ≥ ln(K).
Proof. We can write each permutation as a product of transpositions.
Hence, suppose that σ = σ0 ○ ⋅ ⋅ ⋅ ○ σn , where each σl ∶ ı̄ → ı̄ is a permuta-
tion of ı̄ interchanging two consecutive components of ı̄. There is at least
one index l such that

tpAut(sI(ı̄) / F(I),∅) ≠ tpAut(sI(σl(ı̄)) / F(I),∅) ,
since, otherwise, we would have

tpAut(sI(ı̄) / F(I),∅) = tpAut(sI(σ(ı̄)) / F(I),∅) .

Replacing σ by σl we may therefore assume that ı̄ = k̄ i jm̄ and σ(ı̄) =
k̄ jim̄ where k̄ < i < j < m̄.

Let J be a linear order of size ∣J∣ > κ containing a dense subset J0 ⊆ J of
size ∣J0∣ = κ. Set M ∶= F(J) and U ∶= F(J0). Since ∣U ∣ = κ, it is sufficient
to show that

tpAut(sJ(x)/M,U) ≠ tpAut(sJ(y)/M,U) , for all x ≠ y in J .

Fix elements x < y in J. To prove that the Galois types of sJ(x) and
sJ(y) over U are different, we choose indices w , ū, v̄ ⊆ J0 such that
x < w < y and the tuples ūxyv̄ and k̄ i jm̄ have the same order type. It
follows that

tpAut(sJ(xwūv̄)/M,∅) = tpAut(sI(i jk̄m̄)/F(I),∅)
≠ tpAut(sI( ji k̄m̄)/F(I),∅)= tpAut(sJ(ywūv̄)/M,∅) .

Since sJ(wūv̄) ⊆ U the claim follows. ◻

1023



e7. Abstract elementary classes

We have already seen that κ-categorical classes are stable and, there-
fore, they contain Galois saturated structures of all regular cardinals
below κ. We conclude this section with some results about the existence
of Galois saturated structures of singular cardinality.

Lemma 4.7. Let K be a κ-categorical amalgamation class, let F ∶ Lin→
Emb(K) be an Ehrenfeucht-Mostowski functor forK, let λ > ln(K) be a
cardinal, and set Cλ ∶= { µ+ ∣ µ < λ }. Then F(I) is λ-Galois saturated, for
every Cλ-universal linear order I of size λ ≤ ∣I∣ < cf(κ).
Proof. It is sufficient to show that F(I) is µ+-Galois saturated, for every
µ < λ. Since I is Cλ-universal there is some embedding h ∶ µ+ → I. Set
A ∶= ⇓ rng h, B ∶= I ∖ A, and J ∶= A + κ + B. Then ∣F(J)∣ = κ. Since
µ+ < cf(κ) it therefore follows by Lemma 4.4 that F(J) is µ+-Galois
saturated.

To show that also F(I) is µ+-Galois saturated, we consider a sub-
structure U ⪯K F(I) of size ∣U ∣ = µ and a type p ∈ S<ω

Aut(U). Let
q ∈ S<ω

Aut(F(h)[U]) be the type with q∣F(h) = p. Then q is realised by
some tuple ā ⊆ F(J). Each a l is denoted by a term t l [ı̄ k̄] (in the Skolem
expansion) with parameters ı̄ ⊆ I and k̄ ⊆ J ∖ I. By enlarging the tuples
of parameters we may assume without loss of generality that the para-
meters ı̄ k̄ are the same for every l . Let J0 ⊆ J be a set of size ∣J0∣ = µ
such that F(h)[U]∪ ı̄ ⊆ F(J0). Since µ+ is regular, there is some α < µ+
such that J0 ∩ A ⊆ h[↓α]. Hence, there is some tuple k̄′ ⊆ rng h such
that k̄ and k̄′ have the same order type over J0 ∪ ı̄. Setting b l ∶= t l [ı̄ k̄′]
it follows that tpAut(b̄/F(I),U) = p. ◻

In the following λ<ω denotes the linear order ⟨λ<ω , ≤lex⟩ where ≤lex is
the lexicographic order on λ<ω .

Proposition 4.8. Let K be an unbounded amalgamation class that is
κ-categorical, for some regular cardinal κ > ln(K). If F ∶ Lin→ Emb(K)
is an Ehrenfeucht-Mostowski functor for K, then

(a) F(λ) is Galois saturated, for every ln(K) < λ ≤ κ ;
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(b) F(λ<ωα) is Galois saturated, for every cardinal ln(K) < λ ≤ κ and
every ordinal α < λ+.

Proof. For λ < κ, the claims follow from Lemma 4.7 since the orders
λ<ωα and λ are both Cλ-universal. For λ = κ, note that F(κ<ωα) ≅ F(κ)
is the only structure inK of size κ. This structure is Galois saturated by
Corollary 4.5. ◻

We can use structures of the form F(λ<ωα) to build strong δ-chains.
We start by proving an universality lemma for the order λ<ω .

Lemma 4.9. Let λ be a cardinal. For every ordinal β < λ+, there exists an
embedding g ∶ β → λ<ω .

Proof. We define g by induction on β. If β ≤ λ then we can set g(α) ∶=⟨α⟩, for all α < β. For the successor step, suppose that β = γ + 1 and let
g0 ∶ γ → λ<ω be the embedding obtained by inductive hypothesis. We
define g ∶ β → λ<ω by

g(α) ∶= ⎧⎪⎪⎨⎪⎪⎩
⟨0⟩ ⋅ g0(α) for α < γ ,⟨1⟩ for α = γ .

If β is a limit ordinal, we fix an increasing chain (γ i)i<λ of ordinals λ ≤
γ i < β with supi γ i = β. By inductive hypothesis, there are embeddings
g i ∶ γ i → λ<ω . We define g ∶ β → λ<ω by

g(α) ∶= ⟨i⟩ ⋅ g i(α) where i is the least index with α < γ i . ◻
Lemma 4.10. Let K be a κ-categorical amalgamation class where κ is
regular, let ln(K) ≤ λ < κ be a cardinal, and δ < λ+ a limit ordinal.
Suppose that F ∶ Lin → Emb(K) is an Ehrenfeucht-Mostowski functor
for K.

(a) (F(λ<ωα))α<δ is a strong δ-chain over F(λ<ω).
(b) If M is a strong δ-limit over F(λ<ω) of size ∣M∣ = λ, then M ≅

F(λ<ωδ) .
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Proof. (b) follows immediately by (a) and Theorem 3.8.
(a) We have to show that F(λ<ω(α+ 1)) is λ+-universal over F(λ<ωα).

Let f ∶ F(λ<ωα) → C be a K-embedding with ∣C∣ ≤ λ. Since K is κ-
categorical, we know by Lemma 4.4 that F(λ<ωκ) is Galois saturated.
In particular, F(λ<ωκ) is λ+-universal over F(λ<ωα). Hence, we can
find a K-embedding g ∶ C → F(λ<ωκ) such that g ○ f = id. There
exists a set I ⊆ λ<ωκ of size ∣I∣ = λ such that rng g ⊆ F(I). Setting
I0 ∶= I ∩ λ<ωα and I1 ∶= I ∖ λ<ωα, we obtain a partition I = I0 ⊍ I1
with I0 < I1. Since I1 is a well-order with ord(I1) < λ+, we can apply
Lemma 4.9 to find an embedding σ1 ∶ I1 → λ<ω . Using σ1, we define an
embedding σ ∶ I → λ<ω(α + 1) by

σ(i) ∶= ⎧⎪⎪⎨⎪⎪⎩
i if i ∈ I0 ,
λ<ωα + σ1(i) if i ∈ I1 .

Setting h ∶= F(σ) ○ g we obtain aK-embedding h ∶ C → F(λ<ω(α + 1))
with

h ○ f = F(σ) ○ g ○ f = F(σ) ○ idF(λ<ωα) = idF(λ<ωα) . ◻
Using these technical results about Ehrenfeucht-Mostowski functors

we can prove the following two theorems on the existence of Galois
saturated structures.

Theorem 4.11. Suppose that K is an unbounded κ-categorical Jónsson
class where κ is regular. Let A ∈ K be a structure of size ∣A∣ = λ where
ln(K) < λ < κ, and let δ < λ+ be a limit ordinal. Every strong δ-limit M
over A of size ∣M∣ = λ is Galois saturated.

Proof. Let F ∶ Lin → Emb(K) be an Ehrenfeucht-Mostowski functor
forK and let (Mα)α<δ be a strong δ-chain over A with limit M. Accord-
ing to Proposition 4.8, the structure F(λ<ω) is Galois saturated and has
size λ. By Lemma 2.8 (b), F(λ<ω) is λ+-universal. Hence, there exists aK-embedding f ∶ A → F(λ<ω). Since M1 is λ+-universal over M0 = A,
there also exists a K-embedding g ∶ F(λ<ω) → M1 with g ○ f = idA.
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Replacing the sequence (Mα)α by isomorphic copies, we may therefore
assume that

A ⪯K F(λ<ω) ⪯K M1 .

SinceM2 is λ+-universal over M1, it is also λ+-universal over F(λ<ω). Let(M′
α)α<δ be the sequence obtained from (Mα)α<δ by replacing the first

two entries M0 ,M1 by the single entry F(λ<ω). Then (M′
α)α<δ is also a

strong δ-chain with limit M. By Lemma 4.10 (b), we have M ≅ F(λ<ωδ).
Since λ<ωδ is Cλ-universal, it follows by Lemma 4.7 that M is λ-Galois
saturated. ◻

Using the fact that Galois saturated structures of the same cardinality
are isomorphic, we obtain the following strengthening of Theorem 3.8.

Corollary 4.12. Suppose that K is an unbounded Jónsson class that is κ-
categorical, for some regular cardinal κ. Let λ be a cardinal with ln(K) <
λ < κ and let δ, δ′ < λ+ be limit ordinals. If M,M′ ,A,A′ ∈ K are struc-
tures of size λ such that M is a strong δ-limit over A and M′ is a strong
δ′-limit over A′, then M ≅M′.

Our final theorem concerns unions of Galois saturated structures.
One can show that we can do without the assumption that λ is a limit
cardinal, but the proof is much more involved for regular cardinals λ.

Theorem 4.13. LetK be an unbounded κ-categorical Jónsson class where
κ is regular, and let λ be a limit cardinalwith ln(K) < λ < κ. If (Mα)α<δ is
an increasing chain of Galois saturated structures Mα ∈ K of size ∣Mα ∣ = λ
with δ < λ+, then the union ⋃α<δ Mα is also Galois saturated.

Proof. Let N ∶= ⋃α<δ Mα be the limit. Then ∣N ∣ ≤ ∣δ∣⊗ λ = λ. To show
that N is Galois saturated fix a structure U ⪯K N of size µ ∶= ∣U ∣ < λ and
some type p ∈ S<ω

Aut(U). W.l.o.g. we may assume that µ ≥ ln(K). Note
that λ being a limit implies that µ++ < λ.

The set I ∶= { α < δ ∣ (Mα+1 ∖ Mα) ∩ U ≠ ∅} has size ∣I∣ ≤ ∣U ∣ = µ.
Consequently, there exists a cofinal strictly increasing map f ∶ µ0 → I
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where µ0 ∶= cf(µ) ≤ µ. We construct a strong µ0-chain (Nα)α<µ0 where
each Nα ⪯K M f (α) has size ∣Nα ∣ = µ+ and, for all α < µ0, we have

U ∩ M f (α+1) ⊆ Nα+1 ⊆ M f (α+1) .

We define Nα by induction on α. We start with an arbitrary structure
N0 ⪯K M of size ∣N0∣ = µ+. For limit ordinals γ, we set Nγ ∶= ⋃α<γ Nα .

For the successor step, suppose that Nα has already been defined. We
construct a weak µ+-chain (Bβ)β<µ+ with ∣Bβ ∣ = µ+ as follows. We
start with an arbitrary structure B0 ⪯K M f (α+1) of size ∣B0∣ = µ+ such
that Nα ∪ (U ∩ M f (α+1)) ⊆ B0. Then we use Lemma 2.13 to inductively
define Bβ , for 0 < β < µ+. Since K is µ+-Galois stable, we can choose
all Bβ of size ∣Bβ ∣ = µ+. Since M f (β+1) is µ++-Galois saturated, we can
further choose Bβ such that Bβ ⪯K M f (β+1). Let Nα+1 ∶= ⋃β<µ+ Bβ be
the limit. By Lemma 3.3, Nα+1 is µ++-universal over B0 ⪰K Nα .
We have constructed a strong µ0-chain (Nα)α<µ0 whose limit A ∶=⋃α<µ0 Nα has size ∣A∣ = µ0 ⊗ µ+ = µ+. Since ∣N0∣ = µ+ it follows by

Theorem 4.11 that A is Galois saturated. Consequently, p is realised in
A ⪯K N. ◻
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g2. Models of stable theories

The following two theorems summarise the results of this section.

Theorem 6.12 (Cohen, Shelah). Let T be a complete first-order theory.
The following conditions are equivalent :

(1) T is stable.

(2) T has Un(κ, λ)-representations, for some cardinals κ and λ.

(3) T has Wf(0, ∣T ∣)-representations.

(4) T has Wf(∣T ∣, ∣T ∣)-representations.

Proof. (2)⇒ (1) has been shown in Proposition 6.8 (a), the implications
(4)⇒ (3)⇒ (2) follow from Lemmas 6.5 and 6.2, and (1)⇒ (4) follows
by Proposition 6.11. ◻
Theorem 6.13 (Cohen, Shelah). Let T be a complete first-order theory.
The following conditions are equivalent :

(1) T is ℵ0-stable.

(2) T has Lf(ℵ0 ,ℵ0)-representations.

Proof. (2)⇒ (1) follows by Proposition 6.8 (b) and (1)⇒ (2) follows by
Proposition 6.11. ◻
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functor, 279
IndP(C) inductive P-completion,

280
Indall(C) inductive completion, 280

Chapter b4

Indλ
κ(C) inductive(κ, λ)-completion, 291

Ind(C) inductive completion, 292↺ loop category, 313∥a∥ cardinality in an accessible
category, 329

SubK(a) category ofK-subobjects,
337

Subκ(a) category of κ-presentable
subobjects, 337

Chapter b5

cl(A) closure of A, 343
int(A) interior of A, 343
∂A boundary of A, 343

rkCB(x/A) Cantor-Bendixson rank,
365

spec(L) spectrum of L, 370⟨x⟩ basic closed set, 370
clop(S) algebra of clopen subsets,

374

Chapter b6

Aut M automorphism group, 386
G/U set of cosets, 386
G/N factor group, 388
Sym Ω symmetric group, 389
ga action of g on a, 390
G ā orbit of ā, 390
G(X) pointwise stabiliser, 391
G{X} setwise stabiliser, 391⟨ā ↦ b̄⟩ basic open set of the group

topology, 395
deg p degree, 399
Idl(R) lattice of ideals, 400
R/a quotient of a ring, 402
Ker h kernel, 402
spec(R) spectrum, 402⊕i Mi direct sum, 405

M(I) direct power, 405
dim V dimension, 409
FF(R) field of fractions, 411
K(ā) subfield generated by ā, 414
p[x] polynomial function, 415
Aut (L/K)automorphisms over K, 423∣a∣ absolute value, 426
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ZL[K, X] Zariski logic, 443⊧ satisfaction relation, 444
BL(B) boolean logic, 444
FOκℵ0 [Σ, X] infinitary first-order

logic, 445¬φ negation, 445⋀Φ conjunction, 445⋁Φ disjunction, 445∃xφ existential quantifier, 445∀xφ universal quantifier, 445
FO[Σ, X] first-order logic, 445
A ⊧ φ[β] satisfaction, 446
true true, 447
false false, 447
φ ∨ ψ disjunction, 447
φ ∧ ψ conjunction, 447
φ → ψ implication, 447
φ↔ ψ equivalence, 447
free(φ) free variables, 450
qr(φ) quantifier rank, 452
ModL(Φ) class of models, 454
Φ ⊧ φ entailment, 460≡ logical equivalence, 460
Φ⊧ closure under entailment,

460
ThL(J) L-theory, 461≡L L-equivalence, 462
dnf(φ) disjunctive normal form,

467
cnf(φ) conjunctive normal form,

467
nnf(φ) negation normal form, 469
Logi$ category of logics, 478∃λxφ cardinality quantifier, 481

FOκℵ0(wo) FO with well-ordering
quantifier, 482

W well-ordering quantifier,
482

QK Lindström quantifier, 482
SOκℵ0 [Σ, Ξ] second-order logic, 483
MSOκℵ0 [Σ, Ξ] monadic

second-order logic, 483
PO category of partial orders,

488
Lb Lindenbaum functor, 488¬φ negation, 490
φ ∨ ψ disjunction, 490
φ ∧ ψ conjunction, 490
L∣Φ restriction to Φ, 491
L/Φ localisation to Φ, 491⊧Φ consequence modulo Φ,

491≡Φ equivalence modulo Φ, 491

Chapter c2

EmbL(Σ) category of L-embeddings,
493

QFκℵ0 [Σ, X] quantifier-free
formulae, 494∃∆ existential closure of ∆, 494∀∆ universal closure of ∆, 494∃κℵ0 existential formulae, 494∀κℵ0 universal formulae, 494∃+κℵ0 positive existential
formulae, 494⪯∆ ∆-extension, 498⪯ elementary extension, 498

Φ⊧∆ ∆-consequences of Φ, 521
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≤∆ preservation of ∆-formulae,
521

Chapter c3

S(L) set of types, 527⟨Φ⟩ types containing Φ, 527
tpL(ā/M)L-type of ā, 528
S s̄

L(T) type space for a theory, 528
S s̄

L(U) type space over U , 528
S(L) type space, 533
f (p) conjugate of p, 543
S∆(L) S(L∣∆) with topology

induced from S(L), 557⟨Φ⟩∆ closed set in S∆(L), 557
p∣∆ restriction to ∆, 560
tp∆(ā/U) ∆-type of ā, 560

Chapter c4

≡α α-equivalence, 577≡∞ ∞-equivalence, 577
pIsoκ(A,B) partial isomorphisms,

578
ā ↦ b̄ map a i ↦ b i , 578∅ the empty function, 578
Iα(A,B) back-and-forth system, 579
I∞(A,B) limit of the system, 581≅α α-isomorphic, 581≅∞ ∞-isomorphic, 581
m =k n equality up to k, 583
φα

A, ā Hintikka formula, 586
EFα(A, ā,B, b̄)

Ehrenfeucht-Fraïssé

game, 589
EFκ∞(A, ā,B, b̄)

Ehrenfeucht-Fraïssé
game, 589

Iκ
FO(A,B)partial FO-maps of size κ,

598⊑κ
iso ∞κ-simulation, 599≅κ
iso ∞κ-isomorphic, 599

A ⊑κ
0 B Iκ

0(A,B) ∶ A ⊑κ
iso B, 599

A ≡κ
0 B Iκ

0(A,B) ∶ A ≡κ
iso B, 599

A ⊑κ
FO B Iκ

FO(A,B) ∶ A ⊑κ
iso B, 599

A ≡κ
FO B Iκ

FO(A,B) ∶ A ≡κ
iso B, 599

A ⊑κ∞ B Iκ∞(A,B) ∶ A ⊑κ
iso B, 599

A ≡κ∞ B Iκ∞(A,B) ∶ A ≡κ
iso B, 599G(A) Gaifman graph, 605

Chapter c5

L ≤ L′ L′ is as expressive as L, 613
(a) algebraic, 614
(b) boolean closed, 614
(b+) positive boolean closed, 614
(c) compactness, 614
(cc) countable compactness, 614
(fop) finite occurrence property,

614
(kp) Karp property, 614
(lsp) Löwenheim-Skolem

property, 614
(rel) closed under relativisations,

614
(sub) closed under substitutions,

614
(tup) Tarski union property, 614
hnκ(L) Hanf number, 618
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lnκ(L) Löwenheim number, 618
wnκ(L) well-ordering number, 618
occ(L) occurrence number, 618
prΓ(K) Γ-projection, 636
PCκ(L, Σ)projective L-classes, 636
L0 ≤κ

pc L1 projective reduction, 637
RPCκ(L, Σ) relativised projective

L-classes, 641
L0 ≤κ

rpc L1 relativised projective
reduction, 641

∆(L) interpolation closure, 648
ifp f inductive fixed point, 658
lim inf f least partial fixed point, 658
lim sup f greatest partial fixed point,

658
fφ function defined by φ, 664
FOκℵ0(LFP) least fixed-point logic,

664
FOκℵ0(IFP) inflationary fixed-point

logic, 664
FOκℵ0(PFP) partial fixed-point

logic, 664⊲φ stage comparison, 675

Chapter d1

tor(G) torsion subgroup, 704
a/n divisor, 705
DAG theory of divisible

torsion-free abelian
groups, 706

ODAG theory of ordered divisible
abelian groups, 706

div(G) divisible closure, 706
F field axioms, 710

ACF theory of algebraically
closed fields, 710

RCF theory of real closed fields,
710

Chapter d2

(<µ)λ ⋃κ<µ κλ , 721
HO∞[Σ, X] infinitary Horn

formulae, 735
SH∞[Σ, X] infinitary strict Horn

formulae, 735
H∀∞[Σ, X] infinitary universal

Horn formulae, 735
SH∀∞[Σ, X] infinitary universal

strict Horn formulae, 735
HO[Σ, X] first-order Horn formulae,

735
SH[Σ, X] first-order strict Horn

formulae, 735
H∀[Σ, X] first-order universal Horn

formulae, 735
SH∀[Σ, X] first-order universal

strict Horn formulae, 735⟨C; Φ⟩ presentation, 739
Prod(K) products, 744
Sub(K) substructures, 744
Iso(K) isomorphic copies, 744
Hom(K) weak homomorphic

images, 744
ERP(K) embeddings into reduced

products, 744
QV(K) quasivariety, 744
Var(K) variety, 744
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( f , g) open cell between f and g,
757[ f , g] closed cell between f and g,
757

B(ā, b̄) box, 758
Cn(D) continuous functions, 772
dimC dimension, 773

Chapter e2

dclL(U) L-definitional closure, 815
aclL(U) L-algebraic closure, 815
dclAut(U)Aut-definitional closure,

817
aclAut(U) Aut-algebraic closure, 817
M the monster model, 825
A ≡U B having the same type

over U , 826
Meq extension by imaginary

elements, 827
dcleq(U) definable closure in Meq ,

827
acleq(U) algebraic closure in Meq ,

827
T eq theory of Meq , 829
Gb(p) Galois base, 837

Chapter e3

Icl(A,B) elementary maps with
closed domain and range,
873

Chapter e4

pMorK(a, b) category of partial
morphisms, 894

a ⊑K b forth property for objects
inK, 895

a ⊑κ
pres b forth property for

κ-presentable objects,
895

a ≡κ
pres b back-and-forth equivalence

for κ-presentable objects,
895

Subκ(a) κ-presentable subobjects,
906

atp(ā) atomic type, 917
ηpq extension axiom, 918
T[K] extension axioms forK, 918
Tran[Σ] random theory, 918
κn(φ) number of models, 920
Prn

M[M ⊧ φ] density of models, 920

Chapter e5

[I]κ increasing κ-tuples, 925
κ → (µ)νλ partition theorem, 925
pf(η, ζ) prefix of ζ of length ∣η∣, 930
T∗(κ<α) index tree with small

signature, 930
Tn(κ<α) index tree with large

signature, 930⟪X⟫n substructure generated in
Tn(κ<α), 930

Lvl(η̄) levels of η̄, 931≈∗ equal atomic types in T∗,
931
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≈n equal atomic types in Tn ,
931≈n ,k refinement of ≈n , 932≈ω ,k union of ≈n ,k , 932

ā[ı̄] ā i0 . . . ā in−1 , 941
tp∆(ā/U) ∆-type, 941
Av((ā i)i/U) average type, 943⟦φ(ā i)⟧ indices satisfying φ, 952
Av1((ā i)i/C) unary average type,

962

Chapter e6

Emb(K) embeddings between
structures inK, 965

pF image of a partial
isomorphism under F,
968

ThL(F) theory of a functor, 971
Aα inverse reduct, 975R(M) relational variant of M, 977
Av(F) average type, 986

Chapter e7

ln(K) Löwenheim number, 995
A ⪯K B K-substructure, 996
hn(K) Hanf number, 1003Kκ structures of size κ, 1004
IκK(A,B) K-embeddings, 1008
A ⊑κK B IκK(A,B) ∶ A ⊑κ

iso B, 1008
A ≡κK B IκK(A,B) ∶ A ≡κ

iso B, 1008

Chapter f1

⟪X⟫D span of X, 1031
dimcl(X) dimension, 1037
dimcl(X/U) dimension over U ,

1037

Chapter f2

rk∆(φ) ∆-rank, 1073
rks̄

M(φ) Morley rank, 1073
degs̄

M(φ) Morley degree of φ, 1075
(mon) Monotonicity, 1084
(nor) Normality, 1084
(lrf) Left Reflexivity, 1084
(ltr) Left Transitivity, 1084
(fin) Finite Character, 1084
(sym) Symmetry, 1084
(bmon) Base Monotonicity, 1084
(srb) Strong Right Boundedness,

1085
cl√ closure operation

associated with
√
, 1090

(inv) Invariance, 1097
(def) Definability, 1097
(ext) Extension, 1097
A df
√

U B definable over, 1098
A at
√

U B isolated over, 1098
A s
√

U B non-splitting over, 1098
p t√ q √

-free extension, 1103
A u
√

U B finitely satisfiable, 1104
Av(u/B) average type of u, 1105
(lloc) Left Locality, 1109
(rloc) Right Locality, 1109
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loc(√) right locality cardinal of
√
,

1109
loc0(√) finitary right locality

cardinal of
√
, 1109

κreg regular cardinal above κ,
1110

fc(√) length of
√

-forking chains,
1111

(sfin) Strong Finite Character, 1111
∗√ forking relation to

√
, 1113

Chapter f3

A d
√

U B non-dividing, 1125

A f
√

U B non-forking, 1125

A i
√

U B globally invariant over, 1134

Chapter f4

altφ(ā i)i∈I φ-alternation number,
1153

rkalt(φ) alternation rank, 1153
in(∼) intersection number, 1164
ā ≈ls

U b̄ indiscernible sequence
starting with ā, b̄, . . . ,
1167

ā ≡ls
U b̄ Lascar strong type

equivalence, 1168
CF((ā i)i∈I) cofinal type, 1194
Ev((ā i)i∈I) eventual type, 1199
rkdp(ā/U) dp-rank, 1211

Chapter f5

(lext) Left Extension, 1228
A fli
√

U B combination of li
√

and f
√
,

1239
A sli
√

U B strict Lascar invariance,
1239

(wind) Weak Independence
Theorem, 1253

(ind) Independence Theorem,
1253

Chapter g1

ā ⫝!U B unique free extension, 1274
mult√(p)√-multiplicity of p, 1279
mult(√) multiplicity of

√
, 1279

st(T) minimal cardinal T is
stable in, 1290

Chapter g2

(rsh) Right Shift, 1297
lbm(√) left base-monotonicity

cardinal, 1297
A[I] ⋃i∈I A i , 1306
A[<α] ⋃i<α A i , 1306
A[≤α] ⋃i≤α A i , 1306
A ⊥do

U B definable orthogonality,
1328

A si
√

U B strong independence, 1332
Υκλ unary signature, 1338
Un(κ, λ) class of unary structures,

1338
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Lf(κ, λ) class of locally finite unary structures, 1338
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abelian group, 385
abstract elementary class, 995
abstract independence relation, 1084
κ-accessible category, 329
accumulation, 12
accumulation point, 364
action, 390
acyclic, 519
addition of cardinals, 116
addition of ordinals, 89
adjoint functors, 234
affine geometry, 1037
aleph, 115
algebraic, 149, 815
algebraic class, 996
algebraic closure, 815
algebraic closure operator, 51
algebraic diagram, 499
algebraic elements, 418
algebraic field extensions, 418
algebraic logic, 487
algebraic prime model, 694
algebraically closed, 815
algebraically closed field, 418, 710
algebraically independent, 418
almost strongly minimal theory, 1056
alternating path in a category, 271

alternating-path equivalence, 272
φ-alternation number, 1153
alternation rank of a formula, 1153
amalgamation class, 1005
amalgamation property, 910, 1004
amalgamation square, 652
Amalgamation Theorem, 521
antisymmetric, 40
arity, 28, 29, 149
array, 1221
array property, 1221
array-dividing, 1227
associative, 31
asynchronous product, 752
atom, 445
atom of a lattice, 215
atomic, 215
atomic diagram, 499
atomic structure, 855
atomic type, 917
atomless, 215
automorphism, 156
automorphism group, 386
average type, 943
average type of an

Ehrenfeucht-Mostowski
functor, 986
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average type of an indiscernible
system, 949

average type of an ultrafilter, 1105
Axiom of Choice, 109, 458
Axiom of Creation, 19, 458
Axiom of Extensionality, 5, 458
Axiom of Infinity, 24, 458
Axiom of Replacement, 132, 458
Axiom of Separation, 10, 458
axiom system, 454
axiomatisable, 454
axiomatise, 454

back-and-forth property, 578, 893
back-and-forth system, 578
Baire, property of —, 363
ball, 342√

-base, 1228
base monotonicity, 1084
base of a partial morphism, 894
base projection, 894
base, closed —, 344
base, open —, 344
bases for a stratification, 1336
basic Horn formula, 735
basis, 110, 1034, 1037
beth, 126
Beth property, 648, 822
bidefinable, 885
biindiscernible family, 1219
biinterpretable, 891
bijective, 31
boolean algebra, 198, 455, 490
boolean closed, 490
boolean lattice, 198
boolean logic, 444, 462
bound variable, 450

boundary, 343, 758
κ-bounded, 598
bounded equivalence relation, 1172
bounded lattice, 195
bounded linear order, 583
bounded logic, 618
box, 758
branch, 189
branching degree, 191

canonical base, 834
canonical definition, 831

weak —, 847
canonical diagram, 337
canonical parameter, 831

weak —, 846
canonical projection from theP-completion, 309
Cantor discontinuum, 351, 534
Cantor normal form, 100
Cantor-Bendixson rank, 365, 377
cardinal, 113
cardinal addition, 116
cardinal exponentiation, 116, 126
cardinal multiplication, 116
cardinality, 113, 329
cardinality quantifier, 482
cartesian product, 27
categorical, 877, 909
category, 162
δ̄-cell, 773
cell decomposition, 775
Cell Decomposition Theorem, 776
chain, 42
L-chain, 501
chain condition, 1247
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chain condition for Morley sequences,
1257

chain in a category, 267
chain topology, 350
chain-bounded formula, 1168
Chang’s reduction, 532
character, 105
characteristic, 710
characteristic of a field, 413
choice function, 106
Choice, Axiom of —, 109, 458
class, 9, 54
clopen set, 341=-closed, 512
closed base, 344
closed function, 346
closed interval, 757
closed set, 51, 53, 341
closed subbase, 344
closed subset of a construction, 871,

1307
closed unbounded set, 135
closed under relativisations, 614
closed under substitutions, 614
closure operator, 51, 110
closure ordinal, 81
closure space, 53
closure under reverse ultrapowers, 734
closure, topological —, 343
co-chain-bounded relation, 1172
cocone, 253
cocone functor, 258
codomain of a partial morphism, 894
codomain projection, 894
coefficient, 398
cofinal, 123
cofinality, 123

Coincidence Lemma, 231
colimit, 253
comma category, 170
commutative, 385
commutative ring, 397
commuting diagram, 164
comorphism of logics, 478
compact, 352, 613
compact, countably —, 613
Compactness Theorem, 515, 531
compactness theorem, 718
compatible, 473
complement, 198
complete, 462
κ-complete, 598
complete partial order, 43, 50, 53
complete type, 527
completion of a diagram, 306(λ, κ)-completion of a diagram, 307(λ, κ)-completion of a partial order,

300
composition, 30
composition of links, 275
concatenation, 187
condition of filters, 721
cone, 257
confluence property, 1197
confluent family of sequences, 1197
congruence relation, 176
conjugacy class, 391
conjugate, 817
conjugation, 391
conjunction, 445, 490
conjunctive normal form, 467
connected category, 271
connected, definably —, 761
consequence, 460, 488, 521
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consistence of filters with conditions,
721

consistency over a family, 1221
consistent, 454
constant, 29, 149
constructible set, 869√

-constructible set, 1306
construction, 869√

-construction, 1306
continuous, 46, 133, 346
contradictory formulae, 627
contravariant, 168
convex equivalence relation, 1164
coset, 386
countable, 110, 115
countably compact, 613
covariant, 167
cover, 352
Creation, Axiom of —, 19, 458
cumulative hierarchy, 18
cut, 22

deciding a condition, 721
definability of independence relations,

1097
definable, 815
definable expansion, 473
definable orthogonality, 1329
definable Skolem function, 842
definable structure, 885
definable type, 570, 1098
definable with parameters, 759
definably connected, 761
defining a set, 447
definition of a type, 570
definitional closed, 815
definitional closure, 815

degree of a polynomial, 399
dense class, 1256
dense linear order, 600
κ-dense linear order, 600
dense order, 454
dense set, 361
dense sets in directed orders, 246
dense subcategory, 281
dependence relation, 1031
dependent, 1031
dependent set, 110
derivation, 398
diagonal functor, 253
diagonal intersection, 137
diagram, 251, 256
L-diagram, 499
Diagram Lemma, 499, 634
difference, 11
dimension, 1037
dimension function, 1038
dimension of a cell, 773
dimension of a vector space, 409
direct limit, 252
direct power, 405
direct product, 239
direct sum of modules, 405
directed, 246
directed colimit, 251
directed diagram, 251
κ-directed diagram, 251
directed limit, 256
discontinuum, 351
discrete linear order, 583
discrete topology, 342
disintegrated matroid, 1044
disjoint union, 38
disjunction, 445, 490
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disjunctive normal form, 467
distributive, 198
dividing, 1125
dividing chain, 1136
dividing κ-tree, 1144
divisible closure, 706
divisible group, 705
domain, 28, 151
domain of a partial morphism, 894
domain projection, 894
dp-rank, 1211
dual categories, 172

Ehrenfeucht-Fraïssé game, 589, 592
Ehrenfeucht-Mostowski functor, 986,

1002
Ehrenfeucht-Mostowski model, 986
element of a set, 5
elementary diagram, 499
elementary embedding, 493, 498
elementary extension, 498
elementary map, 493
elementary substructure, 498
elimination

uniform — of imaginaries, 840
elimination of finite imaginaries, 853
elimination of imaginaries, 841
elimination set, 690
embedding, 44, 156, 494
∆-embedding, 493K-embedding, 995
elementary —, 493
embedding of a tree into a lattice, 222
embedding of logics, 478
embedding of permutation groups,

886
embedding, elementary —, 498

endomorphism ring, 404
entailment, 460, 488
epimorphism, 165
equivalence class, 54
equivalence formula, 826
equivalence of categories, 172
equivalence relation, 54, 455
L-equivalent, 462
α-equivalent, 577, 592
equivalent categories, 172
equivalent formulae, 460
Erdős-Rado theorem, 928
Euklidean norm, 341
even, 922
exchange property, 110
existential, 494
existential closure, 699
existential quantifier, 445
existentially closed, 699
expansion, 155, 998
expansion, definable —, 473
explicit definition, 648
exponentiation of cardinals, 116, 126
exponentiation of ordinals, 89
extension, 152, 1097
∆-extension, 498
extension axiom, 918√

-extension base, 1228
extension of fields, 414
extension, elementary —, 498
Extensionality, Axiom of —, 5, 458

factorisation, 180
Factorisation Lemma, 158
factorising through a cocone, 317
faithful functor, 167
family, 37
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field, 397, 457, 498, 710
field extension, 414
field of a relation, 29
field of fractions, 411
field, real —, 426
field, real closed —, 429
filter, 203, 207, 530
κ-filtered category, 285
κ-filtered colimit, 285
κ-filtered diagram, 285
final segment, 41
κ-finitary set of partial isomorphisms,

598
finite, 115
finite character, 51, 105, 1084

strong —, 1111
finite equivalence relation, 1164
finite intersection property, 211
finite occurrence property, 613
finite, being — over a set, 775
finitely axiomatisable, 454
finitely branching, 191
finitely generated, 154
finitely presentable, 317
finitely satisfiable type, 1104
first-order interpretation, 446, 475
first-order logic, 445
fixed point, 48, 81, 133, 657
fixed-point induction, 77
fixed-point rank, 675
Fodor

Theorem of —, 139
follow, 460
forcing, 721
forgetful functor, 168, 234
forking chain, 1136√

-forking chain, 1110

√
-forking formula, 1103

forking relation, 1097√
-forking type, 1103

formal power series, 398
formula, 444
forth property for partial morphisms,

895
foundation rank, 192
founded, 13
Fraïssé limit, 912
free algebra, 232
free extension of a type, 1103√

-free extension of a type, 1103
free model, 739
free structures, 749√

-free type, 1103
free variables, 231, 450
full functor, 167
full subcategory, 169
function, 29
functional, 29, 149
functor, 167

Gaifman graph, 605
Gaifman, Theorem of —, 611
Galois base, 834
Galois saturated structure, 1011
Galois stable, 1011
Galois type, 997
game, 79
generalised product, 751
κ-generated, 255, 965
generated substructure, 153
generated, finitely —, 154
generating, 41
generating a sequence by a type, 1158
generating an ideal, 400
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generator, 154, 739
geometric dimension function, 1038
geometric independence relation, 1084
geometry, 1036
global type, 1114
graduated theory, 698, 783
graph, 39
greatest element, 42
greatest fixed point, 657
greatest lower bound, 42
greatest partial fixed point, 658
group, 34, 385, 456
group action, 390
group, ordered —, 705
guard, 447

Hanf number, 618, 637, 1003
Hanf ’s Theorem, 606
Hausdorff space, 351
having κ-directed colimits, 253
height, 190
height in a lattice, 215
Henkin property, 858
Henkin set, 858
Herbrand model, 511, 858
hereditary, 12
κ-hereditary, 910, 965
hereditary finite, 7
Hintikka formula, 586, 587
Hintikka set, 513, 858, 859
history, 15
hom-functor, 258
homeomorphism, 346
homogeneous, 787, 925≈-homogeneous, 931
κ-homogeneous, 604, 787
homogeneous matroid, 1044

homomorphic image, 156, 744
homomorphism, 156, 494
Homomorphism Theorem, 183
homotopic interpretations, 890
honest definition, 1157
Horn formula, 735

ideal, 203, 207, 400
idempotent link, 313
idempotent morphism, 313
identity, 163
image, 31
imaginaries

uniform elimination of —, 840
imaginaries, elimination of —, 841
imaginary elements, 826
implication, 447
implicit definition, 647
inclusion functor, 169
inclusion link, 276
inclusion morphism, 491
inconsistent, 454
k-inconsistent, 1125
increasing, 44
independence property, 952
independence relation, 1084
independence relation of a matroid,

1083
Independence Theorem, 1253
independent, 1031√

-independent family, 1289
independent set, 110, 1037
index map of a link, 275
index of a subgroup, 386
indiscernible sequence, 941
indiscernible system, 949, 1337
induced substructure, 152
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inductive, 77
inductive completion, 291
inductive completion of a category,

280
inductive fixed point, 81, 657, 658
inductively ordered, 81, 105
infimum, 42, 195
infinitary first-order logic, 445
infinitary second-order logic, 483
infinite, 115
Infinity, Axiom of —, 24, 458
inflationary, 81
inflationary fixed-point logic, 664
initial object, 166
initial segment, 41
injective, 31
κ-injective structure, 1008
inner vertex, 189
insertion, 39
inspired by, 950
integral domain, 411, 713
interior, 343, 758
interpolant, 653
interpolation closure, 648
interpolation property, 646
∆-interpolation property, 646
interpretation, 444, 446, 475
intersection, 11
intersection number, 1164
interval, 757
invariance, 1097
invariant class, 1256
invariant over a subset, 1325
U-invariant relation, 1172
invariant type, 1098
inverse, 30, 165
inverse diagram, 256

inverse limit, 256
inverse reduct, 975
irreducible polynomial, 416
irreflexive, 40√

-isolated, 1297
isolated point, 364
isolated type, 855, 1098
isolation relation, 1297
isomorphic, 44
α-isomorphic, 581, 592
isomorphic copy, 744
isomorphism, 44, 156, 165, 172, 494
isomorphism, partial —, 577

joint embedding property, 1005
κ-joint embedding property, 910
Jónsson class, 1005

Karp property, 613
kernel, 157
kernel of a ring homomorphism, 402

label, 227
large subsets, 825
Lascar invariant type, 1178
Lascar strong type, 1168
lattice, 195, 455, 490
leaf, 189
least element, 42
least fixed point, 657
least fixed-point logic, 664
least partial fixed point, 658
least upper bound, 42
left extension, 1228
left ideal, 400
left local, 1109
left reflexivity, 1084
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left restriction, 31
left transitivity, 1084
left-narrow, 57
length, 187
level, 190
level embedding function, 931
levels of a tuple, 931
lexicographic order, 187, 1024
lifting functions, 655
limit, 59, 257
limit stage, 19
limiting cocone, 253
limiting cone, 257
Lindenbaum algebra, 489
Lindenbaum functor, 488
Lindström quantifier, 482
linear independence, 406
linear matroid, 1037
linear order, 40
linear representation, 687
link between diagrams, 275
literal, 445
local, 608
local character, 1109
local enumeration, 772
κ-local functor, 965
local independence relation, 1109
localisation morphism, 491
localisation of a logic, 491
locality, 1109
locality cardinal, 1306
locally compact, 352
locally finite matroid, 1044
locally modular matroid, 1044
logic, 444
logical system, 485
Łoś’ theorem, 715

Łoś-Tarski Theorem, 686
Löwenheim number, 618, 637, 641, 995
Löwenheim-Skolem property, 613
Löwenheim-Skolem-Tarski Theorem,

520
lower bound, 42
lower fixed-point induction, 658

map, 29
∆-map, 493
map, elementary —, 493
mapping, 29
matroid, 1036
maximal element, 42
maximal ideal, 411
maximal ideal/filter, 203
maximally φ-alternating sequence,

1153
meagre, 362
membership relation, 5
minimal, 13, 57
minimal element, 42
minimal polynomial, 419
minimal rank and degree, 224
minimal set, 1049
model, 444
model companion, 699
model of a presentation, 739
model-complete, 699
κ-model-homogeneous structure,

1008
modular, 198
modular lattice, 216
modular law, 218
modular matroid, 1044
modularity, 1094
module, 403
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monadic second-order logic, 483
monoid, 31, 189, 385
monomorphism, 165
monotone, 758
monotonicity, 1084
monster model, 825
Morley degree, 1075
Morley rank, 1073
Morley sequence, 1118
Morley-free extension of a type, 1076
morphism, 162
morphism of logics, 478
morphism of matroids, 1044
morphism of partial morphisms, 894
morphism of permutation groups, 885
multiplication of cardinals, 116
multiplication of ordinals, 89
multiplicity of a type, 1279
mutually indiscernible sequences,

1206

natural isomorphism, 172
natural transformation, 172
negation, 445, 489
negation normal form, 469
negative occurrence, 664
neighbourhood, 341
neutral element, 31
node, 189
normal subgroup, 387
normality, 1084
nowhere dense, 362

o-minimal, 760, 956
object, 162
occurrence number, 618
oligomorphic, 390, 877

omitting a type, 528
omitting types, 532
open base, 344
open cover, 352
open dense order, 455
open interval, 757
Open Mapping Theorem, 1276
open set, 341
open subbase, 345
opposite category, 166
opposite functor, 168
opposite lattice, 204
opposite order, 40
orbit, 390
order, 454
order property, 567
order topology, 349, 758
order type, 64, 941
orderable ring, 426
ordered group, 705
ordered pair, 27
ordered ring, 425
ordinal, 64
ordinal addition, 89
ordinal exponentiation, 89
ordinal multiplication, 89
ordinal, von Neumann —, 69

pair, 27
parameter equivalence, 831
parameter-definable, 759
partial fixed point, 658
partial fixed-point logic, 664
partial function, 29
partial isomorphism, 577
partial isomorphism modulo a filter,

727
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partial morphism, 894
partial order, 40, 454
partial order, strict —, 40
partition, 55, 220
partition degree, 224
partition rank, 220
partitioning a relation, 775
path, 189
path, alternating — in a category, 271
Peano Axioms, 484
pinning down, 618
point, 341
polynomial, 399
polynomial function, 416
polynomial ring, 399
positive existential, 494
positive occurrence, 664
positive primitive, 735
power set, 21
predicate, 28
predicate logic, 444
prefix, 187
prefix order, 187
preforking relation, 1097
prelattice, 207
prenex normal form, 469
preorder, 206, 488
κ-presentable, 317
presentation, 739
preservation by a function, 493
preservation in products, 734
preservation in substructures, 496
preservation in unions of chains, 497
preserving a property, 168, 262
preserving fixed points, 655√

-κ-prime, 1314
prime field, 413

prime ideal, 207, 402
prime model, 868
prime model, algebraic, 694
primitive formula, 699
principal ideal/filter, 203
Principle of Transfinite Recursion, 75,

133
product, 27, 37, 744
product of categories, 170
product of linear orders, 86
product topology, 357
product, direct —, 239
product, generalised —, 751
product, reduced —, 242
product, subdirect —, 240
projection, 37, 636
projection along a functor, 260
projection along a link, 276
projection functor, 170
projective class, 636
projective geometry, 1043
projectively reducible, 637
projectively κ-saturated, 804
proper, 203
property of Baire, 363
pseudo-elementary, 636
pseudo-saturated, 807

quantifier elimination, 690, 711
quantifier rank, 452
quantifier-free, 453
quantifier-free formula, 494
quantifier-free representation, 1338
quasi-dividing, 1231
quasivariety, 743
quotient, 179
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Rado graph, 918
Ramsey’s theorem, 926
random graph, 918
random theory, 918
range, 29
rank, 73, 192
∆-rank, 1073
rank, foundation –, 192
real closed field, 429, 710
real closure of a field, 429
real field, 426
realising a type, 528
reduced product, 242, 744
reduct, 155
µ-reduct, 237
refinement of a partition, 1336
reflecting a property, 168, 262
reflexive, 40
regular, 125
regular filter, 717
regular logic, 614
relation, 28
relational, 149
relational variant of a structure, 976
relativisation, 474, 614
relativised projective class, 640
relativised projectively reducible, 641
relativised quantifiers, 447
relativised reduct, 640
Replacement, Axiom of —, 132, 458
replica functor, 979
representation, 1338
restriction, 30
restriction of a filter, 242
restriction of a Galois type, 1015
restriction of a logic, 491
restriction of a type, 560

retract of a logic, 547
retraction, 165
retraction of logics, 546
reverse ultrapower, 734
right local, 1109
right shift, 1297
ring, 397, 457
ring, orderable —, 426
ring, ordered —, 425
root, 189
root of a polynomial, 416
Ryll-Nardzewski Theorem, 877

satisfaction, 444
satisfaction relation, 444, 446
satisfiable, 454
saturated, 793
κ-saturated, 667, 793√

-κ-saturated, 1314
κ-saturated, projectively —, 804
Scott height, 587
Scott sentence, 587
second-order logic, 483
section, 165
segment, 41
semantics functor, 485
semantics of first-order logic, 446
semi-strict homomorphism, 156
semilattice, 195
sentence, 450
separated formulae, 627
Separation, Axiom of —, 10, 458
sequence, 37
shifting a diagram, 313
signature, 149, 151, 235, 236
simple structure, 412
simple theory, 1135
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simply closed, 694
singular, 125
size of a diagram, 251
skeleton of a category, 265
skew embedding, 938
skew field, 397
Skolem axiom, 505
Skolem expansion, 999
Skolem function, 505
definable —, 842
Skolem theory, 505
Skolemisation, 505
small subsets, 825
sort, 151
spanning, 1034
special model, 807
specification of a dividing chain, 1137
specification of a dividing κ-tree, 1144
specification of a forking chain, 1137
spectrum, 370, 531, 534
spectrum of a ring, 402
spine, 981
splitting type, 1098
stabiliser, 391
stability spectrum, 1290
κ-stable formula, 564
κ-stable theory, 573
stably embedded set, 1156
stage, 15, 77
stage comparison relation, 675
stationary set, 138
stationary type, 1272
Stone space, 374, 531, 534√

-stratification, 1306
strict homomorphism, 156
strict Horn formula, 735
strict ∆-map, 493

strict order property, 958
strict partial order, 40
strictly increasing, 44
strictly monotone, 758
strong γ-chain, 1017
strong γ-limit, 1017
strong finite character, 1111
strong limit cardinal, 808
strong right boundedness, 1085
strongly homogeneous, 787
strongly κ-homogeneous, 787
strongly independent, 1332
strongly local functor, 981
strongly minimal set, 1049
strongly minimal theory, 1056, 1149
structure, 149, 151, 237
subbase, closed —, 344
subbase, open —, 345
subcategory, 169
subcover, 352
subdirect product, 240
subdirectly irreducible, 240
subfield, 413
subformula, 450
subset, 5
subspace topology, 346
subspace, closure —, 346
substitution, 234, 465, 614
substructure, 152, 744, 965
∆-substructure, 498K-substructure, 996
substructure, elementary —, 498
substructure, generated —, 153
substructure, induced —, 152
subterm, 228
subtree, 190
successor, 59, 189
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successor stage, 19
sum of linear orders, 85
superset, 5
supersimple theory, 1294
superstable theory, 1294
supremum, 42, 195
surjective, 31
symbol, 149
symmetric, 40
symmetric group, 389
symmetric independence relation,

1084
syntax functor, 485
system of bases for a stratification,
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T0-space, 534
Tarski union property, 614
tautology, 454
term, 227
term algebra, 232
term domain, 227
term, value of a —, 231
term-reduced, 466
terminal object, 166
L-theory, 461
theory of a functor, 971
topological closure, 343, 758
topological closure operator, 51, 343
topological group, 394
topological space, 341
topology, 341
topology of the type space, 533
torsion element, 704
torsion-free, 705
total order, 40
totally disconnected, 351

totally indiscernible sequence, 942
totally transcendental theory, 574
transcendence basis, 418
transcendence degree, 418
transcendental elements, 418
transcendental field extensions, 418
transfinite recursion, 75, 133
transitive, 12, 40
transitive action, 390
transitive closure, 55
transitive dependence relation, 1031
transitivity, left —, 1084
translation by a functor, 260
tree, 189
φ-tree, 568
tree property, 1143
tree property of the second kind, 1221
tree-indiscernible, 950
trivial filter, 203
trivial ideal, 203
trivial topology, 342
tuple, 28
Tychonoff, Theorem of —, 359
type, 560
L-type, 527
Ξ-type, 804
α-type, 528
s̄-type, 528
type of a function, 151
type of a relation, 151
type space, 533
type topology, 533
type, average —, 943
type, average — of an indiscernible

system, 949
type, complete —, 527
type, Lascar strong —, 1168
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types of dense linear orders, 529

ultrafilter, 207, 530
κ-ultrahomogeneous, 906
ultrapower, 243
ultraproduct, 243, 797
unbounded class, 1003
uncountable, 115
uniform dividing chain, 1137
uniform dividing κ-tree, 1144
uniform elimination of imaginaries,

840
uniform forking chain, 1137
uniformly finite, being — over a set,

776
union, 21
union of a chain, 501, 688
union of a cocone, 293
union of a diagram, 292
unit of a ring, 411
universal, 494
κ-universal, 793
universal quantifier, 445
universal structure, 1008
universe, 149, 151
unsatisfiable, 454
unstable, 564, 574
upper bound, 42
upper fixed-point induction, 658

valid, 454
value of a term, 231
variable, 236

variable symbols, 445
variables, free —, 231, 450
variety, 743
Vaughtian pair, 1057
vector space, 403
vertex, 189
von Neumann ordinal, 69

weak γ-chain, 1017
weak γ-limit, 1017
weak canonical definition, 847
weak canonical parameter, 846
weak elimination of imaginaries, 847
weak homomorphic image, 156, 744
Weak Independence Theorem, 1252
weakly bounded independence

relation, 1189
weakly regular logic, 614
well-founded, 13, 57, 81, 109
well-order, 57, 109, 132, 598
well-ordering number, 618, 637
well-ordering quantifier, 482, 483
winning strategy, 590
word construction, 972, 977

Zariski logic, 443
Zariski topology, 342
zero-dimensional, 351
zero-divisor, 411
Zero-One Law, 922
ZFC, 457
Zorn’s Lemma, 110
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The Roman and Fraktur alphabets

A a A a N n N n
B b B b O o O o
C c C $ P p P p
D d D d Q q Q q
E e E e R r R r
F f F f S s S s +
G g G g T t T t
H h H h U u U u
I i I i V v V v
J j J j W w W w
K k K k X x X x
L l L l Y y Y y
M m M m Z z Z z

The Greek alphabet

A α alpha N ν nu
B β beta Ξ ξ xi
Γ γ gamma O o omicron
∆ δ delta Π π pi
E ε epsilon P ρ rho
Z ζ zeta Σ σ sigma
H η eta T τ tau
Θ ϑ theta Υ υ upsilon
I ι iota Φ ϕ phi
K κ kappa X χ chi
Λ λ lambda Ψ ψ psi
M µ mu Ω ω omega
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