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E1. Saturation

1. Homogeneous structures

Recall the relations £f introduced in Section c4.4. We have seen that,
in general, they are not reflexive. In this section we will take a closer look
at those structures  that satisfy A ¢ .

Definition 1.1. Let 2 be a X-structure and « a cardinal.

(a) U is k-homogeneous if % =¥, U, that is, whenever d, b € A<* are
sequences of length less than x with (2, @) = (I, b) and ¢ € A is another
element, then there exists an element d € A such that (2, ac) = (%, bd).
We call A homogeneous if it is | A|-homogeneous.

(b) U is strongly k-homogeneous if, whenever d, b € A<* are sequences
of length less than x with (I, @) = (2, b) then there exists an automorph-

ism 7 of U such that 7(a) = b. We call & strongly homogeneous if it is
strongly |A|-homogeneous.

Example. (a) The structures (Z, <) and (Q, <) are strongly homogen-
eous.

(b) The theory of (w, <) has exactly three countable (strongly) homo-
geneous models whose order types are w, w + (, and w + { - 7, respectively,
where ( is the order type of the integers and # is the order type of the
rationals.

Exercise 1.1. Show that (R, +) is strongly ®,-homogeneous.
Lemma 1.2. Every strongly k-homogeneous structure is xk-homogeneous.

Proof. Let 9 be strongly x-homogeneous. Suppose that a, b e A<* are
sequences with (2, a) = (¥, b) and let ¢ € A. By assumption, there exists
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E1. Saturation

an isomorphism 7 : (%, @) — (%, b). If we set d := 7(c) then we have

(A, ac) = (A, bd).
This implies (2, ac) = (%, bd). ]

Lemma 1.3. Every homogeneous structure is strongly homogeneous.

Proof. Let U be a homogeneous structure of size « := |A|. If a, be A
are sequences with (¥, a) = (%, b) then A 2§, A implies, by definition
of =, that

(2, a) =56 (2, b).

By Lemma C4.4.10, it follows that (2, @) = (2, b). ]

Lemma 1.4. Let T be a first-order theory that admits quantifier elimina
tion for FOoon,. Every model of T is R,-homogeneous.

Proof. 1f A is a model of T then we have I =3¢ QI, by Theorem D1.2.9.
This implies that & =52 9. [

We have shown in Section c4.4 that 2 is an equivalence relation on
the class of all k-homogeneous structures. In the following lemmas we
will study the corresponding equivalence classes. We will show that we
have A = B if and only if both structures realise the same types.

Lemma 1.5. Let B be k-homogeneous and suppose that A is a structure
such that, for all n < w, every n-type realised in U is also realised in B.
For each a € A™, there exists a sequence b € B~* such that

(91, a) = (B, b).

Proof. Let a € A%, for a < x. We prove the statement by induction on a.
If « < w then, since A and B realise the same a-types, we can find
some tuple b with tp(b/B) = tp(a/AU). If A := |a| < a then we can fix
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1. Homogeneous structures

a bijection g : A - « and the claim follows if we apply the inductive
hypothesis to the reordered sequence (ag;))i<a-

It therefore remains to consider the case that « is an infinite cardinal.
We construct (b; )<, by induction on i such that, at every step 5 < a we
have

(A, (ai)icp) = (B, (bi)icp) -

For 8 = o, we have U = B since the unique complete o-type Th(¥)
realised in U is also realised in B. If B is a limit ordinal then there is
nothing to do. Suppose that § = y + 1 is a successor and we have already
defined (b;)i<,. Since « is a limit we have 8 < a. Therefore, we can apply
the inductive hypothesis for « and it follows that there is some sequence
(¢i)i<p such that

(U, (ai)icp) = (B, (ci)icp) -

In particular, we have

(B, (bi)icy) = (U (ai)icy) = (B, (¢i)icy) >

and, since B is k-homogeneous, we can find some element b, € B such
that

<Q3, (bi)i<y) by> = <Q3, (Ci)i<y> Cy> = <91, (ai)i<y, ay) . D

Proposition 1.6. Let B be k-homogeneous and suppose that U is a struc-

ture such that, for all n < w, every n-type realised in U is also realised
in B. Then A 5, B.

Proof. Since If, (%, B) is always x-complete we only need to prove the
forth property. Let @ = b € I;,(%,®) and ¢ € A. By the preceding
lemma, we can find a sequence b’d’ € B such that

(A, ac) = (B,b'd").
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E1. Saturation

In particular, we have (3, b) = (B, b’). Since B is k-homogeneous we
can therefore find some element d € B such that

(B,bd) = (B,b'd") = (B,b).
Hence, dc + bd € I, (Y, D). O
Corollary 1.7. Let A and B be k-homogeneous structures. We have
Az2ro B iff  Aand B realise the same n-types, for all n < w.

Corollary 1.8. If A and B are R,-homogeneous structures that realise the
same n-types, for all n < w, and a € A~®, b € B~ are finite tuples then

(A, a) =po (B,b)  implies (A, d) =0 (B, b).
Proof. 'This follows by Proposition 1.6 and Theorem D1.2.13. O

Theorem 1.9. Let A and B be homogeneous structures of the same size
|A| = |B|. If, for every n < w, U and B realise the same n-types then A =~ B.

Proof. Let k := |A| = |B|. By Proposition 1.6, we have ¥ cf, B and
A 35, B. Hence, the claim follows from Lemma c4.4.10 (a). ]

Corollary 1.10. A complete first-order theory T has, up to isomorphism,
7]

for every cardinal k at most 2> homogeneous models of size k.

Proof. For every set X ¢ §<“(T), there is, according to the preceding
theorem, at most one homogeneous model of size k that realises exactly
the types in X. Since |S<¢(T)| < 2"l the claim follows. O

To build x-homogeneous structures we can use the following lemma.
We will defer the proof of the fact that every structure has a k-homo-
geneous elementary extension to Section 3 where it will follow from a
much stronger result.

Lemma 1.11. Let & be a S-structure and a, b € A® tuples with (2, a) =

(91, b).
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1. Homogeneous structures

(a) There exists an elementary extension B > A such that
(B,d) =oo (B,b) and |B|<|A|®|Z|®|a|®R,.

(b) There exists an elementafy extension B > A and an automorphism
n e Aut®B with n(a) = b.

Proof. (a) For o < k < w, let I} be a new 2k-ary relation symbol and set
Br = (Viy.Lixy)[YuIvig, xuyv AVvIulp, xujv],
and  y} = (Vxj.Lkx7)[9(a, %) < ¢(b, 7)].

The formula S says that Iy has the back-and-forth property with respect

to Ix+,, and the y{ hold if every tuple (¢, d) € I corresponds to a partial

isomorphism ¢ + d from (%, a) to (2, b). Setting

@ :=Th(Ya) U{L} U{Br Ay} | k < w, ¢ an atomic formula },
we have

Bed iff B=YA and ()~ () e ((B,a),(B,b)).

If @ is satisfiable then we can, therefore, use the Theorem of Lowenheim
and Skolem to find the desired structure B. To prove that @ is satisfiable
let @, € @ be finite. There is some m < w and a finite set A of atomic
formulae such that

Qo € Th(A) U{Lo} U{Br Ay} |k<m,pecA}.
Let @’ and b’ be the subsequences of, respectively, a4 and b that appear
in A. Since tp(a’) = tp(b") we can obtain a model (U4, (Ix)k<m) E Do
by setting

Iji={éd e A% [ (A,d'¢) =i (A, 0d) }.
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E1. Saturation

(b) Let f be a new unary function symbol and set

(D::Th(QIA)U{fa,-:b,-|i<(x}

U{Vx3yfy=x}
U{Vx(p(x) < ¢(fx)) | ¢ an atomic formula } .

If B = @ then f2 is the desired automorphism. Therefore, it is sufficient
to prove that @ is satisfiable.

Let @, C @ be finite. There are finitely many indices ko, ..., k,—; < «,
a finite set C C A, a finite signature X, € %, and a finite set A of atomic
formulae over X, such that

Q, ETh(Q[C) U {fak,. = bki ‘ i < n}
U{Vx3yfy=x}
U{Vx(p(x) < o(fx))|ped}.

To simplify notation, set @’ = ay,_ ...ax,_ and b’ = by_...by . Bythe
Theorem of Lowenheim and Skolem, we can find a countable elementary
substructure %, < |5, with Cu a’b’ c A,,.

By (a), there exists a countable elementary extension B, > 2, such
that

n—1i

Hence, by Lemma c4.4.10, it follows that

(B, d') = (Bo, b)),

and there is some automorphism 7 € Aut®, with 7(a’) = b’. Con-
sequently, (B,, ) is the desired model of @, O

Exercise 1.2. Let x be an infinite cardinal. Prove that every structure has
a k-homogeneous elementary extension.
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2. Saturated structures

2. Saturated structures

We have shown in the previous section that x-homogeneous structures
can be ordered with respect to the set of types they realise. In this section
we consider structures that are maximal in this ordering, i.e., homogen-
eous structures realising every type.

Definition 2.1. Let % be a X-structure and « a cardinal.

(a) U is k-saturated if, for all sets C € A of size |C| < «k, every type
p € S°“(C) is realised in 2. A structure U is called saturated if it is
|A|-saturated.

(b) A is x-universal if there exist elementary embeddings B — ¥, for
all X-structures B of size | B| < x such that B = .

Similarly to homogeneous structures we can characterise x-saturated
structures in terms of the relation £¢.

Lemma 2.2. A structure B is k-saturated if and only if
(A,a)=(B,b) implies (A, a)ck, (B,b),
for all sequences a € A<* and b € B<*,

Proof. (=) Suppose that (9, @) = (B, b). We have a ~ b € I (U, B)
and I, (9, B) is k-complete. Therefore, we only need to prove the forth
property. Suppose that ¢ = d € I, (%, 3) and e € A. Set p := tp(e/;)
and let q be the type obtained from p by replacing the constants ¢ by d.
Note that q really is a type since (%, &) = (B,d). As |d| < x and B is
k-saturated we can find some element f € B realising q. Therefore,

(U, ce) = (B,df), thatis, cewr>df eI’ (ADB).

(<) Let C < Bbe a set of size |C| < k and p € §”(C). There exists an
elementary extension U > B in which p is realised by some tuple a. Let
¢ be an enumeration of C. Since (%, ¢) = (B, ¢) we have

(% €) Epo (B, €) -
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E1. Saturation

Hence, by Lemma c4.4.9 we can find a tuple b € B" such that
(U, éa) =k, (B, cb).
Consequently, b is a realisation of p in B. ]
Corollary 2.3. For k-saturated structures A and B, we have
(A, a) =5, (B,b)  iff  (A,a)=(B,b),
forall @ € A< and b € B<*.

We will prove below that every x-saturated structure is k-homoge-
neous. Hence, the next corollary is a special case of Corollary 1.8.

Corollary 2.4. If A and B are R,-saturated then
A=B  implies A= B.
For an example let us take a look at saturated linear orders.

Lemma 2.5. Every R,-saturated dense linear order is incomplete.

Proof. Let a, < a, < ... be a strictly increasing sequence of length w
and set A := {a, | n < w }. We claim that sup A does not exist. For a
contradiction, suppose that the supremum c exists. Choose a type p over
A u{c} containing the formulae

x<c and a,<x forn<w.

Any realisation b of p is an upper bound of A. Hence, b < ¢ = sup A
yields the desired contradiction. O

Lemma 2.6. A linear order is x-saturated if, and only if, it is k-dense.

Proof. We have already shown in Lemma c4.4.6 that every x-dense
linear order is k-saturated. For the converse, suppose that U = (A, <)
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2. Saturated structures

is k-saturated and let C, D ¢ A sets of size |C|, |D| < « with C < D. Let
p € S'(C U D) be any type with

p2{c<x|ceC}lu{x<d|deD}.

Since U is x-saturated there is some element a € A realising p. Hence,
C < a < D and ¥ is x-dense. [

Lemma 2.7. Let (4");.; be an elementary chain of k-saturated structures.
If k < ct A then the union J; A" is also k-saturated.

Proof. Let C c |J; A’ be a set of size |C| < x and suppose that p € S<“(C)
isa type over C. Since|C| < k < cf A thereis some a < A such that C ¢ A“.
Hence, there is a tuple a ¢ A% c |J; A’ realising p. ]

By definition a structure is x-saturated if it realises every n-type, for
n < w, with less than x-parameters. In fact, it is sufficient to realise all

1-types.

Lemma 2.8. Let k > R,. A structure U is k-saturated if, and only if,
whenever C C A is of size |C| < x then every 1-type in §*(C) is realised
in Q.

Exercise 2.1. Prove the preceding lemma.

Theorem 2.9. Let 2 be a X-structure. The following statements are equi-
valent:

(1) Uis k-saturated.
(2) Uis k-homogeneous and it realises every type in S*(@).
(3) Uis k-homogeneous and it realises every type in S<* ().

If k > | 2| ® R, then the following statement is also equivalent to the ones
above.

(4) Uis k-homogeneous and k™" -universal.
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E1. Saturation

Proof. (1) = (2) Let U be x-saturated. By Lemma 2.2, A = U implies
A et Y. Therefore, we have A £ 9, that is, A is k-homogeneous.

It remains to prove that 9 realises every type p € S*(&). For « < «, let
Py = p N FO*[ 2] be the restriction of p to the first « variables. By induc-
tion on &, we construct a sequence (a, )<« such that the subsequence
(ai)i<q realises p,. Suppose we have already defined a;, for i < . Let

Qg 1= {<p(aio,...,aik_l,xa) | O(Xi 5. Xi_>Xxq) €p for
s e ifoy <O}
Since 2 is k-saturated we can find some element a, such that
tp(an/{aili<a})=0q4.

Hence, (a;) ;< realises py,.

(2) = (3) is trivial.

(3) = (1) Letp € S"(U) where |U| < k. Let (¢; ) ;<) be an enumeration
of U and let q € $**" () be the type

q:= {(p(xio,. s Xi 5 XA . .,X)H-n—l) |

@(CigsevrCir s XosevnrXn_y) € p}.

By assumption we can find sequences a ¢ A" and b € A" such that
tp(ab) = q. Since

(A, ¢) = (A, a)

and 9 is x-homogeneous it follows that there is some tuple d € A" such
that

(A, ed) = (A, ab).
Consequently tp(d/¢) = p.

(2) = (4) Suppose that U realises every type in $*(2). We claim that
Ais k™ -universal. Let B be a structure of size | B| < k with B = 2. Choose
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2. Saturated structures

an enumeration b of B and let p := tp(b/B). Then p € S<*(). Hence,
there exists a sequence @ C A realising p. The function b + a is the
desired elementary embedding.

(4) = (1) Suppose that o is k™ -universal. We show that U realises
every type p € $“(@). For each such p we can find a structure B =
and a tuple b € B with tp(b/B) = p. By the Theorem of Lowenheim and
Skolem we may assume that |B| < k. Hence, there exists an elementary
embedding & : B — 9. The sequence h(b) is a realisation of pin Q. []

Theorem 2.10. If U = B are saturated structures of the same size |A| = |B|
then A = B.

Proof. Let « := |A| = |B|. By Lemma 2.2, we have o =¥, B. Therefore,
the claim follows from Lemma c4.4.10 (a). ]

Every structure has a k-saturated elementary extension. There are two
ways to construct such extensions: (i) we can form an ultrapower, or
(ii) we can take the union of an infinite elementary chain where each
structure realises every type over the universe of the preceding structure.
In the following proofs we will employ the first method. Below, where
we construct saturated structures and projectively x-saturated ones, we
will choose the second method.

Proposition 2.11. Let u be a regular ultrafilter over an infinite set I and
let (A")ier be a family of structures. Every countable partial type p over
[1; Ai/uis realised in [T; U; /u.

Proof. Let (¢,) <o be an enumeration of p. Since u is regular, we can
find sets (s, ) <o in 4 such that, for every i € I, the set

{n<wl|ies,}

is finite. Setting w, := s, N---N's, € u we obtain a strictly decreasing
sequence w, D> w; D w, D --- of sets w,, € u. By choice of (s, ), we have

(NYWn=(sn=0

n<w n<w
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E1. Saturation

Sety, == @o A+ A @, and let [¢"], be the parameters appearing in v,,.
According to the Theorem of Lo,

[]%i/uE3xy,(x5[c"]y) implies [Ixy,(x;¢")] cu.

Hence, the sets
woi={iew, | = Ixy,(5:¢) } = w, 0 [3xy,]

are in u. We define a sequence (a; ) ;s as follows. If i ¢ w?, we choose an
arbitrary tuple a; € A;. Otherwise, let #n be the maximal number such
that i € wy, and let a; € A; be a tuple such that A; = v, (a;;¢c").

We claim that [a], realises p. Consider ¢, € p. Then

lon(ai)] 2[va(a;)] 2w, eu implies [¢,(a;)]eu.
By the Theorem of Lo$ it follows that [T; &, /u = ¢, ([a],) - O

Corollary 2.12. Let u be a regular ultrafilter of an infinite set I and let
X be a countable signature. For every sequence (U; ) er of Z-structures, the
ultraproduct [];¢; Ui /u is R, -saturated.

Proposition 2.13. Let u be an ultrafilter over a set I of size k := |I|. The
following statements are equivalent:
(1) uis regular.

(2) For each theory T and every family (U; ) ;e of models of T, the ultra-
product [1; A, [u realises every partial type p over & with |p| < «.

(3) For every structure M, the ultrapower M" realises every partial
type p over M with |p| < .

Proof. (1) = (2) Since |p| < |I| and u is regular we can find sets (s¢) gep
in u such that the sets

Q;:={gpep|iesy}
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2. Saturated structures

are finite. For every i € I, there exists a tuple @’ C A; realising the finite
type @;. We claim that a := (a'); realises p. Let ¢ € p. For every k € s,
we have k € [¢(a')];. Hence, s, € [@(a')]; € u which implies, by the
Theorem of Lo$, that [T; A, /u = ¢([a],).

(2) = (3) follows by setting ; := My, for each i € I.

(3) = (1) We consider the structure M := (M, C) where

M:={XcI||X|<R,},
and the type

p:={{k}cx|kel},

which is finitely satisfiable in M. By (3), there is an element [a], of "
realising p. For k € I, we set

sk::{iel\{k}gai}z[[{k}ga,-]].

Since M" = {k} c [a], it follows by the Theorem of Lo$ that s; € u.
Furthermore, each a; being finite there are only finitely many s; with
i € s;. Hence, the family (s )e; witnesses that u is regular. O

Proposition 2.14. Let I be an infinite set, u a regular ultrafilter on I,
k := |I|, and X a signature of size |X| < k. If A; and B, for i € I, are
2-structures such that A; =B, forall i € I, then

Hgli/ll g;cso H%i/u.

iel iel

Proof. Below we need our structures to be relational. Therefore, we
replace U; and B; by their relational variants A and B as follows. Let
Zrel € 2 be the set of relation symbols and X, € X the set of function
symbols. We replace every function symbol f € X¢,, of type s — t by a
new relation symbol R of type 5t. The resulting signature is

27 122r31U{Rf|f€qun}.
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E1. Saturation

To every X-structure M, we associate a X*-structure M* by expanding
M|, by the graphs

RY ={ab|f™(a)=b}

of the functions f € Zg,,.

Since u is regular there exists a sequence (s, )< Of sets s, € u such
that, for every i € I, the set { a < k | i € s, } is finite. Fix an enumeration
(2%, ko) o<r of all pairs (X7, k, ) consisting of finite subsets X% € X* and
ko C k. Forielandy <k, set

Li=U{Z:liesa},
K; Z:U{k(x|i65“},

m!={aecK;|a>y}.

We claim that
J:[Tifuzl, []Bi/u,
iel iel

where ] € pIso, (TT; &%;/u, IT; B:/u) is the following set of partial iso-
morphisms 4 ~ b. Let @ = (a,),<, and b = (b, ),<, where y < x and
a, = [(al)icr]uand b, = [(b])cr]u. Then @ = b € J if, and only if,

(mﬂn, (ai)veKi) 2 n? (%ﬂpi, (bf,)veK,), foralliel.

It is straightforward to check that J is k-complete and x-bounded. To
show that () — () € J, note that each I is finite and relational. Hence,
we can use Corollary c4.3.6 to show that

A\, =B |, implies A7 2, B

1

L -

It remains to prove that ] has the back-and-forth property with respect
to itself. By symmetry, it is sufficient to prove the forth property. Let
g+ beJandc = [(c")er]u € [1; A;/u. To find a matching element
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2. Saturated structures

d = [(d")ier]u € I1; Bi/u we consider each component d; separately. Let
a = (ay)y<y and b = (b,),<y as above. By definition, 4 + b € ] implies
that

<Q’[?|Ti’ (af/)VEKi> ;mr (%j Ii» (bi)VGKi> :

If y ¢ K;, we take an arbitrary element d; € B;. Otherwise, there exists
some d; € B, such that

(QIHF,-, ((lf,)veK,-a Ci> Emg'_l (%ﬂfi, (bi)ve[{i,di> .

Since y € K; implies m!™" = m? — 1, it follows in both cases that

(Qlﬂfi’ (ai)VGKi’ Ci) gmg’“ (QS?—‘I}) (bi)veK,-, dl) . ]

We have seen that we can find k-saturated elementary extensions,
for all cardinals «. For saturated elementary extensions the situation is
different. The next results give conditions on when such extensions exist.

Proposition 2.15. Let T be a countable complete first-order theory with
infinite models. The following statements are equivalent:

(1) T has a countable saturated model.
(2) T has a countable R,-universal model.
(3) |S°(T)| < Ry, for all finite tuples s.

Proof. (1) = (2) follows from Theorem 2.9.

(2) = (3) Let M be a countable R, -universal model of T. Each type
p € S*(T) is realised in some countable model. Hence, it is also realised
in M. Since M is countable it follows that [S*(T)| < R,.

(3) = (1) First, let us show that |S<“(A)| < R,, for every finite set A.
Let a be an enumeration of A and ¢ the sorts of a. For every finite tuple
of sorts § there exists an injective function f : S°(A) - S*(T) sending
atype p € S*(A) to the type

fp)=1{9(x.7) [p(x,a)ep}.
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E1. Saturation

Consequently, [S*(A)| < [S¥1(T)| < R,. Since T is countable there are
only countably many sorts. Therefore it follows that S<“(A) is countable
as well.

To find the desired saturated model of T' we construct an elementary
chain (M,, ) ,<.» of countable models of T such that each M,,, realises
every type over a finite subset A € M,,. Then the union M,, := U, <, M,
will be the desired countable R -saturated model of T

We start with an arbitrary countable model M, of T. Given M,, we
construct M,,, as follows. Let F be the class of all finite subsets of M,
and set P := Uger S°“(A). By the above remarks it follows that P is
countable. Fix an enumeration (px )k<, of P. Using Lemma c3.5.2 we
construct an elementary chain (¥ )., of countable structures with
A° := M, such that py is realised in AL+, Their union Uy AX is the
desired structure M. ]

For the existence of uncountable saturated structures we can only give
a sufficient condition at the moment. A more precise characterisation
will be presented in Theorem ?? below.

Theorem 2.16. Let T be a complete theory with infinite models. If T is
k-stable, for a regular cardinal x > |T|, then T has a saturated model of
size K.

Proof. We construct an elementary chain (%;);<, of models ; = T
with |A;| = k. We start with an arbitrary model U, of size k. For limit
ordinals &, we set A := ;.5 Y,;. For the successor step, suppose that we
have already defined ;. Since T is k-stable we have |S*(A;)| < , for all
sorts s. Furthermore, there are at most | T| < x sorts. Hence, we can use
Corollary c3.5.3 to find an elementary extension 2;., > 2; of size  that
realises every type in U, S*(A;).

We claim that the limit ¥, is saturated. It is sufficient to prove that
every 1-type over a set U € A, of size |U| < « is realised in . Since « is
regular there exists an index « < k¥ with U ¢ A,. Consequently, every
1-type over U is realised in 4, < U, ]
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2. Saturated structures

We conclude this section with a closer look at definable relations in
k-saturated structures. We have already proved in Lemma c5.6.17 that
the closure ordinal of a least fixed point on an R, -saturated structure is
at most w.

Lemma 2.17. Suppose that 2 is k-saturated and let ¢(x) be a first-order
formula with || < w. Either |p%| < R, or |¢¥| > «.

Proof. Suppose that ¢* is infinite. We construct a sequence (c'l"),g,c of
distinct tuples satisfying ¢. Suppose that we have already defined a’, for
i < a. The set

(%) ={p)}u{x+a|i<a)}

is a partial type since ¢* is infinite. Since 9/ is x-saturated we can therefore
find a tuple a“ realising I, (x). O

Proposition 2.18. A first-order theory T admits quantifier elimination if
and only if we have

A=, B implies A= B,
for all R, -saturated models A, B of T.

Proof. (<«=) follows from Corollary p1.2.12. For (=), note that, accord-
ing to Theorem D1.2.6, if A and B are models of T then we have

I°(%,B) = Iy (%, B).
Furthermore, if 2 and B are R, -saturated then we have
Lo (%, D) = 22 (%, B),

by Corollary 2.3. Since A =, B implies () — () € I3 (2, B), it follows
that A =X° B, ]

Proposition 2.19. If A is k-saturated then so is Z(), for every first-order
interpretation 1.
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E1. Saturation

Proof. Recall that interpretations are comorphisms, that is, for every
formula (%), there is a formula ¢ (%) such that

I = o(Z(a)) iff Aeoer(a).

Suppose that p € S"(U) where U € Z[A] is of size |U| < . Then there is
some set V € A of size |V| = |U| with U = Z[ V]. Since Y is kx-saturated
we can find a tuple a € A" realising the partial type

o = {97 (2,6) | p(£.T(e)) e p, e V)

over V. It follows that Z(a) realises p. ]

3. Projectively saturated structures

In a saturated structure every type over sets of a certain size is realised.
We can extend this requirement by also including types with second-
order variables. Structures that realise also all types of this form are
called projectively saturated.

Definition 3.1. Let 2 and = be disjoint signatures and T € FO°[X] a
first-order theory.

(a) A E-typeis a subset p € FO°[X U E] such that T U p is consistent.
p is complete if p = Th() for some (XU E)-structure U satisfying T. The
set of all complete 5-types is denoted by S=(T).

(b) A X-structure U realises a Z-type p if it hasa (XU E)-expansion .,
with 2, E p.

(c) We call a structure 2 projectively k-saturated if it realises every
{&}-type over a set of less than x parameters, for all relation symbols
and function symbols &.

Lemma 3.2. Every projectively k-saturated structure is k-saturated and
strongly k-homogeneous.

Proof. Let M be a projectively x-saturated X-structure.
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3. Projectively saturated structures

First, we show that M is x-saturated. Let A C M be a subset of size
|A| < x andletp € S"(A). We have to find some ¢ € M" with tp(¢/A) = p.
Let 9N be some elementary extension of M that realises p and fix a tuple
d € N" of type p. Let R ¢ X be a new n-ary relation symbol and set
R = {d}. Since M is projectively «-saturated there exists a relation R™
such that

(M, R™, a) = (N, R™, a),

where 4 is some enumeration of A. It follows that R™® contains exactly
one tuple ¢ and we have tp(¢/A) = tp(d/A) = ».

It remains to show that M is strongly x-homogeneous. Let @, b € M%,
for & < «, be sequences such that (M, a) = (M, b). Set

®(f) = Th(M, &, b)
u{fa;=b;li<a}
u{Vx3yfy=ux}

U{Vx(p(x) < ¢(fx))|peFO},

where f ¢ X is a new unary function symbol. By Lemma 1.11, we know
that @( f) is satisfiable. Hence, ®( f) is an { f }-type over ab and there
exist a function 77 : M — M such that (M, ab) £ ®(x). In particular,
7 is an automorphism of M with 7(a) = b. O

Theorem 3.3. Let A be a X-structure and x > |X| ® R, a regular cardinal.
There exists a projectively k-saturated elementary extension B > U of size
|B| < |A[* .

Proof. If A is finite then it is already projectively x-saturated, for all «.
Therefore, we may assume that U is infinite. Let us write € £ © if © is an
expansion of some elementary extension of €. If (€; ) ;. is a E-chain then
we can form its union U;., ¢; and, by the same proof as for elementary
chains, it follows that €; © U, €;.

Set y := |Z| @ R, and A := (JA| & p*)<*. Then A<* = 1 > x. We will
construct a £-chain (€, )4y, of length Ax where the structure €, is of
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E1. Saturation

size |Cy| = A ® (a @ 1). For simplicity, we assume that C,, is the set of
ordinals less than A(« + 1). The X-reduct of the union U, €, will be
the desired structure B > . Note that B = Ak has size |[B| = A ® x = A.

For every finite tuple § of sorts and each sort ¢ fix a new relation
symbol R; of type § and a new function symbol f;; of type § — t. Let £ be
the set of these symbols. For U € B we can consider T := Th(%) as an
incomplete theory over the signature 2. Hence, we have the type space
$%(U) := S(FO[Zy u E]/T). Fix an enumeration (p;);<), of all {&}-
types p; € STH(U;), for all possible £ € 5 and all subsets U; € B of size
|U;| < . For every v < «, there are |B|” = A” < A<* = A subsets of size v
and 2#®V < A<* = ) different {&}-types with v parameters. Therefore,
the above enumeration contains A ® A = A different types. Consequently,
we can choose the sequence (p;);<1. such that, for every a < «, each
{&}-type p appears at least once with some index Aa < i < A(a +1).
In particular, we assume that every type appears cofinally often in our
enumeration.

We start the construction of (€;); with an arbitrary elementary exten-
sion €, > A of size |C,| = A. For limit ordinals §, we set €5 := U5 €y
For the successor step, suppose that €, has already been defined.

IfU, ¢ Cy = A +1) or if p, is inconsistent with Th((€, )¢, ) then
we choose an arbitrary elementary extension ¢, > €, with universe
A(a+2). Otherwise, let ® be a model of p, UTh((€, ) ¢, ). By the Theorem
of Léwenheim and Skolem we can choose ® of size |D| = 1. Hence, we
may assume that D = A(a + 2). By construction, we have €, £ ® and
we can set €, 1= 9.

This concludes the construction of (€;)4. Let ® := Ugcrr €o. We
claim that B := D is a projectively x-saturated elementary extension
of . Since A < €, =D we have A < B. Let V C Bbe a set of size | V| <
and let p be a { £} -type over V. We have to find a relation or function &%
such that (By, %) & p. Since V € Ak, |V| < k, and « is regular there is
some ordinal & such that V' ¢ Aa. By construction, there is some index i
in the range Ao < i < A(a+1) such thatp = p; and V = U;. Consequently,

(€i11)u, = p; implies (By, £%+) k= p. [
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Corollary 3.4. Let k > |X| & R,. Every X-structure % has a projectively
k" -saturated elementary extension of size at most |A|*.

In the definition of a projectively saturated structure we only require
that every type with one free second-order variable is realised. In fact,
we can add several relations at the same time.

Proposition 3.5. Let U be a projectively k-saturated X-structure. Then
AU realises every E-type over less than k parameters with |Z| < k.

Proof. Letpbea Z-type and B k= p a structure of size « realising p. Fix an
arbitrary bijection f : Bx B — B and let (§;);<, be an enumeration of =.
We choose « different elements c; € B, i < a. Using the pairing function f
we can replace each relation or function &; by a unary relation P;. Finally,
we define a 4-ary relation R by

R:={{(a,a,b,f(a,b))|a,beB}
u{{ci,a,a,b)|beP,acB,a+c;}.

Note that B is definable in the structure B’ := (B|s, R, (P;):, (¢i)i)-
Since A is projectively x-saturated it has an expansion ' = B’. We can
apply the definition of B in B’ to the structure A’ to obtain the desired
(XU £)-expansion U, of A with A, = B. ]

4. Pseudo-saturated structures

Depending on the model of set theory there can be first-order theories
without saturated models. But if we slightly weaken the definition of
saturation then we can prove that such models always exist.

Definition 4.1. A structure ¥ is pseudo-saturated, or special, if there
exists an elementary chain ()|, indexed by cardinals «, such that
A = U, Yy and every 2, is k" -saturated.

Lemma 4.2. Every saturated structure is pseudo-saturated.
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E1. Saturation

Proof. If U is saturated then it is k" -saturated, for all ¥ < |A|. Therefore,
we can obtain the desired chain (), be setting ¥, := A forallx. []

By a strong limit cardinal we mean a cardinal of the form 15 where
J is either o or a limit ordinal.

Theorem 4.3. Let A be an infinite X-structure and x a strong limit cardinal
with k > |A| @ |X|. Then A has a pseudo-saturated elementary extensions
of size K.

Proof. Suppose that ¥ = J;. Fix a strictly increasing sequence (1;)i<cfs
of cardinals A; < 25 such that

Qs =sup{A;|i<cfd} =sup{2t|i<cfd).
By removing some elements of this sequence, we may assume that 1, >
|A| @ |Z]. We construct an elementary chain (B;);<.fs such that
* B, =2,
e each B;,, is a A} -saturated structure of size |B;,,| = 2} and
* |B,| < 2", for limit ordinals y.

The first structure B, is already defined. If i = j + 1is a successor then
|Bj| < 2% implies that we can apply Corollary 3.4 to find a A} -saturated
elementary extension B, > B; of size |B;| = |B;|* = 2. Finally, for
limit ordinals y, we can set B, := Ui<y B, since

B, =sup {2" | i<y} <2t

The structure B := U; B, is an elementary extension of B, = A of
size |B| = sup { 2 | i < cf § } = k. We claim that B := |U; B, is pseudo-
saturated. Let g be an increasing function from the set of all cardinals
less than « to the ordinal cf § such that Ag(,) > , for all 4 < x. Then
By (u)+ 1 )t;(y)-saturated and the chain (B,(,)+1) <k Witnesses that

B is pseudo-saturated. ]

Corollary 4.4. Let T € FO[ZX] be a consistent first-order theory.
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(a) T has a pseudo-saturated model.

(b) If T has infinite models and k > |[FO[X]| is a strong limit cardinal
then T has a pseudo-saturated model of size «.

Proof. (b) By the Theorem of Lowenheim and Skolem T has a model U
of size |A| = [FO[ Z]|. Therefore, we can apply the preceding theorem to
obtain a pseudo-saturated elementary extension B > 9 of size «.

(a) If T has infinite models then the claim follows from (b). Otherwise,
T has a finite model and every finite structure is saturated. ]

Theorem 4.5. If A =B are pseudo-saturated structures of the same size
|A| = |B| then A =~ B.

Proof. Suppose that % = U, A, and B = U, B,. Choose subsets C,. C
A, and D, € B, of size |C,| = |Dy| = k such that

U Ci=A and U,D, =B.

By induction on «, we construct an increasing chain of partial isomorph-
isms (py )« With py € I, (U, B) such that

Cy Sdomp, A, and D, Crngp, C B,.

The union p := U, px is the desired isomorphism.

Let po := () = (). If k is a limit cardinal then we set p, := U, Pa-
Since I, (Y, B) is k-complete, we have p, € I, (U, B). Finally, suppose
that k = A" and py = a ~ b € I}, (%, B) has already been defined.
Let ¢ be an enumeration of C, and d one of D,. Since ¥, and B, are

k" -saturated, we have
(%, a) = (B, D).

As |¢] = |d| = x < k" we can apply Lemma c4.4.9 to find sequences
e (A,)"and f € (By)" such that

(91, ace) =X (B, bfd).
In particular, p, := @éé v~ bfd e I, (¥, B). O
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Lemma 4.6. Let U be a pseudo-saturated X-structure of size |A| = .

(a) The expansion (%, a) is pseudo-saturated, for every sequence a € A*
of length a < cf «.

(b) The reduct |y is pseudo-saturated, for every I C X,

Proof. (b) follows immediately from the definition.

(@) Let A = Uy, A where U, is A -saturated. Since « < cf  there is
some index y < x with a ¢ A,. It follows that (2, 4) is A * -saturated, for
every A > u. Consequently, (U, ) = U< (Ureu> @) is pseudo-saturated.

[

As an easy corollary of Theorem 4.5 we see that every pseudo-satu-
rated structure o is cf (|A|)-homogeneous. In fact, we will show below
that it is even projectively cf(|A|)-saturated.

Proposition 4.7. Every pseudo-saturated structure A of size |A| = « is
strongly cf(«)-homogeneous.

Proof. Suppose that (9, a) = (2, b), for a,b € A* with « < cf k. The
expansions (2, a) and (2, b) are pseudo-saturated, by Lemma 4.6 (a).
Consequently, it follows by Theorem 4.5 that they are isomorphic. []

Every pseudo-saturated structure of size « is projectively cf(x)-sat-
urated and x*-universal. To prove this fact we need some technical
lemmas.

Lemma 4.8. Let A be a X-structure and B a X, -structure with X c X .
If A and B are pseudo-saturated, A = Bls, and |X,| < |A| < |B| then
there exists an elementary embedding h : A — B|x such that the set rng h
induces a substructure of B.

Proof. Suppose that A = Uy Ay and B = U, B). Let (a4 )q4<x be an
enumeration of A such that a, € A}y, for all «. We choose a bijection
7:k — T[2,, A] such that

(a) =t(ai,,...,a;,_ ) implies io,...,i; <.
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To define h we construct an increasing sequence (pg)q<x Of partial
elementary maps py € Izo (YU, B) such that, for all « < «,

¢ domp, € Ay and rng py € By
¢ [pal < 2af,
* ay €dom Py,
o if (&) = t(a) then t2[py(a)] € rng pa, .
The limit & := U, po will be the desired elementary embedding.
We start the construction with p, := @. For limit ordinals &, we set
Ps = Ua<s pa- For the successor step, suppose that p, = ¢ — d has

already been defined. Suppose that 7(a) = t(a) and let y := t®[p4(a)].
As )y is || " -saturated there is some element x € A\, such that

(U, cx) = (B, dy).

Similarly, since B, is |a|*-saturated we can find an element z € B)y
with

(U, cxay) = (B, dyz).
We set poyy = Cxay = c?yz. ]

Theorem 4.9. Let U be a pseudo-saturated X-structure and Z a signature
disjoint from 2. If |A| > |Z| @ | 5| then U realises every E-type p € S*(@).

Proof. Let p* ¢ FO°[I'] be a Skolemisation of p and fix a pseudo-sat-
urated model B realising p* such that B[y = A and |B| > |A|. We can
use Lemma 4.8 to find exists an elementary embedding / : A - B|s
whose range B, := rng h induces a substructure B, of B. We define a
I'-expansion U, of U by setting

g = p 7 [E%], foréelNX.

It follows that /i : 2, = B,. Since p* is a Skolem theory we have B, < B.
This implies that U, =z B, = p*. Consequently, A, := A, |5z is the
desired model of p. O
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Corollary 4.10. Let U be a pseudo-saturated structure of size |A| =
and let A be a set of first-order formulae that is closed under conjunctions.
If B is any structure of size |B| < k with B <3, U then there exists a
A-embedding B — 2.

Proof. Let @ := Thy(Bp). If we can show that @ U Th(¥) is consistent
then we can use Theorem 4.9 to find an expansion ¢ of U satistying @.
Hence, the Diagram Lemma implies that there exists a A-embedding
B — A

It remains to prove that @ U Th(Q) is consistent. Suppose otherwise.
Then there are finitely many formulae ¢, (b,), ..., ¢n_1(b,_,) € @ with
parameters b; € B such that

Th() E ~@o(bo) V-V =@ i(bn_y).

Since @ is closed under conjunction we may assume w.l.o.g. that n = 1.
Consequently,

But B E Ik, (x) and B <3, A implies that A = Fx¢, (x). Contradic-
tion. ]

Theorem 4.11. A pseudo-saturated structure of size x is k™ -universal and
projectively cf(x)-saturated.

Proof. Let U be pseudo-saturated. If B = A is a structure of size |B| <
then we can use Corollary 4.10 to find an elementary embedding & — 2.
Consequently, U is k™ -universal.

For the second claim suppose that d € A is a sequence of a < cf x
elements. Then (2, a) is pseudo-saturated by Lemma 4.6 (a). It follows
by Theorem 4.9 that (9, a) is projectively 1-saturated. Consequently, & is
projectively cf (x)-saturated. O

Corollary 4.12. If U is pseudo-saturated and |A| is reqular then A is
saturated.
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Corollary 4.13. Every saturated structure of size k is projectively k-satu-
rated.

Proof. Suppose that U is saturated. Then so is (2, a), for every a € A<*.
Since saturated structures are pseudo-saturated it follows that every
expansion (2, a) by less than x constants is projectively 1-saturated.
Consequently, U is projectively x-saturated. ]

We conclude this section with a few results about definable relations
in pseudo-saturated and projectively saturated structures. We start with
an analogue of Lemma 2.17.

Lemma 4.14. Suppose that A is pseudo-saturated and let ¢(x,¢) be a
first-order formula with parameters ¢ € A where |%| < w. Then ¢(x, ¢)*
is either finite or |@(%, ¢)%| = |A|.

Proof. Suppose that % = U, ). If 9% is infinite then, by Lemma 2.17, we
have || > A*. Consequently,

1% > [™| > A", forall A < |A],
implies that || = |A]. [

Lemma 4.15. If A is pseudo-saturated then so is T(), for every first-order
interpretation 1.

Proof. Suppose that A = U, U, where each 9, is k" -saturated. Note that
A <Ay  implies Z(AU,) <Z(YU,), forxk<A.
Hence, the structures Z(9, ) form an elementary chain with limit

U Z() = Z(@).

k<|A]

Furthermore, according to Proposition 2.19, each structure Z(2l,) is
x*-saturated. Hence, Z(Q) is pseudo-saturated. N
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E1. Saturation

Lemma 4.16. Let T be a first-order interpretation from X to I' and let
k > |Z| @ |I'| be a cardinal. If A is projectively x-saturated then so is Z(Y).

Proof. Let a € Z(A) be a sequence of less than x-parameters and sup-
pose that p is a {{}-type over a. We can find parameters ¢ € A and an
interpretation J with 7 (%, ¢) = (Z(¥), a). Replacing A by (2, ¢) and
7 by J we can therefore simplify notation by omitting the parameters.

To show that p is realised in Z(Q) fix a (I' u {&})-structure B E p
realising p. Let A be a strong limit cardinal with A > |X| & |I'| and choose
pseudo-saturated structures 2, and B, of size A such that A, = A and
B, = B. Then Z(A,) = B, |r implies, by Theorem 4.5, that Z(2, ) =
B, |r. Let &€ (1+) be the relation on Z (2, ) induced by this isomorphism
and let £+ be its preimage under Z. Similarly, for every { € I, let (*'* be
the preimage of {(*(*+) under Z. W.l.o.g. assume that X and I" are disjoint.
Let 9, be the (XuT u{&})-expansion of (I, &+ ) by all these relations
and functions {**. We can extend Z to an interpretation J with

T () = (Z(A,), ECW).

Since k¥ > |X| @ |I'| we can use Proposition 3.5 to finda (Y uT' U {&})-
expansion " of A with A’ = . It follows that 7 (") isan (I'u {£})-
expansion of Z () with 7 (') = 7(2.) =B, =B. O
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1. Definability in projectively saturated models

As an application of the notions introduced in the previous chapter we
study the relationship between definable relations and automorphisms.

Definition 1.1. Let L be an algebraic logic, M a structure,and U € M a
set of parameters.

(a) A tuple a € M is L-definable over U if there is an L-formula ¢ (X;¢)
with parameters ¢ € U such that ¢(&; &)™ = {a}.

(b) The L-definitional closure of U is the set

dcly(U) :={ae M| ais L-definable over U } .

The set U is L-definitional closed if it is a fixed point of dcl;.

(c) We say that an L-formula ¢(x; ¢) with parameters ¢ € M is algeb-
raic if o (%; ¢)™ is finite. An L-type p is algebraic if it implies an algebraic
formula.

We call a tuple a € M L-algebraic over U if there is an algebraic
L-formula ¢ (&; ¢) with parameters ¢ € U such that M = ¢(4;¢).

(d) The L-algebraic closure of U is the set

aclp(U) :={ae M| ais L-algebraic over U } .

The set U is L-algebraically closed it it is a fixed point of acl;.
(e) For L = FO we simply say that a is definable or algebraic over U
and we write dcl(U) and acl(U) without the index L.

Lemma1.2. Let M be a structure. The operators dclgo and aclyo are closure
operators on M with finite character.
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E2. Definability and automorphisms

Proof. Every element a € U is definable over U by the formula x = a.
Consequently, U € dclgo(U) S aclgo (U).

If a is definable or algebraic over U by the formula ¢ (x;¢), the same
formula can be used to show that a is definable or algebraic over any
set V 2 ¢. Consequently, U € V implies dcl(U) € dcl(V) and acl(U) <
acl(V). Furthermore, it follows that a € dcl(¢) or a € acl(¢), respectively.
Hence, these operators have finite character.

Finally, suppose that a is definable over dcl(U). Let ¢(x; ¢, d) be the
corresponding formula where d € U and ¢ € dcl(U) \ U. For every
element c;, there is a formula y; over U with y2" = {¢;}. We can define a
over U by the formula

¢ (x:d) = [ A (i) np(xs 7).

The proof for acl is analogous. Suppose that a is algebraic over acl(U)
and let ¢(x; ¢, d) be the formula witnessing this fact where d € U and
¢ Cacl(U) \ U. For every element ¢;, fix a formula y; over U such that
y ™ is a finite set containing c;. Set m = |¢(x, ¢, d)™|. The following
formula shows that a is algebraic over U.

¢ (x:d) = 39| Ayi (i) A 9(3) A 9(x:3.d) |,

where

9(7) = Vzor-Vzm| A 9(2537,d) >

V zi :zk]

i<k
states that there are at most m elements z satisfying ¢(z; 7, d). ]

For strongly k-homogeneous structures there is a tight relationship
between types and automorphisms.

Lemma 1.3. Let M be strongly x-homogeneous and U € M a set of size
|U| < k. For a,b € M, the following statements are equivalent:

816



1. Definability in projectively saturated models

(1) tp(a/U) =tp(b/U)

(2) There is some automorphism m € Aut M with
ntU=idy and n(a)=">.

Proof. (1) = (2) follows from the definition of a strongly x-homoge-
neous structure, while (2) = (1) follows from the fact that isomorphisms
preserve first-order formulae. ]

As a consequence we can express the definitional closure and the
algebraic closure in terms of automorphisms.

Definition 1.4. Let M be a structure and U € M.

(a) Let £ and ( be two tuples or two relations in M. We say that { is a
conjugate of & over U if £ is mapped to { by an automorphism of M that
fixes U pointwise.

For a sets of formulae @ and ¥ we similarly say that ¥ is a conjugate
of @ over U if there exists an automorphism 7 fixing U pointwise such
that

Y= {cp(fc;ﬂ(c')) ’ @(x;¢) € CD}.
(b) We define the following two closure operators on M:

dclaut(U) := { a € M | a has exactly one conjugate over U },
aclaut(U) := { a € M | a has only finitely many conjugates
over U }.

Exercise1.1. Let M be a structure. Prove that dcla,; and aclay¢ are closure
operators on M.

Example. Let B be a vector space and let U € V. Then

dclpu(U) = (U)z.
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E2. Definability and automorphisms

Remark. Let M be a structure and U € M. We can write the pointwise
stabiliser of U in AutIM and its setwise stabiliser as

(AutM)(yy = AutMy  and  (AutM)(yy = Aut (M, U).

In arbitrary structures the relationship between dcl; and dclyy, and
between acl; and aclyay; is as follows.

Lemma 1.5. Let L be an algebraic logic, M a structure, and U € M.
(a) dclp(U) € dclpu(U)
(b) acly(U) < aclaw(U)

Proof. (a) If there is an automorphism 7z with 77 } U = idy and 7(a) = b,
for a # b, then

ME ¢(a;c) < o(b;¢),

for all L-formulae ¢ and all parameters ¢ € U. Consequently, a is not
L-definable over U.

(b) Similarly, if the orbit of a under AutMy is infinite then every
formula satisfied by a is also satisfied by infinitely many other elements.
Hence, a is not L-algebraic over U. ]

For sufficiently saturated structures the two closure operators coincide.
Theorem 1.6. Let M be x-saturated and strongly k-homogeneous, a € M

an element, and let U € M be a set of size |U| < k.

(a) The following statements are equivalent:
(1) a € ddgo(U)
(2) aedcaw(U)
(3) tp(a/U) has exactly one realisation in M.

(b) The following statements are equivalent:

(1) a€aclg(U)
(2) ac€aclaw(U)

818



1. Definability in projectively saturated models

(3) tp(a/U) has only finitely many realisations in M.

Proof. (a) (2) < (3) follows by Lemma 1.3.

(1) = (3) Fixa formula ¢(x) over U that defines a. Since ¢ € tp(a/U),
it follows that a is the only realisation of tp(a/U).

(3) = (1) Suppose that a ¢ dclgo (U). It follows that, for every finite
set @ of first-order formulae over U, there is some element b # a such
that

M A O(a) < A O(b).

By the Compactness Theorem and the fact that M is x-saturated, it
follows that we can find some element b # a with

tp(a/U) = tp(b/U).

(b) (2) < (3) follows by Lemma 1.3.

(1) = (3) Fix a formula ¢ (x) over U such that (p(m is a finite set contain-
ing a. Since ¢ € tp(a/U) it follows that there are at most |¢™| realisations
of tp(a/U).

(3) = (1) We can use an analogous argument as in (a) to show that a ¢
aclgo (U) implies that there are infinitely many realisations of tp(a/U).

[
Corollary 1.7. Let M be a structure and U € M. Then

nlacl(U)] =acl(U), forallme AutMy .

Proof. Let a € acl(U). To show that 7(a) € acl(U) we consider the set
A € M of all realisations of tp(a/U). By Theorem 1.6, A is a finite set
with A € acl(U). Consequently, 7(a) € A € acl(U). ]

Corollary 1.8. Let M be x-saturated and strongly k-homogeneous, and
let A, B € M be sets of size |A|, |B| < .
(a) The following statements are equivalent:
(1) Acdc(B)
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E2. Definability and automorphisms

(2) dcl(A) < dcl(B)
(3) AutMy 2 Aut M.
(b) The following statements are equivalent:
(1) Acdc(B)and B<dcl(A)
(2) dcl(A) = dcl(B)
(3) AutMy = Aut M.

Proof. (b) follows from (a).

(a) (1) < (2) Clearly, dcl(A) c dcl(B) implies A ¢ dcl(A) < dcl(B).
Conversely, A ¢ dcl(B) implies dcl(A) ¢ dcl(dcl(B)) = dcl(B).

(1) = (3) Suppose that A € dcl(B) and let 7 € Aut M. Then it follows
by Theorem 1.6 and definition of dclay(B) that

n(a)=a, forallaedclp,(B)=dc(B)2A.

Hence, m € AutMy,.
(3) = (1) Suppose that AutMNty 2 AutMyg and let a € A. Then a ¢
dclaut(A) implies that

n(a)=a, forallme AutMy.
In particular, we have
n(a)=a, forallme AutMg.
By Theorem 1.6 and definition of dcls,¢(B), it follows that
a € dclpy(B) = dcl(B). O

As an application of Theorem 1.6, we present the following character-
isation of the algebraic closure.

Lemma 1.9. Let M be a X-structure that is k-saturated and strongly k-
homogeneous, for some cardinal k > |X|, and let U € M be a set of size
|U| < k. Then

acl(U) =({A|A=<MwithUc A}.
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1. Definability in projectively saturated models

Proof. (<) Let A < M be an elementary substructure containing U. To
show that acl(U) ¢ A, consider an element a € acl(U). There exists an
algebraic formula ¢(x) over U with a € ™. Let m := |¢™|. Then

ME=I"xp(x) implies AEI"xe(x).

Since ¢* c o™ it follows that ¢* = ¢™. Hence, a € ¢* C A.

(2) Suppose that a ¢ acl(U). We have to find an elementary sub-
structure A < M containing U such that a ¢ A. By Theorem 1.6 and the
fact that M is x-saturated, there exists a sequence (b, )q<x Of distinct
elements such that

tp(by/U) =tp(a/U), foralla<xk.

Using the Theorem of Lowenheim and Skolem, we can find an elementary
substructure A, < M containing U with

Ao| < U] ® |2 < k.

There exists an index & < x with b, ¢ A,. Since M is strongly x-homoge-
neous, we can find an automorphism 7 with 77 | U = idy and 7(by) = a.
Set U := [, |. Then A < M contains U but not a. N

After considering the definability of single elements we now study the
relationship between automorphisms and definable relations. Our first
result gives a characterisation of those relations that are definable over a
set U of parameters.

Lemma 1.10. Suppose that M is k-saturated and strongly k-homogeneous
and let U € M be a set of size |U| < x. An M-definable relation R ¢ M"
is U-definable if, and only if, n[R] = R, for all m € AutMy.

Proof. Clearly, a U-definable relation is invariant under all automorph-
isms of M that fix U pointwise. For the converse, suppose that R is
defined by the formula ¢(&; ¢) with ¢ € M. Consider the set

D :={g(x;¢) A-g(x50)}
u{y(x) < v(x") | vaformulaover U }.
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E2. Definability and automorphisms

If @(x,x")uUTh(M), ) is satisfiable then @ is a partial type and, since M is
k-saturated, there are elements d, b € M" satisfying ®. Let 1, : UU @ —
U u b be the function with 7, | U = idy and 7,(a) = b. By choice
of G and b this is an elementary partial function. Since M is strongly
x-homogeneous, we can extend it to an automorphism 7 : M — M. But
we have d € ¢ = Rand 7(a) = b ¢ 9™ = R. Hence, R is not invariant
under automorphisms of AutMy. A contradiction.

Consequently, @ U Th(M,, ) is not satisfiable. Hence, there are finitely
many formulae v, ..., ¥,_, over U such that

M= VEVE | Al (%) < 33 (2)] > [9(5:0) < 9(%50)]].

For I € [m], define

x1(x) = Awi(x) A N\ -vi(%),
iel i¢l
and let
S:={Ic[m]|Me xi(a) forsomeaeR}.
It follows that

aeR if M=\ y(a).
IeS

Consequently, the formula Vg (%) defines R over U. ]

An analogous result for relations with finitely many conjugates will
be given in Lemma 3.1 below.

If the structure M is even projectively saturated, we can drop the
assumption that the relation R is M-definable. In particular, the following
result implies that FO has the Beth property.

Theorem 1.11. Let X, = be disjoint signatures, k > |Z|, and T ¢ FO°[X]
a first-order theory. For a complete E-type p € S=(T) and a relation
symbol R € E, the following statements are equivalent:
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1. Definability in projectively saturated models

(1) There is an FO<*[X]-formula ¢(x) such that
pEVX[Rx < ¢o(x)].

(2) If M is a model of T and N,, N, are realisations of p in M then
R¥ = R,

(3) There is a model M of T which is either projectively k-saturated, or
saturated and of cardinality at least |X U Z|, such that

R = R™,  for every pair Mo, N, of realisations of p in M.

(4) There is a model M of T which is either projectively k-saturated, or
saturated and of cardinality at least |X U Z|, such that
a[R™ ] =R™, for every realisation M, of p in M and
each automorphism m € AutIN.
Proof. The implications (1) = (2) and (3) = (4) are trivial. (2) = (3)
is also trivial, except for the existence of M which follows by Corol-
lary E1.3.4.

(4) = (1) The proof is similar to that of the preceding_lemma. Let s be
the type of R. We choose new constant symbols ¢ and d and we set

@ :=pU{Ré-Rd}u{y(c) < y(d) |y eFO’[Z] }.

If @ is inconsistent, there are finitely many formulae yo, ..., ¥m-, €
FO’[ 2] such that

pEVER| A li(%) < vi(7)] ~ (R < Rp)|.

i<m

As above we define

xi(%) = Avi(2) A \-yi(%), forIc[m].

i€l i¢l
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For every I ¢ [m], it follows that we either have
pE yi(x) >Rx or pkE y(x)—> -Rx.
Consequently, we can define R by the formula

@(x) = I\/SXI()_C) where S:={Ic[m]]|pE x;(x) > Rx}.

It remains to consider the case where @ has a model 2. We claim that
this is impossible. Since p is complete it follows that |y = M|s. Con-
sequently, we can use Proposition E1.3.5 to expand M|s to a model M*
of @. Let @ and b be the values of the constants ¢ and d in M*, respectively.
Then

(M5, a) = (M5, b).
Since M| is strongly R,-homogeneous it follows that there is some

automorphism 7 € AutM|s with 7(a) = b. Buta € R™ and m(a) = b ¢
R™" contradicts our choice of M. ]

Corollary 1.12. Let X, = be disjoint signatures, R € = a relation symbol,
and T € FO°[Z] a complete first-order theory. If p € S%(T) is a complete
E-type such that, for every realisation M of p and all automorphisms
m € AutM|s, we have

n[R™] = R™,
then there is an FO<“[ X]-formula ¢(x) such that
pEVX[Rx < ¢(x)].

Proof. Since T has a projectively |=|" -saturated model, the claim follows
from Theorem 1.11. [
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Corollary 1.13. Let X, Z be disjoint signatures, R € E a relation symbol,
and T € FO°[X] a first-order theory. If p is a E-type such that, for every
realisation M of p and all automorphisms m € Aut M|, we have

n[R™] = R™,

then there are finitely many formulae ¢,(%),..., ¢, (X) € FO“[X]
such that

pE \V VX[Rx < ¢;(%)].
i<n
Proof. If q 2 p is a complete Z-type, we can use the preceding corollary
to find a formula ¢, (%) defining R modulo q. Consequently,

pE\ {Rx < ¢,(%)]q2pcomplete } .

By compactness, it follows that there are finitely many complete types
qO) LR )qn—l 2 p Wlth

pE V[RE < ¢y (%)].
i<n L]

Below we will frequently work in projectively saturated elementary
extensions of a given model. In order to simplify the presentation and to
avoid having to include phrases like ‘there exists an elementary extension
such that, it turned out to be a good idea to fix such an extension once
and for all. If this structure is sufficiently saturated, we can use the
Amalgamation Theorem and Theorem E1.2.9 to embed all other models
we consider into it.

Thus, let us fix a projectively x-saturated model M of T where « is some
very large cardinal. We call M the monster model of T. All models M
of T we will consider are tacitly assumed to be elementary substructures
of M of size |[M| < .

We call a relation R € M" small if |R| < k. Otherwise, it is large. To dis-
tinguish small and large relations we denote the latter by blackboard bold
symbols A, B, C, . ... Note that, by Lemma E1.2.17, definable relations are
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either finite or large. Mostly, we will only consider types p € $°(U) over
small sets U of parameters. Note that every such type is realised in M.
Similarly, we will tacitly assume that all parameter-definable relations
are defined over a small set of parameters.

To simplify notation, we will drop the model M and write just 4 =y b
instead of (My, a) = (My, b). By Lemma 1.3, it follows that @ =y b if,
and only if, there exists a U-automorphism 7 of Ml mapping d to b. We
extend this notation to sequences of sets A, ..., Ay, Bo,..., B, € M by
defining

Ay...A, =y B,...B,
if there are enumerations a; of A; and b; of B; such that

tp(do ... a4 U) = tp(by...b,/U).

2. Imaginary elements and canonical parameters

In this section we present a construction adding to a given structure
new elements representing all definable relations. More generally, we
add elements for every class of a definable equivalence relation.

Definition 2.1. Let M be an S-sorted structure. An equivalence formula
is a formula y(x, y) without parameters defining an equivalence relation
on M?, for some § € S<°. The tuple § is called the type of y. We denote the
equivalence class of a tuple a € M* by [a],. The elements of the quotient

M? [ x™ are called imaginary elements.

Given M we construct a new structure M*? by adding all imaginary
elements.

Definition 2.2. Let M be an S-sorted X-structure.
(a) Set

§¢4:= { y | x an equivalence formula } ,
XT=Xu{p, | xeS9}.
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We regard S as a subset of $°9 via the identification of s € S with the
formula (x = y) € $°4, where x and y are variables of sort s.

We construct an $°-sorted X°I-structure M9 as follows. For every
equivalence formula y of type §, the domain of sort y is

S /.M
M3 M

By the identification of s € S with (x = y) € §°4, we obtain an embedding
of M into M®4. We interpret the symbols of ¥ ¢ X9 in M4 according
to this embedding. The new function symbols p, are interpreted as the
canonical projections M* — M*/ X(m.

(b) To avoid ambiguities we denote the definable closure and the
algebraic closure of a subset U ¢ M®? by dcl*!(U) and acl®¥(U), re-
spectively, while dcl(U) and acl(U) are the closures of U in the original
structure M.

Remark. (a) Every finite tuple @ € M® is encoded in M®9 as a single
element [a], € MY of sort

X()Z:’)_/) EXo = Yo N ANXy—1=VYn-15

where the variables x; and y; have sort s;.
(b) For each formula ¢(x), we can define the equivalence formula

x(x,7) = 9(x) < o().

There are two imaginary elements of sort y: one representing ¢™, the
other one representing —¢>. Consequently, M9 contains imaginary
elements for all relations definable without parameters.

The next proposition shows that, when considering the logical proper-
ties of a structure, the transition from M to M*? does not change much.
But we will see below that, when studying automorphisms, this construc-
tion allows us in certain cases to replace setwise stabilisers by pointwise
ones.

Proposition 2.3. Let M be a structure.
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(a) M is a relativised reduct of M*9.
(b) There exists a first-order interpretation mapping M to M.
(c) For every formula ¢(%) € FO°[2%9], we can construct a formula
¢'(x) € FO°[ 2] such that
M= g(a) if Meg'(a), forallae M.

(d) A =B implies A = B,
(e) M= (M )apea.
(f) Every element of MY is definable over M.

(g) Every elementary embedding g : A — B can be extended to an
elementary embedding A1 — B in a unique way.

(h) The restriction map
p:Aut M - AutM: w71 | M

is a group isomorphism.

(i) Forevery U ¢ M, we have
dc(U) =dd*Y(U)nM and acl(U) =acd*Y(U)n M.

Proof. (a) and (b) follow immediately from the definition of 9.

(c) and (d) follow from (b) via Lemma c1.5.9 and Corollary c1.5.13,
respectively.

(e) Every imaginary element [a], € M is denoted by a term p,a
with parameters a ¢ M.

(f) follows immediately from (e).

(g) Let g : A - B be an elementary embedding. It follows by (b)
and Lemma c2.2.10 that the map [a], — [g(d)], is an elementary
embedding A°? - B9 extending g. For uniqueness, suppose that there
are elementary embeddings h,, h, : A% - BT with h, [ A = h, | A
By Theorem B3.1.9, it follows that i, | {A)oea = h, | {A)oea. Hence,
(e) implies that h, = h;.
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(h) First, note that p is well-defined since it follows by Lemma c2.2.10
and (a) that, for all 7 € Aut M®9, the restriction 7 | M is indeed an auto-
morphism of M. Furthermore, p is obviously a group homomorphism.
Hence, it remains to show that it is bijective. For surjectivity, note that,
by (b), every automorphism of M can be extended to one of M*4. For
injectivity, note that, by (g), every automorphism of M can be extended
to at most one of M.

(i) To see that acl(U) ¢ acl*(U) note that, if there is a formula ¢
over U defining a finite set X in M then the same formula can be used
to define X in M*9. For the converse, suppose that ¢ is a formula over U
defining a finite set X ¢ M in M®4. By (c), we can find a formula ¢’
over U defining the same set in M. The claim for the definable closure is
proved analogously. ]

According to the preceding proposition, the first-order theory of M4
only depends on the theory of M. Consequently, we can extend the
operation 4 to theories.

Definition 2.4. For a complete first-order theory T, we denote the theory
Th(M®?) by T*4.

It also follows that adding imaginary elements does not change the
structure of the type spaces.

Corollary 2.5. Let U € M and U, ¢ M be sets.
dcY(U) = dd*Y(U,) implies & (TY(U)) 2 & (T(U,)).

Proof. Since dcl*!(U) = dcl*¥(U,), it follows by Proposition 2.3 and
Lemma c3.3.4 that FO°[Zy, ]/ T(U,) is a retract of FO°[Z1]/T*4(U).
Consequently, the claim follows by Corollary c3.3.3. ]

As a consequence, many logical properties of M and T transfer to
MY and T°9. We give two examples.

Lemma 2.6. Let T be a complete first-order theory, M a structure, and
x an infinite cardinal.
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E2. Definability and automorphisms

(a) M is x-saturated if, and only if, MY is k-saturated.
(b) T is k-stable if, and only if, T4 is k-stable.

Proof. (a) We have seen in Proposition E1.2.19 that k-saturation is pre-
served under interpretations.

(b) (<) Suppose that T is k-stable. To show that T is k-stable,
consider a set U ¢ M of size |U| < k. By Corollary 2.5, we have

S (T(U)) =& (T*(V)).

Consequently, [S*(T(U))| = [S°*(T*(U))] < «.

(=) Suppose that T is x-stable and let U € M®d be a set of size |U| < «.
There exists a set C € M of size |C| < |U| ® R, < & with U ¢ dcl*I(C).
By Corollary 2.5, we have

S (T(C)) =& (TY(UuQ)).
Consequently, |S*(T¢3(U))| < [S*(T9(UUC))| = |S*(T(C))|<x. [

We have seen that the operation of adding imaginary elements is
well-behaved. But what do we gain by it? As an example, consider the
following problem. Suppose that a relation R is defined by a formula
¢(%; ) with parameters ¢. There might be many other parameters d
such that ¢ (x; d) defines the same relation R. Sometimes, we would like
the parameter ¢ to be unique. Using imaginary elements, this can be
done. We start by defining the equivalence formula

X3 7) = Vi[e(x:7) < o(%:7)].

Then two tuples d and b are equivalent if ¢(%;d) and ¢(%;b) define
the same relation. Consequently, the tuples in [¢], are precisely those
defining R. The imaginary element e := [C], is a unique representative
of this set. We obtain a formula

y(%2) = 3y[@(%:7) A pyj = 2]

such that e is the unique element such that y(x; e) defines R. Let us
formalise this construction.
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Definition 2.7. Let ¢(%; 7) be a formula.
(a) The parameter equivalence for ¢ is the formula

(3, 5') = Vx[p(%:7) < 9(%5)].
(b) A tuple ¢ is a canonical parameter of a relation R if there exists a
formula y(x; y) such that ¢ is the unique tuple satisfying
(%)M =R,
In this case, we call the formula y(; ¢) a canonical definition of R.

In this terminology we can state the above remark as follows.

Lemma 2.8. Let y be the parameter equivalence of a formula ¢ (x; y). For
every tuple ¢, the imaginary element [¢], € My is a canonical parameter

of p(%; €)™

Proof. The formula
y(&:[e]y) = 35[9(%57) Ay = [€]y]
is a canonical definition of ¢(&; ¢)™. ]

Corollary 2.9. Every relation R ¢ M that is definable over a set U € Ml
has a canonical parameter e € dcl*Y(U).

Thus, all parameter-definable relations R ¢ M* have canonical para-
meters in M®d. We will see in Corollary 2.12 below that the same is
true for parameter-definable relations in M®4. The reason for this is
that performing the operation ¢4 twice does not offer any additional
benefit: according to the following proposition there exist, for every sort
x € (8°9)°%, a sort € $°Y and a definable bijection (M*?){? — M.
Hence, every doubly imaginary element is already present as a singly
imaginary one.
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E2. Definability and automorphisms

Proposition 2.10. For every equivalence formula y(%, y) with type ( €
(S€9)", there exist a sort 1 € S°Y and a definable, surjective function

[ (M) o (M)
such thatker f = Y™

Proof. Each sort {; € S°1 is itself an equivalence formula of some type
§; € 8%, We set
N(Xo .. Xpos Yo one Vo) =
X(p(oxo’ e ’p(n—lxn_l’ p(o)-/o’ e ’p(n—l)_/n_l) :

Then 7 € $°Y is an equivalence formula of type S, . .. $,-,. We claim that
the desired function f : (M®2)¢ — (M®9)" is defined by the formula

0(%,y) = 320+ Fzna| \ %1 = Pr.2i A PyZo- - Zna = 7|
Note that
M = (&, b)

if, and only if, there are tuples a,, . .., a,—, such that

&= {[do)tsr--r[Ansle,.) and b =[d...dpo]y

Since the equivalence class [d, ... d,-, |, does not depend on the par-
ticular choice of representatives d; € [d;]c,, the element b is uniquely

determined by &. Thus, ¢ defines a function f : (M®9)¢ — (M®9)",
To see that f is surjective, note that, for every element [d, ... d,—, ], €
(M), we have

[Go...dn]y = f([Gole,>- s [Gn]c, ) €TDGf.
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2. Imaginary elements and canonical parameters

Hence, it remains to compute the kernel. Let &, &’ € (M eq)Z and sup-

pose that & = ([do|¢,>.--»[An-]¢,_, ) and &' = ([agle,...» 45 ]¢,,)-
Then

f(a) = f(&)

—

iff M Ay[o(a, y) Ap(d,y)]
iff [a-o--°d1’l—l]1’] = [d;'“d:z—l]ﬂ
iff theqlzﬂ(do---dn—nd’---d, )

o n-—1

if MYE y(a,a’). O
We obtain the following generalisation of Lemma 2.8.

Corollary 2.11. Let M be a structure. For every formula ¢(%; ), there
exists a formula w(x;z) such that, for every tuple b € M®, there is a
unique tuple ¢ € MY with

p(x0)™ = y(x:0)™ .
Proof. Let ¢(x; ) be a formula with parameter equivalence x (7, 7).
According to Proposition 2.10 there exists a definable and surjective

function f : (Meq)Z — (M®9)" such that ker f = y™. We claim that the
formula

y(%:2) = le(x:7) A f(7) = 2]
has the desired properties.

We start by proving that ¢(%;0)™ = y(%;6)™ where ¢ := f(b).
Clearly, every tuple satisfying ¢(&; b) also satisfies y(%; ¢). Conversely,
suppose that g satisfies tp(x ¢). Then there is some tuple b’ € f~ '(¢)
such that @ € ¢(%;b")™ . By definition of f, it follows that b’ € [b] v
Hence, ¢(%;0')™" = ¢(x;5)™ . Consequently, a satisfies ¢(%; b).

It remains to show that ¢ is unique. Hence, suppose that ¢’ is some
tuple with ¢(%;6)™ " = y(%; &)™ . As f is surjective, there exists an
element b’ € f~*(¢"). Since

p(&D)T =y = 9(x0)™,
it follows that M & y(b, b’). Consequently, ¢’ = f(b') = f(b) =¢. [
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Corollary 2.12. Every parameter-definable relation in M°Y has a canonical
parameter.

3. Galois bases

We can characterise canonical parameters also in a more algebraic way
via automorphisms.

Definition 3.1. A Galois base, or canonical base, of a relation R € M is
a set B € M such that

n[R]=R if ntB=idg, forallmeAutM.

Remark. According to the definition, B is a Galois base or R if, and
only if, in Aut M the setwise stabiliser of R coincides with the pointwise
stabiliser of B, i.e., if Aut{M], R) = Aut M.

From the results of Section 1 it follows that, for parameter-definable
relations, Galois bases are the same as canonical parameters. But note
that the notion of a Galois base also applies to relations that are not
definable. Before giving the proof, let us present some technical lemmas.
The first one is an immediate consequence of Lemma 1.10.

Lemma 3.2. If B is a Galois base of a parameter-definable relation R, then
R is definable over B.

Lemma 3.3. Let R ¢ M be a relation and B € M a set. The following
statements are equivalent:
(1) B is a Galois base of R in the structure M.
(2) B is a Galois base of R in the structure M®9.
Proof. As the restriction map 7 +— 7 [ M is an isomorphism between
Aut M*9 and Aut M, the following two statements are equivalent:
e 7[R]=R < #a!B=idg, forallme AutM.
e 7[R]=R < #aB=idg, forallme AutMed.
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3. Galois bases

[

Lemma 3.4. Let R be a relation and A, B sets.

(a) If dcl(A) = dcl(B), then A is a Galois base of R if, and only if, B is
a Galois base of R.

(b) If A and B are both Galois bases of R, then dcl(A) = dcl(B).

Proof. (a) Suppose that A is a Galois base of R. By Corollary 1.8, it follows
that

AutMp = Aut M, = Aut(M, R).

Hence, B is a Galois base of R.
(b) Since both A and B are Galois bases, we have

AutMp = Aut(M, R) = Aut M, .
Therefore it follows by Corollary 1.8 that dcl(A) = dcl(B). O

With these preparations we can prove that, for parameter-definable
relations, Galois bases and canonical parameters are the same.

Proposition 3.5. Let R be a parameter-definable relation and b a tuple.
The following statements are equivalent:

(1) b is a Galois base of R.
(2) b is a canonical parameter of R.

(3) dcl®d(b) is the least dcl®-closed set over which R is definable.

Proof. (2) = (1) Suppose that y(x; b) is a canonical definition of R. To
show that b is a Galois base of R, consider an automorphism 7 of M.
Then

n(b)=b implies 7[R]=y(%n(b))™ = y(xb)" =R.
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Conversely,
7[R] =R implies (% 7(b))™ = y(x;b)™.

By uniqueness of b, it follows that n(b) = b.
(1) = (2) Suppose that b is a Galois base of R. By Lemma 3.2, there
exists a formula ¢(x;Z) such that

R = o(x;b)™.
First, let us show that there is no tuple b’ # b with
b =g b and (%)M = (% b))

For a contradiction, suppose otherwise. Since b and b’ have the same
type, there exists an automorphism 7 with 7(b) = b’. It follows that

n[R] = 7[p(%:6)"] = p(%:7(b))" = p(%:0")" = R.

Since b is a Galois base of R, this implies that 77(b) = b. Hence, b’ = b.
Contradiction.
Set (%) := tp(b). We have shown that

O(7) () L{Vx[p(7) = 9(&)]} =7
By compactness, there exists a finite subset @, € @ such that
Po(7) L (') L {Vx[p(%:7) < 9(£:7)]} £ 3= 7"
Consequently, we obtain a canonical definition of R by setting
y(%b) = p(%:b) A /\ Po(b).

(2) = (3) Let b be_ a Galois base of R. We have seen in Lemma 3.2 that
R is definable over b. Suppose that R is definable over a dcl?-closed set
A € M®9, For € Aut M®9, it follows that

n}A=id, implies n[R]=R implies n(b)="5.
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Consequently, AutM! ¢ Aut qu and it follows by Corollary 1.8 that
b c dc®i(A).

(3) = (1) We have seen in Corollary 2.9 that R has a canonical para-
meter e € M4, By (3), this implies that dc1*d(b) ¢ dcl®d(e). Conversely,
since R is definable over b, it follows by the already proved implication
(2) = (3) that dcl®(e) ¢ dcl®(b). Consequently, dcl®(e) = dcl®d(b).
Note that, by the already established implication (1) = (2), e is a Galois
base of R. Therefore, we can use Lemma 3.4 (a) to show that b is also a
Galois base of R. ]

Relations that are not definable still might have a Galois base. Of
particular interest are relations that are definable by types.

Definition 3.6. A Galois base of a type p € S°(M) is a Galois base of the
relation p™ defined by it.

For types, Galois bases do not necessarily exists. But if they do, they
are unique up to definable equivalence.

Definition 3.7. For a type p with Galois base B, we set
Gb(p) := dcl*Y(B).

Remark. By the Lemma 3.4, it follows that Gb(p) is the maximal Galois
base of p and that it does not depend on the choice of B.

Lemma 3.8. Let T be a complete first-order theory and p € S*(M) a type.
If p is definable over U C M, it has a Galois base B ¢ dcl*Y(U) of size
|B| < |T].

Proof. Let ¢(x;y) be a formula without parameters and let §,(y) be
a ¢-definition of p over U. By Corollary 2.9, the relation R,, := (8,)™
has a Galois base b, € dcl*d(U). Set B := { b, | ¢ aformula }. Then
|B| < |T| and B < dcl*d(U). To show that B is a Galois base of p, consider
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an automorphism 7 € Aut M®d. Then

n(p)=p iff n[R,]=R,, forallg
it  n(b,)=0b,, forallg
iff T rB = idB >

as desired. ]

Corollary 3.9. In a stable first-order theory T, every complete type over a
set U has a Galois base in dcl*1(U).

Proof. Let p be a complete type over U. According to Theorem c3.5.17,
p is definable over U. Hence, the claim follows by Lemma 3.8. ]

Lemma 3.10. Let p € S*(M) be a definable type and U € M a set of
parameters. Then p is definable over U if, and only if, Gb(p) ¢ dcl*I(U).

Proof. (=) follows by Lemma 3.8.
(<=) According to Lemma 3.8, p has a Galois base B. Since p is definable
we can find, for every formula ¢(X; y), a definable relation R, such that

p(x;c)ep iff  ceR,.

Since B ¢ Gb(p) < dcl*Y(U), it is sufficient to show that R,, is defin-
able over B. For each automorphism 7 € AutM3!, we have n[p] = .
Consequently, 7[R, ] = R,. Therefore, Lemma 3.2 implies that R, is
definable over B. ]

We conclude this section with a characterisation of the algebraic clos-
ure in M®9. We start with an analogue of Lemma 1.10 for the algebraic
closure.

Lemma 3.11. A parameter-definable relation R has finitely many conjug-
ates over a set U € ML if, and only if, R is definable over acld(U).
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3. Galois bases

Proof. (<) Suppose that R is definable over ¢ ¢ acl®!(U). Then
{7[R] | 7meAutM } < [{n(c) | m e Aut My} < R, .

Hence, R has only finitely many conjugates over U.
_ (=) Suppose that R has only finitely many conjugates over U and let
b be a Galois base of R. Then

{m(b) | e AutMEd Y| < [{ 2[R] | 7 € AutMI}| < &, .

By Theorem 1.6, it follows that b < acl®d(U). Furthermore, we have seen
in Lemma 3.2 that R is definable over b. H

The algebraic closure of a set U in M®? can be characterised as follows.

Definition 3.12. Let U € M be a set of parameters and 5 a finite tuple of
sorts. We denote by FE* (U) the set of all formulae y(x, y) over U where
% and j have sort § such that ™ is an equivalence relation on M* with
finitely many classes.

Lemma 3.13. Let d, b € M be finite tuples and U c M a set of parameters.
Then

a=Z,qg0y b it M y(a,b) forall xere*(U).

Proof. (=) Let y € FE*(U) and let B := [I;]XM c M be the y™-class
of b. The conjugates of B over U are y™-classes. Since there are only
finitely many such classes, it follows by Lemma 3.1 (b) that B is definable
over acl“(U). Therefore, we can use Proposition 3.5 and Corollary 2.9
to find a canonical definition y(x; e) of B where e € dcl®d(acl®Y(U)) =
acl*(U). Since

a =acl®a(U) b,

it follows that

M k& y(b;e) implies M E y(dse).
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Hence, d € B implies Ml = y(a, b).

(«<=) Suppose that M = ¢(a;¢), for ¢ € acl®d(U). We have to show
that M & ¢(b; ¢). There exists a formula y(x) over U such that y™ is a
finite set containing ¢. The formula

x(%,7) = (V2.y(2))[9(%:2) < ¢(3:2)]

defines an equivalence relation with finitely many classes. Therefore,
y € FE*(U) and M E y(a, b). Since ¢ € y™, it follows that

ME ¢(a;¢) implies Mk ¢(b;¢). O

4. Elimination of imaginaries

In the abstract we can capture the property of M4 exhibited in Proposi-
tion 2.10 by the following definition.

Definition 4.1. A structure M has uniform elimination of imaginaries if,
for every equivalence formula y(%, y) of type 3, there exist sorts f and a
definable function f : M® - M’ such that ker f = y™.

We say that a theory T has uniform elimination of imaginaries if every
model of T does.

We have shown in Proposition 2.10 that structures of the form M4
have uniform elimination of imaginaries.

Proposition 4.2. Every structure of the form MY has uniform elimination
of imaginaries.

Exercise 4.1. Show that the structure (N, +, - ) has uniform elimination
of imaginaries.

Frequently, the following weaker condition is equivalent to having
uniform elimination of imaginaries.
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Definition 4.3. A structure IM has elimination of imaginaries if, for each
equivalence formula y(x, ) of type § and all tuples @ € M*, the equival-
ence class [], has a canonical parameter.

We say that a theory T has elimination of imaginaries if every model
of T does.

For structures where dcl(@) is non-trivial, elimination of imaginaries
already implies uniform elimination of imaginaries.

Lemma 4.4. Let M be a structure. The following statements are equivalent :
(1) M has uniform elimination of imaginaries.

(2) M has elimination of imaginaries and at least one of the following
conditions holds:

o There is some sort u with |[dcl(@) n M*| > 1.
o |M?| <1, for all sorts s.

Proof. (1) = (2) To show that M has elimination of imaginaries, consider
an equivalence formula y(x, ) and a tuple a in M. By (1), there exists
a definable function f with ker f = y™. Then [4] x has the canonical
definition

w(x%;b) = (f(x)=b) where b:=f(a).

To conclude the proof, suppose that there is some sort s with |[M*| > 1.
We have to find a sort u with |dcl(@) n M*¥| > 1. Consider the equivalence
formula

x(xx'syy') = (x=x") & (y=y')

of type ss. By (1), there exists a definable function f with ker f = y™. Fix
distinct elements ¢, d € M°. It follows that the tuples a := f(c,c) and
b := f(c,d) are definable and distinct. Fixing an index i with a; # b;,
we obtain distinct elements a; and b; in dcl(@) of the same sort.

(2) = (1) If | M?| < 1, for all sorts s, every equivalence formula y defines
the equality relation. Hence, the identity function has kernel y™ and we
are done.
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It therefore remains to consider the case where |dcl(@) N M*| > 1, for
some sort u. Let y(%, 7) be an equivalence formula of type 5. For every
tuple a € M, fix a canonical definition 8;(%; bs) of [a],. Let £; be the
sorts of b;. We obtain a formula

Ya(%;7) = 0a(%, 7) A VZ[8a(% ) < x(%,2)]

that defines a partial function f; : Uz - M with kernel y™|y.. Note
that the domain Uj; of f; is a union of y-classes and that it is definable
by the formula

94(%) = Ipya(%. 7).

Hence,
M = |J U; implies Th(M) = \/ 9;.
aeMs aeMs
By compactness, there are finitely many tuples d,,...,d, € M® such

that M* = U;, U---U U, . Fix distinct elements ¢, d € dcl(@) n M*. The
formula

P(X5 Yos - Jur 2) i=
\/[1//&,-(93;)71') nxeUa N (Ug,u---uUa,,)

i<n
AN\Fi=(c...5c)

i
ANZ = (c,...,c,d...,d)]
——
i times
defines a function f : M — Mo fant-tt yith ker f = Xm. ]

As an example, we consider o-minimal structures and, in particular,
real closed fields. We say that a theory T has definable Skolem functions
if, for every formula ¢(%, y), there exists a definable function f such
that

TEVx[Iye(x,y) » o(x, f(x))].
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Proposition 4.5. Every o-minimal structure M with definable Skolem
functions has elimination of imaginaries.

Proof. We start by proving that every parameter-definable set P ¢ M
has a canonical definition. Suppose that P € M is parameter-definable.
By o-minimality, P is of the form

P=(ao,bo)U--U(am>bm_y) U{Cor--vsCnr}>
for elements a;, b;, c; € M satisfying
Ao <bs<a,<b <---<ayu_,<bp,_., and c,<--<cu_,.

Fix such a decomposition of P where m and » are minimal. Then

w(x;d,b,¢) = [\/(ai<xAx<bi)v\/x:ci]

i<m i<n
/\[/\a,-<bi/\ /\ bi<(li+1/\/\Ci<Ci+1:|
i<m i<m-1 i<n-1

is a canonical definition of P.

To show that M has elimination of imaginaries, let (X, y) be an equi-
valence formula of type § and let @ € M*. To find a canonical definition
of [a],, we define, by induction on i < n := |5, a formula y;(yi;2;),
parameters b;, and a definable function s; such that

o y;(y;;b;) is a canonical definition of the relation defined by
Si()/i;d, I;O) RS I;i—l) =
E|)/i+1”'E|yrz—1X(é> So(l;o)a cen >5i—1(l_9i—1)>
YVi> Vitr> - >yn—1) >
o ME l//i(Si([),’);i?i).

Suppose that we have already defined the formulae v, (yo; bo)s ...,
Vi (¥i—13 bi—,) and the functions s, . .., s;—,. Since 9; defines a set, we
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can use the statement we have proved above to find a canonical defin-

ition v;(yi; b;) of 9??()/,-; d,bo,...,bi_,). Let s; be a definable Skolem

function for the formula v;(y;; Z;). This concludes the inductive step.
We claim that the formula

1//(56; 1_90, cey l_on_l) =

x(x, So(Do)s v vssu_y(bpy))
WA V)’i[%()’i;bi) < 9i(yi;3'c,bo,...,bi_l)]

i<n

is a canonical definition of [],. By construction, we have

y(%5b0, ..., bpe)™ = [a] -
Suppose that b, ..., b’ _ are tuples such that

y(x;00,...,0,_ )" =[a],.
Then
iy b)™ = 9:i(3isa, by, ., biL)™
By choice of y; we can use induction on i to show that l_og = b;. ]

Corollary 4.6. The theory RCF of real closed fields has uniform elimination
of imaginaries.

Proof. After we have shown that RCF has definable Skolem functions, we
can use Proposition 4.5 to show that RCF has elimination of imaginaries.
Since 0,1 € dcl(@), it therefore follows by Lemma 4.4 that it even has
uniform elimination of imaginaries.

Hence, it remains to show that RCF has definable Skolem functions.
Let ¢(%, y) be a formula. By o-minimality, for every choice of values ¢
for the variables %, the relation ¢(a, y)™ is of the form

(P(Ea)’)M = (aoa bo) U---u (am—la bm—l) U {doa cee >dn—1} >
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for elements a;, b;, c; € M satistying
Ao <by,<a,<b,<---<ayu_,<b,., and d,<---<d,_,.

Furthermore, it follows by Theorem D3.3.11 that there exists a bound
k < w such that, for every tuple ¢, we can choose a decomposition as
above where the numbers m and # are less than k.

Let y(%; y) be a formula stating that, for the given value of %, there
are numbers m, n < k and tuples a, b, d such that

o (%, Y M = (a0, bo) U+ U (amsbpm) U{do,....dy},

¢ m and n are the minimal numbers such that ¢ (%, y’')™ can be
written in this form,

* ao<bo<al<b1<"'<am_1<bm_1 anddo<"'<dn_1,

d, ifn>o,

(ao+by)/2 ifn=0,m>o0, and —o0 < a, < b, < 00,

¢ y=1b,—1 ifn=0,m>o0, and —co = a, < b, < o0,
Ao, +1 ifn=0, m>o0, and —co < a, < b, = 00,
o otherwise .
Then y(x, y) defines a Skolem function for ¢ (%, y). O

We can use Galois bases to characterise theories with elimination of
imaginaries.

Proposition 4.7. Let T be a complete first-order theory. The following
statements are equivalent:

(1) T has elimination of imaginaries.

(2) Every parameter-definable relation has a canonical parameter.

(3) Every parameter-definable relation has a finite Galois base.

(4) For every parameter-definable relation R, there exists a least dcl®d-
closed set B € M over which R is definable.
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(5) For every imaginary element e € M9, there is a finite set B ¢ M

with dcl*Y(e) = dcl®Y(B).

Proof. (3) = (4) < (2) follows by Proposition 3.5.

(2) = (1) Let x(%, y) be an equivalence formula. If every parameter-
definable relation has a canonical parameter then, in particular, this is
true for every relation of the form [4],.

(1) = (5) Let e € M;q be an imaginary element and E := p;(e) the
corresponding equivalence class. Since T has elimination of imaginar-
ies, there exists a canonical definition y(%; b) of E. Obviously, we can
choose the tuple b to be finite. According to Proposition 3.5, b is a Galois
base of E. Note that, in the structure M, {e} is a Galois base of E.
Consequently, it follows by Lemmas 3.3 and 3.4 that

dcl®(e) = dcl®d(b).

(5) = (3) Let R be a parameter-definable relation. We fix a formula
@(x;¢) with parameters ¢ defining R. Let x(, ') be the parameter
equivalence for ¢(X; y) and set e := [¢],. By assumption, there exists
a finite set B € M such that dcl*(e) = dcl*(B). We claim that B is a
Galois base of R. Note that, by Lemma 3.3, it is sufficient to prove that
B is a Galois base of R in the structure M®d. Furthermore, it follows by
Lemma 2.8 and Proposition 3.5 that e is a Galois base of R. Therefore,
Lemma 3.4 (a) implies that B is also a Galois base of R. ]

5. Weak elimination of imaginaries

In this section we take a look at a weaker condition than elimination of
imaginaries.

Definition 5.1. (a) A tuple ¢ is a weak canonical parameter of a relation R
if there exist a formula y/(x; ¥) such that ¢ is one of only finitely many
tuples satisfying

(%)M =R,
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5. Weak elimination of imaginaries

In this case, we call the formula y(x; ¢) a weak canonical definition of R.

(b) A complete first-order theory T has weak elimination of imagin-
aries if, for each equivalence formula y(x, 7) of type § and all tuples
a € M, the equivalence class [a], has a weak canonical parameter.

We start with an analogue of Proposition 3.5.

Lemma 5.2. Let R be a parameter-definable relation and U a set. The
following statements are equivalent:

(1) R has a weak canonical parameter ¢ with acl(¢) = acl(U).

(2) acl(U) is the least algebraically closed set over which R is definable.

Proof. (1) = (2) Let y(x;¢) be a weak canonical definition of R. We
claim that acl(¢) is the least algebraically closed set over which R is
definable. Obviously, R is definable over acl(¢). To show that acl(¢) is
the least such set, let ¢(&; b) be an arbitrary formula defining R. We
have to prove that acl(¢) € acl(b). The formula

9(j;b) = Vx[y(%7) < ¢(%;b)]

defines the finite set { &’ | y(%; &)™ = R }. This implies that ¢ C acl(b),
as desired.

(2) = (1) Suppose that acl(U) is the least algebraically closed set over
which R is definable. Fix a formula y(; ¢) with parameters ¢ ¢ acl(U)
defining R. Note that, by assumption on U, it follows that acl(¢) =
acl(U).

We start by proving that there are only finitely many tuples ¢’ such
that

&'=5¢ and y(x;8 )M =R.

For a contradiction, suppose otherwise. By compactness, we can then
find a tuple ¢’ such that

& ¢ad(é), & =yé, and y(xd)M=R.
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Since R is definable over ¢’ it follows by assumption on U that
¢ cacl(U) cacl(c).

As ¢' =4 ¢, there exists an automorphism 7 with 7(¢") = ¢. Setting
¢" == n(¢) it follows that

¢¢acl(c”) and ¢&"” cad(c),
Since, for every tuple 4,

ME ¢(a;sc”) if MEee(an(c))
iff MEo(n'(a);c)
if Mk o(n'(a);c)
if Meog(an(c)) if Meeg(ad),

it furthermore follows that y(%; &)™ = R. But, by assumption on U,
this implies that ¢ € acl(U) c acl(¢”). A contradiction.

Set @(y) := tp(¢). We have shown that there exists a number n <
such that

D(Jo) U0 B(7a) U { VElY(E 71) < w(& 0] | ik <n )

is inconsistent. By compactness, we can find a finite subset @, € @ such
that

Do(Jo) U0 B () U { VE[y(E3:) < w(&3:)] | ik <n)
is already inconsistent. Consequently, the formula

y(x56) AN Do (C)
is a weak canonical definition of R with acl(¢) = acl(U). O

Corollary 5.3. If a and b are weak canonical parameters of a relation R,

then acl(a) = acl(b).
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For relations that do have a Galois base, we can be more precise.

Lemma 5.4. Let R be a parameter-definable relation with Galois base b.
A tuple ¢ is a weak canonical parameter of R if, and only if,

bcdd(é) and ¢cad(b).

Proof. By Proposition 3.5, we can fix a canonical definition §/(%; b) of R.
_ (=) Suppose that y(x;¢) is a weak canonical definition of R. Then
b ¢ dcl(¢) since b is the unique tuple satisfying

9(z;¢) :=Vx[y(x;¢) < v(x:2)].
Furthermore, ¢ C acl(b) since the formula
¢(75b) = Vx[y(% ) < ¥(%;b)]

defines a finite set containing c.

(<) Let us first consider the special case where R = @. Then @ is a
Galois base of R and it follows by Lemma 3.4 that b ¢ dcl(@). Hence,
¢ € acl(@) and there exists a formula 9( ) that defines a finite relation
containing the tuple c. It follows that the formula

y(%;¢) = =9(¢)

is a weak canonical definition of R = @&.

It remains to consider the case where R # @. Fix formulae 9(z; ) and
@(7;2) such that 9(z; &)™ = {b} and ¢(7; b)™ is a finite set containing ¢.
We claim that the formula

y(x;¢) = 32[9(2¢) Ai(:2) A o(62) ]

is a weak canonical definition of R. Clearly, y(&; ¢)™ = R. Furthermore,
suppose that ¢’ is a tuple such that y(x; ¢’ YM = R. Fix a tuple 4 € R and
let b’ be a tuple such that

M e (b5 Af(a;b') A p(é'sb').
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Then R = y(%;¢" )" = ¢(%; b )™ implies that b’ = b. Hence, we have
M & ¢(¢’;b). Since there are only finitely many such tuples ¢’, it follows
that y(x; ¢)™ is a weak canonical definition of R. O

We obtain a characterisation of theories with weak elimination of
imaginaries along the same lines as Proposition 4.7.

Proposition 5.5. Let T be a complete first-order theory. The following
statements are equivalent:

(1) T has weak elimination of imaginaries.
(2) All parameter-definable relations have weak canonical parameters.

(3) For every parameter-definable relation R, there is a least algebrai-
cally closed set over which R is definable.

(4) For every element e € M®Y, there is a finite set B € M such that

e €dcd®Y(B) and Bcacl®(e).

(5) For every imaginary element e € M®4, there exists a finite tuple 5 of
sorts and a finite relation C € M* such that

dcl®d(e) = dcl*Y(B), for every Galois base B of C.

Proof. (4) = (1) Lete € M;q be an imaginary element and E := p)‘cl(e)
its equivalence class. By assumption, there exists a finite tuple ¢ € M
such that e € dcld(¢) and ¢ ¢ acl®d(e). Since e is a Galois base of E it
follows by Lemma 5.4 that ¢ is a weak canonical parameter of [E.

(1) = (3) Let R be a relation defined by the formula ¢ (x; b) and let
x be the parameter equivalence of ¢. By assumption, there exists a finite
relation C and a formula y/(z; 7) such that

y(ze)=[b], iff ceC.

We claim that acl(U C) is the desired algebraically closed set.
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5. Weak elimination of imaginaries

First, note that R is defined over ¢ < acl(lJ C) by the formula

9(x;¢) = 3z[y(z¢) np(x:2)].
Next, suppose that A is an algebraically closed set such that R is
definable over A. For every m € Autl it follows that
ntA=idy = n[R]=R
= (%0 = o(x;0")M, foralld' ¢ [b],
= 7 [I;]x = [l;] X
= vz )" =y(x;0)M, foralléeC
= nx[C]=C.
Since C is finite, it follows that every tuple ¢ € C has finitely many
conjugates over A. Consequently, Theorem 1.6 implies that U C € acl(A).
(3) = (2) Let R be a parameter-definable relation. By assumption,
there exists a least algebraically closed set U over which R is definable.
Hence, we can apply Lemma 5.2 to obtain a weak canonical parameter
¢ c UofR.
(2) = (5) Let e € M;q be an imaginary element and E := p)‘cl(e) its
equivalence class. By assumption, [E has a weak canonical definition
v(x; ¢). Obviously, we may assume that ¢ is a finite tuple. Set

C:={ |y(x:&)" =E}.
For an automorphism 7 € Aut M9, it follows that
n(e)=e iff n[E]=E

iff  w(xa(e))M =y(x;0)™, foralléeC
ifft n[C]=C.

Hence, e is a Galois base of C. Therefore, it follows by Lemma 3.4 (b)
that

dcl®Y(e) = dcl*Y(B), for every Galois base B of C.
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(5) = (4) Suppose that C = {¢,, ..., ¢, } is a finite relation such that
dcl®(e) = dcd®Y(B), for every Galois base B of C. Since M®? has elim-
ination of imaginaries, there exists a Galois base B ¢ M*®? of C. Con-
sequently, Lemma 3.4 (a) implies that e is also a Galois base of C.

Let 7 be an automorphisms of M®d. Then

(Co...Cn)=Co...C, implies n[C]=C

implies 7(e) =e.
By Corollary 1.8, it follows that e € dcl*? (¢, ... ¢, ). Similarly,

n(e)=e implies 7n[C]=C
implies  71(Co...Cn) = Co(0) -+ Ca(n) >

for some permutation o.

Therefore, there are only finitely many conjugates of ¢, ...c, over e.
According to Theorem 1.6 this implies that ¢, ... ¢, € acl®(e). O

In later chapters we will present several conditions implying that a
theory has weak elimination of imaginaries. Here, we give only one
example.

Lemma 5.6. A theory T satisfying the following two conditions has weak
elimination of imaginaries:

o There is no strictly decreasing sequence A, > A, > ... of sets of the
form A; = acl(B;) where each B; is finite.

¢ If A and B are algebraic closures of finite sets, then Aut M snp is
generated by Aut M u Aut Mip.

Proof. By Proposition 5.5 it is sufficient to show that, for every para-
meter-definable relation R, there is a least algebraically closed set over
which R is definable.

Hence, let R be parameter-definable. First, let us show that, if R is defin-
able over two algebraically closed sets A and B of the form A = acl(A,)
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5. Weak elimination of imaginaries

and B = acl(B,), for finite A, and B,, then it is also definable over their
intersection A N B. If R is definable over both A and B, Lemma 1.10
implies that

AutMy, U Aut Mg ¢ Aut(M, R).
Consequently, the second condition implies that
Aut MAHB = ((Aut MA U Aut MB >> c Aut(M, R) .

Hence, it follows by Lemma 1.10 that R is definable over A n B.
By the first condition, it therefore follows that there is a least algebrai-
cally closed set over which R is definable. ]

The following property is what is missing from weak elimination of
imaginaries in order to obtain full elimination of imaginaries.

Definition 5.7. A complete first-order theory T has elimination of finite
imaginaries if every finite relation has a finite Galois base in M.

As an example, we consider the theory of algebraically closed fields.
We will show later in Corollary ?? that this theory actually has uniform
elimination of imaginaries.

Lemma 5.8. The theory of algebraically closed fields of characteristic p
has elimination of finite imaginaries.

Proof. Let R = {¢°,...,c" '} be a finite relation consisting of m-tuples

¢t ={(cl,...,c,,_,). We define the polynomial

P(x>)’0>---’ym—1) = H(x - Cé)’o T Cin—d’m—l)-

i<n
Let Z be the set of roots of p. Then
n[Z]=Z iff n[R]=R, foreveryautomorphism 7.

Since p is the only polynomial with set of roots Z, it follows that an
automorphism fixes p if, and only if, it permutes R. Consequently, the
coeflicients of p form a Galois base of R. ]
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Proposition 5.9. A theory T has elimination of imaginaries if, and only
if, it has both, elimination of finite imaginaries and weak elimination of
imaginaries.

Proof. (=) Since every canonical parameter is a weak canonical para-
meter, elimination of imaginaries implies weak elimination of implies.
Moreover, it follows by Proposition 4.7 (3) that every theory with elimin-
ation of imaginaries has elimination of finite imaginaries.

(<) Let e € M4, By Proposition 5.5, there exists a finite set C ¢ M
such that

dcl*d(e) = dcl®Y(B), for every Galois base B of C.

As T has elimination of finite imaginaries, the set C has a finite Galois
base B, € M. Hence,

dcld(e) = dcl®Y(B,) .

By Proposition 4.7, it follows that T has elimination of imaginaries. []
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E3. Prime models

1. Isolated types

The usual way to construct structures in model theory consists in writing
down an appropriate theory and proving that it is consistent. In particular,
we can reconstruct from the elementary diagram of a structure the
structure itself, or we can use it to obtain an elementary extension. If
we want to construct rich models realising many types then, as we have
seen in Chapter E1, this approach works well.

In the present chapter, on the other hand, we are interested in models
realising few types. We start by studying those types that are unavoidable
in the sense that they are realised in every model.

Definition 1.1. Let T be a theory.

(a) A formula ¢ isolates a type p (w.r.t. T) if ¢ = p modulo T. We
call a type p over U isolated if it is isolated by a formula ¢(x, ¢) with
parameters ¢ € U. In particular, a complete type p € S*(U) is isolated if
and only if (¢) = {p}, i.e., p is an isolated point in the topology of $*(U).

(b) A structure U is atomic if every realised type p € S<“ (@) is isolated.
More generally, if B, U € A then we call B atomic over U if only isolated
types p € S<“(U) are realised in B.

Lemma 1.2. If p is isolated by ¢(x) then p is realised in every model of
Tu{3x¢}.

Lemma 1.3. Ifa C acl(U) then tp(a/U) is isolated.

Proof. Let M beamodel containing U. Since 4 is algebraic over U we can
choose a formula ¢(%, ¢) with parameters ¢ € U such that M = ¢(a, ¢)
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E3. Prime models

and the set ¢(&, &)™ is finite and of minimal size. We claim that this
formula isolates tp(a/U).

For a contradiction suppose that there is some formula y(x,d) €
tp(@/U) such that ¢ # y. Then we can find a tuple b ¢ M with

M (b, &) A —~y(b,d).
It follows that
[p(%,8) A y(x,d)]™ € p(£,8)" ~ {b} € p(£,8)™,
in contradiction to our choice of ¢. ]

Lemma 1.4. Every isolated type p € S*(U) is definable over a finite subset
U, cU.

Proof. Let ¢(%,¢) be a formula over U isolating p. We claim that p is
definable over U, := ¢. Let y(%, y) be a formula and b € U. Then we
have

y(x,b)ep iff T(U)u{p(%¢)}Fy(x,b)
if T(U)EeVi[o(x,¢)—>w(x,b)].

Consequently, 6y (j) := VX[¢(x,¢) - y(X, )] is a y-definition of p
over U,. []

Lemma 1.5. tp(ab/U) is isolated if and only if the types tp(a/U) and
tp(b/U U a) are isolated.

Proof. (<) If ¢(%) isolates tp(a/U) and w(j, a) isolates tp(b/U U 4)
then the formula (%) A (7, %) isolates tp(ab/U).

(=) Let (%, 7) be a formula isolating tp(ab/U). Then the formula
¢(a, ) isolates tp(b/U U a). Furthermore, we claim that 3’ (%, j)
isolates tp(a/U) where j’ C j is the finite tuple of those variables that
actually appear in ¢. Suppose that 3y’ ¢ € tp(¢/U). Then there is some
tuple d with ¢ € tp(éd/U). Consequently, tp(éd/U) = tp(ab/U) and
tp(¢/U) = tp(a/U). O
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We conclude this section with a collection of basic facts about atomic
models.

Lemma 1.6. If A is atomic over U and a € A~“ then A is atomic over
Uua.

Proof. For every finite tuple b € A= we know that tp(ab/U) is isolated.
By Lemma 1.5 it follows that tp(b/U U a) is also isolated. O

Lemma 1.7. Let AC B c C. If C is atomic over B and B is atomic over A
then C is atomic over A.

Proof. Let ¢ € C and suppose that tp(¢/B) is isolated by ¢(%, b). Fix
some formula (7, @) isolating tp(b/A). We claim that tp(¢/A) is isol-
ated by the formula y := 3j[@(%, ) Ay(3,a)].

Suppose that y € tp(d/A). Then there is some tuple é with

o(d,é),w(é, a) etp(dé/A).

Consequently, we have tp(é/A) = tp(b/ A) and there exists an A-auto-
morphism 7z with 7(é) = b. Let d’ := n(d). Then tp(d'/b) = tp(d/é)
and ¢(x,b) € tp(d’/b) implies that tp(d’/B) = tp(¢/B). It follows that

tp(d/A) = tp(d'/A) = tp(¢/A). O

The following two remarks follow immediately from the definition of
an atomic model.

Lemma 1.8. (a) Every elementary substructure of an atomic model is
atomic.
(b) The union of an elementary chain of atomic models is atomic.

2. The Omitting Types Theorem

We have seen in Section c2.4 how to build structures from a given set of
formulae. In order to find structures realising only certain types we take
a closer look at this construction. First, let us determine a minimal set
of sorts a model has to realise.
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Lemma 2.1. Let X be an S-sorted signature and T € FO°[X] a first-order
theory. There exists a minimal set S, C S such that T has a model A with

A+ iff  seS,.

Proof. Let S be the class of all sets S, € S such that T has a model
with A = Uges, As. It is sufficient to show that the partial order (S, 2) is
inductively ordered. Let (S;);c; be a decreasing sequence of sets S; € S
and set S, :=; S;. We claim that S, € S. Let

O:=Tu{ns|seS S},

where 7, := =3x;(xs = x;) states that there are no elements of sort s.
Every model of @ witnesses that S, € S.

To prove that @ is satisfiable let @, C @ be finite. Then there are sorts
So»...>Sy € Seo such that

O, c TU{Hsy---s1Ys,} -

Hence, we can find some index i € I with s,,...,s, € S\ §;. By assump-
tion there is some S;-sorted model A of T. It follows that A = ©,. [

We have seen in Section c2.4 how to construct Herbrand models from
Hintikka sets. To refine this construction we introduce a special kind of
Hintikka set called a Henkin set.

Definition 2.2. Let @ € FO°[X] be a set of sentences and C € X a set of
constant symbols.

(a) @ has the Henkin property with respect to C if, for every formula
¢(x) € FO'[ 2], there is some constant ¢ € C such that

Ixp(x) = ¢(c) e D.

(b) We say that @ is a Henkin set for a set @, € FO°[X] with respect
to C if @, € @, @ is complete, and @ has the Henkin property with
respect to C.
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Lemma 2.3. Every Henkin set is a Hintikka set.

Corollary 2.4. Every Henkin set © with respect to C has a Herbrand
model  where every element is denoted by some constant from C.

Proof. We have seen in Lemma c2.4.6 that @ has a Herbrand model
where every element is denoted by some term. Since @ is a Hintikka set,
we can find, for every term ¢ a constant ¢ € C with

dx(x=t)>c=ted.
Therefore, every element is denoted by some constant in C. ]

The class of all Henkin sets is in one-to-one correspondence with the
class of all Herbrand models. In the next lemma we prove that this class
forms a co-meagre set in the type topology.

Lemma 2.5. Suppose that X is a countable signature, T € FO°[X] a theory,
and, for every sort s, let Cs be a countably infinite set of constant symbols
of sort s with C; n X = @. Set C := U, C; and

¢(T) = S(F0°[2c]/T).
(a) The complement of the set
H(T) :={peS&(T) | p is a Henkin set for T w.r.t. C }
is meagre in Sg.(T). _
(b) If§ is a finite tuple of sorts and @ € FO°[X] is a set such that (@) s (1)

is nowhere dense then the complement of

O(®) := {peSE(T) | for every ¢ € C*“, there is some ¢ € @
with —-@(¢) €p}

is meagre in Sg.(T).
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Proof. (a) We have

H(T)= () H, where H,=J(3xp(x) > ¢(c))so(r)-

@YEFO [ Z¢] ceC

Since FO'[ 2] is countable, we can show that the complement of H(T')
is meagre by proving that the complement of each H,, is nowhere dense.
Because H,, is open, it is sufficient to show that its complement has
empty interior, that is, that H,, is dense.

Let ()50 (1) be a nonempty basic open set and fix some model

Me=Tu{y}.
Choose some element a € M with
ME= Ixp(x) — ¢(a).

Let D ¢ C be the set of constant symbols appearing in ¥ or ¢. This set is
finite and we have

Mz, = TU{y, Ixp(x) = ¢(a)}.

Fix some constant symbol ¢ € C \ D of the same sort as a and let 3 be a
3 c-expansion of M|s, with ¢® = a. Then

NETuly Ixe(x) > ¢(c)}.

Hence, Th(N) € (y)se (1) N Hy # 2.
(b) We have

O((D) = m OC' where OE = U <_‘(P(E)>Sg(T) .
ceC<» Qe

As above it is sufficient to prove that each set O; is dense. Consider a
nonempty basic open set (y(¢,d))se (1) where y € FO[Z]andd € C~c.
Fix some model M = T u {y(¢é,d)}. Then

(Mz, ¢) = TU{Tjy(x, 7).
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Hence, (3jy(%, 7))s:(r) # &. Since (D) s (1) is nowhere dense it follows
that

(Fyy(x, 7))ss () N (Phss(r) * -

Fix some model (N,, a) with
Th(RNo, a) € (Fyy(x, 7))ss (1) N (P)ss(r) -
There is some formula ¢ € @ such that
N, ¥ ¢(a).
Furthermore, we can find a tuple b ¢ N, with
No = w(d,b).
Let 9N be a X ¢-expansion of N, with ¢ = @ and d” = b. Then we have

Th(N) € (y)se(ry N O¢ #+ @ O

After these preparations we can prove that every meagre set of types
is omitted in some model.

Theorem 2.6 (Omitting Types Theorem). Let X be a countable S-sorted
signature and T C FO[X] a countable first-order theory. For every § € S<*,
let X; € S°(T) be a meagre set of types. There exists a model of T that
omits every type in U; X;.

Proof. For every sort s, fix a countably infinite set C; of constant symbols
disjoint from X. Each set X; can be written as X; = U, <, X', where X7 is
nowhere dense. Let @f be a set of formulae such that (@) = cl(X?). By
the preceding lemma, we know that

Y= H(T)n () M 0(a)

SeS<® n<w

861



E3. Prime models

is a countable intersection of sets whose complement is meagre. Hence,
the complement of Y is meagre. By Theorem B5.5.8 it follows that Y itself
is also dense. Fix some typep e Y.

By Corollary 2.4, there exists a Herbrand model  of p where every
element is denoted by some constant in C. If @ € H* is a finite tuple
denoted by the constants ¢ € C then we have

tp(a) ={o(x)|@(c)ep}¢X;.

Hence, no tuple in 9 realises a type in X;. ]

Corollary 2.7. Let X be a countable signature and T < FO[X] a first-order
theory. Let p,, n < w, be a sequence of non-isolated partial types over T.
There exists a model of T that omits every p,, n < w.

Let us give a simple example showing that the Omitting Types The-
orem fails for uncountable theories.

Example. Let X = {¢; | i < w, } u{d, | n < w} be a signature of
constant symbols and let

TI:{C,':#Ck|iik}U{diidk|i¢k}

be the theory stating that the values of the c¢; are distinct and that the
values of the d,, are distinct. Consider the partial 1-type

O:={x+d,|n<w}.

This type is not isolated since there is no formula ¢(x) implying that
x is different from all constants d,,. On the other hand, every model of T
has uncountably many elements and, therefore, realises @.

Theorem 2.8. Let T be a countable complete theory with infinite models.
There exists a family (M) e, of models of T such that every complete
type that is realised in at least two of the models is isolated.
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Proof. For every sort s, fix a countably infinite set C; of constant sym-
bols disjoint from 2. Set C := |J; C; and let (¢, ), be an enumera-
tion of FO'[Z¢]. We fix an enumeration (u,, ¢",d"),<, of all triples
in 259 x C<“ x C<® such that ¢” and d" have the same length and the
same sorts. We assume that the enumeration has been chosen such that
every triple appears infinitely often in the sequence.

We construct an increasing chain T, € T; € ... of finite trees T}, € 2=¢
and, for each w € 2°“, we define a finite set ®@,, € FO°[ 2] of formulae
such that @, ¢ @,,, for u < w.

We start with T, := {()} and @ := @. For the inductive step, suppose
that we have already defined T}, and @,,, for w € T,,. To define T, we
distinguish two cases. If u, ¢ T, then we simply set

Tpir:={wo|waleafof T, },
and, for every leaf w of T,,,

Dyo = Oy U {Elx(Pn - ¢n(c)} >

where ¢ € C is some new constant symbol not appearing in any formula
of ®,,.

It remains to consider the case that u, € T,. Let v,,...,v;_, be an
enumeration of all leaves v of T,, with u#,, < v, and let w,,...,w,,_, be
an enumeration of all leaves w with u,, £ w. We define sets

i i i -
Q,, =Y, c¥ c---c¥_ , fori<m,

(DV]‘ :®];1(—:@é(—:"'g@{ﬂ—l’ for j <1,

as follows. We start with ¥/ := @,,. and e, = ®,,. Suppose that we
have already defined ‘P]’ and O, for all pairs (i, j) lexicographically less
than (i,, jo). To define '{/]1;’ and @fo we set

V(@ &) =\ ¥, and 9(d"f)= 6],
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E3. Prime models

where e ¢ C contains all constants in ‘I’]’:_ _ different from ¢",and f ¢ C

contains all constants in @{:_  different from d”. If (3jy(%, 7)) s(r)yisa
singleton then we set

pl:=yl and O°:=06F
Jo Jo—1 1o

io—1°

Otherwise, we choose some type q € (3j9(%, ) )s(r). By assumption,
we can find a type p € (3yy(x, y))s(r) different from q. We fix some
formula 7(x) € p \ g and set

V=W u{n(e)} and €)= 0p, u{-n(d")}.
Having defined all ‘P]’ and @{: we set

(D;u =¥ u{3xe, = ¢a(c)},

(D:z,- = Opy U{3xpn > 9u(0)},
where ¢ € C is some constant not appearing in any set ‘I’]’ or G){ . Let
Zos -+ +>Zk_, De an enumeration of all leaves z of T, such that the set

(D )s(r(c)) contains at least two types, and let u,, ..., u,_, be an enu-
meration of all other leaves of T,,. We define

Tpi:=Tyu{zib|li<k,bel[2]}u{ujo|i<r},

and @,,, = @, , for i < r. For each i < k, we chose distinct types
pi>0i € (P )s(r(c)) and some formula #; € p; \ q;. Then we set

D, = (D;i u{-#n;} and O,,:= (D;i u{ny;}.

This completes the construction of T),.,,. To define the models IM;
let T, := U, T,. A sequence f3 € 2“ isa branch of T,, if B | n € T,, for
all n < w. For each branch f of T,,, we define a sequence * € 2= as
follows. Let

I'={n<w|(BIn)oeT,and (Bl n)1eT,},
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3. Prime and atomic models

and let 11, < n, < ... be an enumeration of I. We define 8* ¢ 2/l by

B*(i):=p(n;), fori<]|I|.

For each & € 2, there is a unique branch B with 87 < . We define

Ve = U (’Dﬁe M -
n<w

It follows by compactness that each set ¥; is satisfiable. Furthermore,
the above construction ensures that each of these sets has the Henkin
property with respect to C. Hence, we can use Corollary 2.4 to find a
Herbrand model M; of V.

It remains to prove that every type realised in two different models is
isolated. Suppose that

tp(¢/M¢) = tp(d/M;) where &=,

If B is finite then (CD[;;)S(T(C)) = {p} is a singleton and every type
realised in M; = @ gy is isolated. Similarly, if 8; is finite then tp(d /M)
is isolated.

Hence, suppose that f; and f; are both infinite. Then there is some
n < w such that

¢"=¢, d'=d, u,eT,, and Penfr<u,<p;.
Let w be the leaf of T, with w < ; and let v be the leaf with v < 3. By
construction of T, it follows that either there is a formula isolating
tp(&/M¢), or there is some formula 7(¢) € @), € ¥ with —1(d) € @, <
¥;. In the first case we are done, whereas in the second case we obtain
tp(¢/M¢) # tp(d/M;), a contradiction. N

3. Prime and atomic models

Not every theory has atomic models, but for countable signatures we
can use the Omitting Types Theorem to construct such models.
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E3. Prime models

Theorem 3.1. Let T be a countable complete theory. If S*(T) is countable,
for all finite tuples s, then there exists a countable atomic model of T.

Proof. For every s, there are at most countably many non-isolated s-
types. Consequently, they form a meagre set and we can use the Omitting
Types Theorem to find a model of T that realises none of them. ]

Lemma 3.2. Let T be a countable complete theory. If |S°(T)| < 2%, for
all finite s, then T has an atomic model over A, for every finite set A of
parameters.

Proof. By Corollary Bs.7.5, it follows that each type space S°(T') is count-
able. Let d be an enumeration of A. Since tp(b/a) is determined by
tp(ba) it follows that $°(A) is also countable. Hence, according to the
preceding theorem T'(A) has an atomic model. ]

If the type space is too large, atomic models might not exist.

Example. Consider the theory T := Th(€) where € := (2%, (P,) y<w)
and

P,={ae2|a(n)=1}.

As we have seen in the example on page 534, the type space S*(T) is
homeomorphic to the Cantor discontinuum 2“, which does not contain
isolated points. Consequently, no type is isolated and T does not have
atomic models.

Theorem 3.3. Let T be a countable complete first-order theory. There exists
an atomic model of T if, and only if, the set of isolated s-types is dense
in 8*(T), for every finite .

Proof. Let X ¢ S°(T) be the set of all isolated s-types. If T has an atomic
model M then X is the set of types realised in M. By Lemma c3.2.6 it
follows that X is dense. Conversely, if X is dense then its complement
Y: := S*(T) \ X is closed and has empty interior. By the Omitting Types
Theorem, there exists a model M of T omitting all types in U; Y;. This
model is atomic. [
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3. Prime and atomic models

Corollary 3.4. Let T be a countable complete theory. If
tkcp(S"(T)) < oo, foralln< w,

then T has an atomic model.
Proof. Immediately by Theorem 3.3 and Proposition B5.5.12. ]

Intuitively, an atomic model is the opposite of a saturated one. The
next lemma shows that these models also behave in the opposite way
with respect to the relation £33.

Lemma 3.5. (a) If A is atomic then we have A £p3 B, for all B = 2.
(b) If U is a structure with countable signature such that % =, B, for
all B = A, then A is atomic.

Proof. (a) Suppose that
(Y, @) =po (B, b).

We have to prove the forth property. Let ¢ € A and choose some formula
¢(x, y) isolating p := tp(ac/¥). Then

A= Iyp(d,y) implies B e Iye(b,y).

Consequently, there exists some d € B such that B ¢(b,d). 1t follows
that tp(bd/B) = p and, hence,

(A, dc) =po (B, bd).

(b) Suppose that & contains a finite tuple a € A whose type tp(a) is
not isolated. By the Omitting Types Theorem there is a structure B = 2
omitting tp(a). If o =iy B then there would be some tuple b < B
such that (2, @) = (B, b). Consequently, tp(b/B) = tp(a/A) would be
realised in B. Contradiction. ]

Corollary 3.6. If % =B are atomic then % =53 B.
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E3. Prime models

Corollary 3.7. Every atomic model is R,-homogeneous.

Proof. By the preceding corollary we have & =53 2, for every atomic

structure 2. ]

If a countable theory T has atomic models then it has a unique count-
able one. Furthermore, this countable atomic model can be embedded
into every other model of T.

Definition 3.8. A structure 2 is a prime model of a theory T if, for ever
model B = T, there exists an elementary embedding A — B. Similarly,
we say that U is prime over a set U € A if it is a prime model of T'(U).

Example. N = (N, +, -, 0,1) is a prime model of arithmetic.

Remark. Only complete theories can have prime models.

Lemma 3.9. If M is a structure with M = acl(@) then M is prime.
Exercise 3.1. Prove the preceding lemma.

Lemma 3.10. Every prime model with a countable signature is atomic.

Proof. Let M be a model of a theory T that realises a non-isolated type p.
By the Omitting Types Theorem, there exists some model N = T in
which p is not realised. Therefore, there exists no embedding M — N
and M cannot be prime. ]

Lemma 3.11. Every countable atomic model is prime.

Proof. Let A be a countable atomic model and suppose that B = 2.
Let (a;)i<, be an enumeration of A. Since & =53 B we can find, by
Lemma C4.4.9, an enumeration (b;);<, such that

(A, (ai)i<n) =ro (B, (bi)i<n) > foralln < w.

Let py : (ai)i<cn = (bi)i<n € Iro (Y, B) be the corresponding partial
isomorphisms. Since It (YU, B) is R,-complete we have p := U, p, €
I;o(Y,B). As dom p = A it follows that p is the desired elementary
embedding of 9 into B. [
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4. Constructible models

The next theorem summarises the relation between prime and atomic
models.

Theorem 3.12. Let T be a countable complete theory.

(a) Every prime model of T is countable and atomic.

(b) Every countable atomic model of T is prime.

(¢) T has a prime model if and only if it has an atomic model.

(d) All prime models of T are isomorphic.
Proof. (a) and (b) were proved in Lemmas 3.10 and 3.11, respectively.

(c) By (a), every prime model is atomic. Conversely, if T has an atomic
model then it also has a countable one, by the theorem of Lowenheim
and Skolem. Hence, the claim follows by (b).

(d) If A and B are prime models of T then we have ;?3 B, by (a) and

Corollary 3.6. Since U and B are countable, Lemma c4.4.10 implies that

A~ RB. []

4. Constructible models

For uncountable signatures we cannot use the Omitting Types Theorem
to construct prime models. In this section we present an alternative way
to obtain such models.

Definition 4.1. Let M be a structure and A, U € M.
(a) A construction of A over U is an enumeration (a;);<, of A such
that

tp(aq,/U U a[<a]) isisolated, foralla <y,
where a[<a]:={a;|i<a}.

(b) If there exists a construction of A over U we say that A is construct-
ible over U.
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E3. Prime models

Example. Let T.q be the theory of all infinite structures with empty
signature. This theory has exactly one model of every infinite cardinality.

The countable model My, of Teq is constructible. If (a,)n<q is an
enumeration of My, then tp(a,/a, ...a,-,) is isolated by the formula

x;tao/\"'/\x;tan_l-

Every uncountable model M of T4 is not constructible since, for every
enumeration (dq)a<, of M, the type tp(a,/a[<w]) is not isolated.

We start by showing that constructible models are prime and atomic.
Lemma 4.2. If A € M is constructible over U then A is atomic over U.

Proof. Let (a4 )q<y bea construction of A over U. We prove by induction
on « that a[<«] is atomic over U. For a = o there is nothing to do. If
« is a limit ordinal then any finite tuple in a[<a] = U, a[<f3] belongs
to some a[<f] with 8 < «. Hence, the claim follows immediately by
inductive hypothesis.

For the inductive step, note that a[<a + 1] = a[<a] U {a,} is atomic
over Uua[<a] and Uua[<a] is atomic over U. By Lemma 1.7, it follows
that a[ <« + 1] is atomic over U. O

Proposition 4.3. Let M be a model of a complete theory T and let U € M
be a set such that M is constructible over U.

(a) M is a prime model over U.

(b) [M|<|U|&|T|.
Proof. (a) Let (a4 )«<y be a construction of M over U. Suppose that
I is a model of T(U). We construct a sequence (by)a<, as follows.

Suppose that b; has already been defined for all i < «. Since the type
tp(aq/U U a[<a]) is isolated, there exists some element b, € N with

beb[<a] =y aqa[<a].

The mapping a, — b, is the desired elementary embedding M — N.
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4. Constructible models

(b) By the Theorem of Lowenheim and Skolem, T'(U) has a model 0N
of size [N| < |U| @ |T|. By (a), there exists an embedding M — N. Con-
sequently, [M| < [N| <|U|® |T]|. O

Our next aim is to prove that constructible models are unique, up to
isomorphism.

Definition 4.4. Let (a4 )a<y be a construction of A over U. Aset C € A
is closed (w.r.t. this construction) if, for every « < y with a, € C, the type
tp(aq/U U a[<a]) is isolated by some formula ¢(x; ¢) with parameters
ccUu(Cnal<al).

Lemma 4.5. Let (aq)q<y be a construction of A over U.
(a) If C, D € A are closed, then so is C U D.
(b) Every element a € A is contained in a finite closed set C C A.

(c) Every closed subset of A is constructible.

Proof. (a) is immediate.

(b) By induction on a < y, we construct a finite closed set C, con-
taining a,. For a = o, we can set C, := {a,} since tp(a,/U) is isol-
ated by some formula with parameters in U. For the inductive step,
suppose that we have already defined C;, for all i < a. Fix a formula
¢(x; ¢) with parameters ¢ € U U a[<a] isolating tp(a, /U U a[<a]). Let
I'={i<ala;ec}. Theset

Co :={as} Ul JC;

iel

is finite and closed.

(c) Let (aa)aq, be a construction of A over U, C € A a closed set,
and set C., := C n a[<a]. For a, € C, the type tp(a,/U U a[<a]) is
isolated by some formula ¢, (x,¢) with¢ € Uu (Cna[<a]) = UuC.,.
Consequently, this formula also isolates the type tp(a, /U uUC., ). Hence,
tp(aq/U U C.y) is isolated, for all a, € C, and we obtain a construction
of C by omitting form (a4 )<, all elements that are not in C. ]

871
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Lemma 4.6. Let (a4)a<y be a construction of A over U, C a closqd subset
of A, ¢ an enumeration of C, and, for every a, € C, let ¢ (x45by) be a
formula isolating tp(a, /U U a[<a]). Then

T(U) u{(pa(xa;l_oa) | Ay € C} = tp(¢/U).

Proof. Note that C,, := C na[<a] is closed. Hence, we can prove the
claim by induction on a. For a = o we have tp({)/U) = T(U). If a is
a limit ordinal then the claim follows by inductive hypothesis since
every formula refers only to finitely many elements of C,. For the
successor step, suppose that ¢ = ¢'a, where ¢’ is an enumeration of C,.
By inductive hypothesis, we know that

T(U)u{¢i(xibi)|i<a, a;eC}Etp(e'/U).
Furthermore,

T(U) U{@a(xa;ba)} Etplas/Uual<al) Etp(as/UuE).
Combining these two implications, the claim follows. ]

Proposition 4.7. Let C be a closed subset of a constructible set A. Then
A is constructible over C.

Proof. We start by showing that A is atomic over C. Let A, € A be finite.

By Lemma 4.5 (b), we can find a finite closed set D containing A,. For
X C A, set

(D(X) = {(p/;(x/g,l_ﬂfg) | a[; € X},

where ¢g(xg;bg) is some formula isolating tp(ag/a[<p]). According
to Lemma 4.6 we have

Tu®(b) =tp(b), foreveryclosedsethc A.
In particular, we have

Tu®d(CuD)ktp(éd),
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where ¢ is an enumeration of C and d one of D. As ®(C) ¢ T(C), it
follows that

T(C)u ®(D) Etp(d/C).

Hence, tp(d/C) is isolated by the formula A ®(D). In particular, the
type of A, over C is isolated.

To conclude the proof, let (a4 )a<, be a construction of A. We prove
that it is also a construction over C. Let « < y. Since a[<a] is closed, so
is C U a[<a]. By the first part of the proof, it follows that a, is atomic
over CU a[<a]. O

Lemma 4.8. If (aa)a<y is a construction of A over U then it is also a
construction of A over U U C, for every finite subset C C A.

Proof. By Lemma 4.2, A is atomic over U U a[<«], for every a < y. In
particular, C U {a, } is atomic over U U a[<«]. By Lemma 1.5, it follows
that a, is atomic over U U a[<a] U C. O

To prove the uniqueness of constructible models, we employ back-
and-forth arguments.

Definition 4.9. Let 2 and B be structures such that A and B are con-
structible over &. We define

[0(YU,B) := {p e lpo(¥,B) | dom p and rng p are closed } .

Lemma 4.10. Suppose that A and B are structures where A and B are
constructible over @. Then 14(¥Y,B) is R,-bounded and it has the back-
and-forth property with respect to itself.

Proof. By symmetry, we only consider the forth property. Let d + b €
(%, ®B) and x € A. By induction on 1, we construct finite tuples ¢, € A
and d,, € B such that ac,¢, -+~ bdod, - € [q(Y,DB), x € &y, and

(A, 60 ...¢n—y) =(B,bd,...d,_,), foralln<w.
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We start with some finite closed set ¢, containing x. For the inductive
step, suppose that we have already defined ¢,,...,¢, and d, ..., d,—,
such that

(U, a0 ...Cn1) = (B, bd,...d,_,).

Since U is atomic over a, we know that the type tp(¢, ...¢,—.C/a) is
isolated. By Lemma 1.5, it follows that the type tp(¢, /ac, . .. ¢,—,) is also
isolated. As

(A, GCo ... Enr) = (B, bdy ... d, ),

we can therefore find some tuple d,, € B with

(A, GCq ... Enyp) = (B, bd,...dy_d,).

Ifbd, ...d, is closed then we can stop. Otherwise, let d,., be a finite
closed set containing d,,. Again, since bd, ... d,, is closed and the type
tp(d,1./bd, .. .d,) is isolated, we can find a tuple ¢, € A such that

(A, GCq ... Enpi) = (B, bd,...dpdys,) .

Ifac, ... Cpy1 is closed we stop. Otherwise, choose a finite closed set ¢+,
containing ¢,, and repeat the construction. ]

Theorem 4.11 (Ressayre). All constructible models of a complete theory T
are isomorphic and strongly R,-homogeneous.

Proof. Let U and B be constructible models of T First, we show that
Aand B are isomorphic. Since constructible models are prime, it follows
that we can embed 2 into B and vice versa. Hence, A and B have the
same cardinality . It follows by Lemma 4.10 that I (%, B) : A Ef:fx‘ 5.
Consequently, Lemma c4.4.10 implies that A = B.

It remains to show that 2 is strongly X,-homogeneous. Suppose that

(A, a) = (Y, b),

874
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for finite tuples @, b S A. By Lemma 4.8, these two expansions of
are constructible models of the complete theory T(a). As we have just
shown, this implies that they are isomorphic. Hence, there is an auto-
morphism of 9 mapping a to b. ]

We apply these tools to show that R, -stable theories have prime mod-
els over all sets of parameters.

Lemma 4.12. Let T be a totally transcendental theory and U a set of
parameters. Then the isolated types are dense in S*(U).

Proof. Since rkcp(S°(U)) < oo the statement follows from Proposi-
tion Bs.5.12 (d). L]

Proposition 4.13. Let T be a totally transcendental theory. For every
model M of T and all parameters U C M, there exists an elementary
substructure A < M such that A is constructible over U. In particular, A is
a prime model over U and atomic over U.

Proof. By induction on a, we construct a sequence (a4 )a<y of elements
of M as follows. Suppose that we have already defined (a;) ;<. If there
is some b € M such that tp(b/U U a[<a]) is isolated then we select one
such element and set a,, := b. Otherwise, we stop the construction.

Let A := a[<y] be the set of all elements chosen. Clearly, U ¢ A and
(@a)a<y is a construction of A over U. Hence, it remains to show that
A < M where A is the substructure induced by A.

We apply the Tarski-Vaught Test. Suppose that

MeE o(b,c), forbcAandce M.

By Lemma 4.12, there exists an isolated type p € (¢ (b, y)) € S*(A). Let
d € M be an element realising p. Since p = tp(d/A) is isolated, it follows
by choice of a[<y] that d € a[<y] € A. Thus, we have found an element
d e Awith M ¢(b, d). O

Combining the preceding proposition with Theorem 4.11, we obtain
the following result.
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Theorem 4.14. Let T be a totally transcendental theory and let U be a
set of parameters. There exists a prime model over U that is also atomic
over U. Furthermore, all prime models over U are isomorphic over U.

Corollary 4.15. Let T be a totally transcendental theory and let U be a
set of parameters. Every model that is prime over U is also atomic over U.
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1. R,-categorical theories and automorphisms

Model theory investigates axiomatisable classes of structures. One of
the most basic question one can ask is how many structures of a given
cardinality such a class contains.

Definition 1.1. A class K is k-categorical if, up to isomorphism, it con-
tains exactly one structure of size k. Similarly, we call a theory T «-
categorical if Mod(T) is x-categorical.

Example. (a) According to Theorem c4.1.5, the theory of open dense
linear orders is R, -categorical.

(b) We have seen in Corollary B6.5.30 that the theory ACF, of algebra-
ically closed fields of characteristic p is x-categorical for all uncountable
cardinals «. It has R, different models of size ®,. Hence, it is not R, -cate-
gorical.

(c) By Theorem D1.4.8, the same holds for the theory of divisible
torsion-free abelian groups.

In this chapter we study R, -categorical theories. We start by showing
that, for models of such theories, there is a tight relationship between
definable relations and automorphisms. Recall that the automorphism
group AutIN of a structure M is oligomorphic if, for every finite tuple s
of sorts, there are only finitely many orbits of Aut I on the set M".

Theorem 1.2 (Engeler, Ryll-Nardzewski, Svenonius). Let T be a count-
able complete theory with infinite models. The following statements are
equivalent:
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(1) T is Ry-categorical.
(2) AutIM is oligomorphic, for every countable model M of T.
(3) T has a countable model M such that Aut M is oligomorphic.

(4) There exists a countable model M = T in which, for every finite
tuple of sorts s, only finitely many s-types (over &) are realised.

(5) |S*(T)| < R, for all finite 3.

(6) For all finite sets x of variables, there are only finitely many for-
mulae ¢ (x) with free variables x that are pairwise non-equivalent
modulo T.

(7) Every typep e S<“(T) is isolated.
(8) T has a model that is atomic and R,-saturated.
(9) Every model of T is atomic.
(10) Every model of T is R,-saturated.
(11) A =33 B, for all models A and B of T.
(12) =2 B, for all models A and B of T.
Proof. (5) = (6) If (¢) = (v) then ¢ = v modulo T.If |S*(T)| = k < R},
then there are at most 2¥ sets of the form (¢) and, hence, at most that
many non-equivalent formulae.
(6) = (7) For all finite tuples of sorts §, fix a tuple of variables x of

sort § and a maximal family @; of pairwise non-equivalent formulae
with free variables x. For p € $°(T), let

vy = AN{pe@s|pe(e)}.

Then T U {y,} E p and p is isolated.

(7) = (5) If every type in S°(T) is isolated then S°(T) is finite, by
Lemma B5.5.10.

(7) = (9) Each model can only realise isolated types since there are
no non-isolated ones.

(9) = (8) Every consistent theory has R, -saturated models.
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(8) = (7) If there is a non-isolated type p € S<“(T') then it is realised
in all ®,-saturated models. Consequently, none of them can be atomic.

(7) = (10) Suppose that M = T is a model, a € M™ a finite tuple, and
p € S"(a). There is an elementary extension N > M in which p is realised
by some tuple ¢ € N". Set q := tp(ac/RN). Then q € S™*"(T) and, by
hypothesis, there is some formula ¢(x, 7) isolating q. Let y(x) be the
formula isolating t := tp(a/M). We claim that

TEy(x) = 3p9(%,7).

Then it follows that M = 37¢(d, 7) and we can find some tuple b € M"
realising p.

It remains to prove the claim. For a contradiction, suppose it does not
hold. Since t is complete it follows that -3y ¢ € r and, therefore,

TEy(x) > Vi-9(%, 7).
On the other hand, r € q implies that

TEg(x7)—y(x).

Consequently, Tu{¢(%, 7)} is inconsistent. But this contradicts the fact
that g € """ (T).

(10) = (11) follows from Corollary E1.2.3.

(11) = (12) immediately, since U g;‘g B implies A =, B.

(12) = (1) Since T is a countable theory with infinite models it fol-
lows that T has a model of cardinality X,. Furthermore, by (12) and
Lemma c4.4.10, all such models are isomorphic.

(1) = (7) Suppose that there exists a type p € S<“(T) that is not
isolated. T has a model ¥ in which p is not realised, and it has a model B
in which p is realised. By the Theorem of Léwenheim and Skolem, we
can assume that |A| = |B| = R,. Since A # B T cannot be R, -categorical.

(5) = (2) Let U be a countable model of T and let p € S"(T). We
claim that all tuples realising p are in the same orbit of Aut 2. Hence, the
number of orbits is bounded by the number of types which, by (5), is
finite.
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E4. R,-categorical theories

Suppose that a,b € A" realise p. We have already seen that (5) im-
plies (11). Hence, we have & =33 9, and a ~ b € Lg(%, ) implies
that (2, a) =g (%, b). By Corollary E1.2.3, it follows that there exists an
automorphism 7 with 7(d) = b.

(2) = (3) is trivial since T is satisfiable.

(3) = (4) We have tp(ma) = tp(a), for all 7 € AutIM. Hence, the
number of realised types is bounded by the number of orbits.

(4) = (5) Fix a countable model M = T in which only finitely many

§-types are realised, for all finite s. For a given s, let p,, ..., Px_, be an
enumeration of these §-types. By Lemma c3.2.6, the set {po, ..., Px_, } is
dense in $°(T). Consequently, it follows by Lemma Bs.5.10 that S°(T')
is finite. ]

Let us also mention a necessary condition for R,-categoricity that
deals with the size of the algebraic closure of finite sets.

Lemma 1.3. Let T be a countable R -categorical theory with finitely many
sorts. There exists a function s : w — w such that, for every model M of T
and every finite set U C M of parameters, we have

lacl(U)| < s(|U]) .
In particular, acl(U) is finite for finite sets U.

Proof. Let n := |U|. By Theorem 1.2, S"*'(T) is finite. Let p,, . . ., Px—,
be an enumeration of $"**(T) and set

I:= { i<k | there are ¢(x, y) € p; and m < w such that
TE-3"x¢(x, ) } :

For i € I, let m; < w be the least number such that
-3 x(x,y) €p;, for some formula ¢(x, 7).

Wesets(n) = ¥y m;.Leta € acl(U) and let b € M" be an enumeration
of U. The tuple ab realises some type p; with i € I. Since there are at
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1. Rq-categorical theories and automorphisms

most m; elements ¢ such that cb realises p;, it follows that
lacl(U)| < > m; =s(n).
i€l L]
As an application, we consider fields and groups.

Lemma 1.4. No infinite field has an R,-categorical theory.

Proof. Let & be an infinite field. By compactness, there exists an ele-
mentary extension K, > K that contains a transcendental element c.
The algebraic closure acl(¢) is infinite since it contains the elements
¢c,c?, c3,..., which are all distinct. By Lemma 1.3, it follows that Th(&)
is not R, -categorical. ]

Lemma 1.5. Let & be an infinite group.

(a) If Th(B) is R, -categorical then & is locally finite and there exists a
number n < w such that g" =1, forall g € G.

(b) Conversely, if & is abelian and there exists a number n as in (a),
then Th(&) is R, -categorical.

Proof. (a) Fix an element g € G and let s : w — w be the function from
Lemma 1.3. Since g" € acl(g), for all n < w, and |acl(g)| < s(1), there is
some n < s(1) such that g°) = ¢”. Consequently, g*()=" = 1. Setting
m := s(1)! it follows that g™ =1 for all g € G.

(b) Let & be a countable abelian group such that ¢g"” =1, for all g € G.
There are prime numbers p,, ..., p,—;, numbers ko, ..., k-, < w, and
cardinals A,, ..., A,,—; < R, such that

8= P (Z/p;2)™.

i<m
Set g, := pf". Note that, for A; < R, the group (Z/in)(Ai) has

o Ak Ai(ki—1)
rii=p; o —P;

elements of order exactly g;, and, for each element g € (Z/q;Z)*) of
order less than g;, there exists some element & such that g = h?:.
It follows that & satisfies the following formula:
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¢ the axioms of an abelian group;
o Vx(x9odm—r =)

o for each i < m such that 1; < R, the statement that there are
exactly r; elements of order exactly g; that cannot be written in
the form h?i, for some h € G;

o for each i < m such that A; = R, the statement that there are
infinitely many elements of order exactly g; that cannot be written
in the form h?i, for some h € G.

Furthermore, every countable structure 9 satisfying these formulae is
isomorphic to 8. Consequently, Th(&) is R, -categorical. ]

Having characterised the countable theories with exactly one count-
able model we turn to countable theories with several countable models.

Lemma 1.6. If T is a countable complete theory with less than 2™ count-
able models, up to isomorphism, then |S°(T)| < R, for all finite 3.

Proof. Assume that $°(T) is uncountable. Then we have |S°(T)| = 2%,
by Corollary B5.7.5. Each type p € S°(T) is realised in some countable
model of T. Since each countable model of T realises only countably
many types it follows that T has 2™° models. ]

Surprisingly there are no theories with exactly two countable models.

Theorem 1.7. Let T be a countable complete theory. If T is not R,-cate-
gorical then it has at least 3 countable models.

Proof. If there is a finite tuple § of sorts such that $°(T') is uncountable
then it follows by Lemma 1.6 that T has uncountably many countable
models. Hence, we may assume that $°(T') is countable, for all 5. By
Theorem E3.3.1 and Proposition E1.2.15, it follows that T has a prime
model 2 and a countable saturated model B. If T is not R,-categorical
then there is some § such that $°(T) is infinite and there exists a non-
isolated type p € S*(T). This type is realised in B but not in 2 which
implies that A £ 5.
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1. Rq-categorical theories and automorphisms

Let a € B be a tuple of type p. We know that, for some k < w, there
are infinitely many pairwise non-equivalent formulae with free variables
Xo»--+»>Xk—. IThese formulae are still non-equivalent modulo the theory
Th(B;). Hence, Th(B;) is not R, -categorical and there exists a prime
model € of this theory. We have € 2 U since p is realised in €. As € is not
R, -saturated there is a non-isolated type q € S<“(4a). Since B realises q
and € does not, it follows that € £ B. Thus, we have found three non-
isomorphic models 2, B, €. ]

Lemma 1.8. There is a countable complete theory T which has exactly
three countable models.

Proof. Let T be the theory of open dense linear orders augmented by
the sentences ¢; < ¢, for all i < k < w. This theory is complete, it
admits quantifier elimination, and the only non-isolated type p is the
one containing all formulae x > ¢;, i < . There are three models.

(i) The prime model is M, = (Q, <, (1) 1<») Where the type p is not
realised since the sequence (¢;); is unbounded.

(ii) In M, = (Q, < ((1 - %)")nw) the sequence (c¢;); is bounded but
it has no least upper bound.

(iii) In M, = (Q, < (—%)nw) the sequence (c;); has a least upper
bound. ]

Exercise 1.1. For every 3 < n < w, find a countable complete first-order
theory with exactly n models.

All possibilities for the number of countable models of a countable
theory are listed in the following theorem. Each of them is realised by
some theory. The question of whether there are really countable theories
with exactly ®,; countable models was open for along time. An affirmative
answer was recently given by Knight.

Theorem 1.9 (Morley). The number of nonisomorphic countably infinite
models of a countable complete theory is either a finite number n # 2, or it
is one of Ro, Ry, or 27°,
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E4. R,-categorical theories

We will not give the complete proof of this result. The next lemma
characterises those theories with at most &, countable models. Morley
has shown that all theories that do not satisfy the conditions of the lemma
have 2™ countable models.

Lemma 1.10. Let T be a countable complete theory and let K be the class
of all countable models of T. If we have

IK/=a| <Ry, forevery a< w,,

then, up to isomorphism, T has at most R, countable models.

Proof. For A e K, let x(A) := (a, [U]4) where « is the Scott height of A
and [A], € /=440 is the =4, -class of A. By Corollary c4.4.11, it follows
that we have

(W) =x(B) iff AxB, forallA, Bek.
Consequently, the number of countable models of T is at most
Irng x| <R, @sup { |/=s| | <@, } <R, @R, =R, O

We conclude this section by an investigation of definable relations in
countable models of R, -categorical theories.

Lemma 1.11. Let M be a countable model of a countable R, -categorical
theory T.

(a) Let 5 be a finite tuple of sorts. A relation R € M® is definable in M if
and only if

n[R] =R, forallme AutIM.
(b) A partial function f : My — M, is definable in M if and only if

mof=fom, forallmeAutIM.
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1. Rq-categorical theories and automorphisms

Proof. (a) For the nontrivial direction suppose that 7[R] = R for all
automorphisms 7. Since T is R,-categorical there are only finitely many
orbits of AutI on M°*. Hence, R is a finite union of such orbits and it is
sufficient to prove that every orbit S is definable.

Fix some tuple a € S. We have seen in Theorem 1.2 that M is saturated.
Hence, it follows by Lemma E1.4.2 and Proposition E1.4.7 that M is
strongly homogeneous. Consequently, tp(a) = tp(b) implies that there
is some automorphism 7 mapping 4 to b. It follows that

S={beM |tp(b)=tp(a)}.
Since every type is isolated there is some formula ¢(x) with
Me o(b) iff  tp(b) =tp(a).

It follows that S = @™
(b) By (a), a function f is definable if and only if it is invariant under
automorphisms, i.e., if and only if

b=f(a) iff n(b)=f(n(a)), forallme AutIN.

We can rewrite this condition as 7(f(a)) = f(n(a)). O

We can use these results to relate interpretations and automorphism
groups.

Definition 1.12. (a) Let & and B be structures. B is definable in A if it
is isomorphic to a structure € each domain C, of which is a definable
subset of A such that all relations R® and functions f* are definable in 2.
We call A and B bidefinable if each of them is definable in the other one
and the corresponding isomorphisms are inverses of each other.

Definition 1.13. Suppose that & and $ are permutation groups with
actions a : 8 - Sym Q and S : H - Sym A, respectively.

(a) A morphism & — $ (or, more precisely, « — f3) is a pair (h, i)
where h : 8 — H is a group homomorphism and i : A - Q is a function
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such that

a(g)oi=iofB(h(g)), forallgeG.

(b) An embedding of permutation groups is a morphism (4, i) : & -
where h and i are both injective.

Theorem 1.14. Let A be a countable model of a countable R, -categorical
theory. A structure B is definable in A if and only if there exists an embed-
ding Aut A — Aut B.

Proof. The claim follows from Lemma 1.11. If B is definable in ¥ then
every relation R® of B is closed under 2ut2l. This implies that every
automorphism of U is also an automorphism of B. Conversely, each re-
lation R® of B is closed under all automorphisms of B. If Aut A < Aut B
then it also closed under all automorphisms of ¥ and, hence, it is defin-

able in 9. []

Corollary 1.15. Let A and B be countable models of countable R,-cate-
gorical theories. Then A and B are bidefinable if and only if AutA and
Aut B are isomorphic as permutation groups.

Corollary 1.16. Let U be a countable model of a countable R, -categorical
theory. If B is a structure with countable signature that is definable in U
then Th(D) is also R,-categorical.

Proof. 1t Aut 2 is oligomorphic and AutB > AutA then AutVB is also
oligomorphic. [

A similar characterisation holds for interpretations. Recall that every
structure interpretable in M can be seen as a definable substructure

of Med.,

Definition 1.17. Let Z = (a, (0s)ses> (&5 )ses> (@) eer) be a first-order
interpretation and 7 : & - B an isomorphism.

(a) We denote by 79 : A4 — B9 the unique isomorphism with
¢l A=
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1. Rq-categorical theories and automorphisms

(b) Set € := Z(Q). For every sort s, the coordinate map of Z induces a
bijection Z; : D; - C; where

D, :={[a]e, |aed?}cAl.
(c) We define

T[IIZUISOT[erIS_l,
S

where s ranges over all sorts of Z(). We denote the induced map on

automorphism groups by AutZ : Qut A — Aut Z(A) : 7~ 7L,

Lemma 1.18. Let T be a first-order interpretation. n : Z() — Z(B) is
an isomorphism, for every isomorphism m: A — B.

Lemma 1.19. Every isomorphism h : A — B induces an isomorphism
Aut h = Aut A — Aut B where

(Auth)(m):=homoh™.

Lemma 1.20. For every first-order interpretation I, the map AutZ is a
continuous homomorphism

AutZ : AutM — AutZ(M) .

Proof. 1t is straightforward to verify that AutZ : Aut M — Aut Z(M) is a
homomorphism. To see that it is continuous let S € Aut Z(M) be a basic
open neighbourhood of 1. Then there is some finite tuple a in Z(M)
such that

S = (AutI(())?))(d) .

Suppose that the sorts of a are 5. We fix elements ¢; € D, withZ(¢;) = a;.
There are finite tuples ¢; € M such that

dcl®(c¢;) = dcl®I(¢)).
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Setting S’ := (AutZ) ' [S] we have

meS iff AutZ(m)(a)=a
iff (I, 0on®oZ;")(a;)=a;, foralli

iff  7%(c;) = ¢, for all i
it n(ci)=c¢c;, foralli.
Consequently, " = (Aut M) zx ¢z« ) is open. ]

Let us call a function f : M — M definable in the structure M if each
restriction f | M, is definable, where s ranges over all sorts of M.

Lemma 1.21. Let ¢ : AutA — AutB be a continuous homomorphism
and suppose that AU is a countable model of an R, -categorical theory. The
following statements are equivalent:

(1) ¢ = AutmoAutZ, for some interpretation L and some isomorphism
n:Z(A) > B.

(2) The subgroup rng ¢ < AutB is oligomorphic.

Proof. (1) = (2) For every finite tuple § of sorts and every orbit S of rng ¢
on B, we introduce a new relation R of type § containing all tuples in
the orbit S. Let B* be the expansion of B by all these relations Rg. Every
automorphism o € rng ¢ is still an automorphism of the expansion B*.
Hence, rng ¢ < AutB*. We claim that rng ¢ and Aut B* have the same
orbits.

Since rng ¢ < Yut B it is sufficient to check that tuples 4, b € B® in
different orbits of rng ¢ belong to different orbits of Aut B*. Let S and S’
be the orbits under rng ¢ of @ and b, respectively. Then G € Rgand b € R
If S + S’ then Rg and Ry are disjoint and there is no automorphism
of B* mapping a to b.

Consequently, rng ¢ and Aut B™ have the same orbits. To prove (2) it
is therefore sufficient to show that Aut 3™ is oligomorphic. For a con-
tradiction, suppose that some set B contains tuples b", n < w, from
pairwise distinct orbits. Fix tuples @" ¢ A such that (w0 Z)(a") = b".
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Since 9 is R,-categorical there are indices k < n such that a* and a”

belong to the same orbit under Aut 2. Fix an automorphism o € Aut
with ¢(a*) = a". Then

¢(0)(b*) = (Autm o AutT) (o) (b¥)
= (moZs0 00 I o 17")(b")
= (moZs 0 0%)(a")
= (moZs)(a") = b".
Hence, the automorphism ¢ (o) maps b* to b". Contradiction.
(2) = (1) Let & := AutA and H := Aut B. For each sort s, fix repres-
entatives by, b}, ... of the orbits of B; under rng ¢. The stabiliser ;)

of b} is a basic open neighbourhood of 1 in 9. Since ¢ is continuous we
can find, for each b}, a basic open neighbourhood U; of 1 in & with

Ui o' [Dan]-

Every such neighbourhood is of the form U; = 8 ;), for some a; ¢ A.
Let O; be the orbit of a}. We define a map 7} : O] — B; by

mi(o(ai)) =¢(o)(b}), foroe@.

It follows that rng 7} is the orbit of b} under rng ¢. Note that ker 7} is
invariant under automorphisms since

m;(00(a;)) = m;(a:(a3))
implies
7 ((podo)(a;)) = 9(p o ao)(b;)
=¢(poa)(b;) =m((pooa)(a;)).

By Lemma 1.1 it follows that ker 7} is definable. We obtain a definable
subset U := O}/ ker w; ¢ A® and an injective function

7°:U; US - Bs.
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This map is also surjective since its range contains every orbit of B; under
rng ¢. Setting 7 := U, 7° we obtain a bijection 7 : U; U; — B. We claim
that this bijection is an isomorphism between & and a structure of the
form Z (), for a suitable interpretation Z.

If R is a definable relation in B then its preimage 77'[R] is invariant
under automorphisms. Hence, 77*[R] is definable in 24, It follows that
there exists an interpretation Z such that 7 : Z(%) = B.

It remains to check that ¢ = Aut 7 o AutZ. For every o € & we have

(Autmo AutZ)(o)(b}) =(moZs00%M0Z o™")(b})
- (w0 T, 0 0%9)(a})
- (noL)(0(a)) = p(o) (b)) [

Corollary 1.22. Let X and I" be countable signatures and 1L a first-order
interpretation from X to I'. If U is a countable X-structure with R,-cate-
gorical theory then the theory of Z(¥) is also R,-categorical.

Proof. AutZ : AutA — AutZ(Y) is a continuous homomorphism. By
the preceding lemma it follows that rng(Aut Z) is oligomorphic. Since
rng(AutZ) < AutZ () it follows that Aut Z(Y) is also oligomorphic.

[

Definition 1.23. Let M be a structure and suppose that Z and J are
interpretations such that there exists an isomorphism 7z : Z(M) = J(M).
We call Z and J homotopic (via ) if there exists a definable function
p:M — MsuchthatmoZ =7 op.

T

(M)

P
M ——FIT(M

J

Lemma 1.24. Let M be a countable structure with R, -categorical theory
and suppose that T and J are interpretations with Z(M) = T (M). Let
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n:Z(M) - T (M) be an isomorphism. Then I and J are homotopic
via 7 if and only if Aut J = Aut o AutZ.

Proof. (=) Let p : M — M be a definable function such that 7o Z =
J op. For every element b of 7 (M) and every automorphism o € Aut M,
we have

(Autmo AutZ)(c)(b) = (mo L0 0% 0T o )(b)
=(Jsopoc®op™oJ ) (b)
= (Js00%opop™oJ ") (b)
= (AutJ) (o) (b)

Hence, Autr o AutZ = Aut 7.
(<) For a € M, we define

pla):=(J emoZs)(a).
We claim that p is definable. For 0 € AutM and a € M, we have

p(a(a)) = (I emoZsoa)(a)
=(J; 'omoZsog0Z ot omoZs)(a)
=(J; "o (Autmo AutZ)(o) omoZ;)(a)
=(J; "o (Aut J) (o) omoZs)(a)
- (00T ono L) (a)
=0(p(a)).

Hence, p is invariant under automorphisms and, thus, definable. [

Definition 1.25. Two structures 2 and B are biinterpretable if there exist
first-order interpretations Z, 7 and isomorphisms 7 : Z() - B and
p:J(B) - Asuch that J o Z is homotopic to idy via p o 77 andZo J
is homotopic to idgs via 7 o p~.
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o Zs 1y L gz

ﬂl ﬂj

o % 7J(QS)?IJ(Q$)

[
|
|
!
|
[
!
[
|
:

A

|
: P [pI
T
|
A (A
id : (20)
| [
|
B - > B
id

Theorem 1.26. Let A and B be countable models of countable R, -categor-
ical theories. Then A and B are biinterpretable if and only if AutA and
Aut B are isomorphic as topological groups.

Proof. (=) LetZ, J and 7, p witness that 9 and B are biinterpretable.
There exist definable maps 0 : A — A and 7: B — B such that

pOT[jOjOI=O' and ﬂopIOIOJ:T.

Set ¢ := Aut moAutZ and y := Aut po Aut J. Since o and 7 are definable
we have

Auto=id and Autr=id.
It follows that

poy=AutpoAutJ o Autmo AutZ
:Aut(pojor[oI)
= Aut(pon? o JoT)
= Auto
=id,
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and, analogously,

vog=id.

Hence, y = ¢ ™' and ¢ : AutA — Aut B is the desired isomorphism.

(<) Let ¢ : Aut A — Aut B be an isomorphism. Since rng ¢ = Aut B
is oligomorphic it follows by Lemma 1.21 that ¢ = Autz o AutZ, for
some interpretation Z and some isomorphism 7 : Z() — B. Similarly,
rng ¢! is oligomorphic and we have ¢! = Autp o AutJ, for some
J and p. It follows that

Aut(po JomoZ)=AutpoAutJ o Autmwo AutZ
=@ logp=id.

By Lemma 1.24, there exists a definable map o0 : A — A such that
goTopoJ=0.

Analogously, we obtain a definable map 7: B — B such that
poJomol=r.

Hence, J o Z and id are homotopic via p o 77 and 7 o J and id are

homotopic via 7 o pI ) ]

2. Back-and-forth arguments in accessible categories

In the next section, we will prove a result about accessible categories
using back-and-forth arguments. The necessary machinery for such
arguments is developed in the present section. We start by generalising
the notion of a partial isomorphism and the forth-property.

Definition 2.1. Let C be a category, I ¢ C°% a class of objects, and
a,beC.
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(a) A partial morphism from a to b is a pair p = (f, f’) of morphisms
f:c—aand f': ¢ — b, for some object ¢ € C. We call a the domain of p,
b its codomain, and ¢ is its base.

(b) Let p = (f, f') and g = (g, ¢’) be partial morphisms with bases
¢ and d, respectively. A morphism p — q is a morphism h : ¢ - b such
that

f=goh and f'=g'oh. ‘g/T\g'k

(c) We denote by pMot - (a, b) the category of all partial morphisms p
from a to b whose base belongs to K. If K is the class of all x-presentable
objects, we will write pMor, (a, b) instead.

(d) The domain projection is the functor

P : pMoty-(a,b) - Subic(a)

that maps a partial morphism p = (f, f’) to its first component f and
a morphism h : (f, ') — (g, ¢') of pPMor,-(a,b) to the underlying
morphism & : f — g of Subx(a).

Analogously, the codomain projection is the functor

Q : pMot - (a,b) > Suby (b)

mapping (f, f') to f"and h: (f, f') > (g, &) toh: f' —> ¢".

Finally, the base projection is the functor
B :pMot,-(a,b) > C

mapping a partial morphism p to its base and a morphism 4 : p - g to
the corresponding morphism 4 : B(p) — B(q) between the bases.

Definition 2.2. Let C be a category, K € C° a class of objects, and
a,beC.
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(a) A set I of partial morphisms from a to b has the forth property with
respect to KC if, for every p = (f, f') € I with base ¢, every d € K, and
every pair of morphisms g:d - aand h : ¢ — D with f = g o h, there
exists a morphism g’ : d — b such that (g, ¢’) € I and

h:{f.f)~(gg) - Do g

(b) We write

aceb :iff  pMori(a,b) is nonempty and it has the forth
property with respect to K.

Furthermore, we write
K .3
aCoe b iff  ack, b,

where IC, C C is the class of all x-presentable objects. The corresponding
equivalence relations are

as=xb (iff aCixb and bk a,
_K s K K
=50 :iff a0 and bSp . a.

Remark. In the category €mb(X) we have
Acr B iff A= B.

—pres

Note that, for an arbitrary category, the relation Sx is not very well-
behaved. For instance, in general it is neither reflexive nor transitive. The
next lemma collects some basic properties that hold in every category.

Lemma 2.3. Let C be a category and K ¢ C°Y.

(a) If there exists a morphism ¢ : a, — a, then

aCi b implies a,Cib.
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(b) If a e K and a £x b, then there exists a morphism a — b.

(c) Ifa,be Kanda=x b, thena=b.

Proof. (a) Let (f, f') € pMot(a,,b) be a partial morphism with base ¢
andlet h : ¢ - band g : b - a, be morphisms with f = go h and
dDe . Then (¢o f, f') e pPMoty-(a,b) and h: ¢ >Ddand pog:d —aare
morphisms such that ¢ o f = ¢ o go hand d € K. Consequently, a S b
implies that there exists a morphism g’ : » — b such that

(pog,g') epMoric(a,b) and h:{pof,f) > (pogg).

It follows that (g, g’) € pMor)-(a,,b) and h: (f, f') — (g, ¢')-

(b) As a S b, there exists a partial morphism (f, f’) € PMor,-(a,b).
Since a € K, we can use the forth-property to find a morphism g:a — b
such that

(idq, g) € pMor - (a, b) i, %~ ¢
and f:(f,f") - (ids g). Q/If\b
7

(c) As a = b, there exists a partial morphism (f, ') € pDoty-(a, b).
As in (b), we can use the forth-property to find a morphism g:a — b
such that

(ids, g) € PMoty-(a,6) and  f: (f, f') — (ids, g) -

Similarly, we can use the back-property to find a morphism 4 : b — a
such that
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(h,idy) € pMorx-(a, b)
and g :(idy, g) = (h,ids).
Using the forth-property again, we

obtain a morphism g’ : a » bsuch ¢
that

(idg, g') € PMory-(a,b)
and h:(h,idy) — (ids, g'). ¢

In particular, h o ¢ = id, and g’ o h = idy. By Lemma B1.3.4, it follows
that ¢ = ¢’ and h : b 2 a is an isomorphism. O

Our goal is to generalise Lemma c4.4.10 to relations of the form c.
We start with the forth-property.

Proposition 2.4. Let k be an infinite cardinal or k = oo, C a category with
colimits of nonempty chains of length less than «, and let K < C° be a
class of objects that is closed under colimits of nonempty chains of length
less than k. Let D : y — K be a chain of length o < y < k with limiting
cocone y € Cone(D, a). Suppose that every morphism from some object
in K to a factorises essentially uniquely through .

If a Cic b, then there exists a chain E : y — pMoty-(a,b) such that
D = B o E, where B is the base projection functor.

Proof. By induction on « < y, we define morphisms v, : D(a) — b such
that

<H(x> Voc) € merK(a, b) g D(ﬁ) vg
and D(“,ﬂ).(lua,va)—><[,[ﬁ’1}ﬂ)’ / \
a D(a,B) b
fora < ff<y.
Ha Va
Then we can set D(a)
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E(a) :=(pa,vy) and E(a,pB):=D(a,B), fora<f<y.

For a = 0, we define v, as follows. Since a Ex b, there exists a partial
morphism (f, f') € pMoty-(a,b). Let ¢ be its base. By assumption on D,
f factorises as f = py o f,, for some index « < y and some morphism
fo:¢— D(a). Asa g b, there exists a morphism v, : D(«a) — b such
that (4, vy ) € pDoty-(a,b) and

f0:<f’f,>_><l’la>voc>- D(a)

y Va
“

a fo

S

¢

Setting v, := v, o D(0, &) we obtain the desired morphism D(o) — b.

For the inductive step, suppose that we have already defined v,, for
all & < B. Let A? be a limiting cocone from D | B to some object dg. As
K is closed under colimits of chains of length 3, we have dg € K. Since
(Ha)a<p and (v4)a<p are cocones of D | 3, there exist unique morphisms
¢ :dg —aand ¢’ : dg — b such that

(ﬂoc)oc</5:§0*/\ﬂ and (va)oc</5:§0l*/1ﬁ.

Similarly, (D(e, 8))a<p is a cocone from D I 8 to D(8) and there exists
a unique morphism y : dg - D(f) such that

(D(@.B))asp = * AP,

Since
#ﬁOWO/\{X}:MﬁOD(a,ﬁ):ﬂa:(pOAg, forall « < 3,

it follows by Lemma B3.4.2 that
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2. Back-and-forth arguments in accessible categories

l/‘ﬁ o w = q) . ug D(ﬁ)vﬁ
a / v " b
N
B

Therefore, a S b implies that there exists a morphism vg : D() — b
such that

(up>vg) € PDoryc(a,6) and  y: (9, ¢") = (pp, vp).
For « < f it follows that D(a, B) = o A% is a morphism

D(“:/j):<ﬂa>va>_><ﬂﬁ’vﬁ>- [

Proposition 2.5. Let k be an infinite cardinal or k = oo, C a category with
colimits of nonempty chains of length at most x, and let K € C°® be a class
of objects that is closed under colimits of nonempty chains of length less
thanx. Let D : yP — K and E : y* — K be chains of length o < y°,y% <«
with limiting cocones AP € Cone(D,a) and A¥ € Cone(E,b). Suppose
that every morphism from some object in K to a or b factorises essentially
uniquely through, respectively, AP and A,

Ifa =k band p € PMoty-(a,b), there exists a morphism ¢ : p - q of
pMot (a,b) such that q = (g, ') consists of two epimorphisms.

Proof. By induction on the ordinals y* and y*, we construct a chain
F:8 — pMot,(a,b), two links s and ¢ from BoF to D and E, respectively,
and two increasing functions p, : y© — § and 0, : ¥ — & such that

B(F(a)) =D(p(«a)), Sa = idp(p(a)) > for a € rng p,, ,
B(F(a))=E(0(a)), te = idg(o(a)) for a € rng 6, ,

where B is the base projection functor and p and 0 are the index maps
of s and t, respectively.
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For yP, yf = o, we start with § := 1and F(o0) := p. To define s and t,
suppose that p = (f, f’). By assumption, f and f’ factorise essentially
uniquely through AP and A, respectively. Let f = APof, and f’ = Aﬁ ofs
be the corresponding factorisations. We set s, := f, and f, := f.

For the inductive step, suppose that, for the restrictions D | P and
E 1 BE, we have already defined a chain F : § — pMory(a,b) with
0 < 8 <, links s and t from Bo F to D | 8P and E | B%, respectively,
and increasing functions p, : B© — 8 and 0, : ¥ — 6.

We will show how to extend these definitions to D | 2 + 1. (The
extension to E | £ +1 works in the same way.) Let  be a limiting cocone
from Bo F to some object c. As K is closed under limits of chains of length
0 < § < k, it follows that ¢ € K. Since AP x s is a cocone of B o F, there
exists a unique morphism ¢” : ¢ - a such that A” * s = ¢ % y. In the
same way, we obtain a unique morphism ¢F : ¢ — bwith AF x t = ¢F x p.

As ¢ € K, there exists an essentially unique factorisation ¢ = A2 o ¢,
for some morphism ¢, : ¢ = D(a) with & > BP. Since a Ex b, we can
find a morphism y : ¢ — b such that

- oF p D(a)
Yyogo=9¢ . Ay 14
a / [%\ b

o~

% C %

As D(a) € K, there exists an essentially unique factorisation y =
Ag o Yo, for some morphism v, : D(«) — E(B) with 8 > fP. We set

F(8) = (A, y), F(i,8) :==¢o0ou;, fori<d,
S5 = idD(a) N po(ﬁD) =,
ts == VYo.

Let us show that these morphisms have the desired properties. First,
we check that the extension of s is a link from the extension of Bo F to D.
For every i < 8, it follows by choice of ¢ that

Ae o D(p(i),a) 0si=A ;080 =9" 0 =g 0o 0 .
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2. Back-and-forth arguments in accessible categories

Since B(F(i)) € K, this morphism has an essentially unique factorisa-
tion through AP. Hence, the above two factorisations are a.p.-equivalent.

D(¢(i),a) 0 si Mp Po © ti

By Lemma B3.5.3 (d), this implies that
Si Ap Po o pi =50 F(i,6),

as desired.

We also have to check that the extension of ¢ is a link. Let i < §. Then

AgotaoF(i,(?):/\goy/oogoooyi
=Yoo Qoo =@ o= Aot

Since B(F(i)) € K, this morphism has an essentially unique factorisa-
tion through A*. Hence, the above two factorisations are a.p.-equivalent.

t(;OF(i,(S) MNE t;,

as desired.

Having defined F : § — pMoty-(a, b), we construct the desired partial
morphism g = (g, g’) € pDot(a,b) as follows. Let ¥ be a limiting
cocone from B o F to some object ¢ € C. Since A” * s and AF % ¢t are
cocones of F, there exist unique morphisms g : ¢ - aand ¢’ : ¢ > b such
that AP s = gx AF and AF x t = ¢’ x AF. We claim that g and ¢’ are
epimorphisms. By symmetry, it is sufficient to give a proof for g. Hence,
let b, h’ : a — b be morphisms such that h o g = h’ o g. For every i < y?,

901
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it follows that
hod? =holdy, iy °D(i,p(po(i)))

= 1o Ao, (iy) © Spo(iy © D(ix p(po(i)))
=hogod, ;yoD(i,p(po(i)))
=h'ogoly iy D(i,p(po(i)))
= h' 0 A (iy) © Spe(iy © D(is p(po(i)))
=h oA, iy © D(is p(po(i)))
W oAP.

Consequently, Lemma B3.4.2 implies that h = h’.

Finally, note that AL : B(F(0)) — ¢ is the desired morphism p — g
since, by choice of g, ¢’, s,, t,, we have

gody =AJyoso=f and g'oly =gy ote=f". O

The preceding two results are phrased in a quite general form. Their
statements can be simplified significantly if we assume that the category
is R, -accessible, all morphisms are monomorphisms, and all epimorph-
isms are isomorphisms. Since in the applications below we will mainly
be working in €mb(X) and similar categories where these assumptions
are met, we record here the corresponding simplified versions. We start
by proving that, under these assumptions, every object can be written as
the colimit of a chain.

Lemma 2.6. Let C be a category where every morphism is a monomor-
phism. For every k-filtered diagram D : T — C of size A that has a colimit,
there exists a k-directed diagram E : & — C of size at most A with

limE =limD and rngE =rng D,
— —

Proof. Fix a limiting cocone y € Cone(D, a). For the index order K of
the diagram E, we choose the set K := Z°% where we define the order by

i<i iff Z(i,j)*@.
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2. Back-and-forth arguments in accessible categories

Since 7 is k-filtered, this preorder is clearly x-directed. We define the
diagram E by setting

EM (i) := D(i)
and E™'(i,j) := D(f), foranarbitrary f € Z(i,j).

First, note that E is well-defined in the sense that the value of E(i, )
does not depend on the choice of f:if f, f' € Z(i,j), then

wjo D(f) = ui=pjo D(f') implies D(f)=D(f"),

as y; is a monomorphism. Furthermore, it follows immediately from the
definition that rng E°® = rng D°Y.

Hence, it remains to show that D and E have the same colimit. We
will prove below that Cone(E, b) = Cone(D, b), for every b € C. Hence,
the identity maps provide a natural isomorphism

id : Cone(D, —) — Cone(E, -)

and it follows by Lemma B3.4.3 that D and E have the same colimits.
To prove the claim, let v € Cone(D, b). For alli <jand f € Z(i,}), it
follows that

vi=vjo D(f) =vjo E(i,j).

Hence, v € Cone(E, b). Conversely, let v € Cone(E,b). Forall f :{—j
in Z, it follows that

vi=vjo E(i,j) = vjo D(f).
Hence, v € Cone(D, b). O

Corollary 2.7. Let C be an R, -accessible category where every morphism
is a monomorphism. For every k™ -presentable object a € C, there exists a
chain D : k — C such that
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¢ limD=q,
R
o every object D(«) is k-presentable and,

o for each k-presentable object b, every morphism f : b — a factorises
essentially uniquely through every limiting cocone from D to a.

Proof. If ais k-presentable, we can take the constant diagram D : k - C
where D(«) = aand D(«, ) = id,, for all & < 8 < k. Hence, it remains
to consider the case where a is k¥ -presentable, but not x-presentable.
Then we can use Theorem B4.4.3 to find an R, -filtered diagram E : Z — C
of size at most x with colimit a such that every object E(i) is R,-present-
able. We use Lemma 2.6 to construct a R, -directed diagram F : & — C of
size at most « with lim F = a such that every F (i) is R, -presentable. By
Proposition B3.4.16, there exists a chain D : y = C of length y < |[K| < x
with colimit a such that each object D(«) is a colimit of a directed
diagram of size less than |K|. In particular, every D(«) is k-presentable.
As a is not x-presentable, it follows by Theorem B4.4.3 that y = «.
Finally, let y € Cone(D, a) be limiting. If k is regular, the index order
(x, <) of D is k-directed and every morphism f : b — a from a x-present-
able object b to a factorises essentially uniquely through . Hence, sup-
pose that « is singular. Then it follows by Lemma B4.1.4 that an object
is k-presentable if, and only if, it is k" -presentable. This contradicts our
assumption that a is k™ -presentable but not k-presentable. ]

In the following theorem let us state the special cases of Propositions
2.4 and 2.5 that we will need below.

Theorem 2.8. Let C be an R, -accessible category where every morphism
is a monomorphism and every epimorphism is an isomorphism.

(a) IfaeCisk"-presentable and a £ . b, then there exists a morphism

fra—b.

(b) Leta,b € C be k" -presentable objects with a = ¢ b. For every partial
morphism p = (f, f') € pMot, (a,b), there exists an isomorphism
m:a—bwith f =mo f.
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Proof. We start by proving that C and the class IC of all x-presentable
objects satisfy the conditions of Propositions 2.4 and 2.5. Clearly, being
R, -accessible C has colimits of chains.

To show that K is closed under colimits of nonempty chains of length
less than «, let F : y — KC be such a chain. As every object F(i), for i < y,
is k-presentable, it follows by Proposition B4.3.7 that the colimit of F is
(k @ |y|")-presentable, i.e., k-presentable.

(a) We can use Corollary 2.7 to express a as the colimit of a chain
D : k = I of the form required by Proposition 2.4. Consequently, we
obtain a diagram F : ¥ - pMot,-(a,b) such that D = Bo F. Let A be a
limiting cocone from D to a and set y, := Q(F(«a)), for « < x, where
Q is the codomain projection functor. Then g := (g )a<x is @ cocone
from D to b. As A is limiting, there exists a morphism f : a — b such that
u=fxA

(b) We can use Corollary 2.7 to express a and b as colimits of chains
D:x - Kand E : k - K of the form required by Proposition 2.5.
Therefore, we obtain a morphism h : p — g of pMoty(a,b) where
q = (g, g') consists of two isomorphisms. It follows that 7 := g’ 0 g™" is
the desired isomorphism between a and b. ]

3. Fraissé limits

In this section we will present a method to construct structures with an
R, -categorical theory. These structures will be approximated by a direc-
ted diagram of finitely generated substructures. Since this construction
has further applications, we will present it in the general setting of an
accessible category.

Ultrahomogeneous objects

As in the case of k-saturated structures and atomic ones, we can charac-
terise the maximal objects of the order =1, .. For the category Emb(Z),
these structures will have an R, -categorical theory.
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E4. R,-categorical theories

Definition 3.1. Let C be a category. An object u € C is k-ultrahomo-

geneous if, for every x-presentable object a and all pairs of morphisms

f, f" - a — u, there exists an automorphism 7 : u — u with f' = 7o f.
We call an object u ultrahomogeneous if it is ||u||-ultrahomogeneous.

Example. (a) The order (Q, <) of the rationals is ultrahomogeneous in
Cmb(<).

(b) Let (w, p) be the structure where p(0) := o and p(n +1) := n.
This structure is ultrahomogeneous in €mb(p) since no two distinct
substructures are isomorphic.

(c) We have shown in Corollary B6.5.31 that algebraically closed fields
are R,-ultrahomogeneous.

Exercise 3.1. Find a dense linear order that is not R, -ultrahomogeneous
in €mb(<). Can you find an open one?

One important parameter of an ultrahomogeneous structure is the
class of its substructures.

Definition 3.2. Let C be a category, x an infinite cardinal, and a € C. We
denote by Sub, (a) the class of all x-presentable objects ¢ € C such that
there exists a morphism ¢ — a.

For accessible categories this class is well-behaved.

Lemma 3.3. Let C be a k-accessible category.
A Cpes b implies Suby(a) € Sub,(b).

Proof. Let ¢ € Sub,(a) and let g : ¢ - a be a corresponding morphism.
Since a =7 ¢ b, there exists a partial morphism (f, /") € pMot, (a,b).
According to Proposition B4.4.12, the category Sub, (a) is x-filtered.
Therefore, there exist an object h : ¢ — a of Sub,(a) and morphisms

¢ :f > handy: g — h.Sincea 55 b, we can find a morphism
h' : e — bsuch that (h, h’) € pPMor, (a,b) and
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3. Fraissé limits

0 (fo ) = (). e |
h

¢

I

We obtain a morphism h’ oy : ¢ — b witnessing the fact that ¢ € Sub, (b).
]

Corollary 3.4. Let C be an R,-accessible category where every morphism
is a monomorphism, and let u be k-ultrahomogeneous. Then

atpest iff  Suby(a) € Suby(u), forall objectsa.

Proof. (=) Since R, -accessible categories are k-accessible, for all infinite
cardinals «, this direction follows from Lemma 3.3.

(<) Let p=(f, f') € PDor, (a, u) be a partial morphism with base ¢
andleth:c¢— band g:d — abe morphisms with go h = f where d is «-
presentable. Since € Sub, (a) S Sub, (u), there exists some morphism
¢’ 1D - u. Asuis k-ultrahomogeneous, we can find an automorphism
7 : u — u such that

f/:ﬂog/oh, g DLU
a/[h lﬂ
‘f\c—>u

fl

We obtain a partial morphism q := (g, w0 g’) € pMor, (a,u) such that
h:p—q. [

The statement of the previous corollary can be used to characterise
ultrahomogeneous objects.
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Proposition 3.5. Let C be an R, -accessible category where every morphism
is a monomorphism and every epimorphism an isomorphism. For a k" -
presentable object u € C, the following statements are equivalent:

(1) uis x-ultrahomogeneous.
(2) acp e 4, forallaeC with Sub,(a) C Sub,(u).

—K

(3) u =pres u

Proof. (1) = (2) was already proved in Corollary 3.4 and (2) = (3) is
trivial. Hence, it remains to prove (3) = (1). To show that u is x-ultra-
homogeneous, consider morphisms f, f : ¢ - u with x-presentable
domain ¢. By assumption, we have u =7, u. Consequently, we can
use Theorem 2.8 (b) to find an isomorphism 7 : u — u such that f’ =

mo f. ]

Corollary 3.6. Let C be an R, -accessible category where every morphism
is a monomorphism and every epimorphism an isomorphism.

(a) Let u,v be x*-presentable x-ultrahomogeneous objects. Then
Sub, (1) = Sub,(v) implies u=v.

(b) Let u be x-ultrahomogeneous and a k" -presentable. Then
Sub, (a) € Sub, (1) implies a € Sub,+(u).

Proof. (a) This follows by Theorem 2.8 (b) and Proposition 3.5.
(b) By Corollary 3.4, Sub,(a) < Sub, (b) implies a £ .. u. Hence, the

=pres

claim follows by Theorem 2.8 (a) . ]

We have claimed above that ultrahomogeneous structures in Emb(X)
have an R, -categorical theory. We start by showing that they are existen-
tially closed.

Proposition 3.7. Let U be an R, -ultrahomogeneous structure in Emb(X).
Then U is existentially closed in the class

C:= {M e Str[Z] | Subs, (M) € Suby, (1) }.
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Proof. Suppose that U € M for some structure M € C. Let ¢(x, y) be a
quantifier-free formula and a € U parameters such that

M= Fyep(a, y).

We have to show that U £ 3j¢(d, 7). Fix a tuple b ¢ M with M =
¢(a, b). By Corollary 3.6 (b), there exists an embedding 4 : {ab)q — L.
Since U is R, -ultrahomogeneous and

{(ahu = (h(a))u
we can find an automorphism 7 of U with 7(h(a)) = a. Consequently,
Mep(a,b) iff (abhx = ¢(a,b)
iff Uk @(h(a),h(b))
iff Uk g(an(h(b))).
Hence, U = 3y9(a, 7). ]

With slightly stronger assumptions we obtain R, -categoricity.

Proposition 3.8. Let X be a finite relational signature and let U be a
countable ultrahomogeneous structure in Emb(X). Then Th(ll) is R, -cate-
gorical.

Proof. Note that, for every finite tuple § of sorts, there are only finitely
many substructures {(a )y of U that are generated by a tuple a € U* of
sort 5. As Ul is R, -ultrahomogeneous, it follows that any isomorphism
between two such substructures extends to an isomorphism of U. Con-
sequently, the automorphism group of U is oligomorphic and it follows
by Theorem 1.2 that Th(Ul) is R,-categorical. O

Example. (a) We have seen above that (Q, <) is ®,-ultrahomogeneous.
Consequently, it follows by the proposition that Th(@Q, <) is R, -categori-
cal.

(b) That the restriction on the signature X is necessary, is shown by
the example (w, p). We have seen above that this structures is X, -ultra-
homogeneous, but its theory is not X, -categorical.
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The theorems of Fraissé

We have seen in Corollary 3.6 (a) that an ultrahomogeneous object u is
uniquely determined by the class Sub, (). Therefore it is worthwhile
to characterise such classes. In the present section we will provide a
characterisation in terms of the following properties.

Definition 3.9. Let C be a category, « a cardinal, and K ¢ C.
(a) The class K is x-hereditary if

ae K implies Sub,(a)c K.

We call IC hereditary if it is k-hereditary, for all cardinals «.
(b) K has the k-joint embedding property if, for every set X € IC of size
| X| < x, there exist an object ¢ € K and morphisms a — ¢, for each a € X.
(c) K has the k-amalgamation property if, for every family of morph-
isms f; :a = b;, i <y, witha,b; € Kand y < «, there exist an object
¢ € K and morphisms g; : b; — ¢, i <y, such that

giofi=gkofr, foralli,k<y.

Remark. 1If the subcategory of C induced by a class K ¢ C°% is k-filtered,
then Condition (F1) states that /C has the x-joint embedding property,
and Lemma B4.1.2 implies that /C has the xk-amalgamation property.

The converse fails in general. For instance, consider the class KC ¢
Cmb(X) of all finitely generated structures. This class has the R, -joint
embedding property and the R,-amalgamation property, but it is not
R, -filtered: take finitely generated structures U, B € IC such that there
are two different embeddings f, g: A — B. Then ho f # ho g, for every
embedding h.

Exercise 3.2. For a suitable signature X, find a class /C € €mb(X) with the
R,-amalgamation property that does not have the R,-joint embedding

property.

Exercise 3.3. Suppose that the class IC is closed under unions of chains of
length less than x. Prove that, if /C has the X, -joint embedding property,
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it also has the x-joint embedding property and that, if it has the R,-
amalgamation property, it has the k-amalgamation property.

Before giving a characterisation of classes of the form Sub,(a), we
start with a technical remark on such classes for x-filtered colimits.

Lemma 3.10. Let a be the colimit of a x-filtered diagram D : T — C. Then

Sub,(a) = | Suby(D(i)).

i€l

Proof. Let A € Cone(D, a) be a limiting cocone.

(2) For every b € Sub, (D(i)), there is some morphism f : b — D(i).
Hence, A; o f is a morphism b — a.

(c) Letb € Sub,(a) and let f : b — a be the corresponding morphism.
Since b is k-presentable, we can find a morphism f, : b - D(i), for some
i€ Z, such that f = A; o f,. Hence, b € Sub,(D(i)). ]

Let us characterise when a class is of the form Sub, (), for an arbitrary
object a. We start with an obvious necessary condition.

Proposition 3.11. Let C be a k-accessible category. For every object a € C,
the class Sub, (a) is x-hereditary and it has the k-joint embedding property.

Proof. Clearly, if there are morphisms b — a and ¢ — b, there is also a

morphism ¢ — a. Hence, Sub, (b) € Sub, (a), for every b € Sub, (a).
Furthermore, we have shown in Proposition B4.4.12 that Sub, (a) is

x-filtered. This implies that Sub, (a) has the x-joint embedding property.

]

The converse only holds for k¥ = R, and if K is small enough.

Theorem 3.12 (Fraissé). Let C be an R,-accessible category and let K C
C°% be a class of R,-presentable objects that, up to isomorphism, contains
only countably many objects. If K is R,-hereditary and if it has the R,-
joint embedding property, then KC = Suby, (a), for some R,-presentable
object a € C.
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Proof. Fixan enumeration (¢, )<, of all objects in /C up to isomorphism.
We define a diagram D : w — C by induction on n. Set D(0) := ¢,. If
D(n) is already defined then, by the X,-joint embedding property, we
can find an object D(n + 1) € K with morphisms ¢,,+; - D(n +1) and
fu:D(n) - D(n+1). Setting

D(i,k):= fy_y0---0f;, fori<k<w,

we obtain a R, -directed diagram D : w — K. Let a be its colimit. Accord-
ing to Proposition B4.3.7, a is R, -presentable. Since K is ®,-hereditary,

D(n) e K implies Suby, (D(n))c kK, foreveryn<w.
By Lemma 3.10, it follows that Suby_(a) ¢ K. Conversely, we have
¢, € Subyx, (D(n)) C Suby, (a), foreveryn<w.

Since Suby, (a) is closed under isomorphisms, this implies that I <

SUbNO (a) ]

For a given class K there may be several non-isomorphic objects a such
that IC = Suby, (a). For instance, if KL ¢ Emb(<) is the class of all finite
linear orders then KC = Suby, (£), for every infinite linear order £. We are
looking for an object a with Suby, (a) = /C that is in a certain sense the
most general one. As we have seen in Corollary 3.6, ultrahomogeneous
objects u are uniquely determined by Sub, (u). Therefore, we can take
ultrahomogeneity as the required additional property.

Definition 3.13. Let C be a category and C € C°%. An objectf € Cisa
Fraissé limit of IC if there is some cardinal « such that f is " -presentable,
x-ultrahomogeneous, and Sub, () = K.

Example. (Q, <) is the Fraissé limit of the class of all finite linear orders
in Emb(<).

Before considering their existence, let us prove that Fraissé limits are
unique.
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Proposition 3.14. Let C be an R,-accessible category where every morph-
ism is a monomorphism and every epimorphism an isomorphism. Up to
isomorphism, a class IC € C°® has at most one Fraissé limit.

Proof. Suppose that f and g are Fraissé limits of K. By definition, there
are infinite cardinals x and A such that f is k" -presentable and x-ultra-
homogeneous, g is A" -presentable and A-ultrahomogeneous, and

Sub,(f) = K = Sub,(g).

By symmetry, we may assume that ¥ < 1. As every object in Sub, (g) =
Sub, (f) is x-presentable, we have

Suby(g) = Suby(g) = K = Sub,(f)

and it follows by Corollary 3.6 (b) that there exists a morphism f — g.
Consequently,

Sub, (f) € Sub, (g) = K = Sub,(f) < Sub, (f) .

Hence, Sub) (f) = Sub, (g) and, if we can show that f is A-ultrahomogen-
eous, it will follow by by Corollary 3.6 (a) that f = g.

For A-ultrahomogeneity of f, consider two morphisms f, f' : a — f
with A-presentable domain a. Then a € Sub, (f) = Sub, (g) = Sub,(g)
implies that a is even x-presentable. Hence, we can use k-ultrahomogen-
eity of f to find the desired automorphism 7 : f - f with f' = 7o f. []

Next, let us describe Sub, (1) for a x-ultrahomogeneous object u.

Lemma 3.15. Let C be an R,-accessible category where every morphism
is a monomorphism. If u € C is k-ultrahomogeneous then Sub, (1) is k-
hereditary, closed under colimits of nonempty chains of length less than x,
and it has the k-joint embedding property and the x-amalgamation prop-
erty.

Proof. Note that every R,-accessible category is also x-accessible. There-
fore, it follows by Proposition 3.11 that the class Sub, (1) is x-hereditary
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E4. R,-categorical theories

and that it has the x-joint embedding property. To check the x-amal-
gamation property, let f; : a — b;, i < y, be a family of y < x morphisms
with a,b; € Sub,(u). Fix morphisms h; : b; - u, for i < y. Since u is
x-ultrahomogeneous, there exist automorphisms 7; € Aut(u) such that

miohjofi=hoof,, foralli<y.

Consequently, f; : ho o f, = 7; o h; is a morphism of Sub, (). We have
seen in Proposition B4.4.12 that Sub, (u) is k-filtered. Therefore, we can
use Lemma B4.1.2 to find an object g € Sub, (1) and morphisms

pi:mioh; > g, fori<y,
such that

piofi=g@rofr, foralli,k<y.

This family witnesses the x-amalgamation property.

It remains to check that Sub, (u) is closed under colimits of nonempty
chains of length less than «. Let D : y — Sub, (1) be a chain of length
0 <y < k. As C is R,-accessible, D has a colimit a which, according to
Theorem B4.4.3, is k-presentable. Furthermore, Lemma 3.10 implies that

Suby(a) = | Sube(D(a)) € Suby(1).

a<K

Hence, it follows by Corollary 3.4 that a =5, . u. Consequently, we can

use Lemma 2.3 (b) to find a morphism a — u. Thus, a € Sub, (u). ]

The converse is given by the following theorem, which can be used
to construct ultrahomogeneous structures by describing their class of
substructures. Again we have to require K to be small enough.

Theorem 3.16 (Fraissé). Let k be a regular cardinal, let C be an R,-access-
ible category where all morphisms are monomorphisms and all epimorph-
isms are isomorphisms, and let K ¢ C°® be a «-hereditary class of k-
presentable objects that is closed under nonempty chains of length less
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than k and that has the R, -joint embedding property and the R,-amal-
gamation property, and such that the full subcategory of C induced by K
has a skeleton K, with at most k morphisms. Then KC has a Fraissé limit f.

Proof. We will construct a diagram D : k — K, satisfying the following
condition:

(*) If f:a—>band g:a— D(a) are morphisms with a, b € IC,, there
is some index f3 > & and a morphism g’ : b - D(8) such that

g’of:D(OC,,B)Og- b—g,’D(ﬁ)

f[ TD(w,ﬁ)

a —g>D(0¢)

Let f be the colimit of this diagram. By Theorem B4.4.3, f is ¥ " -present-
able, and Lemma 3.10 implies that Sub, (f) € K. Conversely, if a €
then, by the R, -joint embedding property, there are an object b € K
and morphisms h : a - band f : D(o) — b. By (), we can extend
the identity morphism id : D(o) - D(o) to a morphism ¢’ : b —
D(«), for some a > o. Consequently, b € Sub,(D(«)) < Sub,(f) and
a € Sub, (b) ¢ Sub,(f). It follows that K = Sub,(f).

To show that f is ultrahomogeneous it is sufficient, by Proposition 3.5,
to prove that f =5 ¢ f. Consider morphisms f :a > f, f':a > f, g:b >,
h:a— bsuchthat f = gohand aand b are x-presentable. As « is regular,
the order (k, <) is k-directed. Since a is k-presentable, there therefore
exists an essentially unique factorisation ' = 1, o fZ, for some index
« < k, some morphism f! : a - D(«), and a limiting cocone A from D
to f. Hence, we can use (*) to find an index 8 > a and a morphism

¢' :b > D() such that
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E4. R,-categorical theories

g oh=D(a,p)ofs. G g
f f Ap
a

Since P ID(%ﬂ)

Agog oh=AgoD(B)ofl=Aaofi=f,
it follows that (g, Ag o g} is a partial morphism with

he(f, f') > (g Apog’).

Consequently, f is a Fraissé limit of K.

It remains to construct a chain D : k¥ - K, satisfying (*). Choose
a bijection 7 : ¥ x k - «x such that 7(«, ) > «, for all «, < k. (For
instance, the bijection constructed in the proof of Theorem A4.3.8 has
this property.) We construct D(«) by induction on «. We start with an ar-
bitrary object D(0) € /C,. For the successor step, suppose that D(«) has
already been defined. Fix a list of all pairs (fug, gag), for B < x, where
fap : Qap = bap is a morphism in ICy and g4p : agp = D(a) is an arbit-
rary morphism. Let (y, 8) := 77" («). Note that we have chosen 7 such
that y < a. By the R,-amalgamation property, we can find a structure
¢ € K and morphisms hyg : byg — cand b}z : D(a) — ¢ such that

hyg o fyp = hys o D(y,a) 0 gyp .
We set
D(a+1):=c¢ and D(i,a+1):=hz0D(i,a), fori<a.

For the limit step, suppose that D(«) is already defined for all « < §.
Let D(90) := lim (D I §) and let A be a corresponding limiting cocone.
By assumption D(6) € K, and we can set D(«, §) := Ay, for a < 6.

We claim that the diagram D defined this way satisfies Condition ().
Let f : a > band ¢ : a > D(«) be morphisms with a,b € ;. Then
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(f>g) = (fap> gup)> for some ordinal B < k. Consequently, the morphism
hapg : bap = D(7(a, B) +1) chosen in the inductive step above satisfies

hoc[} Ofoc/3 = h:x[j ° D((X,T[(OC,/S)) © Lap
= D(a,m(a, ) +1) 0 gup . []

Example. (a) Let P ¢ C€mb(E) be the class of all finite planar graphs.
Clearly, P is hereditary. The class P does not have a Fraissé limit since it
does not have the R,-amalgamation property. Consider the following
graphs:

%; ¢<>

N

Let f: A - Band g: A - € be the embeddings with a — a and b — b.
There is no planar graph © such that we can find embeddings 4 : B — ©
andk: € > DOwithho f=kog.

(b) Similarly we can show that the class F ¢ Emb(E) of all finite acyc-
lic graphs does not have the ®,-amalgamation property. The counter-
example is given by the graphs:

Se e

b

L2

S e
o
——o
K

4. Zero-one laws

In this section we study Fraissé limits by axiomatising their theories.

Definition 4.1. (a) Let M be a structure. The atomic type of a € M is the
set

atp(a) := { ¢ | ¢ aliteral such that M = ¢(a) }.
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An atomic n-type p is a set of the form p = atp(a), for a € M".
(b) Let p be an atomic n-type and q an atomic (7 + 1)-type such that
p € q. The extension axiom associated with p and q is the sentence

Mpg = VE[p(%) = Fya(x, y)].

(We write p(x) for the formula A p.)

(c) Let K be a hereditary class of finitely generated structures. We
define

Ic :={atp(a/M) | a is a finite tuple generatingM e K },
and  T[K]:= {1 |qelic } u{VE-p(x)|p¢ i}

The set of all extension axioms over a signature X is Ty,,[2] := T[C],
where C is the class of all finitely generated X-structures.

Remark. Note that, in general, T[] is an infinitary theory. It is a first-
order theory if the signature in question is finite and relational.

Example. An important example of a Fraissé limit is the random graph,
also called the Rado graph. It can be defined as follows. R := (V, E)
where V := HF is the set of all hereditary finite sets and the edge relation
is

E:={(a,b)|acborbea}.

This graph satisfies the following extension axiom: for every pair X, Y
of finite disjoint sets of vertices, there exists some vertex ¢ € V that is
adjacent to every vertex in X, but not adjacent to any in Y. For a proof,
note that, if X = {ao,...,a,y—,} and Y = {b,,...,b,_,} then we can
take ¢ := {ao,...,am_,, X} where the set x := {bo,...,b,_,} is needed
to ensure that ¢ ¢ b;.

Let us investigate the relationship between the theories T[K] and
ultrahomogeneous structures.
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Lemma 4.2. If Uis ultrahomogeneous then U = T[Suby, (U)].
Lemma 4.3. If A, B £ T[K] then

A=, B implies A= B,

Proof. Since A =, B we have plso,, (%,B) # @. To check the forth
condition, let @ +~ b € plso, (%,PB) and ¢ € A. Set p := atp(a) and
q := atp(ac). Then p € qand q € Ic. Hence, 7y, € T[K] and B & 1.
Since atp(b) = p we can, therefore, find some d € B with atp(bd) = q.
Consequently, dc ~ bd ¢ plso, (2, B). ]

Corollary 4.4. Every model of T[K] is ultrahomogeneous.
It follows that the theories T[K] axiomatise Fraissé limits.

Theorem 4.5. Let K be a hereditary class of finitely generated structures
containing a unique o-generated structure U,. A structure § is the Fraissé
limit of KC if and only if it is countable, (@ )g = Uy, and § & T[K].

Proof. (=) A Fraissé limit § is countable by definition. Furthermore,
Suby, (§) € K implies that § = Vx-p(x), for all p ¢ I'c.

Finally, let 775, € T[K]. Then q € I'c and K < Suby, (§) implies that
there is some tuple ¢ € F with atp(¢) = g. Since § is ultrahomogeneous it
follows that, for every tuple a with atp(a) = p, there is some element b ¢
F such that atp(ab) = atp(¢) = q. Hence, § = 7.

(<) By assumption, § is countable, and we have shown in Corol-
lary 4.4 that it is ultrahomogeneous. Furthermore, § = Vx-p(x), for
p ¢ Ic implies that Suby (§) S K. Hence, it remains to show that
K c Suby,_ (§). Let B € K be generated by a finite tuple b = b, ... b,_,.
Note that (@) = Uy = (T )z C G- Since § satisfies the needed extension
axioms we can, therefore, use induction to find elements a,, ..., d,_, € F
such that

(bo...bk—1 ) = (a0,...,ak-)g, forallk<mn.

Consequently, we have B = (b)) = (a)z € §. O
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E4. R,-categorical theories

Proposition 4.6. T[K] admits quantifier elimination for FOsox, .

Proof. This follows immediately from Theorem D1.2.9 and Lemma 4.3.

]

Corollary 4.7. Let IC be a class of 2-structures where the signature X is
finite and relational. Then T[K] admits quantifier elimination for FO.

Proof. Since T[K] is a first-order theory, the claim follows by Corol-
lary p1.2.10. ]

Corollary 4.8. Let IC be a class of Z-structures where X is a finite, relational
signature without o-ary relations. Then T[K] is complete.

Proof. Let ¢ € FO°[X]. There exists a sentence ¥ € QF°[X] such that
T[K] = ¢ < . Since X is relational and it contains no o-ary relations,

the only quantifier-free sentences are true and false. If ¥ = true then
T[K] = ¢ and if v = false then T[K] &= —¢. O

The extension axioms have the surprising property that, asymptotically,
they hold with probability 1 in every finite structure. Let us make this
claim more precise.

Consider a finite signature 2. For each finite number n < w, we count
how many X-structures with universe [n] satisfy a given sentence. Note
that, for every n, there are only finitely many such structures.

Definition 4.9. For ¢, v € FO[X] we define
kn(@) = {M| M= ¢, M =[n]}],

" kn(@ A
Prm[mnzmmn:w]:zk(")fw)‘”).

We use the shorthand Prip[ M= ¢ | := Prip[ M = ¢ | M = true |.

Lemma 4.10. Let X be a finite, relational signature without o-ary relations.
Then

lim Prag[ M= 159 | =1, for every ny € Tran[2].

n—>oo
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4. Zero-one laws

Proof. Suppose that p is an m-type and n > m. Since X is finite there
exists some constant p € (0,1) such that

Prgﬁ[impﬁq(o,...,m—l,m)|9)?r:p(o,...,m—1)]:p.
Hence,
Prip[ M 3x,ma(0, ..., m—1,%,) | MEPp(o0,...,m—1) |
:pn—m,

which implies that Praz[ M # 7, | < n™k"~™. Since p < 1 we have

lim n"k" ™ = o,
and it follows that
lim Prog[ M 7y | > lim (1 —n™k"™™) =1. (]

Lemma 4.11. Ty, [ 2] is satisfiable, for every finite relational signature
without o-ary relations.

Proof. For a contradiction suppose that T;,,[2] is inconsistent. Then
there exists a finite inconsistent set @ S Ty,,[2]. Suppose that @ =
{®0>..., ®m—1}. By the preceding lemma, we have

lim Proy[ M= ¢; | =1, foralli<m.

n—>o00

Therefore, there exists some number #n such that

1
Pri[ M &= —p; —.
ron[ ‘P]<m

It follows that

Prg[ MEADP ] =1-Pryg[ M=V, —¢; |

Zl—ZPI‘gﬁ[mlz—‘(pi]>l—m-i=O.
1

Consequently, @ has a model of size n. Contradiction. ]
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Theorem 4.12 (Zero-One Law). Let X be a finite, relational signature
without o-ary relations. For every sentence ¢ € FO[X], we have

lim Proy[ M= ¢ | € {o0,1}.

n—>oo

Proof. If Tian[Z] E ¢ then there are axioms #yq,»- - - > fpra, € Tran[2]
such that 77, o, A - A #p,q, F @. Hence, we have

lim Prog[ M= @ | > lim Proy[ ME 1,0, A A fyae ] = 1.

n—>o0

Now suppose that Ty, [ 2] ¥ ¢. Since Tran[ 2] is complete, we have
Tran[Z] & —¢. By the first case, it follows that

lim Prgﬁ[imlzgo]:lim(1—Prgn[9)?|:ﬂgo]):1—1=o. (]

n—>oo n—>o0

Exercise 4.1. Prove that the theorem fails for signatures with o-ary
relations.

Lemma 4.13. The Zero-One Law fails for signatures with functions.

Proof. Let X = {f} be a signature consisting just of a unary function
symbol f, and define

¢:=Vx(fx+x).
We have
n (n_l)n 1\"
Prm[‘.mhq)] = T :(1—;)
which implies that
lim Prgﬁ[imlz(p]:lim@—%)n:l. [
n— oo n—oo e

Lemma 4.14. Let X be a finite relational signature. There exists no sentence
¢ € FO[X] such that

M= iff  |M|iseven, for all finite X-structures M.
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4. Zero-one laws

Proof. lim,,_, Pray[ M E ¢ | does not exist in contradiction to the Zero-
One Law. [

Remark. For every n < w, we can extend the Zero-One Law to the logic

FO&Z;O consisting of all FO.ox, -formulae using at most » variables (both
free and bound). Note that every FO(PFP)-formula can be translated to
such a formula, for some suitable n. Hence, the Zero-One Law also holds
for FO(LFP) and FO(PEP).
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E5. Indiscernible sequences

1. Ramsey Theory

In this chapter we introduce some technical tools to study properties of
sequences. This machinery is based on combinatorial results concerning
colourings of linear orders.

Definition 1.1. (a) For a linear order I and a cardinal v, we define
[I]":={iel"|iisincreasing}.

For an unordered set X we abuse notation by defining
[X]V:={scX]||s|]=v}.

(This is consistent with our convention of identifying sequences with
their ranges.)

(b) Let ¢ : [A]" — A be a function. A subset C € A is homogeneous
with respect to ¢ if we have c¢(a) = c(a’), forall a,a’ € [C]".

(c) Let k, A, u, v be cardinals. We write x — (u)} if, for every set A of
size |A| > k and each function ¢ : [A]" — A, there exists a homogeneous

subset C ¢ A of size |C| > u.

Example. 6 — (3)2 is equivalent to the statement that every undirected
graph & = (V, E) with at least 6 elements contains a triangle or an
independent set of size 3.

Exercise 1.1. Prove that 6 - (3)2.

Let us start with the simplest case, that of unary colourings.
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Theorem 1.2 (Pigeon Hole Principle). «x — ()}, for all infinite cardin-
als k and every A < cf k.

Proof. Let A be a set of size |A| = k and suppose thatc : A - Aisa
function. We have to show that there is some « < A with |¢7*(«)| = «.
Suppose otherwise. Then A < cf x implies

A= Yl (@) <x.

a<i

A contradiction. []

The Theorem of Ramsey generalises the Pigeon Hole Principle to
colourings of higher arities. We present two versions: one for infinite
sets and one for finite sets.

Theorem 1.3 (Ramsey). R, = (R,)}, forallo < n,I < R,.

Proof. Let Abe aset of size |A| = R, and ¢ : [A]" — [ a function. W.l.o.g.
we may assume that A = w. By induction on n, we construct an infinite
subset C C w that is homogeneous with respect to c.

For n = 1 the claim follows from the Pigeon Hole Principle. Hence, we
may assume that n > 1. In a first step, we define an infinite subset B C w
such that the value of ¢(b), for b € [B]", only depends on the minimal
element b,. For every a € w, we define a function ¢/, : [w~{a}]"™" — I by
¢! (b) := c(bu{a}). We construct an increasing sequence a, < a, < ...
of elements and a decreasing sequence A, 2 A, 2 ... of subsets of w
as follows. We start with a, := 0o and A, := w. If a; and A; are already
defined then we can use the inductive hypothesis to find an infinite
subset A;;, € Aj\{ao,...,a;}. thatis homogeneous with respect to c;, .
Let a;,, be the minimal element of A;,,.

Let B:={a; | i < w} and set k; := c(a;aj4,...ai1n_,). Note that,
for i, < --+ < iy, we have a;,...,a; . € A; .,. Hence, the above
construction ensures that

clai,...a;_ )= c;io (ai,...a; )

= c;io (Gig4re-Qijgna) =c(ai, ...ain)=ki .
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By the Pigeon Hole Principle, there exists an infinite subset C ¢ B such
that k; = kj, for all a;, a; € C. This set C is the desired homogeneous
subset of w. ]

Example. Let (P, <) be an infinite partial order. We can use the Ramsey

Theorem to prove that there exists an infinite set C € P such that C is

either linearly ordered or all elements of C are pairwise incomparable.
Let ¢ : [P]*> — 2 be the function such that

1 ifa<borb<a,

o otherwise.

c({a,b}) =—{

By the theorem there exists an infinite homogeneous set C C P. If we
have ¢({a,b}) = 1, for all a,b € C, then C is a chain. Otherwise, all
elements of C are pairwise incomparable.

The finite version of the Ramsey Theorem is as follows.

Theorem 1.4 (Ramsey). Forall I, m,n < R, there exists a finite cardinal
k < R, such that k — (m)].

Proof. For a contradiction, suppose that there exists no finite k with
k — (m)]. Let Fi be the set of all functions c : [k]" — I such that there
is no subset C < [k] of size |C| > m that is homogeneous with respect
to c. It follows that each set Fy is finite and nonempty. Furthermore,
¢ € Fyy, implies that ¢ | [k]" € Fi. Hence, if we order the set T := [y Fy
by inclusion then we obtain a tree (T, ). This tree is infinite and finitely
branching. By the Lemma of Kénig it therefore contains an infinite
branch (cg)k<eo With cx € Fy. Set ¢ := Uy ¢k. Then ¢ is a function c :
[Ro]" — [. By the infinite version of the Ramsey Theorem, there exists an
infinite subset C C R, that is homogeneous with respect to c. Fix a subset
Z ¢ C of size |Z| = m and let k be the maximal element of Z. It follows
that Z is homogeneous with respect to cx.,. A contradiction. ]

Next, we consider the case of infinitely many colours and uncountable
homogeneous sets. We start with a counterexample.
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Lemma 1.5. 2™ + (3)%.

Proof. Let ¢ : [2%°]* — R, be the function mapping a pair {f, g} of
distinct functions f, g : R, — 2 to the least number n with f(n) #
g(n). If{f, g, h} were homogeneous with respect to ¢, we would have
f(n) + g(n), f(n) # h(n), and g(n) # h(h), for some n. Since
f(n),g(n),h(n) € {o,1} this is impossible. ]

Theorem 1.6 (Erdés-Rado). For all cardinals k > R, and n < R,
(k)" = (7).

Proof. We prove the claim by induction on n. By the Pigeon Hole Prin-
ciple, we have k™ — (x*)%. Hence, the claim holds for n = 1. For the
inductive step, suppose we have already proved the theorem for n. Set
A:=2,4 (k) and y:= 2,(x),and let ¢ : [AT]""" — « be a colouring.

As a first step we define an increasing sequence of ordinals f3; < A¥,
for i < k™, with the following property:

(*) Foreveryset S c f3; of size |S| < p and all ordinals y < A", there
exists some ordinal # < f3;4, such that

neS it yeS,
and c(an)=c(ay), forallaeS".

The ordinals f; will be used as a measuring stick in the construction
below. We define §8; by induction on i. Let 8, := o and set 85 := sup,_4 fi,
for limit ordinals §. For the inductive step, we set

Biwr:=sup{n(S,y) |y <A*, Scp;with|S|<u},
where #(S, y) denotes the minimal ordinal # such that
neS it yeS,

and c(an) =c(ay), forallaeS".
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Note that there are at most |3;|# = A# = (2#)# = A subsets of f3; of size
|S| < u and there are at most k# = 2# = A functions S — x. Consequently,
the supremum above is taken over a set of at most A ® A = A ordinals
each of which is less than A*. Since A" is regular it follows that the
supremum f;,, is less than 1.

Having defined the f8; we set f* := sup,_,,. 8; and we define ordinals
&; < i1, for i < u™, such that a; # ay, for i # k, and

(kg sk, Ha;)=clag,....ar,_,B"),

for all ko, ..., k,—, < i. We can find «; by induction on i using prop-
erty () with S = { ay | k < i} and y := *.
Define a colouring ¢’ : [u*]" - « by

(i) =clai,...a;, ).

By inductive hypothesis, there exists a set I € u* of size |I| > k™ such
that

(i) =c'(k), forallikel[I]".
Let J:={a; |iel}. Fory,7e[J]" it follows that

¢(Yo-+-Yn-1¥n) = (Yo Yn-1f")
=c(No-+-Nu-af™) = (Mo Nn-aMn) -

Hence, ] is the desired homogeneous subset of 1. ]

2. Ramsey Theory for trees

So far, we have considered homogeneous subsets of linear orders. A
special property of linear orders is that every subset again induces a
linear order. When considering colourings of other structures this is
no longer the case. In this section we prove variants of the Pigeon Hole
Principle and the Theorem of Ramsey for trees where the homogeneous
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sets we obtain again induce trees. There are two kinds of tree structures
we will be working with: trees of the form £, (k%) are equipped with
the tree-order < and relations <, for the direction of the immediate
successors, while trees ¥, (k%) also have functions pf to compare the
levels of elements.

Definition 2.1. Let x be a cardinal and « an ordinal.
(a) We denote the tree order on ¥ by < and 1 is the infimum opera-
tion with respect to <. For 7, { € k*% and p € x, we further set

n<,¢ it yp<C.

For || < ||, we denote by pf(#, {) the prefix of { of length |5|. If |5| > ||,

we set pf (7, () := (.
(b) We define

s*(qu) = <K<(x) |_|> S) (<p)p€K) b)
and  ,(x™") = (k™" 1,5, (<p) per> PE, () yexsn) »  forn<a.

We denote the substructure of ¥, (k%) generated by a set X ¢ % by

(XD

Remark. (a) Note that the substructure { X)), generated by a set X ¢ x<*
has universe

(X)n =" U{pf(Enn, )| En (e X}.

Thus, it consists of (i) all elements of X u k<", (ii) all elements of the
form n 1 {, with 5, { € X, and (iii) all prefixes of some element of X that
have the same length as an element of the form (i) or (ii).

(b) Note that we have

Iml=1¢|  if  pf(n,{)={and pf({,n)=1.

Hence, every embedding h : €, (k%) - T, (k%) has the property that

nl = ¢ implies  R(|xl) = h([¢]), foralln,{ex=*.
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Definition 2.2. (a) The set of levels of a tuple 77 € (x<%)9 is

() = {ni ol [ g <d } = {181 L (o } -

(b) Leth : %, (k%) - £, (k%) be an embedding. The level embedding
function associated with A is the function f : @« — & such that

[R(m)| = f(Inl), forallyex™.

Our first result is a generalisation of a strong version of the Pigeon
Hole Principle. We omit the proof, which is quite involved.

Theorem 2.3 (Halpern, Lauchli). Let m,d < w and let C be a finite set.
For every function ¢ : (m<®)% — C there exist embeddings

gi S (m™) > Z,(m=?), fori<d,

such that all g; have the same level embedding function and

c(go(n0)>--->8a-1(11a-1)) = ¢(go(Co)>- - > ga-1(Ca-1)) >
for all tuples 77, { € (m=°)? with |5o| = -+ = |5a—y| and |{s| = -+ = |{a_i].

In the remainder of this section we generalise the Theorem of Ramsey
to trees. In the version for linear orders we required tuples to have the
same colour if they have the same order type. When dealing with other
kinds of structures we replace the order type of a tuple by its atomic type.

Definition 2.4. (a) Let ¢ : A% — C a function, for d < w, and let ~ be
an equivalence relation on A?. A subset X € A is ~-homogeneous with
respect to ¢ if

f~( implies c(77)=c({), forallq,(eX".
(b) For tuples 7, { € k<%, we define

L O ff atp(7/3. (°Y)) = atp({/3. (x°Y))
n ¢ iff atp(77/3, (%)) = atp({/Tu (k%)) .

P4

n
n

P4
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E5. Indiscernible sequences

Our goal is to prove the following variant of the Theorem of Ramsey
for trees.

Theorem 2.5 (Milliken). Let m,d < w and let C be a finite set. For every
function ¢ : (m<®)? — C there exists an embedding g : ,(m<®) —
2, (m=?) such that rng g is ~,-homogeneous with respect to c.

The proof of the Theorem of Ramsey was by induction on the length of
tuples. We prove the Theorem of Milliken by a similar argument where
the induction is on the number of levels of a tuple. The next lemma
contains the inductive step of this argument. It is based on the following
variant of the relation ~,,.

Definition 2.6. Let k, n < w. For 1, { € m<®, we set

Aenr (¢ it 7=(, or
71 %y Cand |Lv1(7) N [#], [IV1(O) N [n]] < Kk,
and we denote by ~,,  the transitive closure of the union U<, ~5 k-
Remark. (a) Note that
Meno ¢ iff 7=,
and the fact that |Lvl(7)| < 2|#| implies that
i ¢ A (L

(b) A set X is ~, x-homogeneous if, and only if, it is ~, x-homoge-
neous, for every n < w.

Lemma 2.7. Let m,d < w, let C be a finite set, and let ¢ : (m<®)? - C
be a function such that m=® is ~, x-homogeneous with respect to c. For
every n < w, there exists an embedding

g: 3n+1(7’n<w) - 3n+1(7’n<w)

such that rng g is ~, .,-homogeneous with respect to c.
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2. Ramsey Theory for trees

B
Mo
"""""""""""""""""" A7)
TA(7) y(@)(oo) | y(7)(01)
o NC o "
H

Figure 1.. The definition of y, A, 77, and y.

Proof. Given n < w, set
I={qem)~(m")||i(7) N [n]| <k+1}.
ForijeT,let
A(#) = min(Ivl(7) ~ [n]).
Set L := m" and let

w

u:m~m" >L:n>nin

be the function mapping each element to its prefix of length n. For [ > n,
let 7; : m<“ \ m<! - m'~" be the function mapping an element # € m <
of length || > I to the unique sequence ¢ € m<* such that

lo|=1-n and wu(n)o<n.

Let H be the set of all functions 4 : L — m~<“ such that

\h(p)| =|h(o)|, forallp,oelL.
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E5. Indiscernible sequences

For h,h' € H and 7j € T, we set

heg b ciff B(u(n:)) = B (u(ni)),
for all i < d with |;| > n.

We define a function y : I' - H : 7] — h; where

hy(o) = {Tw)(ﬂi) if i €y (0),

(0,...,0) otherwise.

Note that, in the first case of the definition of h; (o), the value does not
depend on the choice of i < d since

nisnj € (o) implies a7y (7:) = Tagpy (1) -
Finally, we define a function 8 : H x I'/~,, - C by
B(h.[7]~,) = c(a[(]) where {ey™[[h].,; ] n 7], .
To prove that f3 is well-defined, we have to check that
y"[[h)- ] (7, # @

and that the value of 8 does not depend on the choice of (.
For non-emptiness, fix h and [#]]«,. For i < d with |%;| > n, let p; €
m=~“ be the sequence such that

i = M(ﬂi)TA(ﬁ)(ﬂi)Pi-

We set

Ci == p(n:) h(u(ni))pi -

For i < d with |r;| < n, we set {; := #;. Then ( ~,, 7 and, since we have

A(() =n+|h(u(n;))|, foranyi<dwith|y;|>n,
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2. Ramsey Theory for trees

it also follows that y({) ~; h. Hence, { € y k]~ ] 0 (7],

To show that the value of B(h, [#1]~,) does not depend on the choice
of ¢, consider two tuples &, { € y~ '[[h].;]1 0 [#7]«,. First of all, note that

& ~, { implies that u(&;) = u({;), for all i with || > n, since

0<p& iff 0<,(, forallocem"  andallp<m.

(For n = o, we have u(&;) = () = u({;), for all i.) Consequently, y(&) ~
h ~5 y({) implies that

Ty 5 (&) = h(p(&:)) = h(u(8i)) = 1y (G)
for all i < d with |&;| > n. In particular, A(£) = A({) =: I and
M= p(&) (&) = u(G) () =Gt
As & ~, (it follows that & ~,, (. Since
IVI(E) N [1+1]| = [WVI(O) N [1+1]| < &,

we, therefore, have f Nk ( and, by assumption on c, it follows that
c(&) = ¢({), as desired.

To conclude the proof, consider the function ¢, : H - C'/** mapping
atuple h € H to the function [77]., = B(h,[#]~,),andletc, : (m<®)F —
C!/*n be an arbitrary extension of Co-

Since C'/*" is a finite set, we can use the Theorem of Halpern and
Lauchli to obtain embeddings g, : £, (m<“) — Z,(m=),for o € L, such
that all g, have the same level embedding function and the restriction
¢, I Hn ], g g, is constant. We can define the desired embedding
g: %, (m=?) > Z,,,(m=?) by setting

if [n|<n,
gp={1 i w
0g,(§) ifn=céforoceLandEem

It remains to prove that rng g is ~,, x.,-homogeneous with respect to c.
Let 77, { € I'n (rng g)¢ be tuples with 7 w~,, ¢. To show that ¢(77) = ¢({),

935



E5. Indiscernible sequences

set h:= p(7) and h' := y({). For each ¢ € L, fix some &, € rng g, and
set

¢y otherwise .

ho(0) = {h(a) if 0 < #; for some i,

Then h, € [, tng gy and h, ~j; h. Similarly, we can find some hl €
[Tger, rng go with h{ ~¢ h'. Since ¢, (ho) = ¢o(hg) and 7], = [(]~, it
follows that

B(H.[)=c(). O

Il
e
—~

=
o ~
—
N
Q
3

Il

Lemma 2.8. Let m,d < w, let C be a finite set, and let ¢ : (m<®)? — C
be a function such that m~“ is ~,, -homogeneous with respect to c. There
exists an embedding g : $,(m=®) — L, (m=?) such that rng g is ~y f11-
homogeneous with respect to c.

Proof. To simplify notation, we write ¢ o g for the function mapping a
tuple 77 € (m<?)? to the value c(g(#o),...>g(#4-.)). We construct a
sequence of embeddings

g :3,(m™?) >, (m™), forn<w,

such that, for all i < n < w, the set m=“ is =, ;,,-homogeneous with
respect to the function ¢, :=cogyo0...... n-

We start with g, := id. Then ¢, = ¢ trivially satisfies the above condi-
tion. For the inductive step, suppose that we have already found func-
tions g, . .., g» such that, for every i < n, m~® is »; r,,-homogeneous
with respect to ¢,,. We can use Lemma 2.7 to find an embedding g+, :
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2. Ramsey Theory for trees

2, (m=Y) > Z,,,(m=?) such that m<® is »,, x,-homogeneous with re-
spectto ¢, 0 gy41 = Cp4q. Furthermore, since m=® is ~; j,,-homogeneous
with respect to c,, for all i < n, it follows that it is also ~; x,,-homoge-
neous with respectto c, o g, ;.

Having constructed the sequence g,, g,,... we obtain the desired
embedding g : T,(m<?) - Z,(m=?) as follows. For 1 € m”", we set
g(n) = (goo---0gn+1)(n). Clearly, g is an embedding. Hence, it remains
to prove that rng g is ~,, r+,-homogeneous. Fix n and consider two tuples
7, { € m=® such that

f~, ¢ and ’Lvl(ﬁ) N [1]
Choose n < I < w such that 7, { € m<!. Then

g(71) =(goo--0g)(i7) and g({)=(goo--08)(().

Asrng(goo---0g;) is ~, x+;-homogeneous with respect to c, it follows

that c(g(77)) = c(¢({)). L]

Proof of Theorem 2.5. Note that, for every n < w, the set m<® is »,, o-
homogeneous with respect to c¢. Hence, repeating Lemma 2.8 we obtain
embeddings

gk S (m™?) >, (m™"), fork<ad,

()~ [n]| < k+1.

b

such that rng( g, o-- -0 g ) is ~,_x-homogeneous with respect to c. Setting
g = go0---0g,, it follows that rng g is ~, ,s-homogeneous with respect
to c. Since [Lvl(7)| < 2d, for all 77 € (m<“)?, this is the same as saying
that rng g is ¥,-homogeneous with respect to c. ]

As for the Theorem of Ramsey, the Theorem of Milliken also has
a finitary version. The proof follows exactly the same lines as that of
Theorem 1.4.

Theorem 2.9. Let m,d, k < w and let C be a finite set. There exists a
number n < w such that, for every function ¢ : (m<")® — C, there exists
an embedding g : To(m<*) - T, (m™") such that rng g is ~,-homoge-
neous with respect to c.

937



E5. Indiscernible sequences

Proof. For a contradiction, suppose that there exists no number # as
above. For # < w, let F,, be the set of all functions ¢ : (m<")? — C such
that there is no embedding g : £, (m<*) — ¥, (m<") such that rng g is
~o-homogeneous with respect to c. Each set F,, is finite and nonempty.
Furthermore, ¢ € F,,, implies that ¢} (m<")? ¢ F,,. Hence, if we order the
set T := U, F, by inclusion, we obtain a tree (T, C). This tree is infinite
and finitely branching. By the Lemma of Kénig it therefore contains
an infinite branch (¢, )<, where ¢, € F,. Set ¢ :== U, ¢,. Then c is a
function ¢ : (m<“)¢ — C. By Theorem 2.5, there exists an embedding
g 3, (m=?) - Z,(m=) such that rngg is ~,-homogeneous with
respect to c. Fix a number 7 < w such that rng(g | m<*) ¢ m<". Then
gt m<k 2o (m<*) - Z,(m<") is an embedding such that rng g is
~,-homogeneous with respect to ¢,. A contradiction. H

Note that every ~,-homogeneous set is also ~,-homogeneous. Hence,
we would obtain a stronger version of the Theorem of Milliken if we could
replace the relation ~, by ~,. For the finitary version this is possible.

Theorem 2.10. Let m,d, k < w and let C be a finite set. There exists a
number n < w such that, for every function ¢ : (m<")% — C, there exists
an embedding g : T,(m<*) - I, (m<") such that rg g is ~,-homoge-
neous with respect to c.

The proof consists in finding sets where the relations ~, and ~, coin-
cide. To do so we introduce the following family of embeddings.

Definition 2.11. For o < k < w, the k-th skew embedding
hk . 3*(m<k) - s*(m<l(k))

is defined inductively as follows. We start with 4, : () = () and I(1) = 1.
If hy and I (k) are already defined, we set

hin(()) =) and - b (pn) = (ps - )i (1)
——
p+2+pl(k) times

for 1 € m*“ and p < m. Furthermore, I(k +1) := ml(k) + m + 1.
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1(k)

Figure 2.. The k-th skew embedding .

Lemma 2.12. The k-th skew embedding hy. : S, (m<*) - T, (m<!F) is
an embedding.

Proof. By an easy induction on |#|, one can show that

n < ¢ implies hi(n) < hi (),
and 7 <, ¢ implies hi(n) <p ().

Similarly, an induction on | 1 (| yields

hi(nm{) = he(n) nhie(Q). ]

A useful property of a skew embedding is that it upgrades ~,-equiva-
lence to ~,-equivalence.

Lemma 2.13. Let 17,4;9 m<k. Then ij ~, fimplies hi(77) = hi ().

Proof. Let 7}, € (m<*)? with 7 ~, (. We start by proving the following
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claims:

@ () e i (0).
(b) |hx(ni)| <|he(nj)|l it |he($)] < [he($G)], foralli,j<d.
(©)  pf(he(ni), he(n;)) <p hi(n;)

iff  pf(he(8)s () <p he(45) s foralli,j<d.

(a) Since hy : S (m<*) > 2, (m<'®)) is an embedding, it preserves
atomic types. Consequently, we have hy(77) », 71 7, ( ~, hi(().
(b) It follows by induction on |#; M #;| that

\hi(ni)| < |he(n;)| it 7i <iex 75

Hence, 7] ~, { implies that

k()| < [hi(nj)l it 75 <iex 1
ift Ci <lex (j ift ‘hk({z)l < |hk((])| .

(c) By definition of hy, we have

pf(hi(n:i), hi(n;j)) <p hi(n;)
it |he(ni)| < |hi(nj)l and hi(n7: M) <p hi(nj) -

Therefore, (c) follows from (a) and (b).
To conclude the proof, suppose that 77 ~, {. W.L.o.g. we may assume

that, for all 7, j < d, there is some [ < d such that 7; = 1; 1 #;. Then it
follows by (a), (b), and (c) that hy (77) ~, hi((). ]

Proof of Theorem 2.10. Let hy : m<F - m<!(¥) be the k-th skew embed-
ding. By Theorem 2.9, there exists a number # such that, for every func-
tion ¢ : (m<")? - C, we can find an embedding g : T,(m<'(F)) -
%, (m=<") such that rng g is »,-homogeneous with respect to c. We
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claim that g o hy : T, (m**) - Z,(m™") is the desired embedding.
For 71, { € (m<¥)4 it follows by Lemma 2.13 that

e ¢ = hi(ff) ~ i (0)
= g(hk(7)) ~o g(hi({))
= c(g(he(7))) = c(g(he(0))) -

Hence, rng(g o hy) is ~.-homogeneous with respect to c. O

3. Indiscernible sequences

If we apply the Ramsey Theorem to sequences of elements in a structure
coloured by their types we obtain subsequences where each tuple has the
same type. Such sequences, called indiscernible, can be used to investigate
the structure of the given model. Let us fix some notation.

Definition 3.1. Let (I, <) be a linear order and (@’);c; a sequence of
tuples a’ € A%, for some ordinal a.

(a) Fori e I",weset a[i]:=a'"...a".

(b) The order type of a tuple 7 € I" is the atomic type of 7 in (I, <).

Definition 3.2. Suppose that X and Y are disjoint sets of variables and
A C FO[Z, X u Y] aset of formulae. Let M be a X-structure, U € M, and
(@');er a sequence of tuples in M.

(a) The A-type of a tuple b € M over U is the set

tp,(b/U) :={ o(%:¢) | ME 9(b;¢), ¢ < U, 9(%,7) €4,
xcX,jcYy}

(b) We call (@');c; a A-indiscernible sequence over U, or a sequence of
A-indiscernibles, it

tp, (a[i]/U) = tp,(a[k]/U), foralli,k e [I]<“.
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E5. Indiscernible sequences

For A = FO[ 2, X U Y| we drop the A and simply speak of indiscernible
sequences. .
(c) The sequence (a'); is totally A-indiscernible over U if

tp,(a[7]/U) =tp,(a[k]/U),

for all finite sequences 7, k € I<“ of distinct elements with || = ||.

Example. (a) If (A, <) is an open dense linear order then every strictly
increasing sequence (a');c; in A is indiscernible. Such a sequence is
obviously not totally indiscernible.

(b) Let & be an algebraically closed field. Every sequence of algebra-
ically independent elements is totally indiscernible. Similarly, if B is a
vector space then every sequence of linearly independent elements is
totally indiscernible.

For finite sets A, we can use the Ramsey Theorem to show that every
infinite sequence contains a A-indiscernible subsequence. For infinite A,
we need to apply the Compactness Theorem to find A-indiscernible
sequences.

Lemma 3.3. Let (a');c; be an infinite sequence. For every finite set /A
of formulae there exists an infinite subset I, < I such that (a');ej, is
A-indiscernible.

Proof. Let n be the maximal number such that A contains a formula
@(x°,...,x"7") with n tuples of variables. We define a colouring c :

[1]" - §(4) by
c(i):={o(x°....x" ") e A|ME g(a[i]) } .

By the Ramsey Theorem there exists an infinite subset I, ¢ I that is
homogeneous with respect to c. By definition of ¢ it follows that (a') ey,
is A-indiscernible. [

To find A-indiscernible sequences, for infinite sets A, we apply the
Compactness Theorem. Before doing so, let us introduce the average
type of a sequence.
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Definition 3.4. The average type of a sequence (a'); over U is the set

Av((a")i/U) = {9(x°,....2"50) |
ccUand Mk ¢(ali];c) forallie[I]"}.

Lemma 3.5. Let (@')icr be a sequence. Then Av((a’);/U) is a partial
type. If (a'); is indiscernible over U, it is complete.

Proposition 3.6. Let M be a X-structure and U € M a set of parameters.
For every infinite sequence (a');c; and every linear order ] there exists an
elementary extension N > M containing an indiscernible sequence (b7) jeJ
over U such that

Av((a');/U) c Av((b));/U).
Proof. For every j € ], fix a tuple of new constant symbols ¢/ and set

0 :={g(c[jl:d) | p(x:d) € Av((a");/U), je[JI*, dc U}
Y= {y(é[i];d) < yw(c[j];d) | v aformula, 7, 7 € [J]°“, and
dcU}.

It is sufficient to prove that the set I" := Th(My;) U @ U YV is satisfiable.
Consider a finite subset I, € I'. Since Th(M,,) is closed under conjunc-
tions, we may assume that I, = {9(d)} U @, U ¥, for finite sets @, € P
and ¥, ¢ ¥. By Lemma 3.3, there is an infinite subset I, € I such that
we have

M= y(alil;d) < y(aljl:d),

for every formula y(%;d) <> w(j;d) € ¥, and all increasing i, j € I,.
For every formula ¢(x;d) € @,, there are only finitely many indices i ¢
I, such that M # ¢(a[1];d). Hence, we can find an infinite subset I, € I,
containing no such tuple i. Let ], € ] be the finite set of all indices j € ]
such that the constant ¢/ appears in @, U ¥, and fix an embedding
¢ Jo — I,. We can satisfy I, by interpreting ¢/ by the tuple a¢(). [
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We can improve the preceding proposition as follows.

Theorem 3.7. Let M be a >-structure, U C M a set of parameters, 5 a
sequence of sorts, and A a cardinal such that A > |S°" (U)|, for all n < w.
Set p = 0j+.

For every sequence (a%) q<y with a* € M® and for every linear order I,
there exists an elementary extension N > M containing an indiscernible
sequence (b');c; over U such that, for every i € [I]", there are indices
a € [u]" with

tp(b[7]/U) = tp(a[a]/U).
Proof. It is sufficient to prove the claim for I = w. Then the general state-
ment will follow by compactness. We define a sequence of types (pu ) n<w
with p, € §* (U) satistying the following conditions:
(1) pu(Xos--esXner) EPm(Xi, .. %, ), forall ig <+ <ip_y <n.

(2) For every cardinal v < y, there is some set I € y of size |I| = v
such that

tp(a[7]/U) =p,, foreverytupleie [I]".

Any sequence (b") <, realising the limit p,, := U, <, P, has the desired
properties.

We start with p, := Th(My). If we have already defined p,,, we con-
sider the set X of all s"™-types over U satisfying condition (1). If there
is some type q € X that also satisfies condition (2), we are done. Suppose
there is no such type. Then we can choose, for every q € X, a cardinal
vq < w4 such that no subset I € u of size v, satisfies the above condition.
Since |X| < A < A" = cf p it follows that

vei=Ad@sup{vy|qeX}<upu.

By choice of v, there exists, for every g € X and all I € y of size |I| = v.,
some increasing tuple 7 € I"** such that tp(a[7]/U) # q. Since v, < y =
1)+ there is some ordinal & < A" with v, < 3,. Let p := 344 ,,+,. Then

J,(vi) <p<p.
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By choice of p,, there is some set I € u of size |I| = p such that
tp(a[7]/U) =p,, foreveryice[I]".

Since |$*" (U)| < A < v, we can use the Theorem of Erdés and Rado to
find a subset I, C I of size |I,| = v} such that the types

tp(ali]/U), forie[l,]"",
are all equal. This contradicts the choice of v.,. ]

There is a close relationship between automorphisms and indiscernible
sequences. The next observation follows immediately from the defini-
tions of an indiscernible sequence and a strongly xk-homogeneous struc-
ture.

Lemma 3.8. Let M be strongly k-homogeneous and let (a');c; be a se-
quence of indiscernible over U. Suppose that |U| @ |I| ® |a'| < . For every
partial automorphism m € plso(I, ) of the index set I (considered as a
linear order), there exists an automorphism h € Aut M such that

hiU=idy and h(a")=a™", foralliel.

In a sufficient saturated structure, we can extend every indiscernible
sequence to a longer one.

Lemma 3.9. Let M be k-saturated. If (') i; is indiscernible over U and
g+ I — ] is an embedding with |J| @ |U| @ |a'| < « then there exists an
indiscernible sequence (b7) jej such that &' = b8(), for i e I.

Proof. We can use Proposition 3.6 to find an elementary extension N >
M containing an indiscernible sequence (¢/) ey with Av((¢/);/U) =
Av((a');/U). This implies that

tp(U; 4 /U) = tp(U; a'/U).
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W.l.o.g. we may assume that 9 is strongly x-homogeneous. Therefore,
there exists an automorphism 7 of Ny mapping ¢# (1) to a. Since M is
K-saturated it contains a sequence (b’) j¢; such that

It follows that (b/) j is the desired sequence of indiscernibles. ]

Corollary 3.10. If (@') ¢ is indiscernible over U and g : I — ] an embed-
ding, then there exists an elementary extension N containing an indiscerni-
ble sequence (b');¢; such that b8() = @', for i e I

Let us record the following consequence of Theorem 3.7.

Lemma 3.11. Let (a;);e1 be an indiscernible sequences over U. For every
set C C M, there exists a set C' =y C such that (a;) ;e is indiscernible
over Uu C'.

Proof. Let = |T| ®|U u C|and A := 2(,x+. By Corollary 3.10, there
exists an indiscernible sequence (bg )<, over U with

AV((ba)a/U) = AV((4:):/U) .

Furthermore, with the help of Theorem 3.7 we can find an indiscernible
sequence (¢ ) n<w over UUC such that, for every n < w, there are indices
0o < -+ < a,_, With

CO DY C-n_l El’_]LjC b‘xo o .. b(xn_l .

By Lemma 3.9, we can extend (¢, )<, to an indiscernible sequence
(¢i)icw+1 over U U C. Since

Av((¢:)i/U) = Av((a;):/U),

there exists an automorphism 7 € Aut My such that 7(¢4;) = a;, for all
i € I. Then n[C] =y C and (a;) ¢ is indiscernible over U u n[C]. []
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3. Indiscernible sequences

The following technical lemma can be used to simplify proofs of
indiscernibility. It states that, if some formula is a witness for the failure
of indiscernibility, we can detect this fact already by varying a single
element of the sequence.

Lemma 3.12. Let o = (a;)er be a sequence and ¢(x) a formula such that
M e g(ali]) A-p(a[j]), forsomei,je[I]".

Then there are indices i < s < t < v in I such that
M & ¢(alasv]) < —p(alatv]).

Proof. We define a sequence k°, ..., k>" € [I]" by setting

min {iy, j,} ifl<nandm<I,
im ifl<mandm>1,

min{iy, j,} ifl>nandm<2n-1,

Jm ifl>nandm >2n-1.

Then every k; belongs to [I]", ko = 1, k,, = j, and, for each [ < 2#, the
tuples k; and k;,, differ in at most one component. Let | < 2n be the
maximal index such that Ml &= ¢(a[k;]). Then M & —¢(a[k;,,]) and
it follows by definition of k; that k; = usv and k;,, = utv for indices
i <s<vandi <t <. Interchanging k; and k;, if necessary, we may
assume that s < ¢. ]

Recall that stable theories do not have the order property. This implies
that in a model of a stable theory every indiscernible sequence is totally
indiscernible.

Theorem 3.13. A theory T is stable if, and only if, every infinite indiscerni-
ble sequence in a model of T is totally indiscernible.
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E5. Indiscernible sequences

Proof. (<) Suppose that there is a formula ¢ (%, y) with the order prop-
erty and let (a"),<, and (") <, be sequences such that

M e ¢(a’,b*) iff i<k.

By Proposition 3.6, there exists an indiscernible sequence (e"d") new
with Av((a"b"),) ¢ Av((¢c"d"),). Setting w(xy,x"y") := ¢(x,7") it
follows that

M e y(é'd, é*d*) iff  i<k.

Hence, (¢"d"), is not totally indiscernible.

(=) Suppose that (@');c; is an infinite indiscernible sequence over U
that is not totally indiscernible. By Corollary 3.10, we may assume that
the ordering I is dense. There are a formula ¢ and two tuples of indices
i, k € I" such that both 7 and k consist of distinct elements and we have

M i ¢(a[i]) A -g(a[k]).
Set " :=i,...i,_,k,...k,_, and let r be the maximal number such that
M = ﬁtp(d[l_r]).

Note that r is well-defined since [° = k implies M ﬁ_go(d[l_ °]). Repla-
cing i by "™ and k by I”, we may assume that 7 and k differ in exactly
one component. Hence, suppose that

i=savw and k=tavw, whered<s<v<t<w.
(Reversing the order of I, if necessary, we may assume that s < ¢.)

By indiscernibility, we know that the tuple v is not empty. We claim
that we may assume that v is a singleton. If v = v, ... v,,_, with n > 1then,
choosing some index v, < v/ < v,,_,, we may replace either s or ¢ by v/,
depending on whether or not the formula ¢(a[v'avw]) holds. Hence,
the claim follows by induction. Thus, we have arrived at the situation
that

i=svuw and k=vtuw, wherea<s<v<t<w.
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3. Indiscernible sequences

By indiscernibility, it follows that

M & g(a[staw]) A —g(a[tsuw]), forall a<s<t<w.
Fix an infinite increasing sequence of indices k,, n < w, with

U<ky<k, <---<w,

set b’ := @*, and define
Y& 5) = % = 7 [g(%, 7 alaw]) A (3% alaw])].

Then we have
M y(b',b%) iff i<k.

Hence, T is unstable. [

When considering the automorphism group of a structure, an indis-
cernible sequence looks like a linear order while a totally indiscernible
sequence looks like a set. We can generalise the definition of an indis-
cernible sequence to include automorphism groups of other structures.

Definition 3.14. Let L be an algebraic logic, J a I'-structure, M a 2-
structure, and U € M.

(a) A U-indiscernible system over § (w.r.t. L) is an injective function
a:I— M“, for some ordinal a, such that, for every partial isomorphism
i ke plso, (3,3), we have

tp, (a[7]/U) = tp, (a[k]/V).

(b) The average type of a U-indiscernible system a over § is the func-
tion Avy (a) with

Avy(a/U) : atp(i/3) — tp, (a[7]/U), forieI“.

For L = FO, we drop the index and just write Av(a/U).
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E5. Indiscernible sequences

(c) Let § and K be two index structuresand a: [ - M*, b : K - M*®
arbitrary families of a-tuples. We say that 4 is inspired by b over U fif,
for every finite set of formulae A and every finite tuple 7 € I°“, there is a
finite tuple k € K<¢ such that

atp(i/3) = atp(k/K) and  tp,(a[i]/U) = tp, (b[k]/V).

Remark. (a) Using the terminology of the previous definition we can
restate Proposition 3.6 as: for every infinite sequence (@) ey, every linear
order J, and every set U of parameters, there exists an indiscernible
sequence (b');c; over U inspired by (a') ;.

(b) Note that, for indiscernible systems G and b over U, 4 is inspired
by b over U if, and only if, Av(a/U) = Av(b/U).

In the same way as in Proposition 3.6 we can use the Compactness
Theorem to show that we can extend every indiscernible system.

Lemma 3.15. Let M be a structure containing a U-indiscernible system a
over 3. If 9 is a structure with Suby, (D) S Suby, (J) then there exists
an elementary extension R > M containing a U-indiscernible system b
over § with Av(b/U) = Av(a/U).

In general, it is hard to prove the existence of indiscernible systems
over structures that are not linear orders. For trees we can use the The-
orem of Milliken to show that such systems always exist. Recall the trees
2, (%) introduced in Section 2.

Definition 3.16. Let x be a cardinal and & an ordinal. A family (a, ) yes<e

is called tree-indiscernible over a set U if it is a U-indiscernible system
over T, (k*%).

Theorem 3.17 (DZamonja, Shelah, B. Kim, H.-J. Kim). Let m < w. For

every family a = (dy)pem<o and every set U, there exists a family of
tree-indiscernibles (b, ) yem<o over U inspired by a.
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3. Indiscernible sequences

Proof. Fix variable symbols x,, for each n7 € m=“, and define
¥ = {(p(x[(]) | ¢ a formula over U, { ~, 77, and
M & g(a[€]) forall € ~, 7},
{cp(a’c[ﬁ]) < o(%[{]) ‘ ¢ a formula over U, 7] ~, (},
Eu U ¥%.

f]gm<w

[
I

and O:

We claim that @ is satisfiable. Let @, € @ be finite. There exists a finite
set A of formulae such that every formula in @, is of the form

¢(x[7]) < @([¢]) or @(x[¢]),

for some ¢(%,,...,%,—,) € A.Let d be the number of variables appearing
in A and let ¢ : (m<“)¢ — S(A) be the function mapping each tuple
71 € (m<®) to the type tp , (a[#]).

Let k < w be some number such that @, only contains variables x,
with # € m<*. We can use Theorem 2.10 to find an embedding g :
2, (m<*) > 2, (m<“) such that rng g is ~, -homogeneous with respect
to c. It follows that the family (dg(,)),em<x satisfies @s.

By the Compactness Theorem we conclude that @ is satisfiable. Let
b = (by) pem=<w be afamily realising @. Then b is tree-indiscernible over U
since it satisfies Z. Hence, it remains to show that b is inspired by a.

For a contradiction, suppose otherwise. Then there exist a finite tuple
71 € m~® and a finite set of formulae A over U such that

tp, (B[71]) # tpy(a[(]),  forall {», 7.

W.Lo.g. we may assume that A is closed under negation. Set
9(x) = A tpa(b[7]).

Then
M e -9(a[(]), forall{w~, 7.

Consequently, -9(x[#]) € ¥;. Since b satisfies ¥, it therefore follows

that Ml = -9(b[7]). A contradiction. ]
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4. 'The independence and strict order properties

In this section we use indiscernible sequences to study concepts related
to the order property. Recall that

[[go(ci,l_yi)}]iel ={iel | ME (p(d,i?i) }.

Definition 4.1. Let T be a theory. A formula ¢ (%, ) has the independ-
ence property (with respect to T) if there exists a model M = T containing
two sequences (@"),yep(o) and (") <, such that

MEo(a¥,b") if new.

If some formula has the independence property with respect to T, we
also say that T has the independence property.

Proposition 4.2. Let T be a first-order theory and ¢ (%, y) a formula. The
following statements are equivalent:

(1) @ has the independence property.

(2) For every finite number m < w, there exist sequences (" )yep[m]
and (b" ) y<m such that

ME o(a”,b") iff new.

(3) There exist a sequence (@) ep(w) and an indiscernible sequence
(b") pew such that

Me(a¥,b") if new.

(4) There exist a tuple a and an indiscernible sequence (b™) <., such
that

[9(a,b")]nco ={2n|n<w}.

(5) There exist a tuple a and an indiscernible sequence (i?i)ie 1 such that
lo(a,b")]ier is not a finite union of segments.
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4. The independence and strict order properties

Proof. The implications (3) = (4) = (5) are trivial and (2) = (1) follows
by compactness. ]
For (1) = (3), let (@"),yep(w) and (b" ) <o be sequences such that

ME o(a”,b") if new.

By Proposition 3.6, there exists an indiscernible sequence (d") pew With
the same average type as (b"),<,. By compactness, we can find a se-
quence (" )yep(w) Such that

MeE (e, d") iff new.

It remains to prove (5) = (2). Fix m < w and let 4 and (b") ;1 be such
that [@(a, b") ] ;s is not a finite union of segments. We can find a strictly
increasing sequence i, < -+ < i,,,_, of indices in I such that

ME ¢(a,b’*) iff kisodd.
Set d* := bx and let

o ifkéw,
1 ifkew,

xw (k) = {

be the characteristic function of w. Note that the sequence (c? k) k<am
is also indiscernible. For each w ¢ [m], we can therefore find an auto-
morphism 7, of M such that

7w (d¥) = A" fork < m.
Setting ¢* := ;' (a) it follows that
ME o(&",d*) if Me o(m, ("), m,(d¥))
iff ME g(a,d> k)

iff  yw(k)=1
ifft kew. [
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E5. Indiscernible sequences

We can generalise Condition (4) above as follows.

Corollary 4.3. Let ¢(X; Jo, ..., Yn—1) be a formula. If there exist a tuple ¢
and an indiscernible sequence (a;);c; such that the order I has no last
element,

M E ¢(cali]), for arbitrarily large 1 € [I]",
and ME -@(¢ali]),  forarbitrarily large i € [I]",

then @ has the independence property.

Proof. By assumption we can inductively choose tuples k, < k, < ... in
[I]" such that

M e o(Galk;]) iff  iiseven.

Since the sequence (d[k;]);<e is indiscernible, the claim follows by
Proposition 4.2 (4). ]

Lemma 4.4. Let T be a first-order theory. If (X, ) has the independence
property then so does ¢( 7, %).

Proof. We apply the characterisation in Proposition 4.2 (2). Let m < w.
Since ¢(x, 7) has the independence property there are tuples a* and b"
for w € £(2™) and n < 2™ such that

ME@(a%,b") iff new.

We identify each number k < 2™ with the function k : [m] — [2] such
that k = 3., k(i)2'. For i < m and s € [m], we define

¢c:i=b" and d':=a",
where

nei=Y 2 and w;={k<2"|k(i)=1}.
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4. The independence and strict order properties

It follows that

Me o(d, &) iff Me o(a",b")
iff N, € wW;

iff ies. []

Lemma 4.5. Let T be a first-order theory and ¢(x, y) a formula with
the independence property. There exist formulae y(x, y) and 9(x, y)
with, respectively, a single variable x and a single variable y that have the
independence property.

Proof. We construction y using Proposition 4.2 (3). Let a and (1_9” ) n<w be
tuples such that [¢(d, b™)]u<w = {20 | n < w }. Suppose that d = a,a’.
We define a new sequence ¢" := b"a’ and the formula y(x, jz) :=
¢(xz, 7). It follows that [y(a,¢")],<w = {2n | n < w }. Hence, v has
the independence property.

To find 9(%, y) it is sufficient to note that, according to Lemma 4.4,
the formula ¢( 7, x) also has the independence property. Hence, we can
apply the first part of the lemma. ]

The independence property is closely related to the order property
which characterises unstable theories.

Lemma 4.6. Every formula with the independence property has the order
property.

Proof. Suppose that ¢ is a formula with the independence property and
let (@")wcp(w) and (b™) <. be sequences such that

ME @(a”,b") iff new.
Setting w,, := w \ [n] and ¢" := @*" it follows that
ME @(¢",b*) iff n<k.

Hence, ¢ has the order property. ]
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E5. Indiscernible sequences

Lemma 4.7. No o-minimal theory has the independence property.

Proof. Let T be a theory with the independence property. Then there
exist a model M of T, a formula ¢(x, y), parameters ¢ € M, and an
indiscernible sequence (a, )<, such that

ME ¢(a,,¢) iff n=o (mod2).

Since (a, ), isindiscernible we either have a, < a, < ... ora, >a, > ....
In both cases it follows that the set ¢(x,¢)™ is not a finite union of
intervals. Hence, T is not o-minimal. ]

Lemma 4.8. Let (X, ¥) be a formula without the independence property.
Suppose that there exists a tuple ¢ and a sequence (a') ;1 such that the
sets [@(¢,a')]; and [-¢(C,a')]; are both infinite. Then there exists a
formula y(7, 7';d) with parameters d such that

M e y(a',a*d) iff i<k,

Proof. Let ] be an open dense linear order with I € ] such that J contains
infinitely many elements above I and below I. By Lemma 3.9, we can
extend (d');¢; to an indiscernible sequence (') ;c;. Replacing ¢ by —¢
if necessary, we may assume that [¢(¢, a')]; contains a final segment
of J. By Proposition 4.2 (2), there exists a number m such that, for all
indices s € [I]™,

Me-3x A [o(x.a") < -e(x,a")].

i<m-—1

indices § € [I]" such that there is no ¢’ with

Consequently, there exists a number o < n < m, a set w € [n], and

bsoU{si|i¢w}c-9(,a")];
and 1s,_,U{s;|iew}c[o(d,a)];.

We choose n and w such that (n, w) is minimal with respect to the
lexicographic order (treating w € [n] as a word in [2]"). By minimality
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of n, it follows that o € w and n —1 ¢ w. Hence, there is some index k < n
with [k] € w and k ¢ w.

By compactness, there are finite sets J_ C |s, and ], C 1s,_, such that
there is no ¢’ with

Jou{siligw} < [-o(&a)];
and J,u{s;|iew}c[o( a)];.

By indiscernibility, we may assume that
Jou{s;|li<k}<I<Jiu{s;|i>k}.
Letw, :=w~ {k—1}and w_ :=[n] ~ (wu {k}). We define

y(@) = A -exa)a N e(xa).

ie]_uw_ i€ Uwy
Then
M e -3x[y(x) A p(%,3%) A —g(x,a™)].
Hence,
M = Vi[y(x) A (%, a%) > o(x,a™)].
Moreover, (w \ {k —1}) U {k} <jex w implies, by choice of w, that
M e 3x[y (%) A =p(%,a%) A (%, a%)].
Consequently, it follows by indiscernibility that, for all i, € [sx_,, sg ],
M e Vi[y(%) A o(x,a') - o(x,a")] iff i<l.
In particular, this holds for all i, € I. ]

Lemma 4.7 shows that there are unstable theories without the inde-
pendence property. Such theories can be characterised as follows.
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Definition 4.9. Let T be a theory. A formula ¢(x, 7) has the strict order
property (with respect to T) if there exists a model M = T containing a
sequence (a"),<, such that

M Ix[-0(x,a') A p(%,a")] iff i<k,

If some formula has the strict order property with respect to T then we
also say that T has the strict order property.

Lemma 4.10. A theory T has the strict order property if and only if there
exists a formula ¢(%, y) such that ™ is a preorder with infinite chains.

Proof. (<) Suppose that ¢(x, y) defines a preorder with an infinite
chain (a');e;. By compactness, there exists an infinite ascending M-
chain (") ,<,. It follows that

M = 3%[-¢(%, b)) A @(%,6%)]  iff i<k.

(=) Suppose that there exists a formula y(x, y) with the strict order
property and let (a"),«, be a sequence with

M e 3x[-y(%,a") Ay(x,a%)]  if i<k,
We set
¢(j,§") = VE[y (%, 7) » (% 7)].
M

is reflexive and transitive. Furthermore, we have

Clearly, ¢
ME o(a',a*) iff ixk.
Hence, (") <, is an infinite descending ¢ -chain. ]

Proposition 4.11. A first-order theory T is unstable if, and only if, it has
the independence property or the strict order property.
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Proof. (<=) If there is a formula ¢ with the independence property then,
according to Lemma 4.6, ¢ has also the order property and T is unstable.

Similarly, suppose that there exists a formula ¢ with the strict order
property and let (a"),<, be a sequence with

M E 3x[-@(%,a) A @(x,a")] iff i<k,
Setting

Y(%,7) =% =yv3z[-9(zx) A 9(27)]
it follows that

Me y(a',a*) iff i<k,

Hence, ¥ has the order property and T is unstable.
(=) Let ¢(%, y) be a formula with the order property and suppose
that (a"),<, and (b"),<, are indiscernible sequences such that

M e y(a',b*) iff i<k.

By compactness, there are indiscernible sequences (d');cz and (b") ez
such that

M e y(a',b*) iff i<k.

If ¢ has the independence property we are done. Hence, suppose other-
wise. Since [y/(a°, b")]; and [-y(a°, b")]; are both infinite, we can use
Lemma 4.8 to construct a formula y( 7, 7;d) such that

Me (b, b5d) i i<k,
It follows that
M 3%[-~x(%, b'5d) A x(%,05d)]  iff  i<k.

Consequently, the sequence (b'd);.,, witnesses that y(%, y; ) has the
strict order property. ]
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Proposition 4.12. Let (%, y) be a formula over a set U. The following
statements are equivalent:

(1) @(%, y) has the order property.

(2) There exist an indiscernible sequence (a')c; over U and a tuple ¢
such that both the set [@(a’, ¢)] ey and its complement are infinite.

(3) There exists an indiscernible sequence (a') ;1 such that, for every
number m < w, there exists a tuple ¢ such that

|[[§0(6_li;5)ﬂiel| >m and |[[—|(p(6_li;(f)ﬂid| >m.

Proof. (1) = (3) By Proposition 3.6 and compactness, it is sufficient to
find, for every m < w, a tuple ¢ and a sequence (a');<, such that

|H¢(di’5)ﬂi61| >m and |[[ﬂ(p(di,c')]],-61| >m.

Since @ has the order property there are sequences (") <, and (d") p<w
such that

ME o(é',d¥) iff i<k.

Given m < w we consider the tuple ¢ := d™ and the sequence a' := ¢,

i < w. Then

[p(a", et = [p(¢d™) e = {mom 41, )
and [-¢(a’,¢)]ic=[-¢(c',d™)]ie ={0,...,m—1}

contain both at least m elements.
(2) = (1) Let ¢ and (a');¢; be given. According to Proposition 4.2, if
neither

Io = [-¢(@',&)]ier mor I, :=[¢(a’,é)]ie

can be written as a finite union of segments then ¢ has the independence
property. By Lemma 4.6, this implies that ¢ has the order property.
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Hence, it remains to consider the case that both I, and I, are finite
unions of segments. Since these sets are both infinite it follows that each
contains at least one infinite segment. By taking a suitable subsequence of
(a');e; we may assume that both sets consist of a single infinite segment.
Reversing the sequence (a');c; if necessary, we may further assume that
I, <I,.

By compactness it is sufficient to find, for every m < w, sequences
(¢")i<m and (d?) <, such that

ME o(e',d*) iff i<k,

Given m < w we pick indices ko < --- < ky—; in I, and ky, < -+ < kypyy
in I,. For i < m, let m; be an automorphism with 7;(a%) = %' and
define

¢i=af and d':= ().
For i, < m, it then follows that

ME o(é,d) iff Me o(a*, m(¢))
if Mg go(m(dk'"“'“),m(é))
iff M e g(a*+,¢)
iff m-i+l>m
iff i<lI.

(3) = (2) By Corollary 3.10, we may assume that the order I is dense.
Set

@ = Av((a)i/U) U { p(&57) < ~p(&"7) | n<w).

If @ is satisfiable, there exists an indiscernible sequence (b" ), over U
and a tuple ¢ such that

[9(b";8) e ={2n|n<w}
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E5. Indiscernible sequences

and [-@(b";0) o ={2n+1|n<w}.

In particular, both sets are infinite.

Hence, it remains to prove that @ is satisfiable. Consider a finite subset
@, € . Let n < w be the maximal number such that @, contains a
formula of the form

- n+1

p(x"57) < —p(x" 7).
By (3), there exists a tuple ¢ such that
|H¢(di;5)ﬂi€1| >n and |[[—|(p(c'li;c_)}],'€1| >n.

If both sets are infinite, we are done. Hence, suppose that one of them is
finite. Choose indices k, < --- < k,,_, in the finite set. As the other set is
dense and cofinite, it contains indices [, < --- < [,,_, such that

ko<lo <k <l <--<k,_,<l,_,.
Let K be this set of indices. Then (a');cx and ¢ satisfy @,. ]

Corollary 4.13. A first-order theory T is stable if, and only if, for every
formula ¢(x) with parameters and all indiscernible sequences (a')ier at
least one of the sets [@(a") |icr and [-¢(a")];cr is finite.

Corollary 4.14. Let T be a stable theory and (a');c; an indiscernible
sequence over U. For every set C C M, the set

Av,((a");/C) = { 9(%) | ¢ a formula over C such that
[@(@")]icr is cofinite }
forms a complete type over C.
Proof. By the preceding corollary, we have
o(%) e Av,((a');/C) iff [@(@")]icr is cofinite
iff  [-~¢(a")]ies is finite

[y

iff  [-¢(a')]icr is not cofinite
i g(2) ¢ An((a),/C).
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Hence, it remains to prove that Av,((a;);/C) is consistent with T. Let
Pos-->@n € Avi((d;);/C). Then

loo(ai)]icr>---»[@n(a;)]ier are cofinite.
Hence, so is

[po(ai) A=A @n(ai)fier = [9o(@i)fier 00 [@n(ai)Jier -
Fixing some index i in this set, it follows that

M E go(a;) A A eu(a;).

Consequently, every finite subset of Av,((d;);/C) is satisfiable. O
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1. Local functors

In this section we consider functors preserving back-and-forth equi-
valence. Recall that Sub, (M) denotes the class of all x-generated sub-
structures of M, and that a class K is k-hereditary if M e K implies
Sub, (M) c K.

Definition 1.1. Let I be a class of X-structures. We denote the subcat-
egory of Emb(X) induced by K by Emb(KC).

Below we will show that functors preserving direct limits also preserve
co-equivalence. We start by giving an alternative characterisation of such
functors.

Definition 1.2. A functor F : Emb(C) — Emb(K) is k-local if, for every
embedding f : B — F(A) where B € K is x-generated and U € C, there
exists an embedding g : € — U where € € C is k-generated such that the
map f factors through F(g).

o By < o
ol

¢ F(€)

Example. The following operations are R, -local functors.
(a) The function mapping a ring R to the polynomial ring R[x].
(b) The function mapping an integral domain X to its quotient field.
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E6. Functors and embeddings

(c) The function mapping a set X to the free group generated by X.

(d) The function mapping a structure M to the structure HE(M) con-
sisting of all hereditary finite sets with elements from IN.

Lemma 1.3. IfF:Cmb(C) - Cmb(D) and G : Emb(D) — Emb () are
k-local then sois G o F.

Exercise 1.1. Prove the preceding lemma.

As a further, more involved example we show that quantifier-free
interpretations are R,-local functors. While every interpretation is local
in an intuitive sense we need the restriction to quantifier-free formulae
to prove that the interpretation is a functor.

Lemma 1.4. Every QFy, -interpretation T : Emb(KC) — Cmb(X) is an
Ro-local functor.

Proof. First, we show that quantifier-free interpretations are functors.
Suppose that

I-= (05, (&s)seSa (es)s€S> (QDE)EEZ)

is quantifier-free and let & : 9 - B be an embedding. For a € 6%, we
denote by [a]; the element encoded by a. We define Z(h) by

Z(h)[a]s = [h(a)];.

Since embeddings preserve quantifier-free formulae it follows that this
mapping is a well-defined embedding Z(h) : Z(¥U) - Z(B). Obviously,
we have Z(f o g) =Z(f) o Z(g). Consequently, Z is a functor.

To show that it is X, -local let X € Z(9) be finite. For each equivalence
class [a]; € X, fix a representative d and let A, be the set of these
representatives. Then A, is finite and we have X € Z({(A, )a ). Note that
Z({Ao)a) is defined since Z is quantifier-free. O

Local functors can be characterised in purely category-theoretical
terms as those functors that preserve direct limits.
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1. Local functors

Theorem 1.5. Let F: €mb(C) — Cmb(/C) be a functor where the classes
C and K are k-hereditary. The functor F is k-local if and only if it preserves
k-filtered colimits.

Proof. (<) Let f : B — F(Y) be an embedding where B € K is «-
generated. According to Lemma #? we can write 2 = lim D where D :

Z — Sub,(9) is the canonical «-filtered diagram of all k- generated
substructures. The corresponding cocone y from D to ¥ consists of all
inclusion maps y; : D(i) — 9. Since F preserves x-direct limits we have
F(2) =1lim(F o D) and the corresponding cone is F[y].

To find the desired embedding g : € — A we fix a set X C B of size
|X| < k generating B. For each x € X, we choose an index i, € Z such
that f(x) € rng F(y;, ). Since I is k-filtered there is some index f € I and
morphisms h, : i, — f, for all x. Hence, we have

fIX] € mgF(u),

which, by Lemma B1.2.8, implies that

g f = f[{XDs] = (f[X]Dr@)
C {rng F(ps) ) oy = rng F(us) .

Since f and F(u¢) are injective and rng f < rng F(u¢) we can define
a function ¢ : B - F(D(f)) by g := F(u¢)™" o f. Since f and F(us)
preserve all quantifier-free formulae so does g. Hence, g is an embedding.
Furthermore, we have F(u¢) o g = f.

(=) Let D : T - Cmb(C) be a x-filtered diagram with U := lim D,
and suppose that y is a limiting cocone from D to . We claim that
lim(F o D) = F(). Let ® := lim(F o D) and let A be a limiting cocone
from F o D to ®. Since F[u] is a cocone from F o D to F(2) it follows
that there exists an embedding h : © — F() with h = A = F[u].

We only have to show that 4 is surjective. Fix ¢ € F(9). There exists
some substructure B € Sub, (F(Y)) with c € B. Let j : B - F(A) be
the inclusion map. Since F is x-local we can find a x-generated structure
€ € C and an embedding g : € - U such that j = F(g) o j,, for some
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E6. Functors and embeddings

jo : B — F(C). In the same way as above we can show that there is some
index f € 7 and an embedding g, : € - D(f) with g = ¢ o g,.

¢ —° , D) i %
F©) 2 poey — M o P pa
Jo ]
®

Since a = j(a) = (hoAto F(g,) © jo)(a) it follows that a € rngh.  []
Let us show that local functors preserve back-and-forth equivalences.

Definition 1.6. Suppose that F : Emb(C) — Emb(K) is a functor where
the classes C and K are x-hereditary. Let p = @ + b € pIso(,®B) be
a partial isomorphism between 9,5 € C and let 7 : A, - B, be the
unique isomorphism extending p, where %, := {(d)o and B, := (b))
are the structures induced by, respectively, the domain and range of p.
Leti:d, -» Aand j: B, - B be the corresponding inclusion maps
and suppose that F(7) = 4’ — b’. We define

p"=F(i)(a") > F(j)().
Proposition1.7. Let F : Emb(C) - Cmb(K) be an R, -local functor where
the classes C and IC are R, -hereditary.

pel(AB) implies p' el (F(N),F(B)).

(24

Proof. The claim follows by induction on a. Let p := a — bell (A,B),
set A, := (a)o and B, := (b)), and let 7 : A, > B, be the isomorph-
ism extending p. Let i : A, — A and j: B, - B be the corresponding

inclusion maps and suppose that F(77) = @’ + b’.
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1. Local functors

For a = o, we have to check that F(p) is a partial isomorphism. Since
F(i),F(j),and F(m) are embeddings it follows, for every quantifier-free
formula ¢(x), that

F(M) E(F(i)(a")) iff F(%)Fe(a")
iff  F(B,) E o(b)

iff  F(3) = o(F(j)(b)).

If « is a limit ordinal then the claim follows immediately by inductive
hypothesis. Hence, suppose that & = 8 + 1. By symmetry, we only need
to check the forth property. Fix ¢ € F(). Since F is R,-local there exist
a finitely generated structure € and an embedding g : € — 2 such
that the inclusion & : {(c)) ) — F() factors through F(g), i.e., h =
F(g) o ho. Choose a finite tuple &, of generators of € and set é := g(é,)

and 9, := ((@é)o. Since p=arbe pIsoZ‘zﬂﬂ)(Q[, B) we can find some

f € Bwith q := @é + bf ¢ pIsoZ‘k(Q[,QS). Set B, := (bf)y and let
p U — B, be the unique isomorphism extending q. We claim that
gF is an extension of p* with ¢ € dom g*.

Let i5, 11, jo, 1> £o De the inclusion maps as depicted in the following
diagram

Q/[O —T[>%O

A1 N

A — U —> B —> B

1 P 1

Xgo

¢

Applying F to this diagram we obtain
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F(YUo) lﬂz F(3,)

V |F<io> F(jo>| W)

F(Y) 5 F(2,) o F(3,) o F(D)

h| FN |F(g°)

(N rn - F(©)

First, let us show that ¢ € dom g*. We have

¢ =h(c) = (F(i,) o F(go) o ho)(c)

which implies that ¢ € rng F(i,) = dom q*.
It remains to prove that p* ¢ q*. Let x € dom p*. Then x = F(i)(a}),
for some [. Setting w := F(i,)(a)) we have

F(i,)(w) = (F(i) © F(io))(a;) = F(i)(a;) = x.
It follows that
q" (x) = (F(ju) o F(p))(w)
= (F(ji) o F(p) o F(io))(a;)
= (F(ji) o F(jo) o F(m))(a;)
= (F(j) o F(m))(ap) = p" (x). ]

Corollary 1.8. Let F : Emb(C) — Cmb(K) be an R,-local functor where
the classes C and K are R,-hereditary. For all U, B, we have

Azye B implies F(A) =z, F(B).
In particular,

Az, B implies F(A) 2o F(B).

970



1. Local functors
We conclude this section by showing that local functors are compatible
with universal theories.

Definition 1.9. Let F : Emb(C) — Emb(K) be a functor and L a logic.
The L-theory of F is the set

Thy(F):={¢eL|F(A)=¢qforallAecC}.

Lemma 1.10. Let F : €mb(C) — Emb(KC) be an R, -local functor where
the classes C and IC are R,-hereditary. If U € C is R,-universal then

Thy., (F(W)) = Thy_ (F).

Proof. (2) follows immediately from the definitions.
(S) We prove by induction on y(x) € Voox, that

F(U) =w(c), forall¢c F(U),
implies that

F(A)Ew(a), foralldeCandeveryac F(Y).

First, suppose that y is quantifier-free. Let o € C and a < F(9¥).
We have to show that F(¥) = y(a). Since F is ®,-local we can find a
finitely generated substructure o, ¢ A with a € F(9,). Since U is R,-
universal there exists an embedding f : %, — U. We set b := F(f)(a).
By assumption F(Ul) & y(b). Since v is quantifier-free and F(f) is an
embedding it follows that F(%l,) = w(a). Hence, F(¥) = y(a).

For the inductive step, we have to distinguish three cases. Either

y(x) =AY, or y(x)=\V¥, or y(x)=Vyd(xy).

In each of these cases the claim follows directly from the inductive
hypothesis. [
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2. Word constructions

Local functors can be characterised in terms of a certain family of co-
morphisms called word constructions. Instead of defining these opera-
tions as a single, complex construction we will introduce several simple
operations which, when combined with first-order interpretations, yield
the required expressive power.

We start with the main ingredient in a word construction, the so-called
term-algebra operation.

Definition 2.1. Let I'be a functional S-sorted signature and X a relational
one that is S, -sorted for some S, € S. The I'-term algebra T [I', ] over
a X-structure A is the T[T, S, ]-sorted structure whose universe T[I', A]
consists of all I'-terms over A. Every element t(a) € T[I', A] hassort £(5),
where § are the sorts of a. For each relation symbol R € X, we have the
relation

RTIDA _ g2t

and, for each n-ary function symbol f € I', we have an n-ary function
defined by

FTEA o ty) = flo ety

Example. Let us give two simple examples showing the versatility of the
term algebra operation in conjunction with a first-order interpretation.
(a) First, we interpret the product 2 x U in the structure 7 [{f},¥]
where f is a binary function symbol. When we encode a pair (a, b) €
A x A by the term f(a, b), we can define the universe by the formula

d(x):=“x=f(a,b) forsomea,be A’
Then we define each relation R by

or(x) == “x; = f(a;, b;) for some a;, b; € A such that 4,b € R”
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2. Word constructions

(b) Similarly, we can interpret the disjoint union AU in the structure
T[{f},¥U] where f is a unary function symbol. The universe is the set

Au{f(a)|acA}

which is obviously definable in 7 [{ f }, 2]. We can define the relations R
by

¢r(x) := “Either x = a or x = f(a), for some a € R”

Lemma 2.2. Let X a relational signature and I' a functional one. The
I'-term-algebra operation

T, -] :Cmb(X) - Emb(ZuT)
is an R, -local functor.

Proof. First, let us show that it is a functor. Let h : & — B be an embed-
ding of X-structures. We obtain an embedding

T h]:TLA - T B]
by setting
TIL, h](t(a)) := t(h(a)).

To prove that T[I', —] is R,-local suppose that X € T[T, A] is finite.
Then we have X ¢ T'[I', A, ] = (Ao ) 7{r,a where the set

Ao:=J{alta)eX}
is finite. ]

It follows from the results of the previous section that 7[I', —] pre-
serves oo-equivalence. The next lemma gives a more precise statement.
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E6. Functors and embeddings

Lemma 2.3. Suppose that X is a relational signature, I a functional one,
and k an infinite cardinal. For each FO .y -formula ¢(x,,...,x,-,) and
all terms t;(x') € T<®[I'], for i < n, we can construct an FOy,_-formula
@ty (X0, ..., X" such that

TIEA E o(te(do)s-- s tuy(an-y))
W A ¢to...tn_1(do>---’dn—1)-

Proof. W.l.o.g. we may assume that ¢ is term reduced. We construct ¢;
inductively. First, suppose that ¢ is an atomic formula. If ¢ = Rx with
R € X then we can set

) Rx®...x"' ift;=xforalli,
(Rx); = .
false otherwise.

For ¢ = x = y we set

false otherwise.

Finally, if ¢ = fx = y then we define

Aijxi=y; iffs=t,
false otherwise,

(fx=y)s :—{

where s; = s;(x) and t = £(j°,...,7""). Boolean operations are
unchanged:

(=¢)i=-¢; and (A®)i=A{9p:i|lpec®}.

For a quantifier over a variable y of sort s € T[T, S, ], we have

(Iye(x, )i = Fyei(x°,..., 5" p). O
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The term-algebra operation creates structures with many sorts. To
reduce the number of sorts we employ a second operation that merges
several sorts into a single one. Recall that with every morphism (S, X) —
(T, I') of Sig we have associated a reduct mapping Stt[I'] - Str[X].
For relational signatures we can also define a mapping Stt[X] — Stt[I']
in the other direction.

Definition 2.4. Let o = (x, u) : (S, X) - (T, I') be a morphism of Sig
where the signatures X and I' are relational. The inverse a-reduct of a
2-structure 2 is the I'-structure A% where the domain of sort f € T is

Af=J{Alsex (D)},

and, for each relation symbol R € I', we have

R* :=[1J{Q"|Qeu(R)}.

Remark. We have defined inverse reducts only for relational signatures
in order to avoid the complications arising from the fact that we require
functions to be total. For instance, if 8 = (V, K, +, ) is a {v, s} -sorted
vector space and & maps both sorts to the same value, then we get prob-
lems defining V* since the operation + is a function V x V — V and
not a function (VUK) x (VUK) - VUK.

Lemma 2.5. Let « be a morphism of Sig. The operation A — A% is an
Ro-local functor.

Proof. Clearly the operation is R,-local: for every finite subset X ¢ 2A*
we have X € ((X))o)®. It remains to show that it is a functor. Let h :
A — B be an embedding. We define

h® A" - B Dbysetting h%(a) := h(a).
To show that this function is an embedding suppose that @ € R* . Then

there is some relation Q € a™*(R) with a € Q¥. Hence, h(a) € Q® ¢
R®". O
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It follows that inverse reducts preserve FOx, -equivalence. The next
lemma states that they also preserve FO,x_-equivalence for sufficiently
large cardinals «.

Lemma2.6. Leta = (y, u) : (S, Z) — (T, I') be a morphism of Sig where
the signatures X~ and I are relational, and let k be an infinite cardinal such
that

lx '(t)|<x and |p'(R)|<k, forall teTandRel.

For every formula ¢(X) € FOuw, [ 2] where x; is of sort t; and for all sorts
s; € X '(t;), there exists a formula ¢ (X) € FOyx, [I'] such that

A*=g(a) iff Aee¢i(a),
for every X-structure A and all a; € A,.

Proof. We construct ¢¢ by induction on ¢. For atomic formulae we set

(to =x)f =% =x and (Rx)f:=\{Qeu (R)[Qx}

(where we consider x; now to be of sort s;). Boolean operations remain
unchanged:

(=9)s =-¢f and (AP) = N\{gs|pe@}.

A quantifier with a variable y of sort ¢ € T is replaced by a disjunction
over all sorts r € y7'(¢)

(Fye)s =\ {3yes, [rex (1) }. O

We obtain an alternative characterisation of X, -local functors by com-
bining these two operations with quantifier-free interpretations.

Definition 2.7. (a) Let X be a signature and let X, be the signature
obtained from X by replacing every function symbol f of type s — t by a
relation symbol R ¢ of type 5t. The relational variant of a X-structure M is
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the X,1-structure R (M) obtained from M by replacing every function f
by its graph.
(b) A x-word construction is an operation of the form

F=T0SoRoToR,

where 7 is a QF ., -interpretation, R is the operation defined in (a), S is
an inverse reduct, and 7 is a I'-term-algebra operation where |I'| < .

Remark. Note that R is a quantifier-free first-order interpretation.

Theorem 2.8. Let C be an R,-hereditary class of X-structures and K a
class of I'-structures. Suppose that « is a cardinal such that

k> 2% aud k> |F(€)|, forall finitely generated € € C..

A mapping F : Emb(C) — Emb(KC) is an R,-local functor if and only if it
is an k-word construction.

Proof. (<) We have already seen that all operations a word construction
is built up from are R,-local functors. Since R,-local functors are closed
under composition the claim follows.

(=) We have to express F as composition

F=ToSoRoToR.

To define 7 we use Theorem 1.5 which tells us that F preserves direct
limits. Let D : I — Suby, (%) be the canonical diagram with limitlim D =

. We are looking for an operation mapping  to h_r)n(F o D).

Fix an enumeration (€, )4<) of Ugeic Suby, (). Note that each struc-
ture €, has at most |Z| ® X, elements. Hence, there are at most 2/*1®%o
of them and we have A < 2/®% < &

For each a < A, we choose a finite tuple ¢, € C,, generating €,. Set

E={f|a<A beF(C,)},
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where f is a new function symbol of arity |¢,|. Note that |Z| < « since
A < k and |F(§,)| < «, for all . For T we choose the =-term-algebra
operation A — T [ £, U]. The inverse reduct S maps each element to the
correct sort.

The main work is done by the interpretation Z. It creates the structures
F(€,) and pastes them together. The domain formula §(x) states that
x is a term of the form f;(a), for some o < A and b € F(C,), such
that the substructure generated by a is isomorphic to €,. Each relation

R € I can be defined by a formula ¢ (%) stating that x; = f,"'(4) and

the tuple b is in the relation RF(%) The functions in I' are defined in the
same way. Two elements f; (4) and flf‘,/ (a’) are defined to be equal iff we
have i(b) = i'(b") where i : €, - (C4Cor Noand i’ : €y — ((CoCor oy are
the canonical inclusion maps. Since A < x and every €, has less than «
elements, it follows that each of the above statements can be expressed
in FOyy, . ]

Corollary 2.9. Let F : Emb(C) — Cmb(K) be R,-local and let X be the
signature of C. If k is a cardinal such that

k> 251 and k> |F(Q)|, forall finitely generated € € C,
then A o, B implies F(A) po,,, F(B).

Remark. We have characterised R, -local functors in terms of word oper-
ations and we have shown that they preserve FO.x_ -equivalence. These
results can be generalised to x-local functors for arbitrary cardinals «.
To do so we have to allow term algebras with operations of infinite arity
less than «. It follows that these operations preserve equivalence for
the logic FOo., which extends FOu.x, by quantifiers 3{ x; | i < « } and
V{x;|i<a} oversets of a < k variables. We can give a back-and-forth
characterisation of this logic if we replace the usual back-and-forth prop-
erty by the requirement that, for every tuple ¢ with |¢| < k, we can find a
corresponding tuple d in the other structure.
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As an application of word constructions we consider varieties. With
each variety )V we can associated a so-called replica functor that maps a
given structure to its closest approximation in V.

Definition 2.10. Let X € X, be signatures, P € 2, \ ¥ a unary predicate,
and V a quasivariety of X, -structures.

The replica functor Ry : Hom(X) - Hom()) of V maps an arbitrary
X-structure U to the free model of the V-presentation (A; @y) where

Oy :={PalacA}u{¢(a)|gpatomic,ac A, A g(a)}.

Remark. Note that replica functors differ from the functors considered
so far since, in general, they do not preserve embeddings. Hence, they
are functors Hom(X) - Hom(2, ), and not Emb(X) - Emb(X,,).

Lemma 2.11. The replica functor Ry, : Hom(X) — Hom(V) is a functor.

Proof. Let h: A — B be a homomorphism. By definition, the structure
Ry () is the free model of {A; @g). Let a be an enumeration of A and set
b := h(a). Since homomorphisms preserve atomic formulae it follows
that

(Ry(B), b) = Dy,

that is, Ry (B) is a model of (A; @y). Since Ry, () is the free model of
this presentation there exists a unique homomorphism g : Ry,(¥) —
Ry (B) with g | A = h. It is straightforward to check that we obtain a
functor if we define Ry, (h) := g. ]

Proposition 2.12. Each replica functor is a word construction.

Proof. Since the structure Ry, () is generated by the set A there exists a
homomorphism £[2,, A] > Ry(9) such that i | A = id4. We define a
quantifier-free interpretation Z such that

Ry=ZT0SoRoToR,
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where T () := T[2Z,, ] and S is the inverse reduct that maps every
sortt € T[2,,S,] of T[Z,, ] to the sort s such that ¢t € T;[2,, S, ].

According to Lemma D2.4.2, we have
Ry() =y(a) iff  Th(V) =\ Py~ y(a),

for every atomic formula y(x) € FO<“[2,] and all a c A.
Note that, by the interpolation theorem, we have

Th(V) e A @y —»y(a) iff Th(V)E A Qay, — ¥(a).
For each atomic formula y(x), we define

Dy :={ (o | Th(V) = \ Pu > y(a) } .
Let 77, (%) be the FOoon, -formula expressing that

(x)a =€, forsomeCeD,.
It follows that

Ry(¥) = y(a) i (a)aeD, it Asyy.
Consequently, we can define the desired interpretation

7= (05, (5s)seSa (SS)SGS’ ((Pf)f€2+)

by setting
o = true,
Js(x) := true,
&s(x,y) :=“x=s(a) and y = t(b) and A = 775(5)=¢(5) (3, b)”,
@e(x):=“x; = t;(a;) and A = nri(dos...»0n-1)". ]
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3. Ehrenfeucht-Mostowski models

If a functor F is R,-local then with every element ¢ of F(?) we can
associate some finitely generated substructure A, € U such that c is
contained in F (2, ). We can think of the generators of %, as a code for c.
In general, ¢ can have several such codes and the connection between
¢ and its codes is rather loose. In order to obtain a tighter relationship
and a canonical way to encode elements of F(), we add a function
s: A — F(¥) assigning to every element a of 2 some element of F(Q)
encoded by a.

Definition 3.1. Let /C be a class of I'-structures and X a signature. A func-
tor F : Gmb(KC) — Cmb(ZX) is strongly local if there exists a family of
injective functions sg : I - F(3), for J € /C, such that

¢ F(3) is generated by rng sy and
¢ F(h)osg=sgoh,for every embedding h : § - K.
We call s5 the spine of F(5).

Remark. Translated into category-theoretical terms the second of the
above conditions on sy simply means that (s )5 is a natural transforma-
tion between the functors U and V o F, where

U:Cmb(K) > Set and V:Cmb(X) > Set

are the forgetful functors mapping a structure to its universe.

Every strongly local functor is R, -local. For the proof we need a tech-
nical lemma.

Lemma 3.2. Let F: Emb(K) - Cmb(X) be a strongly local functor and
h:3 — K an embedding in K. Then

F(h):F(3) = <<s§[rngh]>>F(§) :

Proof. 1t is sufficient to show that rng F(h) = {(sg[rngh]))r(g). Note
that F(h) o s5 = sg o h implies

F(h)[rngss] = sg[rngh].
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Therefore, (rngsx)) p(s) = F(I) implies

mg F(h) = F(h)[{ngs) r(y) ]
= (F()[mg3]) g, = (ss[mgh]acey =

Proposition 3.3. Let F : Emb(K) — Cmb(X) be a strongly local functor
where K is R, -hereditary. Then F is R,-local.

Proof. Fix § € K and suppose that X € F(3) is finite. Then there is a
finite subset Z ¢ rng sy such that X ¢ {(Z))p(s). Set

3o = {s3'[Z])s-
Note that 3, € K since K is R, -hereditary. By Lemma 3.2, it follows that
X € (Z)p() = (rmgss, ) ra) 2 F(3o) O

By Corollary 2.9 it follows that strongly local functors preserve FO,x, -
equivalence.

Corollary 3.4. Let F : Cmb(/C) — Cmb(X) be a strongly local functor
where K is an R,-hereditary class of I'-structures. For every cardinal k >
21®% and all 3, K € K,

S =ro, K implies  F(3) =po,., F(K).
Strongly local functors also preserve QF-equivalence.

Lemma 3.5. Suppose that F : Cmb(KC) — Cmb(X) is a strongly local
functor where the class K is Ro-hereditary.
Let 3, K € K be structures and a € I and b € K finite tuples. Then

(3, a) = (S‘?,l_o) implies (F(S),53(é)) = (F(.S‘?),s@(l:))).

Proof. Set€:= ((a))yand let s¢ be the spine of €. Since K is R, -hereditary
we have € € K. Since (3, @) =, (K, b), there are embeddings f : £ > J
and g : £ - K with f(a) = a and g(a) = b. Note that

(F(f) o sg)(a) = (syo f)(a) = s3(a),
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and  (F(g) os¢)(a) = (sxog)(a) =ss(b).

Since embeddings preserve every quantifier-free formula ¢, it follows
that

F(3) E o(s3(a)) iff  F(£) = g(se(a))
iff  F(K) = ¢(sx(b)) . O
Corollary 3.6. Let F : Cmb(KC) — Cmb(X) be a strongly local functor

where the class IC is R, -hereditary. For every 3 € K, the spine s5 of F(3)
is a QF-indiscernible system over .

Next we study the first-order theory of structures in the range of a
strongly local functor.

Proposition 3.7. Let F : Emb(KC) — Emb(X) be a strongly local functor
and U € K an R,-universal structure. If Th(F(U)) is a Skolem theory
then Th(F) is complete. In particular,

F(3)=F(R), forall3,Keck.
Furthermore, each spine s is an indiscernible system over 3.

Proof. A Skolem theory is V-axiomatisable and admits quantifier elim-
ination. Let @ € V be an axiom system for Th(F(ll)). By Lemma 1.10.
we have @ ¢ Th(F). Hence,

Th(F(1)) = @ ¢ Th(F) c Th(F(U1))

implies that F(J) = F(U), for all § € K. )

To show that every spine s5 is indiscernible, fix 3 € L and let ¢,d c 1
be tuples with atp(¢) = atp(d). For every formula ¢(x), there exists
a quantifier-free formula y(x) with F(3) £ ¢ < . By Lemma 3.5, it
follows that

FQ)Fplsle) i F) Fy(sle)
ifft  F(3) F y(s3[d])
iff  F(3) F o(ssld]). O
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E6. Functors and embeddings

Existence and uniqueness of strongly local functors is proved in the
following proposition.

Proposition 3.8. Let A be a X-structure, U a I'-structure, and set
IC:= {J | Suby, (J) € Suby, (U) }.

Suppose that A is generated by a QF-indiscernible system a : U — A over L.
Up to natural isomorphism there exists a unique strongly local functor
F:Cmb(KC) — Cmb(X) such that

F(LI) = 9/[ and AVQF(SU) = AVQF(a) .
Proof. For each J € IC, we define a set @(J) € QF°[2;] by
O(3) := {(p(c') | ¢cland o(x) € Avge(a)(atp(¢/3)) }

We claim that @(J) is =-closed. Since every type q contains the equation
t(x) = t(x), we have

t(c)=t(c) e ©(3), foreverytermt(c)e T[X;,d].

Furthermore, if ®(J) contains the formulae ¢(¢(¢),¢) and ¢(¢) = ¢'(¢)
then

p(t(%), %), (%) = t'(x) € Avar(a)(atp(/3))
implies
p(£'(%), %) € Avr(a)(atp(¢/3))

Consequently, ¢(t'(¢), ¢) € @(J). Hence, we can use Lemma c2.4.4 to
construct a Herbrand model H(J) of @(J) such that

O(3) ={9ear’[Z1][O(I) ko }.
We define the desired strongly local functor by setting

F(3):=9(3)|z and s5(c):=c®®, forcel.
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3. Ehrenfeucht-Mostowski models

First, note that the mapping s is injective since we have x, # x, €
tp(a[vv']), for all elements v # v' of U. Furthermore, if h : § — K is an
embedding, ¢ ¢ I, and ¢(X) quantifier-free, then

F(3) Fo(s3(c)) iff (%) € Aver(a)(atp(¢/3))
iff (%) € Aver(a) (atp(h(¢)/R))
iff  F(R) F ¢(sg(h(c))).

By the Diagram Lemma it follows that the function
F(h) : 173 (s3(6)) = 1" (s2(h(0)))

is an embedding F(h) : F(3) — F(RK). Consequently, F is a functor. By
construction, it further follows that it is strongly local, that F(U) = 9,
and that Avqe(su) = Avge(a). Hence, it remains to check uniqueness.

Suppose that G is another strongly local functor such that G(UI) =
and Avge(s);) = Avqe(a), where s]; is the spine of G(U). For every J € C,
each finite tuple ¢ € I, and all quantifier-free formulae ¢(x), it follows
that

it G(U) F o((sy0g)(c))

iff (%) € Avoe(sy) (atp(g(e)/U))

iff  ¢(x) € Avor(a)(atp(g(c)/UL))

iff  ¢(%) € Aver(a)(atp(¢/3))

iff  F(3) = ¢(s3(6))
where g : (¢))y — Ul is an arbitrary embedding and s and sy, are the
spines of G(J) and G(Ul), respectively. Since F(J) and G(3) are gen-

erated by, respectively, rng sy and rngss it follows that we obtain an
isomorphism 7 : F(J) — G(3) by setting

ﬂ(tF(j)(SS(C'))) — tG(ﬁ)(S%((E)),

for all terms t(x) and all ¢ € I. O

=

G(3) = 9(s5(2))

985



E6. Functors and embeddings

Of particular importance are strongly local functors F : Emb(L) —
Cmb(2) where L is the class of all linear orders. This is mainly due to the
fact that we always can find enough indiscernible sequences, whereas
arbitrary indiscernible systems do not need to exist. Note that £ is hered-
itary and every infinite linear order is R, -universal.

Definition 3.9. Let &in := Emb(L) where L is the class of all linear
orders.

(a) A strongly local functor F : £in — Emb(X) is called an Ehrenfeucht-
Mostowski functor. We say that F is an Ehrenfeucht-Mostowski functor
for atheory T if F is an Ehrenfeucht-Mostowski functor such that F(I) &
T, for every linear order I.

(b) Let T be a first-order theory. An Ehrenfeucht-Mostowski model of T
is a model of the form F(I) where F is some Ehrenfeucht-Mostowski
functor for T and I is a linear order.

(c) Let F : Lin — Emb(X) be an Ehrenfeucht-Mostowski functor. The
average type of F is the set

Av(F) = { ¢(%) e FO“[Z] |
F(3) & ¢(s3(¢)) forall Je K and ¢ € [I]°“ }.

Note that, by Proposition 3.7 and Lemma 3.5, the average type of an
Ehrenfeucht-Mostowski function is complete.

Lemma 3.10. If F : £in — Emb(X) is an Ehrenfeucht-Mostowski functor,
then Av(F) is a complete type.

Theorem 3.11 (Ehrenfeucht-qutowski). Let M be a model of a Skolem
theory T. For every sequence (a');c; of distinct elements in M there exists
an Ehrenfeucht-Mostowski functor F for T such that

Av((a');/o) c Av(F).

Proof. By Proposition E5.3.6, there exists an elementary extension It > M
containing an indiscernible sequence (¢, )<, With

AV((a")ier/D) € AV((cp) pew /D) -
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3. Ehrenfeucht-Mostowski models

Lets: w — N be the function mapping n < w to ¢, and set
U := (rngs)x.

Note that the function s is injective, since x, # x, € Av((a');/@). Fur-
thermore, we have U < 9 since T is a Skolem theory. Hence, we can
use Proposition 3.8 to find an Ehrenfeucht-Mostowski functor F with
F(w) = Uand s, = s. It follows that Av((a’);/@) € Av((c,),/@) =
Av(F). ]

Corollary 3.12. If a first-order theory T has infinite models then there
exists an Ehrenfeucht-Mostowski functor for T.

Proof. Let T™ be a Skolemisation of T. It is sufficient to find an Ehren-
feucht-Mostowski functor F for T" since we can obtain the desired
Ehrenfeucht-Mostowski functor for T by composing F with a suitable
reduct functor.

Let M™ be an infinite model of T* that contains an indiscernible
sequence (a"),<, of distinct elements. By Theorem 3.11, there exists an
Ehrenfeucht-Mostowski functor F with Av((a"),) € Av(F). We claim
that F is the desired Ehrenfeucht-Mostowski functor for T*. As (a"),, is
indiscernible, its average type Av((a"),) is complete and, therefore,
equal to Av(F). Consequently, F(w) £ T*. Since T is a Skolem theory,
it follows by Lemma 3.7 that F(I) = T, for every I. ]

We use Ehrenfeucht-Mostowski functors to construct models of a
theory with certain properties. As a first simple application, we build
models with many automorphisms.

Lemma 3.13. Let T be a complete first-order theory with infinite models.
For every cardinal k > |T|, there exists a model M of T of size |[M| = «
with 2 automorphisms.

Proof. According to Corollary 3.12, there is an Ehrenfeucht-Mostowski
functor F : £in - Mod(T) for T. We will construct a linear order I of
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E6. Functors and embeddings

size |I| = x with 2* automorphisms. It follows that F(I) is the desired
model of T.

Let I := Z - « be the product of the order Z of the integers and the well-
order x. For every set X C «, we can define an automorphism 7y : I — I

by

_{k+1,a) ifaeX,
e )= {(k,oc) ifo¢ X.

Since mx # 7y, for X # Y, it follows that I has at least 2* automorphisms.

[

One important application of Ehrenfeucht-Mostowski models rests
on the fact that such models realise few types.

Theorem 3.14. Let T be a Skolem theory over the signature X and let M be
an Ehrenfeucht-Mostowski model of T.

(a) For every finite sequence of sorts 5, M realises at most |X| & R, types
in S°(T).

(b) Let s be a sort and U M. If the spine of M is well-ordered then
M realises at most || @ |U| @ R, types in §*(U).

Proof. (a) Suppose that M = F(I) for some Ehrenfeucht-Mostowski
functor F. Fix a finite tuple 5 of sorts and let ¢ € M* be a tuple of
elements of the corresponding sorts. For each index [ there exists a term
t;(x) and an increasing tuple i’ € I'such that a; = £7*(s;[']). By adding
redundant variables we may assume that all the tuples i’ are equal. We
denote this tuple by 7. If k < I is another increasing tuple of the same
length then it follows from indiscernibility of the spine s; that

M= @(to(si[7])s - tama(s1[1]))
iff  Me o(to(si[k]), ..., tamr(si[K]))
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3. Ehrenfeucht-Mostowski models

for every formula g. Setting b; := t;(s;[k]) we obtain tp(a) = tp(b).
Hence, the type of a is uniquely determined by the terms ¢;. Since

TS [Z = 2 @R,

it follows that M realises at most |X| & R, types from S*(T).

(b) Suppose that M = F(«a), for some ordinal «, and let U ¢ M.
Each element ¢ € U can be written as ¢ = £ (s4(1.)), for some term t,
and indices 7, € a. The set W := U,y i has size |W| < |U| @ R,. Let
u(x) € T<“[X] be a term and k ¢ a. By indiscernibility of s, the type
of u™(k) is determined by the relative position of k with respect to the
elements of W. Since « is well-ordered, there are at most |W| & &, ways
in which k can lie relative to W. Consequently, the elements u™ (k) with
k € a realise at most |W|® &, complete types over U. Therefore, at most

ITSO[Z]| @ |[W| e Ro < |Z]@|U| @R,
complete s-types over U are realised in M. ]

Corollary 3.15. Let T be a complete first-order theory with infinite models.
For every cardinal k > |T|, T has an Ehrenfeucht-Mostowski model M of
size |M| = « such that, for every set U C M and every finite tuple 5 of sorts,
M realises at most |U| @ |T| types from S*(U).

Proof. According to Corollary 3.12, there is an Ehrenfeucht-Mostowski
functor F : £in > Mod(T) for T. Let M := F(x). Then |M| = « and,
by Theorem 3.14 (b), M realises at most |U| & |T| types in S*(U), for
every U € M. For a finite tuple § = s, ... s,_, it follows by induction that
M realises at most (|U| @ |T|)" = |U| & |T| types in $°(U). O

Theorem 3.16. Let X be a signature. If a theory T over X is k-categorical for
some k > |Z| ® R, then T is A-stable, for every cardinal |X| & R, < A < k.

Proof. Let M be the Ehrenfeucht-Mostowski model from Corollary 3.15.
For a contradiction, suppose that there is some set U of size |U| = A with
|S*(U)| > A. Let N be a model of T containing U that realises A* of these
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types. By the Theorem of Lowenheim and Skolem we can choose 3 to
be of size [N| = A* < k. Hence, 0 has an elementary extension N, of size
IN,| = k. As T is k-categorical this implies 9%, = M and there exists an
elementary embedding & :  — M. Hence, M contains a subset h[U]
of size A such that more than A types over h[ U] are realised in M. This
contradicts our choice of M. ]

Corollary 3.17. Let T be a theory over a countable signature. If T is
k-categorical for some uncountable cardinal x then T is R,-stable.

The next proposition generalises Lemma E4.1.6.

Proposition 3.18. Let T be a countable, complete theory. If there is some
finite sequence § of sorts such that S*(T) is uncountable then, for each
infinite cardinal x, T has at least 2%° pairwise non-isomorphic models of
cardinality k.

Proof. Let « be an infinite cardinal and fix § such that $*(T) is uncount-
able. By Corollary Bs.7.5, it follows that |S*(T)| = 2™°. Note that this also
implies that T has infinite models. Let ¢ be a tuple of new constant sym-
bols of sorts 5. For each p(x) € S*(T) we form the theory T, := T up(¢).
Let T,” be a Skolemisation of T,. We can use Theorem 3.11 to find an
Ehrenfeucht-Mostowski model 2, of T;" with a spine s, : k - A,. It
follows that

K<|A <k @|T][ =k ® R, = k.

By Theorem 3.14 9, realises only countably many s-types. Therefore, so
does B, := A,|s. Furthermore, the tuple ¢* realises the type p in B,,.

We claim that there are 2™ pairwise non-isomorphic models among
the B,. Suppose otherwise. Then there exists a set I ¢ S°(T) of size
|I| < 2™ such that every B, is isomorphic to some B, with q € I. Since
every type in $°(T) is realised in some B, but each B, realises only
countably many types, it follows that

IS5(T)| < |1 ® R < 2.

Contradiction. H
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3. Ehrenfeucht-Mostowski models

Definable linear orders in an Ehrenfeucht-Mostowski model F(I)
are closely related to the order induced by I. We start with a technical
lemma.

Lemma 3.19. Let (A, <) be an infinite dense linear order and suppose
that c is a linear order on [A]" with the following property. For all tuples
d,a',b, b’ € [A]" such that ab and a'b’ have the same order type with
respect to <, we have

ach iff a'cb.
Then there exist a linear order < on [n] and a map o : [n] - {-1,1} such
that,

ach
iff  thereissomel € [n] with a; <Oy anda; =b;, fori<l,

1

where <* := < and <7' := >,

Proof. We start by defining linear orders <; on A, for i < n, by
a<;b :iff ¢[ifa]cc[i/b], forsomece[A]" with

ci,<a<ciandci_, <b<cjy,.

(Recall that, according to Definition B3.1.12, ¢[i/a] denotes the tuple
obtained from ¢ by replacing c; by a.) Note that, by our assumption on
o, if a <; b holds then we have ¢[i/a] c ¢[i/b] for all tuples ¢ satisfying
the above conditions. Furthermore, since we can always find such a tuple
and c is linear it follows that a <; b or b <; a. Finally, if a <; b holds
for some a < b then it holds for all a < b. Therefore, we have <; = < or
<i =<' Leto:[n] - {1, -1} be the function with <; = <*().
We define the ordering < on [#] by

i<j iff i+ jandtherearea<;a’, b<;b’, and ¢such
that ¢[i/a, j/b'] = ¢[i/a’, j/b] and these tuples

are increasing.
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By assumption on c it follows that the definition of i < j does not depend
on the choice of a, a’, b, b’ and ¢. If there are some elements satisfying the
definition above then we have ¢[i/a, j/b"] = ¢[i/a’, j/b] for all elements
as above. Consequently, i < jimplies j 4 i. Furthermore, since c is linear
we have i < jor j < i, forall i, j. In order to show that < is a linear order
it therefore remains to prove that it is transitive.

Suppose that i < j < k. We have to show that i < k. If i = k we would
have i < jand j < i, which is impossible. Hence, i # k. Choose elements
a <; a',b <k b',and ¢ such that the tuples ¢[i/a, k/b'] and ¢[i/a’, k/b]
are increasing. We claim that ¢[i/a, k/b"] © ¢[i/a’, k/b]. Since A is
dense we can find some element d <; ¢; such that ¢[i/a’, j/d, k/b] is
increasing. Then i < j implies that

clifa, kJb'] = lifa, jjc;, kb') < E[ifa’s jld, k]b'].

Similarly, j < k implies

clifa’,jld, k[b') e clifa’, j[cj, k[b] = ¢[i]a’, k[b].
Therefore, we have

éli/a,k/b'] € clifa’, k/b],

as desired.

It remains to prove that the ordering = coincides with the ordering =4
induced by < and ¢ as in the claim above. Since both relations are linear
orders it is sufficient to prove that @ c? b implies a c b.

For 4, b € [A]", let d(a, b) be the number of indices i with a; # b;.
We prove the claim by induction on d := d(d, b).If d = o then 4 #% b
and there is nothing to prove.

Suppose that d = 1 and let [ be the unique index with a; # b;. Then
we have

ach iff a< b iff a<Dp iff aclb.
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Suppose that d = 2. Let | and j be the indices where a and b differ
and suppose that [ < j. By definition of £ we have a; <; b;. Hence, if
bj < ajthen [ < jimplies that

a=allla, jfa;] = a[l/bi,j/bj]=b,

and we are done. Suppose therefore that a; <; b;. Let k,, := min {/, j}
and k, := max{l, j} (with respect to the natural ordering on [n]). If
ak, < by, then a[k, /by, | € [A]" and, by inductive hypothesis, we have

i < alkyfbr,] = blko/ar, ] = b.
Similarly, by, < ax, implies that
acalke/by,]=b[k,/ar]cb.

Finally, suppose that d > 2. Let | be the <-minimal index with a; # b,
and let k be the <-maximal one. First, consider the case that k # [. If
ax <k by then we have

acqalk/by] =5 b,

and the claim follows by inductive hypothesis. Therefore, suppose that
bi <k ai. Since A is dense we can find some element ¢ with a; <; ¢ <; b;
and a;_,,b;_, <c< a4y, br4,. Then

15 allfe, k/bk] =5 b,

and the claim follows by inductive hypothesis.

It remains to consider the case that k = [. Let kK’ be the <-minimal
index with ays # by. Then k’ # | and we can use a dual argument to
show that a c b. ]

Theorem 3.20. Let F : £in - Cmb(X) be an Ehrenfeucht-Mostowski
functor and t(x°,...,x"") a term over X. Suppose that y(x,y) is a
quantifier-free formula such that Av(F) implies that y linearly orders all
elements of the form t(s;[i]) with 1 € [I]".
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Then there exist a linear order < on [n] and a map o : [n] — {-1,1}
such that, for every linear order I and all tuples 1, j € I",

F(I) = x(t(s:[1]), t(sa[J]))
iff  thereissomel € [n] with i <o) jrandis = jg, fors<l,
where <! := < and <! :=>.

Proof. Note that we can embed every model F(I) into a model F(])
where ] is a dense order. Since y is quantifier-free it is therefore sufficient
to consider the case of a dense order I. Define

icj i F(D) e (i), (sil)

According to Lemma 3.19 the order c has the desired form. Il
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1. Abstract elementary classes

For every algebraic logic L, we can form the category €mb; (X) of L-
embeddings. This is a subcategory of the category Emb(X) of all embed-
dings. It has the same objects but fewer morphisms. In this section we
investigate to which extend these two categories determine L.

Definition 1.1. Suppose that K is a class of Z-structures that is closed un-
der isomorphisms and let £ be a class of embeddings between structures
in IC.

(a) The pair (K, £) forms an abstract elementary class if it satisfies the
following conditions.

(i) & is closed under composition and it contains all isomorphisms
between structures in K.

(ii) f, f o g € & implies g € &, for all embeddings f and g.

(ili) The subcategory of €mb(/C) induced by £ has direct limits and,

for every directed diagram D : I — &, the direct limits of D in £
and in €mb(X) coincide.

(iv) There exists a cardinal In(K) > |X| @ R, such that, for every struc-
ture M € K and every set X € M, we can find a substructure
€ € IC of size |C| < |X]| @ In(K) such that { X ))qr € € € M and the
inclusion map € — M belongs to &.

The cardinal In(KC) is called the Léwenheim number of K.
(b) Let (K, £) be an abstract elementary class. The elements of £ are

called KC-embeddings. Usually, we drop the class £ from our notation
and just write K for (/C, £).
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(c) Let (K, £) be an abstract elementary class and let 2 € B be struc-
tures in KC. We define

A<k B :iff  theinclusion map i : Y - B belongs to £ .

If A <jc B then we call A a [C-substructure of B.
(d) The pair (KC, £) forms an algebraic class if

(i) £ =Emb(K) is the set of all embeddings and

(ii) K 1is closed under isomorphisms, substructures, and direct limits
of embeddings.

Example. (a) Every algebraic class (K, £) of Z-structures is an abstract
elementary class with Lowenheim number In(K) = |Z] & R,,.

(b) Let L := FOyy,, let T € L°[X] be a theory, and let £ be the class
of all L<“-embeddings between models of T. Then (Mod(T), ) is an
abstract elementary class and the relation <x coincides with the L<“-
substructure relation <;<». The same holds for many other algebraic
logics L.

Exercise 1.1. In (b) of the above example we have taken for £ all em-
beddings that preserve every formula with finitely many free variables.
What goes wrong if we take only those embeddings that also preserve
formulae with infinitely many free variables?

Exercise 1.2. Let (K;,&;), i € I, be a family of abstract elementary
classes over the signature X. Show that the intersection (N; KC;, N; &;) is
an abstract elementary class with Lowenheim number sup; In(/C;).

Remark. (a) We have defined the /C-substructure relation <x in terms
of the class £ of K-embeddings. Conversely, <x determines £ since an
embedding / : A — B belongs to £ if and only if rng h < B.

(b) Let (/C, £) be an abstract elementary class and let /C,, € K be the
subclass of all structures of size at most In(X). Every structure M €
can be written as a direct limit D : I — & of its KC-substructures in /C,,.
Hence, K is the class of all direct limits of structures in /C,. In particular,
KCo and the restriction of £ to IC, completely determine (/C, £).
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We have seen that many algebraic logics give rise to an abstract ele-
mentary class. Conversely, we can show that every such class arises from
an algebraic logic in this way. To do so, we need the notion of a Galois

type.

Definition 1.2. Let (I, £) be an abstract elementary class. Let M €
be a structure and U € M a set of parameters.
We define the Galois type of a tuple a € M over U by

P e (/M U) = [, M, U],

where the equivalence relation ~ is the transitive closure of the following
relation ~ on triples (a, M, U) with U, a € M. We set

(@, %, U) ~(b,B,V)

ift U = V and, for some M ¢ C, there are K-embeddings f : A, - M
and g : B, - M where Ao < U and B, < B are K-substructures
with Uua c A, and U U b € B, such that

ftU=¢glU and f(a)=g(b).
We write S} ,(U) for the set of all Galois types of 5-tuples over U.

Remark. (a)Let T bea first-order theory and Mod( T') the corresponding
abstract elementary class. Then the Galois type of a tuple coincides with
its first-order type.

(b) If an abstract elementary class C stems from an algebraic logic L
then no L-formula can distinguish between tuples of the same Galois
type. Hence, tuples with the same Galois type also have the same L-type.
In general the converse fails.

(c) Below we will not consider Galois types over arbitrary paramet-
ers U. The set U will always be either empty or the universe of some
IC-substructure U.
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Proposition 1.3. Let (IC,E) be an abstract elementary class of X-struc-
tures. There exists an algebraic logic L, a fragment A ¢ L<“[ZX], and a
formula y € A such that

IC=Modr(x) and £ isthe class of all A-embeddings.

Proof. For a set X of variables, we denote by @y the set of all Galois
types of X-tuples over the empty set. We start by defining the functor L.
For a signature I' and a set X of variables, we set

L[, X] = P(®x) x Sig(Z, ),
and, for a morphism A € Sig(I', I'"), we set
LIA]: (¥, u) = (¥, dop).

For a formula (¥, u) € L[T, X], a I'-structure I, and a tuple a € A%, we
define the satisfaction relation by

Ar (Vo u)(@) Gty (d/,.2) € ¥.
Finally, we set
A:={(V,u)e L~[Z]|p=id} and y:=(Dgy,id). (]

This proposition provides a syntax for each abstract elementary class.
But because of the high degree of generality in the definition of an
algebraic logic, this result is of little practical use. A more concrete way
of equipping an abstract elementary class with a kind of syntax is given
by the notion of a Skolem expansion.

Definition 1.4. Let (IC, £) be an abstract elementary class of 2-struc-
tures.

(a) An expansion of K is an abstract elementary class (K,, &, ) of
2>, -structures, for some X, 2 X, such that

pry (i) =K, pry(€:)=€, and In(K,)=In(K),
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1. Abstract elementary classes

where pry : Emb(Z,) - Cmb(X) is the reduct functor.
(b) An expansion (K., &, ) of (IC, E) is a Skolem expansion if (K., E..)
is an algebraic class.

Algebraic classes and, hence, Skolem expansions are very nicely be-
haved abstract elementary classes. For instance, the membership of a
structure in such a class only depends on its finitely generated substruc-
tures.

Lemma 1.5. Let IC be an algebraic class and M a structure. Then
Me L iff  Suby, (M) c K.

Proof. (=) Suppose that K is algebraic, M € IC, and A € M. Since K is
algebraic, we have A <xc M. This implies that A € K.

(«=) Each structure M can be written as direct limit M = lim D where
D : I — Suby, (M) is the diagram of the finitely generated substructures
of M. By assumption we have D(i) € K, for every i € I. Since K is
algebraic it is closed under direct limits of embeddings. Consequently,
wehave‘.mzli_n}DelC. ]

As a corollary it follows that every algebraic class is V oox, -axiomatis-
able.

Proposition 1.6. Let X be a signature and set k := |X|®R,. Every algebraic
class KC of Z-structures is ¥ (,x)+x, -axiomatisable.

Proof. Let
Cn:={(,a)|UeKisgeneratedbyac A"}

be the class of all structures in K that are generated by a set of size n. Note
that every structure in C,, has size at most x = |X| ® ®,. Consequently,
C, contains, up to isomorphism, at most 2* structures. For every (2, a) €

Cy, we can write down a quantifier-free formula oz (%) € QFy+y [Z]
such that

B goa(b) iff  ((b)w.b) = (2 a).
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Ey. Abstract elementary classes

By Lemma 1.5, it follows that the V{ ... [2]-formula
/\ on---Vxn_l \/ (pg[)gl()_C)
n<w (Y,a)eC,
axiomatises /C. [

If we can show that every abstract elementary class has a Skolem
expansion, it follows that each such class is a projective V .ox, -class.

Theorem 1.7. Let K be an abstract elementary class of X-structures. There
exists a Skolem expansion K, of KC over a signature X, 2 X of size || =

In(/C).

Proof. Let A :=In(K) andsetX, :=3Xu{f)|n< w, a <A} where
the f are new n-ary function symbols. We call a X, -expansion M, of a
structure M € K admissible it

Als < M, forevery A<M, .
We claim that the desired Skolem expansion (K,, £, ) is given by

Ky = { M, | M, an admissible expansion of some M € £ },
E.:=Emb(K,).

Clearly, we have In(K, ) = |2, | = In(K). Hence, it remains to prove the
following claims.

Claim. (a) For every pair A <x B in K, there exist admissible ex-
pansions A, and B, such that A, € B.,. In particular, we have

prs(Ky) = K.
(b) pry (&) =€.

(c) K. is closed under direct limits.

(a) By induction on # < w, we can fix, for every subset X C B of size n,
a KC-substructure Bx <xc B of size at most A containing X U Uy.x By.
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1. Abstract elementary classes

Furthermore, if X € A then we choose Bx such that Bx € A. By construc-
tion, we have By € By, for X ¢ Y. Since By, By < B this implies
that Bx < By.

For every d € B", n < w, fix an enumeration (c?),<, (possibly with
repetitions) of B;. To obtain the desired expansion B, we set f7'(a) :=
c?, for @ € B". Note that our construction ensures that A induces a
substructure of B since By ¢ U, for X € A, implies that (X)), S A.
Therefore, we can set U, := B, |4.

To see that AU, and B, are admissible, note that, by construction, we
have Bx ¢ (X)x, |5, for every finite X ¢ B. If € € B, is an arbitrary
substructure then

Gr= lm (X)ds= lm (X)ulr= lim DBy

XcC finite XcC finite XcC finite

We have already seen that the Bx form a directed system of K-embed-
dings such that Bx <x B. Hence, the limit also satisfies €[5 <xc B, as
desired. Furthermore, if € ¢ U, ¢ B, then €[5, A <c B implies that
€|z <xc U. Thus, A, and B, are admissible.

(b) (¢) Let h : A, - B, be a K,-embedding and set C := rngh.
Then C induces a substructure €, € B, and h induces an isomorphism
h' @A, = E,. The structure B, is an admissible expansion of some
structure B € K. Hence, €, |5 <x B and the inclusion map i : €, |s > B
belongs to £. Since £ contains all isomorphisms and it is closed under
composition, it follows that pry.(h) = i o pry(h’) € €.

(2) Let h : € - B be a K-embedding. Setting U := rng h we can
use (a) to find admissible expansions 2, € B, of A and B. Let €, be the
expansion of € that corresponds to ¥, via the isomorphism / : € = 2.
Then h induces an embedding h, : €, — B,.. Since I, is closed under
isomorphisms we have €, € IC,. Hence, h, € &,.

(c) Let D : I — IC; be a directed diagram with limit M, := hm D. We
have to show that M, € IC,.. Let p : K, — K be the canonical pro]ectlon
functor and set M := M, |s. Then po D : I - K is a directed diagram
with limit lim (poD) = M,|sx = M. By (b), it follows that p o D is in
facta dlagram I - £. Hence, the limit M is in K. We claim that M, is
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Ey. Abstract elementary classes

an admissible expansion of M. Let A € M, be a substructure. For every
finite set X € M, there exists some i with X € D(i). Since D(i) is an
admissible expansion it follows that

(XD p(ilz = D(i)]s =k lim (p o D) =M.

The substructure  is the direct limit of its finitely generated substruc-
tures X. We have just seen that X|5 <xc M, for all such X. By the definition
of a direct limit, it follows that %[5 = lim ¥[s < M. ]

The existence of Skolem expansions enables us to apply the theory of
Ehrenfeucht-Mostowski functors to abstract elementary classes. We will
make extensive use of these functors in Section 4 below. As an example
we use them in the remainder of this section to compute the Hanf number
of a class.

Lemma1.8. Let K be an algebraic class of Z-structures and set k := |X|®R,
and A := 1(,«y+. If K contains a structure of size at least A then there exists
an Ehrenfeucht-Mostowski functor F : £in — Cmb(/C).

Proof. Fix a structure M € /C of size [M| > A and let (a;);<) be a se-
quence of distinct elements of M. Since [S<“(@)| < 2* we can apply
Theorem E5.3.7 to (a;); to obtain an elementary extension M, >ro M
that contains an indiscernible sequence (b;);<, such that, for all n < @
and every 7 € [w]", there is some k € [A]" with

tp(b[7]) = tp(a[k]).

Note that this implies in particular that (b[i])a, = (a[k])x € K. By
Proposition E6.3.8, there exists a unique strongly local functor F : £in —
Emb(2) such that F(w) 2 ((b;);)m,. We claim that the range of F is
contained in K.

Let I be a linear order and consider a finitely generated substructure
A c F(I). Then there is a finite subset I, € I such that A ¢ F(I,).
Consequently, for some 7 < w, U is isomorphic to a substructure of

F(n) 2 (bo... by ). €M, € K.
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1. Abstract elementary classes

Since K is closed under substructures and isomorphisms, it follows that
A € K. Hence, we have Suby,_ (F(I)) € K which, by Lemma 1.5, implies

that F(I) € K. Thus, F : €in - Cmb(/C) is the desired Ehrenfeucht-
Mostowski functor. [

Using Skolem expansions we can extend this result to arbitrary abstract
elementary classes.

Remark. Let (IC, £) be an abstract elementary class, K. a Skolem expan-
sion of /C, and F, : £in - Emb(/C, ) an Ehrenfeucht-Mostowski functor.
Composing F, with the reduct functor pry : Emb(X,) - Emb(X) we
obtain a functor F := pry o F, : £in - Emb(X). By definition of a Skolem
expansion, F is actually a functor £in — &, i.e., it maps every embedding
I — J of linear orders to a K-embedding F(I) — F(J]).

Definition 1.9. Let K be an abstract elementary class of X-structures
and /C; a Skolem expansion of K. An Ehrenfeucht-Mostowski functor
for KC is a functor F : €in - Emb(KC) of the form F = pry o F,, where
F, : &in — Cmb(/C, ) is an ordinary Ehrenfeucht-Mostowski functor.

Corollary 1.10. Let K be an abstract elementary class and set x := 22,

If IC contains a structure of size at least 1+, then there exists an Ehren-
feucht-Mostowski functor for K.

As promised we apply these results to compute the Hanf number of
an abstract elementary class.

Definition 1.11. Let K be an arbitrary class of X-structures. The Hanf
number of K is

hn(K) :=sup {|M|" | Me K }.

If this supremum does not exist then we set hn(K) := oco. In this case
the class K is called unbounded.

Proposition 1.12. Let K be an abstract elementary class of X-structures
and set x := 2"X) We either have

hn(K) <3+ or hn(K) = 0.
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Ey. Abstract elementary classes

Proof. Suppose that hn(K) > 1,+. By Corollary 1.10, there exists an
Ehrenfeucht-Mostowski functor F : £in — Cmb(K) for K. For every
cardinal A, we have F(1) € K. This implies that

hn(K) > [F(A)| =1 In(K).
Consequently, hn(K) = oo. ]

With this proposition we are finally able to provide the missing part
of the proof of Theorem c5.2.7. (Except that we do not obtain a strict
inequality hn, (FO,+x,) < J(,x)+.)

Corollary 1.13. hn, (FO.+x,) < J(px)+

2. Amalgamation and saturation

In this section we consider saturated structures in abstract elementary
classes. As we have already seen in the first-order case, an important
ingredient in the construction of such structures is the amalgamation

property.

Definition 2.1. Let (/C, £) be an abstract elementary class.
(a) For a cardinal «, we set

Ke={Me||M=x} and K o:={Me||M|<x}.

We define K., K<, and IC;, analogously.

(b) K has the amalgamation property if, for all C-embeddings f : 2 —
B and g : Y — C, there exist L-embeddings h: B - Dand k: € > D
withho f=kog.

%h/QY\k(X
N,
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2. Amalgamation and saturation

(c) K has the joint embedding property if, for all A, 2, € IC, there are
KC-embeddings %, - B and A, — B, for some B € K.

(d) An amalgamation class is an abstract elementary class with the
amalgamation property. A Jonsson class is an abstract elementary class
with the amalgamation property and the joint embedding property.

Example. Let T be an V3-theory and K the class of all existentially
closed models of T. Then (/C, Emb(K)) forms an abstract elementary
class with the amalgamation property.

In the same way that the class of all algebraically closed fields can
be decomposed into the classes of algebraically closed fields of charac-
teristic p, for the various p, we can write each amalgamation class as a
union of Jonsson classes.

Lemma 2.2. Every amalgamation class KC is a disjoint union of at most
210K Jonsson classes.

Proof. We define an equivalence relation on K by

A~PB it there are K-embeddings A - Cand B - ¢,

for some € € K.

Clearly, ~ is reflexive and symmetric. For transitivity, let us assume that
Ay ~ A, ~ A,. Then there are structures B,, B, € K and K-embeddings
fi: YU > B, forie{o,1},and g;: Y; - B,, forie {1,2}.

hy v '\h1
NIV
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Ey. Abstract elementary classes

By the amalgamation property, we can find some structure ¢ € K and
KC-embeddings h; : B; — G, for i < 2, such that h, o f, = h; o g,.
Consequently, there are K-embeddings h, o fo : %y - Cand h, 0 g, :
A, — €. This implies that A, ~ A,.

By definition, every ~-class is a Jonsson class. Furthermore, A + B
implies that there is no K-embedding A — B. Hence, K is the disjoint
union of all ~-classes. Finally, every ~-class contains a structure of size
at most In(KC). Consequently, there are at most 2"(*) such classes. []

For amalgamation classes, the definition of a Galois type can be sim-
plified quite a bit.

Lemma 2.3. Let KC be an amalg_amation class, A, B, U € K structures with
U=<xc A,B, and let a € A and b € B. Then we have

tpAut(d/Ql’ U) = tpAut(l;/%> U)

if and only if there exists a structure M € KC of size [M| < |A| @ |B| & In(K)
and K-embeddings g : A - M and h : B — M such that

gtU=hU and g(a)=h(b).

Proof. (<) is trivial. For (=), suppose that the Galois types are equal.
Recall the relation ~ from Definition 1.2. There exists a finite sequence
(€s,¢0)5...,(C,, Cy) of structures such that

<¢o’50> = (Q[,d), <¢n’5n> = <%>B>>
and (¢;,€;,,U) ~(¢i11, €1y, U), foralli<n.

We prove the claim by induction on n. For n = o, we have & = B
and a = b, and there is nothing to do. Hence, suppose that #n > o. By
inductive hypothesis, there exist a structure I, € K and K-embeddings
2o A =N, and h, : €, = N, such that

o tU=h, U and go(a)="ho(Cn-)-
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2. Amalgamation and saturation

Furthermore, by definition of ~, we can find a structure 3¢, € I, K-
substructures® <x €,_, and B, < Bwith Uuc,_, € Dand Uub ¢ B,,
and K-embeddings g, : © — N, and h, : B, — N, such that

£ tU=h U and g (¢,y)=h, (D).

s

A
/\/\/\

\/\/

By the amalgamation property, there exist structures N,, 9, ,, N, €
such that we can complete the above diagram. Setting ¢ := g; o g, and
h := hy o h, o h; it follows that

glU=htU and g(a)=nh(b).

Choosing a IC-substructure M < N, of size |M| < |A| @ |B| & In(K)
with rng g urngh € M the claim follows. O

Next, we introduce a notion of saturation for abstract elementary
classes.

Definition 2.4. Let K be an abstract elementary class and let « > In(KX)
be a cardinal.
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Ey. Abstract elementary classes

(a) A structure U € IC is k-universal (for ) if, for all A € IC,, there
exists a KC-embedding U — U. We call U KC-universal if it is |U|* -universal
for IC.

(b) Similarly, we say that a structure U € K is x-universal over a
substructure A <ic U if, for all -embeddings f : A - B with |B| < «,
there exists a K-embedding g : B — U such that go f = id4.

3B

f/
/ig

91—5>11

(c) A structure J € KC is k-injective (for KC), or k-model homogeneous,
if, for all /IC-embeddings f : ¥ - Jand g : A - B with |A], |B| < «, there
exists a K-embedding h: B - Jwith ho g = f.

BS

g:h
/¢
3

 ——

f
3 is called K-injective if it is |I|-injective.

Remark. Note that a structure M is k-injective if and only if it is «-
universal over every substructure U < M of size |A| < «.

We can characterise k-injective structures also by a back-and-forth
condition.

Definition 2.5. Let K be an abstract elementary class and 2,5 ¢ K.
(a) We denote by I (U, B) the set of all IC-embeddings f : A, - B,
between /C-substructures U, <xc A and B, <xc B of size |A,|, |Bo| < «.
(b) We write
Ack B iff (A, B):Ach, B,

and A~ B iff (AB): Az, B.

=iso
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2. Amalgamation and saturation

In Lemma E1.2.2 we have characterised x-saturated models in terms
of the relation £§,. The next lemma gives a similar characterisation of
k-injective structures.

Lemma 2.6. Let IC be an abstract elementary class and x > In(K) a
cardinal. A structure WM € IC is k-injective if and only if

Ak M,  forallA e I with I (U, M) + .

Proof. (<) Suppose that A, B € K, are structures with A <, B, and
let f: A - Mbe a K-embedding. Then f € I (B, M). Since |B| < «, we
can use Lemma c4.4.9 (b) to find a K-embedding g € I} (B, M) with
domg=Band gl A= f.

(=) By assumption, I (%, M) is nonempty. It has the forth prop-
erty since M is k-injective. Furthermore, I- (M, A) is In(X) *-bounded.
Finally, the closure of K-embeddings under direct limits implies that
I (A, M) is k-complete. O

As usual we can use Lemma c4.4.9 to prove that, up to isomorphism,
IC-injective structures are uniquely determined by their cardinality.

Proposition 2.7. Let A, B € IC be two K-injective structures with |A| = |B|.
Then

Ic(A,B) # 2  implies A2PB.

The existence of x-injective structures implies a weak form of the
amalgamation property.

Lemma 2.8. Let K be an abstract elementary class and suppose that
M e K is k-injective, for some k > In(KC).

(a) The class of all IC-substructures A <x M with |A| < « has the
amalgamation property.

(b) IfIC has the joint embedding property, then M is k™ -universal.

(c) If K has the joint embedding property, then the subclass K., has
the amalgamation property.
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Ey. Abstract elementary classes

Proof. (a) Let f : A - B and g : A - € be K-embeddings with
A B,  <c Mand |A|, |B|,|C| < . Replacing A by an isomorphic copy,
we may assume that ¢ = id4. Since M is k-injective, there exists a K-
embedding h: B - Mwith ho f =id4. Let © < M be a substructure
containing Curngh. Then we canuse h: B - Dandid¢c : € - D to
complete the amalgamation diagram.

(b) As a first step, we show that M is x-universal. Let A be some
structure of size |A| < k. We can use the joint embedding property to

find K-embeddings f : M — N and g: A - N, for some N € K.

N
RN
K
Mm < € < A
h g

Choose a KC-substructure U < M of size |U| < « and let € < N be
a KC-substructure of size |C| < x with f[U] u g[A] € C. Since M is -
injective, there exists a K-embedding 4 : € - Mwith ho f | U = idy.
The composition / o g is a K-embedding A — IN.

It remains to show that M is even k™ -universal. Let U be a structure
of size |A| = «. Fix an increasing chain (€, )4, of K-substructures
€, <xc A of size |Cy| < x such that A = Uy, €4. By induction on «, we
construct K-embeddings f, : €, — DM such that fz | Cy = f,, for all
a < 8. We have already shown that M is k-universal. Hence, there exists
a K-embedding f, : €, — M which we can start our induction with. For
limit ordinals §, we set fs := U4<s fo- For the successor step, suppose
that we have already defined f,, : €, — M. Since M is x-injective, there
exists a -embedding fy 4, : €4y > Msuch that f,4, [ Cy = fo.

Having defined the family (f, ), we can use the properties of a direct
limit to find a K-embedding / : U, €, = M such that h | C, = f,, for
all a. This is the desired K-embedding A — M.
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(c)Let f: A > Band g: A - € be KL-embeddings with |A|,|B|,|C| <
. By (b), we may assume that A, B, € <, M. Hence, we can use (a) to
complete f and g to an amalgamation diagram. ]

k-injective structures generalise the characterisation of x-saturated
structures in terms of the relation =f,. We can also generalise the ori-
ginal definition of x-saturation in terms of types. It turns out that, for
amalgamation classes, these two notions coincide.

Definition 2.9. Let KC be an abstract elementary class.

(a) A structure M € KC is x-Galois saturated if it realises every Galois
type in S3%,(U) where U <x M is a substructure of size |U| < k. As usual
we say that M is Galois saturated if it is | M|-Galois saturated.

(b) K is x-Galois stable if |S3¢.(U)| < «, for all U € K.

Remark. Note that in the definition of x-Galois stability we only count
the Galois types over K-substructures, not over arbitrary subsets. In
general, this does make a difference.

The following lemma is the main ingredient in showing that «x-Galois
saturated structures are x-injective. We state it in a slightly more general
form than needed here, since we will use it again in Section 3.

Lemma 2.10. Let IC be an amalgamation class and y > In(KC) an ordinal.
Suppose that (My ) a<y is an increasing chain such that each structure Mg 4,
realises every Galois type p € S3o (U) where U < M,, is some substructure
of size |U| < |y|.

Then the limit M := Uy, My is |y|"-universal over every substructure
A <xc M, of size |A| < |yl.

Proof. Letd <xc M, be of size |A| < |y|. To show that M is |y|*-universal
over U, we consider a -embedding f : A — B with |B| < |y|. Set
A := |B|®In(K) and fix an enumeration (b, ) <) of B. We construct two
increasing chains (2, )4<) and (€4 ) 4<) of structures with B <x €, and
A < Ay < My, and an increasing chain (h, )4« of K-embeddings
h, : AU, — €, such that

|Ag| <A, fCShy, and b, ernghy,,.
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B (9 ¢ Uoc Co
fI ho hl h)L
A 9[0 g[1 Uoc gloc
M, > M, s ... > M

Then we obtain the desired embedding g : B — M by taking the limit
h) := Ua<) ho and setting g := h)" | B.

We start with ¥, := 2, €, := B, and h, := f. For limit ordinals §, we
take limits:

AUs:=J U, Cs:=JC, and hs:= hs.

a<d a<d a<d

For the successor step, suppose that h, : A, — €, has already been
defined. If b, € rngh,, we simply set h,, := h,. Otherwise, we use
amalgamation to find a K-extension N >, M and a K-embedding g :
€, — Nwith go hy =id.

N
Qs/ '\rnh<h—ai
NS L

rng f 7

By assumption on M, ,, there is some element c € M, ,, with

tPaut (/T An) = tp o (8(ba) /M Ay) .
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By Lemma 2.3, this implies that there is a IC-extension ™ >x N and a
K-embedding o : N — N* such that

ol Ay=id and o(g(by))=c.

We choose a [C-substructure Ay ., <jic My, of size |A44,| < A containing
Ay and c. Let @, < N* be a K-substructure containing rng(o o g)
and A,.,, and let €,,, be the isomorphic copy of €, where each ele-
ment of rng(o o g) is replaced by its preimage. We denote the corres-
ponding isomorphism €/, — €., by 7. It follows that €, < €,,,. We

claim that the restriction hgy, := 7 | Ay4, is the desired K-embedding
Ag+1 = €,y Note that

bey=m((00g)(by)) =n(c) ernghg,,.

Furthermore, 0 | Ay =id4, = go hy | A, implies for a € A, that

hasi(a) =m(a) =n(o(a)) =n(o((goha)(a))) = ha(a).
Hence, hy € hyy,. ]

Theorem 2.11. Let K be an amalgamation class and k > In(K). A structure
M e K is x-Galois saturated if and only if it is k-injective.

Proof. (<) Let U <c M be a substructure of size |U| < k and let p €
S5 (U) be a type. There exists an extension U > U realising p. We
can choose U of size |A| < |U| @ In(K) < «. Since M is x-injective,
we can extend the K-embedding U — M to a K-embedding A — M.
Consequently, p is realised in M.

(=) Suppose that f : A - B is a K-embedding with U < M and
A :=|B| < k. For a < A, we set M, := M. Then (M, ) 1<) is an increasing
chain satisfying the hypothesis of Lemma 2.10. It follows that the limit
Ug<r My = M is A" -universal over . Consequently, there exists a K-
embedding ¢: B - Mwith go f ' A=id. ]

The next lemma shows that Galois saturated structures are strongly
homogeneous.
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Lemma 2.12. Let KC be an amalgamation class, suppose that M € K
is a Galois saturated structure of size |[M| = «, and let I <xc M be a
substructure of size In(KC) < |U| < k. For a,b € M**, we have

tpAut(d/m> U) = tpAut(l;/C)R’ U)
if and only if there exists an automorphism m € AutM with 7 | U = idy
and (a) = b.

Proof. It is sufficient to find an embedding p € Zg (M, M) with p | U =
idy and p(a) = b. Since M =k M we can then use Lemma c4.4.9 to
extend p to the desired isomorphism 7 : M — M.

Fix K-substructures U <xc A <1 Mand U < B <1 M of size
|Al,|B| < x with @ € A and b C B. Since

tPAut(d/gﬁ’ U) = tPAut(B/gﬁ’ U) ’
we can use Lemma 2.3 to find K-embeddings f, g : M — RN with f | U =
¢ Uand f(a) - g(b).

N A

Let € < M be a [C-substructure of size |C| < k with f[A] u g[B] ¢ C.
Since M is k-injective, there exists a K-embedding h : € — M with
hog! B=idg. Setting p:= ho f | Awe have

ptU=hoflU=hog!U=idy,
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and  p(a) = h(f(a)) =h(g(b))=b. O

When amalgamation is available we can construct x-Galois saturated
structures in the same way as x-saturated ones. The main step in the
inductive construction is the following lemma.

Lemma 2.13. Let K be an amalgamation class. Every M € K has an
extension M™ > M that realises every Galois type over M. If K is «-
stable, for k := |M| ® In(KC), then we can choose M* of size [ M*| < «.

Proof. Let (p;)i<a be an enumeration of S3% (M). For every i < A, we
can find an extension ¥; > Mof size |A;| < |[M|@In(K) = « realising p;.
We construct M™ as the limit of an increasing chain (B;);<) where the
structure B, realises all types p; with i < a. We start with B, := M. For
limit ordinals &, we set B := U;.5 B;. For successor ordinals a = 8 + 1,
we use the amalgamation property to find an extension B, >x Bg of
size |By| < |Bg| @ |Ag| ® In(K) such that there exists a K-embedding
h:Ag — B, with h I M =id.

We obtain the desired extension of M by setting M™ := ;. B;. By
induction on a, it follows that | B, | < k®|a+1|. In particular, [ M*| < k®A.
Hence, if I is x-stable then we have A < x and |[M ™| = «. O

Iterating the construction of the preceding lemma, we obtain the
desired Galois saturated extension. For the proof that the limit really is
Galois saturated, we need the following technical lemma.

Definition 2.14. Letp € S5¥.(B) be a Galois type and let f : A - B bea
K-embedding. We define the restriction p|s of p along f as follows.
Fix a structure N > B containing a tuple a € N with

p= tpAut(d/E)?’B) .

Let M be the isomorphic copy of N obtained by replacing all elements of
rng f by their preimages in A, and let 7 : 3t — M be the corresponding
isomorphism. We set

Ply := tpay ((a)/M, A).
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IfU < Band f: A - B is the inclusion map, then we also write p|4
for p|.

Lemma 2.15. Let K be an amalgamation class and f : A - B a K-
embedding. For every Galois type p € S3%.(A), there is a Galois type

q € Siu(B) with g|¢ = p.

Proof. We fix an extension € >x 2 and a tuple a € C such thatp =
tp oy (@/C€, A). By the amalgamation property, we can find an extension
D =k B such that there exists a K-embedding h: € - D with h ' A = f.
We can set q := tp,,(h(a)/D, B). O

Lemma 2.16. Let K be an amalgamation class, y an ordinal, and suppose
that (U ) a<y is an increasing chain of structures A, € K such that A,
realises every type in Siy (A ), for all a. Then their union Uy, Ay is
cf(y)-Galois saturated.

Proof. Let U <xc Uy<, Y« be a substructure of size |U| < cf(y) and fix
atype p € S39.(U). There exists an index a < y with U € A,. Hence,
U <x 2, and, by Lemma 2.15, we can find a type q € S3¥ (A,) with
alu = p. By construction, q is realised in Uy, Ao 2k Yo+:. Hence, so

is p. L]

Proposition 2.17. Let KC be an amalgamation class and suppose that x is a
regular cardinal. Every structure M € K has a k-Galois saturated extension

m* ZiKC M.

Proof. We construct an increasing chain (¥, )< as follows. We start
with 9, := M. For limit ordinals §, we set U5 := U <5 Ua. For the suc-
cessor step, we use Lemma 2.13 to find an extension Uy, > YU, real-
ising all Galois types over ¥,. By Lemma 2.16, it follows that the limit
M = Uger Ao is k-Galois saturated. H

As usual the existence of Galois saturated structures depends on an
additional hypothesis like stability.
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Theorem 2.18. Let K be a Jénsson class and suppose that x is a regular
cardinal with In(KC) < x < hn(K). If KC is k-stable then every structure
M e K of size |[M| < k has a Galois saturated K-extension of size k.

Proof. We construct an increasing chain (¥, ) 4<, of structures 9, € K
of size |[A4| = « as follows. Since ¥ < hn(K) we have I, # @. Using
amalgamation and the joint embedding property, we can find a structure
Ao, € I of size |Ao| = x with M < U,. For limit ordinals §, we set
Us := Ug<s Yo- Note that [As| < |8] ® k¥ = k. For the successor step,
suppose that 2, has already been defined. We use Lemma 2.13 to find an
extension Ay, > Ay of size |A 44| = « that realises all types over U,,. By
Lemma 2.16, it follows that the limit U, ., U is x-Galois saturated. []

3. Limits of chains

We have seen that we can inductively construct Galois saturated struc-
tures as limits of chains. In this section we take a close look at such chains.
Our aim is Theorem 4.13, which states that, under certain conditions, the
union of a chain of Galois saturated structures is again Galois saturated.

Definition 3.1. Let K be an abstract elementary class and y an ordinal.
(a) An increasing chain (My ) «<y is @ weak y-chain if each M, real-
ises every Galois type over M,. In this case we say that M := U, M, is
the weak y-limit of the chain, or that M is a weak y-limit over M,,.
(b) An increasing chain (M, )(x<y is a strong y-chain if every M, is
|M 4, |" -universal over M,,. In this case we say that M := J, M, is the
strong y-limit of the chain, or that WM is a strong y-limit over M.

The following observation is just a restatement of Lemma 2.16.

Lemma 3.2. Let KC be an amalgamation class. Every weak y-limit is cf(y)-
Galois saturated.

Lemma 3.3. Suppose that IC is an amalgamation class and y > In(KC) an
ordinal. Let M be a weak y-limit over A <c M. Then M is |y|* -universal
over every KC-substructure A, <xc A of size |Ao| < |y|.
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Proof. Let (My)q<, be a weak y-chain with limit M and M, = A. This
chain satisfies the hypothesis of Lemma 2.10. ]

Corollary 3.4. Suppose that KC is an amalgamation class, let k > In(KC)
be a cardinal, and y an ordinal. Let (M) a<xy be a weak ky-chain with
\Ua<xy M| < k. Then the subsequence (Myq ) u<y is a strong y-chain.

Proof. Let a < y. The sequence (9)Tm+[;) <« i a weak x-chain over M,
with limit N := Upex Myeasp < Me(a41)- By the preceding lemma, I is
k" -universal over M, . Hence, so is its extension M (44,) = N. As
|My(«+1)| £ %, the claim follows. ]

Corollary 3.5. Suppose that K is an amalgamation class. Let A € KC be
a structure of size x := |A| > In(K) and let y < k™ be an ordinal. If IC is
x-Galois stable, then there exists a strong y-limit M € K over A of size
M| = .

Proof. By Corollary 3.4, it is sufficient to construct a weak xy-chain
(My ) a<icy over A such that [M,| = «, for all . We define such a chain
by induction on « starting with M, := . For the inductive step, note
that, given M,,, we can use Lemma 2.13 to find a structure M, ,, with the
desired properties. ]

The next lemma implies that, in the definition of a strong y-chain
(M, ) o> we could also require universality of M, ., over every K-sub-
structure of M, .

Lemma 3.6. Suppose that K is an amalgamation class and let U € K be a
structure of size In(KC) < |A| < x. If M is k-universal over A <ic M, then
it is also k-universal over every substructure A, <xc .

Proof. Let A, <x U and consider a K-embedding f : A, — € with
|C| < k. By amalgamation, we can find a C-extension €, >x € of size
|C,| = |C|®|A| < x and a K-embedding f, : A — €, suchthat f, [ A, = f.
As M is x-universal over U, there exists a -embedding h, : €, — M
with hy o f, =idy4. Setting h := h, [ Citfollowsthat hof = h o f [ A, =
id4_, as desired. ]
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Lemma 3.7. Let K be an amalgamation class. If a structure WM € K realises

all Galois types over U <c M, then it also realises all Galois type over every
110 hY's .

Proof. LetU, <x Uandp € S3¥ (U, ). By Lemma 2.15, there exists a type
q € Siv (U) with q|y, = p. By assumption, M realises q. Hence, it also
realises p. ]

We conclude this section with a result stating that a strong limit is
unique up to isomorphism.

Theorem 3.8. Let K be an amalgamation class, U, A" € IC structures of
size |A|,|A"| > In(KC), and let §, &' be limit ordinals with cf(8) = cf(J").

If M is a strong §-limit over A and M’ is a strong §'-limit over A" with
|M| = |M'|, then we can extend every isomorphism f : A — A’ to an
isomorphism m : M — M.

Proof. Fix strong chains (M, )4<s and (M), ) 4«5+ such that
UMy =D, YN, =D, My=A, M =",

a<d a<d’
Set f:=cf(S) andleth: B — §and h' : f — &’ be strictly increasing
functions with k(o) = o and h'(0) = 0. We can choose h and h’ such
that, for every a < 8, h(a +1) and h'(« + 1) are successor ordinals.
Since |M| = |M'| we can find increasing chains (R4 ) a<p and (9, ) a<p
of KC-substructures N, <ic My, (o) and N, <k 93?;1,(“) such that

URg=M, YJR =M, R=%, K =9,

a<f a<f

and  [Na| = [Ng| = min {|Mj (e b |Mr ()|} -

We construct an increasing chain (py )a<p of isomorphisms p, : B, —
B! such that

Na <x By <k mh(oc) >
S)fo ay'e %; <K %;,(a)ﬂ >

1019



Ey. Abstract elementary classes

and |By| = |Ng|.

Then the limit 77 := Uy<p P is the desired isomorphism 7z : M — M.
We start with p, := f : & - . For limit ordinals y, we set p, :=
Ua<y Pa- For the successor step, suppose that p, : B, — B, has already
been defined. We fix a substructure €’ <x 9)?;1,( w1) such that
N/

a+1

UB,cC'" and |C'|=]|N_,.]|.

a+1

By Lemma 3.6, My, (411) 18 [My(a41)| -universal over B, <xc My (q).
Since |C’| < |Mp(q+1)|» it therefore follows that there is a C-embedding
g € — My (441 such that g o p, = idp,. Fix a K-substructure € <x
M (a+1) such that

Ngurnggc C and |C|=|Ngy|.
As above, M is | M,

h'(a+1)+1
and we have |C| < |M],
! . 4
§ - ¢ - gﬁh’((xﬂ)ﬂ
for our isomorphism py4; : By = B, . Then

+ : / /
(¢x+1)+1‘ -universal over € < M}, 4,

(a+1)+ |- Hence, we can find a KC-embedding

such that g’ o ¢ = id¢/. We take this embedding g’

m(xﬂ K QSoc+1 K mh(aﬂ) >
! ! !
S)?oc+1 =K %cxﬂ =K gﬁh’((xﬂ)ﬂ >
and |B(X+1| = |N(X+1| .

Furthermore, for a € B,, we have
pani(a) =g'(a) = g'((gopa)(a))
= (g 2 g)(pa(a)) = pa(a).
Hence, py C poti- []

Corollary 3.9. Suppose that K is an amalgamation class with k > In(KC),
and let M be a weak kJ-limit over A of size M| = k where § is a limit
ordinal with § < k™. Every strong k8-limit over A is isomorphic to M.

Proof. By Corollary 3.4, M is a strong J-limit over 2. Since § is a limit
ordinal we have cf(§) = cf(x§). Consequently, the claim follows from
Theorem 3.8. []
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4. Categoricity and stability

In this section we study the consequences of categoricity and stability for
an abstract elementary class. We will see that Ehrenfeucht-Mostowski
functors provide an invaluable tool in this context.

Lemma 4.1. Let K be a k-categorical abstract elementary class with the
joint embedding property where k > In(KC). The structure M € K of size k
is IC-universal.

Proof. LetQ € KC be of size |A| < k. By the joint embedding property, we
can find K-embeddings f : A - Jand g : M — N into some structure
N e K of size [N| < |M|@|A|@In(K) = . Since K is k-categorical, there
exits an isomorphism 7 : 3t — M. It follows that wo f is a K-embedding

A — M. []

We start by showing that categoricity implies stability. This generalises
Theorem E6.3.16.

Lemma 4.2. Suppose that K is unbounded and x-categorical, for k >
In(/C), and let M € IC be the structure of size |M| = k. For every U <xc M,
M realises at most |U| @ In(K) Galois types over U.

Proof. By Corollary 1.10, there exists an Ehrenfeucht-Mostowski functor
F = pry o F, for K. Then |F(x)| = x implies F(x) 2 M. W.Lo.g. we may
assume that this isomorphism is the identity. Fix a substructure U < M.
There is some I € « of size |I| < |U| such that U ¢ F(I). Every finite
tuple a € M = F,(x)|5 is of the form a; = t;[i] where ¢t; is a term of the
expansion F, (k) with parameters 7 C k. By enlarging the tuples i we may
assume that these parameters are the same for every a;. If a; = t;[i’] are
elements where 7 and i’ have the same order type over I, then we can
find a linear order L extending x and an automorphism 7 of L that fixes I
and maps 7 to i’. Hence, F, (7r) is an automorphism of F, (L) fixing U
and mapping a to a’. Consequently, tp, . (a/M, U) = tp, (@’ /M, U).

It follows that the number of Galois types over U realised in M is
bounded by the number of terms #(x ), times the number of order types
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of finite tuples 7 € x over I. There are at most In(/XC) such terms and,
since « is well-ordered, at most |I| such order types. ]

Theorem 4.3. An unbounded k-categorical Jonsson class K is A-Galois
stable, for every cardinal In(KC) < A < k.

Proof. For a contradiction, suppose that K is not 1-Galois stable, for
some In(K) < A < «. Fix a structure U € K of size |U| = A such that
1S5 (U)| > A. By Proposition 2.17, we can find a [C-extension U >, U
of size |A| = o™ realising A™ types from S3 (U).

Let M € K be a structure of size k. We have seen in Lemma 4.1 that
M is ™ -universal. Hence, there exists a K-embedding f : A — M. It fol-
lows that M realises at least A* Galois types over f[U]. This contradicts
Lemma 4.2. []

Lemma 4.4. Let K be an amalgamation class. If K is k-categorical for
k > In(/C), then the structure M € IC of size « is cf(x)-Galois saturated.

Proof. Starting with an arbitrary structure ¥, € K, we use Lemma 2.13
to construct a strictly increasing chain (2, )<, of structures ¥, € C of
size |A,| < x such that ., realises every Galois type over A,.

By Lemma 2.16, the union Uy := Uy, Yq is cf (x)-Galois saturated.
Since |[A,| = k and K is x-categorical, we have U, = M. Hence, M is
cf (x)-Galois saturated. O

Corollary 4.5. Let K be an unbounded Jénsson class. If IC is k-categorical,
for k > In(KC), then K contains Galois saturated structures of size A, for
every regular cardinal A with In(K) < A < «.

Proof. For A = k, we have already proved the claim in Lemma 4.4. For
A < k, it follows from Theorems 4.3 and 2.18. H

Next, we consider an analogue of the notion of an indiscernible se-

quence for abstract elementary classes. The following result is comparable
to Theorem E5.3.13.
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Lemma 4.6. Let KC be an amalgamation class and let F : £in — Emb(K)
be an Ehrenfeucht-Mostowski functor for IC with spine s. Suppose that I is
a linear order, 1 € [I1]°“ a finite tuple, and o : i — 1 a permutation such
that

tpaut(51(7) [ F(I), @) # tppo (s1(a (1)) [ F(I),2).
Then K is not k-stable, for any x > In(IC).

Proof. We can write each permutation as a product of transpositions.
Hence, suppose that 0 = 0, 0 --- 0 g,,, where each 0; : i — 1 is a permuta-
tion of 7 interchanging two consecutive components of 7. There is at least
one index / such that

tppc(s1(0) [ F(1), @) # tpye(s:(a1 (7)) [ F(I), ),

since, otherwise, we would have

tpAut(SI(l_) /F(I)’Q) = tpAut(SI(G(i)) /F(I)>@)-
Replacing o by ; we may therefore assume that i = kijm and o (1) =
kjim where k < i < j < m.
Let ] be a linear order of size |J| > k containing a dense subset ], € J of
size |Jo| = k. Set M := F(J) and U := F(],). Since |U| = «, it is sufficient
to show that

P aue (51(x)/T, U) # tp, (5y(y) /MUY, forall x # yin .

Fix elements x < y in J. To prove that the Galois types of s;(x) and
s;(y) over U are different, we choose indices w, 1,7 € ], such that
x < w < y and the tuples @ixy? and ki jm have the same order type. It
follows that

tP e (87 (xWit?) /M, @) = tp s, (s1(ijkrin) [F(I), @)
% tp g (s1(jikm) [F(I), @)
= tp g (57 (ywiv) /M, @) .

Since s;(wiv) € U the claim follows. O
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We have already seen that x-categorical classes are stable and, there-
fore, they contain Galois saturated structures of all regular cardinals
below k. We conclude this section with some results about the existence
of Galois saturated structures of singular cardinality.

Lemma 4.7. Let IC be a k-categorical amalgamation class, let F : £in —
Cmb(XC) be an Ehrenfeucht-Mostowski functor for IC, let A > In(K) be a
cardinal, and set Cy := { u* | p < A }. Then F(I) is A-Galois saturated, for
every Cy-universal linear order I of size A < |I] < cf(x).

Proof. It is sufficient to show that F(I) is u*-Galois saturated, for every
u < A. Since I is C) -universal there is some embedding h : u* — I. Set
A:=|rngh,B:= 1\ A,and ] := A+« + B. Then |F(])| = . Since
u* < cf(x) it therefore follows by Lemma 4.4 that F(]) is 4" -Galois
saturated.

To show that also F(I) is u*-Galois saturated, we consider a sub-
structure U <x F(I) of size |U| = u and a type p € S3% (U). Let
q € Sim(F(h)[U]) be the type with g|g(yy = p. Then q is realised by
some tuple a € F(J). Each a; is denoted by a term ¢;[7k] (in the Skolem
expansion) with parameters 7 € I and k € J \ I. By enlarging the tuples
of parameters we may assume without loss of generality that the para-
meters ik are the same for every I. Let J, C ] be a set of size |J,| = u
such that F(h)[U]u1i c F(J,). Since u* is regular, there is some o < p™*
such that J, N A ¢ h[}a]. Hence, there is some tuple k’ € rngh such
that k and k” have the same order type over J, U i. Setting b; := t;[1k’]
it follows that tp, . (b/F(I), U) = p. ]

In the following A<“ denotes the linear order (1<, <}y ) where <j¢ is
the lexicographic order on A<¢.

Proposition 4.8. Let K be an unbounded amalgamation class that is
k-categorical, for some regular cardinal x > In(IC). If F : £in — Emb(K)
is an Ehrenfeucht-Mostowski functor for K, then

(a) F(A) is Galois saturated, for every In(K) < A < k;
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(b) F(A<“«) is Galois saturated, for every cardinal In(K) < A < k and
every ordinal a < A*.

Proof. For A < «k, the claims follow from Lemma 4.7 since the orders
A*“a and A are both C, -universal. For A = «, note that F(x*“«) 2 F(x)
is the only structure in /C of size «. This structure is Galois saturated by
Corollary 4.5. ]

We can use structures of the form F(A<“«) to build strong §-chains.
We start by proving an universality lemma for the order 1<¢.

Lemma 4.9. Let A be a cardinal. For every ordinal 3 < A™, there exists an
embedding g : f - A=“.

Proof. We define g by induction on 8. If < A then we can set g(«) :=
(a), for all a < 8. For the successor step, suppose that § = y + 1 and let

2o : ¥y = A=“ be the embedding obtained by inductive hypothesis. We
define g : f - A<“ by

o) i (0)-go(ax) fora<y,
gla): {(1) fora=vy.

If 8 is a limit ordinal, we fix an increasing chain (y;);<) of ordinals A <
yi < B with sup; y; = . By inductive hypothesis, there are embeddings
gi:yi > A%, We define g: f - A= by

g(a):=(i)-gi(a) whereiistheleastindexwitha <y;. []

Lemma 4.10. Let K be a k-categorical amalgamation class where « is
regular, let In(KC) < A < « be a cardinal, and § < A* a limit ordinal.
Suppose that F : £in — Cmb(KC) is an Ehrenfeucht-Mostowski functor
for IC.

(@) (F(A®a))q<s is a strong §-chain over F(A<%).

(b) If M is a strong §-limit over F(A<?) of size M| = A, then M =
F(A<¢§).
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Proof. (b) follows immediately by (a) and Theorem 3.8.

(a) We have to show that F(A<“(a+1)) is A" -universal over F(1*“«).
Let f : F(A*“a) — € be a K-embedding with |C| < A. Since K is «-
categorical, we know by Lemma 4.4 that F(A<“«) is Galois saturated.
In particular, F(A<“x) is A" -universal over F(1*“«). Hence, we can
find a -embedding g : € - F(A<“x) such that g o f = id. There
exists a set I € A<“k of size |I| = A such that rngg < F(I). Setting
I, = InA*“aand I, := T\ A=?«a, we obtain a partition I = I, u [
with I, < I,. Since I, is a well-order with ord(I,) < A*, we can apply
Lemma 4.9 to find an embedding o, : I, - A=. Using 0;, we define an
embedding 0 : I - A<“(a +1) by

(i) o= {i ifiel,,

ACa+o0,(i) ifiel,.

Setting h := F(0) o ¢ we obtain a K-embedding h: € > F(A*“(a +1))
with

hof=F(o)ogof=F(0)oidpi<wy) =idp(r<eq) - O

Using these technical results about Ehrenfeucht-Mostowski functors
we can prove the following two theorems on the existence of Galois
saturated structures.

Theorem 4.11. Suppose that K is an unbounded «-categorical Jonsson
class where « is regular. Let A € IC be a structure of size |A| = A where
In(KC) < A <, and let § < A* be a limit ordinal. Every strong §-limit M
over A of size |[M| = A is Galois saturated.

Proof. Let F : €in - Emb(K) be an Ehrenfeucht-Mostowski functor
for IC and let (M, ) 4<s be a strong §-chain over A with limit M. Accord-
ing to Proposition 4.8, the structure F(A<?) is Galois saturated and has
size A. By Lemma 2.8 (b), F(1<) is A" -universal. Hence, there exists a
IC-embedding f : A - F(1=). Since M, is A -universal over M, = 2,
there also exists a K-embedding ¢ : F(A*) — M, with go f = ida.
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Replacing the sequence (M, ), by isomorphic copies, we may therefore
assume that

A K F()L<w) K 9)?1 .

Since M, is A* -universal over M, , it is also A -universal over F(A<*). Let
(M, ) 4<s be the sequence obtained from (M, ) <5 by replacing the first
two entries M,, M, by the single entry F(A<?). Then (M), ) 4« is also a
strong §-chain with limit M. By Lemma 4.10 (b), we have M = F(1<“§).
Since 1<“§ is C; -universal, it follows by Lemma 4.7 that M is 1-Galois
saturated. ]

Using the fact that Galois saturated structures of the same cardinality
are isomorphic, we obtain the following strengthening of Theorem 3.8.

Corollary 4.12. Suppose that K is an unbounded Jonsson class that is k-
categorical, for some regular cardinal k. Let A be a cardinal with In(KC) <
A <k andlet 8,8 < A" be limit ordinals. If M, M, A, A" € IC are struc-
tures of size A such that M is a strong 8-limit over A and M’ is a strong
o' -limit over A', then M = M'.

Our final theorem concerns unions of Galois saturated structures.
One can show that we can do without the assumption that A is a limit
cardinal, but the proof is much more involved for regular cardinals A.

Theorem 4.13. Let KC be an unbounded k-categorical Jonsson class where
x is regular, and let A be a limit cardinal withIn(IC) < A < . If (M) g<s is
an increasing chain of Galois saturated structures My, € IC of size |My| = A
with § < A*, then the union U s M is also Galois saturated.

Proof. Let N := Ugcs My be the limit. Then |[N| < |§] ® A = A. To show
that N is Galois saturated fix a structure U <xc N of size y := |U| < A and
some type p € S3¢.(U). W.l.o.g. we may assume that g > In(K). Note
that A being a limit implies that y** < A.

ThesetI:={a < 8| (Mg, ~ My) nU # @} has size |I| < |U| = u.
Consequently, there exists a cofinal strictly increasing map f : po — I
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where y, := cf(u) < u. We construct a strong p,-chain (R ) o<y, Where
each My <xc M (o) has size [N, | = y* and, for all & < p,, we have

Un Mf(oc+1) € Ng+:1 C Mf(oc+1) .

We define 9N, by induction on «. We start with an arbitrary structure
N, <x M of size [N,| = p. For limit ordinals y, we set Ny, := Ugcy Na.

For the successor step, suppose that N, has already been defined. We
construct a weak u*-chain (Bp)g<,+ with |Bg| = u* as follows. We
start with an arbitrary structure B, <x M (44, of size |B,| = u* such
that Ny U (U N M{(q41)) € Bo. Then we use Lemma 2.13 to inductively
define B, for o < B < u™. Since K is " -Galois stable, we can choose
all B of size [Bg| = u™. Since M (p4,) is " "-Galois saturated, we can
further choose Bg such that B < M(p4y). Let Nyyy = Upe i B be
the limit. By Lemma 3.3, R, is ™" -universal over B, > N,.

We have constructed a strong pi,-chain (R4 )<y, Whose limit & :=
U<y, Na has size |A| = po ® p* = p. Since [No| = u™ it follows by
Theorem 4.1 that % is Galois saturated. Consequently, p is realised in

Q[S]C qN. ]
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closure, topological —, 343

co-chain-bounded relation, 1172

cocone, 253

cocone functor, 258

codomain of a partial morphism, 894

codomain projection, 894

coeflicient, 398

cofinal, 123

cofinality, 123

Index

Coincidence Lemma, 231

colimit, 253

comma category, 170

commutative, 385

commutative ring, 397

commuting diagram, 164

comorphism of logics, 478

compact, 352, 613

compact, countably —, 613

Compactness Theorem, 515, 531

compactness theorem, 718

compatible, 473

complement, 198

complete, 462

k-complete, 598

complete partial order, 43, 50, 53

complete type, 527

completion of a diagram, 306

(A, k)-completion of a diagram, 307

(A, x)-completion of a partial order,
300

composition, 30

composition of links, 275

concatenation, 187

condition of filters, 721

cone, 257

confluence property, 1197

confluent family of sequences, 1197

congruence relation, 176

conjugacy class, 391

conjugate, 817

conjugation, 391

conjunction, 445, 490

conjunctive normal form, 467

connected category, 271

connected, definably —, 761

consequence, 460, 488, 521
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consistence of filters with conditions,
721

consistency over a family, 1221

consistent, 454

constant, 29, 149

constructible set, 869

\/-constructible set, 1306

construction, 869

\/-construction, 1306

continuous, 46, 133, 346

contradictory formulae, 627

contravariant, 168

convex equivalence relation, 1164

coset, 386

countable, 110, 115

countably compact, 613

covariant, 167

cover, 352

Creation, Axiom of —, 19, 458

cumulative hierarchy, 18

cut, 22

deciding a condition, 721
definability of independence relations,
1097
definable, 815
definable expansion, 473
definable orthogonality, 1329
definable Skolem function, 842
definable structure, 885
definable type, 570, 1098
definable with parameters, 759
definably connected, 761
defining a set, 447
definition of a type, 570
definitional closed, 815
definitional closure, 815
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degree of a polynomial, 399
dense class, 1256

dense linear order, 600
k-dense linear order, 600
dense order, 454

dense set, 361

dense sets in directed orders, 246
dense subcategory, 281
dependence relation, 1031
dependent, 1031

dependent set, 110
derivation, 398

diagonal functor, 253
diagonal intersection, 137
diagram, 251, 256
L-diagram, 499

Diagram Lemma, 499, 634
difference, 11

dimension, 1037
dimension function, 1038
dimension of a cell, 773
dimension of a vector space, 409
direct limit, 252

direct power, 405

direct product, 239

direct sum of modules, 405
directed, 246

directed colimit, 251
directed diagram, 251
k-directed diagram, 251
directed limit, 256
discontinuum, 351

discrete linear order, 583
discrete topology, 342
disintegrated matroid, 1044
disjoint union, 38
disjunction, 445, 490



disjunctive normal form, 467
distributive, 198

dividing, 1125

dividing chain, 1136

dividing x-tree, 1144
divisible closure, 706
divisible group, 705

domain, 28, 151

domain of a partial morphism, 894
domain projection, 894
dp-rank, 1211

dual categories, 172

Ehrenfeucht-Fraissé game, 589, 592
Ehrenfeucht-Mostowski functor, 986,
1002

Ehrenfeucht-Mostowski model, 986
element of a set, 5
elementary diagram, 499
elementary embedding, 493, 498
elementary extension, 498
elementary map, 493
elementary substructure, 498
elimination

uniform — of imaginaries, 840
elimination of finite imaginaries, 853
elimination of imaginaries, 841
elimination set, 690
embedding, 44, 156, 494
A-embedding, 493
KC-embedding, 995
elementary —, 493
embedding of a tree into a lattice, 222
embedding of logics, 478
embedding of permutation groups,

886

embedding, elementary —, 498

Index

endomorphism ring, 404
entailment, 460, 488
epimorphism, 165
equivalence class, 54
equivalence formula, 826
equivalence of categories, 172
equivalence relation, 54, 455
L-equivalent, 462
a-equivalent, 577, 592
equivalent categories, 172
equivalent formulae, 460
Erdds-Rado theorem, 928
Euklidean norm, 341

even, 922

exchange property, 110
existential, 494

existential closure, 699
existential quantifier, 445
existentially closed, 699
expansion, 155, 998
expansion, definable —, 473
explicit definition, 648
exponentiation of cardinals, 116, 126
exponentiation of ordinals, 89
extension, 152, 1097
A-extension, 498

extension axiom, 918
\/-extension base, 1228
extension of fields, 414
extension, elementary —, 498
Extensionality, Axiom of —, 5, 458

factorisation, 180

Factorisation Lemma, 158
factorising through a cocone, 317
faithful functor, 167

family, 37
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field, 397, 457, 498, 710 /-forking formula, 1103
field extension, 414 forking relation, 1097
field of a relation, 29 / -forking type, 1103
field of fractions, 411 formal power series, 398
field, real —, 426 formula, 444
field, real closed —, 429 forth property for partial morphisms,
filter, 203, 207, 530 895
k-filtered category, 285 foundation rank, 192
k-filtered colimit, 285 founded, 13
k-filtered diagram, 285 Fraissé limit, 912
final segment, 41 free algebra, 232
k-finitary set of partial isomorphisms, free extension of a type, 1103
598 \/-free extension of a type, 1103
finite, 115 free model, 739
finite character, 51, 105, 1084 free structures, 749
strong —, 1111 \/-free type, 1103
finite equivalence relation, 1164 free variables, 231, 450
finite intersection property, 211 full functor, 167
finite occurrence property, 613 full subcategory, 169
finite, being — over a set, 775 function, 29
finitely axiomatisable, 454 functional, 29, 149
finitely branching, 191 functor, 167
finitely generated, 154
finitely presentable, 317 Gaifman graph, 605
finitely satisfiable type, 1104 Gaifman, Theorem of —, 611
first-order interpretation, 446, 475 Galois base, 834
first-order logic, 445 Galois saturated structure, 1011
fixed point, 48, 81, 133, 657 Galois stable, 1011
fixed-point induction, 77 Galois type, 997
fixed-point rank, 675 game, 79
Fodor generalised product, 751
Theorem of —, 139 k-generated, 255, 965
follow, 460 generated substructure, 153
forcing, 721 generated, finitely —, 154
forgetful functor, 168, 234 generating, 41
forking chain, 1136 generating a sequence by a type, 1158
\/-forking chain, 1110 generating an ideal, 400
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generator, 154, 739

geometric dimension function, 1038
geometric independence relation, 1084
geometry, 1036

global type, 1114

graduated theory, 698, 783

graph, 39

greatest element, 42

greatest fixed point, 657

greatest lower bound, 42

greatest partial fixed point, 658
group, 34, 385, 456

group action, 390

group, ordered —, 705

guard, 447

Hanf number, 618, 637, 1003
Hanf’s Theorem, 606
Hausdorftf space, 351

having x-directed colimits, 253
height, 190

height in a lattice, 215
Henkin property, 858
Henkin set, 858

Herbrand model, 511, 858
hereditary, 12

k-hereditary, 910, 965
hereditary finite, 7

Hintikka formula, 586, 587
Hintikka set, 513, 858, 859
history, 15

hom-functor, 258
homeomorphism, 346
homogeneous, 787, 925
~-homogeneous, 931
k-homogeneous, 604, 787
homogeneous matroid, 1044

Index

homomorphic image, 156, 744
homomorphism, 156, 494
Homomorphism Theorem, 183
homotopic interpretations, 890
honest definition, 1157

Horn formula, 735

ideal, 203, 207, 400
idempotent link, 313
idempotent morphism, 313
identity, 163
image, 31
imaginaries

uniform elimination of —, 840
imaginaries, elimination of —, 841
imaginary elements, 826
implication, 447
implicit definition, 647
inclusion functor, 169
inclusion link, 276
inclusion morphism, 491
inconsistent, 454
k-inconsistent, 1125
increasing, 44
independence property, 952
independence relation, 1084
independence relation of a matroid,

1083

Independence Theorem, 1253
independent, 1031
V/ -independent family, 1289
independent set, 110, 1037
index map of a link, 275
index of a subgroup, 386
indiscernible sequence, 941
indiscernible system, 949, 1337
induced substructure, 152

1369



Index

inductive, 77 inverse limit, 256

inductive completion, 291 inverse reduct, 975

inductive completion of a category, irreducible polynomial, 416
280 irreflexive, 40

inductive fixed point, 81, 657, 658 /-isolated, 1297

inductively ordered, 81, 105 isolated point, 364

infimum, 42, 195 isolated type, 855, 1098

infinitary first-order logic, 445 isolation relation, 1297

infinitary second-order logic, 483 isomorphic, 44

infinite, 115 a-isomorphic, 581, 592

Infinity, Axiom of —, 24, 458 isomorphic copy, 744

inflationary, 81 isomorphism, 44, 156, 165, 172, 494

inflationary fixed-point logic, 664 isomorphism, partial —, 577

initial object, 166

initial segment, 41 joint embedding property, 1005

injective, 31 k-joint embedding property, 910

k-injective structure, 1008 Jonsson class, 1005

inner vertex, 189

insertion, 39 Karp property, 613

inspired by, 950 kernel, 157

integral domain, 411, 713 kernel of a ring homomorphism, 402

interior, 343, 758

interpolant, 653 label, 227

interpolation closure, 648 large subsets, 825

interpolation property, 646 Lascar invariant type, 1178

A-interpolation property, 646 Lascar strong type, 1168

interpretation, 444, 446, 475 lattice, 195, 455, 490

intersection, 11 leaf, 189

intersection number, 1164 least element, 42

interval, 757 least fixed point, 657

invariance, 1097 least fixed-point logic, 664

invariant class, 1256 least partial fixed point, 658

invariant over a subset, 1325 least upper bound, 42

U-invariant relation, 1172 left extension, 1228

invariant type, 1098 left ideal, 400

inverse, 30, 165 left local, 1109

inverse diagram, 256 left reflexivity, 1084
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left restriction, 31

left transitivity, 1084
left-narrow, 57

length, 187

level, 190

level embedding function, 931
levels of a tuple, 931
lexicographic order, 187, 1024
lifting functions, 655

limit, 59, 257

limit stage, 19

limiting cocone, 253

limiting cone, 257
Lindenbaum algebra, 489
Lindenbaum functor, 488
Lindstrom quantifier, 482
linear independence, 406
linear matroid, 1037

linear order, 40

linear representation, 687
link between diagrams, 275
literal, 445

local, 608

local character, 1109

local enumeration, 772
k-local functor, 965

local independence relation, 1109
localisation morphism, 491
localisation of a logic, 491
locality, 1109

locality cardinal, 1306

locally compact, 352

locally finite matroid, 1044
locally modular matroid, 1044
logic, 444

logical system, 485

Lo§ theorem, 715

Index

Lo$-Tarski Theorem, 686

Lowenheim number, 618, 637, 641, 995

Lowenheim-Skolem property, 613

Lowenheim-Skolem-Tarski Theorem,
520

lower bound, 42

lower fixed-point induction, 658

map, 29

A-map, 493

map, elementary —, 493

mapping, 29

matroid, 1036

maximal element, 42

maximal ideal, 411

maximal ideal/filter, 203

maximally ¢-alternating sequence,
1153

meagre, 362

membership relation, 5

minimal, 13, 57

minimal element, 42

minimal polynomial, 419

minimal rank and degree, 224

minimal set, 1049

model, 444

model companion, 699

model of a presentation, 739

model-complete, 699

x-model-homogeneous structure,
1008

modular, 198

modular lattice, 216

modular law, 218

modular matroid, 1044

modularity, 1094

module, 403
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monadic second-order logic, 483 omitting a type, 528
monoid, 31, 189, 385 omitting types, 532
monomorphism, 165 open base, 344
monotone, 758 open cover, 352
monotonicity, 1084 open dense order, 455
monster model, 825 open interval, 757
Morley degree, 1075 Open Mapping Theorem, 1276
Morley rank, 1073 open set, 341

Morley sequence, 1118 open subbase, 345
Morley-free extension of a type, 1076 ~ opposite category, 166
morphism, 162 opposite functor, 168
morphism of logics, 478 opposite lattice, 204
morphism of matroids, 1044 opposite order, 40

morphism of partial morphisms, 894  orbit, 390
morphism of permutation groups, 885 order, 454

multiplication of cardinals, 116 order property, 567
multiplication of ordinals, 89 order topology, 349, 758
multiplicity of a type, 1279 order type, 64, 941
mutually indiscernible sequences, orderable ring, 426
1206 ordered group, 705
ordered pair, 27
natural isomorphism, 172 ordered ring, 425
natural transformation, 172 ordinal, 64
negation, 445, 489 ordinal addition, 89
negation normal form, 469 ordinal exponentiation, 89
negative occurrence, 664 ordinal multiplication, 89
neighbourhood, 341 ordinal, von Neumann —, 69
neutral element, 31
node, 189 pair, 27
normal subgroup, 387 parameter equivalence, 831
normality, 1084 parameter-definable, 759
nowhere dense, 362 partial fixed point, 658
partial fixed-point logic, 664
o-minimal, 760, 956 partial function, 29
object, 162 partial isomorphism, 577
occurrence number, 618 partial isomorphism modulo a filter,
oligomorphic, 390, 877 727
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partial morphism, 894

partial order, 40, 454

partial order, strict —, 40
partition, 55, 220

partition degree, 224

partition rank, 220
partitioning a relation, 775
path, 189

path, alternating — in a category, 271
Peano Axioms, 484

pinning down, 618

point, 341

polynomial, 399

polynomial function, 416
polynomial ring, 399

positive existential, 494
positive occurrence, 664
positive primitive, 735

power set, 21

predicate, 28

predicate logic, 444

prefix, 187

prefix order, 187

preforking relation, 1097
prelattice, 207

prenex normal form, 469
preorder, 206, 488
k-presentable, 317
presentation, 739

preservation by a function, 493
preservation in products, 734
preservation in substructures, 496
preservation in unions of chains, 497
preserving a property, 168, 262
preserving fixed points, 655
\/-K-prime, 1314

prime field, 413

Index

prime ideal, 207, 402
prime model, 868
prime model, algebraic, 694
primitive formula, 699
principal ideal/filter, 203
Principle of Transfinite Recursion, 75,
133
product, 27, 37, 744
product of categories, 170
product of linear orders, 86
product topology, 357
product, direct —, 239
product, generalised —, 751
product, reduced —, 242
product, subdirect —, 240
projection, 37, 636
projection along a functor, 260
projection along a link, 276
projection functor, 170
projective class, 636
projective geometry, 1043
projectively reducible, 637
projectively x-saturated, 804
proper, 203
property of Baire, 363
pseudo-elementary, 636
pseudo-saturated, 807

quantifier elimination, 690, 711
quantifier rank, 452
quantifier-free, 453

quantifier-free formula, 494
quantifier-free representation, 1338
quasi-dividing, 1231

quasivariety, 743

quotient, 179
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Rado graph, 918

Ramsey’s theorem, 926

random graph, 918

random theory, 918

range, 29

rank, 73, 192

A-rank, 1073

rank, foundation -, 192

real closed field, 429, 710

real closure of a field, 429

real field, 426

realising a type, 528

reduced product, 242, 744
reduct, 155

p-reduct, 237

refinement of a partition, 1336
reflecting a property, 168, 262
reflexive, 40

regular, 125

regular filter, 717

regular logic, 614

relation, 28

relational, 149

relational variant of a structure, 976
relativisation, 474, 614
relativised projective class, 640
relativised projectively reducible, 641
relativised quantifiers, 447
relativised reduct, 640
Replacement, Axiom of —, 132, 458
replica functor, 979
representation, 1338

restriction, 30

restriction of a filter, 242
restriction of a Galois type, 1015
restriction of a logic, 491
restriction of a type, 560
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retract of a logic, 547
retraction, 165

retraction of logics, 546
reverse ultrapower, 734
right local, 1109

right shift, 1297

ring, 397, 457

ring, orderable —, 426
ring, ordered —, 425
root, 189

root of a polynomial, 416
Ryll-Nardzewski Theorem, 877

satisfaction, 444

satisfaction relation, 444, 446
satisfiable, 454

saturated, 793

k-saturated, 667, 793
\/-Kk-saturated, 1314

k-saturated, projectively —, 804
Scott height, 587

Scott sentence, 587
second-order logic, 483

section, 165

segment, 41

semantics functor, 485
semantics of first-order logic, 446
semi-strict homomorphism, 156
semilattice, 195

sentence, 450

separated formulae, 627
Separation, Axiom of —, 10, 458
sequence, 37

shifting a diagram, 313
signature, 149, 151, 235, 236
simple structure, 412

simple theory, 1135



simply closed, 694

singular, 125

size of a diagram, 251

skeleton of a category, 265
skew embedding, 938

skew field, 397

Skolem axiom, 505

Skolem expansion, 999
Skolem function, 505
definable —, 842

Skolem theory, 505
Skolemisation, 505

small subsets, 825

sort, 151

spanning, 1034

special model, 8oy
specification of a dividing chain, 1137
specification of a dividing x-tree, 1144
specification of a forking chain, 1137
spectrum, 370, 531, 534
spectrum of a ring, 402

spine, 981

splitting type, 1098

stabiliser, 391

stability spectrum, 1290
k-stable formula, 564

k-stable theory, 573

stably embedded set, 1156
stage, 15, 77

stage comparison relation, 675
stationary set, 138

stationary type, 1272

Stone space, 374, 531, 534
\/-stratification, 1306

strict homomorphism, 156
strict Horn formula, 735

strict A-map, 493

Index

strict order property, 958
strict partial order, 40

strictly increasing, 44

strictly monotone, 758

strong y-chain, 1017

strong y-limit, 1017

strong finite character, 1111
strong limit cardinal, 808
strong right boundedness, 1085
strongly homogeneous, 787
strongly x-homogeneous, 787
strongly independent, 1332
strongly local functor, 981
strongly minimal set, 1049
strongly minimal theory, 1056, 1149
structure, 149, 151, 237
subbase, closed —, 344
subbase, open —, 345
subcategory, 169

subcover, 352

subdirect product, 240
subdirectly irreducible, 240
subfield, 413

subformula, 450

subset, 5

subspace topology, 346
subspace, closure —, 346
substitution, 234, 465, 614
substructure, 152, 744, 965
A-substructure, 498
KC-substructure, 996
substructure, elementary —, 498
substructure, generated —, 153
substructure, induced —, 152
subterm, 228

subtree, 190

Successor, 59, 189
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successor stage, 19

sum of linear orders, 85

superset, 5

supersimple theory, 1294

superstable theory, 1294

supremum, 42, 195

surjective, 31

symbol, 149

symmetric, 40

symmetric group, 389

symmetric independence relation,
1084

syntax functor, 485

system of bases for a stratification,

1336

T,-space, 534

Tarski union property, 614
tautology, 454

term, 227

term algebra, 232

term domain, 227

term, value of a —, 231
term-reduced, 466
terminal object, 166
L-theory, 461

theory of a functor, 971
topological closure, 343, 758
topological closure operator, 51, 343
topological group, 394
topological space, 341
topology, 341

topology of the type space, 533
torsion element, 704
torsion-free, 705

total order, 40

totally disconnected, 351

1376

totally indiscernible sequence, 942

totally transcendental theory, 574

transcendence basis, 418

transcendence degree, 418

transcendental elements, 418

transcendental field extensions, 418

transfinite recursion, 75, 133

transitive, 12, 40

transitive action, 390

transitive closure, 55

transitive dependence relation, 1031

transitivity, left —, 1084

translation by a functor, 260

tree, 189

@-tree, 568

tree property, 1143

tree property of the second kind, 1221

tree-indiscernible, 950

trivial filter, 203

trivial ideal, 203

trivial topology, 342

tuple, 28

Tychonoft, Theorem of —, 359

type, 560

L-type, 527

E-type, 804

a-type, 528

s-type, 528

type of a function, 151

type of a relation, 151

type space, 533

type topology, 533

type, average —, 943

type, average — of an indiscernible
system, 949

type, complete —, 527

type, Lascar strong —, 1168



types of dense linear orders, 529

ultrafilter, 207, 530

k-ultrahomogeneous, 906

ultrapower, 243

ultraproduct, 243, 797

unbounded class, 1003

uncountable, 115

uniform dividing chain, 1137

uniform dividing x-tree, 1144

uniform elimination of imaginaries,
840

uniform forking chain, 1137

uniformly finite, being — over a set,
776

union, 21

union of a chain, 501, 688

union of a cocone, 293

union of a diagram, 292

unit of a ring, 411

universal, 494

k-universal, 793

universal quantifier, 445

universal structure, 1008

universe, 149, 151

unsatisfiable, 454

unstable, 564, 574

upper bound, 42

upper fixed-point induction, 658

valid, 454
value of a term, 231
variable, 236

Index

variable symbols, 445
variables, free —, 231, 450
variety, 743

Vaughtian pair, 1057
vector space, 403

vertex, 189

von Neumann ordinal, 69

weak y-chain, 1017

weak y-limit, 1017

weak canonical definition, 847

weak canonical parameter, 846

weak elimination of imaginaries, 847

weak homomorphic image, 156, 744

Weak Independence Theorem, 1252

weakly bounded independence
relation, 1189

weakly regular logic, 614

well-founded, 13, 57, 81, 109

well-order, 57, 109, 132, 598

well-ordering number, 618, 637

well-ordering quantifier, 482, 483

winning strategy, 590

word construction, 972, 977

Zariski logic, 443
Zariski topology, 342
zero-dimensional, 351
zero-divisor, 411
Zero-One Law, 922
ZFC, 457

Zorn’s Lemma, 110
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