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1 INTRODUCTION

1.1 OVERVIEW

Over the last decades the beginnings of a model theory for monadic second-
order logic have emerged. After seminal papers by Biichi [11], Lauchli [35],
Rabin [38], and Shelah [43] a thorough investigation of the monadic theory
of linear orders was performed by Gurevich and Shelah [32, 33]. General
monadic theories and their model theory were studied by Baldwin and She-
lah in [1, 45, 46].

A second development advancing the model theory for monadic second-
order logic consists in the work on graph grammars initiated by Courcelle.
The main subject of this line of work is the study of graph operations that
are compatible with monadic second-order theories [19, 21, 23, 27, 36] (see
[8] for an overview). Noteworthy recent developments include the Muchnik
iteration (42, 49, 2, 12, 10] and set interpretations [16]. Such operations give
rise to graph algebras and the corresponding notions of recognisable sets
and equational sets [30, 9]. Furthermore, one can use these operations to
define hierarchical decompositions of graphs and the corresponding com-
plexity measures, like tree width, clique width, and partition width [26, 20,
28, 5, 25, 7]. Finally, operations can also be used to construct finite presenta-
tions of infinite graphs via regular terms [17, 18, 14, 15, 13, 6, 4].

There is a variant of monadic second-order logic called guarded second-
order logic [31] which also prominently figures in this line of work. The ex-
pressive power of this logic in comparison to monadic second-order logic
is investigated in [22, 24, 3].

As monadic second-order logic is more expressive than first-order logic,
it is unsurprising that most structures possess an extremely complicated
monadic second-order theory. Fortunately, there remain structures where
the theory is simple enough for the existence of a structure theory.

The prime example of such a structure is the infinite binary tree which, ac-
cording to Rabin’s theorem, has a decidable monadic theory. Starting from
this result we can obtain further structures with a manageable theory by
applying operations that preserve decidability of the MSO-theory, like mo-
nadic second-order interpretations or disjoint unions. We can also consider
other trees than the complete binary one. Although their monadic theories
can become highly undecidable there still exists a structure theory for struc-
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tures interpretable in them (see [7, 5]).

On the other extreme there are structures in which one can define ar-
bitrarily large grids or pairing functions. Their monadic theories are very
complex since they can encode arithmetic or even full second-order logic.
In particular, there is no hope for a structure theory for such structures.

According to a conjecture of Seese [41] these cases form a dichotomy:
either a structure is interpretable in some tree or we can define arbitrarily
large grids. For graphs (or structures with relations of arity at most 2) a vari-
ant of this conjecture has recently been proved by Courcelle and Oum [29].
But the general case of arbitrary structures is still open.

In the present thesis we consider structures on both sides of this dividing
line. In Chapter 2 we will study structures with first-order definable pairing
functions and their first-order model theory. This class of structures can be
regarded as an upper approximation of the class in Seese’s conjecture. Using
tools from first-order model theory we prove that that every structure where
there is no such pairing function is tree-like (in a very loose sense defined
below). The material in this chapter can be seen as a continuation of the
work of Baldwin and Shelah [1, 45, 46].

In Chapter 3 we turn our attention to the structures in the Caucal hierar-
chy, which can be regarded as an lower approximation of the class in Seese’s
conjecture. Each structure in this hierarchy has finite partition width and a
decidable monadic second-order theory. For graphs there also exists a char-
acterisation in automata-theoretic terms: a graph belongs to the n-th level
of the Caucal hierarchy if and only if it can be obtained by contracting e-
transitions from the configuration graph of some higher-order pushdown
automaton of level .

In order to better understand the structure of these graphs we therefore
investigate such configuration graphs. Our focus will be on the outdegree
of vertices and on the length of paths. We provide operations to decompose
and reassemble paths. As a technical tool we derive a pumping lemma for
higher-order pushdown automata. These results are taken from [4].

Chapter 2 is organised as follows. We start in Section 2.1 with technical
results about indiscernible sequences. In Sections 2.2 and 2.4 we collect prop-
erties of structures without definable pairing functions. We study indiscern-
ible sequences in such structures and we show that they are well-behaved.
Section 2.5 contains an overview over the notion of finite satisfiability (with-
out stability assumption). In Section 2.6 we finally show that every structure
without definable pairing functions has bounded partition width and, hence,
is tree-like.

In Sections 3.1 and 3.2 we give basic definitions concerning the Caucal
hierarchy and we introduce higher-order pushdown automata. Section 3.3
contains a first result on the structure of graphs in the Caucal hierarchy. We
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compute a bound on the outdegree of vertices. As an application we show
that certain graphs do not belong to a given level of the hierarchy.

The remainder of Chapter 3 contains a detailed study of configuration
graphs of higher-order pushdown automata. In Section 3.4 we show how to
replace, in all configurations of a given run, the bottom of the stack by an-
other stack content without destroying the property of being a run. Usually
this substitution operation can be applied only to parts of a run. Therefore,
we introduce in Sections 3.5 and 3.6 two partial orders on runs, the so-called
weak and strong domination orders, that will be used to decompose a given
run into such parts. Section 3.7 contains a more detailed investigation of the
strong domination order and a proof that it contains arbitrary long chains.
Finally, we prove the pumping lemma in Section 3.8.

1.2 PARTITION WIDTH

Let us recall some basic definitions and fix our notation. We write [n] for
the set {o,...,n —1}. We tacitly identify tuples a = a,...a,_, € A" with
functions [n] — A and frequently we do not distinguish between a tuple a
and the set {ao, ..., a,,} of its components. This allows us to write a € A
or al for I ¢ [n]. We use the words ‘tuple’ and ‘sequence’ synonymously. In
particular, tuples may be infinite.

For a set A and an ordinal «, we denote by A<* the set of all sequences of
length less than « consisting of elements of A. The prefix ordering on A% is

defined by
x<y :iff y=xzforsomez.

The empty sequence is (). The length of a sequence x € A<* is denoted by |x|.
An (unlabelled) tree is a partial order of the form (T, <) where T is a prefix-
closed subset of A<* and < is the prefix ordering. A A-labelled tree is a func-
tion t : T — A where the domain dom(t) := T ¢ A** forms an unlabelled
tree.

We start by defining what we consider as ‘tree-like’ In the literature several
notions have been proposed that measure how much a structure resembles
a tree. The most prominent one is tree width, which was first introduced
by Halin [34] and which plays an important role in the proof of the Graph
Minor Theorem by Robertson and Seymour [39]. This measure is closely
related to guarded second-order logic. For studying monadic second-order
logic more appropriate complexity measures are clique width, introduced
by Courcelle, Engelfriet, and Rozenberg in [26], and its variant rank width,
defined by Oum and Seymour [37]. These measures have only been defined
for graphs, but there are generalisations of clique width to arbitrary struc-
tures. The notion we will use is partition width introduced in [7, 5]. Corre-
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spondingly we consider a structure to be tree-like if it admits a hierarchical
decomposition of the following kind.

Definition 1.2.1. A partition refinement of a structure M is a system (U, )yer
of subsets U, € M indexed by a tree T C 2°% with the following properties:
. U() =M,
¢ for every element a € M, there exists a vertex v € T with U, = {a},
e U,=U,uU,,forallv e T (where weset U, := @&, forw ¢ T),

U, = Ny<y Uy if |v| is a limit ordinal.

*

Example. (a) A natural partition refinement for a linear order (A, <) con-
sists of a recursive division into intervals.

(b) For a tree (2%, <), we can take as components all sets of the form
U, == {x €2°*| v < x } and all singletons.

Clearly, every structure has partition refinements. In order to define when
a structure is tree-like we introduce a complexity measure for partition re-
finements based on the number of types realised in each component.

Definition 1.2.2. (a) The atomic type of a tuple a over a set U is
atp(a/U) := {go(fc,c') | ¢c U, ¢aliteral with M = ¢(a,¢) }

For a set A of formulae, we denote the A-type of a over U by tp,(a/U).
Furthermore, we define its external type by

etp(a/U) :=atp(a/U) \ atp(a) .

(b) For a set A of formula we define the n-ary A-type index of a set A
over U by

>

3 (A/U) = |4 [

where ~y; is the equivalence relation
asgb ciff tp,y(a/U) =tp,(b/U).

If A is the set of all quantifier-free formulae then we write ati” (A/U) instead
of ti} (A/U).
Similarly, we define the external type index of A over U by

eti"(A]U) 1= |A" =y,
where

a~yb :iff  etp(a/U) =etp(b/U).
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Definition 1.2.3. (a) Let (U, )yer be a partition refinement of 9. The n-ary
partition width of (U, ), is

pwd, (U, )yer = supeti” (U, /M \ U,).
veT
(b) For an infinite cardinal x we write pwd 901 < « if there exists a partition
refinement (U, ), of M with pwd,, (U, ), < &, forall n < w. If pwd M ¢ x we
write pwd 9T > k. We say that 91 has finite partition width if pwd 90T < R,

We will consider a structure to be tree-like if it has finite partition width.

Example. The partition refinements for linear orders and trees given in the
above example have n-ary partition width 1, for every n. Hence, linear orders
and trees are tree-like. Grids are a prime example of structures that are not
tree-like. We will show in Lemma 2.2.4 below that every grid has a large
partition width.

We can transfer bounds on the partition width from a structure 91 to its
substructures since each partition refinement of ) induces partition refine-
ments of the substructures of 9t whose width does not increase.

Lemma 1.2.4. If M < N and pwd N < « then pwd M < k.

Another important class of operations that, as we will show next, preserve
finiteness of partition width are MSO-interpretations.

Definition 1.2.5. Let ¥ and I' be signatures. A monadic second-order inter-
pretation from X to I' is a sequence

Z =(8(x), (9r(%))Rer)

of monadic second-order formulae. Such an interpretation induces an oper-
ation mapping a X-structure 2 to the I'-structure

Z(A) = (8, (¢r)R)

where the universe consists of all elements of 2 satisfying ¢ and the relations
are those defined by the formulae ¢g. Associated with every interpretation Z
is a coordinate map 6* — T(2l) (also denoted by Z) mapping elements in 2A
to the element in Z(2() they denote.

The main property of interpretations is their compatibility with monadic
second-order theories.

Lemma1.2.6. LetZ be an MSO-interpretation from X to I'. For every formula
@(%) € MSO[T'], there exists a formula ¢* (%) € MSO[ 2] such that

IZA) = ga) if Ak ¢P(a),

for every Z-structure A and all parameters a € 6*.
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Proposition 1.2.7. Let X and I be finite signatures and let T be an MSO-inter-
pretation from X to I'. There exist a strictly increasing function f on cardinals
with f(R,) = R, such that

pwd9 <k implies pwdZ(IM) < f(x).

Proof. We need a variant of the external type index for monadic formulae.
Let A be the set of all formulae of the form

XcY and RZ,

where X, Y, and Z; are set variables and a R relation symbol. We define that
a formula of the form RX holds in a structure if there are elements a; € X;
such that @ € R. We set

mtp(A/U) := {go(X,C) | ped, CcP(U), ME ¢(AC) },
emip(A/U) i= mtp(A/U) ~ mtp(A)
and emti"(X/U) = |R(X)"] ~u|,

where

A~y B :iff emtp(A/U) =emtp(B/U).

Fix a partition refinement (U, ), of M with pwd,(U,), < . (U,), in-
duces a partition refinement (U, ), of Z(91) where U, := Z(U,). Let k be
the quantifier rank of Z. We will compute a strictly increasing function f
such that

den(U(/)V < f(den+k(UV)V) < f(K) .

We have shown in [7, 5] that, for all partitions X u U = M of the uni-
verse M, we have

eti”(Z(X)/Z(U)) < 2k (2} - emti"™* (X/U)),

where A is the number of formulae in A with variables X, ..., X,,;x—;. (The
type index on the left is computed in the structure Z(90t), the one on the
right in 91.) To prove the claim it is therefore sufficient to show that

emti” (X/U) < 2" " (X/U),
For A € P(X)", we set
e(AJU) :={etp(a/U) |a; € A;}.

The above bound follows from the following claim.

10
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Claim. Let X and U be disjoint sets. If A, B € £(X)" are sets such that
(1) A; CALiff B; € By, foralli,k <n,
(2) e(A/U) =e(B/U),
then we have emtp(A/U) = emtp(B/U).
For a contradiction, suppose that there is some formula ¢(X,Y) € A

where at least one variable Y; really occurs and some parameters C ¢ £(U)
such that

ME (4, C) < -9(B,C).
By (1) and symmetry, we may assume that ¢ := RXY and that
9 = RAC A -RBC.

Select elements a; € A; and ¢; € ?i such that (a,¢) € R, and set @ :=
etp(a/U). By assumption, we have (b, ¢) ¢ R, forall b; € B;. Hence, Rx¢ € ©
implies that @ € e(A/U) \ e(B/U). Contradiction. O

In particular, we obtain the following result for structures of finite parti-
tion width.

Corollary 1.2.8. Let X and I' be finite signatures and let T be an MSO-inter-
pretation from X to I'. If MM is a X-structure with finite partition width then
Z(9M) also has finite partition width.

Since trees have finite partition width it follows that so does every struc-
ture interpretable in a tree. In fact, one can show that the converse holds as
well.

Theorem 1.2.9 ([7, 5]). Let 9 be a structure with finite signature. 9 has
finite partition width if and only if there exist an ordinal «, a set P € 2~%, and
a monadic second-order interpretation L with

M= T(2°%<,P).

The class of structures of finite partition width admits a nice first-order
model theory. This is largely due to the fact that there is a related complexity
measure (the non-standard partition width) which is finite if and only if the
partition width is finite and which furthermore is pseudo-elementary (see
[7, 5] for definitions and proofs). In particular, we have the following results.

Proposition 1.2.10. If M =xo N and M has finite partition width then so
does N.

11
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Theorem 1.2.11. A structure 9 has finite partition width if and only if there
exists a sequence w € w® such that every finite substructure 9, € M has a
partition refinement (U,), with pwd,,(U, ), < wy, for n < w.

Theorem 1.2.12. A set ® of first-order formulae has a model with finite parti-
tion width if and only if there exists a sequence w € w® such that every finite
subset @, € © has a model I with a partition refinement (U, ), such that
pwd,, (U,)y < wy, for all n.

We conclude this section with a simple technical result which will be used
in Section 2.6.

Lemma 1.2.13. Let « := ti (A/U). There exists a set U, € U of size |U,| <
K + Rq such that, for all a,b e A",

tpa(a/Uo) = tp,(b/Us)  implies tp,(a/U) =tp,(b/U).

Proof. Fix a sequence (%)<, of tuples 4% € A" such that, for every b € A",
there exists a unique index « with

tPA(‘_’lx/U) = tPA(l;/U) .
By induction on «, we will define finite sets C, € U such that, for all § < a,
tp,(a“/Cea) # tPA(E’ﬁ/C«x) >

where Cy := Uj<q C;. Then the set U, := C, has the desired properties.
To define C, we consider two cases. If there is no index 8 < « with

tp,(3*/Ceq) = tPA(éﬁ/C«x)

then we can simply set C,, := &. Otherwise, there is exactly one such index f3.
Since

tp4(a*/U) # tp, (/)
there are some formula ¢(x, y) € A and parameters ¢ ¢ U with
M E ¢(a,é) < -p(b,é).

We set C,, := C. O

12



2 CODING AND INDISCERNIBLES

2.1 DEPENDENT SEQUENCES

In this section we consider an indiscernible sequence (a"),er and we try to
find a formula y(x) which defines the relation { @ | v € I }. Of course, in
general this is not possible. But if we allow monadic parameters there is a
partial solution to this question. The combinatorial techniques used by the
following lemmas are based on results by Shelah [46]. Let us start by fixing
some notation for sequences.

Definition 2.1.1. Let (a”),s be a sequence of a-tuples indexed by a linear
order I.

(a) We denote the order type of v € I'"" by ord(v) and its equality type by
equ(v). For sets C, D ¢ I, we write C < Dif c < d, forallc € Cand d € D.
Analogously, we define @ < ¥ for tuples i, v C I.

(b) The sequence (a"), is proper if a“ na” = @, for u # v.

(c) For v € I, we set

a[v] = (a@,...,a").
For J € I and s € I we define
a[J]:=(a")yeg and a[<s]:=(a")ys-

The terms a[>s], a[<s], and so on, are defined analogously.
(d) For v € I*, we set

d(‘-/) = (al'}i)z(oc .

Before turning to the general case below let us show how to define a bi-
jection a” — b" between two sequences (a")yer and (b")yer.

Lemma 2.1.2. Let (@")ye; and (b")yeg be two sequences indexed by the same
linear order I. If there exists a formula ¢(%, y) (possibly with monadic param-
eters) and a relation o € {=,#,<,>,<,>} such that

ME@(c,d) iff ¢=a"andd="b"forsomeuov,
then we can construct a formula y(%, y) such that

Mey(c,d) iff ¢=a"andd="b"forsomevel.

13
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Proof. If 0 € {=,+} then we can set ¥ := ¢ or ¥ := —¢. By symmetry it
therefore remains to consider the case that 0 = {<}. We can construct a
formula 9 such that

MEI(¢,d) iff ¢=a"andd=a" forsomeu<v,
by setting
9(x,%") = Vi[p(x,7) > ¢(%. )]
Consequently, we obtain the desired formula y by
y(%.7) = V&' o(x, 7) > (&', %)]. .

The next lemmas provide a method to find sequences satisfying the pre-
ceding lemma.

Lemma 2.1.3. Let A be a finite set of formulae, B < M a set, and (a*)y<q an
infinite sequence of tuples such that

tp,(a“/B) #tp,(a’/B), forallu+v.

There exist an infinite subset I € w, a formula ¢ € A, arelationo € {=,+,<,>},
a number m < w, and tuples b” € B", for v € I, such that

Mep(a“, ") if wov, forallu,vel.

Proof. We adapt the proof of Ramsey’s theorem. For indices u # v, fix some
formula ¢,, (X, y) € A and a tuple ¢,, € B with

M= (Puv(du: C_uv) - _‘(Puv(dva C-uv) .

We assume that ¢, = ¢y, and @y = @y, forall u, v < w.

We define two infinite increasing sequences u, < #; < --- < w and v, <
v, < --- < wofindices and a decreasing sequence w = I, o I, > ... of infinite
sets such that, for every i < w, we have u;, v; € I; and

M E Qu,v, (@Y, Cu,) < ~Puv, (a7, Cuy,), forallwel;,,.
Note that, in particular, this implies that
M = Quyv, (Y, Cuv;) < —Puyy, (@™, Cuyy), fori<k.

We start with I, := w. For the induction step, suppose that I; has already
been defined. Fix arbitrary elements u, v € I; with u # v. By symmetry, we
may assume that

M = q)uv(du’ C-uv) A _‘(Puv(dva Euv) .

14
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Let Jo:={wel;|ME-gyu(a¥,cw)},
Ji=A{wel; | ME ¢u(a”,cuw) }.

If ], is infinite then we set u; := u, v; := v, and I;,, := J,. Otherwise, we
choose u; :=v,v; :=u,and I,;,, := J,.
Set b’ := Cy,y,. We record for every pair i < k of indices which of the

following relations hold

M gu (a,0'),
M= gu, (3%, 05,
M = (Puz‘vi(duk> I;l) .

By Ramsey’s Theorem, there exists an infinite subset S € w such that, for all
indicesi < kandl <min S,

* Puy = Puyvy

e ME @y, (a%,b') < Puyv, (a%F, bk,

o ME Puy, (3, 0%) & gy, (a",0™).
Setting ¢ := ¢, it follows that, for i < k in S,

ME o(a",b') < -p(a’*,b').
Consequently, we have

M = (/)(L-lvi,l-?k) if iok,
where 0 € {=,#,<,>}. O
Corollary 2.1.4. Let A be a finite set of formulae and let A,B € M be sets.
If tiy(A/B) 2 R, then there exist a formula ¢(X,7) € A, a relation o €
{=,#,<,>}, a number m < w, and tuples a* € A" and b” € B™, for v < w,
such that

ME (@, b’) iff uov.

For uncountable cardinals the proof is more involved.

Lemma 2.1.5. Let  be an infinite cardinal, A a set of formulae of size |A| < ,
and A, B € M sets. If ti’ (A/B) > 2" then there exist a formula ¢(%, y) € A,
a number m < w, and tuples a* € A" and b” € B", for v < k™, such that

M E p(a*, b*) < -g(a",b"*), forallu<v.

15
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Proof. Let A := (2")*. Fix a sequence (a"),) of tuples a” € A" such that,
tpy(a“/B) #tp,(a’/B), foru=+v.

We construct a family of sets S, € A, for z € 2<A+, such that
'S S<> =A,
¢ S, =S,0US,,
¢ Sc 28y, forx <y,

¢ SxnS,=g,forx £ yand y £ x, and

L 4

if |S;| > 1 then S, S, # @.

For each z, we will choose a formula ¢, (%, 7) and parameters b* € B, and
we set

S;:={u<A|forall y <zwehave M & ¢,(a* b) iff y1<z}.

We define ¢, inductively. Suppose that ¢, and b* have already been de-
fined, for all x < z. Then we also know S. If |S,| < 1 then we choose an

arbitrary sequence y < z and set ¢, = ¢, and b® := b”. Otherwise, choose
distinct elements u, v € S,. Since

tp,(@"/B) + tp, (&' B)
we can find a formula ¢, € A and parameters b* C B such that
M = pz(a", b%) < ~g2(a",b%).
Having defined (S;), we consider the sets
T:={zez<)‘+ |1S:/>1} and F:={z¢T|yeTforally<z}.

Then |S,;| <1, forall z € Fand A = U,cr S;. Consequently, we have |F| > A.

Let a be the minimal ordinal such that T € 2<%, Then |F| < 2/% implies
that A < 2%, Since 2% < A it follows that & > x™. Hence, there exists some
n € Fwith || > k™. For i < x*, let z; < 5 be the prefix of 7 of length |z;| = i,
and let ¢; < 2 be the number such that z;¢; £ 5. For every i, choose some
element u; € S;,,. Since uy ¢ S;,c,, for k > i, it follows that

M @0, (@, 05) < —@,... (a", b5, fori<k.
By the Pigeon Hole Principle, there exists a subset I € ¥ such that ¢, =

@zc,» forall i, k € I. Hence, (a) ey and (%) ;1 are the desired sequences.
U

16
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Corollary 2.1.6. Let x be an infinite cardinal, A a set of formulae of size |A| <
x, and A, B € M sets. If ti’, (A/B) > 2> then there exist a formula ¢(%, j) € 4,
a relation o € {=,#,<,>}, a number m < w, and tuples a” € A" and b¥ € B™,
forv < ¥, such that

ME (@, b") iff uov.

Proof. By Lemma 2.1.5, there exist a formula ¢ and sequences (di)i<(2vc)+
and (Z_)i)i<(2,<)+ such that

Me o(a',b') o -p(ak,b'), fori<k.

By the Erd4s-Rado Theorem, we have (2°)* — (x™)2. Hence, we can can
find a subsequence I € (2*)* of size |I| > k™ such that

M = go((ii, l_ak) pa (p(dj, I_al) , forallindices i, j, k, I € I with
ord(ik) = ord(jl).

It follows that there is some relation o € {=, #, <, >} such that, forall i, k € I,
Me o(ak, b)) iff koi. O

Let us turn to the general case of Lemma 2.1.2 where we may have more
than two sequences. We recall some notions from model theory. A sequence
(a')ie of a-tuples a’ is indiscernible over a set U if

tp(a[i]/U) =tp(a[j]/U), for all increasing tuples i, j c I of the

same length.

If this equation holds for arbitrarily ordered tuples 7, j C I the sequence is fo-
tally indiscernible. We adopt the usual convention of working in a sufficiently
saturated monster model M into which we can embed every model 9t un-
der consideration. All elements and sets are tacitly assumed to be contained
in M. By an U-automorphism, we mean an automorphism 7 of M with
7|y = idy. We will frequently use the following standard facts from model
theory concerning indiscernible sequences.

Lemma 2.1.7. Let (a")ye be an infinite indiscernible sequence over U. For ev-
ery strictly increasing partial map f3 : I — I, there exists a U-automorphism 7
such that

m(a") =af"),  forallvedom§.

Lemma 2.1.8. Let (a")yer be an indiscernible sequence over U. For every or-
der embedding o : I — ] there exists an indiscernible sequence (b")yey over U
such that b*) = @, forv e I.

17



2 Coding and indiscernibles

To generalise Lemma 2.1.2 we look at the fine structure of an indiscernible
sequence. In [46] Shelah defines an equivalence relation on the indices of
a certain sequence (a")yes of a-tuples (actually enumerations of models)
by calling two indices i, k < a equivalent if the bijection a} ~ aj, v € I,
is MSO-definable. Shelah’s main result concering this equivalence relation
is a characterisation via indiscernibility. Inspired by this work we consider
the case of arbitrary indiscernible sequences. Taking the characterisation
in terms of indiscernibility as the definition we show that this equivalence
relation gives rise to definable bijections aj ~ a}, v € I. The main ideas of
the proof of this fact in Theorem 2.1.19 below are already contained in [46].
Our contribution consists in streamlining the presentation, showing that
the result holds without the special assumptions of Shelah, and obtaining
more precise information about the formulae defining the bijections.

Definition 2.1.9. (a) Let ¢(x°,...,%*™) be a formula where each % is an
a-tuple of variables. A sequence (a")yer of a-tuples is A-indiscernible if, for
all indices @', 7' € I%, i < k, with ord(a°... ") = ord(v°...7%7), we
have

Me g(a(a®),...,au* ™)) < o(a(#®),...,a(* ™).

(b) Let A be a set of such formulae. (a")yes is A-indiscernible if it is ¢-
indiscernible, for every ¢ € A.If A is the set of all formulae over a set U of
parameters we say that (a"),e; is indiscernible over U.

Example. A sequence (a'); of 4-tuples satisfying
M = go(aé,af,ai,a;”) iff i=kor(i<kandl=m)
is p-indiscernible.

The relation {a" | v € I} is usually not definable. Instead, we define
relations { a@"|, | v € I} for certain subsets p C «. The main part of this
section consists in the proof that the sets p where this is possible form a
partition of «.

Definition 2.1.10. (a) A partition of a set X is a set P € {(X) such that
X =UPand pngq =g, fordistinct p,q € P.
(b) Every partition P on X induces the equivalence relation

xw~py :iff thereissome pe Pwithx,yep.
(c) The refinement order on partitions P and Q of X is defined by
PeQ :iff ~pCwq,
and, for a family F of partitions of X, we define their common refinement by

MF:=X/~ where =~:=prp.

18



2.1 Dependent sequences

Definition 2.1.11. Let ("),¢s be a sequence of a-tuples and ¢(%°, ..., x*)
a formula where each &' is an a-tuple of variables. A A-partition of (a")yer
is a partition P of a such that

M e o(a(a®),...,a(d")) < o(a(@),...,a( ")),
for all indices @', 7' € I%, i < k, such that
ord(i°|p . ..zlk|p) = ord(v°[, . ..1'/k|p), forevery pe P.

Let A be a set of formulae. A A-partition is a partition P that is a ¢-parti-
tion, for every ¢ € A.

()
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Po :
° SV
P :a
P2 e
s a
()
(]
Ps H
! I
_
v

Equivalently, P is a A-partition of (a'); if, for every p € P, the ‘band’
(a'|p); is indiscernible over its complement (@'|qp);.

Example. Let (a'); be an indiscernible sequence of 4-tuples and suppose
that ¢ (xox,x,x;) is a formula such that

9ﬁ|:g0(aé,af,ai,a;”) iff i=kor(i<kandl=m).

There are two ¢-partitions of [4]. The trivial partition with just one class
and the partition with classes {0,1} and {2,3}.

We will show that there is a unique minimal A-partition. We start by
pointing out that there exists at least one A-partition. Then we show that
the class of these partitions is closed under intersections.

Lemma 2.1.12. If (a@")yes is a A-indiscernible sequence of a-tuples then {a}
is a A-partition.

Lemma 2.1.13. If (P;) < is a decreasing sequence of A-partitions then [ ;<. P;
is a A-partition.

Proof. If k is finite then we have [, P; = Pc_,, which is a A-partition. For
infinite «x the claim follows from the fact that every formula ¢ € A contains
only finitely many variables. O

Lemma 2.1.14. Let (a")ye; be an infinite sequence of a-tuples. If P and Q are
A-partitions then so is P11 Q.
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2 Coding and indiscernibles

Proof. It is sufficient to prove the claim for A = {¢}. Since ¢ contains only
finitely many variables we may assume w.l.o.g. that « is finite and that

P={por---spna} and Q={qo>--->qGm-1}-

For i < m,let g} := & \ g;. Since

PnQ=Pr{qo,qo} M M {qm-1sqms}

it is sufficient to prove the claim for Q = {q,q’}.
Let us introduce some shorthand. For #; € I?i" and v; € Ipf”q’, we set

Altos . vsly—y Vos - vrVyo] = a(x),

where x; is
¢ the [-th element of iy, if i is the [-th element of p; N g,
o the [-th element of ¥y, if i is the I-th element of p; N q'.

Suppose that ¢ = ¢(x°,..., ). For ! € [P and #! ¢ 179 we define
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We have to show that

M = @[ioy > lno1, Vo> Vno1] <> ®[Sos-+sSn-15F0>-++>tn-1]>
whenever ord(#;) = ord(5;) and ord(¥;) = ord(%;). If we prove the follow-
ing special case then the general one will follow by symmetry (w.r.t. permu-
tations of P and Q) and induction.

Claim. Iford(ii,) = ord(w,) then

M = @ ilo, sy« - -5 tpe1 Vos -+ - > V1]

> @[ Wo» s+ s Tinats Vor - » Vne] -

20



2.1 Dependent sequences

Let ity := @y ... 0, and v, == ;...
indices 5o, fo, $x, £« € I such that

V,—1. Since I is infinite we can find

ord(5o8.) = ord(itoti), ord(fofs) = ord(Vovs), So»Sx < fo,t.

Since Q is a ¢-partition we have

m E q)[l’-tO) Z/-l*) 1-}O’ 1-/*] - @[50) 5*’ ZO) t*] .

Fix indices $, #, such that

ord(s. ) = ord(50f,) and 5., < 3o, 5.

Since P is a ¢-partition we have
M = @[50, 545 Los £ ] <> @[50, 54, 0, F4 ]

Choose 5! such that ord(s/#.) = ord(wo¥,). Since ord(503.) = ord(s.s.)
and Q is a ¢-partition it follows that

- -/ =
0)5*’ O’t :|

M E @[3 84, os F ] <> @[3
Finally, let §/, #, ¢ I be indices such that

ord(5)s,) = ord(5]5.),
ord(.t,) = ord(#.t,),
ord(5.7.) = ord(it.7.) .

As Q is a g-partition we have

QJUZQD[ t*] (P[o’g*’_(,)’fl]‘

»Sus g

Furthermore, ord(5.f) = ord(wo¥,) and ord(s,#,) = ord(#,7.) implies

that
m ': gD[ O’E*) -Zp ZJ] And (P[WO’ l:l*,'l_/o, “-/*] b
because P is a ¢-partition.

Combining the preceding lemmas we obtain the following result.

Theorem 2.1.15. For every infinite A-indiscernible sequence (a")yes, there ex-
ists a unique minimal A-partition P.
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2 Coding and indiscernibles

Definition 2.1.16. Let (a")yer be an infinite A-indiscernible sequence of «-
tuples and let P be the minimal A-partition of « corresponding to (a”),.
(a) The elements of P are called A-classes.
(b) We set

XA ‘= Rp.

Two indices i and k are A-dependent it i X, k. Otherwise, they are A-inde-
pendent.

(c) If A is the set of all first-order formulae over U we also also speak of
U-partitions, U-classes, U-independent indices, etc. and we write Xy instead
of XA-

Remark. Note that, if i < « is an index such that no variable x! appears in A
then {i} is a A-class. Hence, if A is finite then every A-class is finite.

Remark. Let (a")yer be an infinite indiscernible sequence over U. For every
U-class p, the sequence (a"|)yes is indiscernible over U U d|qp[1].

It particular, this means that we can use U-automorphisms to shift each
U-class independently.

Lemma 2.1.17. Let (a")yes be an infinite indiscernible sequence over U and let
P be its minimal U-partition. For every family (f8,) pep of strictly increasing
maps By : I — I, there exists a U-automorphism m such that

n(a’lp) = dﬁf’(v)|p, forall p e Pandv e domf,,.

An argument we will frequently employ below with worth singling out.
Suppose we are given a sequence Xo, . . . , X, where x, has some property P
while x, does not. Then there is some index i with x; € P and x;,, ¢ P.
For instance, if xo = Ug ... Uy and x, = v, ... vy, are tuples then we can
use the sequence x; := Vo ... Vi_1U; ... Uy, to conclude that there are tuples
i’ € Pand v’ ¢ P that differ in exactly one component. A more involved
example that appears in the proof of the next theorem is the following one.
For an ordered index set I, indices i, ¥ € I", and a number m < n, we define
7 ~,, v iff there exists some k < n such that

& u; #vipand u; = v;, for i # k, and

¢ cither there are exactly m indices i # k with u; = u; and there is no i

with
U <u; <V or vi<u; <ug,
_ _ U, Uy = Uy Uz = Ug Us u,
u-~> v
Vs V1=V, Ve V3 Vs v
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2.1 Dependent sequences

or there are exactly m indices i # k with v; = v and there is no i with
Ve <Vi<Up Or upv;<vg.
Let—pyi=~oU - U~y

Lemma 2.1.18. If I is densely ordered then any two tuples i1, v € I" are con-
nected by a ~,,-path.

Proof. For a contradiction, suppose that & and ¥ are not connected. As ex-
plained above we may assume that # and v differ in exactly one component.
Say it = xZ and v = yz. Since the definition of ~, is invariant under permu-
tations of the tuples we may assume that z is increasing and

20 L L2k SXS 2 <271 S Y<SzZp << 2y,

We choose k and [ such that x < z; and z;_, < y. We derive a contradiction
by induction on I — k. If k = [ then we have

XZ ~cn ¥YZ.
Contradiction. Suppose that k < I. We claim that
XZ ~cpt ~en ZkZ

Hence, the result follows by induction hypothesis. If z;_, = x < zj then we
can take any element z;_, < x’ < z; and it follows that

XZ ~<p x'z ~cn Zk2.
If z;_, < x < zx then we immediately have
x‘é ~<n Zk‘é . D

After these preparations we can finally prove that, for every A-class p, we
can define the relation { @"[, | v € I } with the help of monadic parameters.
In the constructions this will allow us below to replace sequences (a"), of
tuples by sequences (a} ), of singletons.

Theorem 2.1.19. Suppose that (a")es is an infinite g-indiscernible sequence

of a-tuples where ¢ has r free variables. For each ¢-class p and every finite

subset q C p, there exists a formula x4(%; y, Z, Z) with the following property.
If§5, t € I" are strictly increasing r-tuples with § < t and

Aj:={a]|vel,s<v<t}, foriep,
then we have

M xq(Gals],alt],A) iff cé=a"ly, forsomev elwith

S<v<t.
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2 Coding and indiscernibles

Proof. The proof is based on [46, Fact 11.1.5]. We prove the claim by induc-
tion on n := |g|. For g = {i}, we can set

Xq(x) = Ajx.

Furthermore, if g and q’ are sets such that g n g’ # @ and x, and y, exist,
then we can define

Xaug (X92) = xq(%7) A X (72) »
where the variables x correspond to the elements of g \ g’, y to g n ¢’, and
ztoq' '~ gq.
Consequently, there exists a partition p = go U - -+ U g5, such that each
gi is a maximal subset of p with the property that x,, exists. We have to

show that n = 1and g, = p. Let b, := G"|qp, for an arbitrary index v. For
v € I", we define

o[7] = 9(a*|gpr.- @ g B)
We will show that
ME glu] < ¢[v], foralla,vel”

It follows that each g; is a ¢-class which implies that g; = p.
By Lemma 2.1.18 and the remarks preceding it, it is sufficient to prove that

i~y v implies ME p[ia] < ¢[v].

We prove this claim by induction on m. Let k be the index witnessing the
fact that &t ~,, 7. By symmetry, we may assume that i is increasing, that
Uy < vy, and that uy € {u; | i # k }. Hence, we have

Uo L S U S U = = U <V < Ugy S-S Uy
Define
Si=Ug .. Ukey> U= Uk, ViZVi, Fi=Ugpq...Un i,

and set B_ = duo |‘10 et éuk_m_l |qk—m—1 and l-?+ = duk+l|qk+1 tee duVFI |qu71'
For m = o, the claim follows immediately by indiscernibility of (a”),.
Suppose that m = 1 and that

M= @[S, u,u, t] A-[S,u,v,t].
If O = —¢[5, v, u, t] then we have

ME @[S, x,p, 8] ff x=y,
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2.1 Dependent sequences

and we can define

Xaevar (%o 7) = Xai, (%) A Xqo () A @(b_, %, 7, b, by) s

in contradiction to our choice of gy.
Thus, we have 0 = @[5, v, u, f]. This implies that

Me g[S, x,p,t] iff x>y.

As in Lemma 2.1.2, we obtain a formula

95, 5') = Viltq(7) A 9B 3B ) > 9(B 25, s, Bo)]
such that
Me9(a*y g ) iff x<y,

and we can set

Xaiuai (5 7) = Xg,, (%) A xq, (7)
AYE (g () A @(b-, %, 7,bs, b)) - 9(F,%)].

Contradiction.
It remains to consider the case that m > 1. Again, assume that

Me g[S, u...u,u, f]A=@[S,u...u,v,f].
By indiscernibility, the former implies that
MEo[s,w...w, 1], forallwe Iwiths<w < t.

On the other hand, if w € I is a tuple such that § < w < f and [rng w| > 1
then SWf ~_,, Su...uvt. Hence, by induction hypothesis, we have

M= -[S,w, ], for all such w.
Consequently, we have

ME @[5, w, ] iff  wo=-=wy,
and we can define

Xai-m-0gi (Kos - > Xkmm) 1= Xgiep (%) Ao+ A Xg (Rkem)
N (p(B,,?_CO, e ,xk_m, B+; 1-7*) >

in contradiction to our choice of g. O
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2 Coding and indiscernibles

2.2 PAIRING FUNCTIONS AND CODING

In [1] Baldwin and Shelah argue that the monadic theories of structures are
hopelessly complicated if they admit coding, i.e., if they contain a first-order
definable pairing function. Then they proceed by classifying the remaining
structures by their first-order theories. Baldwin and Shelah show that, if the
first-order theory is stable then structures that do not admit coding have a
tree-like decomposition with countable components. The unstable case is
considered in [46] but the resulting theory remains fragmentary. In the first
part of the thesis we complete the picture by proving that every structure
that does not admit coding has a partition refinement of bounded (though
infinite) width. This also gives an alternative proof of the already known
results on stable structures.

In this and the next section we collect conditions that imply the defin-
ability of a pairing function. Special emphasis is placed on indiscernible se-
quences. We start in this section by presenting the needed definitions and
results from [1], together with some simple consequences. The next section
contains mostly new results.

Definition 2.2.1. A structure 9 admits coding if there exist an elementary
extension N > 9, unary predicates P, and infinite sets A, B, C € N such that
in the structure (N, P) there exists a first-order definable bijection A x B —
C.

An alternative characterisation of coding is based on the existence of two
equivalence relations.

Lemma 2.2.2. Suppose that ¢(x, y) and y(x, y) are formulae (with monadic
parameters) and (c*) . y<w are elements such that

Me (<™, ") if u=s,
Meyp(c™, ) iff v=t.

Then 9 admits coding.

Proof. The formula y(x, y,z) := ¢(x,z) A y(y,z) defines the bijection
{u<w}x{c"|v<w}->{"|uv<aw}

sending the pair (¢*°, ¢®”) to ¢*". O

It is not difficult to show that structures admitting coding have large par-
tition width. A weak version of the converse will be established in Theo-
rem 2.6.3.

Lemma 2.2.3 ([7, 5]). If 9 admits coding then pwd I > R,.
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2.2 Pairing functions and coding

This lemma is a special case of the following result. Let us call a function
f:AxB — C cancellative if f(a,b) = f(a’,b) implies a = a’ and f(a, b) =
f(a,b") implies b = b’

Lemma 2.2.4. Let M be a set and f : Ax B — C (the graph of) a cancellative
function where A, B, C € M are sets of size |Al, |B| > . Then we have

pwd,(U,), >k, for every partition refinement (U, ), of (M, f).

Proof. For a contradiction suppose that there exists a partition refinement
(Uy)yer of (M, f) such that

eti2(U,/ M\ U,) <k, forallveT.

ForveT,setA,:=AnU,,B,:=BnU,,and C, := Cn U,,.

We claim that there exists a vertex v € T such that |[A,| > k and |[ANA, | > k.
Suppose otherwise. Then S := {v € T ||A,| > k } forms a chain. Let (v;) ;<4
be an increasing enumeration of S and let d; € [2] be the number such that
Viy = vid;, for i < a. Since |A,| = |Ayo| + |Ay,] it follows that « is a limit
ordinal. Let

Xi=Ay4-a)> Z:=()Ay, and I:={i<a|X;22}.
i<a
Then A = Z U U<, X;. Since |A| > k and |Z| < « it follows that
YIXil =Y Xl =|AN Z| > k.
iel i<a

Since |X;| < x and k™ is regular we have |I| > k. Consequently, there is some
B < a such that [ n B| > «. Setting v := vy it follows that

|Ay|>x and JANA,| =YX >|InB|>xk.
i<f

Contradiction.

Having found a vertex v € T with|A,| > x and |[A\ A,| > k we distinguish
two cases. We have |B,| > k or |B \ B,| > . By symmetry, we may assume
the latter.

First, we prove that there are less than x elements b € B \ B, such that
f(a,b) =c, forsome a € A, and ¢ € C,. Otherwise, we could find elements
a,a' €A, c,c’eC,,and b, b’ € B\ B, with

b+b, f(a,b)=c, f(a’,b’) =c,
and etp,(ac/M\ U,) =etp,(a’c'/M~U,).
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2 Coding and indiscernibles

But then f(a,b) = c implies f(a’,b) = ¢’. Hence, f(a’,b) = f(a’,b").
Since f is cancellative it follows that b = b’. Contradiction.

Consequently, there is some b € B \ B, such that f(a,b) € C \ C,, for
all a € A,. Since |A,| > x we can find a,a’ € A, with etp,(a/M \ U,) =
etp,(a’/M \ U,). Hence, we have f(a,b) = ciff f(a’,b) = ¢, forall c €
C \ C,. Contradiction. O

Corollary 2.2.5. If M admits coding then for every cardinal k, there exists an
elementary extension N = I with pwd N > «.

Proof. Since 9T admits coding there exists an FO-interpretation Z such that,
for every cardinal «, we can find an elementary extension 1, of 97 and
unary parameters P, such that Z(M,, P,) = (N, fx) where f,: AxB > C
is a bijective function with |A|, |B| = .

By Proposition 1.2.7, there exists a strictly increasing function g such that

pwd (N, Pc) <« implies pwd (N, fi) < g(x).

Given a cardinal « set A := g(x) and let y be the minimal cardinal such
that

pwd (M), P)) < .

Note that this implies that y is also the minimal cardinal with pwd 91y < p.
By the preceding lemma, we have

g(x)=A<pwd (M, fr) < g(u).

Since g is strictly increasing it follows that x < y. By choice of y this implies
that pwd 1), > «. O

A first simple criterion for coding is the independence property.

Definition 2.2.6. Let T be a first-order theory. A formula ¢(%, ) has the
independence property (w.r.t. T) if there exists a model 901 of T containing
sequences (dyx)xce and (b;) ;< such that

MeE g(ax,b;) iff ieX.

We say that a structure 90 has the independence property if there exists
a formula ¢ that has the independence property w.r.t. Th(90t). If ax and b;
are singletons we say that 901 has the independence property on singletons.

Lemma 2.2.7. If 9N has the independence property on singletons then it ad-
mits coding.
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2.2 Pairing functions and coding

Proof. Fix sequences (ax)xce and (b;) e, and a formula ¢(x, y) such that
ME ¢(ax,b;) iff ieX.
Fix disjoint infinite sets U, V € {b; | i < w } and define f : U x V - M by
f(bi, bi) = ag; ky- Then we have
fley)=z iff MrFo(z,x)n9(zy),
forxeU,yeV,andze f(U,V). O

In [1] it is shown that the independence property and the independence
property on singletons coincide if we allow unary predicates.

Lemma 2.2.8 (Baldwin, Shelah). Suppose that 9 has the independence prop-
erty. There exists an elementary extension Nt > 9 and unary predicates P such
that (M, P) has the independence property on singletons.

Consequently, the independence property implies coding.
Corollary 2.2.9. If I has the independence property then it admits coding.

In the next section we study the following question. Given an indiscerni-
ble sequence (ad")ye; and an arbitrary element ¢ what is their relationship?
Is the sequence also indiscernible over ¢ or can one distinguish intervals of I
with the help of ¢? (We use the term ‘interval for arbitrary convex subsets.
We do not require the existence of a supremum or infimum.) As an exam-
ple we give a characterisation of the independence property in these terms,
which is basically due to Shelah (see [47] and [48].)

Definition 2.2.10. Let ¢(x) be a formulaand (a"),.s a sequence. We define

[p(a")lver = {veI|ME ¢(a")}.

Lemma 2.2.11. A formula ¢(%, y) has the independence property if and only
if there exists an indiscernible sequence (a")yer and a tuple ¢ such that the set
[o(¢,a")]ver cannot be written as union of finitely many intervals.

Proof. (=) Let (d;)i<e and (bx)xco be sequences such that
ME o(bx,a;) iff ieX.

By compactness, we may assume that (a;);<, is indiscernible. Take the set
X :={2i| i< w} of even numbers and set ¢ := bx. Then [¢(¢, a;)]; has
the desired property.

(«=) Fix a strictly increasing or a strictly decreasing subsequence (u;) i<
of I such that every interval (u;, u;,,) contains elements of both [¢(¢, a") ],
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2 Coding and indiscernibles

and [-¢(¢,a@")],. Let J == {u; | i < w} and set b; := a*. For every set
X < w, we can fix a strictly increasing function ayx : ] — I such that

ax(u;) eo(c,a")], iff ieX.

Let 7y be an automorphism such that 7(a® (")) = 4", for v € J, and set
Cx := (¢). Then it follows that

Mk (éx,b;) iff ieX.
Consequently, ¢ has the independence property. O

Corollary 2.2.12. Let (a")yer be an infinite indiscernible sequence and ¢ a
tuple such that the sets

[p(é,a")]ver and  [-9(é,a")]ver
are both infinite. If (a"), is totally indiscernible then 9 admits coding.

Proof. By taking a suitable subsequence we may assume that I is countable.
We can choose a bijection & : QQ — I such that the sets

[9(c.a*N]yeg and  [-¢(éa*")]veq

are dense in Q. If (a")e; is totally indiscernible then so is the rearranged
sequence (@*(")),cq. By the preceding lemma it follows that ¢ has the inde-
pendence property. O

2.3 INDISCERNIBLES AND CODING

In order to develop a structure theory for structures that do not admit cod-
ing we investigate indiscernible sequences. In the following we derive a se-
quence of lemmas containing more and more strict conditions on definable
intervals of indiscernible sequence. We will prove that the U-classes of such
an indiscernible sequence are not affected if we add a new element ¢ to U,
i.e., every U-class is also a (U U {c})-class. The main result of this section
states that, if the structure in question does not admit coding, then we can
extend each indiscernible sequence (a”),er to cover every given set, i.e., we
can find an indiscernible sequence (BV)VG 7 with b¥ 2 @", for v € I, such that
b[J] contains the given set. As a consequence it follows that every structure
without coding has a basically linear structure.

Note that the result obviously fails for arbitrary structures. For instance,
if (dx)xcw and (b;) <, witness the independence property, then we cannot
extend (b;); to include the element As)-
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2.3 Indiscernibles and coding

Let us start with a simple example that illuminates the general structure
of the more involved arguments below. Given two indiscernible sequences
(a”)yer and (b")ye with certain additional properties, we construct a family
(¢*")u,ver and a definable bijection (ay, b,) — c*’.

Lemma 2.3.1. Let (a")yez and (b")yez be sequences such that (a”), is in-
discernible over U U b[Z] and (b"), is indiscernible over U U a[Z]. If there
exist an element c, formulae ¢(x, y) and y(x, y) over U, and relations p, o €
{=,#,<,2,<,>} such that

MEe @(a’,c) iff vpo
and Mey(b’',c) if voo,

then M admits coding.
Proof. Let my; be an U-automorphism such that
m(a’) =a" and 7y (b") = b"*,
and set ¢*' := 7y (c). It follows that
MEp(a’, ") ff Mee(a">,c)
iff v-spo iff wvps,
and similarly
Me (b, ) iff vot.

Let A:={a"|vel}andB:={b"|v el}. We can construct formulae
x(x, y) and 9(x, y) such that

MeE x(c™, Y iff us=s,
Me (™, ™) iff v=t,
by setting
x(xy) = (V2.A2)[9(2 x) < ¢(2,7)],
9(x,y) = (V2.B2)[y(2,x) < y(z,7)].
By Lemma 2.2.2 it follows that 9 admits coding. O

The following criterion for coding appears in [46]. For the readers conve-
nience, we repeat its proof.

Lemma 2.3.2 (Shelah). Let (a")yer be an infinite indiscernible sequence over
U. Suppose that there exists a U-class p, an element ¢ € M, a formula y over U,
and indices s < t such that
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2 Coding and indiscernibles

o MeEy(c,alpa'lp),
o ME -y(c,a’ly, a’|p) for infinitely many v > t,
o ME -y(c,a’|p, a’ly) for infinitely many v < s.
Then O admits coding.
Proof. Replacing the sequence (4" ), by (a"|,), we may assume that "|, =
a’. Hence, we can omit p. Furthermore, by considering a suitable subse-
quence we may assume that
Me-y(c,a*,a"), forallv>t,
M e -y(c,a’,a'), forallv<s.

Finally, we may assume by compactness that I = R. By Theorem 2.1.19, there
exists a formula y(x) with monadic parameters such that

MeE y(b) iff b=a"forsomevel.
Replacing y by the formula

V' (x,y,2) =373 [x(yj') A x(22) Ay(x, yi 22)]

we can assume that a" = a" is a singleton.

For each pair u < v, fix an order isomorphism a,,, : [ - I with a(s) = u
and «(t) = v and let 7,,, be a U-automorphism such that 7, (a*) = a**),
for x € I. We set ¢ := my,(c). To simplify notation, we set ys[u,v] =
v(c*, a*, a”). By Ramsey’s theorem and compactness, we may assume that

M= yor[u, s] < yoe[u', s]
M= yor[u, t] < you', 1]
M = Yoe[s, u] < yols, o]
M E ot u] < yolt,u
M e yor[u,v] < yalu',v']

for all s, t,u,v,u’,v' with s < t such that s, t,u,v and s, t, u’,v' have the
same order type.

(A) First, we consider the case that there exists some infinite subset J € I
and a formula #(x, y; a”) such that

Men(a“,a";a”) ff u<wv forallu,ve].
For fixed s, t € ] we partition ] = Jo U --- U ], where

Jo={vel|v<s}, L={s}, L={vells<v<t},
Jy=At}, Jy={ve]lv>t}.
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2.3 Indiscernibles and coding

The sets A’ := {a" | v € J; }, i < 5, are definable from a° and a’ using the
formula # and the parameters a” and A := { a” | v € J }. Let p'(x; a*, a’) be
the formula defining them. We define

I(x,y,2) = Ay NAz A n(y,z;a")
A N VYV [ (5 y.2) A pH(s3.2) > 9ik(x, ¥ 2]

i,k<s

where

9 {t/f(x,y',z’) it M = yo[u,v]forallueJ;, veJy,
ik =

-v(x,y,2") fME -yy[u,v]forallue];, veJy.

Again, we write 9y [u, v] := 9(c™, a%, a").
Then M E 4[5, t]. For all s, t € ] with s < £, we record whether,

M = st[So> to] A 9st[s1, 1]  implies s, =s;and t, = t,,

for so, 81, to, £ € J.

If there exists an infinite subset J' € J such that this is the case for all
s,t €] then, by taking every other element of J ! we obtain an infinite subset
J"" < J' such that 9(x, y, z) defines the function ¢** ~ (a°, a') for s € J/ and
t e ]! where J[' U " = J" is a partition with J) < J" and |[J/],|J/'| > Ro.

Otherwise, there exists an infinite subset J' € J such that, for all s, ¢ €
J', the above condition does not hold. Fix s,t € J' and let so, s,, to, t; be
counterexamples. By symmetry, we may assume that ¢, < ¢,. That is, we have
So < to < t,and s, < t,. For arbitrary indices u,, v, € J with s, < u, < v, we
can find uy, v, € J with max {s,, £, } < u, < v; such that u,, vo, t; and uy, v;, t;
have the same order type.

M = O[5y, t, | implies that

M = V/St[ula Vl] AN V’St[l’lo’ Vo] s

and M = 9y¢[so, to ] implies, for t, < u, < v,, that

M = Wst[ula Vl] AN 1//st[u2; Vz] .

Thus, the truth value of vy [u,v] is the same for all v > u > s,. This is a
property of ¢* "and s, which fails for any s’ < s, since M E Yy [s;, 1, but M =
—~Vst[$1,v] for v > t,. Hence, a® and, therefore, a® are definable from c**. It
follows that we can define the bijection ¢* ~ (a°,a') fors € J. and t € ]!
where J) U J = ] is a partition as above.

(B) Now, suppose that no such set J € I exists. We consider five cases.

(1) M = y[v, t] for some/all v strictly between s and ¢. By indiscerni-
bility, we can assume that there are infinitely many elements less than ¢. By
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Ramsey’s Theorem, there is some infinite set L € J' := {v € [ | v < t } such
that (c**a")yer is w(x, y, a')-indiscernible. Since

Mey(c,a’,a') A-y(c",a’,a") fors,velL,s<v,
we have, fors,v e L,
Mey(ct,a,a') iff s<v.

That is, the sequences (c**)se and (a*)sez are of y(x, y, a’)-type <. Hence,
by Lemma 2.1.2, there exists a formula p such that

MEp(bsa’) iff b=c"a forsomesel,
and we can order (a*)se by the formula

No(x, y3a') = Fzlp(z.xsa') A (2, y,a")].

Since |L| > R, this contradicts our assumption.

(2) Similarly, if (1) does not hold and 9 & yy[v, t] for some/all v > t,
then we can choose s such that there are infinitely many elements above s
and we find some infinite set L € {v € I | v > s} such that (¢™a")yer is
v(x, a’, y)-indiscernible. Since

Mey(ct,a’,a’) n-y(c”,a’,a) fort,velL, t<v,

we can order (a”),e; and obtain a contradiction as above.

(3) If M E yy[s,v] for some s < v < t then we obtain a contradiction
analogously to (1).

(4) If (3) does not hold and 9 & y[s, v] for v < s, then we can argue as
in (2).

(5) Let J € I be a dense and co-dense subset of I. As the above cases can
not occur, if s, f € I, s < t, then s is the unique index v # ¢ with 9 = v [v, t]
and ¢t is the unique v # s with 9 & yy[s, v]. We claim that (s, t) is the only
pair of indices in J with these properties. Hence, we can use ¢*' to code the
pair (a°, a') by the formula

9(x,y,2) = (V" A ) (w(x,y',2) & y' = y)
AN (V2 AZ ) (w(x,y,7) < 7 =2),

where A:={a"|ve]}.

To prove our claim suppose that ] contains another pair (s’, ) of such
indices. Since between any two elements of ] there is another one of I, we
can find some s” € I such that s”" # s" and the order types of s, t,s’, t and
s, 1,8, 1" are the same. By indiscernibility, it follows that 9 = yg[s, ']
implies M = yy[s”, '] in contradiction to the uniqueness of s’. O
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2.3 Indiscernibles and coding

In the preceding lemma we have considered the case that the truth value
of ¢ changes if we move the index v outside the interval [s, t]. The next
lemma states a dual version of this result where we consider instead indices
ve(s,t).

Lemma2.3.3. Let (a")yes be an infinite indiscernible sequence over U. If there
exist an element ¢, a U-class p, a formula ¢, and indices s < t such that

M= p(c,a’ly) Ag(c,a'lp),
M e -¢(c,a’l,), forinfinitely manys <v <t,

then 9 admits coding.

Proof. W.l.o.g. assume that 4"|, = 4. By Ramsey’s theorem and compact-
ness, we may assume that I = R and

Me-p(c,a’), foralls<v<t,
Meo(c,a”) < ¢(c,a”), forallu,v<s,
Meo(c,a”) < ¢(c,a”), forallu,v>t.

For u < v, fix an order isomorphism a,,, : I — I with a(s) = uand a(t) = v
and let 71,,, be an U-automorphism such that 7, (a*) = a*() We set ¢ :=
7ty (¢). Fix a partition I = I, W, into infinite sets I, and I, with I, < I, s € I,
and t € I,.

First, consider the case that 0t = ¢(c¢, a”), for all v < s. We can define the
order of (a@")ye1, by

9(%,7) = (V2.C2)[9(2.%) » 9(2.7)],

where C := {¢" | u € I,, v € I, }. Let y(x) be a formula with monadic
parameters such that

M x(b) implies b=a", forsomevel,.
For the formula
W(55) 1= 9(2,%) AV ITK() A 95 7) > (2 7)]
we have
[w(c®,a")]ver = [@(c™, @) ]ver ~ (—00,5), forsel,andtel,.

Similarly, if 9 & ¢(c*,a"), for all v > ¢, then we can construct a for-
mula y such that

[w(c™, @) lver = [9(c™, @) ver \ (£, 00) .
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Consequently, we can assume that
le(c*,a")]y = {s,t}, forallsel,andtel,.
Forall s,u € I, and t, v € I,, it follows that
Mep(c,a")ne(ct,a") if u=sandv=t.
Let x(%) be a formula with monadic parameters such that
M e y(b) implies b=a", forsomevel,.
It follows that the formula

y(x, y,2) = 3% [X(x2") A x(3") 7 9(2,x57) A 9(2, 771 -
defines the bijection (a%, al) — ¢**,foru e I, and v € I,. O

For sequences (a"), with a single U-class, it follows that, in the absence
of coding, the structure of sets of the form [¢(c, a”)], is quite simple.

Corollary 2.3.4. Suppose that I does not admit coding and let (a")ye be
an indiscernible sequence over U where the order I has no minimal and no
maximal element.

For every U-class p, each element c, and all formulae ¢(x, ) over U, one
of the following cases holds:

o [lo(e.a"lp)]] <1

¢ [[-o(c.a"lp)]] <1

¢ [o(c,a"|p)]y is an initial segment of 1.
¢ [o(c,a"|p)]y is a final segment of I.

Proof. We simplify notation by setting [¢] := [¢(c,a"|,)], and similarly
for [-¢]. Suppose that [¢] and [-¢] both contain at least two elements.
We consider three cases.

(a) Suppose that, for every v € I there are elements u, 1’ € [¢] with u <
v <u'. We fix indices s, t € [-¢] with s < t. The formula

¥(2.%,7) = ~9(2,%) A =9(2,7)

and theindices s < ¢ satisfy the conditions of Lemma 2.3.2. Hence, 9t admits
coding. A contradiction.

(b) If, for every v € I, there are elements u, u' e [-p]withu <v < u' then
we obtain a contradiction as in (a) by exchanging ¢ and —¢.

(c) It follows that there are indices s < t such that either

(-00,s) c[¢] and (t,00)c[-9¢],
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2.3 Indiscernibles and coding

or (-o0,s)S[-¢] and (t,00)C<[e].

By symmetry, we may assume the former. If s = ¢ then we are done.

For a contradiction, suppose that there are elements s < u < v < t with
u € [-¢]andv € [¢]. By indiscernibility and compactness, we may assume
that I is dense. If (u, v) N[ ¢] is infinite then ~¢ and the pair u < t satisfy the
conditions of Lemma 2.3.3. Otherwise, (u,v) N [-¢] is infinite and ¢ and
the pair s < v satisfy these conditions. In both cases it follows that 9t admits
coding. Contradiction. O

Remark. If the order I in the corollary is (Dedekind) complete then we can
rephrase the statement as follows: there exists an index s € I and a relation
o€{d,Ix1I,=,+#7<,><,>} such that

Meo(c,a’l,) iff vos.

In the remainder of this section we generalise this result. We start by con-
sidering formulae ¢ (¢, a[7]) talking about several elements of the sequence.
Then we generalise the results to the case of several U-classes.

Lemma 2.3.5. Suppose that 9 does not admit coding. Let (a”)yer be an in-
discernible sequence over U and p a U-class. For every element ¢ € M, there
exists a linear order ] 2 I, an element s € ], and an indiscernible sequence
(b")vey over U such that b” = @"|,, for v € I, and

M = ¢(c, b[a]) < ¢(c, b[7]),
for every formula ¢ over U and all indices &1, v € ] with ord(si1) = ord(sv).

Proof. Replacing a” by a"|, we may assume that p is the only U-class. Let
J be a (Dedekind) complete dense order extending I and let (b"),¢; be an
indiscernible sequence extending (a”)yer.

If (b"), is indiscernible over U u {c} then there is nothing to do. Other-
wise, there are a formula ¢ and tuples @, v € J with ord(#) = ord(7) such
that

M E o(c, bli]) A -p(c, b[7]).

We can choose @ and v such that there is exactly one index i with u; # v;.
Hence, we may assume w.l.o.g. that it = u7°7' and v = v#°#' where

(o)

ro <o <1y

1 1
o o SUSY<Tg <o <1,

Fix the interval J, := (r5,_,,75) € J. The sequence (b")yej, is indiscernible
over U U b[7°7']. We can apply Corollary 2.3.4 to the element ¢ and the
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sequence (b"),¢j, to find an index s € J, and a relation o € {=, #, <, <} such
that

Me o(c,b*,b[7°F']) if xos, forallxe],.

We claim that s is the desired index.
Suppose otherwise. Then there is some formula ¥ and indices &, v ¢ ]
with ord(s@t) = ord(sv) such that

M i y(c., b[a]) A -y(c, B[7]).

Again we may assume that & = u7*#* and v = vi*r® with ry <. <77, <

u<v<ry <<, Let] = (r},_,r}) € J. Asabove there is some

index t € J; and some p € {=, #, <, <} such that
Mey(c,b*,b[P]) iff xpt.

ord(su) = ord(sv) and u < t < v implies that t # s. Hence, there exist
infinite convex subsets I, € J, and I, € J, with s € I, and t € I, such that
I,nI, = @, 7°F' nI, = g,and 7*7* NI, = &. Furthermore, there are formulae
¢'(x, ¥) and ¥/ (x, y) with monadic parameters such that

ME¢'(c,b”) iff «x=s5, forall x € I,
Mey'(c,b") iff x=t, forall x € I,.

For u € I, and v € I, fix order isomorphisms o, : [, > Ioand 8, : I, = I,
with a,(s) = u and 3, (t) = v. Let m,, be a U-automorphism such that

Ty (b°) = pou(x) forx el,,
Ty (0%) = bPY ) forxel,,
Ty (b)) = b* forxeJ~(I,ul,),

and set ¢* := m,,(c). For u,s € I, and v, t € I, it follows that
ME @ (™, 0°) Ay (¢, b)) iff u=sandv=t.
Contradiction. O

Lemma 2.3.6. Suppose that 9 does not admit coding. Let (a")ye; be an in-
discernible sequence over U, ¢ € M an element, ¢(z,x°,...,x™ ") a formula
over U, and p a U-class. Set

ol 7] = 9(c, @ [ps ., @ ).

If there are indices i1, v € I'"* such that

M= g[c,u] A-¢[c, 7]
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then there either exists a formula 9(x, y) (with monadic parameters) such
that

M= 9(a”

p @) iff x<y,
or there exist an index s € I such that equ(sx) = equ(sy) implies

ME ¢lc,x] < ¢[c,7].

Proof. By Lemma 2.3.5, there is an index s such that the truth value of [ ¢, X |
only depends on ord(sx). Suppose that there are indices @, 7 € I"™ with
equ(sit) = equ(sv) and

M e o[c,u] A-¢[c,V].
We construct a formula 9 that defines the ordering of I. By adding unused
variables to ¢ we may assume that s € . Furthermore, by changing ¢ we

may assume that u; # uy and v; # vy, for i # k. Let k be the minimal index
such that

ME @[, Voo Villiy .- Um].
Since
M E @[, Voo Vi UgUgpy - Um—i ]
AN=@[C, Voo Vi Vilggy - - Um—1 ]

we may assume that there is some index k such that u; = v;, for i # k. WlLo.g.
assume that k = o and that u, < v,. Since ord(#) # ord(¥) there must be
at least one index k > o with u, < uy < v,. By a similar argument as above
we may assume that there is exactly one such index. Hence, we may assume
that

U =utror, and v =vitr,7;, wherefo <u<t<v<r.

We consider two cases.
(a) Suppose that t + s. Then equ(sit) = equ(s¥) implies that s € 7,7;.
Since ord(vuf,#,) = ord(vt#,7,) it follows that

M = ¢[c, uvior, ] A —[c, vufot,] .

Fix a linear order J 2 I and a strictly increasing function « : I — ] such
that a(7) < I < a(#,). Let (b"),¢; be an indiscernible sequence extending
(@")yer and fix a U-automorphism 7 such that 7(a*) = b**). We set d :=
n(c). For x, y € [ with x # y it follows that

Me o[d, xya(io)a(r)] iff x<y.
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Hence, we can define
9(x,7):=%=jvo(dxjbla(foh)]).
(b) It remains to consider the case that ¢ = s. Then we have
M = @[c, ustoly | A —@[c, vstoh].

Fix a linear order ] 2 I, tuples wo, w, € J with w, < I < Wy, and an indis-
cernible sequence (b"),¢; extending (a")ye;. For each t € I, let ay : I —
J be an order embedding such that a;(s7,7,) = twow, and choose a U-
automorphism 7; with 7(a*) = b**). Setting ¢' = m,(c) it follows, for
x # t, that

ME o[c!, xtwow,]  iff  x<t.
By Theorem 2.1.19, there is a formula y (with monadic parameters) such that
MeE x(c,a) iff a=a"andc=c", forsomexel.
If we define
9(%,7) =% =yvIz(x(z7) A p(2 %, 7, b[wewn]))
it follows that
MeI(a“,a’) iff x<y. O

Next we consider the case that there are several U-classes. The following
lemma roughly states that, when adding an element ¢ to U, the partition
into U-classes does not change.

Lemma 2.3.7. Let (a")ye; be an infinite indiscernible sequence over U, ¢ €

M be an element, ¢(z,x°,...,x™ ") a formula over U, and let po, ..., Pr_,
be the U-classes corresponding to the variables in x°,...,x™ . For indices
Voseves Vg € I™, we set

@[ V05 s Vkoy] =

o o m—1 m—1
37|, - @] " p, ... a5 p, )
o k-1 o k-1
q)(c,a P A P A P Al PO I8
o 1 2 3
Vo Vo Vo Vo Vo
o 1 2 3 v
Vi vy Vi vy vy
o 1 2 3 Y,
v, vV, Vs 129 V2
o 1 2 3 Y,
V3 Vs v3 ‘ v3 Vs
x° x! x* x3
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If there are indices i, Uy, Vo, . - ., Vk_, € I such that ord(i;) = ord(v;), for
i<2,and

M E @[c, Vo, V1s Vas e v Vs ]
M = —@[c,lo, Vi Vay - - Vir]
M = —@[c, Vo, tyy Vay - -+ Vi)

then 9 admits coding.

Proof. For a contradiction, suppose that 9t does not admit coding. Since
(@"|poup, )v is indiscernible over U U aly,u..up,_, [I] we may w.l.o.g. assume
that k = 2. Further, note that the sequence (a"|, ), is indiscernible over
Uualp,[I].

For fixed j € I", there are two cases. The truth value of ¢[c, x, ] might
only depend on ord(x). Otherwise, we may assume, by Lemma 2.3.5, that
there exists a unique index s( ) such that the truth value of ¢[¢, %, ] only
depends on ord(xs(7)). Similarly, if, for x € I'"*, ¢[ ¢, %, ] depends on more
that just ord(y) then there exists a unique index #(x) such that the truth
value of ¢[¢, %, ] only depends on ord(yt(x)).

By compactness, we may assume that I = R. For every pair of order auto-
morphisms «, f: I — I, fix a U-automorphism Top such that

Tap(@'lp,) = 3*p,
ﬂaﬂ(dV|P1) = dﬁ(V)|P1 *
First, we prove that we have s(7) = s(3'), for all y, " € I'"" such that s(y)
and s(j') are defined. For a contradiction, suppose that s(7) < s(3"). For
u <vinlletay, : I > I bean order isomorphism such that a,, (s(9)) = u

and o, (s(9')) = v,and set ¢’ := 7, ;q(c). We construct formulae y/(z, )
and ¥/ (z, x) (with monadic parameters) such that

Mevy(c,aly,) iff v=s(y),
and MEvy'(c,a"lp,) iff v=s().
Let xp, be the formula from Theorem 2.1.19 defining the relation { a"|p, |

v € I'}. If the linear ordering on the sequence (a"|p, )yer is definable by a
formula over U u {c} U a|p,u..up,,_, [I] then we can define y(z, x) by

Xpo (B) AV V™ Y50 Yy

[ A Gtoo () A 25, (7))

Aord(xa®...a" ™) = ord(%9°... ")

> (9 (200 @) o ¢ (2,3°,, 7))
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mfl)

where ¢'(z,x°,...,% is an abbreviation for

(e, 5, @l 27 @5, ).

If the ordering is not definable then it follows by Lemma 2.3.6 that the truth
value of ¢[c, i1, 7] only depends on equ(sit). In this case we can replace the
condition ord(x#°...) = ord(x¥°...) in the above formula by the formula

m—

equ(xua®...a" ") =equ(xv...v").

The formula y/(z, %) is defined analogously. It follows that
MEy(c™,a"p,) Ay (™, d]p,) iff x=uandy=v.

Fixing disjoint intervals I,,, I, € I with I, < I, we obtain a definable bijection
alp, [Io] x alp,[I,] = { " | u € I, v € I, }. Contradiction.

In the same way it follows that () = #(x") if these values are defined. By
assumption, there are indices x := v, and y := ¥, such that s(y) and #(x)
are defined. Let us denote these values by s and ¢. As above we can construct
formulae 9,(z, x) and 9,(z, ) such that

Me Ip(c,a"p,) iff x=s,
and M e 9 (c,a’lp,) iff y=t.

For u,v € I, Let ay, B, : I — I be order isomorphisms such that a,(s) = u
and f3,(t) = v, and set ¢*" := 7, g, . It follows that

M e 9o(c™,a"]p,) AN (c™,ap,) ff x=wuandy=v.
Consequently, 9t admits coding. g

Lemma 2.3.8. Suppose that M does not admit coding. Let (a*)yer be an indis-
cernible sequence over U. For every element ¢ such that (a"), is not indiscern-
ible over U U {c}, there exist a linear order ] 2 I, an indiscernible sequence
(b")yey with b¥ = @, for v € I, and a unique index s € J such that

M = g(c, bla]) < ¢(c, b[7]),
for all formulae ¢ over U and all tuples &1, v € ] with ord(sii) = ord(sv).

Proof. Let a := |a"|. By Lemma 2.3.7, there is a U-class p such that the se-
quence (a"|q+p)y is indiscernible over U u al,[I] U {c}. Furthermore, by
Lemma 2.3.5 there exists a linear order J 2 I, an indiscernible sequence
(I;”)VE] with b¥ = @, for v € I, and an index s € J such that

M = ¢(c, blp[a]) < (e, blp[7])
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2.3 Indiscernibles and coding

for all formulae ¢ over U U b4 ,[J] and all indices i, 7 € J with ord(sit) =
ord(sv). It follows that

M = g(c, b[u]) < ¢(c, b[7]),

for all formulae ¢ over U and all indices @, v € J with ord(siz) = ord(sv).
U

It follows that we can generalise Corollary 2.3.4 to sequences with several
U-classes.

Corollary 2.3.9. Suppose that I does not admit coding and let (a")ye; be
an indiscernible sequence over U where the order I has no minimal and no
maximal element.

For each element ¢ and all formulae ¢(x, y) over U, one of the following
cases holds:

. ‘[[go(c, c'l")}M <1
¢ [[-¢(c.a")]y| <1
¢ [o(c,a")]y is an initial segment of I.

¢ [o(c,a")]y is a final segment of I.

Combining the preceding lemmas we finally obtain the main result of
this section. The next theorem states that we can extend each indiscernible
sequence to cover every given element.

Theorem 2.3.10. Suppose that I does not admit coding. Let (a")yer be an
indiscernible sequence over U. For every element c, there exist a linear order
J 2 I and an indiscernible sequence (b"c"),e; over U such that b¥ = @", for
vel, andc = c', for somev € J.

Proof. Wl.o.g. assume that I is infinite and (Dedekind) complete. If (a"), is
indiscernible over ¢ then we can set ¢ := ¢, for all v. Otherwise, it follows by
Lemma 2.3.8 that there exist a linear order ] 2 I, an indiscernible sequence
(b¥)yey with b = @, for v € I, and a unique index s € J such that

M = g(c, b[a]) < (e, b[7]),

for all formulae ¢ over U and all tuples i, v C J such that ord(siz) = ord(sv).
Foru € J,leta, : J] - J be an order isomorphism with a,(s) = u. Choose
U-automorphisms 7, with 7, (6*) = b%(") and set ¢* := m,,(¢).
Let @ be the set of all formulae ¢(%, ) such that, for some infinite sub-
set J, € J, we have

M= @(b[i],c[@]), forall increasing sequences i € J, .

43
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For every formula ¢ we have ¢ € @ or ¢ € @, by Ramsey’s theorem. Fur-
thermore, @ is closed under entailment. Let ¥ € @ be a maximal consistent
subset of @. If there were a formula ¢ with ¢ ¢ ¥ and ~¢ ¢ ¥ then Yu{¢}
and Y U {-¢} were inconsistent. Hence, we would have ¥ £ —¢ and ¥ & ¢.
This implies that ¥ = ¢ A —¢ and ¥ is inconsistent. Contradiction.

It follows that ¥ is a complete type. Let (lA)"c”’)VE ;7 be a sequence realis-
ing ¥. Since tp(&*/U U (b"),) = tp(c/U u (b"),) there exists an U-isomor-
phism 7 with 7(¢&°) = ¢ and 7(b”) = b”, for all v € J. It follows that the
sequence (b"7(¢")), is the desired indiscernible sequence. O

By induction it follows that we can extend each indiscernible sequence to
cover every given set of elements.

Corollary 2.3.11. Suppose that O does not admit coding. Let (a”)yer be an
indiscernible sequence of a-tuples over U. For every set C C M, there exist a
linear order J 2 I and an indiscernible sequence (b")yej of B-tuples over U
with B > & such that C € b[J] and @" = b4, forv e L.

We conclude this section by an investigation of the U-partition of a se-
quence of the form (a"|n),, for an arbitrary set N € a. We start by general-
ising Lemma 2.3.7.

Lemma 2.3.12. Suppose that (a"c")yes is an infinite indiscernible sequence
over U and let P be the minimal U-partition for the sequence (a")yes. Let
¢(z,%°,...,Xx™") be a formula over U and let po, ..., px_, € P be the U-
classes corresponding to the variables in x°, ..., x™ ™. For t,vo,...,Vj_, € I",
we set

Ot Vor v vs Vs ] =
_ym=1

(P(C[i]) Elvu |p0 e évk’1|pk_l) N7 A |Po e dvk:l |Pk—1) .

If there are indices tio, iy, Vo, - - . » Vk_y, £ € I™ such that ord(#;) = ord(¥;),
fori <2, and

M= QL Vo, V15 Vs - - -5 Vs ]
M &= @[ E, dho, 1> V2 - . > Vi
M &= ~@[F, Vs ths V2 . . » Vs

then M admits coding.

Proof. Replacing U by U U alp,u..up,_,[I] we may assume that k = 2. By
assumption there are tuples i, 4, 4,, 1, € I such that

ord(it;) = ord(i}) = ord(¥;)
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2.3 Indiscernibles and coding

and

m = (P[_’ 1:[0,171] A _'¢[Z’a l:lga 1-/1] >
M &= @[t V0, i1, ] A —@[E, Vo, 1] .

As usual we may assume that #; and @} differ only in one component. Thus,
suppose that i1; = u;7; and @} = u}7;. Furthermore, we may assume that

[[ui,ui] Nt <1

since, if u; < tj < t; < u} then we can replace either u; or u} by some index
between f; and t;. Hence, suppose that there are indices k and [ such that

[uo,ullntc{ty} and [u,u/lnic{t;}.

Let a be an order isomorphism with a(¢;) = t;. W.l.o.g. suppose that k = o
and let f = t,#'. It follows that

M e pltoa(t), a(o), a(io)] A —p[toa(t), a(¥o), a(ii)] .-
Fix indices s_, s, such that
s- <uotpa(u)a(u)) <sy and (s_,sy)nt={to},

and set J := (s_,s;). The subsequence (a"),¢; is indiscernible over the set
V:=Uuall~ J]. Defining

¥(2, %o Jos 1 J1) = 9(2, c['], Xo» 1) A @(2, c[a(T')], Jos 1)
we obtain a formula over V such that

M e ylc, doa(io), ha(in)],
M = —ylc, il a(vo), mali)],
M = —y[c, doa(vo), ma(il)].

By Lemma 2.3.7 it follows that 9t admits coding. O

It follows that the A-dependence of two indices i and k is a ‘local” property
since it only depends on the sequence (a}aj )y, not on all of (a"),.

Theorem 2.3.13. Suppose that I does not admit coding. Let (a")yer be an
indiscernible sequence over U with |a"| = «, and let N C a. If P is the U-
partition of (a"), then the U-partition of (a"|n)vis{p N |peP}.
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2 Coding and indiscernibles

Proof. Itis sufficient to consider the case that N = a \ {n}. Then the general
case will follow by induction. Let P be the U-partition of (a"|y),. Consider
aformula ¢(z°%°,...,z™ '™ ™) over U where the variables z' correspond
to a’, while &’ correspond to @"|y. Let po,. .., px_; S N be the U-classes
appearing in the variables %’. By Lemma 2.3.12, it follows that, for every f €
I, there exists some class p; such that the truth value of ¢ only depends on
the class py, ie.,

b suUp " u

to =ul -ud -
ME g(awa®l|p,...a"% |y, ,...,ama% |, ...d

m-—1
tm—1 = Vo

‘—"P(aif’dvg\po---év’g’1|pkﬂ>---)an a" py...d"% |y, ),

for all indices @', 7' € I" with ord(&') = ord(¥'), for i < k, and @' = v
By indiscernibility, this index is the same for all ¢. It follows that the U-class

of n is either {n} or p; U {n}, while the other U-classes are pj;, j# . [

2.4 THE COMMUTATION ORDER

We have seen that the relation <y partitioning an indiscernible sequence
into its U-classes is well-behaved for structures that do not admit coding.
In this section we introduce a refinement of xy.

Definition 2.4.1. Suppose that (a"),e is an indiscernible sequence of «-
tuples over U. For sets p, g € « of indices, we define p <y q iff, for some/all
s < tin I, we have

tp(a’[pa’ly/U ual<s]ua[>t]) # tp(a’lpa’ly/Uval<s] ua[>t]).

[TT)
S

v (eoe | 000

For single indices i, k < a, we write i dy k instead of {i} Iy {k}.

Our aim in this section is to show that the relation <y linearly preorders
every U-class. We start by showing that the U-classes are exactly the con-
nected components of this relation. Recall that xy; is the equivalence rela-
tion associated with the U-classes.

Lemma 2.4.2. Let (a"), be an indiscernible sequence of a-tuples over U. For
i,k < a, we have

ixpk if idykorkdyi.
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2.4 'The commutation order

Proof. (<) follows immediately from the definition of Xy .
(=) Suppose that i ¢y k and k 4y i. We have to show that i %y k, i.e.,

tp(ai[a]ax[7]/U) = tp(a;[$]ar[¢]/U),

forall @, 7,5, t ¢ I with ord(i1) = ord(5) and ord(v) = ord(f). As usual we

only need to consider the case that # and v differ at only one component.

Hence, consider indices
U < < Uy KS K EL< Ve <o < V.

It is sufficient to show that

tp(a;[asv]ag[atv]/U) = tp(a;[asv]ax[asv]/U)
= tp(a;[atv]ar[asv]/U).

For the first equation, note that i 4y k implies

tp(ata,/U U a;[av] U ag[av]) = tp(aiay/U U a;[av] U ag[iv]).
Similarly, k 4y i implies that

tp(ajal/U v a;[av] v ap[av]) = tp(ajay/U v a;[av] v ax[av]),
as desired. O

Lemma 2.4.3. Let ("), be an indiscernible sequence over U.
(a) p <y qimplies that p, <y q, forall p, 2 pand q. 2 q.
(b) Ifptuqurandqdy rthenpuqdyr.

(c) Ifpuqdu randp 4y qthenp fiy quUr.

Proof. (a) follows immediately from the definition.
(b) For s < v < t, we have

tp(a’[pa’lqa’l,/U ual<s] ua[>t])
=tp(a'|pa’lqd’],/Uval<s]ua[>t]) (pgvqur)
=tp(a'|pa’|qa’|/U v al[<s]ua[>t]) (q ¢u )
= tp(a’|,a"|,a’l,/U v al<s]ua[>t]) (p tuq)
=tp(a'|pa’lyd’l,/Uva[<s]ual>t]),

as desired.
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2 Coding and indiscernibles

(c) For s < v < t, we have

tp(a’lpa’lqa’ly /U ual<s] ua[>t])
=tp(a"|pa"|ya°|, /U v a[<s]ua[>t]) (puqdur)
= tp(a'|pa"|qa’], /U v a[<s]u a[>t]) (pfuq)
=tp(a'|,a’|y@’|-/Uva[<s]ual>t]), (qdur)

as desired. O

Lemma 2.4.4. Suppose that 9t does not admit coding and let (a")ye; be an
indiscernible sequence of a-tuples over U. Let p,q C aand i € a. If p 4y q

then p U{i} Au q or p fu qu {i}.
Proof. Wl.o.g. assume that I is dense. Fix s < t in I. Since p fiy g we have
tp(a'lpa’ly/Uval<s]ual>t]) = tp(a’pa’ly/Uual<s]ual>t]).
Hence, there exists an element ¢ € M such that
tp(a'|pa’lgc/U v als]ual>t])
=tp(a’|pa’lqa;/Uval<s]ual[>t]).

For a contradiction, suppose that pu{i} 4y g and p dy qu{i}. Then there
are formulae ¢(%, y,z) and y(x, ,z) over U U a[<s]u a[>t] such that, for
s<v <,

Me @@y, &lg,a1),  Mey(@]y,alg,ai),
M g(@’lp, @lga;), M y(a'lp,a’lg, a7) .

Let u, be the maximal index u < s such that an element of * appears in
¢ or y, and let u, be the minimal index &, > t appearing in ¢ or y. Then

M i ¢(a'ly,d’lg,a;) implies M & (a°|p, "]y, a})
foru, <v<s.
Setting y := ¢ A v it follows that
M x(@lp, @l a)
M e x(a"|p, a'lg aj) fors<v<u,
M e x(a’|p, a’lg aj) foru, <v<s.

By choice of ¢ this implies that

M y(a'y, algrc),
M x(a’|p,a’lgc) s fort<v<u,,
M y(a'p,a’lg- ), foru, <v<s.

Therefore, we can use Lemma 2.3.2 to conclude that 9t admits coding. Con-
tradiction. ]
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2.4 'The commutation order

Corollary 2.4.5. Suppose that I does not admit coding and let (a"), be an
indiscernible sequence of a-tuples over U.

(a) pdy iy qimplies p 4y q, for p,q S aand i € a.

(b) dy linearly preorders every U-class.

Proof. (a) Suppose that p gy g. Then we have pu {i} fy gor p gy qu {i},
by Lemma 2.4.4. In the former case, it follows by monotonicity that i 4y ¢q
while in the latter case we have p 4y i.

(b) <y is clearly reflexive. In (a) we have shown that it is transitive. Hence,
dy is a preorder. To show that it is linear on each U-class note that i <y k
implies i dy k or k y i. O

Corollary 2.4.6. Suppose that 9t does not admit coding and let (a”), be an
indiscernible sequence over U.

(a) pdu qifandonlyifi dy q, for some i € p.
(b) idy qifand only if i Qy k, for some k € q.
(c) p<u qifandonlyifidy k, for some i€ pandk € q.

Proof. (a) By monotonicity it follows that p 4y g implies i 4y ¢ for all
i € p. We prove the converse by induction on |p|. Suppose that pu {i} <y gq.
If p Qu q then the claim follows by induction hypothesis. Hence, we may
assume that p fy g. Since p U {i} dy q it follows by Lemma 2.4.4 that
p du qu{i}.If i fy g then we would have pu{i} fu ¢, by Lemma 2.4.3 (b).
Consequently, we have i 4y gq.

(b) The proof is analogous to (a). By monotonicity, i 4y q implies i dy k
for all k € q. We prove the converse by induction on |q|. Suppose that i <y
qu {k}.If i 4y q then the claim follows by induction hypothesis. Hence,
we may assume that i 4y g. By Lemma 2.4.4, it follows that {i, k} gy q. If
i 4y k then we would have i 4y qu {k}, by Lemma 2.4.3 (c). Consequently,
we have i <y k.

(c) follows immediately from (a) and (b). O

Since <y is a preorder on each xy-class it follows that we can divide each
U-class into the classes of this preorder which we call strong U-classes.

Definition 2.4.7. Suppose that (a"),s is an indiscernible sequence of «-
tuples over U. A strong U-class is an equivalence class for the relation

{{i,k)eaxa|idykandkdyi}.

We have shown above that every U-class is partitioned into one or several
strong U-classes that are linearly ordered by <. Sets of the form a"|,, for
a U-class p, will be the building blocks of the partition refinement we will
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construct in Section 2.6. To compute the width of the resulting partition
refinement we have to bound the type index ti} (a"|,/U u a[#v]) of such
sets. This will be done in the next theorem. Let us start with two technical
lemmas that are needed in its proof.

Lemma 2.4.8. Suppose that there are formulae ¢, Yy, and vy, monadic pa-
rameters P, and sequences (a")yer, (b")nens (¥ )vernens (€7 )ver, and d
satisfying the following conditions:

o The sequence (a”&"* (")) yer is indiscernible over (b™), U d.
¢ Iand N are infinite.

o There is some 0 € {=,#,<,>,<,>} such that
Me (b, &%, ¢*,d) iff iok.
o There are relations py € {=, <, >} such that
Meyp(ci,a’,d)  iff uppv.
* ME w;(cz*,a",d,f’) if wu=vw.
Then O admits coding.
Proof. Set

A:={a"|vel}, Cp={c |vel},
By:={bg|neN}, Ci={c¢"|neN},

and Cy = U, C{. The formula
9%(x,2) := Ax A \[Cizi A Vi (25, X, d, P)]
satisfies k
ME I (a,c) iff a=a"andc=¢"", forsomevel.
We also construct a formula ¢ such that
MeEyr(a,c) if a=a"andc=c}" forsomevelandneN.
If py equals = then we can simply set
Ui(x,2) = Ax A Crez Ay (2, X, d) .
Suppose that py € {<, >}. Defining

x(x,x") = Ax A AX" AVZ[Qz Ay (2, x,d) — i (2,x',d)],
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where Q := { ¢/° | v € I }, we obtain a formula such that

ME x(a,a’) iff a=a"anda'=a" forsomeu pyv.
Hence, we can set

Ui(x,2) = Ax A Crz AVX'[Ax = [x(x, x) < vi(z, %', d)]].

Let N* := Z + N + Z be the extension of the ordering N by two copies
of Z. By compactness, we can find extensions (6" ) ,en+ and (6"")yernen+ of
(b™), and (&'"),., that behave in the same way with respect to the formulae
vi and @. Wlo.g. assume that |b"| and |¢*"| are minimal. Then (b"&""),
forms a single ¢-class and, by Theorem 2.1.19, there exists a formula

n(j,2, ", b[m], " [m],B,C")

with parameters B, C", ¢, b™e,...,b™, "™, .., &"™ form € N* \ N,
such that

M e n(b,é ¢, b[m],c’[m],B,C")
if b=b"andé=2¢", forsomeneN.
Set P" := {¢/™ |vel}and

(o(x,2%,0) = Ax A 9" (x,27) A /\[PIZ""ufc A (e, ub)] .
k,i
Then we have

Me (o(a,c*e) iff a=a",c"=¢", ande=c"[m],
forsomevel.

Let 7i(x, 7,2, ¢"*, b[m], é'[m], B, C) be the formula obtained from 7 by re-
placing the parameter C} by the formula §/; and set

((x, 952,25, 1) = o (x, 25, i) A (X, 3, 2,25, b[m], @, B, C).
Then it follows that

Me ((a,b,é,¢*8) if a=a",b=b", c=¢", ¢ =¢", and

Consequently, we have
M = 35'32'3z°3al(a, b, ¢z, 2%, 0)
if a=a",b=0by,andc=c.", forsomevelandneN,

and 9t admits coding. O
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Lemma 2.4.9. Suppose that there are sequences d, (a")yer, (b")n<w> and
("™ )yel,n<w and a formula ¢ satisfying the following conditions:

*

(a” ("™ )yer is indiscernible over (b™), U d.

I is dense and it has no least element and no greatest one.

*

*

There is some p € {=,<, >} such that

ME p(a*,b",c"",d) iff upv.

L 4

There are relations 0, € {=,<,>}and o_, 0, € {@,IxI,=,#,<,>,<,>}
such that

Me g(a’,bF, ¢, d)  iff koon,
Me g(a, b5, ¢, d) if ko_n, foru<v,
Me g(a*, b5, ", d) iff koon, foru>v.

Then M admits coding.
Proof. We start by constructing a formula y such that
M e y(a’,b",c") and M y(a*, b5, ™) foru+v.

LetA:={a"|vel},C°:={C"|vel},andC:={c""|vel, n<w}.If
p equals = then we can set

v(x, 7,2) = VX' (Ax" - ((x, §,z,d) < x" = x)).

Clearly, we have 90 = y(a’, b", &™) and, by indiscernibility, it follows that
M y(a", bk, ¢'), forall u + v.
For p € {<, >}, we define

y(x,x") = Ax A Ax" AVZ[COzZ A (X', 0%, 2,d) - ¢(x,b° 2,d)].
This formula satisfies

MEI(a,a’) if a=a"anda’ =a"forsomeupv.
Hence, we can obtain the desired formula y by setting

y(x, 7o2) = Vo [Ax" > (9(x', jo 2 d) < 9(x', x))].

Again, by indiscernibility, we have 90 # y(a¥, b¥, &), for all u # v.
If we can show that the constructed formula y satisfies

M y(a’, l_ak,cV”) forallk # n,
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then it follows that

DJlew(a”,Bk,cV”) if u=vandk=n,
and 21 admits coding. Hence, suppose that

M = y(a’, bk, ™) forsome k < n.

Then o, = <. Fix some s € I. W.Lo.g. assume that |b"| is minimal. Then we
can use Theorem 2.1.19 to find a formula #( y, z) (with monadic parameters)
such that

M = ﬂ(i?,C) if b=>b"andc=c", for somen.
Defining

9(3,5") = 3zn(3,2) A 3zn(§',2) A V2(n(3',2) > n(3,2))
we obtain a formula such that

Me9(b,b') iff b=bFandb’ =b", forsomek <n.

If we define

(o(x,§,2) == Ax A Cz A 3Z'3(§,2') Ay(x, 3, 2),
((x,352) = Lo(x, 72 2) A VG [Go(x, 7', 2) = (55 )]

then we have

iml:((a,l_a,c) if a=a’,b=0b", andc=c"",

forsomevelandn< w.

Again, 9t admits coding.
The remaining case that 0 £ y(a”, bk, c'™), for some k > n, is handled
symmetrically. O

Theorem 2.4.10. Suppose that (a")ye is a proper infinite indiscernible se-
quence over U and let A be a set of formulae (over @) such that 24l <
where x := |Z| + R, is the number of first-order formulae over the signature X.
If there exist a U-class p, an index v € I, and a number n < w such that

t1(a'],/U U a[#v]) > &

then 9 admits coding.
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Proof. By compactness, we may assume that I is dense without endpoints.
Fix n-tuples ¢"* ¢ @”|,, for i < k" such that

tp, (& /U a[#v]) = tp, (/U U a[#v]), fori+k.

Choose some element d¥ € @"|, and indices s < v < t in I. To simplify
notation we set W := U U a[<s] U a[>t]. By indiscernibility, we have

tp,(&" /W) #tp, (¥ /W), fori+k.

For every s < u < t,let a0, : I — I be an order isomorphism such that
ay(v) =uand a,(x) = x, for x < s or x > t. Let 71, be a U-automorphism
such that 7, (a*) = %) forall x € I. Fors < u < t, set ¢%! := ﬂu(c"’i) and
da* :=m,(d").

By Lemma 2.4.2, all indices in the U-class p are related via <. Hence,
we can find, for every i < x* and all k < 7, a formula v} (x, ,Z), a tuple
¢, € W, and a relation p; € {=,<,>} such that

Me vy (i d,er) iff uppv.

By choice of « there exists a subset J € x* of size |J| = x* such that y] = 1//,l<
and p} = p]l(, for all i,] € J. We denote this formula by y; and the corre-
sponding relation by py.

We can use Lemma 2.1.5 to find an infinite subset ], € ], a formula ¢ € A,
and parameters bie W™ forie Jo, such that

M e (b, &) o ~g(b',&*), fori<kin],.

By Ramsey’s theorem, there exists an infinite subset ], € ], and a relation
o € {=,#,<,>} such that

Me (b, %) iff iok,

for i,k € J,. There is a ¢-class H € [m + n] of the sequence (b'¢"?); con-
taining indices j, ] with j < m and m < I < m + n. If we replace in b’ every
component bj with [ € [m] \ H by b9 and we replace in ¢"’ every compo-
nent ¢}’ with m + [ € [m + n] \ H by c° then we obtain two sequences that
still satisty

Me (b, &%) iff iok.

Therefore, we may assume that there are sequences (b');¢;, and (¢"?);¢;, and
tuples b, € W and ¢, € a”|, such that

i)ﬁl:go(éi,[)*,c'Vk,c'Z) if iock
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and the sequence (b’¢""); has a single ¢-class. To show that 9t admits cod-
ing we distinguish two cases.

First assume that, for every k, we can choose ¥ and ¢, such that ¢} =
&, forall i,] < w. Then the sequences (b')icj,, (8")yeries,» (€1)ver, and
(d")ver, and the tuple b.e; ...e; _, satisfy the conditions of Lemma 2.4.8.
Consequently, 9t admits coding.

It remains to consider the case that there is some k such that we cannot
choose the é,’; to be equal. Then we can find an infinite subset J, € J; and a

relation p € {=,#,<,>,<,>} such that, for all i, € J,, we have
Me (e d,e) iff ipl.

The sequences (¢}’ )verics,» (€1)ver> (€})ies,» and (d")yer satisfy the condi-
tions of Lemma 2.4.9. Hence, 901 admits coding. O

2.5 FINITE SATISFIABILITY

One way to extend the notion of a non-forking type to arbitrary theories
consists in considering finitely satisfiable types. Of course, many properties
of forking - like symmetry and locality - are lost in this transition. Fortu-
nately, sufficiently many basic properties remain to make the notion useful.
Except for a few minor lemmas and changes of presentation all of the defini-
tions and results in this section are taken from [46, 47, 48]. We include the
proofs for convenience.

Definition 2.5.1. (a) A type p is finitely satisfiable in a set A if, for every finite
subset p, C p, there exists a tuple a C A satistying p.

(b) Let u be an ultrafilter over A* and let U € M be a set of parameters.
The average type of u over U is

Av(u/U) = {(p(:’c,é) ‘ ccU, [¢(a,c)]aeca € u}.

Example. (a) Suppose that 9t = (M, E) is a structure where E is an equiva-
lence relation with infinitely many classes all of which are infinite. Let U ¢
V € Mbesetsand a € M\ V an element with E-class [a]. The type tp(a/V)
is finitely satisfiable in U if and only if

¢ [a]nV = @and U/E is infinite, or

¢ [a]nV = @and [a] n U is infinite.

(b) Let 9 = (M, <) be a dense linear order, U € V € M sets, and a €

M ~ V. The type tp(a/V) is finitely satisfiable in U if and only if, for all
v,v' € V withv < a <V, there is some u € U withv < u <v'.

The connection between average types and types that are finitely satisfi-
able is given by the following lemma.
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Lemma 2.5.2. (a) U € V implies Av(u/U) € Av(u/V).

(b) Let u be an ultrafilter over A* and U € M a set of parameters. Then
Av(u/U) is a complete a-type over U which is finitely satisfiable in A.

(c) For every partial a-type p over U which is finitely satisfiable in A, there
exists some ultrafilter u over A% such that p ¢ Av(u/U).

The next two lemmas summarise the basic properties of finitely satisfiable
types that hold without any stability assumption.

Definition 2.5.3. Let p be a type, A aset, and A ¢ FO. We say that p A-splits
over A if there are tuples bo, b, with tp, (bo/A) = tp,(b:/A) and a formula
¢(x;7) € Asuch that p £ ¢(X;b,) but p = - (%;b,).

Lemma 2.5.4. (a) Every a-type p over B which is finitely satisfiable in A can
be extended to a complete type q € S*(B) which is also finitely satisfiable in A.

(b) If tp,(Co/A U B) is finitely satisfiable in A and tp ,(C,/Au B U C,)
is finitely satisfiable in A U C, then tp,(Co, U C,/A U B) is finitely satisfiable
in A.

(¢) If p is finitely satisfiable in A then p does not A-split over A.

Proof. (a) Clearly, if (p;); is an increasing sequence of types that are finitely
satisfiable in A, then U; p; is also finitely satisfiable in A. Therefore, it is
sufficient to prove that, if ¢ € FO and b C B, either p, := p U {@(X,b)} or
p1 = pU {~¢(%,b)} is finitely satisfiable in A.

For a contradiction, suppose otherwise. Then there are finite sets g, € p,
and ¢, < p, thatare not satisfiable in A. g := (qo,Uqg,) Np is a finite subset of p
and, hence, realised by some tuple @ € A™. If M = ¢(d, b) then a realises g,
and, otherwise, it realises g,. Contradiction.

(b) Let ¢(%, y;d,b) € tp,(Co U C,/AUB) and let ¢, € C, and ¢, € C, be
the tuples corresponding to the variables x and j. Then

¢(éo» 730, b) €tp,(C,/AUBUC,)
and there is some d, € A with M = ¢(¢o, d;; d, b). Hence,
¢(%,dy;a,b) etp,(Co/AUB)

and there eixis:cs some d, € A with EDI E go(azo, d; c'l,_?)).
(c) Let bo, by be tuples with tp,(bo/A) = tp,(b:/A) and suppose that
p € Av(u/B) where b,, b, € B. If (X3 b, ) € p then

S:={acA|MEe(ab,)}eu.
By assumption, any 4 C A satisfies M = ¢(d;b,) <> ¢(a;b,). Hence,
S={acA|Meo(ab)}

which implies that ¢(%; b,) € Av(u/B). Therefore, ~¢(%;b,) ¢ p and p does
not A-split over A. O
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According to the preceding lemma the extension and transitivity prop-
erties of non-forking types generalise to finitely satisfiable types. In general,
finitely satisfiable extensions are not unique. In order to have a unique exten-
sion we need the additional requirement that in the set of parameters every
type is realised. This is statement (a) of the following lemma in the special
case that B = . Statement (b) contains the dual transitivity property which,
the notion of a finitely satisfiable type being non-symmetric, also only holds
under additional assumptions.

Lemma 2.5.5. Suppose that every type q € S3°(U) that is realised in V U A
is also realised in V' U B.

(a) If the types p; := tp,(BU ¢;/V U A), for i < 2, are finitely satisfiable
in U and tp(¢,/V U B) = tp(¢,/V U B), then po = ps.

(b) If tp,(CuB/V UA) and tp,(C/V U B) are finitely satisfiable in U
then soistp,(C/V U AU B).

Proof. (a) Suppose p, # p,. Then there exists a formula ¢ € A and tu-
plesb € B, @ € V U A such that 9 = ¢(b,éo;a) and M = —¢(b, & a).
By assumption we can choose tuples @’ € V u B such that tp,(a’/U) =
tp,(a/U). We have M = —¢(b, é,;a’) as, otherwise, p, would split over U.
Since po|vus = pilvus it follows that 90T = —¢(b, éo; @'). Thus, p, A-splits
over U in contradiction to Lemma 2.5.4 (¢).

(b) It is sufficient to prove the claim for all finite subsets ¢ € C. As the
type tp,(¢/V u B) is finitely satisfiable in U we can use Lemma 2.5.4 (a)
to find some tuple ¢’ realising tp,(¢/V U B) such that tp,(¢’/V u Au B)
is finitely satisfiable in U. Since tp,(B/V u A) is finitely satisfiable in U
Lemma 2.5.4 (b) implies that so is tp,(BU ¢’/V U A).

Hence, both tp,,(Bué’/VUA) and tp , (Bu¢/V UA) are finitely satisfiable
in U and we have tp(¢’/V u B) = tp(¢/V U B). By (a) it follows that these
types are equal. Thus, tp,(¢'/V U AuB) = tp,(¢/V U A U B). Since the
former is finitely satisfiable in U, so is the latter. O

The following theorem is one of the main tools to construct finitely satis-

fiable types.

Theorem 2.5.6 (Shelah). Let U C V be sets such that every type over U is
realised in V. If a € M* and b € MP are tuples such that tp(a/U) is finitely
satisfiable in U and tp(b/ V') is finitely satisfiable in V then there are a', b’ €
M such that

* tp,(a'/U) = tp,y(a/U),
* tp(b']V) = tpy(b]V),
o tp,(a@'/V ub') is finitely satisfiable in U, and
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o tp,(b'/V ua') is finitely satisfiable in V.
Proof. By Lemma 2.5.4 (a), we can extend the type tp(a/U) to a complete
type p(x) € S*(V) that is finitely satisfiable in U. Let a” realise p. Define
r=tp(b/V)uduv,
®:= {~¢(%;d",¢)|écV, and thereis no d € V such that
ME ¢(d;a”,é)},
,€) | ¢ €V, and there is no d ¢ U such that
M e y(b;d, )} .

-1

V= {-v(x;a

If I' is consistent, then there exists a type q(j;a") € S#(Vua”) with g 2 T.
Let r € S¥*F(V) be some type with r 2 p(%) U g(7; X ). Any realisation a’b’
of r satisfies the above conditions since tp(b’/V u a’) 2 T.

In order to prove the consistency of I' let I, € I' be finite and suppose that

Tontp(B/V) = {96(%,E0)s- > 9(%, &)} s
LnY={-yo(x;a",¢),...,~ws(x;a",¢)},

"

and Lon®@={-po(x;a",c)),....~pi(x;a",¢])}.

Since every type over U is realised in V we can find a tuple b*¢} ... ¢} ¢

V realising tp(bé,...c,/U). Note that M & -y (b*;d,;), for all d ¢
U, since, otherwise, we would have Ml & v, (b;d, ¢; ), which implies that
-y ¢ Y. Since tp(a”/V) is finitely satisfiable in U we, therefore, have
M E ﬁl//k(l_a*;d",éz). Finally, since ~¢i(%;a",¢)) € o) and b* c V, it
follows that M = - (b*;a", ¢;). Hence, the tuples a”, b*, ¢}, and ¢} re-
alise I,. O

The main focus of this section is on indiscernible sequences (a"), such
that, for every index v, the type tp(a”/U u a[<v]) is finitely satisfiable in U.
Such sequences can be thought of as an analogue of Morley sequences in
the unstable context.

Definition 2.5.7. Let U ¢ V be sets. A fan over U/V is an indiscernible
sequence (a”)yer over V such that, for all v € I, the type

tp(a’/V ual<v])

is finitely satisfiable in U.

Example. Consider the set Z x R with two binary relations
E:={((i,x),(i,y)) |i€Z, x,ye R},
<= {((i,x),(k,y))|x<y, i,keZ, x,yeR}.

Set U:=Zx (0,1)and V := Z x (—o0,1). For v € I := (1,00) C R, let " be
an enumeration of Z x {v}. The sequence (a"),¢; is a fan over U/V.
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Lemma 2.5.8 (Shelah [46]). Let (a")ye be a sequence of a-tuples and V a
set. If there exists an ultrafilter u over U such that

tp(a’/Vua[<v]) = Av(u/Vual<v]), forallvel,
then (a"), is indiscernible over V.

Proof. We prove by induction on # that

tp(a[s]/V) = tp(aft]/V),

for all strictly increasing sequences §, f € I". Let § = §'s,_,, = #'t,,_,, and
¢ ¢ V. By induction hypotheses it follows that

@(Xos ... Xn-13¢) €tp(a[s]/V)
it  {beU*|MEo(a[d'],b;¢)}eu
it  {beU*|MEo(a[f'],b;¢)}eu
it @(xo,...,%n-5¢) € tp(a[f]/V). O

A kind of converse to this lemma is given by the next result.

Lemma 2.5.9 (Shelah [46]). Let (a”)yer be an infinite proper indiscernible
sequence of a-tuples. We can find a model Mt ¢ M of size |[N| = |Z| + |a| + Ro,
where X is the signature in question, such that N is disjoint from a[I| and, for
every v € I, the type tp(a” /N U a[<v]) is finitely satisfiable in N.

Proof. LetJ:=IuU{u,|n< w}bealinear order extending I such that

YP< oo <Uy < <Uy <U <Uy, forallvel.

>

Extend (a")yes to an indiscernible sequence (a”),¢;. Let 9t be a model con-
taining (a")yey and let M* be an expansion of 9t by Skolem functions. Since
(a@”)yes is an infinite indiscernible sequence over N, := U<, @*" we can
choose the Skolem functions such that the Skolem hull of Ny, is disjoint from
a[I]. We claim that this Skolem hull induces the desired model .

To show that tp(a°/N u a[<s]) is finitely satisfiable in N, let us suppose
that

M e g(a’,alv],¢)
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where v, < -+ < v,_; < sareindices in I and ¢ € N. Fix Skolem terms  such
that ¢ = #(a%e, ..., a%), for some k. Since (a"),¢; is indiscernible it follows
that

M* = g(a’,alv], 1(a",...,a"))
implies
M* & p(a,a[v], i(a",...,a"%)).
Since g%+ € N we are done. O

For every tuple a we can create a fan (a"), containing d.

Lemma 2.5.10 (Shelah [48]). Let U ¢ V be sets and suppose that tp(a/U)
is finitely satisfiable in U. For every linear order I, there exists a fan (a")yer
over U/V such that tp(a*/U) = tp(a/U), for all v.

Proof. By compactness, it is sufficient to consider the case that I = w. Let
u be the ultrafilter such that tp(a/U) = Av(u/U). By induction on n, we
choose tuples a” such that

tp(a"/Vuac...a" ") = Av(u/V ua°...a" ™).
By Lemma 2.5.8 it follows that (4" )<, is a fan over U/ V. O

The following two observations seem to be new.

Lemma 2.5.11. For all disjoint sets A, U € M of size |U| = « and |A| > 2%,
there exists a set U, of size |U.| = k and elements a,b € A~ U, such that
tp(a/U. u {b}) is finitely satisfiable in UL.

Proof. Fixan enumeration (a');., of A. By the Theorem of Erd3s and Rado
we have (22°) — ((2)*)2. Since A > (2*")* and there are at most 2* 2-
types over U, we can therefore find a subset I € A of size |I| = (2*)" such
that,

tp(a'a¥/U) = tp(a’a' /U), foralli<kandj<linlI.

Fix indices s < ¢ in I. By compactness there exists an indiscernible sequence
(b")i<w over U such that

tp(b'bF/U) = tp(a®a’/U), foralli<k<w.

Using a suitable U-automorphism we may assume that b° = a® and b" = a'.
By Lemma 2.5.9 there exists a set U, € U of size |U, | = |U| that is disjoint
from b[w] and such that tp(b*/U, u {b°}) is finitely satisfiable in U,. [
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Lemma 2.5.12. Let (a"),es be a sequence of a-tuples and U C 'V sets such
that, for every v € I,

tp(a’/V ual<v])
is finitely satisfiable in U. If |I| > 22" then there exists a subset J I of size
]| = |I| such that the subsequence (a")yej is indiscernible over V.

Proof. By Lemma 2.5.2 (¢), there exist ultrafilters u,, for v € I, such that

tp(a’/Vua[<v]) = Av(u,/V ual<v]).

Since there are only 2" ultrafilters on U¥ it follows that there is a subset
J ¢ I of size |J| = |I| such that u, = u,, for all u,v € J. By Lemma 2.5.8 it
follows that (a")ye; is indiscernible over V. O

An important property of fans (a")ye; over U/V is the fact that, for every
tuple b ¢ a[I], the type tp(b/V') is determined by the types tp(b n a”/V),
forvel.

Lemma 2.5.13 (Shelah [46]). Let (a")yer be a fan over U/V. Suppose that
every type over U is realised in V. Let t1,v € I" be finite strictly increasing
tuple._s and s, t € I indices with s < av < t.
Ifb' ¢ @ and &' € @, for i < n, are tuples with
tp,(b'/V) =tp,(&')V)  foralli,
then
tp,(b°...6" "V Ua[<s]
=tp,(c°...c"/Vual<s]

a[>t])

a>t]).

Proof. First, we prove by induction on k that
tp,(B°...6F V) =tp,(e°...d V).

By assumption, we have tp A(I_ZO /V) = tp,(&°/V). Suppose that we have
already shown that tp, (b°...b5/V) = tp,(¢°... ¥/ V). By symmetry,
we may assume that vi_, < uy_,. Hence, u;,v; < uy, for all i < k. Since

b’ c @i and ¢’ ¢ a" it follows by indiscernibility that
tp, (b*6° ... b5 V) =tp,(bFe°...d Y v).

Furthermore, by Lemma 2.5.5 (a), the assumption tp , (b¥/ V) = tp ,(¢¥/ V)
implies that

tpy (B /V U, ) =tpy (V..
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Combining these two equations we have
tp,(B°...bF V) =tp,(e°...c V).

Having shown that tp , (b°... 5" /V) = tp,(é°... "'/ V) we can apply
Lemma 2.5.5 (a) one more time to conclude that

a[>t])
a[>t]). O

tp,(b°...b" "V ua[<s]u
=tp,(¢°...¢" [V ual<s]u
Corollary 2.5.14. Let (a")ye; be a fan over U/V. Suppose that every type
over U is realised in V. For every partition I = I, + I, + I, of I into three
segments, we have

ti"o(a[1,]/V ua[l, uL,]) <2V,

Proof. Ifa,b c a[I,] then tp(a/V') = tp(b/ V) implies
tp(a/Vuall,uL]) =tp(b/Vua[louL]).

Since there are at most 2/V!*1*l n-types over V the claim follows. O

The next lemma provides the connection between finite satisfiability and
the relation 4y introduced in the previous section.

Lemma 2.5.15 (Shelah [46]). Let (a")ye1 be fan over UV with a := |a"|.
Suppose that every type over U is realised in V and let p,q S « be sets of
indices.

Then tp(a”|,/V U @*|y) is finitely satisfiable in U if and only if p 4y q.

Proof. (<=) Suppose that s < t are indices with

tp(a’lpa’ly/V) = tp(a'lpa’le/V)

and let ¢(%,a"|y) € tp(a”|,/V ua’|y). Then ¢(%,a%|y) € tp(a'[,/V ua’ly).
Since this type is finitely satisfiable in U we can find some tuple b ¢ U
such that M & (b, a°|y). Hence, tp(a’|,/U) = tp(a’|,/U) implies that
M= (b, a"ly).

(=) Iftp(a¥|,/Vua'|y) is finitely satisfiable in U then, by indiscernibility,
soistp(a’|,/Vua‘|,). By definition of a fan tp(a°|,a’|/ Vua[<s]) is finitely
satisfiable in U. It follows by Lemma 2.5.5 (b) that so is the type

tp(a’,/Vua’lyual<s]).

Since, for t > s, tp(a[>t]/Vua®|,a|gua[<s]) is also finitely satisfiable in U
we can use Lemma 2.5.5 (b) again to show that so is

tp(a‘|, val>t]/Vual,ual<s]).
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On the other hand, we know that the type tp(a'|,ua[>t]/Vua‘|;ua[<s])
is finitely satisfiable in U, for all ¢ > s. Therefore, Lemma 2.5.13 implies that

tp(a’l, ua[>t]/Vual<s]) =tp(al, ua[>t]/V ual<s]).
Hence, it follows from Lemma 2.5.5 (a) that

tp(a’|, va[>t]/Vualyual<s])
=tp(a'l,val>t]/Vua’l ual<s]).

Consequently, we have

tp(a*,a°ly/V ual<s]ua[>t]) = tp(a’|pa’ly/V U a[<s]ual>t]).
O

We use fans as a technical tool to investigate the properties of finitely sat-
isfiable types. The basic idea is as follows. Given some tuple d we construct a
fan (¢”),er over U/V with ¢° = a. By the preceding lemma, tp(a|,/V ual,)
is finitely satisfiable in U if and only if p 4y g. In this way we can apply the
results of Section 2.4 to study finitely satisfiable types.

In the remainder of this section we show that the following relation is a
preorder.

Definition 2.5.16. For sets A, B, U € M, we write
Acy B it tp(A/U u B) is not finitely satisfiable in U .

Theorem 2.5.17 (Shelah [46]). If 9 does not admit coding and A,B ¢ M,
c € M then A ¢y Bimplies Au{c} %y Bor A%y BuU{c}.

Proof. Fix enumerations d of Aand b of B. Let M, > M be an elementary ex-
tension such that every type over M is realised in M. . Since 1 is a model the
type tp(b/M) is finitely satisfiable in M. Hence, we can use Lemma 2.5.4 (a)
to choose a tuple b’ realising tp(b/M) such that tp(b’/M. ) is finitely satis-
fiable in M. Let @’ be a tuple such that tp(a’b’/M) = tp(ab/M). We apply
Lemma 2.5.4 (a) again to choose a tuple a" realising tp(a’/M ub’) such that
tp(a” /M, ub') is finitely satisfiable in M. By Lemma 2.5.4 (b), it follows that
tp(a”’b’' /M, ) is finitely satisfiable in M. Finally, select an element ¢’ such
that tp(c:z"é’c’/M) = tp(abc/M). ) )

Let (d")yes be a fan over M/ M, with d° = a”b’c’. By Lemma 2.5.15, we
have @ iy b’. Hence, it follows by Lemma 2.4.4 that "¢ ¢ b’ or " 4y
be. By Lemma 2.5.15, this means that at least one of

tp(a”’c' /M, ub’) and tp(a”/M,ub'c")
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is finitely satisfiable in M. Consequently, so is one of
tp(a”c'/Mub’) and tp(a”"/Mub’c).

Since tp(dli?c/M) = tp(a"b'c' /M) it follows that one of tp(ac/M U b) and
tp(a/M u bc) is finitely satisfiable in M. O

Lemma 2.5.18. a %y {b} and ab ¢y ¢ implies a Ly be.

Proof. Fix a set V 2 U in which every type over U is realised. By Lemma
2.5.4 (a), we can find a tuple a’ realising tp(a/U u {b}) such that the type
tp(a’/V u {b}) is finitely satisfiable in U. In the same way we obtain a tu-
ple a”’b" realising tp(a’b/ V') such that tp(a”'b” /V U¢) is finitely satisfiable
in U. By Lemma 2.5.5 (b), it follows that tp(a” /V ub"'¢) is finitely satisfiable
in U. Since tp(abc/U) < tp(a”'b" ¢/ V') the result follows. O

Corollary 2.5.19. Suppose that M does not admit coding.
(a) If&EMbEMC_‘i’hei’ldEMC_.
(b) Ifacy b then a; Sy B,for some i.

(c) Ifacu b then a cy b, for some i.

Proof. (a) Suppose that @ %5 ¢. By Theorem 2.5.17, we have ab % ¢ or
a %y bé. Itfollowsthat b Zp cora®y b

(b) Wlo.g. we may assume that d and b are finite tuples. We prove the
claim by induction on |a|. Suppose that ac S b. As a M bcand c %y b
would imply that ac % b it follows that we have @ =5, bc or ¢ S b. In
the latter case we are done. Assume that G Sy be. Together with ac Cy b it
follows from Theorem 2.5.17 that 4 =) b. By induction hypothesis, there is
some a; Sy b.

(c) W.l.o.g. we may assume that @ and b are finite tuples. We prove the
claim by induction on |b|. Suppose that @ Sy be. If @ €y ¢ then we are done.
If ac ©p b then Theorem 2.5.17 implies a Sy band, by induction hypothesis,
there is some i with @ £y b;. Hence, we may assume that ac % b and
a % c. But, by Lemma 2.5.18, this implies that a % bc. Contradiction. [

Corollary 2.5.20. If 9 does not admit coding then Sy forms a preorder on
M\ M.

Proof. The reflexivity of £, follows immediately form the definition, and
we have seen in Corollary 2.5.19 that it is transitive. O
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2.6 LINEAR DECOMPOSITIONS

In this section we prove that the partition width of any structure 91 that
does not admit coding is bounded by 2>™° This is the main result of the first
part of this thesis. If we could improve the bound to a finite partition width
then this would solve Seese’s conjecture.

We will construct the desired partition refinement of )t inductively from
partial partition refinements.

Definition 2.6.1. Let 9 be a structure and A, C € M.
(a) A partial partition refinement of A is a system (U, ) et of subsets U, €
A indexed by a tree T < 2°% with the following properties:

* U() = A,
e U,=U,uU,,forall v e T (where we set U,, := &, forw ¢ T),
¢ U, =Ny« Uy, if |v| is a limit ordinal.

(b) Let (U, )yer be a partial partition refinement of A. The n-width of
(Uy)y over C is the cardinal

w,((U,),/C) := sg)eti”(Uv/C u(ANUy)).

Lemma 2.6.2. Suppose that I is a structure with a finite signature that does
not admit coding. Let k be an infinite cardinal and A € M a set of size |A| > 2"
such that

tiy(A/M N~ A) <k, forallfinitesets Aandalln < w.

There exists a partial partition refinement (U, )yer of A such that
o w,((U,)y/M N A) < 2%, for all n,

o ifvisaleaf of T then U, c A and ti’y(U,/M \ U,) < R, for all finite
sets A of formulae and every n < w.

Proof. Fix an increasing sequence (4;);<, of finite sets A; € FO with union
Ui<w 4; = FO. By Lemma 1.2.13, we can fix sets C; € M \ A, for i < w, of size
|C;i| = k such that, for a, b c A,

tpy,(a/Ci) = tpAl_(B/Ci) implies tp, (a/M\ A) = tpAl_(l_o/M NA).

Let C, := Uj<w C; and choose a model C,. 2 C,, of size |C.| = «. It follows
that

tp(a/Cy) = tp(b/C,) implies tp(a/M~ A) =tp(b/M\ A).

By Lemma 2.5.11 we can find a set C 2 C, of size |C| = k and elements
a,b € AN Csuchthattp(a/Cu{b}) is finitely satisfiable in C. Let D, 2 C be
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a set such that every type over C is realised in D,. We can choose D, of size
|Do| < 2*. By Lemma 2.5.4 () there is an element a’ realising tp(a/Cu{b})
such that tp(a’/D, U {b}) is finitely satisfiable in C. Let 7 be a (U u {b})-
automorphism with 7(a’) = a and set D := [ D, ]. Then tp(a/D u {b}) is
finitely satisfiable in C and every type over C is realised in D.

Fix an enumeration a of A and an |A|-dense linear order I, i.e., a linear
order I such that, for all subsets X < Y of I of size | X|, |Y| < |A|, there is some
element i € I with X < i < Y. We can use Lemma 2.5.10 to find a fan (a")¢;
over C/D with tp(a*/C) = tp(a/C). By applying suitable automorphisms
we may assume that A ¢ a[I]and, forallv € I, theset A, :=a"n (A~ C) is
either empty or it consists of a single strong C-class. By Corollary 2.5.14, we
have

tin(UveH Av/D UUyernH Av) < 2|D| < 22K>

for every convex subset H ¢ I. Furthermore, the fact that tp(a/D u {b})
is finitely satisfiable in C implies that a € A, and b € A,, for some u # v.
Hence A, c A, forallv e L.

Let a := |I|* and fix an antichain J € 2% such that (I, <) = (], <jx). Let
1+ I - ] be the corresponding bijection and let T € 25% be the prefix closure
of J. Forv € T, we set

Uy :=UJ{Av|v=nu)}.
Then (U, )yer is a partial partition refinement of A such that

ti"(U, /M~ U,) = ti"(|J A,/Cu | A,) <27,
ueH uelNH

where H := {u eI |v < n(u) }. Furthermore, if v € T isaleaf then v = 5(u),
for some u € I, and Theorem 2.4.10 implies that

tih (U,/ M\ U,) =tih (Au/M N Ay) < Ro,
for all finite sets A of formulae and every n < w. 0

Theorem 2.6.3. Let I be a structure with a finite signature. If 9 does not
Ro
admit coding then pwd 90T < 2% .

Proof. We construct a partition refinement (U, ), of 9t with pwd,, (U, ), <
22, for every n. If [M| < 2>™° the claim is trivial. Therefore, we may as-
sume that [M]| > 22™°. By Lemma 2.6.2, there exists a partial partition refine-
ment (U, ),er, of M of the desired width. If v € Ty is a leaf then we have
ti% (U, /M \ U,) < R, for all finite A and #, and we can use the lemma
again to find a partial partition refinement of U, of the desired width. This
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partial partition refinement can be inserted into the first one. We repeat
this procedure until we obtain a partial partition refinement (U, ), with
|U,| < 22"°, for all leaves v. Then we can use arbitrary partition refinements
of the leaves U, to complete it to a partition refinement of 1. O

In conjunction with Corollary 2.2.5 it follows that there exists a dichotomy
between axiomatisable classes with a bounded partition width and those
with an unbounded one.

Corollary 2.6.4. Let T be a complete first-order theory over a finite signature.
If T has a model M with pwd M > 2> then pwd N is unbounded when
N ranges over all models of T.

We have shown that there exists a dichotomy between structures with a
definable pairing function and structures with small partition width. This
can be seen as a weak form of Seese’s conjecture. Unfortunately, the bound
on the partition width we obtained in rather high.

Open Problem. Try to improve the bound of Theorem 2.6.3 to pwd I < R,,.

Note that a lower bound is given by the grid & := (Z x Z, E) where

E={{(i.k), (L) [li—jl+[k=1]=1}.

The graph & does not admit coding and its partition width is R,.

This example shows that the methods employed in this thesis are not suf-
ficiently strong to prove the original form of Seese’s conjecture. Note that in
the above example there are no first-order definable pairing functions, but
there is an MSO-definable one. Hence, to resolve the conjecture it seems to
be necessary to modify the definition of admitting coding to include MSO-
definable functions.
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3 THE CAUCAL HIERARCHY

In the second part of the thesis we turn to an investigation of the Caucal hier-
archy which is obtained by alternated applications of monadic second-order

interpretations and the Muchnik construction (see [42, 49, 2, 10]) starting

with the class of all finite structures. (Originally, Caucal [15] defined the hier-
archy only for graphs where the above operations can be replaced by, respec-
tively, inverse rational mappings and unravellings.) Since these operations

preserve both the decidability of the MSO-theory and the finiteness of parti-
tion width it follows that every structure in this hierarchy has finite partition

width and a decidable monadic theory.

The lowest level of the Caucal hierarchy consists of the class of prefix-recog-
nisable (also called tree-interpretable) structures. Restricted to graphs this is
the class of all graphs that can be obtained from the configuration graph
of some pushdown automaton by contracting each e-transition. Carayol
and Wohrle [13] have extended this characterisation to the whole hierarchy:
a graph belongs to the n-th level of the Caucal hierarchy if and only if it
can be obtained by contracting e-transitions from the configuration graph
of some higher-order pushdown automaton of level .

This is our motivation for studying higher-order pushdown automata.
We investigate the structure of their configuration graphs. In particular, we
study paths in these graphs and we provide operations to decompose and
reassemble them. As a technical tool we derive a pumping lemma for higher-
order pushdown automata. The material in this chapter is taken from [4].

3.1 TREES AND THE CAUCAL HIERARCHY

To define the Caucal hierarchy we use MSO-interpretations and an opera-
tion introduced by Muchnik.

Definition 3.1.1. The Muchnik iteration of a X-structure 2l is the structure
A* = (A", suc, cl, (R*)gex) where the universe A* := A<“ consists of all
finite sequence of elements of A and we have

suc:={(w,wa) |[we A", acA},
cd:={waa|weA*, acA},

R* :={(waq,...,way,) |weA*, aeR}.
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3 The Caucal hierarchy

By 20" we denote the n-fold iteration of
A=A and AV = (UM)*

Definition 3.1.2. The Caucal hierarchy C, € C, € ... is the hierarchy whose
n-th level consists of all structures of the form Z(2A*") where 2 is a finite
structure and Z is an MSO-interpretation.

Note that the Muchnik iteration of a structure is a tree with some addi-
tional structure on the immediate successors of vertices. To study the expres-
sive power of MSO on iterations Walukiewicz [49] introduced the following
kind of tree automaton (see also [2] for an exposition).

Definition 3.1.3. An MSO-automaton is a tuple A = (Q, X, 8, gin, 2) where
Q is a finite set of states, X is the input alphabet, gi, is the initial state, Q :
Q — w a priority function, and § : Q x ¥ — MSO is the transition function.

Such an automaton takes as input a structure A and alabelling A : A* — X.
A run of A on2land A is a function p : A* - Q such that

¢ p({)) = qinand
e forall we A*, we have

(%, C,P) = 8(p(w), A(w)),
where, for each g € Q, we have

{a} ifw=w'a,

Py:={acAlp(wa)=q} and C::{@ ifw={().

A run p is accepting if it satisfies the parity condition (, i.e., on every infinite
path the least priority seen infinitely often is even. We say that A accepts a
pair (2%, 1) if there exists an accepting run of .4 on input 2 and A.

Theorem 3.1.4 (Walukiewicz [49]). For every MSO-formula ¢(X), we can
construct an MSO-automaton A such that

A*Eo(P) iff  Aaccepts (A", Ap),

where Ap(w) :=={i|weP;}.

3.2 HIGHER-ORDER PUSHDOWN AUTOMATA

We can also characterise the graphs in the Caucal hierarchy in terms of
higher-order pushdown automata. These automata recognise sets of finite
words instead of trees. We will mainly be interested in their configuration
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3.2 Higher-order pushdown automata

graphs, not in the languages they recognise. The stack of a higher-order
pushdown automaton of level # is a list of stacks of level n — 1. If the in-
nermost stacks, i.e., those of level 1, are words over an alphabet %, then we
denote the set of level n stacks by Z*".

Definition 3.2.1. Let X be an alphabet. We define
yto._ ¥ Z+(n+1) - (Z+n)+
3¥0 . >, Z*(nﬂ) - (Z+n)>e.

(Note that we use X*" instead of X*" in the last definition.)
Each word & € " can recursively be factored as

gzgnan) an:é‘nﬂanﬂ)uw azzglfcn
where &; € 3* and a; € *(i")_ We can write such words as
fn : gl’l—l:'”:gl : Eoy

where () : ¥ x 3*(07) o 3* with £ : a := &a is the right associative
operation that appends a single level i symbol a (i.e., a word of level i —1)
to a word & of level i.

Given a word &, we denote by (&), for o < i < n, the unique words such
that

§=(En:: (o
Definition 3.2.2. A pushdown automaton of level n is a tuple
A: (Q)Z)F)A’q07Z)F)

where Q is the set of states, 2 the input alphabet, I the stack alphabet, g, €
Q the initial state, z € I" the initial stack element, F ¢ Q the set of accepting
states, and

AcQx(Zu{e})xI'xQxOp

the transition relation that consists of tuples (p, a, ¢, g, op) where op is one
of the following operations:

popy(&n i)=&t &g
PUSha(fn P 'fo) =& 88 a,
cloney (£t £0) = & ot e (B Byt £0) Byt o
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3 The Caucal hierarchy

where &; € I'*' and a € I'. The operation pop, removes the top symbol from
the top most level k stack, push, adds the symbol a to the top most level 1
stack, and clone; duplicates the top symbol of the top most level k stack.

Further, we define the projections 7: I'*"xQ — ' and p : I'*"xQ > Q
and a function top : I'"" x Q — I' x Q by

n(&q) =&, p(&q):=q, and top(§,q):=((£)o>q)-

A configuration (&, q) of A consists of a stack content £ € I'*" and a
state g € Q. We write (£, q) —* ((, p) if A enters configuration ({, p) when
reading the letter a € ¥ U {¢} in configuration (&, q), formally,

(&q) =" (¢p) iff  (g,a,(&)o,p,op) € Aand { = op(&).

A (I'"" x Q)-labelled path r, i.e., a tree whose domain is linearly ordered
by <, is a run of A if, for every vertex u € dom(r) with immediate <-succes-
sor v, we have r(u) +% r(v), for some a € 2. We do not require that r starts
with the initial configuration (e : --- : € : 2, g, ). Instead, we only require that
the first configuration of r is reachable, that is, there exists a sequence OP
of stack operations such that the stack contents of the first configuration is
OP(¢: - : € z). We will denote the successor function on dom(r) by o.

Example. For every n, there exists an automaton A, of level n + 1 recognis-
ing the language

Ly:= {a:”(k) ‘ k< w},
where 3,,(k) is the function defined by
(k) =k and 24, (k) =270,

Informally, the automaton .A,, starts by guessing the number k and writ-
ing an encoding of 1, (k) onto its stack. Then it enters a loop where in each
iteration it decrements the number stored in the stack and reads one input
letter. A, stops when the number on the stack becomes o.

How can we encode such huge numbers into a stack of level n+1? For the
stack alphabet we choose I' = {1, ..., n, a}. The bottom of a stack of level i
will be marked by the level i — 1 word

fimgiiei1a...ie T,

By induction on 1, we define a coding function «, : @ - I'"" based on the
binary encoding of integers.

x,(m) :=1a™,
Kn+1(m) =n+ lkn(io)"'Kn(il) >

where m =2 +---+ 2" and i, > --- > i;.
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3.2 Higher-order pushdown automata

Instead of presenting the actual transition table of the automaton we spec-
ify it by pseudo-code. We need a predicate zero;(&) that is true if the top-
most level i stack in £ is empty, and we need a function dec;(§) that decre-
ments the top-most level i stack of . zero; can be defined with the help of
the markers 7.

zero; (&) :iff (&), =1.

For level 1 the numbers are stored in unary encoding on the stack. Hence,
the decrementation procedure only needs to remove one symbol.

dec,(€) := pop, (&) -

For n > 1, the numbers are stored in binary encoding and dec, () has to
distinguish two cases. If the last digit is 1 then we change it to 0. Otherwise,
the number ends with a sequence of digits 10---o that we have to replace by

o1
decy+1(§) := if zero, (&) then (* last digitis 1 %)
return pop,,, (&)
else (* last digit is o )
& :=dec, (&) (* change 10 to o1 %)

while not zero, (§) do

& := (decy o cloney,) (&) (* change 10 to 11 *)
end
return &

end

The automaton A,, works as follows. First, it creates the stack content

n+1:---:1.

Then nondeterministically it performs k push ,-operations. The stack con-
tents now is

AF1:-:1a" = Kpe(3n(k)) .

Finally, it enters a loop where in each iteration it calls dec,, and it reads one
input letter.

Our interest in higher-order pushdown automata stems from the follow-
ing result.

Theorem 3.2.3 (Carayol, Wohrle [13]). A graph & belongs to the n-th level C,,
of the Caucal hierarchy if and only if it can be obtained from the configuration
graph of a pushdown automaton of level n by contracting all e-transitions.
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3 The Caucal hierarchy

Note that every configuration graph has finite outdegree. Hence, we need
the contraction of e-transitions to obtain graphs of infinite outdegree.

The easy direction of preceding theorem is based on the following lemma
which we will need in Section 3.8. Note that we encode a configuration (&, q)
of a pushdown automaton as a word over the alphabet I'u Q by appending g
to &. The result is the word push, ().

Lemma 3.2.4. Let A = (Q,2,I,4,qo,2, F) be a pushdown automaton of

level n with configuration graph (C,+). Let 2 := (A, (P;)qea) be the struc-

ture with universe A := Q W I and unary predicates P, := {a}, for a € A.
There exist monadic second-order formulae ¢ (x, y), for ¢ € X, such that

A" k= gc(push, (§), push, (7)) iff (& p) - (n.9),
forall&,n e I and p,q € Q.

3.3 GRAPHS OF FINITE OUTDEGREE

We start our investigation of the structure of graphs in the Caucal hierarchy
by computing a bound on their outdegree. The results in this section will be
based on the characterisation of the Caucal hierarchy via MSO-automata. In
the following sections we will turn to pushdown automata.

Note that the universe of a structure 2 € C,, in the n-th level of the hier-
archy has the form A ¢ I'*", for some finite set I. We define a norm || on
such sets by taking the maximal length of a level k word contained in &.

Definition 3.3.1. Let I" be a finite set. For k < nand & = x5---x,_, € " with
x; € I'*("1)_wye define, by induction on k,

0 ifr=o,
|l = {1¢] ifk=n,
max { |x;|y |i<r} ifk<nandr>o.

Lemma 3.3.2. Let I' be a finite set with at least two elements and let k,, . . ., ky,
be numbers. There are less than |I'|¥ " words & € I*" such that |&|; < k;, for
all i < n.

Proof. The claim follows easily by induction on n. For n = 1, we have

e -
> I = = <|r|

i<k,

words & € I'* with |&| < k;. For n > 1, we can employ the induction hypothe-
sis to obtain the bound

3 (kb < kb,
i<kp ]
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If & = (V, E) is a graph in the n-th level of the Caucal hierarchy then, by
definition, there exists a finite structure 2 and two MSO-formulae § and ¢
such that

V={Ec A" | A" ES)},
E={(&m)ea™ <A™ |4 = p(&n)}.

Therefore, we will consider a structure of the form 2*"” and an MSO-formula
¢(x, y) with two free first-order variables.

Definition 3.3.3. Let 2 be a structure and ¢(x, y) € MSO a formula. The
@-outdegree of a € A in 2 is the number of elements b € A such that 2 £

¢(a,b).
We obtain the following bound on the ¢-outdegree.

Theorem 3.3.4. For every formula ¢(x,y) € MSO and each n < w, there are
constants cy, . .., c, such that, whenever 2 is a finite structure with at least
two elements and a € A" an element of finite @-outdegree in 2A*" then

A" =@(a,b) implies |b|;<Li(a) foralli<n,
where
Li(a) := |a|; + c;|A[l (@) Lin(a),

Proof. We prove the claim by induction on n. Let A = (Q, #[2], 3, gin, Q)
be the nondeterministic MSO-automaton corresponding to ¢. Since 2 is
fixed we will simplify notation by saying that .4 acceptsatree A : A*" — {°[2]
if it accepts the pair (A*", 1).

W.l.o.g. we may assume that the set of states Q = Qgz U Qo U Q, U Qo
is partitioned such that starting in a state g € Q¢ the automaton A accepts
only trees A where the set of occurring labels is exactly C. (If A is not of
this form then we can construct a new automaton with states Q x §£[2].)
Furthermore, we assume that there exists a unique state ¢, € Q, from which
A accepts the tree A with

M) = {{1} ifx=¢,

7] otherwise.

Let p be an accepting run of A on the tree A : A*" — P[2]. If p(w) € Q,
then we either have A(w) = {1} and p(wa) € Qg, forall a € A*("™), or
we have A(w) = @ and there is some a € A*("™) with p(wa) € Q, and
p(wb) € Qg, for all b # a. For p, g € Q,, we define

Ypq(x.y) = 3C3IP(8(p, @) (C.P) A C = {x} A Py = {y}

A A\ Pszz).

seQ\(Qzu{q})

75



3 The Caucal hierarchy

It follows that, whenever the automaton is in state p at some vertex wa € A*"
with A(wa) = @ then it can go to state g at the vertex wab if and only if
A= ypq(a,b).

Similarly, there exists a formula 9455, (X, yo, 1), for g € Qo1 po € Qos
and p, € Q,, such that

A = quopl(a; bo, bl)

if and only if, whenever the automaton 4 is in the state g at some vertex
wa € A" then it can go into the state p, at wab, and into the state p,
at wab,.

Let 7 : A*" - A*("™1) be the projection to the last symbol 77(wa) := a.
Fix an element u € A*" such that the set V := {v e A" | A" = ¢(u,v),v £
u } is finite. To each v € V we associate the maximal sequence vo, . . ., V(y)
such that u mv = v, < v, <--- <vp,(,) = v. By assumption, the set

P=J{n()|veV,i<m(v)}

is finite. For v € V, we denote the accepting run of A on the tree A, ()
by p, and we set p,, := p,(v,) and

Py=J{n(vi)|veV,p,=q,i<m(v)}.

Then P = Ug Py

We define a formula y,(x, y) such that y,(7(u), y) defines in o+ (n-1)
the set P,. The formula x,(a, b) states that there exist a sequence of ele-
mentsdoy,...,d,, € A*(”_l), m < w, and a corresponding sequence of states

Po>---»Pm € Q, such that

*

do =aand p, = p,

& d; = b, for some k < m,

* pm = ¢ (¢, is the state signalling the label 1),
¢ A= Iz2Veeq, Ypoqp, (dos 2, dy), and

A= Ypp,,, (dirdis,), forallo < i < m.

*

Since
{ae A=) | A xp, (n(vo),a) } =Py, P

is finite we can apply the induction hypothesis. Hence, there are numbers
C1s. .., Cny such that

W e xp, (m(vo),a)  implies |al; < Li(n(vo)).
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where
Lia) = la + e A (010
It follows that, for v € V and i < m(v), we have
(vl < max{Ly(m(x)) |x <u} < Li(u).
Finally, note that, forv e V,
n(v;)=mn(v;), fori<lI, implies p(vi) #p(v1),

since, otherwise, the path 7(v;),...,m(v,_,) can be repeated an arbitrary
number of times and y,, defines an infinite set. It follows that

m(v) < Q] |A (OB 0,
Consequently, setting ¢, := |Q,| we have
[Vl < ulu + e - JAI 00 E 0 < 1 (u),
and |v|; <Lij(u), fori<n. O

Corollary 3.3.5. Let 2 be a finite structure and ¢(x, y) € MSO some formula
that defines a relation R := o*" of finite outdegree on A*". If uo, ;- -~ € A*"
is an R-path then we have

[ugli < |uoli + 2ima (O(k + |uoly + -+ + |toi=1)) » foralli<n.
Proof. By the preceding theorem, we have
[uih < |ur—ili + ¢ < |uio)y + €1k < Juio]y + 20(O(k)),
and, for i > 1, it follows by induction that
e

< Juol; + Z Ci|A|L1(ul)"'Li—1(ul).
I<k

Since

Ly(up)--Lii(up)
< (|uo|1 + 30(0(1)))"'(|uo|i—1 + 2, (O + |ugl +--- + |“0|i—2)))
< (ol +++ + [to]imy + 2ims (O + oy + -+ + [1o]i=))) ™
< (ol +++ + [to]imy + ims (O(k + |ttgly + -+ + [uo]i=s)) )™
< (k +[uoly + -+ + [tto]i-s + 252 (O(k + |toly + -+ + [ho]i-s + |tto]i-1))) ™"
<2 (O(k + |uoly + -+ + |toi—s + |Uo|i—1))i_1

< ji,Z(O(k + |1/l0|1 +e+ |l/lo|,',2 + |uo|i,1))
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it follows that
lugli < Juoli + ¢;27i-2(O(ktttolt-+uofi—a +uoli-r))
I<k
< uoli + €ik2i (O(k + |uoly + -+ + |toi—s + |tho]i-1))
< uoli + 2im (O(k + |uo|y + -+ + |thoizz + |Uoi=1)) - O

Corollary 3.3.6. Let 2 be a finite structure and ¢(x, y) € MSO some formula
that defines a relation of finite outdegree on A*". The k-neighbourhood

Ni(u):={ve A" |d(u,v) <k}

of an element u € A*" is bounded by
ING(u)| < 2,(O(k + [ufy + -+ |u])) -

Proof. If d(u,v) < k then we know by the preceding corollary that
vl <l 34O+ + a2

It therefore follows from Lemma 3.3.2 that there are less than
|A|(|u|1+0(k))'~~(\u|n+3n—1(O(k+\u|1+~~+\u|n—1)))

< |A|(|”|1+"'+|”|n+3n71<o(k+|”‘1+"'+|”‘n—1)))n
< |A|:H(O(k+|u\1+"'+\u|H+|u|n))"
< AP (Ot slul-rtluln))
= 20 (O(k +[uly+ -+ [ula))
such words v. O

Corollary 3.3.7. Let 2 be a finite structure ¢(x, y) € MSO, and u € A*". If
the @-outdegree of u in A*" is finite then it is bounded by

3 (O(fuly + -+ +[uln)) -
Example. Let
Ty:={0"iew" |n<w, i<2,(n)}

andlet E ¢ T, x T}, be the immediate successor relation. It follows by results
of Caucal [15] that (T}, E) € Cpy4,. On the other hand, the results above
imply that the tree (T,, E) is not contained in the k-th level of the Caucal
hierarchy. Otherwise, let w, € A** be the word encoding the element 0" €
T,x. By Corollary 3.3.5, we have

Wali <2i2(0O(n)).
According to Corollary 3.3.7 the outdegree of w,, is therefore bounded by
2,k,(O(n)). Contradiction.
Similarly, if we define T, := { 0"i € w* | i < 2,,(n) } then (T, E) is not
contained in any level of the hierarchy.
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3.4 SUBSTITUTION OF STACKS

After having studied the degree of vertices in a graph of the Caucal hierar-
chy we now turn to the investigation of paths in such graphs, or rather of
runs of higher-order pushdown automata. For the remainder of the article
we fix a pushdown automaton A of level n. Let us introduce some additional
notation. If r is a run and x € dom(r) then the operation at x is the oper-
ation op such that nr(ox) = op(nr(x)). We call pop, and push, a level 1
operation and, for k > 1, pop, and cloney a level k operation. A push(1)-
operation is an operation of the form push, and, for k > 1, we call clonej
a push(k)-operation.

We start by showing how to replace in a given run the bottom part of
all stacks by some other stack content such that the resulting sequence of
configurations still forms a run. To do so we define a variant of the prefix re-
lation & < { saying that some stack content ¢ is contained in a larger stack (.
In the constructions of the following sections we will need to also consider
operations and relations on just the bottom levels of a stack. Therefore, we
have to define all notions dependent on a parameter k.

Definition 3.4.1. Forwords &, 7 € I'"" and k > 1, we define the prefix relation
& <k 1 by induction on n.

If n < k, in particular if n = o, then & < # always holds. For n > k,
suppose that & = & : x. We define & < 7 iff there are symbols y,, ..., y, €
(", 6 < r < w, such that

=y ...y, and x<iy;, foralli<r.

For notational convenience, if 7 is a run and x, y € dom(r), we define
x <y it ar(x) < nr(y).

Example. We have
(ab:a):a:a<,(ab:a)(aa:b):ab:a.

The following easy observations will frequently be used in the proofs be-

low.
Lemma 3.4.2. Ifwehave &, : - : &, < Eun : (py i -+ 2 (o and i # € then
En Pl go N> gn”]

Proof. Suppose that 77 = y, ... y. Then
fn Pl fo N3 £n”l : (n—l Pl (o

implies &,_, : -+ : &, < y;, for all i < m. Hence,

fn:"':foqk£nyo---ym:£n7’l- O
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3 The Caucal hierarchy

The following technical lemma can be used to infer < { from # <, (.

Lemma 3.4.3. Suppose that n,{ € I'"" are words with n <y, (. If there exists
some word & with

Ern, &<, and (k= (1),

then we have n <. (.

Proof. We prove the claim by induction on n — k. If k = »n then we have
(1) n = (&)n < ({), which implies 7 <,, {. Suppose that k < n and let

E=XoXp, =Yoo ¥s, (=zowz,  forxgynziel ",
Lets < i< t. 1 <y, ¢ implies that
Yo' Ys—1 = 20" Zs—1 and Vs Y1 Zi -
Since x, < ¥s, Xr < zj, and (x,)k = (&)x = (7)x = (¥s)x we can apply the
induction hypothesis and it follows that y; < z;, for all s < i < t. Hence, we
have n < z. O
If & <4 1 then we can replace £ by some other value (.

Definition 3.4.4. Let &, 1, { e " where E = & :xand (= : z. If E < 1,
say, 1 = &'yo...ym, for y; € (1) we define, by induction on #, the
substitution

_[n ifk>n,
ﬂ[f/(]k {{’yO[X/Z]k"')’m[x/Z]k ifk<n.

We extend this operation to configurations (7, g) € I'™" x Q by setting
(- @)[8/¢Lk == (n&/ ¢l q) -

Note that this definition ensures that & < # implies { < n[&/{].

Example. Let

¢=(ab:a):a:a,
n:=(ab:a)(aa:b):ab:a,
(:=(ba:b):bb:c.

We have & <, 7 and

n(&/¢], = (ba:b)(bba:b):bbb:a.
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3.4 Substitution of stacks

The above recursive definitions of < and 5[ &/{] were chosen to be com-
patible with the pushdown operations as stated in the following important
lemma. It states that, if £ is a prefix of 77 and the operation op does not delete
too much of # then £ is also a prefix of op(#) and op commutes with the
substitution [&/{].

Lemma 3.4.5. Let op € {push,, clone;, pop j} be a pushdown operation, 1 <
k <n,andlet & n,( € I'™" be words. If

§<axn and [(op(n))il 2[(&)il, forallixk,

then we have

§axop(n) and op(n[&/C1x) = (op(n))[&/CTk-

Proof. We prove the claims by induction on n. Clearly, we only need to con-
sider the case that k < n. Let

E=XoXe, =Yoo ¥s» (=202,  forxpynziel ",
(a) First we consider the case that op = push,,. For n = k = 1, we have

push, (n[&/{],) = pushy (2o -2t-1 s+ ys)
= ZoZty Yy ysh
= (yorysb)[£/C]x
= (push, (7)) [&/C]:

and, for n > 1,

pushy, (7[&/{]k)
= pushy, (2o ze-1 yr[xr/2¢ ]k ys[%r /2 k)
= Zo 21 Yr[Xr /2t [k Ysoa[Xr /2 [k (Pushy, (ys[xr/2¢ ]k )
= Zo 2t Ve Xr 2t iy [ [2e ]k (pushy, (ys) ) [xr/2¢ )i
= (¥or-ysapushy, (y5))[§/ {1k
= (pushy (7)) [§/C]-

(B) Suppose that op = clone;. For n = j, we have

clonej(n[f/(]k) = Clonej(ZO'"Zt—l)’r[xr/zt]k"')’s[xr/zt]k)
= 2o 2t Yr[Xe 2tk s [ [ ze )k ys [ [ 2e )k
= (Yorysys) [/ {1k
= (clone;(n))[&/ ]
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3 The Caucal hierarchy

and, for n > j,

clone;(1[¢/C]k)
= clonej(zo-zt—1 yr[Xr /2t ]k ys [%r /2t ) )
= Zo Zt1 Ve[ Xr /2t ]k Y5 [x,/zt]k(clonej(ys [x:/2¢]k))
= Zo Zt- Ve[ Xr 2t ]k Vs [xr/zt]k(clonej(ys))[x,/zt]k
= (yO"'ysfldonej(yS))[f/(]k
= (clone;(n))[&/C]-

(c) Finally, consider the case that op = pop ;- Since

r=[(&)nl <[(pop,(1))nl =s-1,
we have, for n = j,
pop, (1[¢/{1k) = pop, (2o zemryr[Xr/ze] i+ ysalxr 2]k ys[ e 2¢ k)
= Zo 2t Ve Xr 2t L Ysa [ % 2 ]k

= (Yo ys-1) [§/ Ik
= (pop,, (1)) [¢/C1k»

and, for n > j,
pop;(n[&/¢1k)
= POP]‘(ZO'"Zt—l)’r[xr/zt]k"')’s [xr/z¢]i)
= ZO"'Zt—l}’r[xr/zt]k"')’s—l[xr/zt]k(Popj(J’S[xr/zt]k))
= ZO"'thlyr[xr/zt]k'")’sfl[xr/zt]k(Popj()’S))[xr/zt]k
= (Yorys—1pop;(¥s)) [/ {1k
= (pop; (m))[&/C]k-
(D) In all cases we have & < op(#) since (op(#))[&/{]x is defined. O

By induction, it follows that each transition of a run can be lifted from #
to [ &/{]x as long as the word £ is still contained in #.

Corollary 3.4.6. Let &,{,n, 1" € I'™" be words such that |(1);| > |()], for
all i > k. Then

§an and  (1.9)~" (1'.q)
implies

Eqen’ and  (n[§/{]kq) F* (' [E/¢1k ")
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3.5 Weak domination

Proof. Let § = (g,¢,a,q’,0p) € A be the transition witnessing (7, g) +*
(n',q"). By definition, we have (#[£/{]x)o = (#)o. Hence

top(1[£/C1xq) = top(n, q) = (a,9)

and we can apply 8 to (n[&/{]k, q)- The resulting configuration (#, g') has
the stack contents

u=op(n[&/¢Tk) = Cop(m)&/{Tk = n'[€/{ Ik -

The relation & < 1" = op(#) follows immediately from the preceding
lemma. O

In particular, if we have a run such that the stack content & of the first
configuration is never touched then we can replace & by an arbitrary other
word ¢ and we obtain again a valid run.

Lemma 3.4.7. Let r be a run and x € dom(r) its first vertex. Suppose that
§:=nr(x) < nr(y),  forall y e dom(r).

If { € I'*" is an arbitrary word then the function r’ defined by

r'(y)=r(E[lk,  foryedom(r),
forms a valid run.

Proof. We can use Corollary 3.4.6 to prove, by induction on <, that

§<amr(y) and  r(y)[&/Clk = r(oy)[§/Clk- U

3.5 WEAK DOMINATION

In this section we introduce the weak domination order £; which will be
our main tool for decomposing runs.

Definition 3.5.1. (a) For £, { € I'"" and o < k < n, we say that & weakly k-
dominates (, written & ¢ (, if there exists a sequence POP of pop-operations
such that

popy(§) = popy (POP(()) .
(b) If ris a run and x, y € dom(r) then we define
xSy ciff  wr(x) g nr(y),
and xc;y :iff x=<y and xcpz forallx=<z=<y.

The greatest lower £, -bound of x and y will be denoted by x ;. y.

(c) Let r be a run and x € dom(r). By wy(x) we denote the <-minimal
element y € dom(r) such that x < y and x %; y. Note that w;(x) might be
undefined.
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3 The Caucal hierarchy

Lemma 3.5.2. (dom(r),cy) is a forest.

Remark. Note that the original ordering < of a run r coincides with the order-
ing we obtain when traversing the forest (dom(r), ;) in “prefix ordering”
(which is not related to the prefix order <). This is the same as the lexico-
graphic ordering <j¢x of (dom(r), £;) which in this case is defined by

x<lex y iff xE; yoru<vwhereu and v are the immediate

cy-successors of x My y with u 5 x and v & y.
In particular, if x €, yand x ¢ zthenz<x < yorx < y<z.
Example. Consider the run

e:e:are:e:abre:ab:abr¢:ab:avr (ab:a):ab:a
F(ab:a):e:ab+ (ab:a):e:a+ ¢e:ab:ar+ e:e:ab

=eEerela

where we have left out the states for simplicity. The weak domination order-
ings €7, £; and £} are shown in Figure 3.1.

Lemma3.5.3. Let &, e I If & < 1 then £y 1.

Proof. Let & = xo--x, and 51 = yo---ys, for x;, y; € I*("™) We prove the
claim by induction on n. If n = k then

popy(§) = Xo +Xr—1 = Yo yr1 = (popy)™ (1) -
For n > k, we have, by definition of <,
&= X0y G Yo ¥r = (popn)s—r(n) .

By induction hypothesis, there exists a sequence POP of pop-operations
such that

popy(xr) = popx(POP(yr)) .
It follows that

popy(£) = (popy o POP o pop$, ") (7) . O

In the following sequence of lemmas we relate the structure of the weak
dominance order to the stack contents of the underlying run. First, we con-
sider <-successors that are not £, -successors.

Lemma 3.5.4. Let r be a run and x, y € dom(r) vertices such that x Sy y
and x ¢ oy. Then nr(oy) = pop,nr(x), for some | > k.
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3.5 Weak domination

Ei: e:eta cy: e:gia
| |
e:etab ere:ab
| VRN
e:ab:ab e:ab:ab e:e:ab
| | |
e:ab:a e:ab:a greta
/N /1N
(ab:a):ab:a e:ab:a (ab:a):ab:a e:ab:a
| | (ab:a):e:ab
(ab:a):¢e:ab e:e:ab |
| | (ab:a):¢e:a
(ab:a):¢e:a €:€:a
cF: eie:a
/N
g:etab gieta
/ | AN
e:ab:ab g:etab
e:ab:a
// \\
(ab:a):ab:a e:ab:a

(ab:a):e:ab (ab:a):e:a

Figure 3.1: The weak domination orders c;, €} and £}

85



3 The Caucal hierarchy

Proof. Let ir(x) =&, : - : &,. Since x £ y we have, for some i > k,
ar(y)=&n i & &imii it o s

where either &; : - : & £ &;n;, or i = k and 5, = €. Since x %y oy there
exist some index [ > i > k such that

nr(oy) = popyr(y) = &n w2 § = popymr(x) . O

A configuration with several immediate £ -successors must perform a
clone;-operation and the stack contents of the successors have a certain for-
mat.

Lemma 3.5.5. Let r be a run, k > 1, and x € dom(r) a vertex with several
immediate S -sUCcessors Yo, ..., Ym, M > 1. Set &, -1 & = mr(x).
There exists an index i > k satisfying the following conditions.

(a) There is a push(i)-operation at x.

(b) There are indices
1=1(0)<k<I(1) < <l(m)<i

and words (o So &§1(o)s--+>{m So §i(m) such that, for all s < m, we
have

wr(ys) =&nio i G (§iie i 8) s & 1 &y i Gs

and 1ir(Ys+,) = pop;rr(ys), for some k <1 <.
(c) ysEF yuforalls <t <m,and ys EF yp iff ir(ym) # mr(x).
(d) x €] ys, forall s < m and every | < n. Furthermore, yo, ..., ym are

immediate £ -successors of x, for all | < k.

Proof. (a) If mr(ox) = pop;nr(x), for some i, then x £ z implies ox E} z.
Hence, x has at most one immediate £} -successor. The same is the case for
a push(i)-operation with with i < k.

(b) We proceed by induction on s. For s = o, the claim follows from (a)
since y, = ox. Suppose that s > o and

7”'()/571) = fn st £i+1 : (El P El) : Ei—l st gl(s—l)-{—l : Csfn

where [(s —1) < i.
(a)If ir(0™"ys) = mr(ys-,) then x f ysand 0y &; ys imply that,

nr(ys) = pop;r(0” ys) = pop;r(ys—) s
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3.5 Weak domination

for some k < I < i. Hence, if I > I(s — 1) then
ar(ys) =& i G (Giiee i §0) s &y &
and, for I < I(s —1), we have
ar(ys) =&nio i G (G &) s Gt Gy 1 6o

where (s := pop;({s-.).
(B) If mr(07'ys) # mr(ys—1) we fix the maximal index h such that

(mr(07 ys))n # (7r(ys—2) -
We claim that & < i. Suppose otherwise. Since y;_, £, 0" y; we have
mr(07ys) = En i S St ey i
for some words 7y, . . ., #, such that
JRRER ITPRN CIERIER 2 R ISR ERE fz(s—l)ﬂ t (s
Sk Shln i Mnoy o 1
Furthermore, by choice of h we have 7, # ¢, and if h = i then
n = (Gima o &)1
for some 77, # . Hence,
(#) Cnr &t (Gt &) s &t G emyan G B St -
Since x £ ys and 0" ys & ys it follows that
r(ys) = pop;mr(07 ys) = &u it S Eptn My 3001 1
for some k < j < h. But (*) implies
mr(Ysa) =&t i &t (Gt &) v &yt 1 Gyt o
S Gn it Span S Sl ey o0 = () 5

that is, ys—, € ys. Contradiction.
(c) Consequently, we have h < i.If h > [(s—1) then y;_, £ 07"y, implies

mr(oys) =&n it gt (Gt &)t E e
Entfn t Mp—y i 1 11

Again, by x £ ysand 07 ys £ ys it follows that

nr(ys) = pop;r(o” ys)
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3 The Caucal hierarchy

for some k <1 <i.If ] < h then
ar(ys) =&pio i &g (&t &) i i et g
Entin t Mpey 2o 1 1Y

and as above it follows that y;_, £, y;. Contradiction. Therefore, [ > h and

mr(ys) =8&n it Gt (G i &) 2 &y i § = popyr(ys—1)

as desired.
It remains to consider the case that & < I(s —1). Let (s = py(s_y) =+ ¢ .
Since ys—, E; 07" ys we have

mr(o7ys) =&nie i G s (Gii i &) s Gy fl(s—1)+1 :
Hi(s—1) = " * Bhar " BuMh M1t 0 2 W
As above, there is some h < [ < i such that r(ys) = pop;nr(o~"ys) which
implies
7'[?’()/5) =& (& E) L El(s—l)ﬂ FBi(s—1) ot B
= pop; 77 (Ys-1) -

(D) Finally, if s < ¢ then y; #; y; implies that I(s) < I(t) and I(t) > k.

(c) By induction on ¢, we have ys £7 y;, £ ¢ 'y, which implies y; £}
07 'ys. By (b), we also have y; E; y;. Together it follows that y; 7 y;. If
nr(ym) # mr(x) then x €7 y,, implies

ﬂr(}’fﬂ) =& (& &) Hicy P i1,

and the claim follows as above.

(d) By (a), we have x £, y;, for all s < m and every I < n. Furthermore,
if there were some element x =] z =} y;, for | < k, then this would imply
x ©f z = ys which is impossible. O

Finally, we collect some basic facts about the function wy.

Lemma 3.5.6. Let r be a run, x € dom(r), and y := wi(x). The element
x My y is the immediate C; -predecessor of y and

nr(y) = pop;mr(x) forsome | > k.
Proof. Suppose that there is some element z such that x My y = z o y.

Then x < z < y and, by choice of y, we have x £, z. Hence, x £ z £, y.
A contradiction. The second claim is a special case of Lemma 3.5.4. [l
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3.6 Strong domination and holes

Lemma 3.5.7. Let r be a run and x € dom(r). If i < k then
w(x) = @i(x) o a@(x) = el@ix)).

Proof. Let y := w;(x) and z := wi(x). If z < y then x £} z which implies
x Ef z. A contradiction.

Suppose that y < z. By Lemma 3.5.6, there exist indices [ > i and m > k
such that

nr(y) = pop;mr(x) and nr(z) = pop,,nr(x) .

If y < z then we have I < k. Consequently,
n1(2) = pop,,1r(x) = pop,mr(y)

and it follows that y #; z. Hence, wi(y) < z. On the other hand, we have
nr(wi(y)) = pop,nr(y) = pop,mr(x), for some h > k.

Therefore, we have x % wi(y) which implies z < w;(y). Together, it fol-
lows that z = wg (y). O

3.6 STRONG DOMINATION AND HOLES

Remember that we want to decompose a given run r into parts such that in
each subrun s we can apply a substitution, that is, if x is the first element
of dom(s) we would like to have x < y, for all y € dom(s). Therefore, we
define a second domination order by combining the relations <4 and =;.

Definition 3.6.1. For arun r, elements x, y € dom(r), and a number1 < k <
n, we define the strong domination order <; by

x <y c:iff x5y and

*

x<;z foralli>kandxc;zc] y.
The greatest lower <;-bound of x and y will be denoted by x rm. y.
Example. Figure 3.2 shows the strong domination orderings <, and <, corre-
sponding to the run whose weak domination order is depicted in Figure 3.1.
Let us collect some basic properties of the strong domination order.

Lemma 3.6.2. Let x < y. We have x < oy iff x S oy and x < 0.
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< gr¢eta

gre:ab

RS

e:ab:ab  (ab:a):e:ab e:e:ab

e:ab:a (ab:a):e:a erea

/N

(ab:a):ab:a e:ab:a

< e:eta
— NS
e:1e:ab e:ab:a (ab:a):e:a e:e:a
/ \ / \ (ab:a):¢e:ab
e:ab:ab  e:e:ab (ab:a):ab:a e:ab:a

Figure 3.2: The strong domination orders <, and ,.

Proof. (=) follows immediately from the definition.

(<) Suppose x . oy. By definition, we either have x ¢; oy or there is
some x £} z €} 0y, for i > k, with x ¢; z. In the first case, x EZ y implies
x % y. For the second case, note that, if z =} oy thenz c} y,and x <; y
implies x <; z. Consequently, z = oy and x 4 0y. O
Lemma 3.6.3. Suppose that x <., ox and x %} 0x.

(a) There is a pop,-operation at x.

(b) There is a push(i)-operation at w := x My ox, for some i > k.

(c) Ifu € dom(r) is some element with u <y x and u ¥j ox then there are

words &, ..., & and yy, . .., iy, such that

7'[7"(1/!) =&, and ﬂr(ax) = fn[/ln st £k+1l4k+1 t &
Proof. (a) Since x <, ox and x £, ox we have

nr(ox) = popg(mr(x)).

(b) If the operation at w were a push(i) or a pop; with i < k then w <
x, ox would imply ow <; x, ox and we would have w + x m; ox. If there
were a pop;-operation at w with i > k then w would have no <;-successor.
Consequently, the operation at w is a push(i) with i > k.

(c)Letmr(u) =&, : - : &.u < x implies u < x. Hence, there are words
Pn t -t o such that

mr(x) = Enpin o Ephic oy 0t Ho
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3.6 Strong domination and holes

and 7r(ox) = poprr(x) = Eupp : -+ g

We claim that yj = e. Suppose otherwise. Then u < ox and it follows that
u ¢, ox. Since u £; x this implies u %, ox. Consequently, ; = &, for all
k <i < n. Contradiction. O

We will study decompositions of a run into parts of the following form.
Definition 3.6.4. For a run r and a vertex x € dom(r) we define
Dy(x) = {y edom(r) [x <y},
Ex(x):={yedom(r) | xcy y}.
Remark. Note that Dy (x) is an initial segment of Ej (x).
Lemma 3.6.5. x < y iff D(y) € Di(x).

Proof. (<) By definition, y € Dy(y) € Di(x) implies x < y.
(=) Ifz € Di(y) then y < z. Hence, x < y <x zand z € Di(x). O

It will turn out that a good way to construct such a decomposition is by
considering subruns whose domain is of the form Dy (v). But in doing so
we face the problem that such subruns might contain holes, that is, there
might be vertices x, y € Di(v), x < y, such that all vertices x < z < y are not
contained in Dy (v). In the remainder of this section we study the structure
of such a hole.

Definition 3.6.6. Let r be arun, v € dom(r),and 1< k < n.
() If z is the <-maximal element of Ex (v) we define

() = {(+pr(@)} 0 { (h.9) | (=) - (pop,mr(v).q). h> k).

(b) Di(v) has a hole at x if x € Di(v) and ox € Ex(v) N Di(v). In this
case we define

H(x):={yedom(r)|zeEx(v)\ Dg(v)forallx <z=<y}.
We say that the hole is between x and y if
H(x) = {z]x<z<y}.

If such an element y exists then we call the hole properly terminated. The
maximal element y such that

{z|x<z<y}cH(x)

is the end point of the hole. Note that the end point is contained in H(x) if
and only if the hole is not properly terminated.
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I,l:}’]:g:c
|
u:n:c:a
/ | \ 7
p:n:ica:a y:nic:a pinicia
x / \ Zo
u:(n:c:a):c:a p:(nicia):e:c
— N>
(u:(n:c:a):e:c):(nic:a):e:c St ui(nicia)ieic

Figure 3.3: A hole in D, (v) between x and y.

(c) An exit point of Di(v) is a <x-minimal element of Ex(v) \ Dy (v).
The set of all exit points of Dy (v) is denoted by X (v). The order of an exit
point x is the number k such that

nr(x) = pop(mr(07(x))),
and its type is the triple

(k’ pr(x), -Qk+1(x))

where k is the order of x.

(d) Suppose that there is a hole in Dy (v) at x with end point y. We define
the principal sequence z,, ..., zn of this hole and the associated sequence
1(0),...,1(m) of indices inductively as follows. z, := ox and I(0) is the
index such that 77(z, ) = pop;(,)7r(x). Suppose that zj and I( ) are already
defined. If z; &; ), y then we define zj,, := W1(j)+1(2j), and I(j +1) is the
index such that 77(z1,) = pop;(,,)77(2;). We continue this construction
until we reach a vertex with z; Ef(j) 2

If z; # y then we call the element z; a principal exit point of Dy(v). Its
order is the number I(j). By Py;(v) we denote the set of all principal exit
points of Dy (v) of order 1.

(e) Suppose there is a hole at x with principal sequence zo, ..., z,, and
associated sequence of indices 1(0),...,[(m). Set h := m — 1 if the hole
is properly terminated and h := m, otherwise. The type of the hole is the
sequence

(l(o),pr(zo), Ql(o)+1(zo)), e (l(h),pr(zh), Ql(h)+1(zh)) ,
of the types of z,,, ..., zj,

Lemma 3.6.7. Let r be a run, v € dom(r) and suppose that there is a hole in
Dy(v) at x.

H(x) =J{Dy(2) | ze H(x) n Xi(v) }
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3.6 Strong domination and holes

and  Ex(v) = D(v) w(J{ Di(2) | z € X (v) } .

Proof. Since the second equation follows from the first one we only need to
prove the first equation.

(c) If y € H(x) then z < y, for some exit point z. If z ¢ H(x) then we
have z < x < y and z £} y, and it follows that z =} x. Hence, x € Di(v)
implies z € Dy (v). A contradiction.

(2) Let y € Di(z) for some exit point z € H(x). Then z € y and z €
Ex(v) N Di(v) implies y € Ex(v) ~ Dg(v). It remains to show that there is
no element w € Dy (v) with x < w < y. Suppose otherwise. Since z € H(x)
we have z < w < y. Hence, z £ y implies z £ w. Butv £; z £ w and
v < w implies v <4 z. A contradiction. O

The following lemma investigates the structure of a hole and it clarifies
the role of the principal sequence.

Lemma 3.6.8. Let r be a run, v € dom(r), 1 < k < n. Suppose that there is a
hole in Dy (v) at x with end point y, let z, . . ., zm be its principal sequence,
and 1(0), ..., 1(m) the sequence of indices such that

mr(z;) = popy(jymr(zj-1) -

Suppose that ir(v) = &, = & and nr(x) = &y o 2§ s Mgy -0
Ho-
(a) Ifzj # y then zj € Ex(v) \ Di(v).
(b) k<I(o0) << I(m), in particular m < n.
(¢) Ifuj is the immediate ; -predecessor of z; then uj € Di(v).
(d) We have
nr(2) = popy(jyr(x) = &uttn =+ &yl = S1G) M) -

Furthermore, if zj # y then n(j) = €.
(e) If the hole is properly terminated then z,, = y.

Proof. (a) x < zj < y implies, by definition of y, that
zj€ H(x) € Ex(v) N Di(v).
(b) Since v < x and v 4 ox we have, by Lemma 3.6.3 (a),
nr(zo) = mr(0x) = pop;(qy7r(x) with (o) > k.

Furthermore, Lemma 3.5.6 implies that I[(j + 1) > I(j) + 1, for j < m.
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3 The Caucal hierarchy

(c) We claim that v £ uj,, S uj, for all j < m. Then the result follows
by induction on j since v S} u, £, x € Dy (v) implies u, € Dy(v) and
VEL Ujy, Ef uj € Di(v) implies uj, € Di(v).

Note that v < x < zj,; and v &} zj;, implies v =} zj,, and, hence, v £;
U4, Therefore, we only need to prove that u;,, S u;.

By Lemma 3.5.6, the immediate Ef(j) .,-predecessor of zj,, is

Wi 3= Zj ()42 Zjien -

As wj,, has at least two immediate Ef(j) ,,-Successors it follows by Lemma
3.5.5 (d) that zj,, is an immediate c} -successor of wj,,, for all [ < I(j) +1.
Because k < I(j) +1 we therefore have ., = Wjy, = 2j Mj(j)+1 Zj+1- Conse-
quently, we have uj,, < z; < zj;, and, together with u;,, £ zj,,, it follows
that uj,, ©; z;. Hence, by definition of u;, we have u;,, £ u;.

(d) First, consider the case that /(j) = 1. By (b), this implies k = 1 and
j = 0. Since z, = ox we have n7(25) = pop;(,y7r(x), by definition of /(o).
Finally, we have #, = ¢, by Lemma 3.6.3 (c).

For I(j) > 1, we prove the claim by induction on j. For j = o, we have, by
definition,

nr(zo) = nr(ox) = popl(o)m’(x) =&ntn 1 §1(0) o) »

and, for j > o, the induction hypothesis implies that

mr(zj) = pop;(jymr(zj-1)
= pOpl(j)(gnﬂn Pt fl(j—l)rll(j—l))
= fn”ln s fl(j)’//l(j) .

Suppose that 77;(j) # . We claim that z; = y.

gn Pt fo \” ﬂr(x) = gn?]n Peeed gkﬂk “Hk—1 " Ho

implies, by Lemma 3.4.2, that

f?’l Ceee 50 qk En"]n e El(])rll(]) = 7'[7'(2]) .

Furthermore, by (c), we have u; € Di(v) for the immediate c} -predeces-
sor u; of z;. Together with z; € Ex(v) it therefore follows that z; € Dy (v).
This implies z; = y.

(e) Suppose that z,, # y. We define a sequence w, ..., w; of vertices as
follows. Set w,, := z;,. For j > o, fix the maximal index h such that w;_, %,
y and let w; := w,(w;j_,). The construction stops when we reach a vertex
ws € y. Since the hole is properly terminated we have y € Dy (v). Hence,
v E; ws Ef y implies w, € Dy (v) and it follows that w, = y.
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3.7 Expansion sequences

Let [ := I(m). We prove by induction on j that

mr(wj) = &utn -+t EaMisy s @y, forsome pj o & with pj # .

For j = o, we have nr(w,) = nr(zm) and po = & as desired. By Lemma
3.5.6, for every j > o, there is some index & such that

nr(w;j) = pop,r(wj-,).

If h > I then

mr(w;) = popy (&ntin t -+ Eratrn t Uja) = Eatfn t - = &

which implies z,, %, w;. Hence, z,, %;,, w; and, therefore, z, ;'é;'(m) 2
Contradiction. Thus, we have h < [ and

ﬂT(Wj) = Poph(fnrln CRA fl+1’71+1 : !"j—l)
= En"]n B £l+1ﬂl+1 “HUj

with ;= popy, (p-1).
Since ys S, & implies &) : -1 &, 4 s, it follows that

Entor i &o Ak Entin ot Ea Mgyt s = 7'[7’()/)
in contradiction to y € Dy (v). O
Lemma 3.6.9. Every principal exit point is an exit point.

Proof. Letz € Py(v).Clearly, z € Ex(v) \ Dr(v). Suppose there is some y €
Ei(v) N Di(v) with y < z. By Lemma 3.6.8 (c), y ¢} z implies y € D (v).
Contradiction. O

3.7 EXPANSION SEQUENCES

In order to perform the pumping construction in the next section we need to
find a pair of vertices u <, v with certain properties. As an intermediate step
to prove the existence of such pairs we show in the current section that, if the
run is long enough then we can find arbitrary long chains u, <, -+ <; up,.

In order to prove the existence of long chains u, <, === <; u,, it is suffi-
cient to bound the branching factor of the forest (dom(r), <,). To do so we
employ the following device.

Definition 3.7.1. Let r be a run. An expansion sequence of r is a sequence of
injections t; — .-+ — t, between forests where t, := r and, for i < n, we
have t; := (C, <€;4,) where C € dom(t;,,) is a maximal chain in t;,,.
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3 The Caucal hierarchy

We want to prove that each forest in an expansion sequence is binary. The
following lemmas collect basic properties about the vertices in such a forest.

Lemma 3.7.2. Let ty — --- — t, be an expansion sequence of r and let x €
dom(ty). If y is an immediate successor of x with (7t (y)) ks, = (7t (%) ) ki
then there exist no immediate successors z of x with y < z.

Proof. Denote the first embedding by 1 : t; — t;.,,. We show that, forall z ¢
dom(t;) with x <, z, we have y <., z. The proof proceeds by induction
on the number of elements w such that 1y < w < 1z.

Since

XU Y U2 2> X% 2, and  (mt(x)) ke = (Tt (Y) )kt >

it follows by Lemma 3.4.3 that y <i,, z. Consequently, y S4,, z and, by
induction hypothesis, we have y £/ z.

Let w be some element such that y =, w £, z. We have to show that
Y k1 w.Since x E¢, w i, zand x <, z we have x i, w. Similarly,
Y Ex,, WEp,, zimplies y <, w. Since (7t5 (X)) ks = (mtx(y)) ks We can
again apply Lemma 3.4.3 to infer that y <., w. Together with y <, z it
therefore follows that y <., z. O

Lemma 3.7.3. Let t; — --- — t, be an expansion sequence of r. Denote the
embedding ty, — t, by 1 and let x € dom(t;).

(a) Ifthe operation at x is a level i operation with i < k and x has an imme-
diate successor y then 1y = oix. In particular, y is the only immediate
successor of x.

(b) If there is a pop,-operation at x with i > k then x is a leaf.

Proof. (a) follows from Lemma 3.7.2 by induction on k, and (b) follows im-

mediately from the definition. g
Lemma 3.7.4. Let ty — --- — t, be an expansion sequence of r and x €
dom(ty) a vertex with several immediate successors Yo, ..., Ym—1, M > 2.

(a) The operation at x is a push(k + 1)-operation.

(b) There are words &,, ..., & and py, ..., Piy, such that

”tk(x) =&y &,

m = cloneg., (mtx(x)) ifk>o,
tk(yo) {pusha(ﬂtk(x)) ifk=o0,

wt(y1) = Entin i Eppaiknn  Eppr it o

(c) x has exactly two immediate successors.
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3.7 Expansion sequences

Proof. We prove the claims by induction on k. Denote the embedding ¢, —
t; by 1; and set C := rng(1,).

(a) Lemma 3.7.3 (a) and (b) imply that there is a push(i)-operation at x
with i > k. Suppose that i > k + 1. Let z be the element such that 1;_,z is the
immediate successor of 1;_,x. By construction of t, z is the first immediate
successor of x. By induction hypothesis we have (7t (2) ) k1, = (75 () ) ksr-
Therefore, it follows from Lemma 3.7.2 that z is also the last immediate suc-
cessor of x. Hence, x has only one immediate successor. Contradiction.

(b) By Lemma 3.7.3 (a), we know that 1, y, = 01,x. Hence, (a) implies that

cloneg,,(mty(x)) ifk>o,
mtk(yo) = .
push, (7t (x)) ifk=o0.

By construction of f, ik, , is the minimal element of C \ {1, x} such that

Yo Fkar Y1 -

Let z be the element such that 1,z is the immediate predecessor of 1, y,
in C. Since 1,z is not a leaf of ¢, Lemma 3.7.3 (b) implies that the opera-
tion at z is not a pop; with i > k + 1. Since

Yo £k %

the operation at z must therefore be a pop,,, and, by Lemma 3.7.3 (a), we
have 1,y, = 01,2z. Furthermore, it follows that there are words y,, ..., yo
such that

ntk(z) = fn[/ln Pt £k+2[/‘k+2 : £k+1(£k CRA fo)ﬂkﬂ Uk o

Consequently, y, £k, y; implies that yg,, = ¢ and

ntk(yl) = popk+1(7rtk(z)) = fn[/‘n Pl £k+zﬂk+z : £k+1 Pt fo .

(c) By (b) and Lemma 3.7.2 it follows that y, is the last immediate succes-
sor of x. O

Corollary 3.7.5. Every forest in an expansion sequence is binary.

Using this corollary we can prove that every sufficiently long run contains
asequence Uy < -+ & Uy,

Lemma 3.7.6. Let t be a binary tree with [dom(t)| > 2™ vertices. Then there
exists a chain C € dom(t) of size |C| > m.
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3 The Caucal hierarchy

Proof. If every chain is of size at most m then dom(t) ¢ {o,1}*™ which
implies

ldom(t)] < > 2" =2" -1.
i<m

Contradiction. O

We only consider the case of runs starting at the initial configuration. This
ensures that the expansion sequence constructed below consists of trees in-
stead of forests. The restriction will be lifted below.

Lemma 3.7.7. Let r be a run that starts at the initial configuration. For every
set M ¢ dom(r) of size |M| > 2,,(m) there exists a sequence uy <, -+ <, Upy
of vertices of length strictly greater than m such that,

M (Dy(u;) N Dy(uin,)) # D, foralli<m.

Proof. We construct an expansion sequence f, — -+ — t, and two se-
quences Co, ..., Cyand M,, ..., M, of sets as follows. We start with t,, := r
and M, := M. To construct t; suppose that we have already defined t;,, =
(dom(tx+,),<) and a subset My,, S dom(tx,,). Choose a chain C;, ¢
My, of maximal length in the tree (My,,, <), and let Cy,, € dom(#y,,) be
a maximal chain in t;,, with C;, € Cj.,. We set

tk = (Chor»Skn) and My = Cry n{unv|u,ve Mgy, },

where A denotes the greatest lower bound in t. Finally, we also choose some
chain C], ¢ M, of maximal length and a corresponding maximal chain C,, €
dom(t,) with C. ¢ C,.

Let x be the first element of dom(7). Since x is initial we have nr(x) =
g:--: &1 a, for some letter a, which implies, by Corollary 3.4.6, that x <, y,
for all y € dom(r). Therefore, x is the unique minimal element of each ¢,
and all t; are binary trees. Since the sets My are closed under greatest lower
bounds it follows that the subforests induced by them also form binary trees.
Consequently, we can apply the preceding lemma. By induction on k, it fol-
lows that [C| > 2y (m), for k < n. Let ug < -+ < up, be an enumeration of
(a subset of) C.. The sequence iU, . . . , Inliy, has the desired property. [

By an automaton construction we can generalise this result to arbitrary
runs. Unfortunately, this introduces a dependence on the size of the stack
contents of the first configuration.

Definition 3.7.8. For & = x,...x,, € I'"" we define, by induction on #,

ifn=1,
1] = {'5'

Yicmlxi| ifn>1.
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3.8 A pumping lemma

Corollary 3.7.9. Let r be a run with first element w and set k := 2||nr(w)||.
For every set M < dom(r) of size |M| > 2,,(m + k) there exists a sequence
Uo < -+ & Uy of vertices of length strictly greater than m such that,

M (Dy(ui) N Dy(ui,)) #@, foralli<m.

Proof. Let & := nir(w). There exists a sequence op of at most k := 2| ]| stack
operations such that & := op(e: -+ : € : a). We construct an automaton 3 by
modifying the given automaton A such that, starting at the initial configu-
ration B3 executes the operations op until it reaches the configuration r(w).
Then it continues in exactly the same way as A would. Let ¥’ = sr be the
run of B starting at the initial configuration. The preceding lemma implies
that there exists a sequence u, < -+ < Uy, with the desired properties in
dom(r"). Since |[dom(s)| = k it follows that u; € dom(r), for i > k. Hence,
Up < -+ & Upyx is the desired sequence. O

3.8 A PUMPING LEMMA

Using the structure theory developed in Sections 3.4 to 3.7 we prove a pump-
ing lemma for higher-order pushdown automata. For the construction be-
low we need to find two vertices u <, v such that the same types of holes
appear in D,(u) and in D,(v). Such vertices u, v will be called a pumping
pair. The formal definition is based on the equivalence relation ~,.

Definition 3.8.1. (a) Let £ = &, : --- : &,.. We define the set
)Zk(f) C I x oo [H(RH) o Qx{*k+1,...,n}xQ
by the following conditions. For [ € {k +1,...,n}, we have

(bns s s P> 1, ) € i(8)
iff  thereisarunrand an element x € dom(r) such that

r(x) = (En#n deed £k+1/"k+1 : gk’ P) >
and (@i (%)) = (Enptn - E1pa15 ) »

and we have

(B> o i %5 4) € Ji ()
iff  thereisarun rand elements x, y € dom(r) such that y € Ex,,(x),

r(x) = (Sntin t -+t Spabhirn &> p)» and pr(y) =q.
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3 The Caucal hierarchy

(b) For &, { € I''™ and k, m < n, we define an equivalence relation ~y,, by

Evpm ¢ :iff forall y; ef*i,p,qu,andle {*,k+1,...,n},
(- b P 12) € Ti(POPL (D))
< (s by 212 0) € Ti(POPK(())
where, for A = 1, : --- 1 A, we set
L ifu;=¢,

Hi = {yi[s tevrer (i)ofet Aisy it Ao otherwise.

(c) Let r be a run. Two vertices u, v € dom(r) form a pumping pair if
u<s v, pr(u)=pr(v), and nr(u)~g ar(v), forallk<n.

Given a pumping pair u <, v we can perform the following pumping
construction.

Lemma 3.8.2. Let r be a run with a pumping pair u <, v and suppose
ar(u)=&=¢&,:: & and nr(v)=(={y::{,.

There exists a run s whose first configuration is the same as that of r and there
are vertices u',v',w' € dom(s) such that

ns(u') =&, nms(v')=(, ns(w')=C[&/],
u' < v' form a pumping pair, and |D,(v")| = |D,(u)|.
Proof. Define

S0 1= Tlaom(r)\E(v) > and 1= (7lp,(u) ) [§/CTr-

Let u’ be the copy of u in dom(s,) and let v' and w' be the copies of, re-
spectively, u and v in dom(s, ). For each principal exit x of some hole in
dom(s,) = D,(u) we construct a run s, of the same type as x. We obtain
the desired run s by inserting s, into s, and each s, into the corresponding
hole of s,.

It remains to find s,. If x is of order k then, by Lemma 3.6.8 (d), there are
words fy, . .., Pgy, such that

ﬂr(x) = fn,“n Dol £k+1,“k+1 : fk .

Since & ~j, { we can find a run s, of the same type as x such that

ﬂsx()/) = (n!:ln st (k+1[2k+1 : (k >

where y is the first element of dom(s, ) and

7. — £ lf[’tl = 8’
#i #i[f I Y AR SRR (:o]l otherwise . ]
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It remains to prove the existence of a pumping pair. We start by showing
that jx (&) is closed under ~; y,.

Lemma3.8.3. LetE=&, & el and p;,n;e I, fork<i<n. If
Enthn + ot S €k ~ikwr Sntln t 0 Eka s * ks
forall k < i < n, then we have

(s s bikss 5 1q) € i(§) it (s oo s ks 5 1, q) € i (E) -

Proof. Let r be a run of minimal length witnessing the fact that

(bns s s 25 1, q) € 7w (§) -

Denote the first and last elements of dom(r) by x and y, respectively. By
minimality of 7, we have

r(x) = Enin ¢ Exmrphions © o D)
and either

L#x, y=win(x), and  r(y) = (Eaptn s Sprs q)
or I=x, yeE(x), and pr(y)=q.
We construct a witness s for

(ﬂna <o s Nkt P> l’q) € Xk(f)

as follows. Let

t=(rlp,, ) [Enttn - Eroabirn + &/ Entn =+ ¢ Ekaallens * Sk lin -
If [ # + then we add the element y as last element to ¢ by setting

t(y) = uttn s &1, q) -
Clearly, t is a partial run of the right type with

1) = (Entpn -t Exonlionn : &0 D) -

If t does not contain holes then we have already found the desired witness.
Suppose that there is a hole in dom(¢) = Dy,,(x) and let w be one of its
principal exits. If w is of order i then

ar(w) = EnpnPn -t i Piva : Eilhis
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3 The Caucal hierarchy
for some words f,, ..., Bi+;. We construct a run t,, of the same type as w
that be inserted into ¢ to fill the hole. Since

fn!f‘n s £k+1[/‘k+1 : fk ~ik+1 En”ln s £k+1’7k+1 : Ek

there exists a run t,, with first and last element u and v, respectively, such
that

mty(u) = fnﬂnﬁn R fi+177i+1,3i+1 2 &imi,

where
& lfﬁj =&,
ﬁj = ﬁ][s : fj—l,uj—l st £k+1.”k+1 : fk/s : fj—lrlj—l seend £k+177k+1 : gk]kﬂ
otherwise.

Furthermore, if [ # * then
1ty (V) = Eutinfn s = P
and, otherwise, we have pt,,(v) = pr(v). O
We can use the preceding result to compute a bound on the index of ~,.
Lemma 3.8.4. The index of ~y,, is bounded by
I o] € T iea (3" HQP (= K +1)1).

Proof. Let s := |Q|. We prove the claim by induction on k. For k = n, we
have

Xn(§) € Qx{x}xQ

which implies & ~pp, Ciff ¥, (&) = 11 ({). Hence, there are at most 25 ~pm-
classes.
Suppose that k < n. For A = A, :---: Ay e ™" and p;, 1; € I'*!, we define

([/lna cee ﬂk+1) =) (’711’ cees ’7k+1)
iff An["n B Ak+1["k+1 : /lk ~ik+1 Anﬂn s /lk+177k+1 : Ak , foralli > k.

By Lemma 3.8.3, (4n> - -» k1) =2 (Mn> -+ > Mgyy) implies

(ns o e pr 1) € (M) 3fE - (s oo s o 1, q) € Ji(A)

By induction hypothesis, there are at most

n—k
[T 25 5%1) < 3 i1 = K)3" 62 (n = 1)

< Jn_k(g,”_k_lsz(n —k+1)!)
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=, -classes. Set

(fns o bksn) = (Mo v o5 Mira)
M (oo i) Zpopy® (T 714,)
and (uh -2 5.,) Zpop, (@) (M- 15,)
where, as above,
£ {8 ifui = ¢,
U \ile et (ui)ofe: €t ol othervise.

By Lemma 3.8.3, we have & ~,, (iff, for every =-class [uy,. .., pigs:] We
have

(4o o P> 1) € Tu(pOD(£))
iff (Wil 0 1q) € B(Popi(0)).
Hence, there are at most
L3k (3" (nkan))2es> (k) o :n_k+1(3.3n—k—152(n k4 1)!)
= :n,kﬂ(?,"*ksz(n -k+ 1)!)
~km-classes. O

The existence of a pumping pair immediately follows from the previous
lemma and Corollary 3.7.9.

Lemma 3.8.5. Let r be a run with first element w and set k := 2| nr(w)|. For
every set M € dom(r) of size

IM| > 2,,(n3"7|QP n! + k)
there exists a pumping pair u <, v such that
Mn (Dy(u)~Dy(v)) + 2.

Proof. By Corollary 3.7.9, there exists a sequence u, < -+ < Uy, of length
strictly greater than

m = :n(n3"71|Q|3n!) > Q|- H jn,i+1(3"7i|Q|2(n —i+ 1)!)

1<i<n

such that
M (Dy(u;) N\ Dy(ujy,)) + @, foralli<m.

By Lemma 3.8.4, it therefore follows that there are two indices i < j such
that u; and u; form a pumping pair. O
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We apply the technical Lemma 3.8.2 to show that, if there exists a run of
a certain length then there are infinitely many different runs.

Theorem 3.8.6 (Pumping Lemma). Suppose that A is a pushdown automa-
ton of level n and let r be a run of A with first element w.

(a) If

|dom(r)| > :Zn(n3"_1|Q|3n! +2 ﬂr(w)||)

then there exists a sequence to,1y,... of runs, each starting with w, where
ro = 1 and
|dom(r;)| < |dom(r4,)], foralli<w.

(b) Similarly, if r contains at least
2n(n3"7|QP n! + 2] mr(w)])

non-e-transitions then there exists a sequence ro, 1y, . .. of runs, each starting
at w, where roy = r and r;,, contains more non-e-transitions than r;.

Proof. (a) Let M := dom(r). By Lemma 3.8.5, there exists a pumping pair
u < v in r. We define a sequence of runs r/,r,,... inductively. For each
run r;, we will also choose a pumping pair u; < v;. We start with r}, := r,
Uo = u, and v, := v. Suppose that 7/ is already defined. By Lemma 3.8.2, we
can construct a new run r;, that contains elements u;, and v;,, such that
Uiy < Vi forms a pumping pair and | D, (v;4,)| = |D:(u;)| > |Dy(v;)|- To
obtain the desired sequence 7o, 7y, ... we delete from rg, ... all runs 7}
such that [dom(r})| > |[dom(r})|, for some I < i. The condition |D,(v;)| <
|D;(vi+1)| ensures that the resulting sequence is still infinite.

(b) Let M ¢ dom(r) be the set of all configurations with an outgoing non-
e-transition. If we perform the same construction as in the proof of (a) we ob-
tain a sequence of runs r;, i < w, such that the number of non-¢-transitions
in each run is strictly increasing. O

Corollary 3.8.7. Let A be a pushdown automaton of level n. If A accepts a
word of length at least

:lzn(n3n_1|Q|3n!)
then the language recognised by A is infinite.

One immediate consequence of this theorem is the fact that finiteness is
decidable for languages recognised by a higher-order pushdown automaton.

Corollary 3.8.8. The problem whether the language recognised by a given
higher-order pushdown automaton is finite is decidable.
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We apply the theorem to prove that a given graph does not belong to a
certain level of the Caucal hierarchy.

Example. Let Ty := (Ty, <) where Ty := {01! | i < w, I < 23;(i)}.
We claim that T5,, ¢ C,. For a contradiction, suppose otherwise. By The-
orem 3.2.3, there exists a pushdown automaton A of level n whose configu-
ration graph becomes isomorphic to %5, when we contract all e-transitions.
Furthermore, we can use Lemma 3.2.4 to find a finite structure 2( with uni-
verse Q W I' such that the configuration graph of A is definable in 20*".

Let wy € A*" be the word encoding the element o1 € Tj,,. In the same
way as in the example on page 78 it follows that

wili < 2 (O(k)).

Hence, |wg| < 2,-,(O(k)). The unique path starting at wy has length
25, (k) — 1. Thus, the run of A corresponding to this path has at least that
much non-e-transitions. Since

2on (13" QPR+ 2| wi|)) < 2,0 (n3" QP A! + 22, (O(K)))
< 230 (0O(K))
< 2y(k) -1
it follows from part (b) of the theorem that, for large enough k, there are

runs starting at wy with arbitrarily many non-e-transitions. But this implies
that T, contains arbitrarily long paths starting at wj. Contradiction.
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3 The Caucal hierarchy

CONCLUSION

In this thesis we have studied and classified monadic second-order theories.
Our main interest was the dividing line between theories simple enough to
allow for a structure theory and those whose complexity inhibits analysis.
In the first part we have shown that the lack of definable pairing functions
is one indication of simplicity. In fact, we have proved a dichotomy: either
a given first-order theory is complex, meaning that

¢ every model of a given first-order theory admits a definable pairing
function and

¢ the partition width of these models is unbounded,

or the theory is simple, that is,
¢ no model has a definable pairing function with infinite domain and
o the partition width is bounded by 2°.

Based on this result we obtain the following landscape of monadic second-

order theories. (The diagram is imprecise since there are structures admit-
. . " . Ro

ting coding with partition width less than 2* ")

coding

R
pwd < 2> ° -

s H;cidable

=
-
-
-
s

, pwd < Ro

Caucal
hierarchy

In the second part of the thesis we collected technical results that can
be used to determine the level of a given structure in the Caucal hierarchy.
On the one hand, we employed MSO-automata to compute bounds on the
outdegree of vertices. On the other hand, we performed a detailed investiga-
tion of configuration graphs of higher-order pushdown automata in order
to obtain bounds on the length of paths in such a structure.
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