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 I

We continue to develop the theory of recognisability for languages of infinite
trees that was introduced in []. ¿e main result of [] is a characterisation of
the regular languages of infinite trees via homomorphisms into suitable algeb-
ras. Historically, one of the main advantages of such algebraic characterisations
has been their suitability for deriving decision procedures for subclasses of reg-
ular languages. We hope that the theory developed in [] will also be useful in
this respect. One of the prerequisites for obtaining decision procedures is that
the algebras one is dealing with are finitely representable.¿e main result of the
present article states that the algebras introduced in [], called path-continuous
ω-hyperclones, are, in fact, finitely representable.
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

As an application of this result, we present a new proof of Rabin’s Tree ¿e-
orem, which states that the monadic second-order theory of the infinite com-
plete binary tree is decidable. ¿e standard proof of this result is based on the
translation of monadic second-order formulae into tree automata. ¿e required
automata-theoretic machinery in turn rests on two main results: (i) the posi-
tional determinacy of parity games and (ii) either a determinisation construction
for Büchi automata, or an analogous result for tree automata (see [, ]).
For Büchi’s¿eorem – the corresponding result for the natural numbers with

successor relation – there exists, besides the usual automata-theoretic proof, an
alternative proof due to Shelah [, ]. It is purely combinatorial in nature and it
is based on Feferman-Vaught like composition arguments for monadic second-
order theories.
For a long time it has been an open problem to extend these results to the the-

ory of the binary tree.What was missing in order to transfer Shelah’s proof was a
suitable variant of Ramsey’s¿eorem for trees. Such a theoremhas recently been
provided by Colcombet []. In this article we use Colcombet’s result to prove that
our algebras have finite representations. ¿is fact is then used to give an altern-
ative proof of Rabin’s theorem without references to automata or games.
¿e outline of the article is as follows. A er recalling the definition of an ω-

hyperclone in Section , we develop the combinatorial machinery needed to ob-
tain finite representations of ω-hyperclones in Sections  and . Section  con-
tains a proof thatω-hyperclones can be represented by so-called power-hyperclones,
which are finitely representable. As an application, we use this result to give an
alternative proof of Rabin’s ¿eorem in Section .

 P

To fix notation, let [n] ∶= {, . . . , n − }. ¿e domain of a function f ∶ A → B
is dom( f ) = A and its range is rng( f ) ⊆ B. We tacitly identify a tuple ā =
⟨a , . . . , an−⟩ with the function i ↦ a i and with the set {a , . . . , an−} of its
components.We denote by ω<ω the set of all finite sequences of natural numbers.
¿e empty sequence is ⟨⟩. We denote the prefix ordering on ω<ω by ⪯ :

x ⪯ y iff y = xu for some u ∈ ω<ω .

We denote structures with fraktur letters A,B,C, . . . and their universes by the
corresponding Roman letters A, B,C , . . . . We will also deal with many-sorted
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structures. In the many-sorted case, we write As , Bs ,Cs , . . . for the domain of
sort s.
In this article, graphs will always be simple, directed, and labelled. More pre-

cisely, a graph is a structure of the formG = ⟨V , (Ec)c∈Λ , (Pi)i∈Σ , v⟩ where the
Ec are binary edge relations, the Pi are unary predicates, and v is a distinguished
vertex. We assume that the edge relations Ec are deterministic, that is, every ver-
tex in V has at most one outgoing Ec-edge, for every c. We will write E for the
union⋃c Ec of all edge relations.
A path of a graphG is a (finite or infinite) sequence (en)n of edges such that,

for all n, the second vertex of en coincides with the first vertex of en+. We write
w ∶ x → y if w is a path from the vertex x to the vertex y. Similarly, we write
β ∶ x →∞ if β is an infinite path starting at the vertex x.

Definition .. (a) A tree domain is a subset T ⊆ ω<ω that is prefix-closed and
finitely branching, i.e.,

◆ u ⪯ v ∈ T implies u ∈ T and

◆ for every w ∈ T , there are only finitely many d < ω with wd ∈ T .

(b) A tree is a graph T = ⟨T , (Ed)d<ω⟩ where T is a tree domain and Ed ∶=
{ ⟨w ,wd⟩ ∣ wd ∈ T } is the d-th successor relation. ¿e predecessor of a vertex
w ∈ T is the vertex w′ ∈ T such that w = w′d, for some d < ω. We denote it by
prec(w). Note that prec(⟨⟩) is undefined.

Definition .. (a)Anω-semigroup is a tuple ⟨S, Sω , α, π⟩where S is a semigroup,
Sω is a set, α ∶ S × Sω → Sω is a (le -)action of S on Sω , and π ∶ Sω → Sω
is a function satisfying the following two associative laws: for every sequence
(sn)n ∈ Sω and all strictly increasing sequences  = k < k < . . . of natural
numbers, we have

π(s , s , s , . . . ) = α(s , π(s , s , . . . )) ,

π(s , s , s , . . . ) = π((sk⋯sk−), (sk⋯sk−), (sk⋯sk−), . . . ) .

Usually, we omit α from the notation and simply write su instead of α(s, u). Also
we write∏n sn instead of π(s , s , . . . ).
(b) An homomorphism between ω-semigroups ⟨S, Sω , α, π⟩ and ⟨T , Tω , β, ρ⟩

consists of two functions h ∶ S → T and hω ∶ Sω → Tω such that

◆ h is a homomorphism of semigroups,



◆ β(hs, hωu) = hω(α(s, u)), for all s ∈ S and u ∈ Sω , and

◆ hω(π(s , s , s , . . . )) = ρ(hs , hs , hs , . . . ), for all (sn)n ∈ Sω .

In [] we have introduced certain algebras called ω-hyperclones that can be
used to give an algebraic characterisation of regular languages of infinite trees.
¿e main result of that article is a theorem (see ¿eorem . below) stating that
a set of (possibly infinite) terms is regular if, and only if, it is recognised by a
morphism into a finitary ω-hyperclone with certain additional properties.
Intuitively, an ω-hyperclone is an algebra where each element can be thought

of as a tuple of objects each of which has a number of ports. Each port is labelled
by a natural number. For instance, the objects could be terms where each occur-
rence of a variable x i corresponds to a port with label i. In particular, the ports are
arranged in a le -to-right fashion and there may be several ports with the same
label. For simplicity, we assume that each object has only finitely many ports.
Hence, to each object we can associate a finite tuple of natural numbers. We can
depict an element of an ω-hyperclone consisting of four objects with ports ⟨, ⟩,
⟨, , ⟩, ⟨⟩, and ⟨, ⟩, respectively, as in the following diagram.

   

 

  



 

An ω-hyperclone has threemain operations: a finite horizontal product⊕, a fi-
nite vertical product ⋅, and an infinite vertical product π.¿ehorizontal product⊕
is just the concatenation of tuples.

             

⊕ =

 
   

  
   



For the vertical product ⋅we plug in the i-th object of the second tuple into every
port of the first tuple with label i. For instance, if the objects are terms then the
vertical product might correspond in substituting the i-th term of the second
tuple for the variable x i in each term of the first tuple.
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      

   

⋅ =

 
   



 


For technical reasons, we will not use the basic vertical composition ⋅, but amore
complicated operation ∶I ,τ where we can plug in objects into only some of the
ports, while changing the numbers of the remaining ports.
An important example of an ω-hyperclone is the free ω-hyperclone Fω[Σ]

where the elements are tuples of terms.

Definition .. (a) Let Σ be a signature and X = {x , x , . . . } a countable set
of variables. We denote by Tω[Σ] the set of all (possibly infinite) terms with op-
erations from Σ and variables from X with only finitely many occurrences of
variables.
For a term t ∈ Tω[Σ], we denote by var(t) ∈ ω<ω the sequence of all (indices

of) variables appearing in t in le -to-right order. Formally, we define var as the
unique function Tω[Σ]→ ω<ω satisfying the following equations:

var(t) = ⟨⟩ , if t does not contain a variable,

var(x i) = ⟨i⟩ ,
and var( f (t , . . . , tn−)) = var(t) . . . var(tn−) .

(b) ¿e free ω-hyperclone over Σ is the many-sorted structure

Fω[Σ] ∶= ⟨(Fū[Σ])ū∈(ω<ω)<ω ,⊕, , (λσ)σ , (∶I ,σ)I ,σ , π, ≤⟩

with set of sorts (ω<ω)<ω where the domain of sort ū = ⟨u , . . . , un−⟩ ∈ (ω<ω)<ω

is the set

Fū[Σ] ∶= { ⟨t , . . . , tn−⟩ ∣ t i ∈ Tω[Σ] ∖ {x , x , . . . } with var(t i) = u i }

of all finite tuples of non-trivial terms such that the i-th term has variables u i . It
has the following operations:

◆ ⊕ is the concatenation of tuples.



◆ ∶I ,σ , for I ⊆ [n] and σ ∶ [k]→ ω, is defined as

⟨s , . . . , sm−⟩ ∶I ,σ ⟨t , . . . , tn−⟩ ∶= ⟨u , . . . , um−⟩ ,

where u l is obtained from s l by replacing every occurrence of a variable x i
with i ∈ I by the term t i . Variables x i with i ∉ I are replaced by the vari-
able xσ(i) instead.

◆ λσ reorders its argument according to σ ∶ [m]→ [n] :

λσ⟨t , . . . , tn−⟩ = ⟨tσ(), . . . , tσ(m−)⟩ .

Note that σ need neither be injective, nor surjective.

◆ π(a , a , . . . ) is the limit of the terms a, (a ⋅ a), (a ⋅ a ⋅ a),. . . , where,
for an m-tuple s̄ and an n-tuple t̄, the simple version of the vertical com-
position is defined by s̄ ⋅ t̄ ∶= s̄ ∶[n],id t̄.

◆  denotes the empty tuple of terms.

◆ ¿e order ≤ is trivial: a ≤ b iff a = b.

An arbitrary ω-hyperclone C is a homomorphic image of such a free ω-hyper-
clone with the additional requirement that all operations are monotone with re-
spect to the ordering. (¿e ordering ≤ will be needed for the definition of path-
continuity below. It plays no other role in the theory of ω-hyperclones.)We refer
the reader to [] for an axiomatic definition of ω-hyperclones and a proof that
the free ω-hyperclone is actually free. Let us recall some definitions from [].

Definition .. LetC be anω-hyperclone, a ∈ Cū an element of sort ū = ⟨u , . . . , um−⟩,
and b ∈ Cv̄ an element of sort v̄ = ⟨v , . . . , vn−⟩.
(a) We introduce the following abbreviations:

a ∶I b ∶= a ∶I ,id b ,

a ⋅ b ∶= a ∶J b , where J = u ∪ ⋅ ⋅ ⋅ ∪ um− is the set of all ports of a ,

ρσ(a) ∶= a ∶∅,σ c , for an arbitrary element c .

(¿e axioms of an ω-hyperclone imply that a ∶∅,σ c does not depend on c.) To
simplify notation, we further set

ab ∶= a ⋅ b , σa ∶= λσ(a) , aσ ∶= ρσ(a) ,
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(b) ¿e decomposition of a is the tuple ⟨a , . . . , am−⟩ of elements a i ∈ Cu i

such that a = a ⊕ ⋅ ⋅ ⋅ ⊕ am−. Its width is the number m. (By the axioms of an
ω-hyperclone, this decomposition is unique.)
(c) We say that a ∈ Cū is in separation normal form if there are numbers  =

k ≤ ⋅ ⋅ ⋅ ≤ km < ω such that

u i = ⟨k i , k i + , . . . , k i+ − ⟩ , for all i < m .

(d)¿e normal form of a is an element b in separation normal form such that
a = ρσ(b), for some σ. We denote the normal form of a by sep(a).

Example. In the free ω-hyperclone we have

sep⟨ f (x , f (x , x)), f (x , x)⟩ = ⟨ f (x , f (x , x)), f (x , x)⟩ .

Remark. (a) When viewing elements of an ω-hyperclone as objects with ports, a
vertical product a ⋅b ⋅ c ⋅d produces a directed acyclic graph of objects.¿emain
property of elements in separation normal form is that their product produces a
tree instead.
(b) Every element a ∈ Cū has a unique normal form. Hence, sep(a) is well-

defined.

Let us introduce some concepts and terminology that are useful when dealing
with infinite products.

Definition .. Let C be an ω-hyperclone.
(a) We use the notation a◻ for a sequence (an)n<ω that can be multiplied, i.e.,

the sorts of an and an+ are such that the product an ⋅ an+ is defined for every
n < ω.
(b) We say that a sequence a◻ = (an)n<ω is in separation normal form if

every an is in separation normal form.
(c)¿e unravelling of an arbitrary sequence a◻ is a sequence â◻ in separation

normal form that is defined as follows. We simultaneously define functions σn
and elements ân , by induction on n. We start with σ ∶= id. If σn is already
defined, we set

ân ∶= sep(λσn(a
n)) ,

and we choose σn+ such that

λσn(a
n) = ρσn+(â

n) .



Given a sequence a◻, the product can be viewed as a directed acyclic graph
consisting of infinitely many levels that correspond to the elements an . Formally,
if an = an ⊕ ⋅ ⋅ ⋅ ⊕ an

m(n)− is the decomposition of a
n , we construct the graph

whose vertices are pairs of indices ⟨n, i⟩ (representing ani ), for all n < ω and
i < m(i), where we add an edge from ⟨n, i⟩ to ⟨n + , k⟩ if k is a port of ani . ¿e
tree-unfolding of this graph is called the branch tree of a◻ (which is actually a
forest). ¿e sequence b◻ obtained from a◻ by this tree-unfolding operation is
the unravelling of a◻.

Example. In the free ω-hyperclone, consider the sequence (an)n<ω where an =
⟨ f (x , x), g(x)⟩, for every n.¿e first levels of the branch tree of this sequence
are

 

  

    

       

⋮ ⋮

¿ere is a canonical function from the branch tree of a◻ to the original se-
quence which we denote by µ. ¿is function can be extended to map finite, con-
nected subsets of the branch tree to the products of the corresponding elements
of a◻. ¿e precise definitions are as follows.

Definition .. Let C be an ω-hyperclone.
(a) Let a◻ = (an)n<ω be a sequence in C and an = an ⊕ ⋅ ⋅ ⋅ ⊕ an

m(n)− the

decomposition of an ∈ Cūn into elements ani ∈ Cun

i
. ¿e branch tree of a◻ is the

forest

Λ(a◻) ∶= { η ∈ ω<ω ∣ ∣η∣ > , η() < m(), and

η(n + ) ∈ un
η(n), for all n } .

(Here we write x ∈ u for a tuple u to state that x is one of the components of u.)
A branch of a◻ is a sequence β ∈ ω≤ω of maximal length such that every finite
prefix η ⪯ β belongs to Λ(a◻).
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(b) We define a function µ ∶ Λ(a◻)→ C by

µ(η) ∶= an−η(n−) , where n ∶= ∣η∣ .

A subset U ⊆ Λ(a◻) is connected if there exists an element η ∈ U such that

ζ ∈ U implies η ⪯ ζ and ξ ∈ U for all η ⪯ ξ ⪯ ζ .

We extend µ to finite connected subsets U ⊆ Λ(a◻) as follows. We define an
element µ[U] ∈ C by induction on ∣U ∣. For U = {η}, we set

µ[{η}] ∶= sep(µ(η)) .

For ∣U ∣ > , let η be the minimal element of U and let ζ , . . . , ζm− be its suc-
cessors in Λ(a◻). We define

µ[U] ∶= sep(b ∶I c) .

where

I ∶= { i < m ∣ ζ i ∈ U } ,
b ∶= µ[{η}] ,
c ∶= µ[U]⊕ ⋅ ⋅ ⋅ ⊕ µ[Um−] for U i ∶= {ζ i} ∪ { ξ ∈ U ∣ ξ ⪰ ζ i } .

Remark. Let â◻ be the unravelling of a◻. If η , . . . , ηm is an enumeration, from
le to right, of all vertices of level n +  of the branch tree Λ(a◻), then

ân = sep(µ(η)⊕ ⋅ ⋅ ⋅ ⊕ µ(ηm)) .

We are mainly interested in ω-hyperclones that are finitary and path-continu-
ous.

Definition .. Let C be an ordered ω-hyperclone and J a set of elements of C.
(a) C is finitary if it has only finitely many elements of each sort ū.
(b) A sequence (bn)n<ω where bn ∈ C⟨∅, . . . ,∅⟩ is locally consistent with a◻ if

bn = anbn+, for every n < ω. We denote by LCJ(a◻) the set of all locally consist-
ent sequences (bn)n<ω with bn ∈ J, for all n.
(c) Let a◻ be a sequence, an = an ⊕ ⋅ ⋅ ⋅ ⊕ an

m(n)− the decomposition of a
n ,

suppose that (bn)n ∈ LCJ(a◻) is locally consistent with a◻, and let β be a branch
of a◻. ¿e trace of (bn)n along β is the sequence c◻ with

cn ∶= sep(anβ(n) ∶In b
n+) ,



where

In ∶=
⎧⎪⎪
⎨
⎪⎪⎩

[m(n + )] ∖ {β(n + )} if n +  ∈ dom(β) ,
[m(n + )] otherwise .

We set

TrJ(β) ∶= { π(c◻) ∣ c◻ the trace of some (bn)n ∈ LCJ(a◻) along β } ,

BTJ(a◻) ∶= {TrJ(β) ∣ β a branch of Λ(a◻) } .

(d) An ideal of C is a sub-ω-hyperclone J ⊆ C where each domain Jū is down-
ward closed, i.e., J is a substructure of C that is an ω-hyperclone such that a ≤
b ∈ Jū implies a ∈ Jū .
(e) C is path-continuous if there exists an ideal J such that

◆ for every sequence a◻ in separation normal form, we have

π(a◻) = sup{ π(b◻) ∣ b◻ ≤ a◻ a sequence in J } ,

◆ and the product π(a◻) of a sequence a◻ in J is uniquely determined by
the set BTJ(a◻).

With these definitions we can state the main theorem of [].

¿eorem .. Let L be a set of (possibly infinite) terms over the signature Σ. ¿e
set L is regular if, and only if, there exists amorphism φ ∶ Fω[Σ]→ C into a finitary
path-continuous ω-hyperclone C and a subset P ⊆ C⟨⟩ such that L = φ−[P].

In order to apply this theorem to decision problems, we would like to be able
to compute the ω-hyperclone C from a description of L. To do so, we need a fi-
nite representation of ω-hyperclones. Even for a finitary ω-hyperclone C, there
are still infinitely many sorts and the description of the infinite product π ∶
Cω → C can be infinite. ¿e first problem is easily solved: instead of the whole
ω-hyperclone, it will turn out to be sufficient to compute its restriction to finitely
many sorts. For the second problem, we use the same solution as in the theory of
ω-semigroups: we replace the infinite product π ∶ Cω → C by a unary operation
ω ∶ C → C computing ω-th powers. ¿e main part of this article consists in the
proof that this power-operation uniquely determines the infinite product.
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 A 

In this section we introduce the combinatorial machinery that will be used in
the remainder of the article to represent an infinite product π by its associated
power operation ω . ¿emain result is the statement that, for every (infinite) tree,
we can find a regular tree that is equivalent to the first one in a sensemade precise
below.
Note that one well-known consequence of Rabin’s ¿eorem is the fact that

every nonemptyMSO-definable class of infinite trees contains a regular tree. Our
alternative proof of this theorem follows the opposite direction. We first prove
the existence of certain regular labellings of the binary tree. ¿en we derive Ra-
bin’s ¿eorem from this result.

Definition .. Let ⟨S, Sω , α, π⟩ be a finite ω-semigroup andG = ⟨V , Ē , P̄, v⟩ a
graph.
(a) An additive labelling of G is a function λ ∶ E → S. Such a labelling can be

extended to a function mapping every finite or infinite path of G to an element
of S ∪ Sω :

λ((en)n) ∶= ∏n λ(en) , for every nonempty path (en)n .

(b) Let λ be an additive labelling ofG. ¿e limit set of λ is

lim λ ∶= { λ(α) ∣ α ∶ v →∞} .

(c) For a treeG = T and vertices u ≺ v in T , we also write λ(u, v) for the value
of λ(w) where w is the unique path w ∶ u → v.
(d) Two additive labellings λ and λ′, not necessarily of the same graph, are

equivalent if lim λ = lim λ′.

We will show that, for every additive labelling of the binary tree, we can find
an equivalent additive labelling that is regular. ¿e main combinatorial tool we
will use is based on the following Ramsey-like factorisations of labelled trees.

Definition .. Let T = ⟨T , Ē⟩ be a tree, σ ∶ T → [n] a function, and let λ be an
additive labelling of T.
(a) For u, v ∈ T , we define u ⊑σ v if

◆ u ⪯ v,

◆ σ(u) = σ(v),



◆ σ(w) ≥ σ(v), for all w ∈ T with u ⪯ w ⪯ v.

(b) ¿e function σ is a forward Ramseyan split of λ if we have

λ(u, v) = λ(u, v) ⋅ λ(x , y) , for all u ⊏σ v and u ⊑σ x ⊏σ y such that

v ⊑σ y or y ⊑σ v .

¿eorem . (Colcombet []). Every additive labelling λ of a tree T = ⟨T , Ē⟩ has
a forward Ramseyan split σ ∶ T → [n] where n ∶= ∣S∣.

Tomake use of the fact that a function σ is a forward Ramseyan split, we need
positions that are related by the relation ⊑σ . ¿e next lemma shows that every
sufficiently long path contains such positions.

Lemma .. LetT = ⟨T , Ē⟩ be a tree, σ ∶ T → [n] a function, and u, v ∈ T vertices
with u ⪯ v. If ∣v∣ − ∣u∣ +  ≥ mn then there exist vertices u ⪯ x ≺ ⋅ ⋅ ⋅ ≺ xm− ⪯ v
such that x ⊏σ ⋅ ⋅ ⋅ ⊏σ xm−.

Proof. Weprove the claim by induction on n. If n =  and ∣v∣− ∣u∣+ ≥ m then we
can choose vertices u = x ≺ ⋅ ⋅ ⋅ ≺ xm− = v. Since σ(x i) = , for all i, it follows
that x ⊏σ ⋅ ⋅ ⋅ ⊏σ xm−.
Suppose that n >  and ∣v∣− ∣u∣+  ≥ mn . Let x ≺ ⋅ ⋅ ⋅ ≺ x l− be an enumeration

of all vertices u ⪯ x ⪯ v with σ(x) = . We distinguish four cases.
() If l ≥ m then we are done.
() If there is some index i such that

(∣x i+ ∣ − ) − (∣x i ∣ + ) +  ≥ mn−

then, by induction hypothesis, we can find a sequence x i ≺ y ≺ ⋅ ⋅ ⋅ ≺ ym− ≺ x i+
such that y ⊏σ ⋅ ⋅ ⋅ ⊏σ ym−.
() If

(∣x∣ − ) − ∣u∣ +  ≥ mn− or ∣v∣ − (∣x l− ∣ + ) +  ≥ mn− ,

we can obtain a sequence

u ⪯ y ⊏σ ⋅ ⋅ ⋅ ⊏σ ym− ≺ x or x l− ≺ y ⊏σ ⋅ ⋅ ⋅ ⊏σ ym− ⪯ v

as in ().
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() Hence, we may assume that l < m,

∣x i+ ∣ − ∣x i ∣ < mn−
+  ,

∣x∣ − ∣u∣ < mn− ,

and ∣v∣ − ∣x l− ∣ < mn− .

It follows that

∣v∣ − ∣u∣ +  = ∣v∣ − ∣x l− ∣ +
l−

∑
i=

(∣x i+ ∣ − ∣x i ∣) + ∣x ∣ − ∣u∣ + 

≤ mn−
−  +

l−

∑
i=

mn−
+mn−

−  +  = (l + )mn−
− 

≤ mn
−  .

A contradiction

We will represent regular trees and their labellings by finite trees with back-
edges.

Definition .. (a) A pseudo-tree is a graph T = ⟨T , (Ed)d<ω , ⟨⟩⟩ where

◆ T ⊆ ω<ω is a tree domain,

◆ every vertex v ∈ T has at most one Ed-successor, for every d < ω,

◆ if vd ∈ T , for d < ω, then ⟨v , vd⟩ ∈ Ed ,

◆ if ⟨v ,w⟩ ∈ Ed , for d < ω, then either w = vd, or w ⪯ v and vd ∉ T . Edges
of the latter form are called back-edges.

(b) A branch of T is an infinite path β ∶ ⟨⟩→∞.
(c)¿e height ht(T) of a pseudo-treeT is theminimal ordinal α ≤ ω such that

T ⊆ ω<α .
(d) LetT be a pseudo-tree.¿e tree domain S ∶= {w ∣ w ∶ ⟨⟩→ x , for some x ∈

T } is called the unravelling of T.
(e) Every additive labelling of a pseudo-tree T induces an additive labelling λ

of its unravelling S. In the following we will not distinguish between these la-
bellings.

In order to show that every labelling λ of a tree domain T is equivalent to a
regular one we construct a finite pseudo-tree and a corresponding labelling.



Definition .. Let T be a tree domain with additive labelling λ, σ a forward
Ramseyan split of λ, and P ⊆ T a prefix-closed subset of T .
(a) An infinite, strictly increasing sequence u ≺ u ≺ u ≺ . . . in T is called

homogeneous if u ⊏σ u ⊏σ u ⊏σ . . . and

λ(u i , uk) = λ(u , u) for all i < k .

A homogeneous sequence u ⊏σ u ⊏σ u ⊏σ . . . ismaximal if there is no homo-
geneous sequence v ⊏σ v ⊏σ . . . such that {u i ∣ i < ω } ⊂ { v i ∣ i < ω }.
(b)¿e contraction of λ induced by σ and P is the pseudo-treeCP

σ (λ) obtained
from T in the following way. For every maximal homogeneous sequence u ⊏σ
u ⊏σ u ⊏σ . . . , we consider the minimal index k ≥  with uk ∉ P and we
replace the edge ⟨prec(uk), uk⟩ by a back-edge ⟨prec(uk), u⟩. ¿e pseudo-tree
CP
σ (λ) consists of all vertices of the resulting graph that are reachable from the

root. We denote by λPσ the labelling of C
P
σ (λ) induced by λ, that is, if e is an

edge of both T and CP
σ (λ) then we set λ

P
σ (e) ∶= λ(e) and, if e is a back-edge

⟨prec(uk), u⟩ introduced as replacement for the edge ⟨prec(uk), uk⟩ then we
set λPσ (e) ∶= λ(prec(uk), uk).

Remark. Note that the definition implies that P ⊆ CP
σ (λ). Hence, we can use the

set P ⊆ T to mark vertices we want to keep in the contraction.

Below we will make frequent use of the following simple observations.

Lemma .. Let T be a tree, λ an additive labelling of T, σ a forward Ramseyan
split of λ, and x ⪯ u ⪯ y ⪯ v vertices of T.

(a) If x ⊑σ y and u ⊑σ v, then x ⊑σ u ⊑σ y ⊑σ v.

(b) If x ⊑σ y and ⟨v , u⟩ is a back-edge of CP
σ (λ), then x ⊑σ u ⊑σ y.

Proof. (a) u ⪯ y ⪯ v and u ⊑σ v implies σ(y) ≥ σ(u) = σ(v), while x ⪯ u ⪯ y
and x ⊑σ y implies σ(u) ≥ σ(x) = σ(y). Hence, σ(x) = σ(y) = σ(u) = σ(v)
and x ⊑σ u ⊑σ y ⊑σ v.
(b) Let u ⊏σ u ⊏σ u ⊏σ . . . be the homogeneous sequence inducing the

back-edge ⟨v , u⟩. ¿en u = u and v = prec(uk) for some k ≥ . Since u ⊏σ uk , it
follows by (a) that x ⊑σ u ⊑σ y ⊑σ uk .

Let us show that lim λPσ ⊆ lim λ and that, for finite P, the labelling λPσ is regular,
i.e., that the contraction CP

σ(λ) is finite. In general, the converse inclusion does
not hold, butwe shall showbelow thatwe can choose the set P such thatwe obtain
an equality lim λPσ = lim λ. To prove the regularity of λPσ we show that CP

σ (λ) is
finite.
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Lemma .. Let λ be an additive labelling of T, σ a forward Ramseyan split of λ,
and P ⊆ T prefix-closed and finite. Every branch of CP

σ (λ) contains a back-edge.

Proof. If CP
σ (λ) had an infinite branch α without back-edges then there would

exist an infinite sequence u ⊏σ u ⊏σ . . . . By Ramsey’s¿eorem, we can find an
infinite set I ⊆ ω such that the subsequence (u i)i∈I is homogeneous. Since P is
finite, we have un ∉ P, for all sufficiently large n. Hence, in the above construction
we would have created a back-edge ⟨prec(uk), u i⟩ for some i < k, and all u l with
l ≥ k would have been removed from CP

σ (λ). Contradiction.

By König’s Lemma it follows that CP
σ (λ) is finite.

Corollary .. For finite P, CP
σ (λ) is finite.

¿e proof that lim λPσ ⊆ lim λ is more involved. We start by showing that we
can replace certain paths by pathswithout back-edges. In the next lemmawe deal
with finite paths and in the lemma below with infinite paths. Let us introduce
some terminology.We call a path straight if it contains no back-edges. Note that,
for verticesu ⪯ v, there is a unique straight pathu→ v. For a finite pathw ∶ u → v,
we denote by st(w) the corresponding straight path u → v, if it exists.

Lemma .. Let λ be an additive labelling of a tree T and C ∶= CP
σ (λ) a contrac-

tion of λ.
(a) Let u, v , x , y, z be vertices with u ⪯ z ⊏σ y ≺ x , v such that e ∶= ⟨x , y⟩ is a

back-edge, and let w ∶ u → x and w′ ∶ y → v be straight paths. ¿en

λPσ (st(wew
′)) = λPσ (wew

′) .

u

z

y

xv

e

w

w

w

w′

(b) For every path w ∶ ⟨⟩→ v,

λPσ (st(w)) = λ
P
σ (w) .

(c) For every path w ∶ u → v with u ≺ v such that



◆ w contains no edge ⟨x , y⟩ with y = u and

◆ σ(x) ≥ σ(u), for all vertices x of w,

λPσ (st(w)) = λ
P
σ (w) .

Proof. (a) We factorise w = www where w ∶ u → z, w ∶ z → y, and w ∶

y → x. Suppose that e ∈ Ec and set x
+ ∶= xc. By definition of CP

σ (λ) we have
z ⊏σ y ⊏σ x+. As σ is a forward Ramseyan split, it follows that

λPσ (wwe) = λ(z, x+) = λ(z, y) = λPσ (w) .

Hence,

λPσ (st(wew
′)) = λPσ (wew

′)

= λPσ (w) ⋅ λPσ (w) ⋅ λPσ (w
′)

= λPσ (w) ⋅ λPσ (wwe) ⋅ λPσ (w
′) = λPσ (wew

′) .

(b) Let w = wewe . . .wn−en−wn where e , . . . , en− are the back-edges.
We prove the claim by induction on n. Suppose that en− = ⟨x , y⟩ and set w′ ∶=
we . . . en−wn−. By induction hypothesis, we have

λPσ (st(w
′)) = λPσ (w

′) ,

which implies that

λPσ (st(w
′)en−wn) = λPσ (st(w

′)) ⋅ λPσ (en−wn)

= λPσ (w
′) ⋅ λPσ (en−wn)

= λPσ (w) .

By definition of CP
σ (λ), there exists a vertex z ≺ y with z ⊏σ y. Setting u ∶= ⟨⟩ it

follows by (a) that

λPσ (st(w)) = λ
P
σ (st(w

′)en−wn) = λPσ (w) .

(c) Let w = wewe . . .wn−en−wn where e , . . . , en− are the back-edges.
We prove the claim by induction on n. Suppose that en− = ⟨x , y⟩ and set w′ ∶=
we . . . en−wn−. By induction hypothesis,

λPσ (st(w
′)) = λPσ (w

′) ,
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which implies that

λPσ (st(w
′)en−wn) = λPσ (st(w

′)) ⋅ λPσ (en−wn)

= λPσ (w
′) ⋅ λPσ (en−wn)

= λPσ (w) .

If σ(y) > σ(u) then, by definition of CP
σ (λ), there exists a vertex u ≺ z ≺ y with

z ⊏σ y. Hence, it follows by (a) that

λPσ (st(w)) = λ
P
σ (st(w

′)en−wn) = λPσ (w) .

Similarly, if σ(y) = σ(u) then we have u ⊏σ y. Hence, setting z ∶= u it follows
by (a) that

λPσ (st(w)) = λ
P
σ (st(w

′)en−wn) = λPσ (w) .

Lemma.. Let λ be an additive labelling of a treeT and C ∶= CP
σ (λ) a contraction

of λ.
(a) If e = ⟨x , y⟩ is a back-edge of C and if w ∶ ⟨⟩→ y and w′ ∶ y → x are straight

paths then

λPσ (w) ⋅ (λ
P
σ (w

′e))
ω
∈ lim λ .

(b) For every branch α ∶ ⟨⟩ → ∞, there exist a back-edge e = ⟨x , y⟩ of C and
straight paths w ∶ ⟨⟩→ y and w′ ∶ y → x such that

λPσ (α) = λ
P
σ (w) ⋅ (λ

P
σ (w

′e))
ω
.

Proof. (a) By definition of CP
σ (λ) there exists an infinite homogeneous sequence

u ⊏σ u ⊏σ u ⊏σ . . . and an index k such that y = u and x = prec(uk). It
follows that

λPσ (w) ⋅ (λ
P
σ (w

′e))ω = λ(⟨⟩, u) ⋅ (λ(u , uk))ω

= λ(⟨⟩, u) ⋅ (λ(u , u))ω

= λ(⟨⟩, u) ⋅∏
n<ω

λ(un , un+) ∈ lim λ

(b) Let k be the minimal number such that there exists a factorisation α =
wewe . . . where each e i = ⟨x i , y i⟩ is a back-edge with σ(y i) = k. We assume



that this factorisation is chosen such that, for i > , the path w i contains no
vertices x with σ(x) < k. By the PigeonHole Principle, we can choose an infinite
subset I ⊆ ω such that y i = y l , for all i , l ∈ I. By choosing the factorisation
of α suitably we may w.l.o.g. assume that I = ω, that ∣y i ∣ is minimal, and that the
pathsw i , for i > , only contain vertices z with y i ⪯ z. Furthermore, by Ramsey’s
¿eorem, there exist an element s ∈ S and an infinite subset I ⊆ ω such that

λPσ (w i+e i+ . . .w l e l) = s , for all i < l in I .

Again, we may assume w.l.o.g. that I = ω, that is, λPσ (w i e i) = s, for all i > . By
Lemma . (b), the straight path w′ ∶= st(we) satisfies λPσ (w

′
) = λPσ (we).

Similarly, it follows by Lemma . (c) that the straight paths w′i ∶= st(w i), i > ,
satisfy λPσ (w

′
i) = λ

P
σ (w i). Hence,

λPσ (α) = λ
P
σ (we) ⋅∏

n<ω

λPσ (wn+en+)

= λPσ (w
′
) ⋅∏

n<ω

λPσ (w
′
n+en+)

= λPσ (w
′
) ⋅ (λ

P
σ (w

′
e))

ω
.

¿e preceding lemma implies that lim λPσ is a subset of lim λ.

Proposition .. Let λ be an additive labelling of a tree T and CP
σ (λ) a finite

contraction of λ. ¿en lim λPσ ⊆ lim λ.

Proof. Given a branch α of T, we can use Lemma . (b) to find a back-edge
e = ⟨x , y⟩ and straight paths w ∶ ⟨⟩→ y and w′ ∶ y → x such that

λPσ (α) = λ
P
σ (w) ⋅ (λ

P
σ (w

′e))
ω
.

By Lemma . (a), it follows that λPσ (α) ∈ lim λ.

Next we prove that, by choosing P suitably, we can ensure that lim λPσ = lim λ.

Lemma .. Let λ be an additive labelling of a tree T and σ a forward Ramseyan
split of λ. ¿ere exists a finite prefix-closed subset P ⊆ T such that lim λPσ = lim λ.

Proof. For every s ∈ lim λ, we choose a branch αs of T with λ(αs) = s. Let
us
 ⊏σ us

 ⊏σ us
 ⊏ . . . be the maximal homogeneous sequence with us

n ⪯ α
s , for

all n. We claim that

P ∶= { x ∈ T ∣ x ≺ us
 for some s ∈ lim λ }
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is the desired set. Setting v s ∶= prec(us
) it follows that v

s ∈ P ⊆ CP
σ (λ) and

e s ∶= ⟨v s , us
⟩ is a back-edge of C

P
σ (λ). Consequently,

s = λ(⟨⟩, us
) ⋅∏

n<ω

λ(us
n , u

s
n+)

= λ(⟨⟩, us
) ⋅ (λ(u

s
 , u

s
))

ω

= λ(⟨⟩, us
) ⋅ (λ(u

s
 , v

s) ⋅ λ(v s , us
))

ω

= λPσ (⟨⟩, u
s
) ⋅ (λ

P
σ (u

s
 , v

s) ⋅ λPσ (e
s))

ω
∈ lim λPσ .

Summarising we have obtained the following result.

Corollary .. For every additive labelling λ of a treeT, there exists a finite pseudo-
tree T′ and an additive labelling λ′ of T′ such that lim λ′ = lim λ.

 F  

Corollary . does not include a bound on the size of the pseudo-treeT′. In this
section we prove two theorems that improve Corollary . by providing bounds
on the height of the resulting pseudo-tree. To compute such a bound, we show
that every pseudo-tree whose height is larger than a certain threshold can be
reduced in size. ¿e following proposition introduces the operation we use to
shrink a pseudo-tree.

Proposition .. Let λ be an additive labelling of a treeT and CP
σ (λ) a contraction

of λ. Suppose that x , y, z ∈ CP
σ (λ) are vertices such that x ⊏σ y ⊏σ z and there is

no back-edge ⟨v , u⟩ with y ⪯ u ≺ z ⪯ v. Let T′ be the tree obtained from T by
replacing the subtree rooted at y by the one rooted at z and let λ′, σ′, and P′ be
obtained from, respectively, λ, σ, and P in the same way. (In particular, if y ∈ P,
but z ∉ P, we have y ∉ P′.)

T T′

x

y

z

x

y



(a) σ′ is a forward Ramseyan split of λ′ such that

lim (λ′)P
′

σ′ ⊆ lim λPσ and ∣CP′

σ′ (λ
′)∣ < ∣CP

σ (λ)∣ .

(b) If, for every back-edge e = ⟨v , u⟩ with z â v, there is some back-edge ẽ =
⟨ṽ, ũ⟩ with y â ṽ such that

λ(⟨⟩, ũ) ⋅ (λ(ũ, ṽ) ⋅ λ(ẽ))ω = λ(⟨⟩, u) ⋅ (λ(u, v) ⋅ λ(e))ω ,

then lim (λ′)P
′

σ′ = lim λPσ .

Proof. (a) Let h ∶ T ′ → T be the function where

h(u) ∶=
⎧⎪⎪⎨
⎪⎪⎩

zv if u = yv ,
u if y â u .

We start by showing that σ′ = σ ○ h is a forward Ramseyan split of λ′. Clearly,
hu ⊏σ hv implies u ⊏σ′ v. Since y ⊏σ z, it also follows that u ⊏σ′ v implies
hu ⊏σ hv. Hence, to show that σ′ is a Ramseyan split it is sufficient to prove that

u ⊏σ′ v implies λ′(u, v) = λ(hu, hv) .

If y ⪯ u or y ⊀ v, then the claim follows by definition of λ′. ¿erefore, we may
assume that u ≺ y ≺ v. If u ≺ x then

λ′(u, v) = λ′(u, x) ⋅ λ′(x , y) ⋅ λ′(y, v)
= λ(hu, x) ⋅ λ(x , y) ⋅ λ(z, hv)
= λ(hu, x) ⋅ λ(x , z) ⋅ λ(z, hv) = λ(hu, hv) .

If x ⪯ u then Lemma . (a) implies x ⊑σ u ⊑σ y ⊑σ z. Since σ is a forward
Ramseyan split, it follows that

λ′(u, v) = λ′(u, y) ⋅ λ′(y, v)
= λ(hu, y) ⋅ λ(z, hv)
= λ(hu, z) ⋅ λ(z, hv) = λ(hu, hv) .

We have shown that σ′ is a forward Ramseyan split of λ′. Next we prove that

h[CP′

σ′ (λ
′)] ⊆ CP

σ (λ). Since there is no back-edge ⟨v , u⟩ with y ≺ u ≺ z ⪯ v, it
is sufficient to show that, if ⟨hv , hu⟩ is a back-edge of CP

σ (λ) with label d, then
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⟨v , u⟩ is a back-edge of CP′

σ′ (λ
′) with label d. Hence, suppose that ⟨hv , hu⟩ is a

back-edge ofCP
σ(λ) and letw ⊏σ w ⊏σ w ⊏σ . . . be themaximal homogeneous

sequence inducing it. If there is no n with y ⪯ wn , thenw ⊏σ′ w ⊏σ′ w ⊏σ′ . . .
is also a maximal homogeneous sequence for λ′ and we are done. Otherwise, let
i be the maximal index with w i ≺ y and let k be the minimal index with z ⪯ wk .
Since z is a vertex of the contraction, we have hu = w and hv = wm , for some
m ≥ k. It follows that the sequence w ⊏σ′ w ⊏σ′ ⋅ ⋅ ⋅ ⊏σ′ w i ⊏σ′ h−wk ⊏σ′
h−wk+ ⊏σ′ . . . is a maximal homogeneous for λ′. ¿is sequence induces the
back-edge ⟨h−wm ,w⟩ = ⟨v , u⟩.
We have shown that h[CP′

σ′ (λ
′)] ⊆ CP

σ (λ). Since y ∉ h[C
P′

σ′ (λ)] this inclusion
is strict. Consequently, ∣CP′

σ′ (λ
′)∣ < ∣CP

σ (λ)∣.
It remains to prove that lim (λ′)P

′

σ′ ⊆ lim λPσ . Let α be a branch of C
P′

σ′ (λ
′). By

Lemma . (b), we may assume that α = w(w′e)ω , where e = ⟨v , u⟩ is a back-
edge and w ,w′ are straight paths. If α does not contain the vertex y then α is a
branch of CP

σ (λ) and we are done.
If y ⪯ u, we have

(λ′)P
′

σ′ (α) = λ
′(⟨⟩, x) ⋅ λ′(x , y) ⋅ λ′(y, u) ⋅ (λ′(u, v) ⋅ λ′(e))ω

= λ(⟨⟩, x) ⋅ λ(x , y) ⋅ λ(z, hu) ⋅ (λ(hu, hv) ⋅ λ(he))ω

= λ(⟨⟩, x) ⋅ λ(x , z) ⋅ λ(z, hu) ⋅ (λ(hu, hv) ⋅ λ(he))ω

= λ(⟨⟩, hu) ⋅ (λ(hu, hv) ⋅ λ(he))ω ∈ lim λPσ .

Similarly, if u ⪯ x ⪯ y ⪯ v,

(λ′)P
′

σ′ (α) = λ
′(⟨⟩, u) ⋅ (λ′(u, x) ⋅ λ′(x , y) ⋅ λ′(y, v) ⋅ λ′(e))ω

= λ(⟨⟩, u) ⋅ (λ(u, x) ⋅ λ(x , y) ⋅ λ(z, hv) ⋅ λ(he))ω

= λ(⟨⟩, u) ⋅ (λ(u, x) ⋅ λ(x , z) ⋅ λ(z, hv) ⋅ λ(he))ω

= λ(⟨⟩, u) ⋅ (λ(u, hv) ⋅ λ(he))ω ∈ lim λPσ .

It remains to consider the case that x ≺ u ≺ y ⪯ v. ¿en Lemma . implies
x ⊏σ u ⊏σ y ⊑σ z ⊏σ hv′, where v′ is the successor of v in T′ inducing the
back-edge e. Since σ is a forward Ramseyan split, it follows that

λ(u, hv′) = λ(u, y) ⋅ λ(y, hv′) = λ(u, y) = λ(u, y) ⋅ λ(z, hv′) .

Let w̃′ be the path in CP
σ (λ) obtained from w′ by inserting the path y → z at the

appropriate place. It follows that

λPσ (w̃
′he) = λ(u, hv′) = λ(u, y) ⋅ λ(z, hv′) = λP

′

σ′ (w
′e) .



Consequently, (λ′)P
′

σ′ (w(w
′e)ω) = λPσ (w(w̃

′e)ω) ∈ lim λPσ .

(b) By (a) it remains to show that lim λPσ ⊆ lim (λ′)Pσ′ . Let α be a branch
of CP

σ (λ). Again we may assume that α = w(w′e)ω where e = ⟨v , u⟩ is a back-
edge and w ,w′ are straight paths. Let v′ be the successor of v inducing e.

If α does not contain the vertex y then α is a branch of CP′

σ′ (λ
′) and λ(α) =

λ′(α) ∈ lim λ′. Hence, we may assume that y ⪯ v.
Let us first consider the case that z â v. By assumption, there is some back-

edge ẽ = ⟨ṽ , ũ⟩ with y â ṽ such that

λ(⟨⟩, ũ) ⋅ (λ(ũ, ṽ) ⋅ λ(ẽ))ω = λ(⟨⟩, u) ⋅ (λ(u, v) ⋅ λ(e))ω .

It follows that

λPσ (α) = λ(⟨⟩, u) ⋅ (λ(u, v) ⋅ λ(e))
ω

= λ(⟨⟩, ũ) ⋅ (λ(ũ, ṽ) ⋅ λ(ẽ))ω

= λ′(⟨⟩, ũ) ⋅ (λ′(ũ, ṽ) ⋅ λ′(ẽ))ω ∈ lim(λ′)P
′

σ′ .

Hence, it remains to consider the case that z ⪯ v. We distinguish several cases,
depending on the position of u. By assumption, there is no back-edge ⟨v , u⟩
with y ⪯ u ≺ z ⪯ v. ¿erefore, either u ≺ y or z ⪯ u.
If z ⪯ u, we have

λPσ (α) = λ(⟨⟩, x) ⋅ λ(x , z) ⋅ λ(z, u) ⋅ λ(u, v
′)ω

= λ(⟨⟩, x) ⋅ λ(x , y) ⋅ λ(z, u) ⋅ λ(u, v′)ω

= λ′(⟨⟩, x) ⋅ λ′(x , y) ⋅ λ′(y, h−u) ⋅ λ′(h−u, h−v′)ω

= λ′(⟨⟩, h−u) ⋅ λ′(h−u, h−v′)ω ∈ lim(λ′)P
′

σ′ .

Similarly, if u ⪯ x,

λPσ (α) = λ(⟨⟩, u) ⋅ (λ(u, x) ⋅ λ(x , z) ⋅ λ(z, v
′))ω

= λ(⟨⟩, u) ⋅ (λ(u, x) ⋅ λ(x , y) ⋅ λ(z, v′))ω

= λ′(⟨⟩, u) ⋅ (λ′(u, x) ⋅ λ′(x , y) ⋅ λ′(y, h−v′))ω

= λ′(⟨⟩, u) ⋅ λ′(u, h−v′)ω ∈ lim(λ′)P
′

σ′ .

Hence, it remains to consider the case that x ≺ u ≺ y. As above, Lemma .





implies that x ⊏σ u ⊏σ y ⊏σ z ⊏σ v′. ¿erefore,

λPσ (α) = λ(⟨⟩, u) ⋅ (λ(u, z) ⋅ λ(z, v
′))ω

= λ(⟨⟩, u) ⋅ (λ(u, y) ⋅ λ(z, v′))ω

= λ′(⟨⟩, u) ⋅ (λ′(u, y) ⋅ λ′(y, h−v′))ω

= λ′(⟨⟩, u) ⋅ λ′(u, h−v′)ω ∈ lim(λ′)P
′

σ′ .

It remains to compute the size of a minimal pseudo-tree. In order to apply the
operation from the proposition, we try to find vertices x ⊏σ y ⊏σ z such that
no back-edge from below z ends between y and z. In the following sequence of
technical lemmas we show how to find such vertices.

Lemma.. Suppose that e ∶= ⟨y, x⟩ is a back-edge inCP
σ (λ) and set a ∶= λ(x , y)⋅λ(e).

(a) ¿ere is exactly one vertex w ⊏σ x such that λ(w , x) = a.

(b) For every vertex z with x ⊏σ z ⪯ y we have λ(x , z) = a.

Proof. Let u ⊏σ u ⊏σ u ⊏σ . . . be the homogeneous sequence inducing the
back-edge e. ¿en x = u and y = prec(uk) for some k ≥ .
(a) Settingw ∶= u wehavew ⊏σ x and λ(w , x) = λ(x , uk) = λ(x , y)⋅λ(e) = a.

Hence, it remains to show that there is not a second such vertex. For a contradic-
tion, suppose that there is some w ≠ u with w ⊏σ x and λ(w , x) = a.
If w ≺ u then we have w ⊏σ u and λ(w , u) = λ(w , x) = a. ¿erefore,

w ⊏σ u ⊏σ u ⊏σ u ⊏σ . . .

is homogeneous. Hence, the sequence u ⊏σ u ⊏σ u ⊏σ . . . is not maximal.
A contradiction.
Similarly, if u ≺ w then u ⊏σ w ⊏σ x and

λ(u ,w) = λ(u , x) = a and λ(w , x) = a .

¿erefore, u ⊏σ w ⊏σ u ⊏σ u ⊏σ . . . is homogeneous and, again, the sequence
u ⊏σ u ⊏σ u ⊏σ . . . is not maximal.
(b) Since u = x ⊏σ z ≺ uk we have x ⊏σ z ⊏σ uk . Consequently, λ(x , z) =

λ(x , uk) = a.

Lemma .. Let x ⊏σ ⋅ ⋅ ⋅ ⊏σ xn be vertices in CP
σ (λ).



(a) ¿ere are at most ∣S∣ indices i < n such that there exists a back-edge ⟨y, x i⟩
with x i+ ⪯ y.

(b) If n ≥ (m + )(∣S∣ + ) then we can find an index i ≤ n −m such that there
is no back-edge ⟨v , u⟩ such that

x i ⪯ u ≺ xk ⪯ v , for any k with i < k ≤ i +m .

Proof. (a) Suppose that there are more thanm ∶= ∣S∣ such indices. By the Pigeon
Hole Principle, we can then find indices i < k and back-edges e = ⟨y, x i⟩ and
e = ⟨z, xk⟩ with

x i+ ⪯ y , xk+ ⪯ z , and λ(x i , y) ⋅ λ(e) = λ(xk , z) ⋅ λ(e) .

Let a ∶= λ(x i , y) ⋅ λ(e). By Lemma . (a) there are unique vertices u ⊏σ x i and
v ⊏σ xk such that

λ(u, x i) = a and λ(v , xk) = a .

Note that, since u ⊏σ x i ⊏σ xk and σ is a forward Ramseyan split, we have

λ(u, xk) = λ(u, x i) = a .

Consequently, u = v. Furthermore, x i ⊏σ x i+ ⪯ y implies by Lemma . (b) that

λ(x i , x i+) = λ(x i , y) ⋅ λ(e) = a .

¿erefore, λ(x i , xk) = λ(x i , x i+) = a. By uniqueness of v, it follows that v = x i .
But u = v = x i contradicts u ≺ x i .
(b) Let u ≺ ⋅ ⋅ ⋅ ≺ u l− be an enumeration of all vertices u such that, for some i,

there is a back-edge ⟨v , u⟩ with x i ⪯ u ≺ x i+ ⪯ v. For each u j, we fix one such
back-edge e j = ⟨v j , u j⟩.
By Lemma . (b), x i ⪯ u j ≺ x i+ ⪯ v j implies σ(u j) = σ(x i) = σ(x) and,

hence,

u ⊏σ ⋅ ⋅ ⋅ ⊏σ u l− .

Consequently, we obtain an increasing chain

y ⊏σ ⋅ ⋅ ⋅ ⊏σ ys with {y , . . . , ys} = {x , . . . , xn , u , . . . , u l−} .





Given an index j < l , let k ≤ s and i < n be the indices such that yk = u j

and x i ⪯ u j ≺ x i+ . ¿en yk = u j ≺ yk+ ⪯ x i+ ⪯ v j. Hence, there are at least l
indices k such that there exists a back edge ⟨v , u⟩ with u = yk and yk+ ⪯ v.
Applying (a) to the sequence y ⊏σ ⋅ ⋅ ⋅ ⊏σ ys , it follows that l ≤ ∣S∣.
Since n ≥ (m + )(∣S∣ + ) ≥ (m + )(l + ) we can find an index i ≤ n − m

such that there is no j with x i ⪯ u j ≺ x i+m . ¿is index has the desired properties
since, if ⟨v , u⟩ is a back-edge with x i ⪯ u ≺ xk ⪯ v, for some i < k ≤ i +m, then
u = u j, for some j. By choice of i, this is not possible.

Combining the preceding results we obtain the desired reduction from arbit-
rary trees to regular ones.

¿eorem.. Let ⟨S, Sω⟩ be a finite ω-semigroup.¿ere exists a finite number m <
ω with the following property: for every additive labelling λ of a treeT, there exists
a finite pseudo-tree T′, an additive labelling λ′ of T′, and a forward Ramseyan
split σ′ of λ′ such that

lim λ′ = lim λ and ht(CP
σ′(λ

′)) < m∣S∣.

Proof. Set l ∶= ∣S∣ and m ∶= (l + )(l + ) + . By Corollary ., there exists
a finite pseudo-tree of the form CP′

σ′ (λ
′) such that lim λ′ = lim λ. We choose

CP′

σ′ (λ
′) such that its number of vertices is minimal. We claim that

ht(CP′

σ′ (λ
′)) < m∣S∣.

For a contradiction, suppose otherwise. ¿en there exists a vertex z ∈ CP′

σ′ (λ
′)

of length ∣z∣ = m∣S∣ − . We can use Lemma . to find a sequence x ⊏σ ⋅ ⋅ ⋅ ⊏σ
xm− ⪯ z. Applying Lemma . (b) to the sequence x ⊏σ ⋅ ⋅ ⋅ ⊏σ xm− we obtain
an index i >  such that there is no back-edge ⟨v , u⟩ with

x i ⪯ u ≺ xk ⪯ v , for some i < k ≤ i +
m − 

l + 
−  .

Set j ∶= i + m−
l+
− . To each index i ≤ s < j, we associate the set

Xs ∶= { λ(⟨⟩, u) ⋅ (λ(u, v) ⋅ λ(e))ω ∣ e = ⟨v , u⟩ a back-edge with xs â v } .

Since j − i = m−
l+
−  = l +  > l we can use the Pigeon Hole Principle to find

indices i ≤ r < s < j with Xr = Xs . Hence, we can apply Proposition . to the

sequence x ⊏σ xr ⊏σ xs to construct a pseudo-tree C
P′′

σ′′ (λ
′′) with ∣CP′′

σ′′ (λ
′′)∣ <

∣CP′

σ′ (λ
′)∣ and lim λ′′ = lim λ′. ¿is contradicts the minimality of ∣CP′

σ′ (λ
′)∣.



In this theorem we are given an arbitrary tree and we produce an equivalent
regular one, i.e., the unravelling of a finite pseudo-tree. If the input tree is already
regular, the tree we obtain is not only regular, but we can also describe its relation
to the input tree. ¿is is the content of the following theorem.

Definition .. LetT be the unravelling of a finite pseudo-treeT and let p ∶ T →
T be the canonical projection. A set L of additive labellings of T is closed under
p-compatible substitutions if, for all labellings λ ∈ L and all vertices x , y ∈ T with
p(x) = p(y), the set L also contains the labelling obtained from λ by replacing
the subtree rooted at x by the subtree rooted at y.

¿eorem .. Let ⟨S, Sω⟩ be a finite ω-semigroup and T a finite pseudo-tree.
¿ere exists a finite number N < ω with the following property: suppose that T is
the unravelling of T, p ∶ T → T the canonical projection, and L a set of additive
labellings of T that is closed under p-compatible substitutions; for every λ ∈ L,
there is a labelling λ′ ∈ L, a Ramseyan split σ of λ′, and a set P ⊆ T such that

lim λ = lim (λ′)Pσ and ht(CP
σ (λ

′)) < N .

Proof. ¿e proof follows the same lines as that of ¿eorem .. Set l ∶= ∣S∣, b ∶=
∣T∣, and m ∶= (l + )(l + ) + . We choose a labelling λ′ ∈ L, a Ramseyan
split σ of λ′, and a set P ⊆ T such that lim(λ′)Pσ = lim λ and the size of CP

σ (λ
′) is

minimal. Note that this is possible since, choosing λ′ ∶= λ and a Ramseyan split σ
of λ′, we can use Lemma . to find a subset P ⊆ T such that lim(λ′)Pσ = lim λ.
We claim that

ht(CP
σ (λ

′)) < (bm)l .

For a contradiction, suppose otherwise. ¿en there exists a vertex z ∈ CP
σ with

∣z∣ = (bm)l − . We can use Lemma . to find a sequence y ⊏σ ⋅ ⋅ ⋅ ⊏σ ybm− ⪯
z. Being an element of T, the function value p(y i) can take at most ∣T∣ = b
possible values. Hence, the sequence y ⊏σ ⋅ ⋅ ⋅ ⊏σ ybm− contains a subsequence
x ⊏σ ⋅ ⋅ ⋅ ⊏σ xm− with p(x) = ⋅ ⋅ ⋅ = p(xm−). Applying Lemma . (b) to the
sequence x ⊏σ ⋅ ⋅ ⋅ ⊏σ xm− we obtain an index i >  such that there is no back-
edge ⟨v , u⟩ with

x i ⪯ u ≺ xk ⪯ v , for some i < k ≤ i +
m − 

l + 
−  .

Set j ∶= i + m−
l+
− . To each index i ≤ s < j, we associate the set

Xs ∶= { λ(⟨⟩, u) ⋅ (λ(u, v) ⋅ λ(e))ω ∣ e = ⟨v , u⟩ a back-edge with xs â v } .





Since j − i = m−
l+
−  = l +  > l we can use the Pigeon Hole Principle to

find indices i ≤ r < s < j with Xr = Xs . Hence, we can apply Proposition . to
the sequence x ⊏σ xr ⊏σ xs to construct a tree T

′′, a labelling λ′′ of T′ and a

contraction CP′′

σ′′ (λ
′′) with ∣CP′′

σ′′ (λ
′′)∣ < ∣CP

σ (λ
′)∣ and lim λ′′ = lim λ′. Note that

p(xr) = p(xs) implies thatT′′ is isomorphic toT and that λ′′ ∈ L. ¿erefore, we
obtain a contradiction to the minimality of ∣CP

σ (λ
′)∣.

 P-

Having developed the combinatorialmachinery of¿eorems . and .,we turn
to our original problem of finding a finite representation for ω-hyperclones.¿is
is the same situation as with ω-semigroups. For an ω-semigroupS, the solution
is to replace the infinite product π ∶ Sω → S by a unary operation ω ∶ S → S
computing the ω-th power of its argument.¿e resulting type of algebra is called
aWilke algebra.¿e same thing can be done for an ω-hyperclone C. We replace
the infinite product π ∶ Cω → C by a unary operation ω ∶ C → C computing ω-th
powers.

Definition .. Let S ∶= (ω<ω)<ω . A power-hyperclone is a structure of the form

C = ⟨(Cū)ū∈S , ⊕, ⋅ , ( ∶I ,σ )I ,σ , , (λσ)σ∈ω<ω , ≤, ω⟩

that is obtained from an ω-hyperclone by replacing the infinite product π by a
(family of) unary operations

ω
∶ Cū → C⟨∅, . . . ,∅⟩ , for ū ∈ S such that u i ⊆ [∣ū∣] for all i ,

such that, for every  < n < ω and all suitable a, b,

(an)ω = aω , (ab)ω = a(ba)ω ,
and a ≤ b implies aω ≤ bω .

Of course, we can associate with every ω-hyperclone a power-hyperclone by
setting aω ∶= π(a, a, a, . . . ). ¿e main result of this section states that, con-
versely, every (finitary, path-continuous) power-hyperclone can be turned into
an ω-hyperclone.

Definition .. An infinite product π is compatible with a power-hyperclone C
if ⟨C, π⟩ is an ω-hyperclone satisfying

π(a, a, a, . . . ) = aω , for all a ∈ C .



First, we deal with an easy special case. If we have a sequence a◻with an ∈ C⟨⟩,
for every n, we can use the ¿eorem of Ramsey to define the infinite product
π(a◻), as in the case of ω-semigroups.

Definition .. Let C be a finitary power-hyperclone.
(a) For a , a , ⋅ ⋅ ⋅ ∈ C⟨⟩, we define

π(a , a , . . . ) ∶= b ⋅ cω ,

where b, c ∈ C⟨⟩ are chosen such that there are indices  < k < k < . . . with

b = a ⋅ ⋯ ⋅ ak− and c = ak i ⋅ ⋯ ⋅ ak i+− , for all i < ω .

(Note that such elements exists by the¿eorem of Ramsey. Furthermore, the ax-
ioms of a power-hyperclone ensure that the product b ⋅cω is uniquely determined
by these conditions, even if b and c are not.)
(b) ¿e trace semigroup of C is the semigroup ⟨S, Sω⟩ where

S ∶= ℘(C⟨⟩) and Sω ∶= ℘(C⟨⟩) .

We define multiplication as follows. For P,Q ∈ S and U ∈ Sω , we set

P ⋅Q ∶= { st ∣ s ∈ P, t ∈ Q } ,
P ⋅U ∶= { su ∣ s ∈ P, u ∈ U } .

We define the infinite product of P , P , ⋅ ⋅ ⋅ ∈ S by

π(P , P , . . . ) ∶= { π(a , a , . . . ) ∣ an ∈ Pn } ,

where the product π(a , a , . . . ) is defined as in (a).

To extend this definition of π to arbitrary sequences, we employ themachinery
of Section . With every sequence a◻ we associate an additive labelling λ of its
branch tree Λ(a◻). Choosing a suitable contraction λPσ we can construct ele-
ments b and c such that we can set

π(a◻) ∶= b ⋅ cω .

Definition .. Let C be a power-hyperclone, J an ideal of C, a◻ a sequence in C,
and let â◻ be the unravelling of a◻.





(a) ¿e trace labelling of a◻ (with respect to J) is the following additive la-
belling λ on the branch tree Λ(a◻) of a◻. Let S = ⟨S, Sω⟩ be the trace semig-
roup of C and let µ ∶ Λ(a◻) → C be the function from Definition .. For a
vertex x ∈ Λ(a◻) of lengthm ∶= ∣x∣with l immediate successors y , . . . , y l− , we
define

λ(x , yk) ∶= { sep(sep(µ(x)) ∶Ik b
m) ∣ (bn)n ∈ LCJ(â◻) } ∈ S

where Ik ∶= [l] ∖ {k}.
¿is uniquely determines an additive labelling of Λ(a◻) since, if x ≺ y and

y is not the immediate successor of x, then

λ(x , y) = λ(z , z) ⋅ ⋅ ⋅ ⋅ ⋅ λ(zm− , zm) ,

where z ≺ ⋅ ⋅ ⋅ ≺ zm is the path from x to y.
(b) Let λPσ be a finite contraction of the trace labelling λ with lim λPσ = lim λ.

¿e regular factorisation of a◻ induced by λPσ is the pair b, c defined as follows.
Let e = ⟨v , u⟩, . . . , en− = ⟨vn− , un−⟩ be all back-edges of CP

σ (λ), ordered by
their end-vertex u i from le to right. We decompose CP

σ (λ) as follows. Set

U∗ ∶= { x ∈ CP
σ (λ) ∣ u i â x for all i } ,

U i ∶= { x ∈ CP
σ (λ) ∣ u i ⪯ x } , for i < n .

Identifying U∗ and U i with the corresponding subsets of Λ(a◻) we set

b ∶= µ[U∗] and c ∶= µ[U]σ ⊕ ⋅ ⋅ ⋅ ⊕ µ[Un−]σn− ,

where σi ∶ [l i] → [n] is the function such that vσi(), . . . , vσi(l i−) is an enumer-
ation (in le -right order) of all vertices v j with v j ⪰ u i .

Note that it follows from Lemma . that every sequence a◻ in a finitary
power-hyperclone does have a regular factorisation. We use the trace labelling
and regular factorisations to define products of arbitrary sequence. First, let us
record a basic property of the trace labelling.

Lemma .. Let C be a finitary power-hyperclone, J an ideal of C, and π an
infinite product that is compatible with C. Suppose that λ is the trace labelling
of a sequence a◻ with respect to J, and let λPσ be a contraction of λ such that
lim λPσ = lim λ. ¿en

lim λ = BTJ(a◻) and lim λPσ = BTJ(b, c, c, c, . . . ) ,

where b ⋅ cω is the regular factorisation of a◻ induced by λPσ .



Proof. For the first equation, let β be a branch of Λ(a◻). By definition of λ, it
follows that λ(β) = TrJ(β). Hence,

lim λ = { λ(β) ∣ β a branch } = {TrJ(β) ∣ β a branc} = BTJ(a◻) .

A similar argument works for the second equation.

Since we are interested in obtaining a path-continuousω-hyperclone, we need
a corresponding restriction on power-hyperclones.

Definition .. Anordered power-hypercloneC is path-continuous if there exists
an ideal J ⊆ C such that

◆ for every sequence a◻ in separation normal form with regular factorisa-
tion x ⋅ yω , we have

x ⋅ yω = sup{u ⋅ vω ∣ u ⋅ vω is a regular factorisation of some sequence

b◻ ≤ a◻ in J} ,

◆ and the value of an expression a ⋅ bω with a, b ∈ J is uniquely determined
by the set BTJ(a, b, b, b, . . . ).

It follows from the next lemma that the power-hyperclone ⟨C, ω⟩ associated
with a path-continuous ω-hyperclone ⟨C, π⟩ by setting aω ∶= π(a, a, a, . . . ) is
path-continuous.We shall prove below that, conversely, every finitary, path-con-
tinuous power-hyperclone can be turned into a path-continuous ω-hyperclone
in a unique way. We start by showing that there exists at most one infinitary
product compatible with a given power-hyperclone.

Lemma .. Let C be a finitary power-hyperclone, J an ideal of C, and let π be an
infinite product that is compatible with C and such that ⟨C, π⟩ is path-continuous
with respect to the ideal J. For every sequence a◻ in J, we have

π(a◻) = b ⋅ cω ,

where b ⋅ cω is any regular factorisation of a◻.

Proof. By path-continuity there is a function p such that

π(a◻) = p(BTJ(a◻)) , for every sequence a◻ in J .
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Let λPσ be a contraction of the trace labelling λwith lim λPσ = lim λ and let b ⋅cω

be the regular factorisation of a◻ induced by λPσ . By Lemma . it follows that

π(a◻) = p(BTJ(a◻)) = p(lim λ)

= p(lim λPσ )
= p(BTJ(b, c, c, . . . )) = π(b, c, c, . . . ) = b ⋅ cω ,

as desired.

Corollary .. Let C be a finitary power-hyperclone and J an ideal of C. ¿ere
exists at most one infinite product π that is compatible with C and such that ⟨C, π⟩
is path-continuous with respect to the ideal J.

Proof. Let π, π′ be two infinite products that are compatible withC and such that
⟨C, π⟩ and ⟨C, π′⟩ are path-continuous. It is sufficient to prove that π and π′ agree
on every sequence a◻ in separation normal form in J. But this follows from the
preceding lemma, since

π(a◻) = b ⋅ cω = π′(a◻) ,

for any regular factorisation b⋅cω induced by a contraction of the trace labelling λ.

For path-continuous power-hyperclones, it follows that the functionmapping
a sequence a◻ to the value b ⋅ cω of its regular factorisation is well-defined.

Lemma .. Let C be a path-continuous power-hyperclone, and b ⋅ c
ω
 , b ⋅ c

ω
 two

regular factorisations of a sequence a◻. ¿en

b ⋅ c
ω
 = b ⋅ c

ω
 .

Proof. By path-continuity, we have

b ⋅ c
ω
 = sup{u ⋅ v

ω ∣ u ⋅ vω is a reg. fact. of some a◻ ≤ a
◻ in J }

= b ⋅ cω .

Existence of π is more involved. First, we show that, if a compatible product
exists, the resulting ω-hyperclone is path-continuous.

Lemma .. Let C be a finitary path-continuous power-hyperclone with ideal J
and let π be an infinite product that is compatible with C. ¿en ⟨C, π⟩ is path-
continuous with the same ideal J.



Proof. Let a◻ be a sequence in separation normal form. We have to show that

π(a◻) = sup{ π(b◻) ∣ b◻ ≤ a◻ in J } .

Let x ⋅ yω be the regular factorisation of a◻. Since C is path-continuous, we have

x ⋅ yω = sup{u ⋅ vω ∣ u ⋅ vω is a regular factorisation of some sequence

b◻ ≤ a◻ in J } .

By Lemma ., it follows that

π(a◻) = x ⋅ yω

= sup{u ⋅ vω ∣ u ⋅ vω a reg. fact. of b◻ ≤ a◻ in J }

= sup{ π(b◻) ∣ b◻ ≤ a◻ in J } ,

as desired.
For the second condition, we have to show that the value of an infinite product

π(a◻)with a◻ in J only depends on BTJ(a◻). Consider two sequence a◻ and b◻

in J with BTJ(a◻) = BTJ(b◻). We claim that π(a◻) = π(b◻). Let u ⋅ vωand
x ⋅ yω be regular factorisations of, respectively, a◻ and b◻ that are induced by
contractions of the respective trace labellings. ¿en it follows by Lemma . that

BTJ(u, v , v , . . . ) = BTJ(a◻) = BTJ(b◻) = BTJ(x , y, y, . . . ) .

By path-continuity of C this implies that u ⋅ vω = x ⋅ yω . Hence,

π(a◻) = u ⋅ vω = x ⋅ yω = π(b◻) ,

as desired.

Finally, we can prove the existence of compatible products. Togetherwith their
uniqueness, it follows that every finitary, path-continuous power-hyperclone can
be extended in a unique way to an ω-hyperclone.

¿eorem .. Let C be a finitary, path-continuous power-hyperclone with ideal J.
¿ere exists exactly one infinite product π that is compatible with C and such that
⟨C, π⟩ is path-continuous with respect to J.





Proof. By Corollary ., we only need to prove the existence of π. According to
Lemma ., if a◻ is a sequence in J in separation normal form, we have no choice
but to define

π(a◻) ∶= b ⋅ cω ,

where b ⋅ cω is a regular factorisation induced by some contraction λPσ of the
trace labelling λ. In fact, we use this definition for all sequences a◻ in separation
normal form. Note that, by Lemma ., this definition does not depend on the
regular factorisations we choose.
We extend the definition to sequences a◻ not in separation normal form by

setting

π(a◻) ∶= π(b◻) , where b◻ is the unravelling of a◻.

It remains to prove that π turns C into a path-continuous ω-hyperclone. Path-
continuity follows from Lemma .. Hence, we only have to check that ⟨C, π⟩ is
an ω-hyperclone and that π is compatible with C.
For compatibility, consider a constant sequence a◻ = (a, a, a, a, . . . ). ¿e

function σ ∶ Λ(a◻) → [] mapping every element to  is a Ramseyan split of
the trace labelling λ. It follows that a ⋅ aω is a regular factorisation of a◻. Con-
sequently,

π(a, a, a, . . . ) = a ⋅ aω = aω .

It remains to verify that π satisfies the axioms of an ω-hyperclone. According
to [], there are five axioms to check:

() For all k < k < k < ⋅ ⋅ ⋅ < ω, we have the associative laws

π(a , a , a , . . . ) = a ⋅ π(a , a , . . . ) ,

π(a , a , a , . . . ) = π((a⋯ak−), (ak⋯ak−), (ak⋯ak−), . . . ) .

() Let b◻ be the factorisation (see below) of a◻ induced by someH ⊆ Λ(a◻).
¿en

π(b◻) = π(a◻) .

() Let m(n) ∶= ∣ūn ∣ be the width of an and set bn ∶= π(an , an+ , . . . ). For all
In ⊆ [m(n)], we have

π(a , a , . . . ) = π(a ∶I b
 , a ∶I b

 , a ∶I b
 , . . . ) .



() If σn ∶ [∣ūn ∣]→ [∣ūn ∣], n < ω, are functions such that

σnπ(an , an+ , . . . ) = π(an , an+ , . . . ) ,

then

π(σa , σa , σa , . . . ) = π(a , a , a , . . . ) .

() For all sequences a◻ and b◻,

an ≤ bn , for all n < ω, implies π(a , a , . . . ) ≤ π(b , b , . . . ) .

We start with a proof of (). Let us first recall the definition of a factorisation
from []. A set H ⊆ Λ(a◻) induces a factorisation of a◻ if, for every v ∈ Λ(a◻),
there is some u ⪯ v in H. For each u ∈ H, we set

Tu ∶= { v ∈ Λ(a◻) ∣ u ⪯ v and there is no w ∈ H with u ≺ w ⪯ v } .

¿en H induces a factorisation of a◻ if, and only if, the sets Tu form a partition
of Λ(a◻). By definition, this factorisation is obtained from a◻ by replacing all
elements in Tu by the single element µ[Tu], where µ is the function from Defin-
ition ..
Returning to the proof, let b◻ be the factorisation of a◻ induced byH ⊆ Λ(a◻).

We have to show that π(b◻) = π(a◻).
First, let us consider the case that a◻ and b◻ are in separation normal form.

Let λ and λ be the trace labellings of, respectively, a
◻ and b◻ and fix a Ram-

seyan split σ for λ. Note that λ is the restriction of λ to H. ¿erefore, we can
extend σ to a Ramseyan split σ for λ in the following way. For each vertex u ∈ H,
we fix a Ramseyan split σu for the restriction of λ to the subtree Tu defined above.
Let n < ω be some number such that rng σ ⊆ [n]. We define σ by

σ(x) ∶=
⎧⎪⎪
⎨⎪⎪⎩

σ(x) if x ∈ H ,

n + σu(x) if x ∉ H and x ∈ Tu ,

¿en σ is a Ramseyan split of Λ(a◻) whose restriction to H coincides with σ.
By the definition of σ, the canonical embedding i ∶ H → Λ(a◻) induces an

embedding of every contraction (λ)Pσ of λ into the corresponding contrac-
tion λPσ of λ. It follows that the regular factorisations induced by (λ)

P
σ
and λPσ

coincide. ¿erefore, the products π(a◻) and π(b◻) have the same value.





It remains to prove the claim for arbitrary sequences a◻ and b◻. Let â◻ and b̂◻

be the unravellings of a◻ and b◻, respectively. By definition, we have π(a◻) =
π(â◻) and π(b◻) = π(b̂◻). Furthermore, b̂◻ is a factorisation of â◻ induced by
some set Ĥ ⊆ Λ(â◻). Since â◻ and b̂◻ are in separation normal form, it follows
by what we have shown above that

π(b◻) = π(b̂◻) = π(â◻) = π(a◻) .

()¿e second equation follows from (). Hence, it remains to prove that

π(a , a , . . . ) = a ⋅ π(a , a , . . . ) , for every sequence a◻ .

By definition of π, it is sufficient to consider sequences a◻ in separation normal
form. Let a◻ be such a sequence and let a = a⊕⋅ ⋅ ⋅⊕a


m− be the decomposition

of the element a. We denote by b◻i the sequence (a

i , a

 , a , . . . ). ¿en

π(a , a , . . . ) = π(b◻ )⊕ ⋅ ⋅ ⋅ ⊕ π(b◻m−) .

Let λ and λ i , i < m, be the trace labellings of, respectively, a◻ and b◻i . We fix

Ramseyan splits σi of λ i and sets Pi ⊆ Λ(b◻i ) such that lim(λ i)
Pi

σi = lim λ i . Let
x i ⋅ y

ω
i be the corresponding regular factorisation of b

◻
i . ¿en

a ⋅ π(a , a , . . . ) = a ⋅ (π(b◻ )⊕ ⋅ ⋅ ⋅ ⊕ π(b◻m−))
= a ⋅ (x ⋅ yω ⊕ ⋅ ⋅ ⋅ ⊕ xm− ⋅ y

ω
m−) .

We denote by h i ∶ Λ(b◻i ) → Λ(a◻) the tree embedding mapping each position
of b◻i to the corresponding one of a

◻. Let P ⊆ Λ(a◻) be the prefix-closure of the
set

h[P] ∪ ⋅ ⋅ ⋅ ∪ hm−[Pm−] .

We define a Ramseyan split σ of λ by setting

σ(w) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

σi(u) if w = h i(u) for some u and i ,

∣w∣ + k otherwise ,

where k is a constant larger than any number in rng σ ∪ ⋅ ⋅ ⋅∪ rng σm−. It follows
that the contraction λPσ of λ induced by P and σ consists of the prefix of Λ(a◻)



corresponding to a togetherwith the contractions (λ i)Pi

σi .¿erefore, the regular
factorisation induced by λPσ is of the form

sep(a ⋅ (x ⊕ ⋅ ⋅ ⋅ ⊕ xm−)) ⋅ (yτ ⊕ ⋅ ⋅ ⋅ ⊕ ym−τm−)ω

= a ⋅ (x ⋅ yω ⊕ ⋅ ⋅ ⋅ ⊕ xm− ⋅ y
ω
m−) ,

for suitable functions τ , . . . , τm−. It follows that

π(a◻) = a ⋅ (x ⋅ yω ⊕ ⋅ ⋅ ⋅ ⊕ xm− ⋅ y
ω
m−) = a


⋅ π(a , a , . . . ) .

()Wemay again assume that a◻ is in separation normal form. Let c◻ be the
sequence (a ∶I b

 , a ∶I b
 , a ∶I b

 , . . . ). Note that Λ(c◻) is a subset of Λ(a◻)
obtained by replacing some subtrees by leaves. Let h ∶ Λ(c◻) → Λ(a◻) be the
corresponding embedding. Let λ be the trace labelling of Λ(a◻) and let u ⋅ vω

be a regular factorisation of a◻ induced by some contraction λPσ of λ. Note that
λ(x , y) ∶= λ(h(x), h(y)) is the trace labelling of Λ(c◻). Hence, σ ∶= σ ○ h is a
Ramseyan split of λ. ¿e corresponding factorisation of c◻ is u ⋅ (v)ω where
u and v are of the form

u = sep(u ∶I w) and v = ρυ(v ∶J ,τ w) , for suitable I, J , υ, τ ,

where w ∶= vω ⊕ ⋅ ⋅ ⋅ ⊕ vω . It follows that u ⋅ (v)ω = u ⋅ vω .
() can be checked in a similar way. W.l.o.g. let a◻ be in separation normal

formand let b◻ be the sequence (σa , σa , σa , . . . ).¿ere exists an isomorph-
ism π ∶ Λ(a◻) → Λ(b◻). Using π we can transform a Ramseyan split σ for the
trace labelling of Λ(a◻) into a Ramseyan split for Λ(b◻). For the regular factor-
isations x ⋅ yω and u ⋅ vω of a◻ and b◻, respectively, it follows that

u = xτ and v = τ− yτ , for a suitable bijection τ .

It follows that u ⋅ vω = xτ(τ− yτ)ω = x ⋅ yω , as desired.
() Suppose that a◻ ≤ b◻. Let â◻ and b̂◻ be the unravellings of a◻ and b◻

and let u ⋅vω and x ⋅ yω be regular factorisations of â◻ and b̂◻, respectively.¿en

â◻ ≤ b̂◻ and, by path-continuity,

π(a◻) = π(â◻) = u ⋅ vω

= sup{w ⋅ zω ∣ w ⋅ zω a reg. fact. of some c◻ ≤ â◻ in J }

≤ sup{w ⋅ zω ∣ w ⋅ zω a reg. fact. of some c◻ ≤ b̂◻ in J }

= x ⋅ yω = π(b̂◻) = π(b◻) .





 T T  R

In this short section we present an application of our results.We give an alternat-
ive proof of the ¿eorem of Rabin on the decidability of the monadic second-
order theory of the binary tree. ¿e reason why we introduced power-hyper-
clones is that, a priori, we need an infinite amount of information to specify the
infinite product of an ω-hyperclone. But even a er having replaced the infin-
ite product by the unary power operation, we still deal with an infinite structure
since there are infinitelymany sorts. To actually computewith power-hyperclones
we have therefore to choose a finite subset of sorts and to only deal with the re-
duct of the power-hyperclone to this set of sorts.

Definition .. An effective presentation of a power-hypercloneC is a computable
function g that, given a finite set of sorts S ⊆ (ω<ω)<ω computes the reductC∣S .

We have shown in [] that the class of languages recognised by finitary path-
continuous ω-hyperclones is closed under boolean operations and projections.

¿eorem. ([]). Let p ∶ Σ → Γ be a surjective, arity preserving function between
functional signatures. If L, L′ ⊆ F⟨∅⟩[Σ] are recognised by path-continuous ω-
hyperclones then so are L ∩ L′, L ∪ L′, F⟨∅⟩[Σ] ∖ L, and p[L].

¿e¿eoremof Rabin will follow from an effective version of this theorem. To
obtain such an effective version, we replaceω-hyperclones by power-hyperclones
and we show that the two operations on ω-hyperclones underlying the theorem
are effective for power-hyperclones.¿ese two operations are the direct product
of two power-hyperclones and the power set operation.

Definition .. Let C and C′ be path-continuous power-hyperclones.
(a) ¿e product C×C′ is the power-hypercloneD where the domain of sort ū

is

Dū ∶= Cū × C
′
ū ,

and where all operations are defined component-wise.
(b) We define the power-hypercloneP(C) as follows.¿e domain of sort ū =
⟨u , . . . , um−⟩ is

℘(Cu
) × ⋅ ⋅ ⋅ × ℘(Cum−

) .

(For m = , we take the empty product {⟨⟩}.) To simplify notation we will
identify an element a = a⊕⋅ ⋅ ⋅⊕am− ∈ Cū with them-tuple ā = ⟨a , . . . , am−⟩,



andwewrite ā ∈ Ā, for ā ∈ Cū and Ā ∈ ℘(Cu
)×⋅ ⋅ ⋅×℘(Cum−

), if we have a i ∈ A i ,
for all i. For elements Ā and B̄ of P(C), we define the operations by

Ā⊕ B̄ ∶= ĀB̄ ,

 ∶= ⟨⟩ ,

λσ(Ā) ∶= ⟨Aσ(), . . . ,Aσ(m−)⟩ ,

Ā ∶I ,σ B̄ ∶= D̄ , where D i ∶= { a ∶I ,σ b̄ ∣ a ∈ A i , b̄ ∈ B̄ } .

¿e power operation is defined as

Āω
∶= { π(ā◻) ∣ ān ∈ Ān

 , for all n } ,

where Ā◻ is the unravelling of the sequence Ā, Ā, Ā, . . . and π is the unique in-
finite product compatible with C. Finally, the ordering is defined by

Ā ≤ B̄ : iff there exist injections φ i ∶ A i → B i such that

a ≤ φ i(a), for all a ∈ A i .

Obviously, we can compute an effective representation of C×C′ from effective
representations of C and C′. It is less clear that we can compute effective repres-
entations of P(C) from those of C.

Proposition .. Given an effective representation of a finitary path-continuous
power-hypercloneC, we can compute an effective representation of the power-hyper-
clone P(C).

Proof. Except for the ω-th power, all operations of P(C) are obviously comput-
able. Hence, it remains to show how to compute the value of Āω . Let Ā◻ be the
unravelling of the sequence Ā, Ā, Ā, . . . . Note that Āω is the set of all values ū ⋅ v̄ω ,
where ū ⋅ v̄ω is a regular factorisation of some sequence ā◻ with ān ∈ Ān

 . By
¿eorem . there is a (computable) bound k < ω such that we only need to
consider regular factorisations that are induced by a contraction CP

σ (λ) of the
trace labelling of ā◻ such that CP

σ (λ) is contained in the first k elements of the
sequence Ā◻ . Since there are only finitely many such contractions, we can enu-
merate all of them to compute Āω .

¿eorem .. For everyMSO-sentence φ, one can compute an effective representa-
tion of a finitary, path-continuous power-hyperclone C and a set P ⊆ C⟨⟩ such that
there exists a morphism h ∶ Fω[Σ]→ C with

T ⊧ φ iff h(T) ∈ P .





Proof. We compute the representation of C and the set P, by induction on φ.¿e
power-hyperclones for atomic formulae given in¿eorem . of [] are comput-
able from φ. For boolean operations, we perform a direct product of the given
power-hyperclones, which is obviously effective. For existential quantifiers, we
use Proposition . to compute P(C). In each case, the corresponding descrip-
tion of the set P given in [] is clearly effective.

¿e ¿eorem of Rabin will follow from this result, once we have shown that
one can compute the image of the morphism h.

Lemma.. Given an effective representation of a finitary, path-continuous power-
hyperclone C, a finite set X ⊆ C and an element a ∈ C⟨⟩, one can decide whether
or not the element a is contained in the sub-power-hyperclone ⟨X⟩ of C generated
by X.

Proof. Let π be the infinite product associated with C. Let X+ be the minimal
set containing X such that a ⊕ b ∈ X+ implies a, b ∈ X+, and a ∈ X+ implies
sep(a) ∈ X+. Note that X+ is still finite.
¿en a ∈ ⟨X⟩ if, and only if, a = π(b◻), for some sequence b◻ where each

element is of the form bn = xn
 ⊕ ⋅ ⋅ ⋅ ⊕ xn

m(n)− with xn
i ∈ X

+. By ¿eorem .,

there is a computable constant N such that each b◻ has a regular factorisation
u ⋅ vω where u and v are of the form

u = u
⋯uk and v = v⋯v l

with k, l < N where

u i = x i
 ⊕ ⋅ ⋅ ⋅ ⊕ x i

m(i)− and v i = y i ⊕ ⋅ ⋅ ⋅ ⊕ y in(i)− for x i
j , y

i
j ∈ X

+ .

Since π(b◻) = u ⋅ vω it is therefore sufficient to check these finitely many regular
factorisations to determine whether or not a ∈ ⟨X⟩.

Corollary .. It is decidable whether a givenMSO-formula φ has a tree model.

Proof. Given anMSO-sentence φ, we construct the corresponding power-hyper-
clone C and the set P ⊆ C⟨⟩ as in the theorem. Let h ∶ Fω[Σ] → C be the corres-
ponding morphism.¿en

φ has a tree model iff h−[P] ≠ ∅ iff P ∩ rng h ≠ ∅ .

Since Fω[Σ] is finitely generated (by the elements of Σ), it follows by Lemma .
that the latter condition is decidable.



Corollary . (Rabin). ¿eMSO-theory of the full binary tree T ∶= ⟨<ω , E , E⟩
is decidable.

Proof. ¿e binary tree T can be axiomatised by a singleMSO-sentence θ. It fol-
lows that

T ⊧ φ iff θ ∧ φ has a tree model.

¿e latter question is decidable by the preceding corollary.
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