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We compare classes of finite relational structures via monadic
second-order transductions. More precisely, we study the preorder

C ⊑ K : iff C ⊆ τ(K) for some transduction τ .

If we only consider classes of incidence structureswe can completely
describe the resulting hierarchy. It is linear of order type ω+ . Each
level can be characterised in terms of a suitable variant of tree-width.
Canonical representatives of the various levels are: the class of all
trees of height n, for each n ∈ N, of all paths, of all trees, and of all
grids.

 I

Monadic second-order logic (MSO) is one of the most expressive logics for which
the theories of many interesting classes of structures are still decidable. In partic-
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ular, the infinite binary tree andmany linear orders have a decidableMSO-theory
[, ] and the same holds for many classes of (finite or infinite) structures with
bounded tree-width [, ]. Furthermore, for every fixed MSO-sentence φ and
every class C of finite structures with bounded tree-width, there is a linear-time
algorithm that checks whether a given structure from C satisfies φ [, ]. Exam-
ples of monadic second-order expressible graph properties are k-colourability,
various types of connectivity, and planarity (via Kuratowski’s well-known char-
acterisation by forbidden configurations).
A variant of monadic second-order logic called guarded second-order logic

(GSO) allows quantification not only over sets of elements but also over sets of
edges (i.e., tuples from the relations) [].¿e abovementioned linear-time algo-
rithms can be adapted to this logic.¿ere are tight links between guarded second-
order logic and tree-width: every class of (finite or infinite) relational structures
with a decidable GSO-theory has bounded tree-width. ¿is gives a sort of con-
verse to the above mentioned decidability results [, ]. ¿e proof of this result
uses a deep theorem of graph minor theory by Robertson and Seymour: a set of
graphs has bounded tree-width if and only if it excludes some planar graph as a
minor [].
To compare theMSO-theories or GSO-theories of two classes of structures we

can usemonadic second-order transductions, a certain kind of interpretations suit-
able both, formonadic second-order logic and, using a detour via incidence struc-
tures, also for guarded second-order logic [, , , ].
In the present article we classify classes of finite structures according to their

‘combinatorial complexity’. (Note that we do not consider decidability issues.)
We will consider two ways to measure the complexity of such classes. On the
one hand, we can use their tree-width and its variants. On the other hand, we
can compare them via transductions. As it turns out, these two approaches are
equivalent and they give rise to the same hierarchy.¿is indicates the robustness
of our definitions and their intrinsic interest. Other possible hierarchies, based
on different logics, will be briefly mentioned in Section .
Let us give more details. An MSO-transduction is a transformation of rela-

tional structures specified by monadic second-order formulae. As graphs can
be represented by relational structures, we can use MSO-transductions as trans-
formations between graphs. An MSO-transduction is a generalisation of the fol-
lowing kind of operations:
(i) the definition of a relational structure “inside” another one (inmodel theory

this is called an interpretation);
(ii) the replacement of a structure A by the union of a fixed number of dis-
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joint copies of A, augmented with appropriate relations between the copies (see
Definition . (a));
(iii) the expansion of a given structureA by a fixed number of unary predicates,

called parameters. Usually, these predicates are arbitrary subsets of the domain,
but we also may have a formula imposing restrictions on them.
Because of the possibility to use parameters, a transduction τ is amany-valued

map in general. (We may also think of it as non-deterministic.) Each relational
structure A has several images τ(A, P , . . . , Pn) depending on the choice of the
parameters P , . . . , Pn ⊆ A. If B = τ(A, P , . . . , Pn) we can consider the tu-
ple P , . . . , Pn as an encoding ofB inA. ¿e transduction τ is the corresponding
decoding function.
Each transduction τ extends in a canonical way to a transformation between

classes of structures. If C andK are classes of relational structures with C ⊆ τ(K),
we can think of τ as a way of encoding the structures in C by elements ofK. For
instance, every finite graph can be encoded in a sufficiently large finite square
grid (by a fixed transduction τ). Every finite tree of height at most n (for fixed n)
can be encoded in a sufficiently long finite path. But it is not the case that all finite
trees can be encoded by paths (by a single transduction).
¿e purpose of this article is to classify classes of finite relational structures

according to their encoding powers.Wewill compare classesC andK of structures
by the following preorder:

C ⊑ K : iff C ⊆ τ(K) for someMSO-transduction τ .

We attack the problem of determining the structure of this preorder. Since, at
the moment, a complete description of this hierarchy seems to be out of reach,
we concentrate on a variant where we replace monadic second-order logic by
guarded second-order logic. In this case, the corresponding hierarchy can be de-
scribed completely. To obtain a corresponding notion of transduction we can-
not simply change the definition of an MSO-transduction to use GSO-formulae
since the resulting notion of transduction would not yield a reduction between
GSO-theories, and it even would not be closed under composition. Instead, we
will take a detour by combining ordinaryMSO-transductions with a well-known
translation between GSO andMSO.
¿is translation is based on incidence structures. Let us first describe this no-

tion for undirected graphs where it is very natural.¿ere are two canonical ways
to encode a graphG by a relational structure.We can use its adjacency representa-
tionwhich is a structure ⟨V , edg⟩where the domainV consists of all vertices ofG



and edg is a binary relation containing all pairs of adjacent vertices. But we also
can use the incidence representation ofG. ¿is is the structure ⟨V ∪ E, in⟩ where
the domain V ∪ E contains both, the vertices and the edges of G, and in is the
incidence relation between vertices and edges. In a similar way, we can associate
with every relational structure A its incidence structure Ain (see Definition .)
where the domain also contains elements for all tuples in some relation of A.
It is shown in [] that every GSO-formula φ talking about some structure A

can be translated into anMSO-formula talking about the incidence structureAin,
and vice versa. Hence, we can use incidence structures to obtain an analogue ⊑in
of the preorder ⊑ suitable for guarded second-order logic. We set

C ⊑in K : iff Cin ⊆ τ(Kin) for someMSO-transduction τ ,

where Cin ∶= {Ain ∣ A ∈ C }. ¿e main result of the present article is a com-
plete characterisation of the resulting hierarchy for classes of finite structures.
We show that the preorder ⊑in is linear of order type ω + . It turns out that ev-
ery class of finite structures is equivalent to one of the following classes, listed in
increasing order of generality:

◆ trees of height at most n, for each n ∈ N ;
◆ paths;
◆ arbitrary trees (equivalently, binary trees);
◆ (square) grids.

Each of these levels can be characterised in terms of tree decompositions. Hence,
we also obtain a corresponding hierarchy of complexity measures on structures
that are compatible withMSO-transductions transforming incidence structures.
¿e upper levels of the hierarchy can be determined easily using techniques

from graph minor theory developed by Robertson and Seymour, such as the
notions of a minor and a tree decomposition. In particular, we employ two re-
sults characterising bounded tree-width and bounded path-width in terms of
excluded minors [, ].
For the lower levels, which consist of classes of bounded path-width, the char-

acterisation is more complicated and requires new results relating tree decompo-
sitions and monadic second-order logic.
In Sections  and  we give basic definitions. Section  collects some known

results from graph minor theory. We also introduce a new variant of tree-width
and prove some of its basic properties. In Section  we expound upon the connec-
tions between tree-width andmonadic second-order transductions. In Section 
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we introduce the transductionhierarchy andwe state ourmain theorem. Its proof
is contain in Sections  and . In the first one, we prove that the hierarchy is strict
while, in the second one, we show that it covers every class. ¿e final Section 
contains some extension of our results to other logics and some open problems
in this direction.

 P

Let us fix our notation. We set [n] ∶= {, . . . , n − } and we write ℘(X) for the
power set of a set X. We denote tuples ā with a bar. ¿e components of ā will be
a , . . . , an− where the length n will usually be implicit. We sometimes identify
a tuple ā with the set of its components. For instance, we write c ∈ ā to express
that c = a i , for some i.
In this article all graphs, trees, and relational structures are finite. We will

not repeat this finiteness assumption. A relational structure A is of the form
⟨A, RA

 , . . . , R
A
m−⟩with domainA and relations RA

i .¿e signature of such a struc-
ture is the set Σ = {R , . . . , Rm−} of relation symbols. In some proofs we will
also use signatures with constant symbols denoting elements of the domain. We
write ar(R) for the arity of a relation R. For a signature Σ, we denote by STR[Σ]
the class of all Σ-structures.WewriteA⊕B for the disjoint union of the structures
A andB.
We mainly consider incidence structures. ¿ese are representations of struc-

turesA where we have added new elements to the domain, one for each tuple in
the relations of A.

Definition .. LetA = ⟨A, RA
 , . . . , R

A
m−⟩ be a structure and let r be themaximal

arity of a relation R i . ¿e incidence structure of A is the structure

Ain ∶= ⟨A⊍ E, PR
, . . . , PRm−

, in , . . . , inr−⟩ ,
where we extend the domain A by

E ∶= RA

 ∪ ⋅ ⋅ ⋅ ∪ R
A

m− ,

and the relations are

PR i
∶= { c̄ ∈ E ∣ c̄ ∈ RA

i } ,
ini ∶= { (a, c̄) ∈ A× E ∣ ∣c̄∣ > i and a = c i } .

¿e class of all incidence structures is STRin[Σ] ∶= {Ain ∣ A ∈ STR[Σ] }.



Remark. Note that incidence structures are binary (i.e., their relations have arity
at most ). Hence, they can be regarded as bipartite labelled directed graphs.

One important property of incidence structures is the fact that they are sparse,
i.e., their relations contain few tuples.

Definition .. Let k ∈ N. A structureA = ⟨A, R̄⟩ is k-sparse if, for every subset
X ⊆ A and all relations R i , we have

∣R i ∩ X
ar(R i)∣ ≤ k ⋅ ∣X∣ .

Lemma .. Every incidence structure is -sparse.

Let us fix our notation regarding trees and graphs.

Definition .. A directed graph is a pair ⟨V , edg⟩ where V is the set of vertices
and edg ⊆ V ×V is the edge relation.¿us, graphs are by definition simple (with-
out parallel edges). An undirected graph is a graph where the edge relation edg is
symmetric. When speaking of a graph we will always mean an undirected one.
We regard a coloured graph as a relational structure ⟨V , E , . . . , Ek , P , . . . , Pm⟩

with binary relations E i and unary relations Pi that encode the colours of, respec-
tively, the edges and the vertices.We allow graphs whose edges and vertices have
several colours.

Trees play a major role in this article. Intuitively, a tree is a directed graph T

with a unique vertex r of indegree , called the root of T, such that every vertex
is reachable from r by a unique directed path. ¿e actual definition we will use
is slightly more concrete. It is based on the usual encoding of the vertices of a
tree by finite sequences describing the path from the root to the given vertex. In
fact, we introduce two notions of a tree: order-trees and successor-trees.¿e latter
use the usual edge relation, while the former are equipped with the tree-order
instead.

Definition .. Let D be a set.
(a) For an ordinal α, we denote by D<α the set of all sequences of elements

of D of length less than α. ¿e prefix relation on D<ω is defined by

x ⪯ y : iff y = xz , for some z ∈ D<ω .

In [] the term uniformly k-sparse is used.
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¿e infimum of x and y with respect to ⪯, i.e., their longest common prefix, is
denoted by x ⊓ y.
(b) A finite prefix closed subset T ⊆ D<ω is called a tree domain. Following our

intuition that a vertex is represented by the path leading to it, we call the empty
sequence ⟨⟩ the root of T and themaximal elements of T its leaves.¿edomain of
the completem-ary tree of height n ism<n . Hence,m< is the empty tree,m< the
one consisting only of the root, and m< consists of a root and m leaves.
Given a tree domain T we can define the successor relation edg on T by setting

⟨x , y⟩ ∈ edg : iff y = xd for some d ∈ D .

In this case we call y a successor of x and x the predecessor of y. A structure of the
form ⟨T , edg⟩ (and every structure isomorphic to it) is called a successor-tree.
Sometimes it is convenient to replace the successor relation edg by the tree

order ⪯. Structures of the form ⟨T , ⪯⟩ are called order-trees. A coloured tree is
the expansion of a (order- or successor-) tree by unary predicates P̄. (We do not
require these predicates to be pairwise disjoint. Hence, every vertex may have
none, one, or several colours.) We write TREEm for the class of all order-trees
⟨T , ⪯, P , . . . , Pm−⟩ with m colours. ¿e set of leaves of a tree T is denoted by
Lf(T).
(c) LetT = ⟨T , ⪯⟩ be an order-tree.¿e level of an element v ∈ T is the number

of vertices u ∈ T with u ≺ v. We denote it by ∣v∣. ¿e height of T is the least
ordinal α greater than the level of every element of T . Hence, the empty tree has
height  and the tree with a single vertex has height . ¿e out-degree of T is the
maximal number of successors of a vertex of T. For successor-trees we define
these notions analogously.
(d) Let T be a tree and v a vertex of T. ¿e subtree of T rooted at v is the

subtree Tv consisting of all vertices u with v ⪯ u, i.e., all vertices below v.

Sometimes it is possible to reduce statements about relational structures to
statements about graphs. One way to do so consists in replacing a structure by
its Gaifman graph.

Definition .. ¿e Gaifman graph of a structure A = ⟨A, R̄⟩ is the undirected
graph

Gf(A) ∶= ⟨A, edg⟩ ,
with the same domain A and with the edge relation

edg ∶= { (u, v) ∣ u ≠ v and there is some c̄ ∈ RA

i with u, v ∈ c̄ } .



 M -  



Monadic second-order logic (MSO) is the extension of first-order logic by set
variables and quantifiers over such variables. An important variant of MSO is
guarded second-order logic (GSO) where one can quantify not only over sets of el-
ements but also over sets of tuples from the relations (see [] for details). Hence,
guarded second-order logic over a given structure A is equivalent to monadic
second-order logic over its incidence structure Ain.

Lemma . (Grädel, Hirsch, Otto []).
(a) For everyGSO-sentence φ, we can effectively construct anMSO-sentence ψ such
that

A ⊧ φ iff Ain ⊧ ψ , for all structures A .

(b) For everyMSO-sentence φ, we can effectively construct a GSO-sentence ψ such
that

Ain ⊧ φ iff A ⊧ ψ , for all structures A .

¿roughout the article we will consistently work with incidence structures,
thereby avoiding to treat with guarded second-order logic. In particular, all for-
mulae are tacitly assumed to beMSO-formulae.
Besides MSO and GSO we also consider their counting extensions CMSO and

CGSO. ¿ese add predicates of the form ∣X∣ ≡ k (mod m) to, respectively,MSO

and GSO, where X is a set variable and k,m are numbers. All of our results for
GSO go through also for CGSO, i.e., for CMSO-transductions between incidence
structures. In Section  we will give a partial characterisation of the hierarchy for
CMSO-transductions of graphs (not of incidence graphs). In this case the avail-
ability of counting predicates does make a difference.
To state the composition theorem below it is of advantage to work with a vari-

ant ofMSO without first-order variables.¿is variant has atomic formulae of the
form X ⊆ Y and RZ̄, for set variables X ,Y , Z , Z , . . . , where a formula of the
form RZ̄ states that there are elements a i ∈ Z i such that the tuple ā is in R. Note
that every general monadic second-order formula with first-order variables can
be brought into this restricted form by replacing all first-order variables by set
variables and adding the condition that these sets are singletons.
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Whenever we speak of MSO we will have this version in mind. In particular,
the following definition of the rank of a formula is based on this variant. When
writing down concrete formulae, on the other hand, we will allow the use of
first-order variables to improve readability. We regard every such formula as an
abbreviation of a formula of the restricted form.

Definition .. (a) ¿e rank qr(φ) of a formula φ is the nesting depth of quanti-
fiers in φ. Formulae of rank  are called quantifier-free.
(b) ¿emonadic theory of rank m of a structure A is

M¿m(A) ∶= {φ ∈ MSO ∣ A ⊧ φ, qr(φ) ≤ m } .
For a tuple ā of elements ofA, we also consider themonadic theoryM¿m(A, ā)
of the expansion ⟨A, ā⟩.
Remark. Weuse the term ‘rank’ instead of themore natural ‘quantifier rank’ since
in Section  below we will consider CMSO where the notion of rank has to be
adapted for our results to go through.

In order to compare the monadic theories of two classes of structures we em-
ploy MSO-transductions. To simplify the definition we introduce three simple
operations and we obtainMSO-transductions as a combination of these.

Definition .. (a) Let k ≥  be a natural number. ¿e operation copyk maps a
structure A to the expansion

copyk(A) ∶= ⟨A⊕ ⋅ ⋅ ⋅ ⊕A, ∼, P , . . . , Pk−⟩
of the disjoint union of k copies of A by the following relations. Denoting the
copy of an element a ∈ A in the i-th component of A⊕ ⋅ ⋅ ⋅ ⊕A by the pair ⟨a, i⟩,
we define

Pi ∶= { ⟨a, i⟩ ∣ a ∈ A} and ⟨a, i⟩ ∼ ⟨b, j⟩ : iff a = b .

For k = , we set copy(A) ∶= A.
(b) For m ∈ N, we define the operation expm that maps a structure A to the

set of all expansions by m unary predicates Q , . . . ,Qm− ⊆ A. Note that this
operation is many-valued and that exp is just the identity.
(c) A basic MSO-transduction is a partial operation τ on relational structures

described by a list

⟨χ, δ(x), φ(x̄), . . . , φs−(x̄)⟩



of MSO-formulae called the definition scheme of τ. Given a structure A that sat-
isfies the formula χ the operation τ produces the structure

τ(A) ∶= ⟨D, R , . . . , Rs−⟩

where

D ∶= { a ∈ A ∣ A ⊧ δ(a) } and R i ∶= { ā ∈ Dar(R i) ∣ A ⊧ φ i(ā) } .

If A ⊭ χ then τ(A) remains undefined.
(d) A k-copying MSO-transduction τ is a (many-valued) operation on rela-

tional structures of the form τ ○copyk ○expm where τ is a basicMSO-transduc-
tion.When the value of k does not matter, we will simply speak of a transduction.
Note that, due to expm , a structure can be mapped to several structures by

a transduction. Consequently, we consider τ(A) as the set of possible values
(τ ○ copyk)(A, P̄) where P̄ ranges over all m-tuples of subsets of A.
For classes C, we set

τ(C) ∶=⋃{ τ(A) ∣ A ∈ C } .

Remark. (a)¿e expansion bym unary predicates corresponds, in the terminol-
ogy of [, ], to using m parameters.We will use this terminology, for instance,
in the proof of ¿eorem ..
(b) Note that every basicMSO-transduction is a -copyingMSO-transduction

without parameters.

Example. (a) Let Σ be a signature and let r be themaximal arity of a relation in Σ.
¿e operation mapping an incidence structure Ain ∈ STRin[Σ] to the structure
Gf(A)in is a k-copying MSO-transduction where k = r(r − )/, for r ≥ , and
k = , for r ≤ .
(b) For every fixed number n ∈ N, we describe a transduction τ transforming

a pathP of length l into the class of all trees of height n with l +  vertices.
We can encode a tree T of height n with m vertices as a finite word w of

lengthm over the alphabet [n] as follows. Let v <lex ⋅ ⋅ ⋅ <lex vm− be the enumer-
ation of the vertices of T in lexicographic order, and let l i be the level of v i . We
encode T by the word w ∶= l . . . lm−. A transduction can recover T from w as
follows. Each position in w corresponds to a vertex. ¿e predecessor of the i-th
vertex v is the maximal vertex to the le of v whose label is less than l i . Clearly,
this predecessor relation is definable in monadic second-order logic.
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¿e two most important properties ofMSO-transductions are summarised in
the following lemmas.

Lemma .. Let τ be a transduction. For every MSO-sentence φ, there exists an
MSO-sentence φτ such that, for all structures A,

A ⊧ φτ iff B ⊧ φ for some B ∈ τ(A) .
Furthermore, if τ is quantifier-free, then the rank of φτ is no larger than that of φ.

Corollary .. For every quantifier-free transduction τ and every m ∈ N, there
exists a function fτ on monadic theories of rank m such that

M¿m(τ(A)) = fτ(M¿m(A)) , for all structures A .

Lemma . (Courcelle []). For all transductions σ , τ there exists an transduc-
tion ρ with ρ = σ ○ τ.

As a further example note that we can use transductions to translate between
order-trees and successor-trees.

Lemma .. (a)¿ere exists a transduction τ mapping an order-tree to the corre-
sponding successor-tree.
(b)¿ere exists a transduction σ mapping a successor-tree to the corresponding

order-tree.

Similarly there are transductions translating between a structure and its inci-
dence structure.

Lemma .. For every signature Σ, there exists a transduction τ such that τ(Ain) =
A, for all A ∈ STR[Σ].
¿e converse statement is a much deeper result.

¿eorem . (Courcelle [, ]). For every signature Σ and all numbers k ∈ N,
there exist anMSO-transduction τ such that τ(A) = Ain, for all k-sparse structures
A ∈ STR[Σ].
We have seen in Lemma . that transductions relate the monadic theories of

two structures. We also need techniques to relate the monadic theory of a struc-
ture to those of its substructures.¿e disjoint union operation can frequently be
used for this purpose (for a proof of the following theorem see, e.g.,¿eorem .
of [], or []).



¿eorem .. Let Σ and Γ be relational signatures with constants. For every m ∈
N, there exists a (computable) binary operation⊕m onmonadic theories of rankm
such that

M¿m(A⊕B) =M¿m(A)⊕m M¿m(B) ,

for all Σ-structures A and Γ-structures B.

Below we will mainly make use of the following corollary.

Lemma .. Let T be an order-tree and v ∈ T a vertex. Suppose that T′ is the
order-tree obtained from T by replacing the subtree Tv by some tree S. Let c̄ be a
tuple of vertices of T with v â c i , for all i. If ā are vertices of Tv and b̄ are vertices
of S such that

M¿m(Tv , ā) =M¿m(S, b̄)

then it follows that

M¿m(T, āc̄) =M¿m(T′ , b̄c̄) .

Proof. Let C be the tree obtained from T by replacing the subtree Tv by a single
vertexw. We define the following auxiliary predicates:

P ∶= {w} , Q ∶= { x ∈ C ∣ x ≺ w } , Q ∶= Tv , and Q′ ∶= S .

We construct a quantifier-free transduction τ such that

τ(⟨C, P,Q , c̄⟩⊕ ⟨Tv ,Q , ā⟩) = ⟨T, āc̄⟩ ,
τ(⟨C, P,Q , c̄⟩⊕ ⟨S,Q′ , b̄⟩) = ⟨T′, b̄c̄⟩ .

If fτ is the function fromCorollary . and⊕m the operation from¿eorem .,
it follows that

M¿m(T′ , b̄c̄) = fτ(M¿m(C, P,Q , c̄)⊕m M¿m(S,Q′ , b̄))
= fτ(M¿m(C, P,Q , c̄)⊕m M¿m(Tv ,Q , ā))
=M¿m(T, āc̄) ,

as desired.
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Hence, it remains to define τ. Let {⪯, P,Q , d̄} be the signature of ⟨C, P,Q, c̄⟩,
and {⪯,Q , ē} the signature of ⟨Tv ,Q , ā⟩ and ⟨S,Q′ , b̄⟩. For τWe can use the
basicMSO-transduction consisting of the following formulae:

χ ∶= true ,

δ(x) ∶= ¬Px ,
φ⪯(x , y) ∶= x ⪯ y ∨ (Qx ∧ Qy) .

 M   

Some properties of the transduction hierarchy, which we will introduce in Sec-
tion  below, can be deduced from results about graph minors.

Definition .. (a) LetG = ⟨V , edg⟩ be an undirected graph and E ⊆ edg a set of
edges. We denote by E∗ the reflexive and transitive closure of E. Note that E∗ is
an equivalence relation.¿e graphG/E is obtained by contracting all edges in E.
Formally, we have

G/E ∶= ⟨W , edg⟩ ,

where W ∶= V/E∗ is the set of equivalence classes and edg contains an edge
between classes [x] and [y] if and only if [x] ≠ [y] and there are representatives
u ∈ [x] and v ∈ [y] with ⟨u, v⟩ ∈ edg.
(b) Aminor of a graphG is a graph that can be obtained fromG by first delet-

ing some vertices and edges and then contracting some of the remaining edges.
For a class C of graphs, we denote by Min(C) the class of all minors of graphs
in C.

One central tool in graph minor theory is the notion of a tree decomposition
and the related complexity measures called tree-width and path-width. ¿ese
notions extend in a natural way to relational structures.

Definition .. Let A = ⟨A, R̄⟩ be a structure.
(a) A tree decomposition of A is a family D = (Uv)v∈T of (possibly empty)

subsets Uv ⊆ A indexed by an order-tree T such that

◆ for every element a ∈ A, the set { v ∈ T ∣ a ∈ Uv } is nonempty and
connected in T ;

◆ for every tuple c̄ ∈ R i , there is some index v ∈ T with c̄ ⊆ Uv .



We call the setsUv the components of the decomposition, and T is its underlying
tree.
¿e height of a tree decomposition D = (Uv)v∈T is the height of T , while its

width is the number

wd(D) ∶= sup
v∈T

(∣Uv ∣ − ) .

(b) ¿e tree-width twd(A) of A is the minimal width of a tree decomposition
of A.
(c)¿e path-width pwd(A) ofA is the minimal width of a tree decomposition

of A where the underlying tree is a path.
(d) ¿e n-depth tree-width twdn(A) of A is the minimal width of a tree de-

composition of A whose underlying tree has height at most n.
(e) For a class C of structures, we define twd(C) as the supremum of twd(A),

for A ∈ C, and similarly for pwd(C) and twdn(C).
Remark. (a)¿e n-depth tree-width of a graphG is related to its tree-depth td(G)
as introduced by Nešetřil and Ossona de Mendez [, ]. ¿e tree-depth of a
graph G is the least number n such that some orientation of G is a subgraph of
a suitable order-tree of height n. For a graphG, it follows that

◆ td(G) ≤ n implies twdn(G) < n ;
◆ twdn(G) < k implies td(G) ≤ nk.

¿ese facts are easy to establish. We will not need them in the following.
(b) ¿ere are some simple relations between n-depth tree-width, path-width,

and tree-width. For every graphG, we have

twd(G) ≤ twdn+(G) ≤ twdn(G) , for every n ∈ N ,

and twd(G) = twdn(G) , for all sufficiently large n ∈ N .

Furthermore,

pwd(G) < n(twdn(G) + ) , for every n ∈ N .

(Here is a sketch of the proof: let (Uv)v∈T be a tree decomposition of G of min-
imal width and height n. As the components of a path decomposition of G we
take all sets of the formUv ∪⋅ ⋅ ⋅∪Uvk , where v . . . vk is a maximal branch of T .)
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¿e next lemma shows that most questions regarding tree decompositions of
a structure can be reduced to the corresponding questions about its Gaifman
graph. For many of the following results it is therefore sufficient to consider
graphs.

Lemma .. Let A be a structure. A family (Uv)v∈T is a tree decomposition of A

if and only if it is a tree decomposition of Gf(A).
Proof. (⇒) is immediate. (⇐) follows from the fact that every tree decomposi-
tion of a clique has one componentUv containing the whole clique.¿is implies
that, for every clique C in Gf(A) induced by some tuple c̄ ∈ R i , there is some
vertex v ∈ T with C ⊆ Uv . Hence, every tuple c̄ ∈ R i is contained in some com-
ponent Uv .

In order to separate the higher classes of the hierarchy, we shall employ two
deep results of Robertson and Seymour about excluded minors.

¿eorem . (Excluded Tree ¿eorem []). For each tree T, there exists a num-
ber k ∈ N such that

T ∉Min(G) implies pwd(G) < k , for every graph G .

¿eorem. (ExcludedGrid¿eorem []). For each planar graphE, there exists
a number k ∈ N such that

E ∉Min(G) implies twd(G) < k , for every graph G .

Corollary .. (a) A class of graphs has bounded path-width if and only if it ex-
cludes some tree as a minor.
(b)Aclass of graphs has bounded tree-width if and only if it excludes some planar

graph as a minor.

We also need a variant of these theorems for n-depth tree-width. ¿e next
lemma contains the main technical argument.

Lemma .. Suppose that G is a graph that does not contain a path of length l .
¿en G has a tree decomposition of height at most l and width at most l − .

Proof. Let ⟨T , ⪯⟩ be a depth-first spanning order-tree of G, i.e., a spanning tree
such that, for every edge (u, v) of G we have u ⪯ v or v ⪯ u (for details see, e.g.,



[] where such spanning trees are called normal). We define a tree decomposi-
tion (Uv)v∈T ofG by setting

Uv ∶= {u ∈ T ∣ u ⪯ v } .

Since T is depth-first, it follows that every edge (u, v) of G is covered by some
component Uw where w is the maximum of u and v.
¿e height of the tree T can be at most l since G contains no path of length l .

Furthermore, we have ∣Uv ∣ = ∣v∣ +  ≤ l . Hence, the width of the tree decomposi-
tion is at most l − .

¿eorem . (Excluded Path ¿eorem). For each path P, there exist numbers
n, k ∈ N such that

P ∉Min(G) implies twdn(G) < k , for every graph G .

Proof. Suppose thatP ∉Min(G) and let l be the length ofP.¿en the preceding
lemma implies that twdl(G) < l .
Corollary .. (a) A class of graphs has bounded n-depth tree-width, for some n,
if and only if it excludes some path as a minor (equivalently, as a subgraph).
(b) A class of graphs has bounded tree-depth if and only if it excludes some path

as a minor (equivalently, as a subgraph).

Wecan also compute a bound on the n-depth tree-width in terms of the (n+)-
depth tree-width. It will be needed in the proof of ¿eorem . below.
We say that the tree ⟨S, ⪯⟩ can be embedded into a tree ⟨T , ⪯⟩ if there exists

an order-preserving injective mapping ⟨S, ⪯⟩ → ⟨T , ⪯⟩, i.e., if ⟨S, ⪯⟩, regarded
as relational structure, is isomorphic to an induced substructure of ⟨T , ⪯⟩. For
instance, we have an embedding

↦



 



 





   

If S can be embedded in T then S is isomorphic to a minor of T , when we con-
sider S and T as graphs.
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Definition .. Let D = (Uv)v∈T be a tree decomposition and let F be a set of
edges of (the successor-tree corresponding to) T . ¿e tree decomposition D/F
obtained by contracting the edges in F is

D/F ∶= (U ′[v])[v]∈T/F ,

where U ′[v] ∶= ⋃u∈[v]Uu .

Lemma .. Let G be a graph and let D ∶= (Uv)v∈T be a tree decomposition of G
of width k and height at most n + . If m ∈ N is some number such that the tree
m<n+ cannot be embedded into T , then twdn(G) < m(k + ).
Proof. We construct a tree decomposition D′ of height at most n and width at
most m(k + ) −  as follows. Let P ⊆ T be the minimal (w.r.t. ⊆) set of vertices
that contains

◆ every leaf of T at level n and

◆ every vertex that has at least m successors in P.

Since m<n+ cannot be embedded into T it follows that P does not contain the
root of T . Let F be the set of all edges of T linking a vertex in T ∖ P to a vertex
in P. By definition of P it follows that (i) every vertex of T has less than m F-
successors; (ii) every path of T from the root to some leaf on level n contains
at least one edge from F ; and (iii) no such path contains two consecutive edges
from F .
¿edecompositionD′ ∶= D/F obtained by contracting all edges in F haswidth

at most

k +  + (m − )(k + ) −  < m(k + ) .

Furthermore, the height of the underlying tree is at most n.

Corollary .. Let C be a class with k ∶= twdn+(C) < ∞. If there is some num-
ber m ∈ N such that every structure A ∈ C has a tree decomposition (Uv)v∈T of
width k and height at most n +  such that the tree m<n+ cannot be embedded
into T , then twdn(C) < m(k + ) <∞.

We conclude this section with a lemma that will be useful when constructing
transductions τn that transform a structure into their tree decompositions of
height n. Our construction works for all tree decompositions that are strict in
the following sense.



Definition .. Let (Uv)v∈T be a tree decomposition of a structureA.

(a) We define a function µ ∶ A→ T by

µ(a) ∶=min { v ∈ T ∣ a ∈ Uv } .

Note that µ(a) is well-defined since, by the definition of a tree decompo-
sition, there is at least one v ∈ T with a ∈ Uv .

(b) For v ∈ T , we set

U⇑v ∶= ⋃
u⪰v

Uu ∖ ⋃
u≺v

Uu .

(c) ¿e tree decomposition (Uv)v is strict if, for every v ∈ T ,
◆ Uv∩µ(A) ≠ ∅ (equivalently,Uv∖Uu ≠ ∅, whereu is the predecessor
of v) and

◆ if v is not the root of T , then the subgraph of Gf(A) induced by the
set U⇑v is connected.

We conclude this section by a result implying that, for our purposes, it will be
sufficient to consider only strict tree decompositions.

Lemma .. Let G be a graph. For every tree decomposition (Uv)v∈T of G, there
exists a strict tree decomposition (U ′v)v∈T′ ofGwhose width and height are at most
those of (Uv)v∈T .
Proof. By induction on n ∈ N, we will construct a sequence (U n

v )v∈Tn
of tree

decompositions such that U n
⇑v is connected, for every v ∈ Tn with  < ∣v∣ ≤ n.

(Recall that ∣v∣ denotes the level of v, and the root is the only vertex of level .)
Furthermore, the restriction of Tn to the set of vertices of level at most n will
coincide with the corresponding restriction of Tn+, and we haveU

n+
v = U n

v , for
all v ∈ Tn+ with ∣v∣ ≤ n. It will follow that the sequence has a limit (Uω

v )v∈Tω

where

Tω ∶= ⋃
n∈N

{ v ∈ Tn ∣ ∣v∣ ≤ n } and Uω
v ∶= U ∣v∣v .

We start the construction with T ∶= T andU

v ∶= Uv . Suppose that we have al-

ready defined (U n
v )v∈Tn

. For every vertex v ∈ Tn of level ∣v∣ = n+  wemodify the
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tree decomposition as follows. Let C , . . . ,Cm− be an enumeration of the con-
nected components ofU n

⇑v . We replace in Tn the subtree rooted at v bym copies
S , . . . , Sm− of the subtree, all attached to the predecessor of v. For u ∈ S i we
define U n+

u ∶= U n
u ∩ C i . We can do these modifications for all vertices of level

n +  simultaneously. Let (U n+
v )v∈Tn+

be the resulting tree decomposition.
¿e limit (Uω

v )v∈Tω
of this sequence satisfies the connectedness requirement

of a strict tree decomposition. To also satisfy the other condition we proceed as
follows. Let F be the set of all edges (u, v) of Tω such thatUv ∩ µ(V) = ∅. (Note
that this implies Uv ⊆ Uu .) We construct the tree decomposition (U ′v)v∈T′ by
contracting all edges in F . ¿e details and the remaining verifications are le to
the reader.

 T   

In this section we relate the material presented in the preceding one to logical
transductions. Let us start by showing that there is a transduction computing
the minors of a graph.

Lemma . (Courcelle []). ¿ere exists a transduction τ with τ(Gin) =Min(G),
for every graph G.

Proof. Aminor H ofG is obtained by deleting vertices, deleting edges, and con-
tracting edges. Hence, we can encodeH by four sets: the set of vertices we delete,
the set of edges we delete, the set of edges we contract, and a set of vertices con-
taining one representative of each contracted subgraph ofG (these vertices serve
as vertices of the resulting graph H). With the help of these parameters we can
define H inside ofGin byMSO-formulae.

¿ere is a close relationship between tree decompositions and transductions.

Lemma .. For every signature Σ and every number k ∈ N, there exists a trans-
duction τk ∶ TREE → STRin[Σ] that maps an order-tree T to the class of all
incidence structures Ain such that the corresponding Σ-structure A has a tree de-
composition of width at most k with underlying tree T .

Proof. Suppose thatA is a structure which has a tree decomposition (Uv)v∈T of
width k.We prove thatA can be defined from a colouring of T where the number
of colours depends only on Σ and k.



Let C , . . . ,Cm− be an enumeration of all Σ-structures whose domain is a
subset of [k+ ]. For each v ∈ T , let Uv be the substructure ofA induced byUv . It
follows that, for every v ∈ T , we can find some index λ(v) such that Uv ≅ Cλ(v).
Let πv ∶ Uv → Cλ(v) be the corresponding isomorphism.
Furthermore, we associate with each edge (u, v) of T the binary relation

R(u, v) ∶= { (πu(a), πv(a)) ∣ a ∈ Uu ∩Uv } ⊆ [k + ] × [k + ] .
We can recoverA from T with the help of the vertex colouring λ and the edge

colouring R.We form the disjoint union of all structures (Cλ(v))in, for v ∈ T , and
we identify two elements i ∈ Cλ(u) and j ∈ Cλ(v) if (u, v) is an edge of T such
that (i , j) ∈ R(u, v). ¿is can be performed by an n-copyingMSO-transduction
where n is the maximal size of the structures (Ci)in, i < m.
We have just seen that we can map a class of trees to a class of structures with

these trees as tree decompositions. Conversely, if we only consider strict tree de-
compositions, we can write down a transduction mapping a class of structures
to the corresponding class of trees. Recall the function µ ∶ A → T from Defini-
tion .. that assigns to an element a ∈ A the minimal index v ∈ T with a ∈ Uv .

Proposition .. For each number n ∈ N, there exists anMSO-formula φn(x , y; Z̄)
such that, for every strict tree decomposition D = (Uv)v∈T of a graph G of height
at most n, there are sets L , . . . , Ln− ⊆ V such that

G ⊧ φn(a, b; L̄) iff µ(a) ≤ µ(b) .
Proof. Given D we use the sets

L i ∶= { a ∈ V ∣ ∣µ(a)∣ = i }
of all elements that first appear at level i of the tree. In particular, L = U⟨⟩ is the
root component of the tree decomposition. For k < n, let G≥k be the subgraph
ofG induced by Lk ∪ ⋅ ⋅ ⋅ ∪ Ln−. For a ∈ L i and b ∈ L j we define

a ⪯ b iff i ≤ j and a, b belong to the same connected component

ofG≥i ,

and a ∼ b iff a ⪯ b and b ⪯ a , or if a, b ∈ L .
Clearly, the relation ⪯ is MSO-definable with the help of the parameters L̄. We
claim that, for a, b ∉ L, we have

a ⪯ b iff µ(a) ≤ µ(b) .
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(⇐) Suppose that µ(a) ≤ µ(b). ¿en b ∈ U⇑µ(a). Furthermore, U⇑µ(a) is
connected since D is strict. Hence,U⇑µ(a) is a connected component ofG≥i con-
taining both a and b. Since ∣µ(a)∣ ≤ ∣µ(b)∣ it follows that a ⪯ b.
(⇒) Suppose that a ⪯ b. ¿en there exists an undirected path π in G≥∣µ(a)∣

connecting a and b. Since U⇑u ∩ U⇑v = ∅, for all u ≠ v with ∣u∣ = ∣v∣, it follows
that π is contained in someU⇑v with ∣v∣ = ∣µ(a)∣. Since a is a vertex of π wemust
have v = µ(a). Furthermore, b ∈ U⇑µ(a) since b is also a vertex of π.¿is implies
that µ(a) ≤ µ(b).
¿eorem .. For each constant n ∈ N, there exists a transduction τn mapping a
graph G to the class of all (underlying trees of) strict tree decompositions of G of
height at most n.

Proof. Let D = (Uv)v∈T be a strict tree decomposition of G, and let φn(x , y; L̄)
be the formula from Proposition . with parameters L , . . . , Ln− ⊆ V . We can
define the tree T underlying D as follows:

◆ Its root is any element of L = U⟨⟩.

◆ For the other vertices of T , we choose one vertex in each ∼-class different
from L. Note that ∼ is definable with the help of φn .

◆ ¿e order of T is defined by φn .

Hence, we obtain a transduction with parameters L̄ that transforms a graph into
a ‘candidate’ tree decomposition. Via a backwards translation we can write down
a formula stating that the candidate given by the parameters L̄ corresponds to an
actual strict tree decomposition. We omit the details which are standard for this
type of construction.

In Lemma . we have seen how to obtain classes of bounded tree-width from
classes of trees. Conversely, it is the case that every class obtained from a class of
trees via a transduction has a bounded tree-width.

¿eorem .. For every transduction τ ∶ TREEm → STRin[Σ], there exists a
number k ∈ N such that, for each m-coloured tree T with image Ain ∈ τ(T), the
structure A has a tree decomposition of width at most k where the underlying tree
is T.

Remark. (a) Courcelle and Engelfriet [] have shown that the structures A ob-
tained via a transduction τ from anm-coloured treeT have bounded tree-width.



¿eorem . strengthens this by proving that, ifAin is the image of a treeT, then
we can use the same tree T as the tree underlying a tree decomposition of the
given width.
(b) Lapoire has announced in [] a result somewhat related to ¿eorem ..

He claims that, for every k ∈ N, there exists a transduction that transforms a given
graphG of tree-width atmost k to a coloured tree (like in the proof of Lemma .)
that encodes some tree-decomposition of G of width at most k. Our result is
less ambitious in the sense that we only consider tree decompositions of a fixed
height.¿is enables us to give a precise description of which tree decompositions
(the strict ones) our transduction returns. Note that one can show that, for k ≥ ,
there is no such transduction that would return all tree decompositions of G of
width at most k.

We split the proof into several lemmas. As a technical tool we introduce a
second kind of hierarchical decompositions of structures and a corresponding
notion of width. To simplify the definition we will only consider incidence struc-
tures.

Definition .. Let Ain = ⟨A∪ E, P̄, in , . . . ⟩ be an incidence structure.
(a)A partition refinement ofAin is a familyΠ = (Wv , ≈v)v∈T of pairs consisting

of a subsetWv ⊆ A∪ E and an equivalence relation ≈v onWv with the following
properties:

◆ ¿e index set T is a tree.

◆ For the root ⟨⟩, we haveW⟨⟩ = A∪ E
◆ For every internal vertex (i.e., non-leaf) u ∈ T with successors v , . . . , vn−,
the setsWv , . . . ,Wvn− form a partition ofWu .

◆ ∣Wu ∣ = , for every leaf u ∈ T .
◆ x ≈v y and u ⪯ v implies x ≈u y.

◆ If u is an internal vertex of T , v ,w successors of u, not necessarily distinct,
and x ∈Wv , y ∈Ww elements, then x ≈u y implies either

x , y ∈ A and, for every e ∈ E ∖ (Wv ∪Ww) and every i ,
(x , e) ∈ ini ⇔ (y, e) ∈ ini

or x , y ∈ E and, for every a ∈ A∖ (Wv ∪Ww) and every i ,
(a, x) ∈ ini ⇔ (a, y) ∈ ini .
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Note that it follows that, for every element x ∈ A ∪ E, there is some leaf u ∈ T
such thatWu = {x}.
(b) ¿e width of a partition refinement Π = (Wv , ≈v)v∈T is the maximum

number of equivalence classes realised in some componentWv :

wd(Π) ∶=max
v∈T
∣Wv/≈v ∣ .

¿e partition-width of the structure Ain is the minimal width of a partition re-
finement of Ain.

¿e notion of a partition refinement and of partition-width are adaptations of
definitions from [, ]. Up to a factor of , the partition-width of an incidence
structure and its clique-width coincide.

Example. Let A = (A, R) be a structure with domain A = {a, b, c, d , e} and a
ternary relation

R = {(a, b, c)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

x

, (a, b, d)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

y

, (a, b, e)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

z

} .

Its incidence structure is Ain = ⟨A ∪ E, PR , in , in , in⟩ with E = {x , y, z}. We
obtain a partition refinement

{a ∣ b ∣ c, d , e ∣ x , y, z}

{a ∣ b} {x ∣ c} {y ∣ d} {z ∣ e}

{a} {b} {x} {c} {y} {d} {z} {e}

where we have indicated the partition into ≈v-classes by vertical bars. ¿is parti-
tion refinement has width .

Lemma .. For every partition refinementΠ = (Wv , ≈v)v∈T of an incidence struc-
tureAin = ⟨A∪E, P̄, in , . . . , inr−⟩, there exists a tree decompositionD = (Uv)v∈T
of A with the same underlying tree T such that

wd(D) < (r + ) ⋅wd(Π) .



Proof. Let l ∶ A ∪ E → Lf(T) be the function assigning to every x ∈ A ∪ E
the unique leaf l(x) of T such thatWl(x) = {x}. We claim that the desired tree
decomposition (Uu)u∈T of A is given by

Uu ∶= Bu ∪ Cu ∪ Du

where

Bu ∶= { v ∈ A ∣ u ⪯ l(v) and (v , e) ∈ ini for some i < r and e ∈ E with

u â l(e) } ,
Cu ∶= { v ∈ A ∣ u â l(v) and (v , e) ∈ ini for some i < r and e ∈ E with

u ⪯ l(e) } ,
Du ∶= { v ∈ A ∣ (v , e) ∈ ini for some i < r and e ∈ E with

l(v) ⊓ l(e) = u } .

Note that the connectedness condition holds since (v , e) ∈ ini implies that v be-
longs to precisely those components Uu such that u lies on the path from l(v)
to l(e).
It remains to prove that ∣Uu ∣ ≤ (r + ) ⋅wdΠ. If u = l(c̄), for some c̄ ∈ E, then

Uu = Cu consists of the components of c̄. Hence, ∣Uu ∣ = ∣c̄∣ ≤ r. ¿erefore, we
may assume that u ∉ l[E]. Let

[x]u ∶= { y ∈Wu ∣ y ≈u x }

denote the ≈u-class of x. We prove the following bounds.

() ∣[x]u ∣ = , for all x ∈ Bu .

() ∣[x]u ∩Uu ∣ ≤ , for all x ∈ Du .

() ∣Cu ∣ ≤ r ⋅ ∣Wu/≈u ∣.
Since Bu ,Du ⊆Wu it then follows that ∣Uu ∣ = ∣Bu ∪Cu ∪ Du ∣ ≤ (r + ) ⋅ ∣Wu/≈u ∣.
() Let x ∈ Bu . ¿ere is some tuple e ∈ E and some index i with (x , e) ∈ ini

and u â l(e). We have (y, e) ∈ ini , for every y ∈Wu with y ≈u x. Since x is the
only such element it follows that [x]u = {x}.
() Let x ∈ Du . ¿ere is some tuple e ∈ E and some i with (x , e) ∈ ini and

u = l(x) ⊓ l(e). Let v be the successor of u with v ⪯ l(e). We have (y, e) ∈ ini ,
for all y ∈Wu ∖Wv with y ≈u x. Hence, [x]u ∖Wv = {x}.
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Suppose that there is some element y ∈ [x]u ∩Wv ∩ Uu . By definition of Uu

there is some tuple f ∈ E and some j with (y, f ) ∈ in j and l(y) ⊓ l( f ) ⪯ u. As
above it follows that [x]u ∩Wv = {y}. Consequently, we have ∣[x]u ∩Uu ∣ ≤ .
() Let x ∈ Cu and consider some tuple e ∈ E with (x , e) ∈ ini and with

u ⪯ l(e). Set

Iu(e) ∶= { z ∈ A ∣ (z, e) ∈ ini for some i and u â l(z) } .

For e , f ∈ E ∩Wu , it follows that

e ≈u f implies Iu(e) = Iu( f ) .

Furthermore, we obviously have ∣Iu(e)∣ ≤ ∣e∣ ≤ r. It follows that Cu contains at
most r ⋅ ∣Wu/≈u ∣ vertices.
Lemma .. Let τ ∶ TREEm → STRin[Σ] be a basicMSO-transduction such that,
for every m-coloured order-tree T with image Ain ∈ τ(T), we have

A∪ E = Lf(T) and A∩ E = ∅ .

¿en there exists a finite number n such that, for every order-tree T, we can find a
partition refinement (Wv , ≈v)v∈T of τ(T) of width at most n.

Proof. Let ⟨χ, δ(x), (φPR(x))R , (φini
(x , y))i<r⟩ be the definition scheme of τ,

and let h be the maximal rank of these formulae.
Given T we define the desired partition refinement Π = (Wu , ≈u)u∈T by set-

ting

Wu ∶= { x ∈ Lf(T) ∣ u ⪯ x } ,
and x ≈u y : iff M¿h(Tv , x) =M¿h(Tw , y) ,

where v ,w are the successors of u with

x ∈Wv and y ∈Ww .

(If u is a leaf of T thenWu = {x} and we take the equality relation for ≈u .) Note
that the index of ≈v is finite and that it only depends on h and not on the input
tree T.
It remains to show that Π is actually a partition refinement. First, let us prove

that x ≈v y and u ⪯ v implies x ≈u y. It is sufficient to consider the case that u is
the predecessor of v.¿en the general case follows by induction. Hence, suppose



that v is a successor of u, that w ,w′ are successors of v, and that x , y are leaves
with w ⪯ x and w′ ⪯ y such that x ≈v y. ¿en we have

M¿h(Tw , x) =M¿h(Tw′ , y) ,

which, by Lemma ., implies that

M¿h(Tv , x) =M¿h(Tv , y) .

Consequently, we have x ≈u y.
We also have to show that the incidence relation is invariant under ≈u . Let

v ,w be successors of u and suppose that x , y are leaves with v ⪯ x and w ⪯ y
such that x ≈u y. We distinguish two cases.
Suppose that x , y ∈ A and let e ∈ E ∖ (Wv ∪Ww) be an edge. Since

M¿h(Tv , x) =M¿h(Tw , y) ,

it follows that

T ⊧ φini
(x , e) iff T ⊧ φini

(y, e) .

Hence, (x , e) ∈ ini iff (y, e) ∈ ini .
Now, suppose that x , y ∈ E and let z ∈ A∖ (Wv ∪Ww) be an element. Since

M¿h(Tv , x) =M¿h(Tw , y) ,

it follows that

T ⊧ φini
(z, x) iff T ⊧ φini

(z, y) .

Hence, (z, x) ∈ ini iff (z, y) ∈ ini .

Proof of ¿eorem .. () First, suppose that τ ∶ TREEm → STRin[Σ] is a basic
MSO-transduction such that, for every m-coloured order-tree T ∈ dom(τ) with
image Ain ∈ τ(T), we have

A∪ E = Lf(T) and A∩ E = ∅ .

It follows by Lemma . that there is a number w ∈ N such that, for every tree T,
we can find a partition refinement of Ain ∈ τ(T) with underlying tree T whose
width is at most w. By Lemma . it follows that A has a tree decomposition
(Uv)v∈T with underlying tree T and whose width is less than k ∶= w(r + ).
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() If τ is a basicMSO-transduction such that

A∪ E ⊆ Lf(T) and A∩ E = ∅ , for Ain ∈ τ(T) with T ∈ dom(τ) ,
then we can argue similarly. Let τ′ be theMSO-interpretation mapping T to the
structure obtained from τ(T) by adding one isolated element for every leaf of T
that does not correspond to an element of τ(T).¿en τ′ is of the form considered
in () and we obtain a tree decomposition (Uv)v∈T of τ′(T). Deleting from every
componentUv all elements not in τ(T)weobtain the desired tree decomposition
of τ(T).
() Suppose that τ is a non-copyingMSO-transduction as in () but with p pa-

rameters.We can regard τ as a basicMSO-transductionTREEm+p → STRin[Σ].
By () it follows that, for every value of the parameters P̄, the structure τ(T, P̄)
has a tree decomposition of the required form.
() Finally, consider the general case. Suppose that τ is l-copying. Given T let

T+ be the tree obtained from T by adding l new successors to every vertex of T.
Formally, suppose that T ⊆ D<ω , for some finite set D. W.l.o.g. we may assume
that D ∩ [l] = ∅. We define the domain T+ ⊆ (D ∪ [l])<ω of T+ by

T+ ∶= T ∪ (T × [l]) .
Furthermore, we add new colour predicates

S i ∶= T × {i} , for i ∈ [l] .
Note that every element of τ(T) is of the form ⟨v , i⟩ where i ∈ [l] and v ∈ T .
Hence, each such element corresponds to a leaf vi ∈ T × [l] ⊆ T+. Using the
parameters S̄ we can construct a basic MSO-transduction τ+ ∶ TREEm+l →
STRin[Σ] satisfying the conditions of () such that τ+(T+) = τ(T). By (), we ob-
tain a tree decomposition H+ = (U+v )v∈T+ of τ+(T+) = τ(T). Let H = (Uv)v∈T
be the tree decomposition obtained from H+ by contracting every edge leading
to a leaf in T+ ∖ T . ¿en we have

wd(H) +  ≤ (l + )(wd(H+) + )
and wd(H+) ≤ w , for some w ∈ N independent of T .

 T  

¿e focus of our investigation lies on the following preorder on classes of struc-
tures which compares their ‘encoding powers’ with respect to MSO-transduc-



tions. Our main result is a complete description of the hierarchy induced by this
preorder. It will be given in ¿eorem ..

Definition .. Let C ,K ⊆ STR. We define the following relations.

(a) C ⊑ K if there exists a transduction τ such that C ⊆ τ(K).
(b) C ⊏ K if C ⊑ K andK ⋢ C.

(c) C ≡ K if C ⊑ K andK ⊑ C.

(d) C ^ K if C ⊏ K and there is no classD with C ⊏ D ⊏ K.

(e) C ⊑in K if Cin ⊑ Kin.

(f) ¿e relations ⊏in, ≡in, and ^in are defined analogously to ⊏, ≡, ^ by replac-
ing ⊑ everywhere by ⊑in.

¿e transduction hierarchy is the hierarchy of classes C ⊆ STR induced by the
relation ⊑in.

As transductions are closed under composition it follows that the relation ⊑in
is a preorder, i.e., it is reflexive and transitive.

Lemma .. ⊑in is a preorder on ℘(STR).
Definition .. We consider the following subclasses of STR[{edg}]. (All trees
below are considered to be successor-trees.)

(a) Tn ∶= {m<n ∣ m ∈ N } is the set of all complete m-ary trees of height n.
(b) Tbin is the class of all binary trees.

(c) Tω is the class of all trees.

(d) P is the class of all paths.

(e) G is the class of all rectangular grids.

¿e following description of the transduction hierarchy is the main result of
the present paper.
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¿eorem .. We have the following hierarchy:

∅ ^in T ^in T ^in ⋅ ⋅ ⋅ ^in Tn ^in ⋅ ⋅ ⋅ ⊏in P ^in Tω ≡in Tbin ^in G

For every signature Σ, every class C ⊆ STR[Σ] is ≡in-equivalent to some class in
this hierarchy.

Remark. ¿ere is a lot of flexibility in the choice T, T ,. . . , Tω , G of representa-
tives for the various levels. For instance, we could replace Tn by the class of all
trees of height at most n, Tω by Tbin or { <n ∣ n ∈ N }, and G by the class of
square grids.

It is straightforward to show that the above classes form an increasing chain.
¿e hard part is to prove that the chain is strictly increasing and that there are
no further classes.

Lemma .. We have

∅ ⊑in T ⊑in T ⊑in ⋅ ⋅ ⋅ ⊑in Tn ⊑in ⋅ ⋅ ⋅ ⊑in P ⊑in Tω ⊑in G .

Proof. In the example before Lemma ., we have constructed transductions τn
such that Tn ⊆ τn(P). Hence, Tn ⊑in P . ¿e remaining assertions follow from
the observation that, by Lemma ., C ⊆Min(K) implies C ⊑in K.
Let us collect some easy properties of the hierarchy. Our first result states that
G is a representative of the top level of the transduction hierarchy.

Lemma .. STR[Σ] ⊑in G
Proof. Recall that the m × n grid is the undirected graph G = ⟨V , edg⟩ with
vertices V = [m] × [n] and edge relation

edg = {(⟨i , k⟩, ⟨ j, l⟩) ∣ ∣i − j∣ + ∣k − l ∣ = } .
Before encoding arbitrary structures in such grids we describe a transduction
mappingG to its directed variant ⟨V , E , E⟩ where

E ∶= { (⟨i , k⟩, ⟨i + , k⟩) ∣ i < m − , k < n } ,
and E ∶= { (⟨i , k⟩, ⟨i , k + ⟩) ∣ i < m, k < n − } .
¿is can be donewith the help of the parameters P, P , P ,Q ,Q ,Q ⊆ V where

Pm ∶= { ⟨i , k⟩ ∣ i ≡ m (mod ) } ,



and Qm ∶= { ⟨i , k⟩ ∣ k ≡ m (mod ) } .

¿en

E = { (u, v) ∈ edg ∣ u ∈ Pi and v ∈ Pj for some i ≡ j −  (mod ) } ,
and E = { (u, v) ∈ edg ∣ u ∈ Q i and v ∈ Q j for some i ≡ j −  (mod ) } .

To show that STR[Σ] ⊑in G, suppose that A ∈ STR[Σ] is a structure with
Ain = ⟨A ∪ E, (PR)R , in , . . . , inr−⟩. Fix enumerations a , . . . , am− of A and
e , . . . , en− of E. By the above remarks, it is sufficient to encode Ain in the di-
rected m × n grid. Consider the following subsets of [m] × [n] :

A′ ∶= [m] × {} , P′R ∶= { ⟨, k⟩ ∣ ek ∈ PR } ,
E′ ∶= {} × [n] , I′l ∶= { ⟨i , k⟩ ∣ (a i , ek) ∈ inl } .

¿en Ain can be recovered from G by an MSO-transduction using these sets as
parameters.

Lemma .. Tω ≡in Tbin.

Proof. For one direction, note that Tbin ⊆ Tω implies Tbin ⊑in Tω . Conversely,
each finite tree can be obtained as minor of a binary tree. ¿erefore, we have
Tω ⊆Min(Tbin) ⊑in Tbin.
Lemma .. We have C ≡in T if and only if C is finite and contains at least one
nonempty structure.

As indicated in the example before Lemma ., there exist a transductionmap-
ping an incidence structure Ain to the incidence structure Gf(A)in of the Gaif-
man graph of A.

Lemma .. For every class C of structures, we have Gf(C) ⊑in C .
¿e next result is just a restatement of Lemma . in our current terminology.

Lemma .. For every class C of graphs we haveMin(C) ≡in C .





 S   

In this section we prove that the hierarchy is strict. Using the results of Section 
we can characterise each level of the hierarchy in terms of tree-width and its
variants.

¿eorem .. Let C ⊆ STR[Σ].
(a) C ⊑in P iff pwd(C) <∞.

(b) C ⊑in Tω iff twd(C) <∞.

(c) C ⊑in Tn iff twdn(C) <∞.

Proof. In each case (⇐) follows from Lemma . and (⇒) follows from ¿eo-
rem ..

Corollary .. Let C be a class of Σ-structures.

(a) pwd(C) =∞ implies Tω ⊑in C.

(b) twd(C) =∞ implies G ⊑in C.

Proof. For (a), ¿eorem . implies that Tω ⊆ Min(Gf(C)), while, for (b), ¿e-
orem . implies that G ⊆ Min(Gf(C)). Consequently, both claims follow from
Lemmas . and ..

Corollary .. Let C ⊆ STR[Σ].
(a) C ⋢in P implies Tω ⊑in C.

(b) C ⋢in Tω implies G ≡in C.

In particular, it follows that the upper part of the hierarchy is strict:

Corollary .. P ^in Tω ^in G

Proof. Both assertions follow from¿eorem . and Corollary ..
For the first one, note that we have P ⊑in Tω since P ⊆Min(Tω). Conversely,

pwd(Tω) = ∞ implies, by ¿eorem . (a), that Tω ⋢in P . Hence, P ⊏in Tω .
Finally, if C ⊏in Tω then C ⊑in P , by Corollary . (a). Consequently, we have
P ^in Tω .
Similarly, the fact that Tω ⊑in G follows from Lemma .. Since twd(G) =∞,

¿eorem . (b) implies that Tω ⊏in G. Finally, we obtain Tω ^in G by Corol-
lary . (b).



Let us turn to the lower part. We start with two technical lemmas.

Definition .. Let T = ⟨T , ≤⟩ be an order-tree. Vertices v , . . . , vm− of T are
horizontally related via a vertex w if all v i are at the same level of the tree and
v i ⊓ vk = w, for all  ≤ i < k < m.

Lemma .. Let T be a coloured order-tree of height n, and suppose that τ is a
parameterless k-copyingMSO-transduction of rank r such that τ(T) is a successor-
tree of height at most n+. Consider vertices v , . . . , vm− ofT that are horizontally
related via w and fix some number l < k. Let x i be the successor of w with x i ⪯ v i .
If, for all i , j < m, we have

M¿r+n+(Tx i , v i) =M¿r+n+(Tx j
, v j) ,

then we can remove at most one vertex from the set {⟨v , l⟩, . . . , ⟨vm− , l⟩} (these
are elements of the domain of τ(T)) in such a way that the remaining ones are
horizontally related in τ(T).
Proof. Let φss′(x , y) be the formula defining the successor relation in τ(T) be-
tween vertices of the form ⟨x , s⟩ and ⟨y, s′⟩. By assumption the rank of φss′(x , y)
is at most r.
First, note that a vertex ⟨v , l⟩ is on level h in τ(T) if and only if there are indices

s , . . . , sh− < k such that

T ⊧ ψs . . .sh−(v)

where the formula

ψs . . .sh−(v) ∶= ∃y⋯∃yh−[ ⋀
i<h−

φs i s i+(y i , y i+) ∧ φsh− l(yh− , v)

∧ ¬∃z⋁
s<k

φss(z, y)]

expresses that there exists a path of the form ⟨y , s⟩, . . . , ⟨yh− , sh−⟩, ⟨v , l⟩ from
the root ⟨y , s⟩ of τ(T) to the vertex ⟨v , l⟩. By assumption on v i and Lemma .,
we have

M¿r+n+(T, v i) =M¿r+n+(T, v j) , for all i , j .

Since the rank of ψs . . .sh− is h + r +  ≤ r + n +  it follows that

T ⊧ ψs . . .sh−(v i) iff T ⊧ ψs . . .sh−(v j) .
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Hence, all vertices ⟨v , l⟩, . . . , ⟨vm− , l⟩ are on the same level h in τ(T).We prove
by induction on h that

(∗) M¿r+n+h+(Tx i , v i) =M¿r+n+h+(Tx j
, v j)

implies that all but at most one of ⟨v , l⟩, . . . , ⟨vm− , l⟩ are horizontally related.
Let ⟨u i , s i⟩ be the predecessor of ⟨v i , l⟩ in τ(T), that is,

T ⊧ φs i l(u i , v i) .
We distinguish two cases.
First suppose that u ⊓ v ⪯ w in T. By (∗) and Lemma ., we have

M¿r+n+h+(T, u , v) =M¿r+n+h+(T, u , v i) ,
for all i such that u ⊓ v i ⪯ w. Note that there can be at most one index i that
does not satisfy this condition since, if we had u ⊓ v i ⪰ w and u ⊓ v j ⪰ w, for
i ≠ j, then we would have v i ⊓v j ≻ w and v , . . . , vm− would not be horizontally
related via w. It follows that

T ⊧ φs l(u , v) implies T ⊧ φs l(u , v i) , for all i as above .

Hence, ⟨u , s⟩ is the common predecessor of all the ⟨v i , l⟩, except for possibly
one of them. (For an index i with u ⊓ v i ⪰ w our composition argument does
not work since in that case (∗) does not imply that the theories of (T, u , v)
and (T, u , v i) coincide.)
It remains to consider the case that w ≺ u ⊓ v. Setting

ηu i
∶=⋀M¿r+n+h−+(Tx i , u i)

we have

Tx ⊧ ∃z[∣z∣ = ∣u∣ ∧ ηu
(z) ∧ φs l(z, v)] .

Since the rank of this formula is r + n + h +  it follows that

Tx i ⊧ ∃z[∣z∣ = ∣u∣ ∧ ηu
(z) ∧ φs l(z, v i)] , for all i < m .

Consequently, we have ∣u i ∣ = ∣u∣, for all i, and u , . . . , um− are horizontally
related viaw. Since the vertices ⟨u , s⟩, . . . , ⟨um− , s⟩ are on level h−  in τ(T),
we can apply the induction hypothesis and it follows that all but at most one of
then are horizontally related via some vertex w′. ¿erefore, the same holds for
their successors ⟨v , l⟩, . . . , ⟨vm− , l⟩.



Definition .. We denote by B(n, k, c) the number of functionsm<n → ℘([c])
withm ≤ k. Intuitively, this is the number of vertex-coloured trees with height n,
out-degree at most k, and c colours.

Lemma .. For n ≥  and k ≥ , we have

ck
n− ≤ B(n, k, c) ≤ kckn− .

Proof. For m ≥ , we have

mn ≤ mn
+∑

i<n

m i = mn
+
mn − 

m − 
≤ mn

.

Since ∣[m]<n∣ =∑i<n m
i it follows that

mn− ≤ ∣[m]<n∣ ≤ mn−
.

¿erefore, we can bound

B(n, k, c) = cn +
k

∑
m=

c∣[m]
<n ∣

from above by

B(n, k, c) ≤ cn +
k

∑
m=

cm
n−

≤ kck
n−

and from below by

B(n, k, c) ≥ cn +
k

∑
m=

cm
n− ≥ ckn− .

¿eorem .. Tn ⊏in Tn+
Proof. For a contradiction, suppose that there exists a transduction τ such that
(Tn+)in ⊆ τ((Tn)in). Let T ord

n be the class of all order-trees corresponding to
successor-trees in Tn , and let T col

n+ ∶= exp(Tn+) be the class of all coloured
successor-trees with one colour whose underlying tree is in Tn+. Since the suc-
cessor-trees in Tn are -sparse we can construct an MSO-transduction σ such
that (Tn)in ⊆ σ(Tn). Since T ord

n ≡ Tn we can combine τ and σ to a transduc-
tion σ such that T col

n+ ⊆ σ(T ord
n ). By Lemma ., it follows that there is some
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constant d such that every tree T ∈ σ(T ord
n ) with out-degree at most k is of the

form σ(T′) where T′ ∈ T ord
n has out-degree at most dk. (¿e out-degree of an

order-tree is the out-degree of the corresponding successor-tree.) Suppose that
σ uses c parameters.¿ere are

B(n, dk, c) ≤ dkc(dk)n−

colourings of trees in T ord
n with out-degree at most dk. On the other hand, there

are

B(n + , k, ) ≥ kn

trees in T col
n+ with out-degree at most k. For large k it follows that

B(n, dk, c) ≤ dkcdn−kn− < kn = B(n + , k, ) .

Consequently, there is some tree in T col
n+ that is not the image of a tree in T

ord
n .

A contradiction.

 C   

Wehave shown that the hierarchy presented in¿eorem. is strict. To conclude
the proof of the theorem it therefore remains to show that there are no additional
classes. We have already seen in Corollary . that Tω and G are the only classes
above P . Next we shall prove that Tn ^ Tn+.

Lemma .. Let C be a class of structures. If, for every number m ∈ N, there exists
a structure A ∈ C such that we can embed m<n+ into every tree underlying a tree
decomposition (Uv)v∈T of A of width k, then Tn+ ⊑in C.

Proof. By Lemma ., it follows that, for every m ∈ N, there is a structure
in C with a strict tree decomposition of width at most k and with an underlying
tree T into which we can embed the tree m<n+. According to Proposition .
there is a transduction mapping C to the class of trees underlying these strict
tree decompositions. Hence, there exists a class K ⊑in C of successor-trees con-
taining, for every m ∈ N, some tree into which we can embed m<n+. Hence,
Tn+ ⊆Min(K) ⊑in K ⊑in C.
¿eorem .. Let C be a class of structures.¿en Tn+ ⋢in C implies twdn(C) <∞.



Proof. Suppose that Tn+ ⋢in C. ¿en P ⋢in C since Tn+ ⊑in P . By Lemmas
. and ., this implies that P ⊈ Min(Gf(C)). ¿erefore, we can find a path
that is not in Min(Gf(C)). By ¿eorem ., it follows that there are numbers
k, l ∈ N such that twdl(C) < k.
By induction on l , we prove that twdl(C) <∞ implies twdn(C) <∞. For l ≤ n,

there is nothing to do. For l > n, we have Tn+ ⊑in Tl , which implies that Tl ⋢in C.
Consequently, it follows by Lemma . and Corollary . that twdl−(C) < ∞.
By induction hypothesis, the result follows.

By Lemma . we obtain the following results.

Corollary .. If Tn+ ⋢in C then C ⊑in Tn .

Corollary .. Tn ^in Tn+.

To conclude the proof of ¿eorem . it remains to show that there are no
classes between the lower part of the hierarchy and its upper part.

Lemma .. Let C be a class of structures. If Tn ⊑in C, for all n ∈ N, then P ⊑in C.

Proof. We show the contraposition. Suppose thatP ⋢in C. We have to show that
there is some n such that Tn ⋢in C. As in the proof of¿eorem . it follows that
there are numbers k, l ∈ N such that twdl(C) < k. Hence, we can use Lemma .
to obtain a transduction τ witnessing that C ⊑in Tl . By ¿eorem . we have
Tl+ ⋢in Tl . It follows that Tl+ ⋢in C, as desired.

Corollary .. If C ⊏in P then there is some n ∈ N such that C ⊑in Tn .

Proof. By Lemma ., there is some n ∈ N such that Tn+ ⋢in C. Hence, Corol-
lary . implies that C ⊑in Tn .

Together, Corollaries ., ., and . (and the fact that every class C satisfies
∅ ⊑in C ⊑in G) show that every class of Σ-structures is ≡in-equivalent to some of
the classes in ¿eorem .. ¿is completes the proof of this theorem.

 P  

Above we have obtained a complete description of the transduction hierarchy
for classes of finite incidence structures. ¿e most surprising result is that the
hierarchy is linear. At this point there are at least three natural directions inwhich
to proceed.





(i) We can study the hierarchy for classes of structures, instead of classes of
incidence structures.

(ii) We can consider the hierarchy for classes of infinite structures.

(iii) We can replaceMSO by a different logic.

An answer to (ii) seems within reach, at least if we restrict our attention to
countable structures. Although the resulting hierarchy is no longer linear we can
adapt most of our techniques to this setting. (For an example of nonlinearity,
note that the class of all countable trees and the class of all finite grids are incom-
parable.)
Concerning question (iii), let us remark that all results above go through if we

use CMSO instead of MSO. We only need the right definition of rank for CMSO.
In the proof of ¿eorem . we needed the fact that there are only finitely many
theories of bounded rank. We can ensure this for CMSO by defining the rank as
the least number n such that

◆ the nesting depth of quantifiers is at most n and

◆ in every cardinality predicate ∣X∣ ≡ k (mod m) we have m ≤ n.
One can check that, with this definition of rank, the proof of ¿eorem . also
goes through for CMSO.
For logics much weaker thanMSO, on the other hand, it seems unrealistic to

hope for a complete description of the corresponding transduction hierarchy. For
instance, a related hierarchy for first-order logic was investigated by Mycielski,
Pudlák, and Stern in []. ¿e results they obtain indicate that the structure of
the resulting hierarchy is very complicated.
Finally, let us address question (i). When using transductions between struc-

tures instead of their incidence structures, we can transfer some of the above
results to the corresponding hierarchy. But we presently have no complete de-
scription since we miss some of the corresponding excluded minor results.

Lemma .. Let C ,S ⊆ STR and suppose that S is k-sparse.

(a) C ⊑in S implies C ⊑ S .

(b) S ⊑ C implies S ⊑in C.

Proof. ¿ere is a transduction ρ such that C = ρ[Cin]. Since S is k-sparse we can
also find a transduction σ such that Sin = σ[S]. Consequently,

Cin ⊆ τ[Sin] implies C ⊆ (ρ ○ τ ○ σ)[S] ,



and S ⊆ τ[C] implies Sin ⊆ (σ ○ τ ○ ρ)[Cin] .
¿eorem .. We have the following hierarchy:

∅ ⊏ T ⊏ T ⊏ ⋅ ⋅ ⋅ ⊏ Tn ⋅ ⋅ ⋅ ⊏ P ⊏ Tω ⊏ G ≡ STR[Σ]

Proof. Note that all classes in ¿eorem . are -sparse. For -sparse classes C
andK, Lemma . implies that

C ⊑ K iff C ⊑in K .

Consequently, the result follows from¿eorem ..

Open Problem. Is there any class C ⊆ STR[Σ] which is not ≡-equivalent to some
class in the above hierarchy?

Remark. If we only consider classes of graphs and if we use CMSO-transductions
instead of MSO-transductions, then the following result can be used as replace-
ment of ¿eorem .:

¿eorem . (Courcelle, Oum []). Let C be a class of graphs with unbounded
clique-width. ¿ere exists a CMSO-transduction τ with G ⊆ τ[C].
¿is eliminates some possibilities for intermediate classes of graphs in the hi-
erarchy of ¿eorem ., but to complete the picture we still need analogues of
Proposition . and of¿eorems . and .. Furthermore, the techniques of []
are specific to graphs (or, more generally, to relational structures where all rela-
tions are binary). Even with the results of [] one cannot exclude the existence
of a class C of arbitrary relational structures strictly between Tω and G in the
CMSO-transduction hierarchy.
Let us make a final comment about relational structures. An incidence struc-

ture Ain can be seen as a bipartite labelled directed graph (see the remark af-
ter Definition .). Furthermore, it is -sparse. Hence, our results use tools from
graph theory, in particular those of [, , ]. However, there is currently no
encoding of relational structures as labelled graphs that could help to solve ques-
tion (i) above.
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