On a Fragment of AMSO and Tiling Systems

Achim Blumensath*!, Thomas Colcombet?, and Pawel Parys3

1 Faculty of Informatics, Masaryk University, Czech Republic
blumensath@fi.muni.cz

2 CNRS, LIAFA, Université Paris Diderot, Paris 7, France
thomas.colcombet@liafa.univ-paris-diderot.fr

3 Institute of Informatics, University of Warsaw, Poland
parys@mimuw.edu.pl

—— Abstract

We prove that satisfiability over infinite words is decidable for a fragment of asymptotic monadic
second-order logic. In this fragment we only allow formulae of the form 3tVs3r p(r, s,t), where

¢ does not use quantifiers over number variables, and variables 7 and s can be only used simul-
taneously, in subformulae of the form s < f(x) <.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases monadic second-order logic, boundedness, tiling problems

1 Introduction

This paper continues a line of research trying to find logics where satisfiability is decidable
over infinite words (and infinite trees). The most well-known logic of this kind is monadic
second-order logic (MSO) considered in the seminal work of Biichi [8]. Extending MSO by
the ability of comparing some quantities quickly leads to undecidability. The idea behind
the logic MSO+U and a more recently introduced logic called asymptotic monadic second-
order logic (AMSO) is to extend MSO by the ability to express boundedness properties
of some sequences of numbers. In MSO+4U this is realized by an additional quantifier
U stating that there are arbitrarily large finite sets satisfying the given formula. AMSO
does not have a built in ability to refer to the size of sets. Instead, it describes weighted
structures (in particular weighted infinite words), which are structures in which the elements
are labelled by natural numbers, called their weights. More precisely, AMSO extends MSO
by quantifiers over variables of a new kind, ranging over natural numbers. These variables
can be compared with weights in the word, but only under a certain positivity requirement:
existentially quantified numbers can only serve as upper bounds, while universally quantified
numbers can only serve as lower bounds. The two logics MSO+U and AMSO happen to be
inter-reducible as far as the decidability of satisfiability is concerned [1], and, unfortunately,
this means that both are undecidable over infinite words [5]. Nevertheless, some natural
fragments of these logics remain decidable.

In [2] the satisfiability problem for MSO+U is solved over infinite trees for formulae where
the quantifier U is at the outermost position. A significantly more powerful fragment of the

* Work partially supported by the German Science Foundation, grant No. BL 1127/2-2, and the Czech
Science Foundation, grant No. P202/12/G061.

T The research leading to these results has received funding from the European Union’s Seventh Frame-
work Programme (FP7/2007-2013) under grant agreement n° 259454.

¥ Work supported by the fellowship of the Foundation for Polish Science, during the author’s post-doc
stay at Université Paris Diderot.

© Achim Blumensath, Thomas Colcombet, and Pawel Parys;
37 licensed under Creative Commons License CC-BY

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

On a Fragment of AMSO and Tiling Systems

logic, although over infinite words, was shown to be decidable in [4] using automata with
counters. These automata were further developed into the theory of regular cost functions
[11]. Another possibility is to consider the weak fragment of the logic (WMSO+U), where set
quantification is restricted to finite sets. Satisfiability for this logic was shown to be decidable
over infinite words [3] and infinite trees [6]. Note that the mentioned decidability results
can be used to solve, via reductions, several seemingly unrelated problems, among others:
the star height problem [15], the finite power property problem [18], deciding properties of
CTL* [9], the realizability problem for prompt LTL [16], deciding the winner in cost parity
games [13], or deciding certain properties of energy games [7].

Concerning AMSO, which was more recently introduced [1], so far no fragments are
known to be decidable (except trivial ones). Such fragments should, at least, circumvent the
arguments of undecidability of AMSO, that involve complicated number quantifiers nested
inside complicated quantification over infinite sets. There are two ways to avoid this: either
to consider the weak fragment (WAMSO), where set quantification is restricted to finite
sets, or to consider the number-prenex fragment (AMSO"P), where number quantifiers are
required to be placed only at the head of the formula. It turns out that these two fragments
are inter-reducible (Theorem 5 in [1]). It is conjectured that these two fragments have a
decidable satisfiability problem over infinite words. Under a topological point of view, it is
known that MSO+U and AMSO inhabit all finite levels of the projective hierarchy [14, 1],
while WAMSO is much simpler since it only inhabits the finite levels of the Borel hierarchy.

et us emphasize the fact that WAMSO is not related at all to WMSO+U, even though
AMSO and MSO+U are highly related. This is due to the fact that, since AMSO and
MSO+U have significantly different syntax, the restriction to finite set quantifiers has dra-
matically different consequences. In particular languages definable in WAMSO inhabit all
finite levels of the Borel hierarchy, while WMSO++U is confined in the third level.

In [1], the satisfiability problem for AMSO"P/WAMSO was reduced to a certain form
of tiling problem. The main contribution of this paper is to solve a special case of this
tiling problem. In consequence we can solve the satisfiability problem for a fragment of
AMSO"P, which we denote AMSO5Y. In this fragment we only allow formulae of the form
JtVs3r o(r, s,t), where ¢ does not use quantifiers over number variables, and the variables
r and s can be only used simultaneously, in subformulae of the form s < f(z) < r. For
the proof, we develop a new generalization of the Simon’s theorem about factorization
forests [17].

2 Preliminaries

Asymptotic monadic second-order logic (AMSO for short) extends MSO by the ability to
describe asymptotic properties of quantities. It refers to weighted structures (A, f) consisting
of a relational structure 2 and a tuple of functions f;: dom () — N (the weight functions).
We only consider the case when 2/ is an infinite word (w-word). Syntactically AMSO extends
MSO by the following constructions:

quantifiers over number variables that range over natural numbers, and

atomic formulae f(x) < r, where f is a weight function, x a first-order variable, and r a
number variable; such formulae are restricted to appear positively inside the existential
quantifier binding r (and dually: negatively inside a universal quantifier).
We will usually reserve the letters x,y, z, . .. for first-order variables and the letters r, s, ¢, . ..
for number variables.

A. Blumensath, T. Colcombet, and P. Parys

The main theorem of this paper is about a fragment of AMSO, denoted AMSO3Y, where
the formulae are of the form JtVs3r ¢(r,s,t) where ¢ does not use number quantifiers,
and the variables r and s can be only used simultaneously, in subformulae of the form

s < f(@) < (formally: (f(x) < r) A=(f(x) < 5).

» Example 2.1. The following are formulae of AMSO5":
ItV (f(x) < t) says that the weights are bounded;
VsIrvaTdy (y > x A s < f(y) < r) says that infinitely many weights occur infinitely often
in the weighted infinite word;
the disjunction of the above two (we can move the quantifiers to the front).

» Remark. It is easy to see that a formula of the form
Fty . T Vs1 . VT (T e Ty STy ey ST e TR)

is equivalent to IVsIro(r,...,r,s,...,8,t,...,t).1 For this reason we allow in AMSO3Y
only formulae with single quantifiers FtVs3r, having in mind that decidability immediately
extends to formulae with blocks of such quantifiers.

The following is the main result of this paper.

» Theorem 2.2. Given a formula ¢p € AMSO,P, it is decidable whether there exists a
weighted infinite word in which v is satisfied.

The Commutative Lossy Tiling Problem

Theorem 9 of [1] reduces satisfiability of AMSO®P to a certain (multidimensional) lossy tiling
problem. In this paper we solve a commutative variant of this problem, in dimension one.

A picture p: {1,...,h} x {1,...,w} — X is a rectangle labelled by letters from a finite
alphabet 3, where h and w are height and width of the picture. For i € {1,...,w}, the
i-th column of the picture is the word p(1,4)p(2,7)...p(h,d); similarly we define the j-th
row for j € {1,...,h}. A language K C ¥* is commutative (lossy) if it is closed under
reordering (respectively: removing) of letters. In the commutative lossy tiling problem we
are given regular languages K, L C ¥* (the column language and the row language), where
the column language K is commutative and lossy. A solution of the tiling system (K, L) is
a picture p such that all columns in p belong to K and all rows in p belong to L. We ask
whether, for all h € N| there exists a solution of height h. Notice that since K is commutative
and lossy, we can reorder rows in a solution and again obtain a solution; we can also remove
some rows and obtain a solution of smaller height. Consequently demanding solutions of
each height h € N amounts to demanding solutions of arbitrarily large height h € N.

3 From the Logic to Tiling Systems

The reduction from satisfiability of AMSO™P to the multidimensional lossy tiling problem is
given in [1], but we need to observe that the restriction to AMSO5® yields the commutative
lossy tiling problem. Let us concentrate on the case where the formulae contain only one
weight function; satisfiability of the general case easily reduces to this situation.

Before starting, we eliminate the outermost existential quantifier. Suppose that we have a
formula ¢ = 3tVsIr p(r, s,t) € AMSO5Y. We create a formula ¢o' = Vs3r ¢/ (r, s) € AMSO5”

1 See Proposition 14 in the appendix to [1], available at the authors’ webpages.

On a Fragment of AMSO and Tiling Systems

using an additional unary predicate small(x): ¢’ is obtained from ¢ by replacing each atom
f(z) <t by small(z), and by replacing each subformula s < f(z) < r by s < f(x) <
r A —small(z). Tt is easy to see that 1) is satisfiable if and only if ¢’ is satisfiable. The idea
is that small marks those positions on which the weight function f “is small”.

Next, we apply the reduction of [1] to the formula ¢’. Let us explain briefly that the
resulting tiling system is indeed a commutative lossy tiling system. The reduction is realized
in three steps.

In the first step, the satisfiability of AMSO"P is reduced to the limit satisfiability problem.
The idea is to chop an infinite word into infinitely many finite pieces that have the same
theory (making repeated use of the Theorem of Ramsey). Originally, this is a theory with
respect to all AMSO™ formulae up to some quantifier rank. We should replace it by the
theory with respect to formulae where r and s are only used simultaneously, in subformulae
of the form s < f(z) < r. Such theories have all compositionality properties needed for the
proof which, thus, still goes through after this modification. The resulting formulae in the
limit satisfiability problem test only for the theory of the finite words. So again r and s are
only used simultaneously, in subformulae of the form s < f(x) < r.

In the second step, it is argued that a formula of the form Vs3re(r, s) is equivalent to
Vsp(s + 1,s). This step is not affected by our modification.

In the third step, the limit satisfiability problem is reduced to the lossy tiling problem.
First, we observe that, because there is just one universally quantified variable s, the resulting
tiling system has dimension one. Then we have to slightly change the resulting tiling system
to make it commutative. The alphabet of the system was 3 x {<,=,>}, and the column
language was K = | J,cx(a, <)*((a,=)Ue)(a, >)*. Intuitively, the meaning of a letter (a, <)
(or (a,=), (a,>)) is that the row number is smaller (respectively: equal, greater) than
the value of the weight function on this position (thus in each column initial rows contain
(a, <), then there is at most one (a, =) marking the value of the weight function, and then
we have (a,>)). Now in our formulae we cannot distinguish small values from big values,
we can only test whether s < f(z) < s+ 1 holds. For this reason (a, <) and (a,>) become
indistinguishable and can be replaced by one letter, call it (a,#). The row language now
becomes K = {J,cx,(a, #)*((a,=) Ue)(a, #)*, which is commutative.

4 Monoids

In this section we slightly rephrase the problem of deciding the commutative lossy tiling
problem using algebraic methods. Recall that every regular language (in particular the
row language L) can be recognized by a morphism into a finite monoid. This means that
there exists a morphism ¢: %* — M into a finite monoid M, and a set F C M such that
L = ¢~ Y(F). It will be more convenient to label the picture directly with elements of M
instead of ¥ (using ¢(a) instead of a). The row language then becomes 7~ !(F), where
the evaluation map m: M* — M is the morphism defined by 7(s1...s,) = 1+ - Sk.
The column language changes into K’ = {¢(a1)...¢(ap) | a1...a; € K}, which again is
commutative and lossy.

Next, we observe that we can restrict our considerations to sets F' that are singletons.
Namely, the tiling system (K’, 7—1(F)) has arbitrarily high solutions if and only if for some
s € F the system (K’,7~!(s)) has arbitrarily high solutions. Indeed, every solution of the
latter system is a solution of the former. On the other hand, from a solution of (K’, 7=*(F))
of height h we can choose rows evaluating to the most popular element s; € F and obtain

a solution of (K’,m~1(s;)) of height at least % Although elements s;, depend on h, some

A. Blumensath, T. Colcombet, and P. Parys

of them has to be used for infinitely many h (that is, for arbitrarily large h).

As a final simplification, let us analyze the column language. For a language L, let L+
be the closure of L under removing letters (we add to L all words obtained by removing
letters in words from L), and L® the closure of L under reordering letters (we add to L all
words obtained by reordering letters in words from L). A language (over M) is called a base
language if it is of the form (wA*)*©, where A C M and w € (M \ A)* (words in (wA*)¥©
can use letters from A arbitrarily many times, and letters from w at most as many times as
they appear in w). Base languages play an important role in our proof. We use the letter p
to denote base languages. Notice that the content of a base language (wA*)*© determines A
uniquely, and w up to the order of its letters (with the assumption that w does not contain
letters from A). The set A is called the global part of p = (wA*)*©. We denoted it by gi(p).
The norm |p| of a base language p is the length |w|.

Tt is a consequence of Higman’s Lemma that every lossy language (over M) can be written
as a finite union of languages of the form (AgbyAf ... by A})Y, where Ag,..., Ay € M and
b1,...,bx € M. Our column language K is lossy and commutative, so it is a finite union of
base languages. Summing up, we can restate our problem as follows:

Input: a finite monoid M, a finite set B of base languages over M, an element s € M;
Question: does there exist for every h € N a picture of height h each column of which
belongs to |J B and every row of which to 77 1(s)?

For a picture p we define the evaluation of p, denoted m(p), as the word of the same
length as the height of p, whose i-th letter equals the evaluation of the i-th row of p. Then,
instead of requesting that every row of p belongs to m~1(s), we can say that m(p) € s*.

5 The Decision Procedure

Our decision procedure maintains a set of base languages such that for every word from some
of these languages there is a picture evaluating to this word where each column belongs to
|J B. New base languages are added following two kinds of schemas, the product schema and
diagonal schema. These schemas are just ways of describing pictures of arbitrarily large size,
evaluating to all words in some base language. The main difficulty is to prove completeness,
i.e., showing that using some other fancy pictures one cannot obtain more base languages
than we obtain using pictures generated from our schemas.

Let us now define the two kinds of schemas we use to generate new base languages. Let
p1 and po be base languages. A product schema for py, ps is given by a picture ¢ whose rows
are divided into special rows and global rows such that (for j € {1,2})

1. ¢ has width 2 and the j-th column belongs to p;, and

2. the height of ¢ is at most |p1| + |p2| + |M|?, and

3. the j-th letter of each global row belongs to gl(p;).

The base language generated by q is (wA*)¥©, where w consists of the letters of 7(g) corre-
sponding to the special rows and A contains the letters of 7(q) corresponding to the global
rows. We only allow schemas g for which w does not contain letters from A.

While defining a diagonal schema we need to use the power-set monoid. The set P (M)
of subsets of M has a natural monoid structure: C - D = {c-d | ¢ € C,d € D}. We say
that a set of base languages B is uniform when it is nonempty, for all p1,p2 € B we have
gl(p1) = gl(p2), and this set is idempotent. For a uniform B we write gl(B) for the set
gl(p) with p € B. The set of all finite uniform sets of base languages over M is denoted by
UBL(M).

On a Fragment of AMSO and Tiling Systems

viz|x|x|z|y|z|x|x]|a|c|z|x

z|x|z|x|ylalc|z|z]|x|z]|y|x
X|a|c xla|c|x|x|z|z|y|x]|z]|x]|z]|x
alblalc|c alblalcla|blalc|a]|blalc]c
blc|y|b blclz|y|lz|y|z|x|y|x|[x|b|a

Figure 1 On the left we have an example diagonal schema. Elements of gl(B) are shaded in
gray. The first row is a global row, and the other two are special rows (we suppose that a-b-a-c is
idempotent). The double line divides the schema horizontally into two pictures. On the right there
is a picture created out of the schema for n = 3. Here double lines are introduced only for readability.
Gray cells are stretched into longer areas evaluating to the same value (e.g. x =z -2 -z -z - y).

Let B be a uniform set of base languages. A diagonal schema for B is given by a picture ¢
whose rows are divided into special rows and global rows and which is divided horizontally
into pictures qi,...,qr (which means that ¢, ..., g, have as many rows as ¢, and the i-th
row of ¢ is the concatenation of the i-th rows of ¢, ..., qx) such that:

1. each column of ¢ belongs to |J B, and

2. each special row of each g; either has length 1, or evaluates to an idempotent, or it
contains a letter belonging to gli(B), and

3. the first and the last letter of each global row of each g; belongs to gl(B).

The base language generated by q is (wA*)¥© where w consists of the letters of 7(g) corre-

sponding to the special rows and A contains the letters of 7(q) corresponding to the global

rows. Again, we only allow schemas ¢ for which w does not contain letters from A. An

example diagonal schema is depicted in Figure 1 on the left.

The following theorem states soundness and completeness of our schemas.

» Theorem 5.1. Let By be a finite set of base languages over a monoid M. For a function
n: UBL(M) — N let BS" = By and for each i > 0, inductively, let B=" be the set of all
base languages p such that

pe B, or

p is generated by some product schema for some base languages p1,ps € B;jl, or

p is generated by some diagonal schema for a uniform set of base languages B C Bigf’l,

of width and height at most n(B).
Then there is a computable function n: UBL(M) — N such that for every s € M the
following two statements are equivalent.

For each h € N, there exists a picture p of height h such that w(p) € s* and each column

belongs to | Bo.

For x = 3- (2IMI 4+ 1)2, there exists a base language p € B=" with s € gl(p).

Notice that this theorem implies the decidability of the commutative lossy tiling problem.
Indeed, given B;_”l we can calculate B?" because the number of product and diagonal
schemas to consider is finite (the size of product schemas is bounded by definition, and the
size of diagonal schemas is bounded by the function 7).

6 Soundness

In this section we prove the easier direction of Theorem 5.1: the implication from the second
to the first statement. The proof is based on the following two lemmas.

A. Blumensath, T. Colcombet, and P. Parys

» Lemma 6.1. Let p be a base language generated by some product schema for p1,ps and
let uw € p. Then there exists a picture p each column of which belongs to p1 U pa and such
that m(p) = u.

» Lemma 6.2. Let p be a base language generated by some diagonal schema for a uniform
set of base languages B and let u € p. Then there exists a picture p each column of which
belongs to | J B and such that 7(p) = u.

Using these the lemmas we can prove the soundness implication of Theorem 5.1 as
follows. Let B?’ be the sets from Theorem 5.1. The function 1 bounding the sizes of
diagonal schemas does not matter for this implication. We will prove by induction on ¢ that
ifuely Bf", then there exists a picture p each column of which belongs to |J By and such
that 7(p) = u. Then the statement of the lemma follows by taking u = s"
s € gl(p) for some p € BS", which implies that u € |J B=".

For ¢ = 0 the claim is trivial: we can take a picture p containing u as the only column.
For i > 0, let u € |JB=". Then u € p for some p € B=". If p € B=" the claim follows
by inductive hypothesis. Otherwise, we are in the second or the third case of definition of
B;". Hence, we can apply Lemma 6.1 or 6.2 to obtain a picture p’ each column of which
belongs to |J BE"I and such that 7(p') = u. Moreover, by inductive hypothesis there exists,
for each column w; of p, a picture p; each column of which belongs to |J By and such that
7©(p;) = u;. To obtain p we replace in p’ the j-th column w; by p;, for every j. Then
m(p) = m(p') and p has the desired properties.

since we have

In the remaining part of this section we prove Lemmas 6.1 and 6.2.

Proof of Lemma 6.1. The proof follows immediately from the definitions. Let g be a prod-
uct schema for py, po which generates p. Since the global rows of ¢ contain only letters
from the global parts of p1, p2, we can duplicate in g any global row without destroying the
property that the j-th column belongs to p;. We can also remove any row and reorder the
rows. By performing such operations we can obtain a picture p such that 7 (p) = w. |

Proof of Lemma 6.2. Let p = (wA*)©, let ¢ be a diagonal schema for B generating p,
and let ¢1,...,qr be the pictures into which ¢ is divided. W.l.o.g. we assume that each
global row of ¢ evaluates to a different element of A (otherwise we remove redundant rows).
Note that, if the lemma holds for some word u, then it holds also for any v’ obtained from
u by removing and reordering letters (because we can remove and reorder the rows of the
resulting picture). Thus it is enough to consider, for each n € N, a column u which begins
by w and then has each letter of A repeated n times.

The idea of constructing a picture p out of the diagonal schema ¢ is depicted in Figure
1. For each j € {1,...,k} we create a picture p; by modifying ¢; as follows. p; will have
|A| - (n — 1) more rows than g¢;; more precisely, each global row of ¢; will produce n rows
of p;, while each special row of ¢; will produce only one row of p;. Fix some j and let m be
the width of g;. If m = 1, we just replace each global row by n copies. Assume now that
m > 1. Then the width of p; will be nm.

We start by considering a special row v. If m(v) is idempotent, we can just repeat
the content of the row n times without changing the value of the product. Otherwise, by
definition there exists an index ¢ such that the i-th letter of v belongs to gl(B). As the first
i — 1 letters of the new row we take the first ¢ — 1 letters of v. As the last m — i letters of
the new row we take the last m — i letters of v. On the remaining mn —m + 1 positions we
place letters from gl(B) in such a way that their product is equal to the i-th letter of v (this

On a Fragment of AMSO and Tiling Systems

is possible since gl(B) is idempotent by uniformity of B). Again, the value of the product
remains unchanged.

Finally, we consider a global row v of g;. We will produce n rows in pj;; the i-th of them,
for i € {1,...,n}, is created in the following way. On the first (¢ — 1)m + 1 positions of the
new row we place letters from ¢l(B) in such a way that their product is equal to the first
letter of v (recall that by definition the first and the last letter of v are in ¢i(B)). On the
last (n —i)m + 1 positions of the new row we place letters from ¢l(B) in such a way that
their product is equal to the last letter of v. On the remaining m — 2 positions we put the
middle m — 2 letters of v, without the first and the last letter.

For the picture p we take the concatenation of p,...,pr (which means that the i-th row
of p is obtained by concatenating the i-th rows of p1, ..., pr). We observe that the evaluation
of p is u (the rows created out of special rows evaluate to w, and the rows created out of
global rows evaluate to elements of A, each n times). It remains to observe that each column
of p (so of each p;) belongs to | JB. When p; has only one column, this is clear, because it
is obtained by duplicating some letters from gl(B) in a column from | J B. Otherwise (with
m as above), the column with number ¢ + i'm of p; (for i € {1,...,m}) is obtained from
the column number i of ¢; (which is in |J B): the letters which are not in gl(B) are taken
at most once, on the other positions we take some letters from gl(B). Thus the new column
is also in |J B. <

7 Completeness

In this section we prove the remaining direction of Theorem 5.1: the implication from the
first to the second statement. The strategy is as follows. First we consider special cases that
can be described by a single schema. In Section 7.1 we analyze pictures of width 2. For
these one can extract a product schema. In Section 7.2 we analyze pictures whose columns
come from a union of a uniform set of base languages. These can be turned into a diagonal
schema. As a technical tool we introduce in Section 7.3 a new version of the Factorization
Trees Theorem [17]. This theorem is used in Section 7.4 to decompose arbitrary picture into
simple fragments corresponding to single schemas, which allows us to conclude the proof.
During the whole section we consider the monoid M as fixed.

7.1 Products

We start by analyzing width 2 pictures in order to turn them into product schemas.

» Lemma 7.1. Let py1, p2 be two base languages and let p be a picture of width 2 such that
the first column belongs to p1 and the second one to ps. Then there exists a product schema
for p1, pa which generates a base language p such that w(p) € p and gl(p) = gl(p1) - gl(p2).

Proof. We take p = (wA*)*© where A = gl(p1)- gl(p2) and w consists of those letters of m(p)
which are not in A (taken as many times as they appear in 7(p)). Obviously 7(p) € p. In g
we include all rows of p that do not evaluate to an element of A. These will be the special
rows. Note that in each of these rows either the first letter does not belong to gi(p1), or
the second letter does not belong to gl(p2). Thus we have at most |p1] + |p2| of such rows.
Moreover, for each r € gl(p1) and each s € gl(p2), we add to ¢ a row with r in the first column
and s in the second one. These will be the global rows. We have |gl(p1)]| - |gl(p2)| < |M|? of
them. We see that g is a product schema for p;, po that generates p. <

A. Blumensath, T. Colcombet, and P. Parys

7.2 Uniform Case

Next, we consider a special case when the set of base languages allowed in columns is uniform,
and we show that such a picture can be transformed into a single diagonal schema.

» Lemma 7.2. There is a computable function n: UBL(M) — N such that, for every finite
uniform set of base languages B and every picture p each column of which belongs to |) B,
there exists a diagonal schema for B of width and height at most n(B) that generates a base
language p such that

7(p) € p and

E = gl(B) and A= gl(p) satisfy ECA=FE-A-E.

Let us comment on the second condition (E C A= E - A- E). It enforces that the base
language p (and hence also the diagonal schema) is more robust. This will be useful later.
Namely, the global part of p contains not only the letters that appear many times in 7 (p),
but also all letters from gl(B) (since E C A) and all results of surrounding the former letters
by letters from gl(B) (since E- A-E C A). Note that we always have A C E- A- E, as each
global row begins and ends by a letter from gl(B).

The proof of the lemma is based the following fact saying that each word can be chopped
into a small number of idempotents and single letters. To simplify notation, we write exp(z)
for 2.

» Fact 7.3. Let M’ be a finite monoid and w a word over M'. Then we can divide w into
fragments w = wy ... wy for k < exp(3|M’'|) such that, for every i, either |w;| =1, or m(w;)
s idempotent.

This fact is applied to a picture, in order to split it horizontally as in a diagonal schema.
While reading the next lemma have in mind that E will be used for gl(B).

» Lemma 7.4. Let p be a picture and E C M. Let x be the number of rows of p which
contain only letters from M \ E and let y be the smallest number such that in each column
of p there are at most y positions containing a letter from M \ E. Then, for some k <
exp(3(y — x + 1)|M¥), we can divide p horizontally into pictures pi,...,px in such a way
that each row of each p; either has length 1, or evaluates to an idempotent, or contains a
letter from E.

Proof. We prove the claim by induction on y — z (note that < y). Consider the monoid
M’ = M?* with coordinatewise multiplication. Let I be the set of (numbers of) those rows
which contain only letters from E (by definition |I| = z). Let w € (M’)* be the word
consisting of the rows of p which are in I (each letter contains the elements of M appearing
in the 2 rows of a column). Applying Fact 7.3 to w, we obtain a factorisation w = wy ... wy,
for m < exp(3|M|*) < exp(3|M|¥) where each w; either has length 1, or evaluates to an
idempotent. We divide p into p},...,p}, in the same way: the width of p} is the same as
the length of w;. Then every row of each p;- which is in I either has length 1, or evaluates
to an idempotent. For each p; we proceed in one of two ways.
If each row of p;- which is not in I contains a letter from F, this p} satisfies the statement
of the lemma.
Otherwise, there exists a row of p;- not in I which contains only letters from M \ E. Then
' >z +1and y <y, where 2’ is the number of rows of pj; which contain only letters
from M \ E and y' is the smallest number such that in each column of p; there are at
most 3’ positions containing a letter from M \ E. We use the inductive hypothesis for
p}; to obtain a subdivision of p) as required by the statement of the lemma.

10

On a Fragment of AMSO and Tiling Systems

Since each of the subdivisions returns at most exp(3(y’ — 2’ +1)|M|¥") < exp(3(y —)| M|¥)
pictures, in total we have at most m-exp(3(y—z)|M|¥) < exp(3(y —x+1)|M|¥) pictures. <

Proof of Lemma 7.2. Set E = ¢l(B). First, we divide p into pictures py, ..., px by applying
Lemma 7.4 to the picture p and to the set E. Note that the number y in the statement of
the lemma is equal to the maximal norm of a base language in B, and that > 0. We have
kE<expB(y —z+1)|M|¥) <exp(3(y + 1)|M|¥). Let I; be the set of all those numbers i of
rows of p such that the first or the last letter of the i-th row of some p; is in M \ E. Note
that |I;| < 2ky (where y is again the maximal norm of a base language in B): we look for
letters from M \ E only in 2k columns (the first and the last column of each p;), and in each
of these columns we have at most y letters from M \ E. The picture p with this division
is almost a diagonal schema as needed (when the rows from I; are treated as the special
rows). However we still need to reduce its size and ensure that EC A=F-A-E.

For each ¢, we denote by s; the evaluation of the i-th row without the first and the last
letter (so the value of the i-th row can be obtained by multiplying its first letter by s; and
by its last letter). Let I be the set of numbers i ¢ I; of rows of p such that there are less
than |E|? numbers j ¢ I for which s; = s;. Notice that [Io| < |[M|® (we have at most
|E|?> — 1 < |M|? rows for each of |M| possible values of s;). Set I = I} U I.

Next, let A’ be the set of s; for all i ¢ I. Let A = (E-A’- E)UFE and let w contain
those letters of 7(p) which are not in A (as many times as they appear in 7(p)); we take
p = (WA*)¥O. As F is idempotent, it follows that 7(p) € pand E C A = E-A-E. Tt
remains to construct a diagonal schema ¢ for B that generates p.

The width of ¢ will be the same as of p. We also divide ¢ into ¢1,...,q, of the same
widths as p1,...,pr. We include in ¢ all those rows of p which do not evaluate to an element
of A. These will be the special rows. Note that by the statement of Lemma 7.4, any row
of p can be taken as a special row: inside each p; it either has length 1, or evaluates to an
idempotent, or it contains a letter belonging to E. Moreover, all these rows are in I; indeed,
any other row i & I evaluates to r - s; - r', where s; € A’ and r, 7’ are the first and the last
letter of the row, which are in E by definition of I;. Consequently, there are at most |I|
such rows.

Then, for each s € A’ we consider |E|? rows i ¢ I for which s; = s (we have at least |E|?
such rows by definition of I5) and we modify them as follows. For each pair r,r’ € E we add
to g one such row in which we replace the first letter by 7 and the last letter by 7. These
will be global rows. This works as the first and the last letter of each such row inside each
p; belong to £ and the replaced letters are also in £. Additionally, for each s € E, we add
to ¢ a row containing only letters from E, which evaluates to s (as E is idempotent, we can
find such rows of every desired length). These will also be global rows. This works since all
letters of these rows are in F.

We see that every column of ¢ belongs to |JB: it is a column of p with some letters
removed and some letters from E added. The special rows evaluate exactly to the letters
of w. The global rows of the first kind evaluate to all elements of E - A’ - E, and the global
rows of the second kind to all elements of E. Thus ¢ generates the base language p.

It remains to bound the size. The number of rows in ¢ is at most

1|+ |E]-|A'] - |B| + | E| < 2ky +2|M P + M| < 2y - exp(3(y + 1)|M|") + 3|M P,

where y is the maximal norm of a base language in B. We denote the last number by 6(B)
(it depends only on B and |M]).

We also have to restrict the width of ¢. Since we have started from an arbitrary picture p,
the width can be arbitrary; so we have to remove some columns. Fix some ¢; that has more

A. Blumensath, T. Colcombet, and P. Parys

than one column. In each special row whose value is not idempotent there is some letter
from E. In each such row we choose one of these letters and we mark the column containing
it (we don’t want to remove this column). We also mark the first and the last column of ¢;;
they contain letters from F in global rows, so we also don’t want to remove them. We have
marked at most 0(B) + 2 columns. We want to remove some not-marked columns, so that
the resulting picture evaluates to the same word. For each number of columns i, consider
the picture consisting of the first ¢ columns of ¢;; let w; be the evaluation of this picture (w;
is a word in M", where h < 0(B) is the height of ¢;). Whenever w; = w; for some i < [, we
can remove the columns number ¢ + 1,...,/, and the whole new picture will still evaluate
to m(g;); we do this only when none of these columns is marked. We repeat this removal
procedure as long as such pair of indices 4,[exists. By the Pigeon Hole Principle, among
any |[M|" + 1 numbers we can find two i,l for which w; = w;. Thus, after the removal,
we have at most (6(B) + 1) - (|[M|" + 1) + 1 columns in g;. Because we do not remove
marked columns, the properties of a diagonal schema are preserved. In total we have at
most k- ((0(B) + 1) - (IM" + 1) +1) < exp(3(y + 1)[M[*) - ((6(B) + 1) - (M[" + 1) + 1)
columns. We denote the last number by n(B). Note that §(B) < n(B). Thus, not only the
width but also the height of ¢ is bounded by 7(B). <

7.3 Factorization Trees

In this subsection we present a new generalization of the Factorization Trees Theorem [17].
In this generalization the result in an “idempotent” node depends on some additional data in
the arguments. This theorem will be used in Section 7.4 to decompose an arbitrary picture
into pictures of the special form considered in Sections 7.1 and 7.2.

The nodes of our factorization trees will be labelled by elements of some set D, possibly
infinite. We also have a finite monoid M’ and a projection o: D — M’. The construction is
parameterized by two functions. The function pr: D? — D describes a product. The other
function

st: {dy...d. € D" | o(dy) = --- = o(d..) is idempotent} — D

describes an operation which will be used in idempotent nodes. We require that these
functions satisfy the following axioms:

(x) o(pr(a,b))

=o(a)-o(b), for all a,b € D,
(xx) o(st(dy...d.))

=o(dy) or o(st(di...d.)) <go(di), for all dy ...d. € dom(st).

The preorder <7 in the second axiom is defined by r <7 s if there are uq, u2 such that
r = uy - s-uz (recall that each monoid contains an identity element, that is allowed as u; and
ug). Two elements are J-equivalent, denoted r ~ 7 s, when r <7 s and s <7 r. Equivalence
classes of this relation are called J-classes. We write r <7 s when r <7 s, but r 47 5. A
factorization tree is a tree labelled by elements of D whose nodes are of one of three forms:

a leaf,

a binary node with exactly two children; it is labelled by pr(d;, d2), where d;, ds are the

labels of its children,

an idempotent node with at least three children labelled by dj, ..., d. such that o(d;) =

.-+ =o(d.) is idempotent; the node itself is labelled by st(d; ...d.).
The word (in DT) read from the leaves of a factorization tree ¢ (from left to right) is called
the input of ¢, and the label of the root of ¢ is called its output.

11

12

On a Fragment of AMSO and Tiling Systems

Note that standard factorization trees as in [17] can be obtained by taking D = M’ and
st(e...e) = e. In computation trees for a stabilization monoid [12], we again have D = M’,
but st(e...e) now depends on the number of arguments: it is e for short sequences e.. . e,
and ef for longer e...e. The key result is the existence of factorization trees of constant
height as described in the following theorem.

» Theorem 7.5. For everyv € DV, there exists a factorization tree with input v and height
at most® 3(|M'| + 1)

This theorem can be proved basically in the same way as its version for stabilization
monoids ([12], Theorem 3.3): the tree is constructed in a bottom-up way, so it is not
a problem that the result in an idempotent node depends in some way on the subtree
constructed below.

7.4 The Final Argument

In this subsection we conclude our proof of the missing implication of Theorem 5.1. The
function 7 is taken from Lemma 7.2. Let Bf" be sets of base languages as in Theorem 5.1,
for some finite set of base languages By. Each Big’ is finite. Let h be the smallest number
greater than the norm of each base language in BS", where z = 3 - (2/M| +1)2. Take some
picture p of height h each column of which belongs to |J By and for which n(p) € s*. Our
goal is to find p € BS" such that s € gl(p).

We use the theorem about factorization trees from the previous subsection. For D we
take the set of pairs (w, p), where w € M" and p is a base language containing w. We set
M’ =P(M) and o((w, p)) = gl(p). It remains to define the functions pr and st.

To define pr, consider two letters (w1, p1) and (wa, p2) from D. Let p be the picture with
two columns w; and wy. By Lemma 7.1, there exists a base language p such that w(p) € p,
gl(p) = gl(p1) - gl(p2), and there exists a product schema for py, po generating p. We define
pr((wy, p1), (we, p2)) = (w(p), p). Then Axiom (x) is satisfied because gl(p) = gl(p1) - gl(p2)-
Observe also that when py, p2 € B]-Sn, for some 7, then p € Bﬁf’l.

To define st, consider elements (w1, p1) ... (wg, pr) € DT such that gl(p1) = -+ = gl(px)
is idempotent. Let p be the picture with k columns wy, ..., wk, set B = {p1,..., pr}, and let
E = gl(B). Then B is a uniform set of base languages and each column of p belongs to | J B.
By Lemma 7.2, there exists a base language p such that 7(p) € p, E C gl(p) = E - gl(p) - E,
and there exists a diagonal schema for B of width and height at most n(B) generating p.
We define st((wi,p1) ... (wk, pr)) = (7(p), p). Observe that when p; € BjS"7 for some j and
all 4, then p € ng_fl. Axiom (xx) is satisfied due to the following fact.

» Fact 7.6. Let E,A C M where E is idempotent and E C A = E-A-FE. Then either
A=FE orA<gs E.

To conclude the proof, recall that p is a picture of height h each column of which belongs
to |J Bo and such that m(p) € s*. We want to find a base language p € BS" with s € gl(p).
Consider a word w = (dy, p1) - .. (dm, pm) € DT, where d; is the i-th column of p and p; € By
is some base language with d; € p;. By Theorem 7.5 there exists a factorization tree t with
height at most = and input w. Let (d,p) be its output. Note that d = w(p) = s" (by
definition of pr and st), and d € p (by definition of D). Moreover, p € B5" (more generally,
when a root of a subtree of height at most i is labelled by some (d’, p’), then p’ € B?”). As
h is greater than the size of p, we have s € gl(p), which is what we wanted to prove.

2 One can obtain a bound of 3|M’|, but this requires a more complicated proof.

A. Blumensath, T. Colcombet, and P. Parys

—— References

1

10

11

12

13

14

15

Achim Blumensath, Olivier Carton, and Thomas Colcombet. Asymptotic monadic second-
order logic. In Erzsébet Csuhaj-Varji, Martin Dietzfelbinger, and Zoltan Esik, editors,
Mathematical Foundations of Computer Science 2014 - 39th International Symposium,
MFCS 2014, Budapest, Hungary, August 25-29, 201/. Proceedings, Part I, volume 8634
of Lecture Notes in Computer Science, pages 87-98. Springer, 2014.

Mikotaj Bojanczyk. The finite graph problem for two-way alternating automata. Theor.
Comput. Sci., 3(298):511-528, 2003.

Mikotaj Bojanczyk. Weak MSO with the unbounding quantifier. Theory Comput. Syst.,
48(3):554-576, 2011.

Mikolaj Bojanczyk and Thomas Colcombet. Bounds in w-regularity. In 21th IEEE Sympo-
stum on Logic in Computer Science (LICS 2006), 12-15 August 2006, Seattle, WA, USA,
Proceedings, pages 285-296. IEEE Computer Society, 2006.

Mikolaj Bojatniczyk, Pawel Parys, and Szymon Toruiiczyk. The MSO+U theory of (N, <)
is undecidable. CoRR, abs/1502.04578, 2015. Accepted to STACS 2016.

Mikotaj Bojaniczyk and Szymon Toruriczyk. Weak MSO+U over infinite trees. In Christoph
Diirr and Thomas Wilke, editors, 29th International Symposium on Theoretical Aspects of
Computer Science, STACS 2012, February 29th - March 3rd, 2012, Paris, France, vol-
ume 14 of LIPIcs, pages 648-660. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2012.

Tomés Brazdil, Krishnendu Chatterjee, Antonin Kucera, and Petr Novotny. Efficient con-
troller synthesis for consumption games with multiple resource types. In P. Madhusudan
and Sanjit A. Seshia, editors, Computer Aided Verification - 24th International Conference,
CAV 2012, Berkeley, CA, USA, July 7-18, 2012 Proceedings, volume 7358 of Lecture Notes
in Computer Science, pages 23—-38. Springer, 2012.

J. Richard Biichi. On a decision method in a restricted second order arithmetic. In Logic,
Methodology and Philosophy of Science (Proc. 1960 Internat. Congr.), pages 1-11, Stanford,
Calif., 1962. Stanford Univ. Press.

Claudia Carapelle, Alexander Kartzow, and Markus Lohrey. Satisfiability of CTL* with
constraints. In Pedro R. D’Argenio and Herndn C. Melgratti, editors, CONCUR 2013
- Concurrency Theory - 24th International Conference, CONCUR 2013, Buenos Aires,
Argentina, August 27-30, 2013. Proceedings, volume 8052 of Lecture Notes in Computer
Science, pages 455-469. Springer, 2013.

Thomas Colcombet. Factorisation forests for infinite words. In Erzsébet Csuhaj-Varju
and Zoltdn Esik, editors, FCT, volume 4639 of Lecture Notes in Computer Science, pages
226-237. Springer, 2007.

Thomas Colcombet. The theory of stabilisation monoids and regular cost functions. In
Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and
Wolfgang Thomas, editors, Automata, Languages and Programming, 36th Internatilonal
Collogquium, ICALP 2009, Rhodes, greece, July 5-12, 2009, Proceedings, Part II, volume
5556 of Lecture Notes in Computer Science, pages 139-150. Springer, 2009.

Thomas Colcombet. Regular cost functions, part I: logic and algebra over words. Logical
Methods in Computer Science, 9(3), 2013.

Nathanaél Fijalkow and Martin Zimmermann. Cost-parity and cost-streett games. Logical
Methods in Computer Science, 10(2), 2014.

Szczepan Hummel and Michal Skrzypczak. The topological complexity of MSO+U and
related automata models. Fundam. Inform., 119(1):87-111, 2012.

Daniel Kirsten. Distance desert automata and the star height problem. ITA, 39(3):455-509,
2005.

13

14

On a Fragment of AMSO and Tiling Systems

16 Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. From liveness to promptness. Formal
Methods in System Design, 34(2):83-103, 2009.

17 Tmre Simon. Factorization forests of finite height. Theor. Comput. Sci., 72(1):65-94, 1990.

18 Szymon Toruniczyk. Languages of profinite words and the limitedness problem. PhD thesis,
Warsaw University, 2011.

A Appendix to Section 3

Let us explain in more detail the fact stated in Section 3 saying that ¢ is satisfiable if and
only if ¢’ is satisfiable. Recall that ¢ = JtVsIr ¢(r, s,t) and ¢’ = VsIr ¢’ (r, s), where ¢’
is obtained from ¢ by replacing each atom f(x) < ¢ by small(z), and by replacing each
subformula s < f(z) <r by s < f(z) <r A -small(z).

Suppose that we have a weighted infinite word (w, f) that is a model for . This gives
some value of ¢ for which Vs3r ¢(r, s,t) is true in (w, f). To obtain a model (w’, f) for ¢/,
it is enough to mark by small those positions « where f(z) <t. Then clearly for every s >t
the formula 3r ¢’'(r, s) holds in (w’, f), since f(z) < t in (w, f) implies small(z) in (v, f)
(for the same position x), and s < f(z) < r in (w, f) implies s < f(x) < r A —small(z)
in (w', f) (recall that these subformulae appear only positively). But since all comparisons
with s are s < f(x) appearing positively, the formula 3r ¢’'(r, s) holds even more for smaller
s, thus ¢’ = Vs3r ¢'(r, s) holds in (w', f).

Conversely, suppose that (w’, f') is a model for ¢'. In a model (w, f) for ¢ we take
f(x) =0 if small(z) holds, and f(x) = f'(z) otherwise (and we remove the predicate small).
For t = 0 we have that small(xz) in (w’, f’) implies f(z) < t in (w, f) and s < f(z) <
r A —small(z) in (w’, f’) implies s < f(x) < r in (w, f). Thus ¢ holds in (w, f).

B Factorization Trees

In this section we prove Theorem 7.5. As we have said, a proof of this theorem can be
obtained by minor modifications in the proof for the stabilization monoid case ([12], Theorem
3.3). Here, instead of repeating that proof, we base on the standard factorization trees
theorem (see e.g. [10], Theorem 1). This theorem only deals with the case when D = M’
and o(s) = s. However a factorization tree for this case remains correct (after relabeling its
nodes) for any D and o such that o(st(d; ...d.)) = o(dy), as stated below.

» Theorem B.1 ([10]). Assume that o(st(dy...d.)) = o(d1) for each dy ...d. in the domain
of st. Let v € DY. Then there exists a factorization tree with input v and height at most
3| M.

Next, we show how to repair the factorization tree obtained in the above theorem when
the operation st changes. The first auxiliary lemma deals with a single J-class.

» Lemma B.2. Let J be a J-class of M', and let v € DY. Then there exist factorization
trees t1,...,tx with height at most 3|M’|, such that the concatenation of their inputs gives
v, and whenever some t; fori € {1,...,k — 1} has output in o=1(J), then t;11 has output
outside o1 (J).

Proof. The proof is by induction on the length of v. One case is that there exists some
infix w (where v = wwu’) for which there exists a factorization tree ¢ with input w, height
at most 3|M’|, and output outside o~1(J). Then we use the induction assumption for the
shorter words u and v« (if nonempty); the trees over these words together with ¢ give the
thesis.

A. Blumensath, T. Colcombet, and P. Parys

The remaining case is that for no infix w of v there exists a factorization tree with input
w, height at most 3|M’|, and output outside o~!(J). This in particular means that each
letter of v is in o= !(J) (otherwise we can construct a one-node factorization tree with this
letter as input and with output outside o=1(.J)). Consider the operation st’ defined by

st'(dy...dy) = { jii(dl -+di) - when o(st(dy ... dv)) = o(dr),

otherwise.

We construct a factorization tree ¢ with input v using Theorem B.1 for the operation st’
instead of st. We will prove that ¢ is a correct factorization tree also for the original st
function (that is, we always use only the first case in the definition of st’); this will finish
the proof: we take k = 1 and t; = ¢t. Assume the contrary: fix some idempotent node z of
t, for which o(st(d; ...d.)) # o(dy), where dy, ..., d. are the labels of the children of x, and
such that no descendant of x has this property. Notice that o(st(d; ...d.)) <z o(d1) <z J:
the first inequality is true due to axiom (**), since o(st(d; ...d.)) # o(dy), and the second
because o(dy) is the product of the letters in the leaf nodes below x, which are all in J.
Consider the subtree of ¢ rooted in x, in which we change the label of « into st(d; ...d.).
It is a factorization tree for the st function (recall that in descendants of the functions st
and st’ return the same values) with height at most 3|M’|, output outside o=1(.J), and its
input is an infix of v. This contradicts with our assumption about v. |

The next lemma constructs a factorization tree for sets A consisting of multiple J-classes,
by composing factorization trees for single [J-classes obtained from the previous lemma.

» Lemma B.3. Let A C M’ be such that when s € A andr > s thenr € A3 Letv € DT.
Then there exist factorization trees t1,...,t, with height at most (3|M'| + 2)|A|, such that
the concatenation of their inputs gives v, and either k = 1, or all these trees have output
outside o1 (A).

Proof. The proof is by induction on the size of A. The base case is that A is empty. Then
for each letter of v we construct a one-node tree with this letter as input. These trees are
of height 0, and they have outputs outside o=1(A).

Next, assume that A is nonempty. Let J be some < z-minimal J-class in A; denote
A" = A\ J. We apply the induction assumption for v and A’. We obtain factorization trees
t9,...,t9 of height at most (3|M’|+2)|A’|, such that the concatenation of their inputs gives
v; we either have m = 1, or each t? has output outside o~1(A4’). When m = 1, this already
concludes the thesis of the lemma; below we assume that m > 1.

We apply Lemma B.2 to w and J. We obtain factorization trees ti,...,t. with height
at most 3| M|, such that the concatenation of their inputs gives w; whenever some ¢} for i €
{1,...,n—1} has output in ¢~ *(.J), then ¢}, | has output outside o~*(.J). Notice additionally
that the projection of the output of a factorization tree is <7 than the projection of any letter
in its input (we have o(pr(dy, dz2)) = o(d1)-0(d2) <7 o(d;) and o(st(d; ...dy)) <7 o(st(dyr))
by axioms (*) and (**)). Thus, since the letters of w are outside o~!(A’), also the output
of each t} is outside 071 (A’). So we can strengthen the statement above: whenever some t}
for i € {1,...,n — 1} has output in c~!(A), then ¢;,, has output outside o~*(A).

Next, in the place of the i-th leaf in the sequence of trees t1, ...t} we substitute the tree
t? (notice that the label of this leaf and of the root of ¢? is the same: it is the i-th letter of w).
In this way we obtain factorization trees t3,...,t2 of height at most (3|M’|+2)|A’| + 3| M.

3 That is, M’ \ A is an ideal.

15

16

On a Fragment of AMSO and Tiling Systems

The concatenation of their inputs gives v, and whenever some tf fori e {1,...,n—1} has
output in o~'(A), then ¢2,; has output outside o~ *(A).
Finally, when some ¢7 for i € {1,...,n— 1} has output in 0! (A4), we merge it with ¢7, ,

using a binary node. The output of this new tree is outside o ~1(A) (notice that t ¢ A implies
s-t ¢ A, since t > s-t). Similarly, if the last tree has output in 0=1(A), we merge it with
its predecessor (which is possibly already merged with its predecessor). After this merging
we obtain factorization trees ti,...,%, with height at most (3|M’| + 2)|A’| +3|M'| +2 <
(3|M'| + 2)| Al; the concatenation of their inputs is v. If we had n > 1, the output of each of
these trees is outside o ~!(A) (however it is possible that n = 1 and the only tree has output
in 071(A)). <

Notice that this lemma for A = M’ implies immediately Theorem 7.5.

C Proof of Facts 7.3 and 7.6

Proof of Fact 7.3. Recall that we want to divide an arbitrary word w over a finite monoid
M’ into fragments w = wy ... wy for k < exp(3|M’|) such that for each ¢ either |w;| = 1,
or m(w;) is idempotent. We apply the standard factorization tree theorem (Theorem B.1,
where D = M’ and st(e...e) = e) to w: we obtain a factorization tree with input w.
In this tree we identify those leaves and idempotent nodes which do not have idempotent
nodes as ancestors. They give a division of w into fragments w = w; ... wy. The fragments
corresponding to leaves have length 1; the fragments corresponding to idempotent nodes
evaluate to idempotents. Notice that above the considered nodes there are only binary
nodes, and the tree has height at most 3|M’|, so there are at most exp(3|M’|) fragments. <

Proof of Fact 7.6. Because A = E-A-FE, we have A <7 E. If A <7 E we are done, so
assume that A ~ 7 E. Because F is idempotent, we have A= F-A-FE=FE-E-A-FE=FE-A,
and similarly A= A - E.

We have to define more relations. For elements r, s of a monoid, we write r ~% s when
there exist uy,us such that r = s-u; and s = r - up. Symmetrically, we write r ~, s when
there exist uy, us such that r = w1 -s and s = us -r. We also define r ~3 s when r ~% s and
r ~r s. Lemma 3.5 of [18] says that r ~7 r - s implies r ~g r - s; symmetrically, r ~7 s r
implies 7 ~, s -r. Moreover, Lemma 3.8 of [18] says that if H is an H-class such that for
some r,s € H we have r - s € H, then H is a group.

We apply the above facts to our case. Since ' ~5 A = E - A, we have E ~ A, and
since E ~7 A= A-E, we have E ~, A; thus F ~4 A. Because A = E- A, the H-class of E
and A is a group. Notice that F is the neutral element of the group (the neutral element is
the only idempotent in a group). Since the group is finite, for some k > 1 we have A* = E.
Because E C A, wehave A= A-EF1CA- A1 =F, so E = A. <

	Introduction
	Preliminaries
	From the Logic to Tiling Systems
	Monoids
	The Decision Procedure
	Soundness
	Completeness
	Products
	Uniform Case
	Factorization Trees
	The Final Argument

	Appendix to Section 3
	Factorization Trees
	Proof of Facts 7.3 and 7.6

