
S ome Remarks on First-Order
Definable Tree Languages

Achim Blumensath

1st July 2024

We study the question of whether a given regular language of finite
trees can be defined in first-order logic. We develop an algebraic
approach to address this question and we use it to derive several
necessary and sufficient conditions for definability (but unfortunately
no condition that is both). Themain difference of our results to those
from the literature is that our conditions are decidable.

1 Introduction
The question of how to decide whether a given language of trees is definable in
first-order logic is a long-standing open problem in language theory. It has first
been raised in [20], 40 years ago. Since then the problem has withstood numerous
attempts to solve it.
Benedikt and Segoufin [1] have provided a decidable characterisation for lan-

guages that are definable using only the successor relation, but not the tree order.
The proof is mostly model-theoretic and it makes essential use of locality argu-
ments, which do not work in the presence of the tree order.

There also exist several non-effective characterisations for languages definable
with the tree order. The seminal article by Thomas [20] contains a mixed char-
acterisation in terms of a temporal logic. A related result can be found in [13].
A characterisation in terms of star-free expressions has been provided by Heu-
ter [14]. There are also three publications with algebraic characterisations by Esik
and Weil [12], Bojańczyk [6], and Bojańczyk, Straubing, and Walukiewicz [9].

1

Finally, there are some partial results. The papers [14, 16, 18] by, respectively,
Heuter and Potthoff, provide counterexamples showing, among other things, that
‘aperiodicity’ is insufficient as a criterion for definability. Let us also mention
a paper by Bojańczyk and Michalewski [8] that contains several observations
regarding first-order definability, although its main focus is on a different logic.

Themain reasonwhy the definability question has turned out to be that resistant
to attacks seems to be that we have not yet developed the right combinatorical and
algebraic tools to resolve the question. Bojańczyk and Michalewski [8] suggest to
use the algebraic machinery from Tame Congruence Theory [15], a subfield of
Universal Algebra, to attack the definability problem. Other possible tools include
analogues to Simon Factorisation Trees [2]. But both approaches do not seem to
be strong enough to fully settle the question.

The last two decades saw the development of several algebraic theories for
tree languages (see [7] for an overview). The two most developed ones of these
seem to be the one based on forest algebras introduced in [10] and the monadic
framework from [3].

In this article we follow [8] and try to apply techniques from Tame Congruence
Theory [15] to the definability problem for first-order logic. We are able to derive
a (decidable) necessary condition for first-order in Corollary 6.8 below, and two
(decidable) sufficient ones in Corollary 7.5 and Proposition 7.7. While non-trivial,
most of our results are not very deep.

Our motivation for this work stems from the fact that, when setting up an
algebraic framework to address definability questions for tree languages, there are
many choices to make regarding the technical details. While these choices seem
to be arbitrary at first, they turn out to matter a lot for how well the framework
functions. Examples of such choices include (i) whether to work with linear or
with non-linear trees (we have to use linear trees for first-order logic); (ii) whether
to work with simple contexts or with multi-contexts (we need multi-contexts);
(iii) which notion of a subalgebra one uses (we need subalgebras where we can
remove both elements and functions); etc. Having worked out all the technical
details, I therefore consider it worthwhile to share my results with the public so
that others will not have to repeat the same work and to provide a basis from
which to attack the first-order definability problem for real.

The overview of the article is as follows. We start in Section 2 with setting up the
algebraic framework we will be working in. In Section 3, we give a short overview
of known results from the literature. Our results make use of tools from Tame
Congruence Theory which we present in Section 5. Before doing so we have to
provide a translation between preclones (the algebras we are working with) and

2

clones (the kind of algebras used in Tame Congruence Theory). This is done in
Section 4. The two final sections contain our results about first-order definability.
Section 6 derives necessary conditions, while Section 7 contains sufficient ones.

2 Tree Algebras
We start by introducing the algebraic framework used in this article, which is
a special case of that from [3, 4]. To make the paper more accessible to a gen-
eral audience we have tried to keep the category-theoretical prerequisites at a
minimum.

We will be working with two different kinds of algebraic structures: clones and
preclones. Both are structures where all operations are treated as elements, that
is, a (pre-)clone is a set of operations (of various arities) that can be composed.
The difference is whether or not the terms resulting form these compositions can
use variables several times or only once. To defines this formally, we fix some
countably infinite set X of variables. Let Ξ ∶= ℘ω(X) be the set of all finite sets of
variables. We consider Ξ-sorted sets Awhere each element has an associated arity
ξ ∈ Ξ. Such elements are interpreted as ‘operations using the variables in ξ’. Then
A = (Aξ)ξ∈Ξ is a family of sets where Aξ denotes the subset of elements of arity ξ.
A function f ∶ A→ B between Ξ-sorted sets is a family f = (fξ)ξ∈Ξ of functions
fξ ∶ Aξ → Bξ . In category-theoretical language this means that we work inside
the category SetΞ of Ξ-sorted sets. To keep terminology simple, we will usually
use the terms set and function dropping the adjective Ξ-sorted.

Definition 2.1. Let A be a (Ξ-sorted) set.
(a) We set

CA ∶= (CξA)ξ∈Ξ ,

whereCξAdenotes the set of all finite terms t with operations fromAand variables
from ξ such that that every variable occurs at least once in t.

(b) Similarly, we set

TA ∶= (TξA)ξ∈Ξ ,

where TξA is the set of all t ∈ CξA such that
◆ every variable x ∈ ξ appears exactly once in t and
◆ the whole term t does not consist of just a variable.

3

We call the element of TA linear trees, those of CA non-linear ones.
(c) For a function f ∶ A→ B, we denote byC f ∶ CA→ CB and T f ∶ TA→ TB

the functions applying f to each operation in the given term. (The variables are
left unchanged.) ⌟

In the following we will frequently treat terms t ∈ CξA as labelled trees of the
form t ∶ dom(t) → A + ξ, where dom(t) denotes the set of vertices of t. This
allows us to use terminology from terms and trees interchangeably.

Definition 2.2. Let t ∈ CξA.
(a) Let x be a variable. We call a vertex v of t an x-successor of a vertex u if it is

the successor of u that corresponds to the argument of the operation t(u) for the
variable x.

(b) We denote the subtree of t attached at a vertex v by t∣v . ⌟

There are two natural operations on the above sets of terms.

Definition 2.3. Let A be a set.
(a) The function flat ∶ CCA→ CA takes a term where each operation is itself

a term over A and substitutes each of the small terms into its parent. That is,
inductively,

flat(s(t0 , . . . , tn−1)) ∶= s(flat(t0), . . . , flat(tn−1)) ,

for s ∈ CA and t i ∈ CCA.
(b) Theoperation sing ∶ A→ CAmaps each element a ∈ A to the corresponding

term consisting just of a and variables. That is,

sing(a) ∶= a(x0 , . . . , xn−1) , for a ∈ Aξ with ξ = {x0 , . . . , xn−1} .

(c) We denote the corresponding restrictions TTA→ TA and A→ TA to T by
the same names flat and sing. ⌟

Example. Given the terms

s(x , y, z) ∶= a(a(x , y), b(z)) , u(x) ∶= a(c, x) ,
t(x , y) ∶= b(a(x , y)) , v(x) ∶= b(a(x , x)) ,

we have

flat(s(t(y, x), u(z), v(y)))
= a(a(b(a(y, x)), a(c, z)), b(b(a(y, y)))) . ⌟

4

Having introduced two different kinds of terms, we can define the type of
algebras we are interested in as follows.

Definition 2.4. Let M be one of C or T.
(a) An M-algebra is a pair A = ⟨A, π⟩ consisting of a set A and a product

π ∶MA→ A satisfying the axioms

π ○ sing = id and π ○Mπ = π ○ flat .

The first one is called the unit law, and the second one the associative law. C-
algebras are also called clones and T-algebras are preclones.

(b) A morphism φ ∶ A→B of M-algebras is a function φ ∶ A→ B commuting
with the respective products in the sense that

π ○Mφ = φ ○ π . ⌟
Remark. For readers familiar with category-theoretic terminology, note that
the triples ⟨C, flat, sing⟩ and ⟨T, flat, sing⟩ form monads on SetΞ , and that our
notion of an algebra is that of an Eilenberg-Moore algebra for the corresponding
monad. ⌟
Examples. (a) Given an algebraic signature Σ, we can associate the so-called
polynomial clone Pol(A) with a Σ-algebra A as follows. The domain Pol∅(A)
consists of all elements of A while Polξ(A), for ξ ≠ ∅, consists of all functions
f ∶ Aξ → A of the form

f (ā) ∶= s(ā, c̄) ,
for some Σ-term s(x̄ , ȳ) and some tuple c̄ of elements of A. The product π(t) of
a term t ∈ CPol(A) is just the composition of functions.
Conversely, we can associate with every clone C an algebra Alg(C) over the

signature Σ ∶= C as follows. For the universe we take the set C∅ consisting of
all elements of arity ∅. For every c ∈ Cξ , we add one operation c ∶ C ξ

∅ → C∅
mapping a tuple ā to the product π(s), where s is the term c(ā).

(b) For every set A, the pair ⟨MA, flat⟩ forms an M-algebra called the free
M-algebra over A.

(c) Finally, with every M-algebra A we can associate a semigroup SG(A)
consisting of all elements of A of sort {z} (for some arbitrary but fixed variable z).
The product of SG(A) is defined by

ab ∶= π(a(b(z))) , for a, b ∈ A{z} ,

where the product on the right-hand side is computed in A. ⌟

5

Remark. Every C-algebra A = ⟨A, π⟩ has an associated T-algebra A∣T ∶= ⟨A, π0⟩
where π0 ∶ TA→ A is the restriction of π ∶ CA→ A. ⌟

We will frequently consider elements a ∈ Aξ of an M-algebra as operations
Aξ
∅ → A∅, and elements t ∈MA as terms over these operations.

Definition 2.5. Let A be a T-algebra or a C-algebra. For a ∈ Aξ and c̄ ∈ Aξ , we
set

a(c̄) ∶= π(t) ,

where the term t is obtained from applying the operation a to the terms sing(cx),
for every x ∈ ξ. Hence, if cx has sort ηx , then the sort of a(c̄) is ⋃x∈ξ ηx . ⌟

We will use T-algebras to recognise languages of finite trees.

Definition 2.6. Let Σ be a finite set.
(a) A language K ⊆ TξΣ is recognised by a T-algebra A if there exists a morph-

ism φ ∶ TΣ → A and a set P ⊆ Aξ such that

K = φ−1[P] .

(b) We denote first-order logic by FO. When using FO-formulae to define
subsets of CΣ or TΣ, we represent a tree t ∈ CξΣ as a relational structure of the
form

⟨dom(t), ≤, (sucx)x , (Pc)c∈Σ+ξ⟩

where ≤ is the tree order (with the root as minimal element), sucx is the x-th
successor relation (connecting ever vertex with the successor corresponding to the
argument for the variable x), and Pc is the set of vertices labelled by the element
c ∈ Σ + ξ. ⌟

We can characterise a class of languages by describing the class of algebras recog-
nising them. For our purposes, we are interested in the following two properties.

Definition 2.7. Let A be an T-algebra.
(a) A is finitary if it is finitely generated and Aξ is finite, for every sort ξ ∈ Ξ.
(b) A is FO-definable if there exists a finite set C ⊆ A of generators and, for

every a ∈ A, there is an FO-formula φ such that

π(t) = a iff t ⊧ φ , for every t ∈ TC . ⌟

6

Theorem 2.8 ([4]). Let Σ be a finite set and K ⊆ TξΣ.
(a) K is regular if, and only if, it is recognised by a finitary T-algebra.
(b) K is FO-definable if, and only if, it is recognised by an FO-definable T-algebra.

Remark. The second statement is not true for C-algebras. This is why we have to
work with T-algebras below. ⌟

In general, there can be many algebras recognising a given language K. But
there always is a minimal one. It is called the syntactic algebra Syn(K) of K.

Definition 2.9. Let K ⊆ TξΣ. A T-algebra A is the syntactic algebra of K if there
exists a morphism η ∶ TΣ → A recognising K such that, for every surjective
morphism φ ∶ TΣ →B recognising K there exists a unique morphism ρ ∶B→ A
with η = ρ ○ φ. ⌟

The following result is folklore. It seems to have first been observed in [20].
A detailed proof in the terminology of this article can be found in [4].

Theorem 2.10. Every regular language K ⊆ TξΣ has a syntactic algebra Syn(K).

We can use syntactic algebras to study FO-definability because of the following
observation.

Theorem 2.11 ([4]). A language K ⊆ TξΣ is FO-definable if, and only if, its syntactic
algebra Syn(K) is FO-definable.

3 Existing results
To put this article into context, let us briefly mention some of the known results
about first-order definable tree languages from the literature. We start with a result
explaining why we have to work with T instead of C : languages of non-linear
trees are not closed under inverse homomorphisms.

Proposition 3.1 (Potthoff [18]). There exist finite alphabets Σ and Γ, a morphism
φ ∶ CΣ → CΓ, and an FO-definable language K ⊆ CξΓ such that the preimage
φ−1[K] ⊆ CξΣ is not FO-definable.

As already mentioned above, several non-effective characterisations are known
of when a tree language is FO-definable. We start with a characterisation in terms
of star-free expressions.

7

Definition 3.2. Let Σ be an alphabet and ξ ∈ Ξ a sort. A star-free expression over Σ
of sort ξ is a finite term α built up from the following operations:
◆ the empty set ∅,
◆ single letters a(x0 , . . . , xn−1), where a ∈ Σ is a letter of arity n and x0 , . . . , xn−1

is an enumeration (without repetitions) of ξ,
◆ union + and complement ∼,
◆ concatenation α ⋅z β where α is an expression of sort η + {z}, β one of sort ζ ,

and we have η ∪ ζ = ξ and η ∩ ζ = ∅.
The value ⟦α⟧ ⊆ TξΣ of an expression α of sort ξ is defined inductively as follows.

⟦∅⟧ ∶= ∅ , ⟦α + β⟧ ∶= ⟦α⟧ ∪ ⟦β⟧ ,
⟦a(x0 , . . . , xn−1)⟧ ∶= {a(x0 , . . . , xn−1)} , ⟦∼α⟧ ∶= TξΣ ∖ ⟦α⟧ ,

and ⟦α ⋅z β⟧ is the set of all trees obtained from some tree s ∈ ⟦α⟧ by replacing
the leaf with label z by some tree t ∈ ⟦β⟧. ⌟

Theorem 3.3 (Heuter [14]). A language K ⊆ TξΣ is FO-definable if, and only if, it
is the value of some star-free expression.

Note that this result is not true when working with star-free expressions based
on trees in CΣ, i.e., expressions where we allow a variable to appear several times.
In fact, we have the following result for such expressions.

Theorem 3.4 (Potthoff, Thomas [19]). Let Σ be an alphabet without unary letters.
A language K ⊆ CξΣ is is the value of some star-free expression over C if, and only
if, it is regular.

The characterisation of FO-definable word languages in terms of aperiodic
semigroups generalises only partially to tree languages.

Definition 3.5. (a) A semigroup S is aperiodic if it has no subalgebra that forms
a group.

(b) Chain logic is the semantic fragment of monadic second-order logic where
quantification is restricted to sets that form chainswith respect to the tree ordering.

⌟

Remark. Equivalently, we can defineS to be aperiodic if there exists some con-
stant n < ω such that an = an+1, for all a ∈ S. ⌟

8

Theorem 3.6 (Thomas [20]). A language K ⊆ TξΣ is FO-definable if, and only if,
K is definable in chain logic and SG(Syn(K)) is aperiodic.

It is decidable whether SG(Syn(K)) is aperiodic, but the decidability of defin-
ability in chain logic is still open. Furthermore, it is known that aperiodicity alone
is not sufficient.

Proposition 3.7 (Heuter [14]). There exists a language K ⊆ TξΣ such that SG(Syn(K))
is aperiodic, but K is not FO-definable.

Finally, there are three purely algebraic characterisations that are based on
a generalisation of the notions of a block product and a wreath product from
semigroup theory. To keep this section short we omit the definitions of the algebras
and operations in question, hoping to convey at least the flavour of the statements.
The interested reader is referred to the original papers.

Theorem 3.8 (Bojańczyk, Straubing, Walukiewicz [9]). A language K ⊆ TξΣ
is FO-definable if, and only if, it is recognised by an iterated wreath product of
aperiodic path algebras.

Theorem 3.9 (Bojańczyk, Michalewski [8]). A language K ⊆ TξΣ is FO-definable
if, and only if, SG(Syn(K)) is aperiodic and K is recognised by an iterated wreath
product of matrix powers of the 2-element semilattice.

Theorem 3.10 (Ésik, Weil [12]). A language K ⊆ TξΣ is FO-definable if, and only if,
Syn(K) belongs to the smallest pseudo-variety that contains a certain T-algebra T∃
and that is closed under block products.

The problem with making these characterisations effective is the we do not
know how to compute the number of iterations of the wreath product or block
product needed.

4 Congruences
The theorems from the end of Section 2 allow us to use algebraic techniques
to study FO-definable languages. Unfortunately, the algebraic tools we will use
below are formulated for C-algebras, while our results concerning FO-definable
languages require T-algebras. We therefore start by presenting a way to translate
between these two types of algebras. Going from a C-algebra to a T-algebra is
trivial: we just have to restrict the product. For the converse, we have to add

9

elements like a(x , x) that contain some variable x several times. We do so by
taking elements of the form ⟨σ , a⟩ where a is an element of the given T-algebra
and σ is a piece of additional information telling us which of the variables of a
have to be identified.

Definition 4.1. (a) Let A be a C-algebra. For an element a ∈ Aξ and a surjective
function σ ∶ ζ → ξ, we define

σa ∶= π(a(xσ(z0) , . . . , xσ(zn−1))) , where ζ = {z0 , . . . , zn−1} .

(b) For a set A, we define

XA ∶= (XξA)ξ∈Ξ ,

where

XξA ∶= ξ + { ⟨σ , a⟩ ∣ a ∈ Aζ , σ ∶ ζ → ξ surjective} .

For a function f ∶ A→ B, we define X f ∶ XA→ XB by

X f (⟨σ , a⟩) ∶= ⟨σ , f (a)⟩ .

(c) For a T-algebra A = ⟨A, π⟩, we set

XA ∶= ⟨XA, π̂⟩ ,

where the product π̂ ∶ CXA → XA is defined as follows. Given t ∈ CξXA, let
G be the multi-graph with vertices dom(t) and the following edges. There is
an x-labelled edge u → v if, and only if, u has label ⟨σ , a⟩ in t and v is the z-
successor of u in t with σ(z) = x. (There is one such edge for every z ∈ σ−1(x).)
Furthermore, there is an unlabelled edge u → v if, and only if, u is labelled by a
variable x and v is the x-successor of u in t. Let s be the tree obtained from the
unravelling of G by
◆ contracting all unlabelled edges,
◆ replacing all variables by new ones such that every variable appears exactly

once in s.
Let τ be the function mapping each new variable in s to the corresponding old
one. We set

π̂(t) ∶=
⎧⎪⎪⎨⎪⎪⎩

τ(x) if s = x is a variable,
⟨τ, π(s)⟩ otherwise. ⌟

10

We need the following properties of the operation X (further details can be
found in [5]).

Proposition 4.2. Let A be a T-algebra.
(a) XA is a C-algebra.
(b) There exists an embedding i ∶ A→ (XA)∣T which is bijective on elements of

sort ∅.

Proof. (a) The proof is straightforward but a bit tedious. The central argument is
that, given a graph G that is partitioned into several subgraphs, the unravelling
of G can be obtained by first unravelling all the subgraphs and then the resulting
graph. We omit the details, which can be found in [5].

(b) We set i(a) ∶= ⟨id, a⟩. This function is a morphism of T-algebras since the
way the product of XA is defined we have

π(Ti(t)) = i(π(t)) , for all t ∈ TA .

Remark. Using this result, we can translate everyT-algebraA into aC-algebraXA.
Unfortunately, the resulting algebra is usually not finitary. Therefore, we modify
the construction by taking a suitable quotient (see Lemma 4.6 below). ⌟

Below we will introduce an algebraic machinery for C-algebras that heav-
ily makes use of congruences. To be able to use this machinery to study FO-
definability, we have to provide a translation to T-algebras and we have to under-
stand how congruences behave under this translation.

Definition 4.3. Let A be an M-algebra.
(a) An equivalence relation θ ⊆ A× A is congruence if it induces a subalgebra

of the product A ×A, that is, if

π(Mp(u)) θ π(Mq(u)) , for every u ∈Mθ ,

where p, q ∶ A× A→ A are the two projections.
(b) We denote the minimal congruence (i.e., equality) by � and the maximal

one (i.e., the universal relation) by ⊺. ⌟

In light of our interpretation of elements a ∈ Aξ as operations Aξ
∅ → A∅, we

are particularly interested in congruences respecting this point of view.

11

Definition 4.4. Let A be a T-algebra.
(a) For an equivalence relation θ ⊆ A∅ × A∅ and elements a, b ∈ Aξ , we define

a ≃act[θ] b : iff a(c̄) θ b(c̄) , for all c̄ ∈ Aξ
∅ .

If θ = = is equality, we simplify the notation to ≃act.
(b) A congruence θ of A is saturated if θ = ≃act[θ∅].
(c) We call A reduced if ≃act is equality. ⌟

Lemma 4.5. A congruence θ is saturated if, and only if, A/θ is reduced.

As remarked above,C-algebras of the formXA are usually not finitary. But since
we are only interested in reduced algebras, we can quotient by the relation ≃act to
obtain an algebra that is both reduced and finitary.

Lemma 4.6. Let A be a T-algebra. If A is finitary, so is XA/≃act.

Proof. X∅A = A∅ is finite. Consequently, there are only finitely many functions
(X∅A)ξ → X∅A, for each fixed ξ ∈ Ξ. Since each element XξA/≃act is uniquely
determined by the function onXξA it induces, it follows that there are only finitely
many such elements.

Let us quickly show that all syntactic algebras are reduced. Therefore we can
simplify the material below by working with reduced algebras only.

Lemma 4.7. Let K ⊆ T∅Σ. Then Syn(K) is reduced.

Proof. We can define the syntactic algebra as a quotientTΣ/≈K by the equivalence
relation

s ≈K t : iff (p[s] ∈ K⇔ p[t] ∈ K) , for every context p .

Here a context is a term p ∈ T(Σ + {◻}) containing a special symbol ◻ and p[s]
denotes the term obtained from p by replacing every occurrence of ◻ by the
term s.

To see that Syn(K) is reduced, consider two elements a, b of arity n such that

a(c̄) = b(c̄) , for all tuples c̄ .

Let q ∶ TΣ → TΣ/≈K = Syn(K) be the quotient map. We fix terms s ∈ q−1(a)
and t ∈ q−1(b). To prove that a = b it is sufficient to show that s ≈K t. Hence, let

12

p be a context with p[s] ∈ K. We have to show that p[t] ∈ K. To do so we may
assume, without loss of generality, that p contains exactly one occurrence of the
symbol ◻. (Otherwise, we can proceed in several steps, in each one replacing a
single occurrence of s by t. The claim then follows by transitivity of ≈K .) Hence,
p = p0(◻(r̄)), for some terms p0 and r̄. Set c i ∶= q(r i). Then

a(c̄) = b(c̄) implies s(r̄) ≈K t(r̄) .

Since ≈K is a congruence, it follows that

p[s] = p0(s(r̄)) ≈K p0(t(r̄)) = p[t] .

Remark. This property is a notable difference to the theory for languages of
infinite trees where syntactic algebras do not need to be reduced. ⌟

Since we have to translate between clones and preclones we need to know how
the corresponding notions of a congruence are related.

Lemma 4.8. Let A be a C-algebra and θ ⊆ A × A an equivalence relation. The
following statements are equivalent.

(1) θ is a congruence of A.
(2) θ is a congruence of A∣T satisfying

a θ b implies σa θ σb , for all a, b ∈ Aξ and σ ∶ ξ → ζ .

Proof. (1)⇒ (2) is trivial. For the converse, suppose that θ satisfies (2). To show
that θ is a congruence, let u ∈ Cξθ and let s, t ∈ CA be its projections to the
two components. We can write u = σ u′, for some u′ ∈ Tζθ and some function
σ ∶ ζ → ξ. Then s = σ s′ and t = σ t′, for suitable s′ , t′ ∈ TζA. By (2), it follows that

π(s′) θ π(t′) and π(s) = σ π(s′) θ σ π(t′) = π(t) .

The next result is what is needed below to translate the algebraic machinery
from [15] to our current setting.

Lemma 4.9. Let A be a C-algebra and θ ⊆ A × A an equivalence relation. The
following statements are equivalent.

(1) θ is a saturated congruence of A.
(2) θ is a saturated congruence of A∣T.
(3) θ = ≃act[δ] , for some congruence δ of Alg(A).

13

Proof. (1)⇒ (2)⇒ (3) is trivial. For the remaining direction, suppose that θ sat-
isfies (3). To show that θ is a congruence, let u ∈ Cξθ and let s, s′ ∈ CA be its
projections to the two components. We prove that π(s) θ π(s′) by induction
on u.

If u = x is a variable, we have s = x = s′, which implies that π(s) = π(s′).
Otherwise, u = ⟨a, a′⟩(w̄), for some terms w̄. Then a θ a′ and θ = ≃act[δ] implies
that

a(c̄) δ b(c̄) , for all c̄ .

Furthermore, we have s = a(t̄) and s′ = a′(t̄′), where t i and t′i are the two
projections of w i . By inductive hypothesis, it follows that

b i ∶= π(t i) θ π(t′i) =∶ b′i , for all i .

For every tuple c̄, it therefore follows that

π(s)(c̄) = a(b̄)(c̄) δ a′(b̄)(c̄) δ a′(b̄′)(c̄) = π(s′)(c̄) .

(Here a(b̄)(c̄) denotes the term a(b0(c̄0), . . . , bn−1(c̄n−1)), where c̄ i is the sub-
tuple of c̄ corresponding to the variables in t i .) This implies that π(s) θ π(t).

5 Minimal Algebras
Our main tool will be from a branch of Universal Algebra called TameCongruence
Theory [15]. One of the basic results of this theory is a classification of algebras
up to the following notion of equivalence.

Definition 5.1. Two T-algebras A and B are polynomially equivalent if there
exists a bijection φ ∶ A∅ → B∅ such that for every element a ∈ Aξ , there exist
some element b ∈ Bζ and a surjective function σ ∶ ζ → ξ such that

φ(a(c̄)) = σb(φ(c̄)) , for all c̄ ∈ Aξ
∅ ,

and vice versa, for every b ∈ Bξ , there are an element a ∈ Aζ and a surjective
function σ ∶ ζ → ξ such that

φ(σa(c̄)) = b(φ(c̄)) , for all c̄ ∈ Aξ
∅ .

14

Here σa(c̄) (which is not defined for T-algebras) is a short-hand for

a(cσ(z0) , . . . , cσ(zn−1)) ,

where ζ = {z0 , . . . , zn−1}, ⌟

Lemma 5.2. Every T-algebra A is polynomially equivalent to A/≃act and to XA.

Proof. Note that all three algebras have the same domainA∅ of sort∅. An element
a ∈ Aξ of A can be represented by the elements [a] ∈ A/≃act and ⟨id, a⟩ ∈ XA.
Conversely, an ≃act-class [a] ∈ Aξ/≃act can be represented by the element a (and
the map id), and an element ⟨σ , a⟩ ∈ XξA by the element a and the map σ .

The classification of algebras in [15] is based upon the following elementary
building blocks.

Definition 5.3. A C-algebra A has
◆ trivial type (or type T for short) if it is polynomially equivalent to an algebra

where every operation is constant;
◆ unary type (or type U for short) if it is non-trivial and polynomially equivalent

to an algebra where every operation has arity at most 1;
◆ affine type (or type A for short) if it is polynomially equivalent to a vector

space over a finite field;
◆ boolean type (or type B for short) if it is polynomially equivalent to a 2-element

boolean algebra;
◆ lattice type (or type L for short) if it is polynomially equivalent to a 2-element

lattice;
◆ semilattice type (or type S for short) if it is polynomially equivalent to 2-element

semilattice. ⌟

It turns out that we can decompose every algebra into algebras of one of these
forms. We start with the corresponding building blocks, that is, the algebras that
have a type.

Definition 5.4. (a) A C-algebra A is simple if it has exactly two saturated congru-
ences.

(b) A C-algebra A is minimal if it has at least two elements of sort ∅ and, for
every a ∈ Aξ with ∣ξ∣ = 1, the induced function A∅ → A∅ is either constant or
bijective. ⌟

15

Theorem 5.5 ([15]). A finitary C-algebra A is minimal if, and only if, it has a type.

We are interested in subalgebras of the given algebra that are minimal.

Definition 5.6. Let A = ⟨A, π⟩ be an M-algebra whereM is one of C or T.
(a) An M-algebra C = ⟨C , π0⟩ is a subalgebra of A if C ⊆ A and the product π0

is the restriction of π ∶MA→ A to the set MC. In this case we also say that the
set C induces a subalgebra of A.

(b) A is a divisor of aM-algebraB if A is a quotient of some subalgebra of B.
(c) The localisation of A to a subset C ⊆ A∅ is

⟦C⟧act ∶= { a ∈ Aξ ∣ ξ ∈ Ξ , a(c̄) ∈ C , for all c̄ ∈ C ξ } . ⌟

Remark. Note that, when working with Σ-algebras for some algebraic signature Σ,
the above notion of a subalgebra is stronger than the usual notion from Universal
Algebra since it also allows for the removal of operations. Hence, our notion of
a subalgebra combines the notions of a subalgebra and a reduct from Universal
Algebra. ⌟

Let us check that every localisation forms a subalgebra.

Lemma 5.7. Let A be a C-algebra and C ⊆ A. The set ⟦C⟧act induces a subalgebra
of A.

Proof. Let t ∈ Cξ⟦C⟧act. To prove that π(t) ∈ ⟦C⟧act, we have to show that

π(t)(c̄) ∈ C , for all c̄ ∈ C ξ .

Hence, fix c̄ ∈ C ξ . Let t′ be the tree obtained from t by replacing each variable
x ∈ ξ by the corresponding element cx . Then π(t)(c̄) = π(t′). Furthermore,
since each operation in t′ belongs to ⟦C⟧act, it follows by induction on t′ that
π(t′) ∈ C.

Remark. It follows that ⟦C⟧act is the largest subalgebra of A that contains only
elements of sort ∅ which belong to C. ⌟

We are particularly interested in subalgebras generated by an idempotent ele-
ment as follows.

Definition 5.8. Let A be a T-algebra.

16

(a) Each element a ∈ Aξ induces a function â ∶ A∅ → A∅ by

â(c) ∶= a(c, . . . , c) .

(b) An idempotent of A is an element e ∈ Aξ with ξ ≠ ∅ satisfying

ê ○ ê = ê .

(c) For an idempotent e, we set

⟦e⟧ ∶= ⟦C⟧act , where C ∶= { ê(c) ∣ c ∈ A∅ } .

(d) We denote the set of all idempotents e ∈ A by E(A) and we define an order
on E(A) by

e ≤ f : iff ⟦e⟧ ⊆ ⟦ f ⟧ . ⌟

We usually identify two idempotents e and f if they are equivalent in this
ordering, i.e., if ⟦e⟧ = ⟦ f ⟧. In particularly, note that there are only finitely many
idempotents modulo this identification. As an example, let us consider the fol-
lowing FO-definable algebra.

Example. Let Σ ∶= {a, c} where a is binary and c a constant and let K ⊆ T∅Σ
be the language of all trees where every leaf has an even distance from the root.
Surprisingly, it can be shown [17, 18] that K is FO-definable. The syntactic algebra
Syn(K) has the following elements of sort ξ ∈ Ξ (which we identify with functions
{0, 1, �}ξ → {0, 1, �}). For every ū ∈ {0, 1}ξ , we have the elements

�ξ(d̄) ∶= � ,

0ū(d̄) ∶=
⎧⎪⎪⎨⎪⎪⎩

0 if dx = ux for all x ,
� otherwise ,

1ū(d̄) ∶=
⎧⎪⎪⎨⎪⎪⎩

1 if dx = ux for all x ,
� otherwise ,

In addition, it contains all elements generated by these. Such elements aū are of
the form

aū(d̄) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if dx = ux for all x ,
1 if dx = 1 − ux for all x ,
� otherwise .

17

for certain ū ∈ {0, 1}ξ , but not every such tuple corresponds to an element.
Tuples ū where aū exists are, for instance,

11 , 100 , 010 , 001 , 1111 , . . .

There are 3 non-trivial equivalence relations on the set Syn∅(K).
◆ The one identifying 0 and 1 is not a congruence since

a11(1, 1) = 0 ≠ � = a11(1, 0) .

◆ The one identifying 0 and � is not a congruence since

a100(1, 0, 0) = 0 ≠ � = a100(1, 0, �) .

◆ The one identifying 1 and � is not a congruence since

a11(1, 1) = 0 ≠ � = a11(1, �) .

Consequently, Syn(K) is simple.
The algebra has three idempotents E(Syn(K)) = {�{x} , 00 , 11}, and the corres-

ponding subalgebras are

⟦00⟧ = {0, �} , ⟦11⟧ = {1, �} , and ⟦�{x}⟧ = {�} .

The first two are minimal of semilattice type, while the last one is trivial. ⌟

We conclude this section with a result of [15] which generalises Theorem 5.5 to
non-minimal algebras by looking at theminimal algebras a given algebra contains.
To state the result we need to introduce some rather technical definitions. Readers
are encouraged to only skim the rest of this section and to come back later if
necessary.

Definition 5.9. Let A be a C-algebra and α < β congruences.
(a) We denote the α-class of an alement a ∈ A by [a]α .
(b) We call α, β a prime quotient of A if α < β, both congruences are saturated,

and there is no saturated congruence between α and β.
(c) An element a ∈ A{x} is αβ-separating if â[β] ⊈ α.
(d) We set

MinA(α, β) ∶= { ⟦e⟧ ∣ e ∈ E(A) a minimal αβ-separating

idempotent of A} .

18

Elements of MinA(α, β) are called αβ-minimal sets and the corresponding idem-
potents e are called αβ-minimal idempotents. For simplicity, we usually omit the
subscript A and simply write Min(α, β).

(e) The algebra A is αβ-minimal if A∅ ∈MinA(α, β).
(f) An αβ-trace is a set of the form [a]β ∩ C∅ where C ∈ Min(α, β) and

[a]β ∩ C∅ intersects at least two different α-classes. ⌟

Definition 5.10. Let A be a C-algebra, α < β two congruences of A, and X ∈
{T,U, A, B, L, S} a type. We say that A has αβ-type X if, for every αβ-trace C, the
divisor ⟦C⟧act/(α∣C) is a minimal algebra of type X. ⌟

Theorem 5.11 ([15]). Let α < β be a prime quotient of a C-algebra A. Every subal-
gebra C ∈Min(α, β) has an αβ-type.

6 Non-Definable Algebras
We have shown in Theorem 2.11 that, if we want to know whether a given lan-
guage K is FO-definable, it is sufficient to check whether its syntactic algebra
Syn(K) is FO-definable. As Syn(K) can be computed from K (for details see [3]),
we are therefore interested in decidable characterisations of when a given algebra
is FO-definable. We start by deriving several conditions implying non-definability.
Many of the following results are already mentioned (without proof) in [8], but
note that some of the difficulties and counterexamples presented there are circum-
vented by our particular technical choices regarding our algebraic framework
(like working with T-algebras instead of C-algebras).

We start with two composition lemmas for first-order logic over trees that have
been extracted from [4, 16].

Definition 6.1. For a constant m < ω, two terms s, t ∈ CξA, and two tuples of
vertices ū, v̄, we write

⟨s, ū⟩ ≡mFO ⟨t, v̄⟩ : iff s ⊧ φ(ū) ⇔ t ⊧ φ(v̄) , for all FO-formulae
φ(x̄) of quantifier-rank at most m. ⌟

Proposition 6.2 ([4]). ≡mFO is a congruence on TΣ.

Lemma 6.3 ([16]). Let s, t ∈ TΣ be trees and u, v vertices such that

⟨s, u⟩ ≡mFO ⟨t, v⟩

19

and suppose that there exists an isomorphism φ ∶ s∣u → t∣v . Then

⟨s, w̄⟩ ≡mFO ⟨t, φ(w̄)⟩ , for every tuple w̄ in s∣w .

Proof. We use a game argument (for an introduction to Ehrenfeucht-Fraïssé
games see, e.g., [11]). By assumption, Duplicator has a winning strategy in the
Ehrenfeucht-Fraïssé game between ⟨s, u⟩ and ⟨t, v⟩. We construct a strategy for
Duplicator in the game between ⟨s, w̄⟩ and ⟨t, φ(w̄)⟩ as follows. If Spoiler chooses
some vertex in the subtree attached at u or v, Duplicator replies according to the
isomorphism φ. Otherwise, Duplicator answers by using her strategy in the other
game. This strategy is clearly winning.

Lemma 6.4 ([16]). Let t ∈ T{x ,x′}{a, c} be a tree where a is a symbol of arity
greater than 1 and c a constant symbol, let s, s′ ∈ T∅Σ, for some alphabet Σ, and
let u, u′ ∈ dom(t) be two leaves. Let g0 be some function mapping each leaf of t
to s or s′ with g0(u) ≠ g0(u′), and let g1 be the function obtained from g0 by
switching the values of u and u′. Then

⟨t, u⟩ ≡mFO ⟨t, u′⟩ and s ≡mFO s′ implies t0 ≡m+1FO t1 ,

where t i is the tree obtained from t by replacing each leaf v by the tree g(v).

Proof. To show that t0 ≡m+1FO t1 we establish the back-and-forth property. Hence,
let v ∈ dom(t0). We reply with the vertex

v′ ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u′w if v = uw ,
uw if v = u′w ,
v otherwise .

We claim that

⟨t0 , v⟩ ≡mFO ⟨t1 , φ(v)⟩ .

For the proof we distinguish three cases.
First, suppose that v ≥ u. By Proposition 6.2,

⟨t, u⟩ ≡mFO ⟨t, u′⟩ and s ≡mFO s′ implies ⟨t0 , u⟩ ≡mFO ⟨t1 , u′⟩ .

Since ⟨t0∣u , v⟩ ≅ ⟨t1∣u′ , v′⟩, it follows by Lemma 6.3 that

⟨t0 , v⟩ ≡mFO ⟨t1 , v′⟩ .

20

If v ≥ u′, we proceed analogously. Finally, suppose that neither v ≥ u nor v ≥ u′.
By Proposition 6.2,

t∣w ≡mFO t∣w and s ≡mFO s′ implies t0∣w ≡mFO t1∣w ,

for every successor w of v. Furthermore, we trivially have

t[⟨⟩, v) ≡mFO t[⟨⟩, v) and ⟨t(v), v⟩ ≡mFO ⟨t(v), v⟩ .

Another application of Proposition 6.2 therefore yields

⟨t0 , v⟩ ≡mFO ⟨t1 , v⟩ .

In addition, we need the following observation by Potthoff about semilattices.

Lemma 6.5 (Potthoff [16]). Let A be a T-algebra that is a lattice and let a ∈
A{x ,y ,u ,v} be the element corresponding to the term (x ⊔ y) ⊓ (u ⊔ v). For every
0 < n < ω and every two leaves w ,w′ of the (tree corresponding to the) term an
that are not siblings, there exist constants c̄, c̄′ ∈ {�, ⊺}4n such that
◆ an(c̄) = � and an(c̄′) = ⊺ ,
◆ c i = c′i , for all i that do not correspond to w or w′ ,
◆ cw = � , cw′ = ⊺, c′w = ⊺, c′w′ = � .

Finally, we can give several different conditions implying that a given algebra is
not FO-definable. None of these results is really new, or very deep: condition (i)
is first mentioned (without proof) in [20]; (ii) follows directly from (i); (iii) has
already been mentioned (without proof) in [8]; and (iv) follows from a result
in [16]. The only part of the following theorem that can be considered new is the
translation into the framework of T-algebras.

Theorem 6.6. If A is a finitary T-algebra satisfying one of the following conditions,
it is not FO-definable.

(i) SG(A) is not aperiodic.
(ii) A is polynomially equivalent to an algebra where every operation has arity at

most 1 and at least one operation acts as a non-trivial permutation of A∅.
(iii) A is polynomially equivalent to a vector space over a finite field.
(iv) A is polynomially equivalent to a lattice or a boolean algebra.

21

Proof. (i) Since SG(A) is not aperiodic, there exists some element a ∈ A{x}
generating a finite group. For every m < ω, there is some n < ω such that
an ≡mFO an+1 (where an denotes a path consisting of n vertices labelled a and
one final vertex labelled by the variable x). Since π(an) ≠ π(an+1), A cannot be
FO-definable.

(ii) By assumption we can find, for every a ∈ Aξ , some a0 ∈ A{x} and z ∈ ξ
such that

a(c̄) = a0(cz) , for all c̄ ∈ Aξ
∅ .

Furthermore, there is at least one element a ∈ Aξ such that the corresponding
element a0 acts as a permutation of A∅. Fixing n > 0 such that an0 = id, it follows
that the set {a0 , a2

0 , . . . , an0} forms a non-trivial subgroup of SG(A). By (i), this
implies that A is not FO-definable.

(iii) We use the fact that A is polynomially equivalent to a vector space two
times: first, to find an element p ∈ A such that p(x , . . . , x , y, . . . , y) corresponds
to vector addition x + y ; and then to find an element c ∈ A∅ and indices i0 <
⋅ ⋅ ⋅ < ik−1 such that p(x0 , . . . , xn−1) corresponds to

x i0 + ⋅ ⋅ ⋅ + x ik−1 + c .

Since p(x , . . . , x , y, . . . , y) corresponds to x+y, it follows that c = 0 and k ≥ 2. Fix
some element d ∈ A∅ with d ≠ 0 and let a ∈ A{x} be the element obtained from p
by replacing x i0 by x, x i1 by d, and all other variables by 0. Then a corresponds to
the operation x+d. As the vector spaceA has a positive characteristic q, it follows
that this element a has order q > 1. In particular, SG(A) contains a non-trivial
group and the claim follows by (i).

(iv) As above, we use the fact that A is polynomially equivalent to a lattice two
times: first, to find an element p ∈ A such that

p(x , . . . , x , y, . . . , y, u, . . . , u, v , . . . , v)

corresponds to the lattice operation (x ⊔ y) ⊓ (u ⊓ v) ; and then to a lattice term t
corresponding to p(x̄ , ȳ, ū, v̄). We may assume that t is is conjunctive normal
form.
We claim that we can choose p and t such that t takes the form

(x i ⊔ y j) ⊓ (uk ⊓ v l) ⊓ s

for some indices i , j, k.l and some term s. We call an argument c̄ of t diagonal
if the components of c̄ corresponding to the variables x̄ have the same value, as

22

have the components corresponding to ȳ, those corresponding to ū, and those
corresponding to v̄.

First, note that we can simplify t as follows. If there is some clause that contains
two variables of the same type (i.e, x i , x j , or y i , y j , or u i , u j , or v i , v j , for i ≠ j)
we can replace one of them by � without affecting the value of t on diagonal
arguments.

Next, note that there cannot be a clause that is disjoint from at least one of
x̄ and ȳ and disjoint from at least one of ū and v̄. For a contradiction, suppose
otherwise. By symmetry, we may assume that this clause does not contain any
variable in ȳv̄. Let c̄ be the diagonal argument to t where the variables ȳv̄ have
value ⊺ and x̄ū have value �. Then p(c̄) = ⊺ but t(c̄) = �. A contradiction.

Finally, suppose that t does not have a clause of the form x i ⊔ y j or uk ⊔ v l . By
symmetry, we may assume the former. Then every clause contains at least one
variable from ūv̄. Let c̄ be the diagonal argument assigning ⊺ to the variables ūv̄
and � to x̄ ȳ. Then p(c̄) = � but t(c̄) = ⊺. A contradiction.

Having established the claim, let t′ be the term obtained from t by replacing
all variables except for x i , y j , uk , v l by the value ⊺, and let a ∈ A{x ,y ,u ,v} be
the element obtained from p in the same way. We conclude the proof using an
argument of Potthoff [16]. Fix a quantifier rank m < ω. For sufficiently large n < ω,
the tree tm ∈ T{⊓,⊔} corresponding to the term an has two leaves w ,w′ with

⟨tm ,w⟩ ≡mFO ⟨tm ,w′⟩ .

Let c̄, c̄′ be the constants from Lemma 6.5. Let sm be the tree obtained from tm by
replacing every c i that is equal to � by sm−1, and every c i that is equal to ⊺ by s′m−1.
Let s′m be the tree similarly obtained by using c̄′. By inductive hypothesis, we have
sm−1 ≡m−1FO s′m−1. By Lemma 6.4, this implies that sm ≡mFO s′m−1. But π(sm) = � and
π(s′m−1) = ⊺. A contradiction.

Corollary 6.7. Let A be a T-algebra that has a divisor D satisfying one of the
following conditions.
(a) SG(D) is not aperiodic.
(b) D is polynomially equivalent to an algebra where every operation has arity at

most 1 and at least one operation acts as a non-trivial permutation of D∅.
(c) D is polynomially equivalent to a vector space over a finite field.
(d) D is polynomially equivalent to a lattice or a boolean algebra.

Then A is not FO-definable.

23

Proof. For a contradiction, suppose that A is FO-definable. As the FO-definable
T-algebras form a pseudo-variety (see [4]; this is not true for C-algebras), it then
follows thatD is also FO-definable. A contradiction to the preceding theorem.

By Theorem 5.11 we obtain the following corollary.

Corollary 6.8. If A is a FO-definable T-algebra, every minimal divisor of A is
either trivial or a semilattice.

We conjecture that the converse is also true.

Conjecture. A finitary T-algebra A is FO-definable if, and only if, SG(A) is aperi-
odicand every minimal divisor of A is either trivial or a semilattice.

(Note that aperiodicity of SG(A) follows from the other condition. We have
added it for clarity.)

7 Definable Algebras
It remains to establish the converse. At the moment we are only able to provide
partial results. We start with a lemma which makes it easier to check whether an
algebra is FO-definable.

Lemma 7.1. Let A be a finitary T-algebra, C ⊆ A a finite set of generators, and
let C≠1 ⊆ C be the set of all elements c ∈ C of arity different from 1. Then A is
FO-definable if, and only if, SG(A) is aperiodic and, for every a ∈ A∅, there is some
FO-formula φa such that

π(t) = a iff t ⊧ φa , for all t ∈ T∅C≠1 and all a ∈ A∅ .

Proof. (⇒) If A is FO-definable, the existence of the formulae φa is trivial and
the condition on SG(A) follows by Theorem 6.6.
(⇐) Let a ∈ Aξ with an arbitrary sort ξ. We have to find a formula φa such

that

π(t) = a iff t ⊧ φa , for all t ∈ TξC .

We construct φa by induction on ∣ξ∣.
First suppose that ξ = ∅. Let t ∈ T∅C. For every path v0 < ⋅ ⋅ ⋅ < vn where all

vertices but the last one have arity 1, we can compute the product

t(v0) ⋅ ⋯ ⋅ t(vn−1) ⋅ t(vn)

24

since the semigroup SG(A) is aperiodic. Let t′ be the tree obtained from t by
replacing each such path by its product. Then t′ ∈ T∅C≠1 (w.l.o.g. we may assume
that C is closed under left-multiplication by elements of arity 1) and π(t′) = π(t).
By assumption, we can define the product π(t′) given t′. Since the function
mapping t to t′ is an FO-interpretation, we can define the product π(t′) also
when given t.

Next, suppose that ξ = {x} and let t ∈ TξC. For every subtree t∣v without
variables, we can compute π(t∣v) as in the case above. Replacing each of these
subtrees by the value of their product, we obtain a path s with π(s) = π(t). We
can evaluate π(s) since SG(A) is aperiodic.

Finally, suppose that ∣ξ∣ > 1 and let t ∈ TξC. Let w ∈ dom(t) be the longest
common prefix of all leaves labelled by a variable, and let (uy)y∈η be its successors.
For each y ∈ η, we can evaluate the product cy ∶= π(t∣uy) by inductive hypothesis.
Hence, we can also compute b ∶= π(t∣w). Let s(x) be the prefix of t where the
subtree t∣w is replaced by a variable. We can compute a ∶= π(s) by inductive
hypothesis. Consequently, we can also determine π(t) = a(b). All of this can be
done in first-order logic.

Let us start with the easy case of semilattices.

Lemma 7.2. Let A be a finitary C-algebra that is polynomially equivalent to a
semilattice. Then A is FO-definable.

Proof. By Lemma 7.1, we have to check two conditions. First, let us prove that
SG(A) is aperiodic. In a semilattice, every non-constant unary operation a ∈ A{x}
is of the form x ⊓ c, for some c ∈ A∅. Consequently, all elements of SG(A) are
idempotent. This implies that SG(A) is aperiodic.

It therefore remains to construct FO-formulae φa defining π−1(a), for each
a ∈ A∅. We make use of the observation that, for a tree t in a meet-semilattice,

u ≤ v implies π(t∣u) ≤ π(t∣v) .

Also note that every element a ∈ Aξ corresponds to an operation Aξ
∅ → A∅ of

the form

x0 ⊓ ⋅ ⋅ ⋅ ⊓ xn−1 or x0 ⊓ ⋅ ⋅ ⋅ ⊓ xn−1 ⊓ c ,

for x0 , . . . , xn−1 ∈ ξ and c ∈ A∅. We call the set supp(a) ∶= {x0 , . . . , xn−1} ⊆ ξ
the support of a, and c its constant term. We say that a vertex v of a term t is

25

reachable if, for every u < v, we have x ∈ supp(t(u)), where x is the variable such
that v belongs to the subtree attached at the x-successor of u.
We construct the desired FO-formula φa by induction on the number of ele-

ments b > a. Given a tree t ∈ T∅A, let t′ be the tree obtained from t by
◆ replacing every subtree whose product is greater than a by a leaf of that value

and
◆ merging these leaves into their parent vertex.
By inductive hypothesis, there exists an FO-interpretation mapping t to t′. Given t,
the formula φa states the following properties of the modified tree t′.
◆ For every reachable vertex v such that the operation t(v) has a constant term c,

we have c ≥ a.
◆ Every reachable leaf is labelled by a.
◆ Every reachable internal vertex is labelled by an operation mapping the tuple

a . . . a to a.

Our next goal is to show that, in order to define the product of a given term,
it is sufficient to be able to determine to which minimal sets it belongs. One
technical issue we have to deal with is that the notion of an idempotent is defined
for C-algebras, but here we deal with T-algebras. This means we have to use
elements of the form e(x , . . . , x) where the arity of e can be larger than 1. Such
elements do not belong to the given algebra A, but to XA.

Definition 7.3. Let A be a T-algebra and θ a congruence of A. A term t ∈ TXA
is in θ-idempotent normal form if, for every v ∈ dom(t), there exist elements
e , a ∈ XA and a function σ such that t(v) = ⟨σ , ea⟩ and e is a �θ-minimal
idempotent. ⌟

Lemma 7.4. Let A be a finitary T-algebra such that every minimal divisor is
of semilattice type, C a finite set of generators, and θ a congruence of A. There
exists a family (φc)c∈A∅ of FO-formulae such that, for every term t ∈ T∅XC in
θ-idempotent normal form,

t ⊧ φc iff π(t) = c .

Proof. Fix a tree t ∈ T∅XC which we represent as a C-labelled acyclic directed
graph G defined as follows. The vertices of G are the same as those of t. For each
vertex v with label t(v) = ⟨σ , a⟩, we label v in G by the element a and, for every
variable z of a, there is an outgoing z-labelled edge to the σ(z)-successor of v in t.

26

It follows that the unravelling of G produces a term t̂ ∈ T∅C with the same value
as t. Note that the graph G is FO-interpertable in t. (Although its unravelling t̂ is
not.)

Let ε be a function mapping each vertex v of t to some �θ-minimal idem-
potent e such that t(v) ∈ eA. We call a factor t̂[u, v̄) of t̂ an e-factor if ε(u) = e
and ε(vx) = e, for all x. An e-factor is primitive if ε(w) ≠ e, for allw ∈ [u, v̄)∖{u}.

Note that, if t̂[u, v̄) is an e-factor, we have π(t̂[u, v̄)) ∈ eA. Since the minimal
set eA∅ has semilattice type, it follows that the element π(t̂[u, v̄)) corresponds
to a semilattice term of the form

⊺ or � or x j0 ⊓ ⋅ ⋅ ⋅ ⊓ x jn−1 , for some variables .

Given an idempotent e and a set M of idempotents, we will construct formulae
ϑ�(x), ϑ⊺(x), ψ(x , y), ϑ̂�(x), ϑ̂⊺(x), and ψ̂(x , y) with the following properties.

(i) For every primitive e-factor t̂[u, v̄) of t̂ with

{ ε(w) ∣ w ∈ [u, v̄) } ⊆ M ,

we have

G ⊧ ϑ�(u′) iff π(t̂[u, v̄)) = � ,
G ⊧ ϑ⊺(u′) iff π(t̂[u, v̄)) = ⊺ ,
G ⊧ ψ(u′ ,w′) iff w = v i and π(t̂[u, v̄)) = x j0 ⊓⋯ ⊓ x jn−1

contains the variable x i ,

where u′ and w′ are the vertices of G corresponding to the vertices u and w
of t̂.

(ii) For every maximal e-factor t̂[u, v̄) of t̂ with

{ ε(w) ∣ w ∈ [u, v̄) } ⊆ M ,

we have

G ⊧ ϑ̂�(u′) iff π(t̂[u, v̄)) = � ,
G ⊧ ϑ̂⊺(u′) iff π(t̂[u, v̄)) = ⊺ ,
G ⊧ ψ̂(u′ ,w′) iff w = v i and π(t̂[u, v̄)) = x j0 ⊓⋯ ⊓ x jn−1

contains the variable x i ,

where u′ and w′ are the vertices of G corresponding to the vertices u and w
of t̂.

27

We proceed by induction on the size of M. Since the above conditions are
bisimulation-invariant, it does not matter whether the formulae we construct are
evaluated in the graph G or its unravelling t̂. For simplicity, we will therefore
construct formulae for t̂.

First note that, given a vertex u ∈ dom(t), we can use the labelling ε (which
is definable given G) to define a set of vertices v̄ such that t̂[u, v̄) is a primit-
ive/maximal ε(u)-factor (if such a set exists).

(i) Given a primitive e-factor t̂[u, v̄), let s be the tree obtained from t̂[u, v̄) by
evaluating every maximal f -factor with f ∈ M ∖ {e} and let η be the correspond-
ing labelling of s by idempotents induced by ε. Note that s is not an element of
TXC but a ‘mixed-term’ which is labelled not only by elements of XC but also by
semilattice operations �, ⊺,⊓ (each associated with some minimal set). Further-
more, the successors of ⊓-labelled vertices are annotated as either ‘relevant’ or
‘irrelevant’ depending on whether or not the operation depends on this successor.
We can use the inductive hypothesis to interpret s in t̂[u, v̄). We simplify s in
several steps as follows.

(1) For every vertex v labelled by � or ⊺, we replace the attached subtree by a
leaf labelled by the corresponding element of η(v) ⋅ A∅.

(2) For every successor v of a ⊓-labelled vertex that is labelled by ⊺, we delete
the subtree attachted at v.

(3) If some ⊓-labelled vertex v has a successor labelled �, we replace the subtree
attached at v by a leaf with value �.

Let s′ be the resulting term. Note that, by construction of s, every branch of s
contains at most two vertices labelled with the same idempotent f . Hence, the
height of s is bounded by 2 ⋅ ∣M∣. Furthermore, every subtree s∣v that does not
contain variables forms an η(v)-factor of t̂ which, by construction of s, implies
that each such subtree consists of a single leaf. Finally, by construction of s′, the
number of successors of a ⊓-labelled vertex v of s′ is bounded by the number of
variables in the subtree s′∣v . Therefore, the number of vertices of s′ is bounded
and there are only finitely many possibilities of such terms. Consequently, the
operation associated with such a term can be defined by suitable FO-formulae
ϑ�(x), ϑ⊺(x), ψ(x , y) that simply enumerate all relevant cases.

(ii) It remains to consider the case where t̂[u, v̄) is a maximal e-factor. Let
H ∶= ε−1(e) ∩ [u, v̄) be the set of vertices with labelling e. Let us call a vertex
w ∈ H reachable if we have

t̂ ⊧ ψ(w i ,w i+1) , for all i < m ,

28

where w0 , . . . ,wm is the maximal chain in H with wm = w. It follows that ϑ̂�(u)
should hold if

t̂ ⊧ ϑ�(w) , for some reachable w ∈ [u, v̄) ,

ψ̂(u, v i) should hold if v i is reachable and ϑ̂�(u) does not hold, and ϑ̂⊺(u) should
hold if ϑ̂�(u) does not hold and no v i is reachable. Each of these conditions can
be expressed in FO.

To conclude the proof, note that dom(t̂) is a maximal e-factor where e ∶= ε(⟨⟩).
Hence,

π(t) = π(t̂) =
⎧⎪⎪⎨⎪⎪⎩

⊺ if t̂ ⊧ ϑ̂⊺(⟨⟩) ,
� if t̂ ⊧ ϑ̂�(⟨⟩) .

It follows that an algebra is FO-definable if we can define the minimal sets.

Corollary 7.5. Let A be a finitary T-algebra such that every minimal divisor is of
semilattice type, C a finite set of generators, and θ a congruence of A. If there exists
a family (φD)D∈Min(�,θ) of FO-formulae such that

t ⊧ ⋁
D

φD , for every t ∈ T∅C ,

t ⊧ φD implies π(t) ∈ D , for all t ∈ T∅C and D ∈Min(�, θ) ,

then A is FO-definable.

Proof. For every v ∈ dom(t), we fix some set Dv with t∣v ⊧ φDv and an idem-
potent ev such that Dv = evA∅. Let s be the tree obtained from t by repla-
cing each label t(v) by ev t(v). Note that ev = a(x , . . . , x) for some element
whose arity might be larger than 1. Consequently, we have to go to the algebra
XA to form the product ev t(v). Therefore, the tree s belongs to T∅XC′ where
C′ ∶= { ec ∣ c ∈ C , e ∈ E(A) }. Since s is in idempotent normal form, we can
compute its product π(s) using Lemma 7.4. It therefore remains to show that
π(s) = π(t). We do so by induction on the number of vertices. Let v be the root
of s and u0 , . . . , un−1 be sequence of its successors. By inductive hypothesis, we

29

have π(s∣u i) = π(t∣u i). Therefore,

π(s) = s(v)(π(s∣u0), . . . , π(s∣un−1))
= s(v)(π(t∣u0), . . . , π(t∣un−1))
= ev t(v)(π(t∣u0), . . . , π(t∣un−1))
= evπ(t)
= π(t) ,

where the last step follows form the fact that π(t) ∈ evA∅.

It follows that, in order to compute the value of a product in FO, we only have
to determine which minimal sets it belongs to. Unfortunately, this seems to be as
difficult as the original question. Nevertheless, we have included the above result
since the construction in its proof seems to be useful for the full result.

Next, let us prove a weaker result where, instead of the minimal sets, we assume
that every simple divisor is a semilattice. (As the example at the beginning of this
section shows, this is indeed a stronger assumption.) We start with a technical
observation.

Lemma 7.6. Let A be a finitary T-algebra, θ a congruence of A, and D a θ-class.
Every tree t ∈ T∅A satisfying

π(t∣v) ∈ D , for all v ∈ dom(t) ,

belongs to T∅⟦D∅⟧act.

Proof. We have to show that every element of the form a = t(v) belongs to
⟦D∅⟧act. Fix a vertex v ∈ dom(t) and set a ∶= t(v). For x ∈ ξ, let ux be the
x-successor of v and set cx ∶= π(t∣ux). Since θ is a congruence, c̄ ∈ Dξ and
a(c̄) = π(t∣v) ∈ D implies that a(c̄′) ∈ D, for all c̄′ ∈ Dξ .

Proposition 7.7. Let A be a finitary T-algebra such that SG(A) is aperiodic and
every simple divisor D of A is a semilattice. Then A is FO-definable.

Proof. The proof is analogous to that of Lemma 7.4. Let C ⊆ A be a finite set of
generators, fix a sort ξ ∈ Ξ, and let ∆ ⊆ Ξ be a finite set of sorts such that C ⊆ A∣∆
and ξ ∈ ∆. By Lemma 7.1, it is sufficient to construct formulae defining the product
for trees t ∈ T∅C. We proceed by induction on ∣A∣∆ ∣, distinguishing three cases
based on the structure of the congruence lattice of A.

30

Every algebra A has two trivial congruences: equality � and the relation ⊺
where all elements (of the same sort) are equivalent. If these two congruences
coincide, A has a single element of every sort and it is trivially FO-definable.

Next, suppose that there are two non-trivial congruences θ , θ′ ofAwith θ∩θ′ =
�. Given a tree t ∈ T∅C we use the inductive hypothesis to compute the product
of t in the algebras A/θ andA/θ′. Since θ ∩ θ′ = � it follows that these two values
uniquely determine π(t).

It therefore remains to consider the case where there is a unique minimal
congruence θ > � (which might be equal to ⊺). We proceed similarly as in the
proof of Lemma 7.4. Fix t ∈ T∅C and let ρ be a function mapping each vertex v of t
to the class [π(t∣v)]θ . Note that ρ is definable since, by inductive hypothesis, the
algebraA/θ is FO-definable.We call a factor t[u, v̄) of t aD-factor if ρ(u) = D and
ρ(vx) = D, for all x. A D-factor is primitive if ρ(w) ≠ D, for all w ∈ [u, v̄) ∖ {u}.

Note that, by Lemma 7.6, we have

π(t[u, v̄)) ∈ ⟦D⟧act , for every D-factor [u, v̄) .

Since ⟦D⟧act is polynomially equivalent to a semilattice, it follows that the element
π(t[u, v̄)) corresponds to a semilattice term of the form

⊺ or � or x j0 ⊓ ⋅ ⋅ ⋅ ⊓ x jn−1 , for some variables .

Given a class D and a set M of θ-classes, we will construct formulae ϑ�(x),
ϑ⊺(x), ψ(x , y), ϑ̂�(x), ϑ̂⊺(x), and ψ̂(x , y) with the following properties.

(i) For every primitive D-factor t[u, v̄) of t with

{ ρ(w) ∣ w ∈ [u, v̄) } ⊆ M ,

we have

t ⊧ ϑ�(u) iff π(t[u, v̄)) = � ,
t ⊧ ϑ⊺(u) iff π(t[u, v̄)) = ⊺ ,
t ⊧ ψ(u,w) iff w = v i and π(t[u, v̄)) = x j0 ⊓⋯ ⊓ x jn−1

contains the variable x i .

(ii) For every maximal D-factor t[u, v̄) of t with

{ ρ(w) ∣ w ∈ [u, v̄) } ⊆ M ,

31

we have

t ⊧ ϑ̂�(u) iff π(t[u, v̄)) = � ,
t ⊧ ϑ̂⊺(u) iff π(t[u, v̄)) = ⊺ ,
t ⊧ ψ̂(u,w) iff w = v i and π(t[u, v̄)) = x j0 ⊓⋯ ⊓ x jn−1

contains the variable x i .

We proceed by induction on the size of M.
First note that, given a vertex u ∈ dom(t), we can use the labelling ρ to define

a set of vertices v̄ such that t[u, v̄) is a primitive/maximal ρ(u)-factor (if such a
set exists).

(i) Given a primitive D-factor [u, v̄), let s be the tree obtained from t[u, v̄) by
evaluating every maximal E-factor with E ∈ M∖{D} and let η be the correspond-
ing labelling of s by θ-classes induced by ρ. Note that s is not an element ofTC but
a ‘mixed-term’ which is labelled not only by elements of C but also by semilattice
operations �, ⊺,⊓ (each associated with some minimal set). Furthermore, the
successors of ⊓-labelled vertices are annotated as either ‘relevant’ or ‘irrelevant’
depending on whether or not the operation depends on this successor. We can
use the inductive hypothesis to interpret s in t[u, v̄). We simplify s in several
steps as follows.

(1) For every vertex v labelled by � or ⊺, we replace the attached subtree by a
leaf labelled by the corresponding element of η(v) ⋅ A∅.

(2) For every successor v of a ⊓-labelled vertex that is labelled by ⊺, we delete
the subtree attachted at v.

(3) If some ⊓-labelled vertex v has a successor labelled �, we replace the subtree
attached at v by a leaf with value �.

Let s′ be the resulting term. Note that, by construction of s, every branch of s
contains at most two vertices labelled with the same class E. Hence, the height
of s is bounded by 2 ⋅ ∣M∣. Furthermore, every subtree s∣v that does not contain
variables forms an η(v)-factor of t which, by construction of s, implies that each
such subtree consists of a single leaf. Finally, by construction of s′, the number of
successors of a ⊓-labelled vertex v of s′ is bounded by the number of variables in
the subtree s′∣v . Consequently, the number of vertices of s′ is bounded and there
are only finitely many possibilities of such terms. Consequently, the operation
associated with such a term can be defined by suitable FO-formulae ϑ�(x), ϑ⊺(x),
ψ(x , y) that simply enumerate all relevant cases.

32

(ii) It remains to consider the case where t[u, v̄) is a maximal D-factor. Let
H ∶= ρ−1(D) ∩ [u, v̄) be the set of vertices with labelling D. Let us call a vertex
w ∈ H reachable if we have

t ⊧ ψ(w i ,w i+1) , for all i < m ,

where w0 , . . . ,wm is the maximal chain in H with wm = w. It follows that ϑ̂�(u)
should hold if

t ⊧ ϑ�(w) , for some reachable w ∈ [u, v̄) ,

ψ̂(u, v i) should hold if v i is reachable and ϑ̂�(u) does not hold, and ϑ̂⊺(u) should
hold if ϑ̂�(u) does not hold and no v i is reachable. Each of these conditions can
be expressed in FO.

To conclude the proof, note that dom(t) is a maximal D-factor where D ∶=
ρ(⟨⟩). Hence,

π(t) =
⎧⎪⎪⎨⎪⎪⎩

⊺ if t ⊧ ϑ̂⊺(⟨⟩) ,
� if t ⊧ ϑ̂�(⟨⟩) .

In light of the above two results, it remains to settle the following question.

Open Question. Given a reduced simple T-algebra A where every �⊺-minimal set
has semilattice type. Does there exist a family of FO-formulae that, given a term
t ∈ TA, computes (some of) the �⊺-minimal sets containing π(t)?

8 Conclusion
We have derived several necessary and sufficient conditions on when a tree lan-
guage K is first-order definable. We have seen in Corollary 6.8 that, if K is FO-
definable, every minimal divisor of its syntactic algebra Syn(K)must be either
trivial or (polynomially equivalent to) a 2-element semilattice. We could only
establish the converse using additional assumptions: Corollary 7.5 assumes that
the minimal sets of Syn(K) are definable, while Proposition 7.7 assumes that all
simple subalgebras are semilattices.
What is missing for a full characterisation of first-order logic? In light of

Theorem 3.6, there seem to be three conditions for FO-definability: (i) regularity,
(ii) aperiodicity, and (iii) the fact that each FO-formula only speaks about a

33

bounded number of branches of the tree. In this article we have focussed on
aperiodicity. The condition in Corollary 6.8 seems to capture this part of the
characterisations to a sufficient degree. For further progress, it seems the focus
should be on (iii), that is, to try to find a characterisation for definability in chain
logic.

References
[1] M. Benedikt and L. Segoufin, Regular tree languages definable in FO and in

FOmod , ACM Transactions on Computational Logic, 11 (2009).
[2] A. Blumensath, The Expansion Problem for Infinite Trees. submitted.
[3] , Regular Tree Algebras, Logical Methods in Computer Science, 16 (2020),

pp. 16:1–16:25.
[4] , Algebraic Language Theory for Eilenberg–Moore Algebras, Logical Methods in

Computer Science, 17 (2021), pp. 6:1–6:60.
[5] , The Power-Set Operation for Tree Algebras, Logical Methods in Computer

Science, 19 (2023), pp. 9:1–9:47.
[6] M. Bojaczyk, Decidable Properties of Tree Languages, PhD Thesis, University of

Warsaw, 2004.
[7] M. Bojaczyk, Algebra for trees, in Handbook of Automata Theory, J.-É. Pin, ed.,

European Mathematical Society, 2021, pp. 107–132.
[8] M. Bojaczyk and H. Michalewski, Some connections between universal algebra

and logics for trees. arXiv:1703.04736, unpublished.
[9] M. Bojaczyk, H. Straubing, and I. Walukiewicz,Wreath products of forest

algebras, with applications to tree logics, Logical Methods in Computer Science, 8
(2012).

[10] M. Bojaczyk and I. Walukiewicz, Forest Algebras, in Logic and Automata:
History and Perspectives, J. Flum, E. Grädel, and T. Wilke, eds., Amsterdam
University Press, 2007, pp. 107–132.

[11] H.-D. Ebbinghaus and J. Flum, Finite Model Theory, Springer Verlag, 1995.
[12] Z. Ésik and P. Weil, Algebraic Characterization of Logically Defined Tree Languages,

International Journal of Algebra and Computation, 20 (2010), pp. 195–239.
[13] T. Hafer andW. Thomas, Computation Tree Logic CTL* and Path Quantifiers in the

Monadic Theory of the Binary Tree, in Automata, Languages and Programming, 14th
International Colloquium, ICALP87, Karlsruhe, Germany, July 13–17, 1987,
Proceedings, T. Ottmann, ed., vol. 267 of Lecture Notes in Computer Science,
Springer, 1987, pp. 269–279.

34

[14] U. Heuter, First-Order Properties of Trees, Star-Free Expressions, and Aperiodicity,
RAIRO Theor. Informatics Appl., 25 (1991), pp. 125–145.

[15] D. Hobby and R. McKenzie, The Structure of Finite Algebras, American
Mathematical Society, 1988.

[16] A. Potthoff, Modulo counting quantifiers over finite trees, in CAAP ’92, 17th
Colloquium on Trees in Algebra and Programming, Rennes, France, February
26–28, 1992, Proceedings, J. Raoult, ed., vol. 581 of Lecture Notes in Computer
Science, Springer, 1992, pp. 265–278.

[17] , Logische Klassifizierung regulärer Baumsprachen, Ph. D. Thesis, Universität
Kiel, Kiel, 1994.

[18] , First-order logic on finite trees, in TAPSOFT’95: Theory and Practice of
Software Development, 6th International Joint Conference CAAP/FASE, Aarhus,
Denmark, May 22–26, 1995, Proceedings, P. D. Mosses, M. Nielsen, and M. I.
Schwartzbach, eds., vol. 915 of Lecture Notes in Computer Science, Springer, 1995,
pp. 125–139.

[19] A. Potthoff andW. Thomas, Regular tree languages without unary symbols are
star-free, in Fundamentals of Computation Theory, 9th International Symposium,
FCT ’93, Szeged, Hungary, August 23–27, 1993, Proceedings, Z. Ésik, ed., vol. 710 of
Lecture Notes in Computer Science, Springer, 1993, pp. 396–405.

[20] W. Thomas, Logical aspects in the study of tree languages, in CAAP’84, 9th
Colloquium on Trees in Algebra and Programming, Bordeaux, France, March 5–7,
1984, Proceedings, B. Courcelle, ed., Cambridge University Press, 1984, pp. 31–50.

35

	Introduction
	Tree Algebras
	Existing results
	Congruences
	Minimal Algebras
	Non-Definable Algebras
	Definable Algebras
	Conclusion

