
G S-O L,

S T,  N

F

Achim Blumensath

nd September 

According to a theoremof Courcellemonadic second-order logic
and guarded second-order logic (where one can also quantify over
sets of edges) have the same expressive power over the class of all
countable k-sparse hypergraphs. In the first part of the present paper
we extend this result to hypergraphs of arbitrary cardinality. In the
second part, we present a generalisation dealing with methods to
encode sets of vertices by single vertices.

ACM Subject Classification. .. Graph¿eory—Hypergraphs,
.. Mathematical Logic—Model ¿eory.

Guarded second-order logic (GSO) is the variant of monadic second-order
logic (MSO) where one can not only quantify over sets of vertices but also over
sets of edges. ¿is modification results in a large increase of expressive power.
Statements that can be expressed in guarded second-order logic, but not in mo-
nadic second-order logic, include the existence of certain minors in a graph and
the existence of Hamiltonian paths.
¿e high expressive power of guarded second-order logic means that most

GSO-theories are quite complicated. In [] Seese has shown that every class of
graphs with infinite tree width has an undecidableGSO-theory.¿is result imme-
diately generalises to hypergraphs. It follows that all classes of hypergraphs with
a decidableGSO-theory are k-sparse, for some k, which roughlymeans that their



members have few edges. For classes of countable k-sparse hypergraphs, Cour-
celle [] has shown that every GSO-formula is equivalent to an MSO-formula
over such a class. It follows that over every class of countable hypergraphs with
a decidable GSO-theory guarded second-order logic and monadic second-order
logic have the same expressive power. Unfortunately, the proof of ¿eorem .
in [] contains an error. In the first part of the present article we give a new proof
of this theorem. In addition, we extend the result from countable hypergraphs to
hypergraphs of arbitrary cardinality.
When we look at the results of the first part we see that most of them concern

the coding of sets of vertices by single vertices. In the abstract, this problem can
be states as follows: given a set F ⊆ ℘(V) of finite sets of vertices, find a definable
function f ∶ F → V that is injective. In our concrete case, F ∶= E is the set of
edges. In the second part of the paper we consider more general instances of this
problem where F can be arbitrary. ¿is generalisation is inspired by a result of
Colcombet and Löding [] on set interpretations.¿eir main technical result is a
method to transform a definable finite-to-one function F → V into an injective
one. Colcombet and Lödung consider as background structure only the infinite
binary tree. Belowwe show that using guarded second-order parameters, i.e., sets
of edges, we can extend some of their results to arbitrary graphs.
¿e overview of the article is a follows. We start in Section  with basic defini-

tions and a survey of results on definable orientations of sparse hypergraphs. In
Section  we prove the general version of the one technical result of [] whose
proof does not extend to arbitrary cardinalities. In Section  we summarise the
consequences for the expressive power of guarded second-order logic on sparse
hypergraphs.
Section  contains the second part of the article. We study network flow prob-

lems and we show how to use flows to transform definable finite-to-one maps
into injective ones.

 O   

Let us fix our terminology regarding graphs and hypergraphs. When we say
‘graph’ we will mean an undirected one. Undirected graphs will always be sim-
ple and loop free, whereas directed graphs will be simple, but they may contain
loops. When dealing with hypergraphs we will sometimes allow multiple edges.
Such a hypergraph is a two-sorted structure ⟨V , E, I⟩ where V is the set of ver-
tices, E the set of edges, and I ⊆ V × E the incidence relation. Using sloppy



notation we will tacitly identify an edge e ∈ E of such a hypergraph with the set
{ v ∈ V ∣ ⟨v , e⟩ ∈ I } of its vertices and we write v ∈ e instead of ⟨v , e⟩ ∈ I. Simi-
larly, if F ⊆ E is a set of edges then the union⋃ F consists of all vertices incident
with at least one edge of F . We will use this notation even if there are multiple
edges.
Monadic second-order logic (MSO) extends first-order logic by variables and

quantifiers that range over sets of vertices. Similarly, guarded second-order logic
(GSO) extends first-order logic by variables and quantifiers ranging over sets of
vertices or sets of edges (for detailed definitions see []). We will also consider
weak monadic second-order logic (WMSO) where quantification is restricted to
finite sets of vertices.

Definition .. Let H = ⟨V , E⟩ be a hypergraph.
(a) We say that H has rank m if every edge of H has at most m vertices.
(b) A subhypergraph of H is a hypergraph H = ⟨V , E⟩ with V ⊆ V and

E ⊆ E.
(c) Let C ⊆ V . ¿e subhypergraph induced by C is

H∣C ∶= ⟨C , E∣C⟩ with E∣C ∶= { e ∈ E ∣ e ⊆ C } .

In order to translate GSO-formulae into MSO-formulae, we have to encode
sets of edges by sets of vertices. A simple way to do so consists in choosing an
orientation of the hypergraph, i.e., a function assigning to each edge one of its
vertices.

Definition .. Let H = ⟨V , E⟩ be a hypergraph.
(a) An orientation of H is a function f ∶ E → V with f (e) ∈ e, for all e ∈ E.

We say that a formula φ(x ,Y) defines an orientation f of H if we have

H ⊧ φ(a, e) iff f (e) = a , for all a ∈ A and e ∈ E .

(b) An orientation f is bounded by k if

∣ f −(a)∣ ≤ k , for all a ∈ A .

(c) We call H MSO-orientable if there exist an MSO-formula φ(x ,Y ; P̄) with
parameters Pi ⊆ V defining an orientation of H. Similarly, we say that H is GSO-
orientable if there exist aGSO-formula φ(x ,Y ; P̄, Q̄)with parameters Pi ⊆ V and
Q i ⊆ E defining an orientation of H.
¿is is called a semi-orientation in [].



In this paper we are mainly interested in sparse hypergraphs, i.e., hypergraphs
with few edges.

Definition .. A hypergraphH = ⟨V , E⟩ is k-sparse if

∣E∣X ∣ ≤ k ⋅ ∣X∣ , for every finite set X ⊆ V .

Lemma .. Let G = ⟨V , E⟩ be a graph.
(a) If the degree of G is at most k, then G is k-sparse.

(b) If G is planar, then it is -sparse.

Proof. (a) If X = ⟨X , F⟩ is a finite induced subgraph ofG then

 ⋅ ∣F ∣ = ∑
v∈X

deg(v) ≤ k ⋅ ∣X∣ .

(b) ¿is follows from the fact that every planar graph with n vertices has at
most n −  edges (see, e.g., Corollary .. of []).

In the next section we will prove that every hypergraph of bounded rank is
GSO-orientable. In the remainder of this section we show that k-sparse hyper-
graphs are evenMSO-orientable. For countable hypergraphs these results are all
due to Courcelle []. ¿e only thing new in the present section are two applica-
tions of the compactness theorem for first-order logic to extend the results to
uncountable hypergraphs.¿e proofs in Section , on the other hand, aremostly
new.

Lemma .. A hypergraphH = ⟨V , E⟩ (possibly with multiple edges) of finite rank
is k-sparse if and only if there exists an orientation of H that is bounded by k.

Proof. For (⇐), let X ⊆ V be finite. ¿en

∣E∣X ∣ ≤ ∑
a∈X

∣ f −(a)∣ ≤ k ⋅ ∣X∣ .

(⇒) First, let us consider the case where H is finite. If f is an arbitrary orien-
tation of H then

∑
a∈V

∣ f −(a)∣ = ∣E∣ ≤ k ⋅ ∣V ∣ .

In [] such hypergraphs are called uniformly k-sparse. Courcelle also introduces a notion of a
k-sparse graph. Since uniform sparsity is the more robust notion, and the only one we will use
in this paper, we have changed terminology for brevity. A related notion is the arboricity of a
graph (see, e.g., Section . of [])



Hence, if there is some element a ∈ V with ∣ f −(a)∣ > k then theremust be some
other element b ∈ V with ∣ f −(b)∣ < k. Let us define the weight of an orientation
by

w(f) ∶=∑{ ∣ f −(a)∣ − k ∣ a ∈ V , ∣ f −(a)∣ > k } .

We have to construct an orientation of weight . To do so we transform an ori-
entation f with w(f) >  into one with smaller weight. Given f , fix an element
a ∈ V with ∣ f −(a)∣ > k. Let F ⊆ E be the smallest subset of E such that a belongs
to the set U ∶= ⋃ F and we have f −(c) ⊆ F , for every element c ∈ U . ¿e subhy-
pergraphH∣U induced by U is k-sparse. Hence, there exists some element b ∈ U
with ∣ f −(b)∣ < k. By choice of F we can find a sequence of edges e , . . . , en ∈ F
with

b ∈ e , f (e i) ∈ e i+ , and f (en) = a .

We define a new orientation g by setting

g(e) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

b if e = e ,
f (e i−) if e = e i , i >  ,
f (e) otherwise .

It follows that

∣g−(x)∣ =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∣ f −(a)∣ −  if x = a ,
∣ f −(b)∣ +  if x = b ,
∣ f −(x)∣ otherwise .

Hence, w(g) < w(f). Repeating this construction we obtain an orientation f
with w(f) = .
¿e general case whereHmay be infinite can be proved using the compactness

theorem for first-order logic. Let ∆ be the elementary diagram of H (i.e., the set
of all first-order formulae with parameters that hold in H ; see [] for details)
where we considerH as a two-sorted structure ⟨V , E, I⟩ with a binary incidence
relation I. We can write down a formula φ stating that f ∶ E → V is a function
such that

◆ ⟨ f (e), e⟩ ∈ I , for all e ∈ E ,

◆ ∣ f −(a)∣ ≤ k , for all a ∈ V .



By assumption and the first part of the proof, every finite subset of ∆∪{φ} is sat-
isfiable. ¿erefore, according to the compactness theorem, there exists a model
H+ = ⟨V+, E+ , I+ , f +⟩ of ∆ ∪ {φ}. By the Diagram Lemma (see, e.g., []), we
can find an elementary embedding h ∶ H → H+ (i.e., an embedding preserving
every first-order formula). Since every edge of H has only finitely many vertices
it follows that

⟨a, h(e)⟩ ∈ I+ implies a = h(v) , for some v ∈ e .

Hence, we can define the desired orientation of H by f ∶= h− ○ f + ○ h.

It turns out that the orientation obtained via the preceding lemma is MSO-
definable.¿e following sequence of lemmas shows how we can encode such an
orientation by a finite set of unary predicates.

Definition .. Let H = ⟨V , E⟩ be a directed graph andG an undirected one.
(a) Every orientation f ofG induces an directed graphG f by orienting every

edge e ofG such that it points to the vertex f (e).
(b) An H-orientation of G consists of a pair ⟨ f , h⟩ where f is an orientation

ofG and h is a homomorphismG f → H.
We say that an H-orientation ⟨ f , h⟩ is bounded by k if f is bounded by k.
(c) We say that a family (Pv)v∈V of unary predicates encodes anH-orientation
⟨ f , h⟩ ofG if Pv = h−(v), for all v ∈ V .

Lemma .. For every finite graph H, there exists a first-order formula φH(X̄)
such that

G ⊧ φH(P̄) iff the tuple P̄ encodes an H-orientation of G .

Proof. Let u , . . . , un− be an enumeration of the vertices of H. All φH(X̄) has
to say is that the X i form a partition of the vertices (some X i may be empty) and
that there is no edge {v ,w} of G such that v ∈ X i , w ∈ Xk and ⟨u i , uk⟩ is not an
edge of H.

¿eorem . (Nešetřil, Sopena, Vignal []). For every k < ω, there exists a finite
loop-free directed graphTk with antisymmetric edge relation that has the following
property. For every finite directed graph G, with irreflexive and antisymetric edge
relation and indegree at most k, there exists a homomorphism G→ Tk .

Corollary .. Every k-sparse undirected graph has a Tk-orientation which is
bounded by k.



Proof. In Lemma ., we have shown that such a graphG = ⟨V , E⟩ has an orien-
tation f ∶ E → V that is bounded by k. It follows thatG f has indegree at most k.
By the theorem, there exists a homomorphism h ∶ G f → Tk . ¿us, ⟨ f , h⟩ is the
desired Tk-orientation.

Lemma .. For every k < ω, there exists a first-order formula ηk(X̄) such that

G ⊧ ηk(P̄) iff P̄ encodes a Tk-orientation of G that is bounded by k .

Proof. Note that the homomorphism h of aTk-orientation ⟨ f , h⟩ uniquely deter-
mines the orientation f since the edge relation of Tk is antisymmetric. In partic-
ular, the parameters P̄ encoding ⟨ f , h⟩ tell us whether f is bounded by k. Hence,
we can obtain ηk(X̄) by adding a check for boundedness to the formula φTk

(X̄)
of Lemma ..

Corollary .. ¿e class of all k-sparse undirected graphs is finitelyMSO-axioma-
tisable.

Proof. By Lemma . and Corollary . it follows that a graph G is k-sparse if
and only if it has a Tk-orientation that is bounded by k. Hence, we can use the
formula ∃X̄ηk(X̄) where ηk is the formula from Lemma ..

In order to apply these results to hypergraphs we use the following construc-
tion associating a graph with every hypergraph.

Definition .. LetH = ⟨V , E⟩ be a hypergraph with orientation f . We define a
directed graphO f (H) ∶= ⟨V , F⟩ with edge relation

F ∶= { ⟨a, b⟩ ∣ a ≠ b and there is some edge e ∈ E with
a ∈ e and f (e) = b } .

Lemma .. Let H = ⟨V , E⟩ be a k-sparse hypergraph of rank m where  < k < ω
and  < m < ω.¿en H has an orientation f that is bounded by mk such that the
edge relation ofO f (H) is antisymmetric.

Proof. First, we consider the case that H is finite. We call an element a ∈ V bad
for an orientation f ofH if there is some element b ∈ V such thatO f (H) contains
both edges ⟨a, b⟩ and ⟨b, a⟩. Note that this implies that the vertex b is also bad.
We construct a sequence of orientations (fn)n such that

∣ f −n (a)∣ ≤
⎧⎪⎪⎨
⎪⎪⎩

k if a is bad for fn ,

mk otherwise ,



and the number of bad elements decreases at every step. We start with an arbi-
trary orientation f bounded by k.
Given an orientation fn with the above properties we construct a new ori-

entation fn+ with fewer bad elements as follows. Let a be a bad element, set
X ∶= f −n (a), and let

Y ∶= { e ∣ a ∈ e and fn(e) ∈ ⋃X ∖ {a}} .

Since a is bad we have

∣X∣ ≤ k and ∣⋃X∣ ≤ k(m − ) .

Note that every element of the form b ∶= fn(e) with e ∈ Y is also bad since, by
definition of X, there is an edge e′ ∈ X with

b ∈ e′ and fn(e′) = a .

Consequently, O fn(H) contains the edges ⟨b, a⟩ (since fn(e′) = a) and ⟨a, b⟩
(since fn(e) = b). It follows that

∣Y ∣ ≤ k ⋅ ∣⋃X ∖ {a}∣ ≤ k(m − ) .

We define the new orientation fn+ by

fn+(e) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

a if e ∈ Y ,

fn(e) otherwise .

¿en we have

∣ fn+(x)−∣ ≤
⎧⎪⎪
⎨
⎪⎪⎩

k + k(m − ) if x = a ,
∣ fn(x)−∣ otherwise .

In particular, fn+ is bounded bymk. By construction, the element a is not bad
for fn+. Furthermore, if ⟨b, c⟩ is an edge in O fn+(H) with b, c ≠ a then this
edge is induced by an edge e in H with e ∉ X ∪ Y . Hence, ⟨b, c⟩ is also an edge
ofO fn(H). ¿erefore, every element that is bad for fn+ is also bad for fn .
It remains to prove the claim for infinite hypergraphsH. LetΦ be the union of

the elementary diagram of H and formulae stating that f is an orientation of H
that is bounded by mk and that O f (H) has an antisymmetric edge relation. If
M is a model of Φ then there exists an embedding h ∶ H →M and the desired



orientation of H can be obtained via h from that of M. Hence, it is sufficient
to show that Φ is satisfiable. Note that every finite subset Φ ⊆ Φ is satisfiable
since every finite substructure ofH has an orientation of the desired form. By the
compactness theorem it follows that Φ is satisfiable.

 D-  

While k-sparse hypergraphs are MSO-orientable there are hypergraphs without
anMSO-definable orientation. For instance, the countably infinite clique is such
a graph. In this section we will show that every hypergraph of bounded rank is at
least GSO-orientable. A basic tool the proof below is based on is the notion of a
spanning tree of a hypergraph. Before presenting the rather involved definition
for hypergraphs let us start with considering the simpler case of graphs.
For a countable undirected graph G we can define a depth-first spanning tree

to be a spanning tree T ofG where no edge ofG connects disjoint subtrees of T
(see [, ]; in [] such trees are called normal). To generalise this definition to un-
countable graphs we have to admit trees of arbitrary ordinal height. Such trees
are necessarily order trees, i.e., partial orders ⟨T , ≤⟩ where ≤ is a tree order, that
is, a partial order such that any two elements have an infimum and, for every
element a, the set of all elements below a is well-ordered. Unfortunately, we can-
not in general hope to have a spanning subgraph that is an order tree, since the
partial order ≤ requires too many edges.¿erefore, we will use a hybrid between
an ordinary tree and an order tree.¿e precise definition of a spanning treeT of
a graphG is as follows. Instead of requiringT to be a subgraph ofGwe consider
trees T such that

◆ for every vertex w of T with immediate predecessor v, the edge ⟨v ,w⟩ be-
longs toG, and

◆ for every vertex w of T without immediate predecessor, we can fix an
increasing chain (u i)i<α of predecessors of w with limit w and a family
(π i)i<α of paths from w to u i .

Hence, every vertex w of T is attached to its predecessors via some auxiliary
graph Fw that is either a single edge or a tree with root w whose leaves form an
increasing sequence of predecessors of w with limit w.

Example. Consider the complete graph Kκ , for an uncountable cardinal κ. We
can enumerate the vertices of Kκ as (vα)α<κ where the index α ranges over all



ordinals less than κ. As depth-first spanning tree of this graph we can use a chain
of length κ as follows. We set T ∶= ⟨T , E⟩ where

T ∶= { vα ∣ α < κ }

is the set of all vertices and

E ∶= { ⟨vα , vα+⟩ ∣ α < κ } ∪ { ⟨vα , vδ⟩ ∣ δ a limit ordinal and α < δ } .

¿e first part of E consists of the successor edges, whereas the second part con-
tains the auxiliary graphs Fvδ attaching a limit vertex vδ to its predecessors.

To generalise these ideas to hypergraphs we need a suitable replacement for
the trees Fw . Unfortunately, not every hypergraph has a spanning tree. A typical
example is the hypergraph

●

● ●

●

●

●

Instead, we will use certain tree-like hypergraphs called priority trees.

Definition .. Let H = ⟨V , E⟩ be a hypergraph.
(b) A hyperpath in H is a sequence e . . . en of edges such that

e i ∩ ek ≠ ∅ iff ∣i − k∣ ≤  .

If u ∈ e ∖ e and v ∈ en ∖ en− then we say that the hyperpath connects u and v.

Definition .. Let H = ⟨V , E⟩ be a hypergraph of rank at most m, ⟨T , F⟩ be a
subhypergraph of H with T = ⋃ F , and suppose that there are partitions

T = P ⊍ ⋅ ⋅ ⋅ ⊍ Pm− and F = F ⊍ ⋅ ⋅ ⋅ ⊍ Fm− .

(a) Suppose that T = ⟨T , F , L, (Fi)i<m , (Pi)i<m , v⟩ with L ⊆ F and v ∈ T . We
define by induction when such a tuple T is a priority tree.¿e element v is called
the root of T and L is its set of leaf edges.



We start the induction with the case where F consists of a single hyperpath
e . . . en with v ∈ e ∖ e, we have L = {en}, F = F , and P = T . ¿en T is a
priority tree.
We also call T a priority tree if it can be obtained from a priority tree T′ =
⟨T ′, F′, L′ , (F′i)i , (P

′
i)i , v⟩ with the same root v by adding a hyperpath e . . . en

such that

e i ∩ T
′ ≠ ∅ iff i =  ,

e ⊈ T ′ ,

L = L′ ∪ {en} ,
e , . . . , en ∈ Fk ,

(e ∪ ⋅ ⋅ ⋅ ∪ en) ∖ T ′ ⊆ Pk ,

where k is the minimal index such that e ∩ P
′
k = ∅. ¿is is the successor case of

the induction step.
Finally, we also have a limit case. Suppose that

T
α = ⟨Tα

, Fα
, Lα

, (Fα
i)i , (P

α
i)i , v⟩ , for α < β ,

is an increasing chain of priority trees. ¿at is, the sequences (Tα)α , (Fα)α ,
(Lα)α , (Fα

i)α , and (P
α
i)α are all increasing, and all treesT

α have the same root v.
¿en T is a priority tree if it is the union of this chain, that is, if

T = ⋃
α<β

Tα
, F = ⋃

α<β

Fα
, L = ⋃

α<β

Lα
, Fi = ⋃

α<β

Fα
i , Pi = ⋃

α<β

Pα
i .

(b) A branch of T is a hyperpath e . . . em ⊆ F satisfying the following condi-
tions:

◆ e ∖ e contains the root v of T .

◆ Let k i be the index such that e i ∈ Fk i . We have e i+ ∖ e i ⊆ Pk i+ , for every
i < m . Furthermore, if k i ≠ k i+ then k i ∶=min { l ∣ e i+ ∩ Pl ≠ ∅} .

(c) With each priority tree T we associate two relations, an order ≤ on F de-
fined by

e ≤ f : iff every branch containing f also contains e,

and an equivalence relation ∼ on T defined by

u ∼ v : iff u, v ∈ Pk , for some k , and there exists a hyperpath

e . . . em ⊆ Fk connecting u and v .



Example. Consider the following priority tree with edges a, b, c, d , e , f where
we have labelled each vertex in Pi by the index i. ¿e edge colours are given by
F = {a, b, e}, F = {c}, F = {d , f }. ¿e ordering ≤ is displayed to the right.

●


●


●


●


●


●


●


●


●


●


●


a

b
c

d

e

f

a

b c d

e f

Recall that a tree order is a partial order such that any two elements have an
infimum and, for every element a, the set of all elements below a is well-ordered.
A preorder is a reflexive and transitive relation. Every preorder⊑ induces an equiv-
alence relation ≡ ∶= ⊑ ∩ ⊑− . ¿e equivalence classes of this relation are called
⊑-classes.

Lemma .. Let T be a priority tree. ¿e order ≤ on the edges is a tree order.

¿e proof consists of a straightforward but tedious induction following the
construction of priority trees.

Lemma .. Let H = ⟨V , E⟩ be a connected hypergraph of rank at most m.
(a) For each vertex v ∈ V and every set L ⊆ E of edges, there exists a priority

tree T = ⟨T , F , L, (Fi)i , (Pi)i , v⟩ with root v such that ⋃ L ⊆ T and L ⊆ L.
(b) For every GSO-formula ϑ(x , y) (possibly with parameters), there exists an

GSO-formula φ(x , y) (with parameters) such that, if ϑ defines a well-order on L

and T is a priority tree as in (a) then φ(x , y) defines a linear order on T.

Proof. (a) Let (e i)i<α be an enumeration of L. For every i < α, we fix a hyper-
path π i = h i

 . . . h
i
m i

connecting v with h i
m i
= e i . We construct T by induction

on i. We start with the hyperpath π . At step i >  we determine the shortest
suffix h i

l . . . h
i
m i
of the path π i that meets the tree constructed so far and we add

this suffix to the tree. (If e i ⊆ T we leave the tree unchanged.)We choose the least



index k with h i
l ∩ Pk = ∅ and we put the new edges into Fk and the new vertices

into Pk . ¿e limit of this construction is the desired priority tree.
(b) ¿e equivalence relation ∼ associated with T is MSO-definable in H with

the help of the parameters T , F , Fi , and Pi . We denote the ∼-class of a vertex u
by [u]. Note that, by construction of T, [u] is a hyperpath and [u] contains a
unique leaf edge which, furthermore, is one of the ends of the hyperpath. We
denote by η(u) the suffix of the hyperpath [u] that connects u to the leaf edge
in [u].
To define the desired order on T we first construct a preorder on T by setting

x ⊑ y if and only if one of the following conditions is satisfied:

◆ x ∈ Pi and y ∈ Pk , for i < k.

◆ x , y ∈ Pk and the leaf edge in [x] is ϑ-smaller than the leaf edge in [y].

◆ x , y ∈ Pk , [x] = [y], and η(x) ⊆ η(y).

Note that we have x ⊑ y and y ⊑ x if and only if η(x) = η(y). In this case x and y
belong to the same edge e ∈ F . Hence, every ⊑-class has size at most m. Adding
m additional unary predicates Q , . . . ,Qm− such that each Q i contains at most
one element of each ⊑-class, we can define

x < y : iff x ⊑ y and (either y ⋢ x , or we have
x ∈ Q i and y ∈ Qk , for i < k) .

We have seen that every k-sparse graph has an MSO-definable orientation f
that is bounded by k. If we want to encode sets of edges via sets of vertices we
can try to encode each edge e by a pair ⟨v , i⟩ consisting of the vertex v ∶= f (e)
and a number i < k. ¿is idea requires a way to linearly order the sets f −(v).
In [] Courcelle uses depth-first spanning trees to obtain such linear orders. As
remarked above one needs to adapt the definition of a depth-first spanning tree
when one tries to extend these results to uncountable hypergraphs.

Definition .. Let H = ⟨V , E⟩ be a hypergraph of rank m and suppose that
T = ⟨T , ≤, (Fv)v∈T⟩ is a structure where ⟨T , ≤⟩ is a tree (of ordinal height) with
T ⊆ V and with every vertex v ∈ T we associate a set Fv ⊆ E of edges.We assume
that Fu ∩ Fv = ∅, for u ≠ v.
(a) ¿e set of auxiliary nodes associated to a vertex v ∈ T is

Av ∶= {v} ∪⋃Fv ∖ ⋃
x<v

Ax .



(b) For X ⊆ V , we define

B(X/T) ∶= { v ∈ T ∣ X ∩ Av ≠ ∅} and β(X/T) ∶=maxB(X/T) .

(c) T is a depth-first spanning tree of H if it satisfies the following conditions:

◆ For all u ≠ v, Au ∩ Av = ∅ and Au ∩ T = {u}.
◆ For each edge e ∈ E the set B(e/T) is nonempty and linearly ordered by ≤.

◆ ¿e vertices v ∈ T are partitioned into the following classes: () the root;
(s l)l<m a successor; (t l)l<m a limit; where the successor and limit vertices
are subdivided intom subclasses.¿is partition satisfies the following con-
ditions:

() If v has type  then it is the root of T and Fv = ∅.
(s l) If v has type s l then it is the (immediate) successor of some vertex

u ∈ T . We have Fv = {e} with v ∈ e. Futhermore, v is the only vertex
in B(e/T) of type s l and β(e ∖ {v}/T) = u.

(t l) If v has type t l then it is the limit of an increasing sequence (u i)i<γ
of vertices u i ∈ T . Fv is (the set of edges of) a priority tree with root v.
Furthermore,

{ β(e/T) ∣ e a leaf edge of Fv }

is a cofinal subset of (u i)i and v is the only vertex in B(⋃ Fv/T)with
type t l .

Proposition .. Every connected hypergraph H has a depth-first spanning tree.

Proof. If in the definition of a depth-first spanning tree we drop the condition
that B(e/T) ≠ ∅, for every edge e, thenwe obtain a structure thatwe call a partial
depth-first spanning tree. We construct an increasing sequence

⟨Tα , ≤, (Fv)v∈Tα
⟩ , α < κ ,

of such partial depth-first spanning trees with the property that, for every con-
nected component C of Uα ∶= V ∖⋃v∈Tα

Av , the set

N(C/Tα) ∶= ⋃{B(e/Tα) ∣ e ∈ E with e ∩ C ≠ ∅}

is linearly ordered by ≤. (A connected component of Uα is a maximal subset C ⊆
Uα such that the subhypergraph H∣C is connected.) ¿e limit of this sequence
will be the desired depth-first spanning tree of H.



We start by choosing an arbitrary element v ∈ V and setting T ∶= {v} and
Fv ∶= ∅. For limit ordinals δ, we defineTδ ∶= ⋃α<δ Tα . For the successor step, sup-
pose that we have already defined Tα . Fix some connected component C of Uα .
Note that N(C/Tα) is nonempty sinceH is connected.We distinguish two cases.
() If N(C/Tα) has a maximal element u then we choose some edge e with

e ∩ Au ≠ ∅ and e ∩ C ≠ ∅, and we fix some vertex v ∈ e ∩ C. We add v to Tα as
immediate successor of u and we set Fv ∶= {e}. It follows that Av = e ∩Uα . Since
B(e/Tα) contains at most ∣e ∖ {v}∣ < m vertices there is some l < m such that
B(e/Tα) contains no vertex of type s l . Hence, in the new tree Tα+ we can assign
the type s l to v.
() Suppose that N(C/Tα) has no maximal element. We choose a sequence
(e i)i<γ of edges with e i ∩ C ≠ ∅ such that the sequence (u i)i<γ defined by

u i ∶= β(e i/Tα)

is increasing and cofinal in N(C/Tα). By taking a suitable subsequence we may
assume that the set of types appearing in B(e i/Tα) is the same for every i < γ.
For each edge e i , choose some edge h i ⊆ C with h i ∩ e i ≠ ∅ and set L ∶= { h i ∣

i < γ }. We select a vertex v ∈ C and a priority tree S = ⟨S,H, L, F̄ , P̄, v⟩ such
that S ⊆ C. We define Tα+ ∶= Tα ∪ {v} where v is the limit of N(C/Tα) and we
set Fv ∶= H ∪ { e i ∣ i < γ }. It follows that Av = S ∪⋃i(e i ∩Uα).
It remains to show that the constructed tree Tα+ is a partial depth-first tree

where all sets N(C/Tα+) are linearly ordered.We start by showing that each set
B(e/Tα+)with e ∈ E is linearly ordered. If e∩Av = ∅ then B(e/Tα+) = B(e/Tα)
and we are done. Otherwise, we have B(e/Tα+) = B(e/Tα+) ∪ {v}. Note that
Av ⊆ C implies e ∩ C ≠ ∅. ¿erefore, we have B(e/Tα) ⊆ N(C/Tα). Since v is
larger than every element in N(C/Tα) the claim follows.
Let D be a connected component ofUα+ ∶= V ∖⋃x∈Tα+

Ax . We have to show
that N(D/Tα+) is linearly ordered. Since Uα+ ⊆ Uα there is some connected
component D′ of Uα containing D. If D

′ ≠ C then Uα ∖ Uα+ ⊆ C implies that
D = D′ and the set

N(D/Tα+) = N(D′/Tα)

is linearly ordered. If, on the other hand, D ⊆ C then we have

N(D/Tα+) ⊆ N(C/Tα) ∪ {v}

and the latter set is linearly ordered since v is greater than every element of
N(C/Tα).



Remark. (a) If the hypergraphH is countable thenwe can actually obtain a depth-
first spanning tree of height at most ω as follows. In the above proof, if we are
slightly more careful in choosing the vertex v that is added to the partial tree,
then we can ensure that every vertex is chosen already a er finitely many steps.
(b) Note that, strictly speaking, the above proposition is not a generalisation

of ¿eorem . of [] since we use a different notion of a depth-first spanning
tree.

Weuse depth-first spanning trees to encode orientations of a hypergraph. First,
we show that each depth-first spanning tree can be encoded by finitelymanyGSO-
parameters.

Lemma .. For every number m < ω, we can constructMSO-formulae φ(X; Z̄),
ϑ(x ,Y ; Z̄), and χ(x , y; Z̄) such that, for every connected hypergraph H of rank
at most m and each depth-first spanning trees ⟨T , ≤, (Fv)v⟩ of H, there are GSO-
parameters S̄ such that

H ⊧ φ(P; S̄) iff P ⊆ T is downward ≤-closed,

H ⊧ ϑ(v , P; S̄) iff v ∈ T and P = Av ,

H ⊧ χ(u, v; S̄) iff u, v ∈ T and u ≤ v .

Proof. We will use the following parameters:

◆ Unary predicates T, Ts l , Tt l , for l < m, containing all vertices of the cor-
responding type.

◆ F τ ∶= ⋃{ Fv ∣ v ∈ Tτ }, for every type τ.
◆ F ∶= ⋃τ F

τ .

◆ Aτ ∶= ⋃{Av ∣ v ∈ Tτ } ∖ T , for every type τ.
◆ If v is of type t l then the set Fv forms a priority tree. We use additional
parameters F t l

i and Pi , for i < m, encoding the corresponding partition

F t l = F t l
 ⊍ ⋅ ⋅ ⋅ ⊍ F

t l
m− and ⋃ F t l = P ⊍ ⋅ ⋅ ⋅ ⊍ Pm− .

Hence, for every vertex v of type t l we have a priority tree

⟨⋃ Fv , Fv , Lv , (F
t l
i ∩ Fv)i , (Pi ∩⋃ Fv)i , v⟩ .

() First, we construct the formula ϑ. To simplify our task we define separate
formulae ϑτ(x ,Y), for each type τ, such that

H ⊧ ϑτ(v , P) iff v ∈ Tτ and P = Av .



¿en we can set ϑ ∶= ⋁τ ϑτ .
If v has type  then Av = {v} and we can set

ϑ(x ,Y) ∶= Tx ∧ Y = {x} .

If the type of v is s l then Fv = {e} and Av = {v}∪(e∩As l), where e is the unique
edge in F s l containing v. Hence, we can define

ϑs l (x ,Y) ∶= Ts l x ∧ (∃e ∈ F
s l)[x ∈ e ∧ Y = {x} ∪ (e ∩ As l)] .

Finally, if v has type t l then Av is the least subset of {v} ∪ At l satisfying the
following conditions:

◆ v ∈ Y

◆ If e ∈ F t l and e ∩ Y ≠ ∅ then e ∩ At l ⊆ Y .

Hence, we can define

ϑt l (x ,Y) ∶= Tt l x ∧ Yx ∧ (∀e ∈ F
t l)(e ∩ Y ≠ ∅→ e ∩ At l ⊆ Y)

∧ ∀Z[Zx ∧ (∀e ∈ F t l)(e ∩ Z ≠ ∅→ e ∩ At l ⊆ Z)→ Y ⊆ Z]

() Next, we define a formula α(x ,Y) such that

H ⊧ α(v ,Q) iff v ∈ T and Q = B(⋃ Fv/T) .

¿e formula α(x ,Y) should state that

Y = {u ∈ T ∣ there is some e ∈ Fv with e ∩ Ax ≠ ∅ and e ∩ Au ≠ ∅} .

Using the formulae ϑτ we can write α as

α(x ,Y) ∶= ⋁
τ

[Tτx ∧ (∃e ∈ F τ)(e ∩ Ax ≠ ∅∧ e ∩ Au ≠ ∅)] .

() With the help of α we can write down the desired formulae φ and χ.

φ(X) ∶= ∀x∀Y[Xx ∧ α(x ,Y)→ Y ⊆ X] ,
χ(x , y) ∶= ∀X[φ(X)→ (Xy → Xx)] .

Lemma .. We can construct GSO-formulae ψm(x , y; Z̄), for m < ω, such that,
for every depth-first spanning tree ⟨T , ≤, (Fv)v⟩ of a connected hypergraph H of
rank m, there are GSO-parameters S̄ such that the formula ψm(x , y; S̄) defines a
preorder ⊑ with the following properties:



◆ ¿e restriction of ⊑ to T coincides with ≤.

◆ ⊑ linearly preorderes every set X ⊆ V such that B(X/T) is linearly ordered
by ≤.

◆ Each ⊑-class has at most m elements.

Proof. Let χ(x , y) and ϑ(x ,Y) be the formulae of Lemma .. For each type τ,
we define a formula ητ(x , y) linearly preordering each set Av where v is of type τ.
¿en the desired formula ψm states that either

◆ x ∈ Au and y ∈ Av for u < v, or

◆ x , y ∈ Av , for some v of type τ, and ητ(x , y) holds.

If v is of type  or s l then Av contains at most m elements and we can set

ητ(x , y) ∶= true .

For vertices of type t l we can use the formula from Lemma ..

Corollary .. We can construct GSO-formulae ψm(x , y; Z̄), for m < ω, such
that, for every depth-first spanning tree ⟨T , ≤, (Fv)v⟩ of a connected hypergraph H

of rank m, there are GSO-parameters S̄ such that the formula ψm(x , y; S̄) defines
a partial order ⊑ with the following properties:

◆ ¿e restriction of ⊑ to T coincides with ≤.

◆ ⊑ linearly orderes every set X ⊆ V such that B(X/T) is linearly ordered by ≤.

Proof. Let ⊑ be the preorder from Lemma .. Since every ⊑-class contains
at most m elements we can add m new unary predicates P , . . . , Pm− such that
P ∪ ⋅ ⋅ ⋅ ∪ Pm− = V and, we have ∣X ∩ Pi ∣ ≤ , for each ⊑-class X and all i. ¿en
we can define

u ⊑ v : iff either u ⊏ v , or

u ⊑ v , v ⊑ u , u ∈ Pi , v ∈ Pk for i < k .

¿eorem .. We can construct GSO-formulae φm(x ,Y ; Z̄), for m < ω, such
that, for every hypergraph H of rank m, there are GSO-parameters S̄ such that, the
formula φm(x ,Y ; S̄) defines an orientation of H.

Proof. Suppose that H has κ connected components C i , i < κ. For each compo-
nent C i we fix a depth-first spanning tree ⟨T i , ≤i , (F i

v)v⟩. Let S̄
i be the parame-

ters from Lemma . and Lemma .. For every edge e ∈ E, there exists a unique



component C i such that the intersection X ∶= e ∩⋃v A
i
v is finite and nonempty.

Furthermore, the set B(X/T i) is linearly ordered by ≤. Using the ordering ⊑ of
Corollary . we can write down a formula φm(v , e) stating that v is the ⊑-least
element of this set X.

Corollary .. Every hypergraph of rank m < ω is GSO-orientable.

Let us mention the following consequences of this result. For countable hyper-
graphs they are again due to Courcelle [].

Definition .. (a) A formula φ(x , y, Z) defines an edge ordering of a hyper-
graph H = ⟨V , E⟩ if, for every edge e ∈ E, the formula φ(x , y, e) defines a linear
ordering on the vertices of e.
(b) A formula φ(x , y, z) defines an neighbourhood ordering of a directed graph

G = ⟨V , E⟩ if, for every vertex v ∈ V , the formula φ(x , y, v) defines a linear
ordering on the set {u ∈ V ∣ (u, v) ∈ E }.

Lemma .. ¿ere exist GSO-formulae φm(x , y, Z; Ū), for m < ω, such that, for
every hypergraphH = ⟨V , E⟩ of rankm, there are GSO-parameters S̄ such that the
formula φm(x , y, Z; S̄) defines an edge ordering of H.

Lemma .. ¿ere existMSO-formulae φm(x , y, z; Ū), for m < ω, such that, for
every directed graph G of indegree at most m, there are MSO-parameters P̄ such
that the formula φm(x , y, z; P̄) defines a neighbourhood ordering of G.

Proof. We can apply Lemma . to the hypergraph H ∶= ⟨V , F⟩ where

F ∶= { I(v) ∣ v ∈ V } with I(v) ∶= {u ∈ V ∣ (u, v) ∈ E } .

Note that every subset S ⊆ F can be encoded by the set

I−(F) ∶= { v ∈ V ∣ I(v) ∈ F } ⊆ V .

Hence, everyGSO-formula overH can be translated into anMSO-formula overG.

 GSO  MSO

In [] Courcelle has shown that we can translate every GSO-formula φ into an
MSO-formula ψ that is equivalent to φ on all countable k-sparse hypergraphs.



Using the results of the previous sections we can li the restriction to countable
hypergraphs. ¿e proof in [] goes through unchanged since it relies only on
the statements of Lemma . and Lemma ., and on local modifications of
hypergraphs.

¿eorem .. For all numbersm, k < ω, there exists a monadic second-order inter-
pretation (with monadic parameters) that maps a k-sparse hypergraph of rank m
to its incidence structure.

Corollary .. For allm, k < ω and all formulaeφ(x̄ , Ȳ , Z̄) ∈ GSOwith first-order
variables x̄, monadic variables Ȳ , and guarded second-order variables Z̄, there ex-
ists a formula ψ(x̄ , Ȳ , Z̄) ∈ MSO with the following property: For all k-sparse hy-
pergraphs H = ⟨V , E⟩ of rank m and all parameters a i ∈ V , Pi ⊆ V , R i ⊆ E, there
exist parameters Q i ⊆ V such that

H ⊧ φ(ā, P̄, R̄) iff H ⊧ ψ(ā, P̄, Q̄) .

 S 

¿e results so far concern ways to encode edges by vertices. In this last section
we consider a more general problem. Let G = ⟨V , E⟩ be a graph. We denote by
℘fin(V) the set of all finite subsets of V . We would like to encode a given subset
F ⊆ ℘fin(V) by a set of vertices, that is, we would like to find a definable function
h ∶ F → V that is injective. For F = E this reduces to the problem considered in
the preceding sections. For arbitrary F , such a function h does not always exist.
But we will show that sometimes we can transform a given function h ∶ F → V
into an injective one.
¿ese results are inspired bywork of Colcombet and Löding [] on set interpre-

tations. Colcombet and Löding consider a power set operation P on structures.
One of their main results in a commutation theorem for interpretations and the
power set operation. ¿ey show that, given a tree T and an FO-interpretation I
such that I(P(T)) is of the formP(M), for some structureM, then there exists
a WMSO-interpretation J such that M ≅ J (T). On ingredient in the proof of
this result is a method to encode, in a definable way, finite subsets of the tree T

by single vertices.
Suppose we are given a function h ∶ F → V that we want to transform into

an injective function h ∶ F → V . Let δ(v) ∶= ∣h− (v)∣. ¿e first step in the con-
struction of h consists in finding a definable function g ∶ V → V such that



∣g−(v)∣ = δ(v), for all v. Of course, this is not always possible. For instance, if
the graph is finite and we have δ(v) > , for all vertices v. ¿erefore, we consider
only functions δ that are sparse in the sense of the following definition.

Definition .. Let G = ⟨V , E⟩ be an undirected graph.
(a) ¿e border of a subset Z ⊆ V is the set

BG(Z) ∶= E ∩ (V ∖ Z) × Z

of all edges connecting a vertex in Z with a vertex outside of Z.
(b) A distribution ofG is amap δ ∶ V → ω. For X ⊆ V , we define the shorthand

δ(X) ∶= ∑
v∈X

δ(x) .

(c) Let h ∶ X → V be an arbitrary mapping. ¿e distribution induced by h is
the function δ ∶ V → ω with

δ(v) ∶= ∣h−(v)∣ .

(d) A distribution δ is k-sparse if

δ(Z) ≤ ∣Z∣ + k ⋅ ∣BG(Z)∣ , for every Z ⊆ V .

Given a k-sparse distribution δ wewill construct the desired function g ∶ V →
V by solving a network flow problem.

Definition .. Let G = ⟨V , E⟩ be an undirected graph.
(a) A flow ofG is a function f ∶ V ×V → Z such that, for all u, v ∈ V ,

◆ f (u, v) = − f (v , u) and

◆ f (u, v) ≠  implies (u, v) ∈ E.
(b) A flow f is acyclic if there is no cycle u , . . . , um of G with f (um , u) > 

and f (u i , u i+) > , for all i < m.
(c) ¿e defect of a flow f is the distribution

d f (v) ∶= ∑
u∈V

f (v , u) .

(d) A flow f is a δ-flow if, for every v ∈ V , either

d f (v) = δ(v) −  or δ(v) =  and d f (v) =  .



(e) A flow f is edge-bounded by k if ∣ f (u, v)∣ ≤ k, for all u, v ∈ V . We call f
vertex-bounded by k if

∑
u∈V

∣ f (u, v)∣ ≤ k , for all v ∈ V .

Our aim is to show that, for every k-sparse distribution δ there is a bounded
δ-flow f and a function g ∶ V → V inducing δ. Furthermore, if δ is definable
then g should also be definable.

Definition .. Let L be a logic.
(a) A distribution δ is L-definable if there exist formulae φ i(x) ∈ L, i < k, such

that

G ⊧ φ i(v) iff δ(v) = i .

(b) Similarly, a flow f is L-definable if there exist formulae φ i(x , y) ∈ L such
that

G ⊧ φ i(u, v) iff f (u, v) = i .

Remark. Note that every edge-bounded flow can be encodedwith the help of the
GSO-parameters

S i ∶= { (u, v) ∈ E ∣ f (u, v) = i } .

For trees the problem of encoding sets by vertices has been solved by Col-
combet and Löding []. In the general case proved below the function g is only
definable with the help ofGSO-parameters, but for trees we can do without them.

¿eorem . (Colcombet and Löding []). Let T = ⟨T , E⟩ be an infinite directed
tree and δ a WMSO-definable k-sparse distribution of T. ¿ere exists a WMSO-
definable flow f that is edge-bounded by k and satisfies d f (v) ≥ δ(v) − , for
all v.

¿eorem . (Colcombet and Löding []). Let T = ⟨T , E⟩ be a directed tree and
δ aWMSO-definable k-sparse distribution of T such that δ(T) ≤ ∣T ∣. ¿ere exists
WMSO-definable function g ∶ T → T such that δ is the distribution induced by g.

To prove our generalisation of these results we start with a few lemmas about
bounded flows. ¿e first two follow immediately from the definitions.



Lemma .. Every flow that is vertex-bounded by k is also edge-bounded by k.

Lemma .. Suppose that G is a graph with maximal degree d. Every flow of G

that is edge-bounded by k is vertex-bounded by dk.

Lemma .. For every δ-flow f there exists an acyclic δ-flow f ′ such that, if f is
edge-bounded by k or vertex-bounded by k then so is f ′.

Proof. We repeat the following construction until the flow is acyclic. Select a
cycle u , . . . , um such that

c ∶=min{ f (u i , u i+) ∣ i ≤ m } >  .

We define f ′ by

f ′(x , y) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

f (x , y) − c if x = u i and y = u i+ , for some i ,

f (x , y) + c if x = u i+ and y = u i , for some i ,

f (x , y) otherwise .

Proposition .. Let G = ⟨V , E⟩ be an undirected graph and δ a k-sparse distri-
bution. ¿en G has a δ-flow f that is edge-bounded by k.

Proof. First, we assume that G is finite. In this case we can reduce the task to a
network flow problem. Let H be the graph obtained from G by adding two new
vertices s and t that are connected to every vertex of G. We define the capac-
ity c(e) of edges e ofH as follows. For edges e ofG we set c(e) ∶= k. If e = (s, v)
with v ∈ V we set c(e) ∶= max{, δ(v) − }. Finally, if e = (v , t) with v ∈ V we
define

c(e) ∶=
⎧⎪⎪
⎨⎪⎪⎩

 if δ(v) >  ,
 otherwise .

Let f be amaximal flow from s to t with respect to c. We claim that its restriction
to the edges ofG is the desired flow.
According to the Max-Flow Min-Cut ¿eorem, there is a set X of vertices

containing s but not t such that the maximal flow m from s to t equals

m = ∑
e∈BH(X)

c(e) .



Let X ∶= X ∖ {s} ⊆ V and Y ∶= δ−(). Since

BH(X) = BG(X) ∪ { (v , t) ∣ v ∈ X } ∪ { (s, v) ∣ v ∈ V ∖ X } ,

we have

m = ∑
e∈BH(X)

c(e)

= k ⋅ ∣BG(X)∣ + ∣X ∩ Y ∣ + δ(V ∖ X) − ∣(V ∖ X) ∖ Y ∣
= k ⋅ ∣BG(X)∣ + ∣X ∣ + δ(V ∖ X) − ∣(V ∖ X) ∖ Y ∣ − ∣X ∖ Y ∣
≥ δ(X) + δ(V ∖ X) − ∣V ∖ Y ∣
= δ(V) − ∣V ∖ Y ∣ .

On the other hand, for the set X = {s}, we have

m ≤ ∑
e∈BH(X)

c(e) = ∑
v∈V

max{, δ(v) − } = δ(V) − ∣V ∖ Y ∣ .

Consequently, the maximal flowm from s to t equals

m = δ(V) − ∣V ∖ Y ∣ .

¿is implies that

f (s, v) = max{, δ(v) − } , for every v ∈ V .

For each v ∈ V , we therefore have

 = ∑
u∈V∪{s ,t}

f (u, v) = max{, δ(v) − } + f (t, v) + ∑
u∈V

f (u, v) .

If δ(v) >  this implies

δ(v) −  − ∑
u∈V

f (v , u) =  , that is d f (v) = δ(v) −  ,

while, for δ(v) = , we have

− f (v , t) − ∑
u∈V

f (v , u) =  .

Hence, either d f (v) = − = δ(v) −  or d f (v) = .



It remains to prove the lemma for infinite graphs. Let Φ(G) consist of the
elementary diagram of G together with first-order formulae stating that f is a
δ-flow onG that is edge-bounded by k. We will use the compactness theorem to
show that Φ(G) is satisfiable.
LetΦ ⊆ Φ(G) be finite.¿ere exists a finite induced subgraphG = ⟨V , E⟩

of G such that Φ ⊆ Φ(G). Let ⟨u , v⟩, . . . , ⟨um− , vm−⟩ be an enumeration
(without repetitions) of all edges ⟨u, v⟩with u ∈ V and v ∈ V ∖V . We construct
a new graph G′ = ⟨V

′
 , E

′
⟩ by attaching to each vertex u i a path Pi of length k.

Let δ′ be the distribution on G′ with δ
′(v) = δ(v), for v ∈ V , and δ

′(v) = ,
for v ∈ V ′ ∖V. In order to show thatΦ is satisfiable it is sufficient to prove that
G′ has a flow of the desired form. Consider an arbitrary set X ⊆ V ′ of vertices.
Let

I ∶= { i ∣ u i ∈ X } and J ∶= { i ∣ u i ∈ X and Pi ⊆ X } .

It follows that

δ′(X) = δ(X ∩ V)
≤ ∣X ∩ V∣ + k ⋅ ∣BG(X ∩V)∣
≤ ∣X∣ − k ⋅ ∣J∣ + k ⋅ ∣BG′


(X ∩ V)∣

≤ ∣X∣ − k ⋅ ∣J∣ + k ⋅ (∣BG′

(X)∣ + ∣J∣)

= ∣X∣ + k ⋅ ∣BG′

(X)∣ .

By the first part of the proof it follows thatG′ has a flow of the desired form.

It remains to show how we can use the δ-flow f we have just constructed to
define the desired function g ∶ V → V . We start by selecting a certain family of
definable paths. Note that we allow paths of length . Such paths are uniquely
determined by the vertex they start (and end) at.

Lemma .. Let G be a countable undirected graph and f an acyclic δ-flow ofG.
¿ere exists a set P of finite paths through G satisfying the following conditions:

(i) For every v ∈ V , there are exactly δ(v) paths in P starting at v.

(ii) For every v ∈ V there is at most one path in P ending at v.

(iii) For every pair u, v ∈ V of vertices there are at most f (u, v) paths in P
containing the edge (u, v) (in this direction).



Proof. Fix an enumeration (vn , kn)n<ω of the set

{ ⟨v , k⟩ ∣ v ∈ V ,  ≤ k < δ(v) } .

For n < ω, we construct paths πn with the following properties:

◆ πn starts at vn .

◆ If m ≠ n then the endpoints of πm and πn are different.

◆ For every edge (u, v) there are at most f (u, v) paths πn containing the
edge (u, v).

By induction, suppose that we have already defined π i , for i < n. Let

◆ α(v) be the number of paths π i , i < n, starting at v,

◆ β(v) the number of paths π i , i < n, ending at v, and

◆ µ(u, v) the number of paths π i , i < n, containing the edge (u, v).
We construct a path u . . . um inductively starting with u ∶= vn . For the induc-
tion step, suppose that we have already defined u , . . . , u i . If β(u i) =  then we
stop and set πn ∶= u . . . u i . Otherwise, we claim that there is some neighbour w
of u i with f (u i ,w) > µ(u i ,w). Hence, we can set u i+ ∶= w.
To prove the claim, we distinguish two cases. If i =  then α(u) < δ(u)

implies that

∑
x∈V

µ(u , x) = α(u) − β(u) + ∑
x∈V

µ(x , u)

≤ α(u) −  +∑{ f (x , u) ∣ f (x , u) ≥ }

= α(u) −  +∑{ f (u , x) ∣ f (u , x) ≥ } − (δ(u) − )

<∑{ f (u , x) ∣ f (u , x) ≥ } ,

as desired. Similarly, if i >  then µ(u i− , u i) < f (u i− , u i) implies that

∑
x∈V

µ(u i , x) = α(u i) − β(u i) + ∑
x∈V

µ(x , u i)

< α(u i) −  +∑{ f (x , u i) ∣ f (x , u i) ≥ }

= α(u i) −  +∑{ f (u i , x) ∣ f (u i , x) ≥ } − (δ(u i) − )

≤∑{ f (u i , x) ∣ f (u i , x) ≥ } ,

Note that the construction of πn must terminate a er at most n +  steps since
the flow f is acyclic and there are only n vertices u with β(u) = .



Lemma .. ¿ere existGSO-formulae φm(X; Z̄), form < ω, such that, for every
graph G and each set P of finite paths such that every vertex and every edge of G

is contained in at mostm paths ofP , there exists a tuple S̄ of GSO-parameters such
that

G ⊧ φm(P; S̄) iff P is (the set of edges of) a nonempty path in P .

Proof. For every edge (u, v) of G we fix a bijection µ(u, v) ∶ [n] → Pe where
Pe ⊆ P is the set of all paths containing the edge (u, v) (in either direction) and
n ∶= ∣Pe ∣. We assume that µ(u, v) = µ(v , u).
Let S be the set of all edges ofG contained in some path in P . By Lemma .

there exists anMSO-formula χ(x , y, z; S̄′)with parameters S̄′ such that, for every
v ∈ V , the formula χ(x , y, v; S̄′) linearly orders the set of all vertices that are
connected to v via an edge in S.
Finally, we define unary predicatesQ ik

jl containing all vertices v such that there

exists a path π ∈ P containing edges (u, v), (v ,w) where
◆ µ(u, v)(k) = π, µ(v ,w)(l) = π,
◆ u is the i-th neighbour of v (in the order defined by χ),

◆ w is the j-th neighbour of v.

It follows that a nonempty set P ⊆ E of edges is a path in P if and only if P is a
minimal nonempty subset of E satisfying the following condition:

P can be written as a union P = P ∪ ⋅ ⋅ ⋅ ∪ Pm− such that, for all vertices
u, v ,w such that v ∈ Q ik

jl and u and w are, respectively, the i-th and j-th

neighbour of v, we have (u, v) ∈ Pk ⇔ (v ,w) ∈ Pl .
¿is condition can be expressed in GSO.

Remark. Note that the set of empty paths inP is trivially definable with the help
of the parameter

Q ∶= { v ∈ V ∣ P contains an empty path from v to v } .

Using the family P we can construct a formula φ defining the function g.

Proposition .. ¿ere exist GSO-formulae φm(x , y; Z̄), for m < ω, with the
following property: For every graph G = ⟨V , E⟩ and each acyclic δ-flow f of G

that is vertex-bounded by m, there exist GSO-parameters S̄ such that φm(x , y; S̄)
defines on G a partial function g ∶ V → V with

∣g−(v)∣ = δ(v) , for all v ∈ V .



Proof. LetG′ be the graph obtained fromG by removing every edge (u, v)with
f (u, v) = . Note that f is also a δ-flow of G′. Since f is vertex-bounded by m
it follows that every vertex of G′ has degree at most m < ω. Consequently, each
connected componentG ofG is countable. Let P be the set of paths obtained
by applying Lemma . to the restriction of f toG, and letP be the union of all
these setsP corresponding to the connected components ofG

′. By Lemma .,
there exists a formula ψ(X; Z̄) and a set S̄ of guarded relations such that

G ⊧ ψ(P; S̄) iff P is a nonempty path in P .

With the help of ψ we can define a partial function g ∶ V → V such that

g(v) = u : iff P contains a path from u to v .

By construction of P we have ∣g−(v)∣ = δ(v), for every v ∈ V .

Lemma .. Let G = ⟨V , E⟩ be a graph of finite degree and φ(X , y) a GSO-
formula that defines a partial function h ∶ ℘(V)→ V such that the distribution δ
induced by h is k-sparse. Suppose that there exists a GSO-formula χ(X ,Y , z) such
that, for every vertex v ∈ V , χ(X ,Y , v) linearly orders the set h−(v). ¿en there
exist MSO-definable partial functions h ∶ ℘(V) → V and g ∶ V → V such that
h = g ○ h and h is injective.

Proof. By Proposition . there exists a δ-flow f that is edge-bounded by k. Since
G has finite degree it follows that f is vertex-bounded by some constant m < ω.
Hence, we can use Proposition . to find a definable function g ∶ V → V with
∣g−(v)∣ = δ(v) = ∣h−(v)∣. Choose unary predicates P , . . . , Pk− such that we
have i ≠ l whenever u ∈ Pi and v ∈ Pl are distinct vertices with g(u) = g(v).
Using these predicate we can define partial functions g , . . . , gk− ∶ V → V such
that g i(v) is the unique element of g−(v) ∩ Pi . We define h ∶ ℘(V) → V by
h(X) ∶= (g i ○h)(X)where the index i is chosen such that X is the i-th element
of h−(h(X)) (in the order defined by χ). It follows that h(X) = g(h(X)) and
h is injective. Furthermore, the function h is clearly GSO-definable. Since the
graphG has degree at most k it is k-sparse. Hence, everyGSO-definable function
is alreadyMSO-definable.

Recall that ℘fin(V) denotes the set of all finite subsets of V . Combining the
preceding lemmas we obtain the main result of this section.



¿eorem .. Let G = ⟨V , E⟩ be a graph of finite degree and φ(X , y) a GSO-
formula that defines a partial function h ∶ ℘fin(V) → V such that the distribu-
tion δ induced by h is k-sparse. ¿en there exist MSO-definable partial functions
h ∶ ℘fin(V)→ V and g ∶ V → V such that h = g ○ h and h is injective.

Proof. By the preceding lemma it is sufficient to construct a formua χ(X ,Y , z)
(with GSO-parameters) such that χ(X ,Y , v) linearly orders h−(v), for every v ∈
V . Let T ⊆ E be a spanning forest ofG and let P ⊆ V be a set containing exactly
one element of each connected component. Using the parameters P and T we
can define the tree ordering on V by

u ≤ v : iff the unique path in T from some element of P to v

contains u .

Let T ⊆ V × V be the set obtained from T by orienting the edges according to
this ordering. ¿en T is a directed forest. Furthermore, since the degree of G is
bounded we can use Lemma . to linearly order the successors of every vertex
in T . We use these two orderings to define the lexicographic ordering ≤lex on T .
Finally, we obtain the desired ordering on ℘fin(V) by setting

X < Y : iff the ≤lex-minimal element of (X ∖ Y) ∪ (Y ∖ X)
belongs to Y .

Each of these definitions can be expressed in GSO.

 C

We have presented several methods to encode sets of finite vertices as single ver-
tices. In the first part, we used depth-first spanning trees to encode edges by
vertices. As an application we were able to extend Courcelle’s result on the col-
lapse of GSO to MSO on sparse hypergraphs from countable hypergraphs to hy-
pergraphs of arbitrary cardinality. In the second part we used network flows to
encode arbitrary finite sets by vertices.
Let us mention some open questions. Considering the first part it would be

interesting to find out whether sparse classes are the only examples where GSO
collapses toMSO.

Problem. Is there a class C that is not k-sparse, for any k, such that over C every
GSO-sentence is equivalent to anMSO-sentence?



¿e results of the second part are much less complete. It is unlikely that they
are the best possible.

Problem. Improve¿eorem . by allowing

(a) more general classes of graphs or hypergraphs;

(b) more general classes of partial functions h ∶ ℘(V)→ V .

Our results were inspired by work of Colcombet and Löding []. ¿e question
arises of whether we can also generalise the remaining results of that article.

Problem. Can we prove Corollary . of [] for other graphs than trees?

A. I like to thank Bruno Courcelle for his many com-
ments on earlier versions of this paper.

R

[] T. C  C. L, Transforming Structures by Set Interpretations, Logi-
cal Methods in Computer Science,  ().

[] B. C,¿emonadic second-order logic of graphsXIV : Uniformly sparse graphs
and edge set quantifications, ¿eoretical Computer Science,  (), pp. –.

[] R. D, Graph¿eory, Springer, rd ed., .

[] E. G, C. H,  M. O, Back and Forth Between Guarded and Modal
Logics, ACM Transactions on Computational Logics, (), pp. –.

[] W. H,Model ¿eory, Cambridge University Press, .

[] J. N, E. S,  L. V, T-preserving homomorphisms of oriented
graphs, Comment. Math. Univ. Carolinae,  (), pp. –.

[] D. S,¿e structure of the models of decidable monadic theories of graphs, Annals
of Pure and Applied Logic,  (), pp. –.



