GUARDED SECOND-ORDER LOGIC,
SPANNING TREES, AND NETWORK
FrLows

Achim Blumensath

2nd September 2008

According to a theorem of Courcelle monadic second-order logic
and guarded second-order logic (where one can also quantify over
sets of edges) have the same expressive power over the class of all
countable k-sparse hypergraphs. In the first part of the present paper
we extend this result to hypergraphs of arbitrary cardinality. In the
second part, we present a generalisation dealing with methods to
encode sets of vertices by single vertices.

ACM Subject Classification. G.2.2 Graph Theory—Hypergraphs,
F.4.1 Mathematical Logic—Model Theory.

Guarded second-order logic (GSO) is the variant of monadic second-order
logic (MSO) where one can not only quantify over sets of vertices but also over
sets of edges. This modification results in a large increase of expressive power.
Statements that can be expressed in guarded second-order logic, but not in mo-
nadic second-order logic, include the existence of certain minors in a graph and
the existence of Hamiltonian paths.

The high expressive power of guarded second-order logic means that most
GSO-theories are quite complicated. In [7] Seese has shown that every class of
graphs with infinite tree width has an undecidable GSO-theory. This result imme-
diately generalises to hypergraphs. It follows that all classes of hypergraphs with
a decidable GSO-theory are k-sparse, for some k, which roughly means that their

members have few edges. For classes of countable k-sparse hypergraphs, Cour-
celle [2] has shown that every GSO-formula is equivalent to an MSO-formula
over such a class. It follows that over every class of countable hypergraphs with
a decidable GSO-theory guarded second-order logic and monadic second-order
logic have the same expressive power. Unfortunately, the proof of Theorem 1.4
in [2] contains an error. In the first part of the present article we give a new proof
of this theorem. In addition, we extend the result from countable hypergraphs to
hypergraphs of arbitrary cardinality.

When we look at the results of the first part we see that most of them concern
the coding of sets of vertices by single vertices. In the abstract, this problem can
be states as follows: given a set F € (V') of finite sets of vertices, find a definable
function f : F — V that is injective. In our concrete case, F := E is the set of
edges. In the second part of the paper we consider more general instances of this
problem where F can be arbitrary. This generalisation is inspired by a result of
Colcombet and Loding [1] on set interpretations. Their main technical result is a
method to transform a definable finite-to-one function F — V into an injective
one. Colcombet and Lodung consider as background structure only the infinite
binary tree. Below we show that using guarded second-order parameters, i.e., sets
of edges, we can extend some of their results to arbitrary graphs.

The overview of the article is a follows. We start in Section 1 with basic defini-
tions and a survey of results on definable orientations of sparse hypergraphs. In
Section 2 we prove the general version of the one technical result of [2] whose
proof does not extend to arbitrary cardinalities. In Section 3 we summarise the
consequences for the expressive power of guarded second-order logic on sparse
hypergraphs.

Section 4 contains the second part of the article. We study network flow prob-
lems and we show how to use flows to transform definable finite-to-one maps
into injective ones.

1 ORIENTATIONS OF SPARSE HYPERGRAPHS

Let us fix our terminology regarding graphs and hypergraphs. When we say
‘graph’ we will mean an undirected one. Undirected graphs will always be sim-
ple and loop free, whereas directed graphs will be simple, but they may contain
loops. When dealing with hypergraphs we will sometimes allow multiple edges.
Such a hypergraph is a two-sorted structure (V, E, I) where V is the set of ver-
tices, E the set of edges, and I ¢ V x E the incidence relation. Using sloppy

notation we will tacitly identify an edge e € E of such a hypergraph with the set
{v eV |{v,e) eI} ofits vertices and we write v € e instead of (v, ¢) € I. Simi-
larly, if F C E is a set of edges then the union U F consists of all vertices incident
with at least one edge of F. We will use this notation even if there are multiple
edges.

Monadic second-order logic (MSO) extends first-order logic by variables and
quantifiers that range over sets of vertices. Similarly, guarded second-order logic
(GSO) extends first-order logic by variables and quantifiers ranging over sets of
vertices or sets of edges (for detailed definitions see [4]). We will also consider
weak monadic second-order logic (WMSO) where quantification is restricted to
finite sets of vertices.

Definition 1.1. Let) = (V, E) be a hypergraph.

(a) We say that $) has rank m if every edge of $) has at most m vertices.

(b) A subhypergraph of $ is a hypergraph $, = (Vo, E,) with V, € V and
E, c E.

(c) Let C ¢ V. The subhypergraph induced by C is

Hlc:=(C,E|c) with E|c:={ecE|ecC}.

In order to translate GSO-formulae into MSO-formulae, we have to encode
sets of edges by sets of vertices. A simple way to do so consists in choosing an
orientation of the hypergraph, i.e., a function assigning to each edge one of its
vertices.

Definition 1.2. Let § = (V, E) be a hypergraph.
(a) An orientation* of §) is a function f : E — V with f(e) € e, forall e € E.
We say that a formula ¢(x, Y') defines an orientation f of §) if we have

HEeE@(a,e) iff f(e)=a, forallacAandecE.
(b) An orientation f is bounded by k if
|f'(a)| <k, forallacA.

(c) We call § MSO-orientable if there exist an MSO-formula ¢(x, Y; P) with
parameters P; C V defining an orientation of §). Similarly, we say that § is GSO-
orientable if there exist a GSO-formula ¢ (x, Y; P, Q) with parameters P; € V and
Qi S E defining an orientation of §.

"This is called a semi-orientation in [2].

In this paper we are mainly interested in sparse hypergraphs, i.e., hypergraphs
with few edges.

Definition 1.3. A hypergraph) = (V, E) is k-sparse> if
|E|x| < k-|X|, foreveryfiniteset X C V.

Lemma1.4. Let ® = (V,E) be a graph.
(a) Ifthe degree of & is at most 2k, then & is k-sparse.
(b) If & is planar, then it is 3-sparse.
Proof. (a) If X = (X, F) is a finite induced subgraph of & then

2-|F| =) deg(v) <2k - |X].
veX
(b) This follows from the fact that every planar graph with » vertices has at
most 31 — 6 edges (see, e.g., Corollary 4.2.10 of [3]). O

In the next section we will prove that every hypergraph of bounded rank is
GSO-orientable. In the remainder of this section we show that k-sparse hyper-
graphs are even MSO-orientable. For countable hypergraphs these results are all
due to Courcelle [2]. The only thing new in the present section are two applica-
tions of the compactness theorem for first-order logic to extend the results to
uncountable hypergraphs. The proofs in Section 2, on the other hand, are mostly
new.

Lemma 1.5. A hypergraph $) = (V, E) (possibly with multiple edges) of finite rank
is k-sparse if and only if there exists an orientation of $) that is bounded by k.

Proof. For («=), let X € V be finite. Then
[Elx| < Z1f (@)l < k- 1X].

aeX

(=) First, let us consider the case where) is finite. If f is an arbitrary orien-
tation of $ then

2N (@) =[E| < k- |V].

aeV

?In [2] such hypergraphs are called uniformly k-sparse. Courcelle also introduces a notion of a
k-sparse graph. Since uniform sparsity is the more robust notion, and the only one we will use
in this paper, we have changed terminology for brevity. A related notion is the arboricity of a
graph (see, e.g., Section 2.4 of [3])

Hence, if there is some element a € V with |[f7*(a)| > k then there must be some
other element b € V with |f ' (b)] < k. Let us define the weight of an orientation

by
w(f) =Y A1 (@)l-k|aeV, |f(a)|>k}.

We have to construct an orientation of weight o. To do so we transform an ori-
entation f with w(f) > o into one with smaller weight. Given f, fix an element
a € Vwith|f™(a)| > k. Let F ¢ E be the smallest subset of E such that a belongs
to the set U := | F and we have f™'(c) € F, for every element ¢ € U. The subhy-
pergraph 9|y induced by U is k-sparse. Hence, there exists some element b € U
with |f7*(b)]| < k. By choice of F we can find a sequence of edges e, ..., e, € F
with

bee,, f(ei)eeir,, and f(e,)=a.

We define a new orientation g by setting

b ife=e,,
gle)=1{f(ei,) ife=e;, i>o0,
f(e) otherwise.

It follows that

[f*(a)|-1 ifx=a,
lg7 () =11 (D)+1 ifx=0,
[/ (x)] otherwise.

Hence, w(g) < w(f). Repeating this construction we obtain an orientation f
with w(f) = o.

The general case where §) may be infinite can be proved using the compactness
theorem for first-order logic. Let A be the elementary diagram of § (i.e., the set
of all first-order formulae with parameters that hold in §); see [5] for details)
where we consider §) as a two-sorted structure (V, E, I) with a binary incidence
relation I. We can write down a formula ¢ stating that f : E - V is a function
such that

¢ (f(e),e)el, forallecE,
¢ [f(a)|<k,forallacV.

By assumption and the first part of the proof, every finite subset of AU {¢} is sat-
isfiable. Therefore, according to the compactness theorem, there exists a model
9t = (VY E', I, f*) of Au {¢}. By the Diagram Lemma (see, e.g., [5]), we
can find an elementary embedding 4 :) — H* (i.e., an embedding preserving
every first-order formula). Since every edge of §) has only finitely many vertices
it follows that

(a,h(e))eI" implies a=h(v), forsomevcee.
Hence, we can define the desired orientation of H by f:=h™" o f* o h. O

It turns out that the orientation obtained via the preceding lemma is MSO-
definable. The following sequence of lemmas shows how we can encode such an
orientation by a finite set of unary predicates.

Definition 1.6. Let $ = (V, E) be a directed graph and & an undirected one.

(a) Every orientation f of & induces an directed graph & by orienting every
edge e of ® such that it points to the vertex f(e).

(b) An $)-orientation of & consists of a pair (f, h) where f is an orientation
of & and h is a homomorphism & ; — 6.

We say that an $-orientation (f, h) is bounded by k if f is bounded by k.

(c) We say that a family (P,),ey of unary predicates encodes an $)-orientation
(f,h)of if P, =h™"(v),forallve V.

Lemma 1.7. For every finite graph $), there exists a first-order formula ¢ (X)
such that

Sk ¢(P) iff the tuple P encodes an $)-orientation of & .

Proof. Let uq,...,u,_, be an enumeration of the vertices of . All g (X) has
to say is that the X; form a partition of the vertices (some X; may be empty) and
that there is no edge {v, w} of & such that v € X;, w € Xy and (u;, uy) is not an
edge of 9. O

Theorem 1.8 (Nesetfil, Sopena, Vignal [6]). For every k < w, there exists a finite
loop-free directed graph T, with antisymmetric edge relation that has the following
property. For every finite directed graph &, with irreflexive and antisymetric edge
relation and indegree at most k, there exists a homomorphism & — Tj.

Corollary 1.9. Every k-sparse undirected graph has a T-orientation which is
bounded by k.

Proof. In Lemma 1.5, we have shown that such a graph & = (V, E) has an orien-
tation f : E — V that is bounded by k. It follows that & s has indegree at most k.
By the theorem, there exists a homomorphism h : & — T;. Thus, (f, h) is the
desired ¥y -orientation. O

Lemma 1.10. For every k < w, there exists a first-order formula n; (X) such that

S En(P) iff P encodes a Ty-orientation of & that is bounded by k .

Proof. Note that the homomorphism h of a ¥ -orientation { f, k) uniquely deter-
mines the orientation f since the edge relation of Ty is antisymmetric. In partic-
ular, the parameters P encoding (f,) tell us whether f is bounded by k. Hence,
we can obtain 7, (X) by adding a check for boundedness to the formula g, (X)
of Lemma 1.7. O

Corollary 1.11. The class of all k-sparse undirected graphs is finitely MSO-axioma-
tisable.

Proof. By Lemma 1.5 and Corollary 1.9 it follows that a graph & is k-sparse if
and only if it has a T -orientation that is bounded by k. Hence, we can use the
formula 31X, (X) where 7y is the formula from Lemma 1.10. O

In order to apply these results to hypergraphs we use the following construc-
tion associating a graph with every hypergraph.
Definition 1.12. Let $) = (V, E) be a hypergraph with orientation f. We define a
directed graph O¢($) := (V, F) with edge relation

F:={(a,b)| a # b and there is some edge e € E with
aceand f(e)=b}.

Lemma 1.13. Let $) = (V, E) be a k-sparse hypergraph of rank m where o < k < w
and1 < m < w. Then §) has an orientation f that is bounded by mk?* such that the
edge relation of O ($)) is antisymmetric.

Proof. First, we consider the case that §) is finite. We call an element a € V bad

for an orientation f of § if there is some element b € V such that O f(f)) contains

both edges (a, b) and (b, a). Note that this implies that the vertex b is also bad.
We construct a sequence of orientations (f,,), such that

k if a is bad for f,,
mk? otherwise,

f"(a)] S{

and the number of bad elements decreases at every step. We start with an arbi-
trary orientation f, bounded by k.

Given an orientation f, with the above properties we construct a new ori-
entation f,,, with fewer bad elements as follows. Let a be a bad element, set
X := f;*(a), and let

Y:={e|aéeandfn(e)eUX\{a}}.
Since a is bad we have
|X|<k and |UX|<k(m-1).

Note that every element of the form b := f,(e) with e € Y is also bad since, by
definition of X, there is an edge e’ € X with

bee' and f,(e')=a.

Consequently, Oy, ($)) contains the edges (b, a) (since f,(e’) = a) and (a, b)
(since f,(e) = b). It follows that

[Y|<k-lUX~{a}|<k*(m-1).
We define the new orientation f,, by

a ifeeY,
fa(e) otherwise.

fani(e) = {

Then we have

()7 < {" R

|fu ()7 otherwise.
In particular, f,4, is bounded by mk?. By construction, the element a is not bad
for f,,. Furthermore, if (b, c) is an edge in Oy, (%) with b,c # a then this
edge is induced by an edge e in $ with e ¢ X U Y. Hence, (b, c) is also an edge
of Oy, ($). Therefore, every element that is bad for f,,,, is also bad for f,.

It remains to prove the claim for infinite hypergraphs). Let @ be the union of
the elementary diagram of §) and formulae stating that f is an orientation of $
that is bounded by mk? and that O¢($)) has an antisymmetric edge relation. If
M is a model of @ then there exists an embedding / : § - 91 and the desired

orientation of §) can be obtained via h from that of 91. Hence, it is sufficient
to show that @ is satisfiable. Note that every finite subset @, ¢ ® is satisfiable
since every finite substructure of §) has an orientation of the desired form. By the
compactness theorem it follows that @ is satisfiable. O

2 DEPTH-FIRST SPANNING TREES

While k-sparse hypergraphs are MSO-orientable there are hypergraphs without
an MSO-definable orientation. For instance, the countably infinite clique is such
a graph. In this section we will show that every hypergraph of bounded rank is at
least GSO-orientable. A basic tool the proof below is based on is the notion of a
spanning tree of a hypergraph. Before presenting the rather involved definition
for hypergraphs let us start with considering the simpler case of graphs.

For a countable undirected graph & we can define a depth-first spanning tree
to be a spanning tree T of & where no edge of & connects disjoint subtrees of T
(see [2,3];1n [3] such trees are called normal). To generalise this definition to un-
countable graphs we have to admit trees of arbitrary ordinal height. Such trees
are necessarily order trees, i.e., partial orders (T, <) where < is a tree order, that
is, a partial order such that any two elements have an infimum and, for every
element a, the set of all elements below a is well-ordered. Unfortunately, we can-
not in general hope to have a spanning subgraph that is an order tree, since the
partial order < requires too many edges. Therefore, we will use a hybrid between
an ordinary tree and an order tree. The precise definition of a spanning tree ¥ of
a graph & is as follows. Instead of requiring ¥ to be a subgraph of & we consider
trees T such that

o for every vertex w of ¥ with immediate predecessor v, the edge (v, w) be-
longs to &, and

¢ for every vertex w of ¥ without immediate predecessor, we can fix an
increasing chain (u;);<4 of predecessors of w with limit w and a family
(7;) i<q Of paths from w to u;.

Hence, every vertex w of T is attached to its predecessors via some auxiliary
graph F,, that is either a single edge or a tree with root w whose leaves form an
increasing sequence of predecessors of w with limit w.

Example. Consider the complete graph R, for an uncountable cardinal x. We
can enumerate the vertices of & as (v4)qa<x Where the index a ranges over all

ordinals less than k. As depth-first spanning tree of this graph we can use a chain
of length « as follows. We set ¥ := (T, E) where

T:={ve|la<k}
is the set of all vertices and
E:={(va,Van) | @ <k} U{(va,vs) | 6 alimit ordinaland « < 8 }.

The first part of E consists of the successor edges, whereas the second part con-
tains the auxiliary graphs F,, attaching a limit vertex v, to its predecessors.

To generalise these ideas to hypergraphs we need a suitable replacement for
the trees F,,. Unfortunately, not every hypergraph has a spanning tree. A typical
example is the hypergraph

\
JAOND

Instead, we will use certain tree-like hypergraphs called priority trees.

Definition 2.1. Let § = (V, E) be a hypergraph.
(b) A hyperpath in) is a sequence e, ... e, of edges such that

eine +@ iff |i—k|<1.
Ifuece, e andvee, \ e,_, then we say that the hyperpath connects u and v.

Definition 2.2. Let § = (V, E) be a hypergraph of rank at most m, (T, F) be a
subhypergraph of $ with T = U F, and suppose that there are partitions

T=P,w---uP,_, and F=F,u---UF,_,.

(a) Suppose that ¥ = (T, F, L, (F;)i<m> (Pi)i<m>v) with L € Fand v € T. We
define by induction when such a tuple ¥ is a priority tree. The element v is called
the root of T and L is its set of leaf edges.

10

We start the induction with the case where F consists of a single hyperpath
€o...e, withv € e; N e,, wehave L = {e,}, F, = F,and P, = T. Then T is a
priority tree.

We also call ¥ a priority tree if it can be obtained from a priority tree ¥’ =
(T',F', L', (F!);, (P!);,v) with the same root v by adding a hyperpath e, ... e,
such that

enT +@ iff i=o,

eoit-T’,
L=L"u{e,},
€o5...>€n € F,

(eoU--Ue,)NT C Py,

where k is the minimal index such that e, N P; = &. This is the successor case of
the induction step.
Finally, we also have a limit case. Suppose that

I = (T F* L%, (F)i, (P{)i,v), fora <,

is an increasing chain of priority trees. That is, the sequences (T%)y, (F%)q,
(L¥) &> (F})a»and (Pf) 4 are all increasing, and all trees ¢ have the same root v.
Then ¥ is a priority tree if it is the union of this chain, that is, if

T=-T% F=UF, L=JL% F=UF% P=JP"
a<fB a<f a<f a<f a<p

(b) A branch of ¥ is a hyperpath e, ... e,, C F satisfying the following condi-
tions:

* ¢, \ ¢, contains the root v of T.

¢ Let k; be the index such that e; € Fy,. We have e;,, \ e; € Py, , for every
i < m . Furthermore, if k; # k;4, thenk; :=min{ | e;,, " P+ }.

(c) With each priority tree T we associate two relations, an order < on F de-
fined by

e<f :iff everybranch containing f also contains e,
and an equivalence relation ~ on T defined by

u~v it u,ve Py, for some k, and there exists a hyperpath

€ ...em S Fy connecting u and v .

11

Example. Consider the following priority tree with edges a, b, ¢, d, e, f where
we have labelled each vertex in P; by the index i. The edge colours are given by
F,={a,b,e}, F, ={c}, F, = {d, f}. The ordering < is displayed to the right.

TS T,
o Ny
fl e

Recall that a tree order is a partial order such that any two elements have an
infimum and, for every element g, the set of all elements below a is well-ordered.
A preorder is a reflexive and transitive relation. Every preorder £ induces an equiv-
alence relation = := £ n c7'. The equivalence classes of this relation are called
c-classes.

Lemma 2.3. Let ¥ be a priority tree. The order < on the edges is a tree order.

The proof consists of a straightforward but tedious induction following the
construction of priority trees.

Lemma 2.4. Let) = (V, E) be a connected hypergraph of rank at most m.

(a) For each vertex v € V and every set L, C E of edges, there exists a priority
tree ¥ = (T, F,L,(F;);, (P;);,v) with root v such that UL, € T and L € L,.

(b) For every GSO-formula 9(x, y) (possibly with parameters), there exists an
GSO-formula ¢(x, y) (with parameters) such that, if 9 defines a well-order on L,
and T is a priority tree as in (a) then ¢(x, y) defines a linear order on T.

Proof. (a) Let (e;)i<q be an enumeration of L,. For every i < «, we fix a hyper-
path 7; = h) ... h}, connecting v with h}, = e;. We construct T by induction
on i. We start with the hyperpath 7,. At step i > o we determine the shortest
suffix hj ... h}, of the path 7; that meets the tree constructed so far and we add
this suffix to the tree. (If e; € T we leave the tree unchanged.) We choose the least

12

index k with h} N P = @ and we put the new edges into Fy and the new vertices
into Py. The limit of this construction is the desired priority tree.

(b) The equivalence relation ~ associated with ¥ is MSO-definable in $) with
the help of the parameters T, F, F;, and P;. We denote the ~-class of a vertex u
by [u]. Note that, by construction of ¥, [u] is a hyperpath and [u] contains a
unique leaf edge which, furthermore, is one of the ends of the hyperpath. We
denote by 7(u) the suffix of the hyperpath [u] that connects u to the leaf edge
in [u].

To define the desired order on T we first construct a preorder on T by setting
x € y if and only if one of the following conditions is satisfied:

o xeP;and y e Py, fori<k.

¢ x,y € Py and the leaf edge in [x] is 9-smaller than the leaf edge in [y].

¢ xy &P [x] = [yl and n(x) € 7(y).
Note that we have x € yand y € x ifand only if #(x) = n(y). In this case x and y
belong to the same edge e € F. Hence, every t-class has size at most m. Adding

m additional unary predicates Qo, . .., Qu—, such that each Q; contains at most
one element of each =-class, we can define

x<y :iff xc yand (either y % x, or we have
xeQ;and y e Qy, fori<k). O
We have seen that every k-sparse graph has an MSO-definable orientation f

that is bounded by k. If we want to encode sets of edges via sets of vertices we
can try to encode each edge e by a pair (v, i) consisting of the vertex v := f(e)

and a number i < k. This idea requires a way to linearly order the sets f7*(v).

In [2] Courcelle uses depth-first spanning trees to obtain such linear orders. As
remarked above one needs to adapt the definition of a depth-first spanning tree
when one tries to extend these results to uncountable hypergraphs.

Definition 2.5. Let $§ = (V,E) be a hypergraph of rank m and suppose that
T = (T,<, (F,)ver) is a structure where (T, <) is a tree (of ordinal height) with
T c V and with every vertex v € T we associate a set F, C E of edges. We assume
that F,nF, = &, foru £ v.

(a) The set of auxiliary nodes associated to a vertex v € T is

A, :={v}ulJF, ~ |JAs.

x<v

13

(b) For X ¢ V, we define
B(X/T):={veT|XnA,#@} and P(X/T):=maxB(X/T).

(c) T is a depth-first spanning tree of § if it satisfies the following conditions:
e Forallu#v,A,nA,=@and A, nT = {u}.
¢ For each edge e € E the set B(e/T) is nonempty and linearly ordered by <.

¢ The vertices v € T are partitioned into the following classes: (o) the root;

(s1)1<m asuccessor; ()<, alimit; where the successor and limit vertices

are subdivided into m subclasses. This partition satisfies the following con-

ditions:

(o) Ifv hastype o then it is the root of T'and F, = @.

(s7) If v has type s; then it is the (immediate) successor of some vertex
u € T.Wehave F, = {e} with v € e. Futhermore, v is the only vertex
in B(e/T) of type s; and B(e ~ {v}/T) = u.

(t;) Ifv has type t; then it is the limit of an increasing sequence (u;)i<y
of vertices u; € T. F, is (the set of edges of) a priority tree with root v.
Furthermore,

{B(e/T) | e aleafedge of F, }

isa cofinal subset of (#;); and v is the only vertexin B(UU F,/T') with
type t;.
Proposition 2.6. Every connected hypergraph $) has a depth-first spanning tree.

Proof. If in the definition of a depth-first spanning tree we drop the condition
that B(e/T) # &, for every edge e, then we obtain a structure that we call a partial
depth-first spanning tree. We construct an increasing sequence

(Ta:g)(FV)VGTD,): @ <K,

of such partial depth-first spanning trees with the property that, for every con-
nected component C of Uy := V' \ U,er, Ay, the set

N(C/Ty):=\J{B(e/Ty)|ecEwithenC= 3}

is linearly ordered by <. (A connected component of U, is a maximal subset C ¢
U, such that the subhypergraph $)|¢ is connected.) The limit of this sequence
will be the desired depth-first spanning tree of §.

14

We start by choosing an arbitrary element v € V and setting T, := {v} and
F, := @. For limit ordinals §, we define T := U5 T, For the successor step, sup-
pose that we have already defined T,. Fix some connected component C of U,,.
Note that N(C/T,) is nonempty since $) is connected. We distinguish two cases.

(1) If N(C/T,) has a maximal element u then we choose some edge e with
enA, +gand en C # &, and we fix some vertex v € e N C. We add v to T, as
immediate successor of u and we set F, := {e}. It follows that A, = en U,,. Since
B(e/T,) contains at most |e \ {v}| < m vertices there is some | < m such that
B(e/T,) contains no vertex of type s;. Hence, in the new tree Ty, we can assign
the type s; to v.

(2) Suppose that N(C/T,) has no maximal element. We choose a sequence
(ei)i<y of edges with e; N C # @ such that the sequence (u;);<, defined by

ui = pei/To)

is increasing and cofinal in N(C/T,). By taking a suitable subsequence we may
assume that the set of types appearing in B(e;/T) is the same for every i < y.

For each edge ¢;, choose some edge h; € Cwith h; ne; #+ @ and set L := { h; |
i < y}. We select a vertex v € C and a priority tree & = (S, H, L, F, P,v) such
that S ¢ C. We define Ty, := T, U {v} where v is the limit of N(C/T,) and we
set F,:=Hu{e; | i<y} Itfollowsthat A, = SulU;(e; N Uy).

It remains to show that the constructed tree T,,, is a partial depth-first tree
where all sets N(C/Ty4,) are linearly ordered. We start by showing that each set
B(e/Ty,) with e € Eislinearly ordered. If enA, = @then B(e/Ty+,) = B(e/Ty)
and we are done. Otherwise, we have B(e/Ty+,) = B(e/Tys.) U {v}. Note that
A, ¢ C implies e n C # @. Therefore, we have B(e/T,) € N(C/T,). Since v is
larger than every element in N(C/T,) the claim follows.

Let D be a connected component of Uy, := V' \ Uger,,, Ax. We have to show
that N(D/Tyy,) is linearly ordered. Since U4, S U, there is some connected
component D’ of U, containing D. If D’ # C then Uy \ Uy, C C implies that
D = D’ and the set

N(D/Ty+,) = N(D'|Ty)
is linearly ordered. If, on the other hand, D ¢ C then we have
N(D/Ter) € N(C/T) U {v)

and the latter set is linearly ordered since v is greater than every element of
N(C/Ty). O

15

Remark. (a) Ifthe hypergraph) is countable then we can actually obtain a depth-
first spanning tree of height at most w as follows. In the above proof, if we are
slightly more careful in choosing the vertex v that is added to the partial tree,
then we can ensure that every vertex is chosen already after finitely many steps.

(b) Note that, strictly speaking, the above proposition is not a generalisation
of Theorem 1.4 of [2] since we use a different notion of a depth-first spanning
tree.

We use depth-first spanning trees to encode orientations of a hypergraph. First,
we show that each depth-first spanning tree can be encoded by finitely many GSO-
parameters.

Lemma 2.7. For every number m < w, we can construct MSO-formulae ¢(X; Z),
9(x,Y;2), and x(x, y; Z) such that, for every connected hypergraph $) of rank
at most m and each depth-first spanning trees (T, <, (F,),) of 9, there are GSO-
parameters S such that
9 Eo(P;S) iff P c T isdownward <-closed,
HEIW,PS) iff veTandP=A,,
9Ex(u,v;S) iff wuveTandu<v.
Proof. We will use the following parameters:
¢ Unary predicates T, Ts,, Tt,, for [< m, containing all vertices of the cor-
responding type.
o F':=U{F,|veT,},forevery type .
o Fi=U,F".
o AT:=U{A,|veT;}\T,forevery type 1.

o If v is of type t; then the set F, forms a priority tree. We use additional
parameters F;' and P;, for i < m, encoding the corresponding partition

F'=Flu---uF)_ and |(JF"=Pyu---0P,,.
Hence, for every vertex v of type t; we have a priority tree
(UF,,F,, Ly, (F]' nF,);, (P, nUF,);,v).

(1) First, we construct the formula 9. To simplify our task we define separate
formulae 9. (x, Y), for each type 7, such that

He9(v,P) iff veT,andP=A,.

16

Then we can set 9 := \/, 9.
If v has type o then A, = {v} and we can set

9o(x,Y) :=Tox A Y = {x}.

Ifthetype of viss; then F, = {e} and A, = {v} U(enA®"), where e is the unique
edge in F*! containing v. Hence, we can define

95, (%, Y):=Tyxn(JeeF')[xeenY ={x}u(enA™)].

Finally, if v has type t; then A, is the least subset of {v} U A" satisfying the
following conditions:

e veY
o IfeecFtandenY +@thenen A C Y.

Hence, we can define

9,(x,Y) =T, ,x A\YxA(VeeF")(enY#@ > enA" CY)

AVZ[Zxn(VeeF')(enZ+@—>enA"cZ)>YcZ]
(2) Next, we define a formula a(x, Y) such that

Hea(v,Q) if veTandQ=B(UF,/T).
The formula a(x, Y) should state that

Y={ueT|thereissomeeeF, withenA, +gandenA, +2}.
Using the formulae 9, we can write « as

a(x,Y):=\/[TexA(JecF)(enAy #@AenA, +2)].

T
(3) With the help of a we can write down the desired formulae ¢ and .
o(X) :=VxVY[Xx na(x,Y) > YcX],
xX(x,y) = VX[p(X) ~ (Xy = Xx)]. O
Lemma 2.8. We can construct GSO-formulae y,,(x, y; Z), for m < w, such that,
for every depth-first spanning tree (T, <, (F,),) of a connected hypergraph $) of

rank m, there are GSO-parameters S such that the formula v, (x, y;S) defines a
preorder £, with the following properties:

17

o The restriction of £, to T coincides with <.

® T, linearly preorderes every set X € V such that B(X/T) is linearly ordered
by <.

o Each c,-class has at most m elements.
Proof. Let y(x,y) and 9(x,Y) be the formulae of Lemma 2.7. For each type 7,

we define a formula #,(x, y) linearly preordering each set A, where v is of type .
Then the desired formula v, states that either

¢ xeA,andye A, foru<v,or
* x,y€A,, for some v of type 7, and #,(x, y) holds.

If v is of type o or s; then A, contains at most m elements and we can set

7:(x,y) :=true.
For vertices of type t; we can use the formula from Lemma 2.4. O

Corollary 2.9. We can construct GSO-formulae v, (x, y; Z), for m < w, such
that, for every depth-first spanning tree (T, <, (F,),) of a connected hypergraph)
of rank m, there are GSO-parameters S such that the formula v, (x, y;S) defines
a partial order with the following properties:

o The restriction of € to T coincides with <.

o Clinearly orderes every set X € V such that B(X/ T is linearly ordered by <.
Proof. Let £, be the preorder from Lemma 2.8. Since every E,-class contains
at most m elements we can add m new unary predicates P,, ..., P,_, such that

P,uU---UP,_, =V and, we have |X n P;| < 1, for each 5,-class X and all i. Then
we can define

ucv :iff eitheruc, v, or
UEV,VE U, u€eP;,veP fori<k. O
Theorem 2.10. We can construct GSO-formulae ¢,,(x,Y;Z), for m < w, such

that, for every hypergraph §) of rank m, there are GSO-parameters S such that, the
formula ¢,,(x,Y;S) defines an orientation of .

Proof. Suppose that § has x connected components C;, i < k. For each compo-
nent C; we fix a depth-first spanning tree (T, <’, (F}),). Let S’ be the parame-
ters from Lemma 2.7 and Lemma 2.8. For every edge e € E, there exists a unique

18

component C; such that the intersection X := e n U, A’ is finite and nonempty.
Furthermore, the set B(X/T") is linearly ordered by <. Using the ordering < of
Corollary 2.9 we can write down a formula ¢,, (v, e) stating that v is the c-least
element of this set X. O

Corollary 2.11. Every hypergraph of rank m < w is GSO-orientable.

Let us mention the following consequences of this result. For countable hyper-
graphs they are again due to Courcelle [2].

Definition 2.12. (a) A formula ¢(x, y, Z) defines an edge ordering of a hyper-
graph §) = (V, E) if, for every edge e € E, the formula ¢(x, y, e) defines a linear
ordering on the vertices of e.

(b) A formula ¢(x, y, z) defines an neighbourhood ordering of a directed graph
® = (V,E) if, for every vertex v € V, the formula ¢(x, y,v) defines a linear
ordering on the set {u € V| (u,v) € E }.

Lemma 2.13. There exist GSO-formulae ¢, (x, y, Z; U), for m < w, such that, for
every hypergraph §) = (V, E) of rank m, there are GSO-parameters S such that the

formula ¢, (x, y, Z; S) defines an edge ordering of $).

Lemma 2.14. There exist MSO-formulae ¢, (x, y,z; U), for m < w, such that, for
every directed graph & of indegree at most m, there are MSO-parameters P such
that the formula ¢, (x, y,z; P) defines a neighbourhood ordering of &.

Proof. We can apply Lemma 2.13 to the hypergraph § := (V, F) where
F:={I(v)|veV} with I(v):={ueV|(u,v)eE}.
Note that every subset S € F can be encoded by the set
I''(F):={veV|I(v)eF}cV.
Hence, every GSO-formula over §j can be translated into an MSO-formula over &.
O

3 GSO VERSUS MSO

In [2] Courcelle has shown that we can translate every GSO-formula ¢ into an
MSO-formula y that is equivalent to ¢ on all countable k-sparse hypergraphs.

19

Using the results of the previous sections we can lift the restriction to countable
hypergraphs. The proof in [2] goes through unchanged since it relies only on
the statements of Lemma 2.13 and Lemma 2.14, and on local modifications of
hypergraphs.

Theorem 3.1. For all numbers m, k < w, there exists a monadic second-order inter-
pretation (with monadic parameters) that maps a k-sparse hypergraph of rank m
to its incidence structure.

Corollary 3.2. Forallm, k < w and all formulae ¢(%, Y, Z) € GSO with first-order
variables %, monadic variables Y, and guarded second-order variables Z, there ex-
ists a formula w(x,Y, Z) € MSO with the following property: For all k-sparse hy-
pergraphs $) = (V, E) of rank m and all parameters a; € V, P; € V, R; C E, there
exist parameters Q; € V such that

Heg(aP,R) iff HEey(aP,Q).

4 SPARSE DISTRIBUTIONS

The results so far concern ways to encode edges by vertices. In this last section
we consider a more general problem. Let & = (V, E) be a graph. We denote by
£rin (V) the set of all finite subsets of V. We would like to encode a given subset
F € Pgin (V') by a set of vertices, that is, we would like to find a definable function
h: F — V that is injective. For F = E this reduces to the problem considered in
the preceding sections. For arbitrary F, such a function /& does not always exist.
But we will show that sometimes we can transform a given function b, : F - V
into an injective one.

These results are inspired by work of Colcombet and Loding [1] on set interpre-
tations. Colcombet and Loding consider a power set operation P on structures.
One of their main results in a commutation theorem for interpretations and the
power set operation. They show that, given a tree T and an FO-interpretation Z
such that Z(P (X)) is of the form P (1), for some structure 91, then there exists
a WMSO-interpretation J such that 9t ~ 7(%). On ingredient in the proof of
this result is a method to encode, in a definable way, finite subsets of the tree T
by single vertices.

Suppose we are given a function h, : F — V that we want to transform into
an injective function h : F — V. Let §(v) := |hZ*(v)|. The first step in the con-
struction of h consists in finding a definable function g : V' — V such that

20

|g7"(v)| = 8(v), for all v. Of course, this is not always possible. For instance, if
the graph is finite and we have §(v) > 1, for all vertices v. Therefore, we consider
only functions § that are sparse in the sense of the following definition.

Definition 4.1. Let & = (V, E) be an undirected graph.
(a) The border of a subset Z € V is the set

Bs(Z):=En(V~Z)xZ

of all edges connecting a vertex in Z with a vertex outside of Z.
(b) A distributionof ®isamap § : V - w. For X ¢ V, we define the shorthand

8(X) =) 8(x).

veX

(c) Let h : X — V be an arbitrary mapping. The distribution induced by h is
the function § : V — w with

d(v) =" (v)|.
(d) A distribution & is k-sparse if
0(Z)<|Z|+k-|Bs(Z)|, foreveryZcV.

Given a k-sparse distribution & we will construct the desired functiong: V —
V by solving a network flow problem.

Definition 4.2. Let & = (V, E) be an undirected graph.
(a) A flow of & is a function f : V x V — Z such that, forall u,v € V,

o f(u,v)=-=f(v,u)and
o f(u,v) + oimplies (u,v) € E.

(b) A flow f is acyclic if there is no cycle u,, . .., u,, of & with f (1, u,) >0
and f(u;,u;4,) > o, forall i < m.
(c) The defect of a flow f is the distribution

de(v) = Zf(v,u)

ueV

(d) A flow f is a §-flow if, for every v € V, either

df(v)=06(v)-1 or &(v)=oandds(v)=o.

21

(e) A flow f is edge-bounded by k if |f(u,v)| < k, for all u,v € V. We call f
vertex-bounded by k if

Y f(uv)| <k, forallveV.
ueV

Our aim is to show that, for every k-sparse distribution § there is a bounded
é-flow f and a function g : V — V inducing d. Furthermore, if § is definable
then g should also be definable.

Definition 4.3. Let L be a logic.
(a) A distribution 8 is L-definable if there exist formulae ¢;(x) € L, i < k, such
that

Gepi(v) iff S(v)=i.

(b) Similarly, a flow f is L-definable if there exist formulae ¢;(x, y) € L such
that

Ge=pi(uv) iff f(uv)=i.

Remark. Note that every edge-bounded flow can be encoded with the help of the
GSO-parameters

Si={(u,v)eE| f(u,v)=i}.

For trees the problem of encoding sets by vertices has been solved by Col-
combet and Loding [1]. In the general case proved below the function g is only
definable with the help of GSO-parameters, but for trees we can do without them.

Theorem 4.4 (Colcombet and Léding [1]). Let T = (T, E) be an infinite directed
tree and 6 a WMSO-definable k-sparse distribution of . There exists a WMSO-
definable flow f that is edge-bounded by 7k and satisfies d¢(v) > 6(v) — 1, for
allv.

Theorem 4.5 (Colcombet and Loding [1]). Let T = (T, E) be a directed tree and
8 a WMSO-definable k-sparse distribution of X such that §(T) < |T|. There exists
WMSO-definable function g : T — T such that § is the distribution induced by g.

To prove our generalisation of these results we start with a few lemmas about
bounded flows. The first two follow immediately from the definitions.

22

Lemma 4.6. Every flow that is vertex-bounded by k is also edge-bounded by k.

Lemma 4.7. Suppose that & is a graph with maximal degree d. Every flow of &
that is edge-bounded by k is vertex-bounded by dk.

Lemma 4.8. For every -flow f there exists an acyclic 5-flow f' such that, if f is
edge-bounded by k or vertex-bounded by k then so is f.

Proof. We repeat the following construction until the flow is acyclic. Select a
cycle uo, ..., Uy such that

c:=min{ f(u;,Uis,) |i<m}>o0.
We define f’ by

f(x,y)-c ifx=u;and y =u;,,, for somei,
f'(x,y):={f(x,y)+c ifx=u;, and y = u;, for some i,
f(x,9) otherwise.. O

Proposition 4.9. Let & = (V, E) be an undirected graph and & a k-sparse distri-
bution. Then & has a §-flow f that is edge-bounded by k.

Proof. First, we assume that & is finite. In this case we can reduce the task to a
network flow problem. Let §) be the graph obtained from ® by adding two new
vertices s and t that are connected to every vertex of &. We define the capac-
ity c(e) of edges e of §) as follows. For edges e of & we set c(e) := k. If e = (s,v)
with v € V we set ¢(e) := max{o, 8(v) —1}. Finally, if e = (v, ¢) with v € V we
define

o(e) = {o if §(v) > o,

1 otherwise.

Let f be a maximal flow from s to t with respect to c¢. We claim that its restriction
to the edges of & is the desired flow.

According to the Max-Flow Min-Cut Theorem, there is a set X of vertices
containing s but not ¢ such that the maximal flow m from s to ¢ equals

m= > c(e).

e€Bg (X)

23

Let X, := X~ {s} € Vand Y := § (o). Since
Ba(X)=Bs(Xo)u{(v,t) |veXoJu{(s,v)|veV X},
we have

m= Y c(e)

eeBg (X)
=k