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Abstract Generalising the notion of a prefix-recognisable graph to ar-
bitrary relational structures we introduce the class of tree-interpretable
structures. We prove that every tree-interpretable structure is finitely
axiomatisable in guarded second-order logic with cardinality quantifiers.

1 Introduction

In recent years the investigation of algorithmic properties of infinite structures
has become an established part of computer science. Its applications range
from algorithmic group theory to databases and automatic verification. Infinite
databases, for example, were introduced to model geometric and, in particular,
geographical data (see [16] for an overview). In the field of automatic verification
several classes of infinite transition systems and corresponding model-checking
algorithms have been defined. For instance, model-checking for the modal µ-
calculus over prefix-recognisable graphs is studied in [6], [17]. A further point of
interest in this context is the bisimulation equivalence of such transition systems
as considered in [22], [23].

Obviously, only restricted classes of infinite structures are suited for such an
approach. In order to process a class K of infinite structures by algorithmic
means two conditions must be met:

(i) Each structure A ∈ K must possess a finite representation.
(ii) The operations one would like to perform must be effective with regard to

these representations.

One fundamental operation demanded by many applications is the evaluation
of a query, that is, given a formula ϕ(x̄) in some fixed logic and the representation
of a structure A ∈ K one wants to compute a representation of the set ϕA :=
{ ā | A |= ϕ(ā) }. Slightly simpler is the model-checking problem which asks
whether A |= ϕ(ā) for some given ā. The class of tree-interpretable structures
investigated in the present article has explicitly been defined in such a way
that model-checking for MSO, monadic second order logic, is decidable. To the
authors knowledge it is one of the largest natural classes with this property.

Several different notions of infinite graphs and structures have been considered
in the literature:

• Context-free graphs [19], [20] are the configuration graphs of pushdown au-
tomata.

• HR-equational graphs [8] are defined by equations of hyperedge-replacement
grammars.



• Prefix-recognisable graphs have been introduced in [7]. Several characterisa-
tions are presented in Section 3.

• Automatic graphs [15], [3], [5] are graphs whose edge relation is recognised
by synchronous multihead automata.

• Rational graphs [15], [18] are graphs whose edge relation is recognised by
asynchronous multihead automata.

• Recursive graphs [13] are graphs whose edge relation is recursive.

These classes of graphs form a strict hierarchy.
The table to the right shows for which logic
model-checking is still decidable for the vari-
ous classes. FO(∃κ), MSO(∃κ), and GSO(∃κ)
denote, respectively, first-order logic, monadic
second-order logic, and guarded second-order
logic extended by cardinality quantifiers. Σ0 is
the set of quantifier-free first-order formulae.

Class Logic

context-free GSO(∃κ)
HR-equational GSO(∃κ)
prefix-recognisable MSO(∃κ)
automatic FO(∃κ)
rational Σ0

recursive Σ0

When investigating a class of finitely pre-
sented structures the question naturally arises which structures it contains. Usu-
ally it is quite simple to show that some structure belongs to the class by con-
structing a corresponding presentation. But the proof that such a presentation
does not exists frequently requires more effort.

One possible approach consists in determining what additional information is
needed in order to extract the presentation from a given structure. In the case
of a tree-interpretable structure this information can be coded into a colouring
of its elements and edges. A characterisation of these colourings amounts to one
of the set of presentations of a structure. Besides determining whether a presen-
tation exists such a characterisation can, for instance, be used to investigate the
automorphism group of the structure.

In the present article we generalise the class of prefix-recognisable graphs to
arbitrary relational structures and prove that each presentation corresponds to
a GSO(∃k)-definable colouring. This implies that each such structure is finitely
axiomatisable in this logic. The outline of the article is as follows. Due to space
constraints some parts had to be omitted. The full version appears in [4].

In Section 3 we review several characterisations of the class of prefix-recognis-
able graphs including characterisations in terms of languages, graph grammars,
and interpretations.

The latter can be generalised to arbitrary relational structures most easily.
The resulting class of tree-interpretable structures is defined in Section 4. Af-
ter summarising some of its properties we also extend the characterisation via
regular languages to this class.

Section 5 is devoted to the study of paths in tree-interpretable graphs. The
presented results are mostly of a combinatorial nature and culminate in the proof
that every connected component is spanned by paths with a certain property.

In Section 6 we prove our main theorem which states that all tree-interpretable
structures are finitely axiomatisable in guarded second-order logic with cardinal-
ity quantifiers. We also show that the cardinality quantifiers are indeed needed.



Section 8 concludes the article with some lemmas about the orbits of the
automorphism group of a tree-interpretable structure and the result that iso-
morphism is decidable for tree-interpretable structures of finite tree-width.

2 Preliminaries

Automata and trees. Let Σ be an alphabet. The complete tree over Σ is
the structure TΣ := (Σ∗, (suca)a∈Σ,�) where the suca denote the successor
functions and � is the prefix-order. The longest common prefix of u and v is
denoted by u ⊓ v. If u = vw then we define v−1u := w and uw−1 := v.

For u ∈ Σ∗ and k ∈ N we write u/k for the prefix of u of length |u| − k,
and sufk u for the suffix of u of length k. In case |u| < k we have u/k = ε and
sufk u = u. In particular, (u/k) sufk u = u for all u and k.

Let ≤lex be the lexicographic order and ≤ll the length-lexicographic one de-
fined by

x ≤lex y :iff x � y, or wc � x and wd � y for some w and c < d.

x ≤ll y :iff |x| < |y|, or |x| = |y| and x ≤lex y.

We denote automata by tuples (Q,Σ,∆, q0, F ) with set of states Q, alpha-
bet Σ, transition relation ∆, initial state q0, and acceptance condition F .

Logic. Let us recall some basic definitions and fix our notation. Let [n] :=
{0, . . . , n − 1}. We tacitly identify tuples ā = a0 . . . an−1 ∈ An with functions
[n] → A or with the set {a0, . . . , an−1}. This allows us to write ā ⊆ b̄ or ā = b̄|I
for I ⊆ [n].

MSO, monadic second-order logic, extends first-order logic FO by quantifica-
tion over sets. In guarded second-order logic, GSO, one can quantify over rela-
tions R of arbitrary arity with the restriction that every tuple ā ∈ R is guarded,
i.e., there is some relation S of the original structure that contains a tuple b̄ ∈ S
such that ā ⊆ b̄. Note that every singleton a is guarded by a = a. For a more
detailed definition see [14].

L(∃κ) denotes the extension of the logic L by cardinality quantifiers ∃λ, for
every cardinal λ, where ∃λ stands for “there are at least λ many”.

A formula ϕ(x̄) where each free variable is first-order defines on a given struc-
ture A the relation ϕA := { ā | A |= ϕ(ā) }.

Definition 1. Let A = (A,R0, . . . , Rn) and B be relational structures. A (one-
dimensional) MSO-interpretation of A in B is a sequence

I =
〈

δ(x), ε(x, y), ϕR0
(x̄), . . . , ϕRn

(x̄)
〉

of MSO-formulae such that A ∼=
(

δB, ϕB

R0
, . . . , ϕB

Rn

)/

εB. To make this expres-

sion well-defined we require that the relation εB is a congruence of the structure
(

δB, ϕB

R0
, . . . , ϕB

Rn

)

. We denote the fact that I is an MSO-interpretation of A

in B by I : A ≤MSO B or A = I(B).
The epimorphism

(

δB, ϕB

R0
, . . . , ϕB

Rn

)

→ A is called coordinate map and also
denoted by I. If it is the identity function we say that A is definable in B.



3 Prefix-recognisable graphs

Originally, the investigation of tree-interpretable structures was concerned only
with transition systems. This subclass appears in the literature under several
names using widely different definitions which all turned out to be equivalent.
They are summarised in the next theorem. A more detailed description follows
below.

Theorem 2. Let G = (V, (Ea)a∈A) be a graph. The following statements are

equivalent:

(1) G is prefix-recognisable.

(2) G = h−1(T2)|C for a rational substitution h and a regular language C.

(3) G is the restriction to a regular set of the configuration graph of a pushdown

automaton with ε-transitions.

(4) G is MSO-interpretable in the binary tree T2.

(5) G is VR-equational.

The equivalence of the first two items are due to Caucal [7], Stirling [23] men-
tioned the third characterisation, and Barthelmann [1] delivered the last two.

Definition 3. A graph is prefix-recognisable if it is isomorphic to a graph of
the form (S, (Ea)a∈A) where S is a regular language over some alphabet Σ and
each Ea is a finite union of relations of the form

W (U × V ) := { (wu,wv) | u ∈ U, v ∈ V, w ∈W }

for regular languages U , V , W ⊆ Σ∗.

Actually in the usual definition the reverse order (U×V )W is used. The above
formulation was chosen as it fits better to the usual conventions regarding trees.

Example. The structure (ω, suc,≤) is prefix-recognisable. If we represent the
universe by a∗ the relations take the form suc = a∗(ε× a) and ≤ = a∗(ε× a∗).

One can also characterise prefix-recognisable graphs via graph grammars. Us-
ing the notation of Courcelle [8], [10], [12] we consider the following operations
on vertex-coloured graphs. Let C be a finite set of colours.

• G+H is the disjoint union of G and H .
• ̺β(G), for β : C → C, changes the colour of the vertices from a to β(a).
• ηa

b,c(G) adds a-edges from each b-coloured vertex to all c-coloured ones.
• a denotes the graph with a single a-coloured vertex.

The clique-width of a graph G is, by definition, the minimal number of colours
one needs to write a term denoting G.

Definition 4. A countable coloured graph is VR-equational if it is the canonical
solution of a finite system of equation of the form

x0 = t0, . . . , xn = tn

where the ti are finite terms build up from the above operations. Further, we
require that none of the ti equals a single variable xk.



Proposition 1 (Barthelmann [1]). A graph is prefix-recognisable if and only if

it is VR-equational.

Since only finitely many colours can be used in a finite system of equations it
follows that the clique-width of each VR-equational graph is finite.

Corollary 1. Each prefix-recognisable graph is of finite clique-width.

Example. If we colour the first element by a and the other ones by b we can
define (ω, suc, <) by

x0 = η<
a,b(x1), x1 = ̺c→bη

suc

a,c (a+ x2), x2 = ̺a→c(x0).

4 Tree-interpretable structures

The characterisation of prefix-recognisable graphs in terms of interpretations is
the one most easily generalised to arbitrary relational structures.

Definition 5. A structure A is called tree-interpretable iff A ≤MSO T2.

From this definition one can immediately deduce some basic properties of the
class of tree-interpretable structures.

Proposition 2. The class of tree-interpretable structures is closed under MSO-

interpretations. In particular, it is closed under

(1) isomorphisms, (4) expansion by finitely many constants,

(2) definable expansions, (5) factorisation by definable congruences, and

(3) finite unions, (6) substructures with definable universe.

Since MSO(∃κ) model checking is decidable for T2 and this property is con-
served by MSO-interpretations we obtain a decidability result for all tree-inter-
pretable structures.

Proposition 3. MSO(∃κ) model checking is decidable for every tree-interpret-

able structure.

All tree-interpretable graphs are of finite clique-width. On the other hand,
their tree-width can be unbounded as the example of the infinite clique Kℵ0

shows. A result of Courcelle [11] which was extended to tree-interpretable graphs
by Barthelmann [2] shows that being of finite tree-width imposes a strong re-
striction on the structure of a tree-interpretable graph. Although stated only for
graphs it also holds for arbitrary structures if one replaces G by its Gaifman
graph in (2)–(4).

Proposition 4 (Barthelmann [2], Courcelle [11]). Let G be a tree-interpretable

graph. The following statements are equivalent:

(1) G is HR-equational. (3) Kn,n is not a subgraph of G for some n < ℵ0.

(2) G has finite tree-width. (4) G is uniformly sparse.

This characterisation allows us to extend Proposition 3 to GSO(∃κ).

Theorem 6. Let A be a tree-interpretable structure. GSO model checking is

decidable for A if and only if A is of finite tree-width. The same holds for

GSO(∃κ).
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Figure 1. The branching structure of 1111, 1011, 101011 and its isomorphism type

Although the characterisation of tree-interpretable structures by interpreta-
tions is quite elegant, in actual proofs it is most of the time easier to work with a
more concrete characterisation in terms of languages. Let us recall how automata
are used to decide MTh(T2) (see [24] for an overview).

Definition 7. For sets X0, . . . , Xn−1 ⊆ {0, 1}∗ let TX̄ be the P([n])-labelled
binary tree with T (w) := { i < n | w ∈ Xi } for w ∈ {0, 1}∗. For singletons
Xi = {xi} we also write Tx̄.

With this notation we can now state Rabin’s famous tree theorem in the
following way:

Theorem 8. For each MSO-formula ϕ(X̄, x̄) there is a tree-automaton A that

recognises the language {TX̄x̄ | T2 |= ϕ(X̄, x̄) }.

Employing this correspondence we generalise the characterisation of prefix-
recognisable graphs by relations of the form W (U × V ) to arbitrary relational
structures.

Definition 9. The branching structure of x0, . . . , xn−1 ∈ Σ∗ is the partial order
(X,�) where X := {ε} ∪ {xi ⊓ xj | i, j < n }. The elements of X are called
branching points.

Example. The branching structure of 1111, 1011, 101011 is depicted in Figure 1.

Note that for a fixed number of words there are only finitely many non-iso-
morphic branching structures.

Proposition 5 (Blumensath [4]). An n-ary relation R ⊆ ({0, 1}∗)n is MSO-

definable in T2 iff R is a finite union of relations Ri of the following form:

(a) All tuples x̄ ∈ Ri have the same branching structure (up to isomorphism).
(b) For each pair of adjacent branching points u, v there is a regular lan-

guage Wu,v such that x̄ ∈ Ri if and only if for each such pair u, v the word u−1v
belongs to Wu,v.

Example. For the branching structure in Figure 1, a relation would be defined
by five regular languages U , V , W , X , and Y with R = U(V ×W (X × Y )).

Definition 10. Let A be a tree-interpretable structure. Fixing an interpretation
we can assume that the universe A ⊆ Σ∗ is regular and each relation R is
specified by regular languages as in the preceding proposition. The syntactic



congruence ∼ of A (w.r.t. this interpretation) is the intersection of the syntactic
congruences of all these languages. We denote the index of ∼ by I .

If some elements of a tree-interpretable structure are encoded by several words
it becomes difficult to apply pumping arguments since the words obtained by
pumping may encode the same element. Fortunately, for each tree-interpretable
structure A we can choose an interpretation where this does not happen.

Proposition 6 (Blumensath [4]). If A ≤MSO T2 then there is an interpretation

I : A ≤MSO T2 where the coordinate map is injective.

This result allows us to identify the elements of a tree-interpretable structure
with the unique word encoding them. We will do so tacitly in the remainder of
the article. We conclude this section with a combinatorial lemma whose proof is
based on a pumping argument.

Lemma 1. Let A be a tree-interpretable structure and ϕ(x, y) ∈ MSO(∃κ) such

that, for every a ∈ A, there are only finitely many elements b ∈ A with A |=
ϕ(a, b). There is a constant k such that ϕ(a, b) implies b/k ≺ a. In particular,

|ϕ(a,A)| ∈ O(|a|).

5 Paths in tree-interpretable graphs

In this section we consider a fixed tree-interpretable graph G = (V,E0, . . . , Er−1).
By replacing each edge relation Ea =

⋃

iWi(Ui × Vi) by several relations E i
a :=

Wi(Ui × Vi) we may assume that Ea = Wa(Ua × Va) for regular languages
Ua, Va,Wa ⊆ Σ∗. We also add the relation Ea− := (Ea)−1 for each edge rela-
tion Ea. Note that these operations do not affect the syntactic congruence ∼.

Definition 11. (1) The base-point of an edge (a, b) ∈W (U × V ) is the longest
word w contained in W such that w−1a ∈ U and w−1b ∈ V . The spine of a path
is the sequence of the base-points of its edges.

(2) A sequence a0, . . . , an is k-increasing if |aj | ≥ |ai| − k for all i < j.
(3) A path a0, . . . , an with spine w0, . . . , wn−1 is called k-normal if the path

and its spine are k-increasing and ai/k � aj for all j ≥ i.

Proposition 7 (Blumensath [4]). Let G be a tree-interpretable graph. There is

a constant K such that each connected component of G contains a vertex v,
called its root, such that there are K-normal paths from v to all other vertices

of the component.

6 Axiomatisations

Equipped with the combinatorial lemmas of the previous section we can present
the main result of this article. Each tree-interpretable structure A is finitely
GSO(∃κ)-axiomatisable, i.e., there is a GSO(∃κ)-sentence ψA such that B |= ψA

if and only if B ∼= A. Actually, we will prove the slightly stronger statement
that, for each tree-interpretable structure, there is a colouring of the guarded
tuples such that the coloured structure is MSO(∃κ)-axiomatisable. That is, the
axiom consists of a sequence of existential non-monadic second-order quantifiers
followed by an MSO(∃κ)-formula.



The congruence colouring. The axiomatisation uses colourings of elements
and pairs of elements that are of the following form:

Definition 12. (a) Let ≈ ⊆ Σ∗ × Σ∗ be a congruence of finite index and let
k ∈ N. The (≈, k)-congruence colouring χk

≈ maps words x ∈ Σ∗ to the pair

χk
≈(x) :=

(

[x/k]≈, sufk x
)

and pairs (x, y) ∈ Σ∗ ×Σ∗ to

χk
≈(x, y) :=

(

χk
≈(w−1x), χk

≈(w−1y)
)

where w := x ⊓ y.

(b) A (≈′, k′)-colouring χ′ refines the (≈, k)-colouring χ if ≈′ ⊆ ≈ and k′ ≥ k.
We denote this fact by χ′ ≥ χ. The common refinement of a (≈0, k0)-colouring χ0

and a (≈1, k1)-colouring χ1 is the (≈0 ∩ ≈1, max{k0, k1})-colouring denoted by
χ0 ⊔ χ1.

Definition 13. The χ-expansion (A, χ) of a structure A expands A by unary
and binary relations for each colour class where the binary colour classes consists
only of pairs (x, y) which are guarded.

The restriction to guarded pairs is essential since GSO allows only quantification
over relations of this form. Below we frequently will need to obtain the value
χ(x, y) for pairs (x, y) which are not guarded. These values must be computed
explicitly from available data. This is where k-normal paths come into play.

Lemma 2. Let A be a tree-interpretable structure, ≈ a congruence of finite in-

dex, and k a constant. The χk
≈-expansion (A, χk

≈) of A is also tree-interpretable.

We say that a set P of vertices codes a path between x and y if every element
of P except for x and y is connected to exactly two other elements in P whereas
x and y are connected to exactly one. Clearly, not every path can be coded in
this way. Fortunately, for our purposes it is sufficient that, if there is a k-normal
path between two vertices, then we can obtain a codable k-normal path between
them by removing some vertices.

Lemma 3. Let G be a graph, χ a (≈, k)-congruence colouring, and c a colour

of χ. There is an MSO-formula ϕc(P, x, y) such that (G, χ) |= ϕc(P, x, y) if and

only if P codes a k-normal path from x to y and χ((x ⊓ y)−1y) = c.

Forests. We start slowly by first showing that forests are finitely axiomatisable.
We regard forests as partial orders such that the elements below any given one
form a finite linear order. To axiomatise a forest it is sufficient to state, for each
vertex, the number of its immediate successors of a a given colour. Note that
these numbers only depend on the colour of the vertex.
Theorem 14. Let T := (T,≤) be a tree-interpretable forest. The structure

(T, χ) is finitely FO(∃κ)-axiomatisable for all χ ≥ χI
∼.



Partial-orders. The next step consists in extending the result to tree-inter-
pretable partial orders A := (A,≤) for which there is a constant n ∈ N such
that x ≤ y implies x/n � y/n for all x, y ∈ A. To do so we have to define a
forest in A. When speaking of paths we always consider undirected paths in this
section, i.e., we ignore the direction of the edges.

Definition 15. Let x ⊑ y iff x/n � y/n and there is an undirected ≤-path
z0, . . . , zm from x to y with x/n � zi/n for all i ≤ m. Further, define x ≡ y iff
x ⊑ y and y ⊑ x.

It is easy to show that (A,⊑)/≡ is a forest and, thus, axiomatisable. This fact
can be used to prove the following result.

Proposition 8. There is a congruence colouring χ0 such that (A,⊑, χ) is fi-

nitely MSO(∃κ)-axiomatisable for every χ ≥ χ0.

In order to transfer the axiomatisability result from (A,⊑) to A, we have to
show that each of the structures is definable in the other one.

Lemma 4. (a) (A,⊑, χ) is MSO-definable in (A, χ) for all χ ≥ χK
∼ .

(b) (A, χ) is MSO-definable in (A,⊑, χ) for all colourings χ ≥ χn
∼.

These results allow us to transfer the axiomatisability from (A,⊑, χ) to (A, χ).

Theorem 16. Let A := (A,≤) be a tree-interpretable partial-order and let n ∈
N be a constant such that x ≤ y implies x/n � y/n for all x, y ∈ A. There is a

congruence colouring χ0 such that (A, χ) is finitely MSO(∃κ)-axiomatisable for

every χ ≥ χ0.

The general case. Finally, we consider an arbitrary tree-interpretable struc-
ture A. For the reduction to the previous case we define, as above, a partial
order ≤ and show that the structures (A,≤) and A are definable within each
other.

Definition 17. Let x ⊢ y if x/I � y/I and the pair (x, y) is guarded. Let ≤ be
the reflexive and transitive closure of ⊢.

Lemma 5. (A,≤, χ) is MSO-definable in (A, χ) for all colourings χ ≥ χI
∼.

The proof of the converse is more involved and requires an investigation of the
branching structure of a tuple.

Definition 18. Let ā, b̄ ∈ An. We say that ā is a reduct of b̄ iff

(1) the branching structures of ā and b̄ are the same,
(2) inf� ā ∼ inf� b̄,
(3) (ai ⊓ aj)

−1(ak ⊓ al) ∼ (bi ⊓ bj)
−1(bk ⊓ bl) for all indices such that ai ⊓ aj �

ak ⊓ al,
(4) |ai| < |inf� ā| + nI for all i < n.

A tuple is called reduced if it is a reduct of itself.

Lemma 6. If ā is a reduct of b̄ and b̄ ∈ R then ā ∈ R.

To check whether a tuple ā belongs to a relation R we use the characterisation
of Proposition 5. Hence we need to compute the ∼-class of u−1v for branching
points u and v of ā.



Definition 19. Let ā ∈ An. The elements bik ∈ A, for i, k < n, code the branch-

ing structure of ā if

(1) bii = ai for i < n,
(2) bik/nI ≺ ai ⊓ ak � bik for all i, k, and
(3) if ai ⊓ ak ≺ ai ⊓ al then bik ⊢ bil for i, k, l < n.

Given bik and bil we can compute the ∼-class of (ai ⊓ ak)−1(ai ⊓ al). Hence, if
we can show that such elements always exists and that they are definable, then
we are almost done.

Lemma 7. (a) For each branching structure X there is a formula βX(x̄, ȳ) such

that (A,≤, χ) |= β(ā, b̄) if and only if the branching structure of ā is X and it is

coded by b̄.
(b) Let R be an n-ary relation of A and ā ∈ R. There are elements bik ∈ A,

i, k < n, coding the branching structure of ā.

At last, we are able to prove the other direction.

Lemma 8. The structure (A, χ) is MSO-definable in (A,≤, χ) for every χ ≥
χnI
∼ where n is the maximal arity of relations of A.

Theorem 20. Let A be a tree-interpretable structure. There is a congruence

colouring χ0 such that (A, χ) is finitely MSO(∃κ)-axiomatisable for all χ ≥ χ0.

The proof is completely analogous to the one of Theorem 16. Since GSO(∃κ)
allows quantification over colourings χ we obtain as immediate corollary the
following result.

Theorem 21. Every tree-interpretable structure is finitely GSO(∃κ)-axiomati-

sable.

7 Lower bounds

We have shown that every tree-interpretable structure is finitely GSO(∃κ)-ax-
iomatisable. Of course, the question arises if we can do better. In this section
we show that at least the quantifiers ∃ℵ0 and ∃ℵ1 are needed. Since all tree-
interpretable structures are countable we obviously can do without the ones for
higher cardinalities.

For a logic L let Lm denote the set of L-formulae of quantifier rank at most m
where we count both first- and second-order quantifiers. The following statements
about the expressivity of MSOm and MSOm(∃ℵ0) can easily be proved using the
corresponding versions of the Ehrenfeucht-Fräıssé game.

Lemma 9. (a) For every m ∈ N there exists a constant k such that two sets

A and B are MSOm-equivalent if and only if either |A| = |B| or |A|, |B| ≥ k.
(b) For every m there is some k such that two sets A and B are MSOm(∃ℵ0)-

equivalent iff either |A| = |B|, or k ≤ |A|, |B| < ℵ0, or |A|, |B| ≥ ℵ0.

(c) Any two infinite sets are MSO(∃ℵ0)-equivalent.

Since GSO(∃κ) collapses to MSO(∃κ) on trees, this lemma implies that K1,ℵ0

and K1,ℵ1
are GSO(∃ℵ0)-equivalent. But the former structure is tree-interpret-

able while the latter obviously is not.



Theorem 22. There exists tree-interpretable trees which are not GSO(∃ℵ0)-
axiomatisable.

This shows that we cannot do without all cardinality quantifiers even if we
allow infinitely many axioms. But do we really need non-monadic second-order
quantifiers?

Open Problem. Are there tree-interpretable structures which are not (finitely)
MSO(∃κ)-axiomatisable?

8 Automorphisms of tree-interpretable structures

As mentioned in the introduction the axiomatisation of a tree-interpretable
structure can be used to investigate its automorphism group.

Lemma 10. Let A be a tree-interpretable structure and a ∈ A. The orbit O of a
under automorphisms is GSO(∃κ)-definable.

Proof. If A is tree-interpretable then so is (A, a). Let ϕ(x) be the GSO(∃κ)-
formula obtained from the axiom of (A, a) by replacing every occurrence of the
constant a by the variable x. It follows that

b ∈ O iff (A, b) ∼= (A, a) iff A |= ϕ(b). ⊓⊔

Lemma 11 (Pélecq [21]). Let A be a tree-interpretable structure of finite tree-

width and let O be the orbit of a ∈ A under automorphisms. Then (A, O) is

tree-interpretable.

Proof. O is GSO(∃κ)-definable by the preceding lemma. Since A is of finite tree-
width it follows that O is even MSO(∃κ)-definable and, therefore, (A, O) ≤MSO

T2. ⊓⊔

We conclude this article with a simple application to the isomorphism problem.

Theorem 23 (Courcelle [9]). Given two tree-interpretable structures A and B

of finite-tree width one can decide whether A ∼= B.

Proof. Although not explicitly stated, the construction of the axiom in the pre-
vious section is effective. Thus, in order to determine whether A ∼= B one can
construct the GSO(∃κ)-formula ϕA which axiomatises A and check whether B

satisfies ϕA. ⊓⊔

Open Problem. Is isomorphism decidable for all tree-interpretable structures?
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